2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID) | 979-8-3503-8440-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/VLSID60093.2024.00037

2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems
(VLSID)

Hardware-based Detection of Malicious Firmware
Modification in Microgrids

Amisha Srivastava*, Sneha Thakur!, Abraham Peedikayil Kuruvila¥, Poras T. Balsara*, Kanad Basu*

*Universit¥ of Texas at Dallas, USA
IEEE Member
iSamsung Electronics America, USA

Abstract—Microgrids play a pivotal role in shaping the future of
sustainable and resilient energy solutions. However, their remote accessi-
bility and control functionalities make them susceptible to cybersecurity
threats. In particular, components such as Digital Signal Processing (DSP)
Boards deployed in Microgrids are prime targets for cyber adversaries
seeking to compromise the integrity and functionality of power systems.
To address this threat, we propose a comprehensive methodology that
integrates custom-built Hardware Performance Counters (HPCs) with
Time Series Classifiers (TSCs) to efficiently detect malicious firmware
in critical components operating within a Microgrid setup. Our experi-
mental results demonstrate the effectiveness of the proposed approach,
achieving up to 100% accuracy in detecting firmware modification
attacks. This method represents a significant stride in the Design-for-
Security (DfS) paradigm, bolstering the resilience of microgrids against
cyber threats and safeguarding critical infrastructure.

Index Terms—Hardware Performance Counters, Microgrids, Time
Series Classification, Digital Signal Processing

I. INTRODUCTION

The power system domain is undergoing a significant paradigm
shift, transitioning from a conventional top-down model to a more
decentralized, flexible, and smart-grid system. At the forefront of
this revolution are Microgrids (MGs), which are the integration of
Renewable Energy Sources (RES), Photo-Voltaic (PV) devices, wind,
fuel cells into the existing power grid [1]. Microgrids are self-
contained energy systems that encapsulate a plethora of resources
such as wind turbines, solar PVs, gas generators, and Energy Storage
Systems (ESS). Microgrids have created a need for an advanced and
intelligent power system, known as smart-grid. A smart-grid inte-
grates advanced sensing technologies, control methods, and integrated
communications into the current electricity grid.

Smart-grids represent a transformative evolution in the energy
sector, integrating advanced technologies and a wide array of inter-
connected devices to create an intelligent and dynamic energy man-
agement system [2]. Within these smart-grids, various interconnected
devices play crucial roles in ensuring efficient and reliable energy
management. One pivotal component in these systems is the Digital
Signal Processing (DSP) Board. These DSP boards contribute to
the grid’s intelligent characteristics by enabling remote accessibility,
control functionalities, and fast data sampling, which are essential for
grid management and optimization. However, while the advantages of
smart-grids facilitated by these components are significant, they also
open doors to potential security vulnerabilities. The remote accessi-
bility and control functionalities of DSP boards make them enticing
targets for attackers. The allure of accessing and manipulating critical
components remotely increases the risk of cyberattacks on smart-
grids. Furthermore, the frequent installation of MGs in unsecured or
remotely monitored environments, coupled with their initial design
that may not prioritize strong security measures, further exacerbates
their susceptibility to cyber threats. The combination of these factors
creates potential entry points for attackers seeking to compromise the
grid’s integrity and disrupt its operations.

To safeguard critical infrastructure and address vulnerabilities,
effective detection mechanisms are crucial. Anti-virus software (AVS)
has traditionally been used, but it faces limitations like high compu-
tational overhead and lack of robustness [3]. AVS runs malware in
a virtual machine to monitor behavior and API usage, leading to

an ongoing challenge with attackers trying to evade detection. This
requires significant computational resources for continuous defense
improvements. One promising substitute for AVS is the employment
of Hardware-assisted Malware Detection (HMD), an approach that
leverages the physical hardware of a system as a defensive tool
against potential cyber threats [4]. HMD works on the principle of
analyzing hardware-level indicators, such as the number of branch-
misses, CPU cycles, instructions, etc. in order to detect signs of
malicious activity.

A key instrument in HMD are Hardware Performance Coun-
ters (HPCs), a type of embedded hardware resource in modern
microprocessors [S]. HPCs allow for the monitoring of low-level
microarchitectural events, including clock cycles, cache misses, and
instructions retired. By assessing these metrics, HPCs can detect
anomalous patterns in system performance that might indicate the
presence of malware or a cyberattack because of the hardware
footprint obtained through their utilization. However, the direct ap-
plication of HPC-based HMD techniques to microgrid systems can
be challenging. More specifically, some embedded legacy controllers
that are integral parts of the microgrid infrastructure lack native
HPC support. Optimized for specific tasks, these controllers may
not inherently include built-in HPCs to facilitate the measurement
of hardware performance metrics. As a result, traditional HPC-
based HMD techniques that rely on accessing and utilizing hardware
counters may not be directly applicable to such legacy controllers.
Without this support, the utilization of HPCs to track and analyze
system performance in these controllers becomes unfeasible.

To circumvent this limitation, we propose the use of custom-
designed HPCs as Design-for-Security (DfS) primitives to enhance
the security of firmware-based components in MGs. These custom
HPCs are engineered to monitor the sequence of instructions within
the microgrids’s firmware, helping identify anomalous behaviors
indicative of a potential attack. We leverage these custom-built HPCs
in both traditional and time series-based machine learning classifiers
to distinguish between benign and malicious firmware modifications.
The advent of such strategies is anticipated to significantly bolster
the cybersecurity of MGs, enabling their safe and secure operation
in the smart-grid environment. Specifically, our contributions are
summarized as follows:

o We design firmware modification attacks for crucial components
in MGs including DSP boards considering their characteristics
and how they operate in a MG setup,

o We assess the impact of these attacks targeting DSP boards on
a simulated MG architecture,

o We leverage time series classification in conjunction with
custom-built HPCs for the detection of malicious firmware in
components of microgrids that lack HPC support,

o Demonstrate that the proposed approach, when evaluated on
the modified firmware using the time series-based classifier,
furnishes up to 100% accuracy, 100% precision, and 100%
recall, respectively.

The rest of the paper is organized as follows. Section II provides the

background on power system preliminaries, hardware performance
counters and machine learning. Section III shows the prior related

979-8-3503-8440-6/24/$31.00 ©2024 IEEE 186

DOI 10.1109/VLSID60093.2024.00037
Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 05,2024 at 14:02:55 UTC from IEEE Xplore. Restrictions apply.

v
University

eiims, gl

Fig. 1: Smart grid architecture, with ER nodes

work. Section IV describes the proposed methodology. Section V
evaluates our proposed approach. Lastly, the paper is concluded in
Section VI.

II. BACKGROUND
A. Power System Preliminaries

Figure 1 depicts a microgrid with a smart ac-dc interface for
any utility such as, home, industry or domestic/commercial network
[6]. The utility interfaced to the grid with Energy Router (ER)
forms an interactive node (n1,n2,...n,). These ER nodes interact
with the DC/AC bus in the grid and among each other using a
communication channel. ER is a compact device which consists of
power-electronic converters for interfacing an RES, ES, and DC/AC
loads with the grid, and includes smart-control and sensing devices
with a communication module for interacting with other ER’s in the
microgrid network. ER architecture and hardware is discussed in [1]
and shown in Figure 2. It can be observed that the ER hardware
consists of the signal processing board which comprises of the DSP
chip and other components required to perform signal processing. The
DSP board consists of the circuits including op-amps to measure the
voltage and current on the ER. These signals are sensed by DSP
TMS320F28335 at its Analog to Digital Converter (ADC) pins. The
DSP processes and evaluates these signals, and does the required
calculations per the control to generate the required ePWM signals
for the converters in ER.

B. Hardware Performance Counters

Hardware Performance Counters (HPCs) are specialized registers
designed to monitor microarchitectural events at a low-level, such as
branch instructions or cache misses [5]. They are increasingly used
in cyber-physical systems for performance tuning and software opti-
mization. The number of available HPCs depends on the processor
architecture, typically ranging from four to six concurrently. Linux

Ausiliary supply

Fig. 2: ER complete hardware prototype

187

users can access HPC data through the Perf command provided by
the linuxtools-common package [7]. Perf allows extracting hardware
and software event information for a specific program. The number
of obtainable HPCs varies across processors and can be listed
using the perf list command. By using the perf stat command with
suitable parameters, users can obtain HPC values corresponding to a
specific program, enabling in-depth analysis of hardware and software
performance metrics for system optimization and troubleshooting.

C. Machine Learning Preliminaries

1) Machine Learning Classifiers: In this paper, we utilize three
essential Machine Learning (ML) classifiers for data analytics and
predictive modeling. The Neural Network (NN) is adept at identifying
complex patterns and is commonly employed in deep learning. The
Decision Tree (DT) offers simplicity and interpretability, handling
both categorical and numerical data. Lastly, the Random Forest (RF)
reduces overfitting and improves results through its ensemble learning
approach, combining multiple decision trees to make predictions.

2) Principal Component Analysis: Principal Component Analysis
(PCA) is a data reduction method allowing users to define the number
of principal components in transformed data [8]. It computes the co-
variance matrix from initial features, capturing variance relationships.
Singular value decomposition extracts data in directions of highest
variances. Selected based on largest values, matrix values correspond
to original dataset features.

III. RELATED WORK

The concept of HPCs for malware detection was initially intro-
duced by [9]. It was later enhanced by the integration of machine
learning algorithms for distinguishing between malware and benign
applications [10]. Further advancements included the monitoring of
system call events and control flows and real-time supervision of
software running on embedded processors using HPC values [11]
In the field of time-series-based malware detection, various methods
have been explored for diverse tasks such as identifying malicious
firmware in controllers [12]. The use of custom-built HPCs for
counting assembly-level instructions has been leveraged to train
machine learning classifiers for malware detection, and expanded
to encompass additional assembly instructions to detect malicious
firmware attacks in MGs [13], [14]. In this paper, we highlight the
importance of acknowledging the sequential nature of custom-built
HPC data, aiding ML models in distinguishing between benign and
malicious firmware.

IV. METHODOLOGY

In this section, we present our security-centric methodology, de-
signed to bolster the internal components incorporated in microgrids.
The existing profiling capabilities of microgrid architectures are sig-
nificantly limited, primarily restricted to counting clock cycles. This
limitation hinders the detection of malicious firmware modifications,
as more detailed structural information about the executed program
is required. Hence, we incorporate custom-built HPCs into our DfS
approach to enhance the security layers within the microgrid ecosys-
tem [14]. Subsequently, we employ a time series attack classification
methodology to identify various types of firmware attacks on the
microgrid.

A. Threat Model

Our threat model focuses on an adversary seeking to compromise
the DSP boards in power microgrids. These boards are vital compo-
nents responsible for microgrid operation. The adversary’s strategy
involves creating fraudulent firmware versions, which they aim to
introduce into the targeted DSP boards. The attack primarily operates
at the application level, utilizing static firmware alterations to initiate
abnormal functions. Access can be obtained physically by directly
uploading malicious firmware or remotely through vulnerabilities in

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 05,2024 at 14:02:55 UTC from IEEE Xplore. Restrictions apply.

firmware update mechanisms. Once successful, the attack exploits
the DSP board functionalities to inject malicious code capable of
manipulating operation setpoints and sensor data received by the
control unit. These process-aware attacks specifically target embed-
ded devices and programmable logic controllers, posing challenges
in terms of detection. The consequences of these attacks can range
from equipment failures to complete cyberphysical system collapse.
Next, we describe each of these attacks in detail and their effect on
the microgrid system.

B. DSP Firmware Attacks

Firmware attacks aim to disrupt the functionality of the firmware-
regulated device or manipulate it to produce incorrect system output.
In this section, we highlight two types of attacks that adversaries
could exploit in the DSP board: Denial of Service (DoS) attacks and
attacks compromising the signal sensing functionality of the DSP
board.

Interrupt Operator Attack: A DoS attack renders the system
inoperative and dysfunctional. This is a form of DOS attack where
the adversary systematically disrupts the operation of the DSP board
by repeatedly toggling it on and off. The attacker manipulates the
board’s functions by triggering specific system operations which
cause interruptions. The duration of each interruption is contingent on
certain system parameters, resulting in an unpredictable and erratic
operation of the DSP board. By exploiting the system timer, this
attack disrupts the availability of certain circuit components, causing
intermittent disruptions and system unavailability.

Signal Sensing Attacks: Since the DSP board utilizes Analog to
Digital Converters (ADC) to interpret the input signals and respond
appropriately, we have developed several attacks compromising this
signal sensing functionality.

o Loop Attack: This attack results in the creation of an infinite
loop due to the alteration of the logical loop condition. It is de-
signed to make the DSP board enter a perpetual loop, effectively
rendering the subsequent operations useless and preventing the
board from executing its intended tasks. This attack could lead
to a freeze in system operations, potentially causing a shutdown.

« ADC Reading Change Attack: In this attack, the adversary
swaps the ADC function parameters with incorrect values,
leading to erroneous readings. The ADC plays a crucial role
in the DSP board operation as it interprets incoming signals.
Any manipulation of this function can significantly affect the
board’s performance, leading to system errors and unpredictable
behavior.

o ADC Window Attack: Here, the attacker modifies the ADC
resolution window, which is a key parameter for the ADC’s
operation. By changing this, the attacker can disrupt the normal
operation of the DSP board. The ADC resolution window
determines the precision and accuracy of the data conversion
process. Altering it can lead to significant discrepancies between
the actual and sensed data, leading to incorrect operations and
potential system malfunctions.

The highlighted DSP firmware attacks underscore the vulner-
abilities inherent in power microgrids, particularly through DoS
attacks and compromised signal sensing functionality. Recognizing
and comprehending these attack vectors is imperative in order to
formulate effective security measures. We aim to enhance the security
of microgrid operations and utilize the microgrids using the Digital
Signal Processor (DSP) TMS320F28379D model from Texas Instru-
ments (TI). These microgrids are based on the F28x architecture,
which has limited profiling capabilities, allowing only clock cycle
counting. To address this limitation and strengthen microgrid security,
we integrate custom-built HPCs into our approach. These HPCs
provide more comprehensive performance profiling and reinforce the
security layers within the microgrid ecosystem.

188

C. Custom-built HPC Design and Collection

To protect the microgrids from the aforementioned firmware at-
tacks, we propose leveraging a custom-built HPCs approach [14].
This technique enables us to monitor the sequence of specific assem-
bly instructions embedded within binary executables. These counters
span a broad spectrum of instructions: arithmetic (a), boolean (n),
store (s), load (I), and branch/jump (b). What sets these custom
HPCs apart is their capacity to register not just the frequency of each
individual instruction type but also the sequences these instructions
form. The HPC-based feature vector comprises of 30 individual
HPCs, considering the five individual instructions, a, b, [, n, and s,
along with the 25 possible assembly instruction combinations (aa,
ab, al, an, as, bb, ba, bl, bn, bs, ll, la, Ib, In, Is, nn, na, nb,
nl, ns, ss, sa, sb, sl, sn). The initial five HPCs are dedicated to
recording the occurrences of arithmetic, store, load, boolean, and
branch instructions respectively. Subsequent HPCs in the feature
vector, which follow an XY format, measure the instances where an X
instruction is immediately followed by a Y instruction. There are also
HPCs like ‘bb’, which register occurrences of back-to-back branch
instructions. Therefore, we not only monitor an instruction succeeded
by another type but also situations where an instruction is succeeded
by an identical one. This robust approach facilitates a comprehensive
view of the assembly instruction landscape, enhancing our ability to
detect patterns and anomalies.

D. Time Series-based Attack Detection

Time Series Classification (TSC) is a technique used to classify and
analyze time series data, where data points are collected over time
[15]. In the context of microgrid security, TSC can be employed to
monitor the behavior of various system components and detect any
anomalies in the time series data. By combining TSC with custom-
built HPCs, the microgrid system gains the ability to effectively detect
and respond to suspicious activities, providing an added layer of
security against attacks that may attempt to compromise the firmware
of critical microgrid components. The HPCs are integrated into the
microgrid system to enable more detailed and granular profiling
of the system’s performance metrics. Traditional ML techniques
often neglect the inherent temporal order of HPC data, resulting in
inaccuracies. To address this limitation, TSC methods are specifi-
cally tailored to handle sequential data, effectively capturing and
incorporating temporal dependencies present in the time series. In
Section V, we exclusively utilize the Time Series Forest (TSF)
algorithm for all of our time series classification experiments. TSF is
an ensemble-based approach that utilizes random forest techniques
on subsequences of the time series [16]. Our decision to adopt
the TSF classifier is primarily motivated by its ability to retain
the sequential understanding of data, which is vital for recognizing
complex sequential patterns and trends within time series data of the
custom-built HPCs. TSF captures and integrates information from
different time intervals, preserving the sequential nature of the data.
This enables effective profiling of firmware behavior and detection of
deviations caused by potential attacks, improving the overall efficacy
of our methodology. We extract significant features within each
interval to accurately represent the data characteristics. We propose
the utilization of statistical features, namely, mean, standard deviation
and slope to represent the time series data [16]. These statistical
features are simple yet effective representations of data characteristics
and offer ease of implementation.

The inputs to Algorithm 1 are the collected custom-built HPCs,
represented by the variable HPC. The output of the algorithm
is the detected malicious firmware indicated by the variable de-
tected_malware. The algorithm begins by defining the function
TSF_Classifier(HPC), which takes the input HPC, representing the
collected custom-built HPC data as shown in lines 1-5. The next
step is to split the input HPC data into intervals to ensure the
preservation of the temporal order. This is achieved through the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 05,2024 at 14:02:55 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Time Series Detection

Algorithm 2 Attack Detection Framework

Input: HPC
Output: detected_malware

function 7SF_Classifier(HPC)
intervals = split_into_intervals(HPC)
features = extract_features(intervals)
TSF_model = train_TSF(features)
return TSF_model

: function split_into_intervals(HPC)

intervals < []

interval_size = user_defined

9: for i in step_interval_size do

1:
2:
3

A

10: interval = HPCJi : i + interval_size]
11: intervals < interval
12: return intervals

13: function extract_features(intervals)

14: features < []

15: for i in intervals do

16: mean = calculate_mean(interval)

17: std_dev = calculate_std_dev(interval)
18: slope = calculate_slope(interval)

19: feature_vector = [mean, std_dev, slope]
20: features < feature_vector

21: return features

22: TSF_model = TSF_Classifier(HPC)
: return detected_malware

function split_into_intervals(HPC), which returns the intervals as a
list, as represented by lines 6-12. The extracted intervals are then
utilized to calculate significant features for each interval. The function
extract_features(intervals) computes the mean, standard deviation,
and slope of each interval and stores these features in a list, as
indicated by lines 13-21. With the extracted features, the TSF
classifier is trained using the function train_TSF(features), where the
input is the list of features calculated in the previous step. The output
is the trained TSF model. After the TSF model is trained, it is returned
from the function 7SF_Classifier(HPC), as shown in line 22. The
final step of the algorithm is to utilize the trained TSF model to
detect malicious firmware. The algorithm concludes by returning the
detected malicious firmware through the variable detected_malware.

Our experimental evaluation in Section V demonstrates the advan-
tage of the TSF classifier over traditional ML models, showcasing
improved classification metrics in terms of accuracy, precision, and
recall. Working in conjuction with TSF, the custom-designed HPCs
are capable of profiling a device’s firmware. Any malicious attempt to
obfuscate the firmware would result in deviations from its normal be-
haviour a standard profile established for comparison. By applying the
TSF to HPC data, we are able to retain and analyze these deviations in
the context of their sequential order. This sequential understanding
coupled with the TSF’s interval-based feature extraction ensures a
more accurate and robust malware detection process than traditional
models, making our proposed methodology highly effective against
attackers.

Our DfS methodology, as depicted in Algorithm 2, takes two
inputs, namely the Firmware_Code representing the microgrid’s
firmware, that may contain unauthorized modifications, and the
Sampling_Interval defining the time interval for data collection. The
algorithm begins by defining the function Disassemble, which takes
a single input parameter ‘line’, representing a line of code from
the microgrid’s firmware. It initializes three variables, ‘instruction’,
‘op_code’, and ‘operand’, as empty strings to store the components
of the disassembled low-level assembly instruction, as indicated by
2. The split_line function extracts the operation code and operand
from the code line and stores them in op_code and operand, as
shown in line 3. The instruction is formed by combining the opcode

189

Input: Firmware_Code, Sampling_Interval
Output: Malware_DetectionModel

1: function Disassemble(line)

2: instruction, op_code, operand < empty_string
3: op_code, operand <— split_line(line)

4: instruction <— op_code + operand

5: return instruction

6: AssemblyCode < Disassemble(Firmware_Code)
7: hpc []

8: for instruction in AssemblyCode do

9: While Sampling_Interval do

hpc < Current_hpc_val

counter < 0

: end for

: Malware_DetectionModel <— TSF_Classifier(hpc)
: Return Malware_DetectionModel

and operand, as represented by line 4. The Firmware_Code is disas-
sembled into assembly code using the Disassemble(Firmware_Code)
function, which translates high-level code into low-level instructions
that the custom-built HPCs can monitor, as shown in line 6. During
the execution of the loop, the custom-built HPCs continuously
monitor and record their values at regular intervals defined by
the Sampling_Interval and the recorded HPC data is stored in the
HPC list (lines 8-12). The time series representation is constructed
from the collected HPC data, capturing the temporal patterns and
trends of the hardware performance over time by utilizing the
function 7SF_Classifier. The temporal features are then used as input
to a time series classifier to build the Malware_DetectionModel,
as shown in line 13. By learning from temporal patterns in the
custom-built HPC data and extracting essential features, the trained
Malware_DetectionModel becomes capable of detecting potential
malicious firmware modifications.

V. RESULTS

In this section, we present the effectiveness of our hardware-aided
method that employs HPCs in identifying alterations in firmware with
malicious intent. The detection accuracy of of our proposed model
makes it a feasible candidate for practical implementation in power
grid systems. To substantiate the proficiency of our approach, we
conducted our experiments using a TI TMS320F28379D board for
running the firmware responsible for voltage sensing. We curated
attacks that incorporated DoS and the introduction of incorrect inputs
aimed at instigating aberrant shifts in the normal behavior.

A. Attack Impact Analysis

Normal operation of the ER microgrid is depicted in Figure 3,
where Figure 3a depicts the grid operation (voltage and current scaled
down for representation) at 60Hz, Figure 3b depicts the DC bus
maintained constant at 380V by the ER and Figure 3c shows the
ER responding to changes in the load in the system. However, when
the grid is under attack (Interrupt Operator or Signal Sensing), the
normal operation of the the ADC module is interrupted. Therefore,
the PWM generation is either stopped completely or intermittently
leading to abnormal operation shown in Figure 4a. The interruption
occurs at 0.2s which disrupts normal PWM generation and hence,
the grid operation. Figure 4b depicts the grid completely out of sync
with the DC bus being unsteady and not operating at 60 Hz. The
system never recovers from this attack and the grid remains out of
sync. Similar behaviour is expected in ADC window attack where the
incorrect precision will cause abrupt PWM signals. In Loop attack,
the system gets stuck in one operational mode i.e. meeting one load
requirement and not modifying its PWM for the load change.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 05,2024 at 14:02:55 UTC from IEEE Xplore. Restrictions apply.

—Voltaga

il ! AL AR AR LA “”W |H|” ”

A A A ’

I I | I
0 0.5 1 15 2 2.5
Time (sec)

(a) Grid Behaviour vs Time

400 = =

_|—DC Bus Voltage|
- -380V

200 a

| i i i i
0 0.5 1 15 2 25
Time (sec)

(b) DC Bus Voltage vs Time

4000

2000

i I i i i
0 0.5 1 1.5 2 25
Time (sec)

(c) Total Load vs Time

Fig. 3: Microgrid Under Normal Operating Conditions.

WHW s

WIM \w\\\HHHMHHM\,M mmlﬂ“lm

N\mnmmmwwﬂ
(o

25

|||l|||\\|||||||||||\||||w1||\||[|||

Time (sec)

(a) Grid Behaviour vs Time

T T T
e B PTTTLIrTTTTIr Lot P —DC Bus Voltage
---380V

200

i i i i i
0 0.5 1 15 2 25
Time (sec)

(b) DC Bus Voltage vs Time

0 0.5 1 15 2 25
Time (sec)

(c) Total Load vs Time
Fig. 4: Microgrid Under Attack.

B. Experimental Setup

In order to generate the signatures based on HPCs, we employed
a Python script designed to quantify the occurrence of our custom-
built HPCs in the disassembled firmware executable. To convert the
binary executable into assembly code, the TI dis2000 disassembler
was utilized. The matching of HPCs occurs at periodic intervals,
hence our script is programmed to accumulate the total count for
each designated HPC at the end of every 50 assembly instructions.
We settled on this sampling rate as it strikes a balance between
providing an adequate volume of samples and effectively capturing
key details about the structural layout of the program. As explained
in Section IV-B, we developed four different malicious firmware

modifications involving one attacks that utilize DoS properties and
two modifications that compromise the signal sensing functionality of
the DSP board. The process of data collection incorporated samples
from all forms of attacks, in addition to the base code. We utilized
70:30 split of this dataset. In this arrangement, 70% of the dataset was
allocated for training purposes, while the residual 30% was reserved
for testing. This split ensures a robust training phase while still
retaining a significant portion of data for validating the effectiveness
of the models. Furthermore, all ML models were implemented using
the Sklearn library in Python [17]. Additionally, the TSF classifier
was developed using the Sktime library [18].

C. Attack Detection with Traditional ML Classifiers

Three machine learning classifiers were built: Decision Tree (DT),
Neural Network (NN), and Random Forest (RF). These classifiers
were selected for their effectiveness with discrete features and pattern
recognition, these models collectively assess HPC-based signatures
for detecting malicious firmware changes. All 30 custom HPCs are
employed to construct the classifiers, detecting simulated attacks
on the microgrid model. Although processors can include multiple
HPCs, only few of them can be monitored simultaneously. In order
to reduce the set of HPCs (being monitored), we use PCA, a feature
selection technique managing high dimensionality data with multiple
variables. Since most modern processors are only capable of tracking
a couple of HPCs at a time, we used PCA to determine the top
three best features: ‘I’, ‘al’, and “s”. These features are robust for
malicious firmware detection, as they can adequately capture many of
the malignant tendencies found in pernicious firmware. Compromised
firmware will attempt to deviate from the normal control flow
of the system. Consequently, this will increment the number of
branch instructions and engenders other malicious activity, such as
manipulating outputs or internal system functions which increments
boolean and arithmetic instructions. Moreover, reducing the number
of custom-built HPCs aid in decreasing the hardware overhead of the
DAS architecture. These three dominant features were used to train
a new set of models. Figure 5 shows the performance metrics for
each classifier after applying PCA. When evaluating our results, all
the incorporated models had a minimum of 74.13% accuracy, which
indicates that our proposed custom-built HPCs are generalizable.

The DT and RF classifiers have a peak accuracy of 74.13% and
75.86%, respectively, and peak precision of 89.58% and 100%, re-
spectively. While all models could detect the firmware attacks, the NN
is able to detect, with high accuracy and precision, all the malicious
firmware samples. Our best result was from the NN that furnished
a 77.58% accuracy, 100% precision, and 77.6% recall, as seen in
Figure 5. Since false positives are a major issue in traditional HPC-
based detection, our high precision addresses this issue. Moreover,
this demonstrates the benefit of PCA feature selection utilized in
our models. When utilizing 30 HPCs, the model becomes overfitted,
but employing PCA enabled us to attain the optimal set of HPCs
required to construct an effective model. Only three custom HPCs
are sufficient to provide a robust defense against malicious firmware
modifications, thus significantly reducing the DfS hardware overhead.

W Accuracy Precision M Recall

Performance Metrics %

oT NN RF
Machine Learning Classifiers

Fig. 5: Performance of ML classifiers with Top-3 Features.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 05,2024 at 14:02:55 UTC from IEEE Xplore. Restrictions apply.

W Accuracy [Precision M Recall

100

Tttt

Assembly Instructions

AN w s g oe N o®
2 888 883838

Measurement Metrics %

Fig. 6: Individual Assembly Instructions

W Accuracy [Precision W Recall

Measurement Metrics %
g

A+S A+L A+B A+N S+N S+L S+B BiL BN L+N
Assembly Instructions Pairs

Fig. 7: Pairwise Combinations of Assembly Instructions

D. Attack Detection with Time Series Classifier

For the TSF model, we employed a time series interval length
of five to ensure the model had a reasonable amount of samples to
extract sequential attributes from. Other time series lengths could
have been employed, albeit with a difference in model performance.
To evaluate the effectiveness of utilizing custom-built HPCs for
detecting malicious firmware attacks, we analyzed the classification
metrics furnished when utilizing each unique assembly instruction.
Since we want to minimize the amount of features that are employed,
analyzing the efficacy of our proposed technique when utilizing a
single feature is important. In Figure 6, we present the accuracy,
precision, and recall when the model is trained on these individual
assembly instructions. We determined the accuracy when utilizing
each of the main assembly instructions, arithmetic a, branch/jump b,
store s, load I, and boolean n. From our results, the Neural Network
(NN) model furnished the highest accuracy of all classifiers for each
employed custom-built HPC. The average furnished accuracy was
80.7%, which is an increase of 4.2% when compared to the traditional
results of the NN. Our best results were furnished when the model
was trained using custom-built HPC ‘/’. Specifically, we obtained an
accuracy of 88.88% and recall of 100%. Moreover, the precision was
80% which is imperative as we did not incur many false positives
and demonstrates the benefits of utilizing sequential attributes when
employing a single feature. We only assess the NN model because
our results from Figure 5 demonstrate that the NN had the highest
furnished accuracy among all traditional models. This shows that time
series-based classification provides better results by utilizing just the
main assembly instructions as compared to the traditional ML models
which had been optimized by PCA.

Figure 7 shows our results for all possible assembly pairs utilized
as features for the TSE. The average furnished accuracy, precision,
and recall was 91.94%, 95.6%, and 90.64%, respectively. Our best
results were obtained when using custom built HPCs a and s where
the model furnished 100% accuracy, which is an 23.91% increase
over the average accuracy from Figure 5. Moreover, when employing
custom-built HPCs, a and s, a and b, s and [together pairwise,
our model furnished 100% for all three performance metrics. This
attests to the efficacy and benefits of time series classification that
is able to extract more detailed characteristics than traditional HPC-

191

based techniques. Consequently, these results indicate that respecting
the sequential order of the data ensures that the model can accu-
rately distinguish between the attacks and benign behavior when
using custom-built HPCs in conjuction with TSF. Furthermore, they
corroborate that only a limited number of custom-built HPCs are
necessary for effective malicious firmware detection. While our
feature vector consists of 30 custom-built HPCs, implementing an
effective detection scheme would only incur overhead for monitoring
two of these features. Regardless of whether we utilized a single
HPC or multiple HPCs, our results have demonstrated the beneficial
advantages of time series detection over traditional ML models in
order to predict these malicious attacks.

VI. CONCLUSION

In this paper, we demonstrated the significant impact of firmware
modification attacks on DSP boards within microgrid configurations.
In order to mitigate these attacks, we propose a design-for-security
strategy using periodic firmware instruction sampling using time
series classification. Our approach demonstrates that even devices
without native HPC support can be effectively strengthened against
adversaries through DfS principles. More specifically, we focused
on enhancing the security measures of microgrids through the de-
ployment of custom-built HPCs used as features for time series
classification. Our experimental results validate the effectiveness of
our methodology, with machine learning models trained on time
series data achieving 100% accuracy and precision in detecting
firmware modification attacks. In the future, we intend to explore the
integration of automated feature selection methods to further optimize
and enhance the effectiveness of the proposed methodology.

VII. ACKNOWLEDGMENT
This research is supported by NSF grant #2223046.

REFERENCES

S. Thakur er al., “Grid forming energy router: A utility interface for
renewable energy sources and energy storage grid integration applica-
tions,” in IEEE APEC, 2021.

A. Cagnano et al., “Microgrids: Overview and guidelines for practical
implementations and operation,” Applied Energy, 2020.

V. Lou, “Application behavior based malware detection,” 2010.

M. Ozsoy et al., “Hardware-based malware detection using low-level
architectural features,” IEEE Transactions on Computers, 2016.

L. Uhsadel et al., “Exploiting hardware performance counters,” in 2008
5th Workshop on Fault Diagnosis and Tolerance in Cryptography.
IEEE, 2008.

S. Thakur et al., “Grid forming energy router: Investigation of load
control and stability response,” in PEDG, 2020 IEEE. 1EEE, 2020.
A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux
Kongress, 2010.

R. Bro et al., “Principal component analysis,” Analytical methods, 2014.
C. Malone et al., “Are hardware performance counters a cost effective
way for integrity checking of programs,” in Sixth ACM workshop on
Scalable trusted computing, 2011.

J. Demme et al., “On the feasibility of online malware detection with
performance counters,” ACM SIGARCH computer architecture news,
2013.

X. Wang et al., “Reusing hardware performance counters to detect and
identify kernel control-flow modifying rootkits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2015.

1. Zografopoulos et al., “Time series-based detection and impact analysis
of firmware attacks in microgrids,” Energy Reports, vol. 8, 2022.

A. Rohan et al., “Can monitoring system state + counting custom
instruction sequences aid malware detection?” in JEEE ATS, 2019.

A. P. Kuruvila et al., “Hardware-assisted detection of firmware attacks
in inverter-based cyberphysical microgrids,” International Journal of
Electrical Power & Energy Systems, 2021.

H. Ismail Fawaz et al., “Deep learning for time series classification: a
review,” Data mining and knowledge discovery, 2019.

H. Deng et al., “A time series forest for classification and feature
extraction,” Information Sciences, 2013.

F. Pedregosa er al., “Scikit-learn: Machine learning in python,” the
Journal of machine Learning research, 2011.

Loning et al., “sktime: A unified interface for machine learning with
time series,” arXiv preprint arXiv:1909.07872, 2019.

[10]

(1]

[13]

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 05,2024 at 14:02:55 UTC from IEEE Xplore. Restrictions apply.

