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Abstract
In a groundbreaking work, Duplantier, Miller and
Sheffield showed that subcritical Liouville quantum
gravity (LQG) coupled with Schramm–Loewner evolu-
tions (SLE) can be obtained by gluing together a pair
of Brownian motions. In this paper, we study the coun-
terpart of their result in the critical case via a limiting
argument. In particular, we prove that as one sends !′ ↓4 in the subcritical setting, the space-filling SLE!′ in
a disk degenerates to the CLE4 (where CLE is confor-
mal loop ensembles) exploration introduced by Werner
and Wu, along with a collection of independent and
identically distributed coin tosses indexed by the branch
points of the exploration. Furthermore, in the same
limit, we observe that although the pair of initial Brow-
nian motions collapses to a single one, one can still
extract two different independent Brownian motions($,%) from this pair, such that the Brownian motion$ encodes the LQG distance from the CLE loops to
the boundary of the disk and the Brownian motion %
encodes the boundary lengths of the CLE4 loops. In con-
trast to the subcritical setting, the pair ($,%) does not
determine the CLE-decorated LQG surface. Our paper
also contains a discussion of relationships to random
planarmaps, the conformally invariant CLE4metric and
growth fragmentations.
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1 INTRODUCTION

The most classical object of random planar geometry is probably the two-dimensional Brownian
motion together with its variants. Over the past 20 years, a plenitude of other interesting random
geometric objects have been discovered and studied. Among those we find Liouville quantum
gravity (LQG) surfaces [19] and conformal loop ensembles (CLE) [56, 61]. LQG surfaces aim to
describe the fields appearing in the study of 2D LQG and can be viewed as canonical models for
random surfaces. They can be mathematically defined in terms of volume forms [19, 31, 50] (used
in this paper), but recently also in terms of random metrics [17, 26]. CLE is a random collection
of loops that correspond conjecturally to interfaces of the '-state Potts model and the FK random
cluster model in the continuum limit (see, for example, [42]).
In this paper we study a coupling of LQG measures, CLE and Brownian motions, taking a

form of the kind first discovered in [18]. On the one hand we consider a ‘uniform’ exploration of
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CLE4 drawn on top of an independent LQG surface known as the critical LQG disk. On the other
hand, we take a seemingly simpler object: the Brownian half-plane excursion. In this coupling one
component of the Brownian excursion encodes the branching structure of the CLE4 exploration,
together with a certain (LQG surface dependent) distance of CLE4 loops from the boundary. The
other component of the Brownian excursion encodes the LQG boundary lengths of the discovered
CLE4 loops.
Our result can be viewed as the critical (!′ = 4) analog of Duplantier–Miller–Sheffield’s mating

of trees theorem for !′ > 4, [18]. The original mating of trees theorem first observes that the quan-
tum boundary length process defined by a space-filling SLE!′ (where SLE is Schramm–Loewner
evolutions) curve drawn on a subcritical LQG surface is given by a certain correlated planar Brow-
nian motion. Moreover, it says that one can take the two components of this planar Brownian
motion, glue each one to itself (under its graph) to obtain two continuum random trees and then
mate these trees along their branches to obtain both the LQG surface and the space-filling SLE
curve wiggling between the trees in a measurable way. This theorem has had far-reaching conse-
quences and applications, for example, to the study of randomplanarmaps and their limits [23, 25,
30], SLE and CLE [3, 5, 20, 43], and LQG itself [4, 41]. See the survey [21] for further applications.
Obtaining a critical analog of the mating of trees theorem was one of the main aims of this

paper. The problem one faces is that the above-described picture degenerates in many ways as!′ ↓ 4 (for example, the correlation of the Brownian motions tends to one and the LQG measure
converges to the zero measure). However, it is known that the LQGmeasure can be renormalized
in a way that gives meaningful limits [6], and the starting point of the current project was the
observation that the pair of Brownian motions can be renormalized via an affine transformation
to give something meaningful as well.
Still, not all the information passes nicely to the limit, and in particular extra randomness

appears. Therefore, our limiting coupling is somewhat different in nature to that of [18] (or [2]
for the finite volume case of quantum disks). Most notably, one of the key results of [2, 18] is that
the CLE decorated LQG determines the Brownian motions, and vice versa. In our case neither
statement holds in the same way; see Section 5.2.1 for more details. For example, to define the
Brownian excursion from the branching CLE4 exploration, one needs a binary variable at every
branching event to decide on an ordering of the branches.
We believe that in addition to completing the critical version of Duplantier–Miller–Sheffield’s

mating of trees theorem, the results of this paper are intriguing in their own right. Moreover, as
explained below, this paper opens the road for several interesting questions in the realm of SLE
theory, about LQG-related randommetrics, in the setting of random planar maps decorated with
statistical physics models, and about links to growth-fragmentation processes.

1.1 Contributions

Since quite some setup is required to describe our results for ! = 4 precisely, we postpone the
detailed statement to Theorem 5.5. Let us state here a caricature version of the final statement.
Some of the objects appearing in the statement will also be precisely defined only later, yet should
be relatively clear from their names.

Theorem 1.1. Let∙ )*+ be the field of a critical quantum disk together with associated critical LQG measures (see
Section 4.1);
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∙ ,)- denote the uniform space-filling SLE4 in the unit disk parameterized by critical LQG mass,
which is defined in terms of a uniform CLE4 exploration plus a collection of independent coin
tosses (see Section 2.1.5);∙ and .- describe a Brownian (right) half-plane excursion ($,%) (see Section 4.3).

Then one can couple (,)-, )*+, .-) such that ,)- and )*+ are independent,$ encodes a certain quan-
tum distance forCLE4 loops from the boundary and % encodes the quantum boundary lengths of theCLE loops. Moreover (,)-, )*+) determines .-, but the opposite does not hold.
In terms of limit results, we, for example, prove the following:∙ We show that a SLE!′(!′ − 6) in the disk converges to the uniformCLE4 exploration introduced
byWerner andWu [64], as !′ ↓ 4 (Proposition 2.6). Here an extra level of randomness appears in
the limit, in the sense that new CLE4 loops in the exploration are always added at a uniformly
chosen point on the boundary, in contrast to the !′ > 4 case where the loops are traced by a
continuous curve.∙ Using a limiting argument, we also show in Section 3 how to make sense of a ‘uniform’
space-filling SLE4 exploration, albeit no longer defined by a continuous curve. Again extra ran-
domness appears in the limit: contrary to the !′ > 4 case, the nested uniform CLE4 exploration
does not uniquely determine this space-filling SLE4.∙ Perhaps less surprisingly but nonetheless not without obstacles, we show that the nested CLE!′
in the unit disk converges to the nested CLE4 with respect to Hausdorff distance (Proposi-
tion 2.18).We also show that after dividing the associated quantumgravitymeasures by (4 − 2/),
a /-LQG disk converges to a critical LQG disk.

In terms of connections and open directions, let us very briefly mention a few examples and
refer to Section 5.2.2 for more detail.∙ First, as stated above in Theorem 1.1, (,)-, )*+) determines .-, but the opposite does not hold.
A natural question is whether there is another natural mating of trees type theorem for ! = 4
where one has measurability in both directions.∙ Second, our coupling sheds light on the recent work of Aïdékon and Da Silva [1] who identify a
(signed) growth fragmentation embedded naturally in the Brownian half-plane excursion. The
cells in this growth fragmentation correspond to very natural observables in our exploration.∙ Third, aswe have alreadymentioned, one of the coordinates in our Brownian excursion encodes
a certain LQG distance of CLE4 loops from the boundary. It is reasonable to conjecture that this
distance should be related to the CLE4 distance defined in [64] via a Lamperti transform.†∙ Fourth, several interesting questions can be asked in terms of convergence of discrete models.
Critical FK-decorated planar maps and stable maps are two immediate candidates.

1.2 Outline

The rest of the paper is structured as follows. In Section 2, after reviewing background material
on branching SLE and CLE, we will prove the convergence of the SLE!′(!′ − 6) exploration in
the disk to the uniform CLE4 exploration, and also show the convergence of the nested CLE with
respect to Hausdorff distance. In Section 3, we use the limiting procedure to give sense to a notion

†We thank N. Curien for explaining this relation to us.
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of space-filling SLE4. In Section 4, we review the basics of LQG surfaces and of the mating of
trees story, and prove convergence of the Brownian motion functionals appearing in [2, 18] after
appropriate normalization. We also finalize a certain proof of Section 3, which is interestingly
(seemingly) much easier to prove in the mating of trees context. Finally, in Section 5we conclude
the proof of joint convergence of Brownian motions, space-filling SLE and LQG. This allows us
to state and conclude the proof of our main theorem. We finish the paper with a small discussion
on connections, and an outlook on several interesting open questions.
Throughout, / ∈ (√2, 2] is related to parameters !, !′, 1 by

! = /2, !′ = 16∕!, 1 = 2 − /. (1.1)

2 CONVERGENCE OF BRANCHING SLE3′ AND CLE3′ AS 3′ ↓ 4
2.1 Background on branching SLE and conformal loop ensembles

2.1.1 Spaces of domains

Let be the space of D = {D5 ; 5 ⩾ 0} such that∙ for every 5 ⩾ 0, 0 ∈ D5 ⊂  and D5 is simply connected planar domain;∙ D5 ⊂ D8 for all 0 ⩽ 8 < 5 <∞;∙ for every 5 ⩾ 0, if ;5 = ;5[D] is the unique conformal map from < to D5 that sends 0 to 0 and
has ;′5(0) > 0, then ;′5(0) = CR(0;D5) = =−5.

We also write g5 = g5[D] for the inverse of ;5.
Recall that a sequence of simply connected domains (>?)?⩾0 containing 0 are said to converge

to a simply connected domain> in the Carathéodory topology (viewed from 0) if we have ;>? →;> uniformly in A< for any A < 1, where ;>? (respectively, ;>) are the unique conformal maps
from < to>? (respectively,>) sending 0 to 0 and with positive real derivative at 0. Carathéodory
convergence viewed from B ≠ 0 is defined in the analogous way.
We equipwith the natural extension of this topology: that is, we say that a sequence (D?)?⩾0

in converges to D in if for any A < 1 and C ∈ [0,∞)
sup5∈[0,C] supB∈A< |;?5 (B) − ;5(B)| → 0 (2.1)

as ? → ∞, where ;?5 = ;5[D?] and ;5 = ;5[D]. With this topology, is ametrizable and separable
space; see, for example, [37, Section 6.1].

2.1.2 Radial Loewner chains

In order to introduce radial SLE, we first need to recall the definition of a (measure-driven) radial
Loewner chain. Such chains are closely related to the space, as wewill soon see. If D is ameasure
on [0,∞) × F< whose marginal on [0,∞) is Lebesgue measure, we define the radial Loewner
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equation driven by D via
g5(B) = ∫[0,5]×F< g8(B)G + g8(B)G − g8(B) HD(8,G); g0(B) = B (2.2)

for B ∈ < and 5 ⩾ 0. It is known (see, for example, [37, Proposition 6.1]) that for any such D, (2.2) has
a unique solution g5(B) for each B ∈ <, defined until time 5B ∶= sup{5 ⩾ 0 ∶ g5(B) ∈ <}. Moreover,
if one definesD5 ∶= {B ∈ < ∶ 5B < 5}, thenD = {D5 , 5 ⩾ 0} is an element of, and g5 from (2.2) is
equal to g5[D] = (;5[D])−1 for each 5. We call D the radial Loewner chain driven by D.
Note that if one restricts to measure of the form D($,H5) = JK(5)($)H5 withK ∶ [0,∞)→ F<

piecewise continuous, this defines the more classical notion of a radial Loewner chain. In this
case we can rewrite the radial Loewner equation as

F5g5(B) = g5(B)K5 + g5(B)K5 − g5(B) ; B ∈ <, 5 ⩽ 5B ∶= inf {8 ∶ g8(B) =K8} (2.3)

and we refer to the corresponding Loewner chain as the radial Loewner evolution with driving
functionK. In fact, this is the case that wewill be interested inwhen defining radial SLE!′(!′ − 6)
for !′ > 4.
Remark 2.1. Let us further remark that if (D?) are a sequence of driving measures as above, such
that D? converges weakly (that is, with respect to the weak topology on measures) to some D on[0,C] × F< for everyC, then the corresponding Loewner chains (D?), D are such thatD? → D in
[37, Proposition 6.1]. In particular, one can check that if D?($, H5) = JK?(5)($)H5 and D($,H5) =JK(5)($)H5 for some piecewise continuous functions K? ∶ [0,∞)→ F<, and K ∶ [0,∞)→ F<
then the corresponding Loewner chains converge in if for anyC > 0 fixed andL ∶ [0,C] × F< →ℝ bounded and continuous, we have

D?(L) = ∫
C

0 ∫F< L(G, 5)JK?(5)(G)H5 = ∫
C

0 L(K?(5), 5)H5 → D(L) = ∫
C

0 L(K(5), 5)H5 (2.4)

as ? → ∞.

Remark 2.2. Inwhat followswewill sometimes need to consider evolving domains {D5 ; 5 ∈ [0, N]}
that satisfy the conditions to be an element of  up to some finite time N. In this case we may
extend the definition of D5 for 5 ⩾ N by setting D5 = ;N(=−(5−N)<), where ;N ∶ < → DN is the
unique conformal map sending 0→ 0 and with ;′N(0) = =−N .With this extension,D = {D5 ; 5 ⩾ 0}
defines an element of.
If we have a sequence of such objects, then we say that they converge to a limiting object in 

if and only if these extensions converge. We will use this terminology without further comment
in the rest of the paper.

2.1.3 Radial SLE!′(!′ − 6)
Let !′ ∈ (4, 8), and recall the relationship (1.1) between !′ ∈ (4, 8) and 1 ∈ (0, 2 −√2). Although
the use of 1 is somewhat redundant at this point, we do so to avoid redefining certain notations
later on.
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Let % be a standard Brownian motion, and let O10 = {(O10)5 ; 5 > 0} be the unique %-measurable
process taking values in [0, 2P], with (O10)0 = Q ∈ [0, 2P], which is instantaneously reflecting at{0, 2P}, and that solves the SDE

H(O10)5 = √!′H%5 + !′ − 42 cot( (O10)52
)H5 (2.5)

on time intervals for which (O10)5 ≠ {0, 2P}. The existence and pathwise uniqueness of this process
is shown in [56, Propositions 3.15 and 4.2]. It follows from the strongMarkov property of Brownian
motion that O10 has the strong Markov property. We let R10 be the first hitting time of 2P by O10.
Associated to O10, we can define a processK10, taking values on F<, by setting

(K10)5 = exp(i ((O10)5 − ∫
5

0 cot ((O10)8∕2) H8)) 5 ⩾ 0. (2.6)

This indeed gives rise to a continuous functionK10 in time (see, for example, [45, 56]) and using
this as the driving function in the radial Loewner equation (2.3) defines a radial SLE!′(!′ − 6) in<
from 1 to 0, with a force point at =−SQ (recall that (O10)0 = Q).Wedenote this by (T10) = {(T10)5 ; 5 ⩾ 0}
which is an element of . In fact, there almost surely exists a continuous non-self-intersecting
curve U10 ∶ [0,∞)→ < such that (T10)5 is the connected component of < ⧵ U10[0, 5] containing 0 for
all 5 [38, 51].
Usually we will start with Q = 0, and then we say that the force point is at 1−: everything in

the above discussion remains true in this case; see [56]. In this setting we refer to T10 and/or U10
(interchangeably) as simply a radial SLE!′(!′ − 6) targeted at 0.
The time R10 corresponds to the first time that 0 is surrounded by a counterclockwise loop; see

Figure 3. To begin, we will just consider the SLE stopped at this time. We write

D10 = {(D10)5 ; 5 ⩾ 0} ∶= {(T10)R1∧5 ; 5 ⩾ 0}
for the corresponding element of (see Remark 2.2).

2.1.4 An approximation to radial SLE!′(!′ − 6)
We will use the following approximations (D1,?0 )?∈ℕ to D10 in  (in order to show convergence to
the CLE4 exploration). Fixing 1, and taking the processes O10 andK10 as above, the idea is to remove
intervals of time where O10 is making tiny excursions away from 0, and then define D1,?0 to be the
radial Loewner chain whose driving function is equal toK10, but with these times cut out.
More precisely, we set C1,?0 ∶= 0; and inductively define

Y1,?1 = inf {5 ⩾ C1,?0 ∶(O10)5 ⩾ 2−?};N1,?1 = sup{5 ⩽ Y1,?1 ∶(O10)5 = 0};C1,?1 = inf {5 ⩾ Y1,?1 ∶(O10)5 = 0};Y1,?2 = inf {5 ⩾ C1,?1 ∶(O10)5 ⩾ 2−?};
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448 ARU et al.

N1,?2 = sup{5 ⩽ Y1,?2 ∶(O10)5 = 0};C1,?2 = inf {5 ⩾ Y1,?2 ∶(O10)5 = 0};
etc. so the intervals [N1,?S ,C1,?S ] for S ⩾ 1 are precisely the intervals on which O10 is making an excur-
sion away from 0 whose maximum height exceeds 2−?. Call the Sth one of these excursions =1,?S .
Also set Λ1,? ∶= sup{[ ∶ N1,?[ ⩽ R10} and

\1,?S ∶= C1,?S − N1,?S for S < Λ1,? ; \1,?Λ1,? = R10 − N1,?Λ1,? ; ]1,?S = ∑1⩽[⩽S \1,?[ for 1 ⩽ S ⩽ Λ1,?.
Now we define

(K1,?0 )5 = (K10)N1,?S +(5−]1,?S−1), for 5 ∈ []1,?S−1,]1,?S ) and 1 ⩽ S ⩽ Λ1,?,
and set D1,?0 to be the radial Loewner chain with driving functionK1,?0 . This is defined up to timeR1,?0 ∶= ]1,?Λ1,? .
We will show in Section 2.2 that D1,?0 → D10 in as ? → ∞ (see Lemma 2.10).

2.1.5 Uniform CLE4 exploration targeted at the origin
Now suppose that we replace !′ with 4, so that the solution O0 of (2.5) is simply a (speed 4) Brow-
nian motion reflected at {0, 2P}. Then the integral in (2.6) does not converge, but it is finite for
any single excursion of O0.† For any ? ∈ ℕ if we define R?0 , Λ? and (N?S ,C?S , \?S ,]?S )S⩾1 as in the
sections above, we can therefore define a process D?0 in via the following procedure:∙ sample random variables (^?S )S⩾1 uniformly and independently on F<;∙ define (K?0 )5 for 5 ∈ [0, R?0 ) by setting

(K?0 )5 = ^?S exp(i((O0)5+N?S − ∫
5+N?SN?S cot((O0)8∕2)H8)) (2.7)

for 5 ∈ []?S−1,]S) and 1 ⩽ S ⩽ Λ?;∙ let D? be the radial Loewner chain with driving functionK?0 .
With these definitions we have that D?0 ⇒ D0 in  as ? → ∞, where the limit process is the

uniformCLE4 exploration introduced in [64], and run until the outermost CLE4 loop surrounding
0 is discovered.
More precisely, the uniform CLE4 exploration toward 0 in < can be defined as follows. One

starts with a Poisson point process {(/[ , 5[) ; [ ∈ `} with intensity given by a times Lebesgue
measure, where a is the SLE4 bubble measure rooted uniformly over the unit circle; see [60,
Section 2.3.2]. In particular, for each [, /[ is a simple continuous loop rooted at some point in F<.
We define int(/[) to be the connected component of < ⧵ /[ that intersects F< only at the root, and
set R = inf {5 ∶ 5 = 5[ with 0 ∈ int(/[)} so that for all 5[ < R, int(/[) does not contain the origin.
Therefore, for each such [ we can associate a unique conformal map ;[ from < to the connected

† That is, if D is the Brownian excursion measure then the integral is finite for D-almost all excursions; see [64, Section 2].
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 449

component of < ⧵ /[ containing 0 to <, such that ;[(0) = 0 and ;′[(0) > 0. For any 5 ⩽ R it is then
possible to define (for example, by considering only loops with some minimum size and then let-
ting this size tend to 0, see again [60, 64]) ;5 to be the composition ◦5[<5;5[ , where the composition
is done in reverse chronological order of the functions 5[ . The process

{D′5 ; 5 ⩽ R} ∶= {;5(<) ; 5 ⩽ R} (2.8)

is then a process of simply connected subdomains of < containing 0, which is decreasing
in the sense that D′5 ⊆ D′8 for all 0 ⩽ 8 ⩽ 5 ⩽ R. This is the description of the uniform CLE4
exploration toward 0 most commonly found in the literature. Note that with this definition,
time is parameterized according to the underlying Poisson point process, and entire loops are
‘discovered instantaneously’.
Since we are considering processes in , we need to reparameterize D′ by − log CR seen from

the origin. By definition, for each [ ∈ `, /[ is a simple loop rooted at a point in F< that does not
surround 0. If we declare the loop to be traversed counterclockwise, we can view it as a curvec[ ∶ [0,;′[(0)]→ < parameterized so that CR(0;< ⧵ c[) = =−5 for all 5 (the choice of direction
means that int(/[) is surrounded by the left-hand side of c[). We then define D to be the unique
process in such that for each [ ∈ `with 5[ ⩽ R, and all 5 ∈ [− log;′5[ (0),− log;′5[ (0) − log;′[(0)],D5 is the connected component of ;5[ (< ⧵ c[[0, 5 − log;′5[ (0)]) containing 0. In other words, D
is a reparameterization of D′ by − log CR seen from 0, where instead of loops being discovered
instantaneously, they are traced continuously in a counterclockwise direction. The process is
defined until time R0 ∶= − log CR(0;;R(d ⧵ /R)), at which point the origin is surrounded by a
loop (the law of this loop is that of the outermost loop surrounding the origin in a nested CLE4
in <).
With this definition, the same argument as in [64, Section 4] shows that D?0 ⇒ D0 in as ? →∞. Moreover, this convergence in law holds jointly with the convergence R?0 ⇒ R0 (in particular, R0

has the law of the first time that a reflected Brownianmotion started from 0 hits P, as was already
observed in [52]).
The CLE4 exploration can be continued after this first loop exploration time R0 by iteration.

More precisely, given the process up to time R0, one next samples an independent CLE4 explo-
ration in the interior of the discovered loop containing 0, but now with loops traced clockwise
instead of counterclockwise. When the next-level loop containing 0 is discovered, the procedure
is repeated, but going back to counterclockwise tracing. Continuing in this way, we define the
whole uniform CLE4 exploration targeted at 0: T0 = {(T0)5 ; 5 ⩾ 0}. Note that by definition D0 is
then just the process T0, stopped at time R0.
Remark 2.3. The ‘clockwise/counterclockwise’ switching defined above is consistent with what
happens in the SLE!′(!′ − 6) picture when !′ > 4. Indeed, it follows from the Markov property
of O10 (in the !′ > 4 case) that after time R10, the evolution of O until it next hits 0 is independent
of the past and equal in law to (2P − O10(5))5∈[0,R10]. This implies that the future of the curve
after time R10 has the law of an SLE!′(!′ − 6) in the connected component of the remaining
domain containing 0, but now with force point starting infinitesimally counterclockwise from
the tip, until 0 is surrounded by a clockwise loop. This procedure alternates, just as in the !′ = 4
case.
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450 ARU et al.

2.1.6 Exploration of the (nested) CLE

In the previous subsections, we have seen how to construct SLE!′(!′ − 6) processes, denoted byT10 (1 = 1(!′)) from 1 to 0 in <, and that these are generated by curves U1. We have also seen how
to construct a uniform CLE4 exploration, T0, targeted at 0 in <. The 0 in the subscripts here is
to indicate that 0 is a special target point. But we can also define the law of an SLE!′(!′ − 6), or aCLE4 exploration process, targeted at any point B in the unit disk. To do this we simply take the
law of e(T10) or e(T0), where e ∶ < → < is the unique conformal map sending 0 to B and 1 to 1.
We will denote these processes by (T1B),TB, where the (T1B) are also clearly generated by curves U1B
for 1 > 0. By definition, the time parameterization for T1B is such that − log CR(B; (T1B)5) = 5 for
all 5, B, 1 (similarly for TB).
In fact, both SLE!′(!′ − 6) and the uniform CLE4 exploration satisfy a special target invariance

property; see, for example, [53] for SLE!′(!′ − 6) and [64, Lemma 8] for CLE4. This means that
they can be targeted at a countable dense set of point in < simultaneously, in such a way that for
any distinct B,f ∈ <, the processes targeted at B and f agree (modulo time reparameterization)
until the first time that B and f lie in different connected components of the yet-to-be-explored
domain. We will choose our dense set of points to be  ∶= ℚ2 ∩ <, and for 1 > 0 refer to the cou-
pled process (T1B)B∈ (or (U1B)B∈) as the branching SLE!′ in <. Similarly, we refer to the coupled
process (TB)B∈ as the branching CLE4 exploration in <.
Note that in this setting we can associate a process O1B to each B ∈ : we consider the image ofT1B under the unique conformal map from < → < sending B ↦ 0 and 1↦ 1, and define O1B to be

the unique process such that this new radial Loewner chain is related to O1B via Equations (2.6) and
(2.3). Note that O1B has the same law as O10 for each fixed B (by definition), but the above procedure
produces a coupling of {O1B ; B ∈ }.
We will use the following property connecting chordal and radial SLE (that is closely related to

target invariance).

Lemma 2.4 [53, Theorem 3]. Consider the radial SLE!′(!′ − 6) with force point at =− iQ for Q ∈(0, 2P), stopped at the first time that e− iQ and 0 are separated. Then its law coincides (up to a time
change) with that of a chordal SLE!′ from 1 to eiQ in <, stopped at the equivalent time.
We remark that from (U1B)B∈, we can almost surely define a curve U1j for any fixed j ∈ <, by tak-

ing the almost sure limit (with respect to the supremum norm on compacts of time) of the curvesU1jk , where jk ∈  is a sequence tending to j as k → ∞. This curve has the law of an SLE!′(!′ − 6)
from 1 to j in< [45, Section 2.1]. Let us caution at this point that such a limiting construction does
not work simultaneously for all j. Indeed, there are almost surely certain exceptional points j,
the set of which almost surely has Lebesguemeasure zero, for which the limit of U1jk does not exist
for some sequence jk → j; see Figure 4.
Let us now explain how, for each !′ ∈ (4, 8), we can use the branching SLE!′ to define a (nested)CLE!′ . The conformal loop ensembleCLE!′ in< is a collection of non-crossing (nested) loops in the

disk, [61], whose law is invariant under Möbius transforms < → <. The ensemble can therefore
be defined in any simply connected domain by conformal invariance, and the resulting family of
laws is conjectured (in some special cases proved, for example, [8, 16, 22, 33, 63]) to be a universal
scaling limit for collections of interfaces in critical statistical physics models.
For B ∈ , the procedure to define 1B, the outermost CLE!′ loop containing B, goes as follows.∙ Let R1B be the first time that O1B hits 2P, and let R10,B be the last time before this that O1B is equal to
0.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 451

z

startend

F IGURE 1 A simplistic sketch of the correspondence in Theorem 1.1. On the left: all the outermost CLE4
loops discovered by the space-filling SLE4 before the dashed loop surrounding B is discovered, together with all of
the second-level nested CLE4 loops discovered before the dotted loop surrounding B is discovered. On the right:
the corresponding half-planar Brownian excursion, with the coordinate axes switched for ease of viewing. The
subexcursion marked by the dashed (respectively, dotted) line, that is, the portion of Brownian path starting and
ending at the endpoints of this line ‘-’ corresponds to the exploration within the dashed (respectively, dotted)
loop. The lengths of these lines are the LQG lengths of the corresponding loops, and the duration of the
subexcursions are their LQG areas. The time that B is visited is marked by a dot, and the time that the dotted loop
is discovered is marked by a cross. When the dotted loop is discovered, a coin is tossed to determine which of the
two disconnected yet-to-be-explored domains is visited first by the space-filling SLE4; in this example, the
component containing B is visited second; see also Figure 2.

z zz z

F IGURE 2 An illustration of the subset of the unit disk, shaded gray, which has been explored by the
space-filling SLE4 at two different times. On the left: at the time that the second-level CLE4 loop surrounding B is
discovered (marked by a cross on the right-hand side of Figure 1). On the right: at the time that B is reached
(marked by a dot on the right-hand side of Figure 1). Note that, although this is not apparent from the sketch, the
explored subset of the unit disk at any given time is actually a connected set.
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452 ARU et al.

F IGURE 3 From left to right, the process O10 does the following at the illustrated time: hits 0, hits 0, hits
neither 0 nor 2P, hits 2P. The rightmost image is, therefore, an illustration of the time R10.

oε0 oε0

0 0

ηε0(τ
ε
0 )

Lε
0

ηε0([0, τ
ε
0,0])

= ηεoε0([0, τ
ε
0 ])

F IGURE 4 On the left: the curve U10 (in blue) is run up to time R10,0 (the last time that O10 hits 0 before hitting2P). Point U10(R10,0) is defined to be l10 and we have that U10([0, R10,0]) = U1l10 ([0, R̃10]) for some time R̃10. On the right: the
outermost CLE!′ loop 10 containing 0 (marked in red) is defined to be U1l10 ([R̃10,∞]). Note that we have a choice
about how to define U1l10 : if we take it to be a limit of U1jk where jk → l10 along the dotted line, this will be different
to if jk → l10 along the dashed line. We choose the definition that makes l10 into a double point for U1l10 .
∙ Let l1B = U1B(R10,B). In fact, point l1B is one of the exceptional points for which the limit of U1jk does
not exist for all sequences jk → l1B, so it is not immediately clear how to define U1l1B ; see Figure 4.
However, the limit is well defined if we insist that the sequence jk → l1B is such that 0 and jk
are separated by U1B at time R1B for each k.∙ Define U1l1B to be the limit of the curves U1jk as k → ∞. In particular the condition on the sequencejk means that l1B is almost surely a double point of U1l1B . With this definition of U1l1B , it follows
that

U1B([0, R10,B]) = U1l1B ([0, R̃1B]) almost surely for some R̃1B ⩾ 0.
∙ Set 1B ∶= U1l1B ([R̃1B,∞)).
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 453

We write 1B for the connected component of < ⧵ 1B containing B: note that this is equal to(T1B)R1B . We will call this the (outermost) CLE!′ interior bubble containing B.
We define the sequence of nested CLE!′ loops (1B,S) for S ⩾ 1 by iteration (so 1B =∶ 1B,1), and

denote the corresponding sequence of nested domains (interior bubbles) containing B by (1B,S)S⩾1.
More precisely, the Sth loop is defined inside 1B,S−1 in the same way that the first loop is defined
inside<, after mapping1B,S−1 conformally to < and considering the curve U1B([R1B,∞)) rather thanU1B.
The uniformCLE4 exploration defines a nestedCLE4 in a similar but less complicatedmanner;

see [64]. For any B ∈ , to define B (the outermost CLE4 loop containing B) we consider the
Loewner chain DB and define the times RB and R0,B (according to OB) as in the !′ > 4 case. Then
between times R0,B and RB the Loewner chain DB is tracing a simple loop — starting and ending
at a point lB. This loop is what we define to be B. We define B to be the interior of B: note that
this is also equal to (TB)RB . Finally, we define the nested collection ofCLE4 loops containing B and
their interiors by iteration, denoting these by (B,S ,B,S)S⩾1 (so B,1 ∶= B and B,1 ∶= B).
2.1.7 Space-filling SLE

Now, for !′ ∈ (4, 8) we can also use the branching SLE!′ , (U1B)B∈, to define a space-filling curveU1 known as space-filling SLE!′ . This was first introduced in [18, 39]; see also [10, Appendix A.3]
for the precise definition of the space-filling loop that we will use. The presentation here closely
follows [21].
In our definition, the branches of (U1B)B∈ are all SLE!′(!′ − 6) processes started from point

1, and with force points initially located infinitesimally clockwise from 1. This means that the
associated space-filling SLE!′ will be a so-called counterclockwise space-filling SLE!′ loop from 1
to 1 in <.†
Given an instance (U1B)B∈ of a branching SLE!′ , to define the associated space-filling SLE!′ , we

start by defining an ordering on the points of . For this we use a coloring procedure. First, we
color the boundary of < blue. Then, for each B ∈ , we can consider the branch U1B of the branch-
ing SLE!′ targeted toward B. We color the left-hand side of U1B red, and the right-hand side of U1B
blue. Whenever U1B disconnects one region of < from another, we can then label the resulting con-
nected components as monocolored or bicolored, depending on whether the boundaries of these
components are made up of one or two colors, respectively.
For B and f distinct elements of , we know (by definition of the branching SLE) that U1B andU1f will agree until the first time that B and f are separated. When this occurs, it is not hard to

see that precisely one of B or f will be in a newly created monocolored component. If this is B we
declare that B ≺ f, and otherwise that f ≺ B. In this way, we define a consistent ordering ≺ on; see Figure 5.
It was shown in [39] that there is a unique continuous space-filling curve U1, parameterized by

Lebesgue area, which visits the points of in this order. This is the counterclockwise space-filling
SLE!′ loop (we will tend to parameterize it differently in what follows, but will discuss this later).
We make the following remarks.

†Variants of this process, for example, chordal/whole-plane versions, a clockwise version, and version with another
starting point, can be defined by modifying the definition of the branching SLE; see, for example, [2, 21].
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454 ARU et al.

z

w1

w2

F IGURE 5 Constructing the ordering from the space-filling SLE!′ . When B and f1 are separated, the
connected component containing B has entirely blue boundary, while the connected component containing f1
has red and blue on its boundary⇒ B comes before f1 in the ordering. By contrast, when B and f2 are separated,f2 is in a monocolored component and B is not, which implies that B comes after f2 in the ordering. Sof1 ≺ B ≺ f2 in this example.
∙ We can think of U1 as a version of ordinary SLE!′ that iteratively fills in bubbles, or disconnected
components, as it creates them. The orderingmeans that it will fill inmonocolored components
first, and come back to bicolored components only later.∙ Theword counterclockwise in the definition refers to the fact that the boundary of F< is covered
up by U1 in a counterclockwise order.

2.2 Convergence of the SLE3′(3′ − o) branches
In this subsection and the next, we will show that for any B ∈ , we have the joint convergence,
in law as !′ ↓ 4 of∙ the SLE!′(!′ − 6) branch toward B to the CLE4 exploration branch toward B; and∙ the nested CLE!′ loops surrounding B to the nested CLE4 loops surrounding B.
The present subsection is devoted to proving the first statement.
Let us assume without loss of generality that our target point B is the origin. We first consider

the radial SLE!′(!′ − 6) branch targeting 0, D10, up until the first time R10 that 0 is surrounded by
a counterclockwise loop. The basic result is as follows.

Proposition 2.5. (D10, R10) ⇒ (D0, R0) in × ℝ as 1 ↓ 0.
By Remark 2.3 and the iterative definition of the CLE4 exploration toward 0, the convergence

for all time follows immediately from the above.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 455

Proposition 2.6. T10 ⇒ T0 in as 1 ↓ 0.
Our proof of Proposition 2.5 will go through the approximations D1,?0 and D?0 . Namely, we will

show that for any fixed level ? of approximation, D1,?0 → D?0 as 1 ↓ 0, equivalently !′ ↓ 4. Broadly
speaking, this holds since the macroscopic excursions of the underlying processes O10 converge,
and in between thesemacroscopic excursions we can show that the location of the tip of the curve
distributes itself uniformly on the boundary of the unexplored domain. We combine this with the
fact that the approximations D1,?0 converge to D10 as ? → ∞, uniformly in 1, to obtain the result.
The heuristic explanation for the mixing of the curve tip on the boundary is that the force

point in the definition of an SLE!′(!′ − 6) causes the curve to ‘whizz’ around the boundary more
and more quickly as !′ ↓ 4. This means that in any fixed amount of time (for example, between
macroscopic excursions), it will forget its initial position and become uniformly distributed in the
limit. Making this heuristic rigorous is the main technical step of this subsection, and is achieved
in Section 2.2.3.

2.2.1 Excursion measures converge as !′ ↓ 4
The first step toward proving Proposition 2.5 is to describe the sense in which the underlying
process O10 for the SLE!′(!′ − 6) branch converges to the process O0 for the CLE4 exploration. It is
convenient to formulate this in the language of excursion theory; see Lemma 2.8.
To begin we observe, and record in the following remark, that when O10 is very small, it behaves

much like a Bessel process of a certain dimension.

Remark 2.7. Suppose that (O10)0 = 0. By Girsanov’s theorem, if the law of {(O10)5 ; 5 ⩾ 0} is weighted
by the martingale

exp(p15 − ⟨p1⟩52 ) ; p15 ∶= !′ − 4√!′ ∫
5

0
( 1(O10)8 − 12 cot

( (O10)82
))H%8,

the resulting law of {(O10)5 ; 5 ⩽ R10} is that of√!′ times a Bessel process of dimension J(!′) = 3 −8∕!′. Note that for q ∈ [0, 2P), (1∕q − (1∕2) cot(q∕2)) is positive and increasing, and that for q ∈[0,P], q∕12 ⩽ (1∕q − (1∕2) cot(q∕2)) ⩽ q∕6, so in particular the integral in the definition of pr5 is
well defined.

Now, observe that by theMarkov property of O10, we can define its associated (infinite) excursion
measure on excursions from 0. We defines1 to be the image of this measure under the operation
of stopping excursions if and when they reach height 2P.
For ? ⩾ 0, we write s1? for s1 restricted to excursions with maximum height exceeding 2−?,

and normalized to be a probability measure. It then follows from the strongMarkov property that
the excursions of O10 during the intervals [N1,?S ,C1,?S ] are independent samples from s1?, and Λ1,?
is the index of the first of these samples that actually reaches height 2P. We also writes1∗ for the
measures1 restricted to excursions that reach 2P, again normalized to be a probability measure.
Finally, we consider the excursion measure on excursions from 0 for Brownian motion. We

denote the image of this measure, after stopping excursions when they hit 2P, bys. Analogously
to above, we writes? fors conditioned on the excursion exceeding height 2−?. We writes⋆ fors conditioned on the excursion reaching height 2P.
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456 ARU et al.

The measuress, (s1)1 are supported on the excursion space
v = {= ∈ w(ℝ+, [0, 2P]) ; =(0) = 0, x(=) ∶= sup{8 > 0 ∶ =(8) ∈ (0, 2P)} ∈ (0,∞)}

on which we define the distance

Hv(=, =′) = sup5⩾0 |=(5) − =′(5)| + |x(=) − x(=′)|.
Lemma 2.8. For any ? ⩾ 0, s1? → s? in law as 1 → 0, with respect to Hv . The same holds with(s1⋆,s⋆) in place of (s1?,s?).
Proof. For j > 0, set vj = {= ∈ w(ℝ+, [0, 2P − j]) ; =(0) = 0, xj(=) ∶= sup{8 > 0 ∶ =(8) ∈ (0, 2P −j)} ∈ (0,∞)}, and equip it with the metric Hvj (=, =′) = sup5⩾0 |=(5) − =′(5)| + |xj(=) − xj(=′)|. SetJ = J(!′(1)), recalling the definition J(!′) = 8 − 3∕!′. We first state and prove the analogous
result for Bessel processes. □

Lemma 2.9. Let y1 be a sample from the Bessel-J excursion measure away from 0, conditioned on
exceeding height 2−?, and stopped on the subsequent first hitting of 0 or 2P − j. Let y be a sample
from the Brownian excursionmeasurewith the same conditioning and stopping.† Then for anyj > 0,y1 ⇒ y as 1 ↓ 0, in the space (vj,Hvj ).
Proof of Lemma 2.9. For any 1 ∈ (0, 2 −√2), y1 can be sampled (see [18, Section 3]) by∙ first sampling^1 from the probabilitymeasure on [2−?,∞)with density proportional toQJ−3HQ;∙ then running a Bessel-(4 − J) process from 0 to ^1;∙ stopping this process at 2P − j if ^1 ⩾ 2P − j; or∙ placing it back to back with the time reversal of an independent Bessel-(4 − J) from 0 to ^1 if^1 < 2P − j.
Since the time for a Bessel-(4 − J) to leave [0,j′] converges to 0 as j′ → 0 uniformly in J < 3∕2,
and for any j′ < 2−?, a Bessel-(4 − J) from j′ to q converges in law to a Bessel−3 from j′ to q as!′ ↓ 4, uniformly in q ∈ [2−?, 2P], this shows that y1 ⇒ y in (vj,Hvj ). □

Now we continue the proof of Lemma 2.8. Recalling the Radon–Nikodym derivative of
Remark 2.7 (note that !′ − 4→ 0 as 1 ↓ 0), we conclude that if =1 and = are sampled from s1?
ands?, respectively, and stopped upon hitting {0, 2P − j} for the first time after hitting 2−?, then=1 → = in law as 1 ↓ 0, in the space (vj,Hvj ).
To complete the proof, it therefore suffices to show (now without stopping =1 or =) that

x(=1) − xj(=1)→ 0 and sup5∈(xj(=1),x(=1)) |=1(5) − 2P| → 0
as j → 0, uniformly in 1 (small enough). But by symmetry, if xj(=1) < x(=1) then 2P − =1 from
time xj(=1) onward has the law of O1 started from j and stopped upon hitting 0 or 2P. As j → 0
the probability that this process remains in [0,P] tends to 1 uniformly in 1, and then we can use
†Of course this depends on j, but we drop this from the notation for simplicity.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 457

the same Radon–Nikodym considerations to deduce the result. The final statement of Lemma 2.8
can be justified in exactly the same manner.

2.2.2 Strategy for the proof of Proposition 2.5

With Lemma 2.8 in hand the strategy to prove Proposition 2.5 is to establish the following two
lemmas.

Lemma 2.10. Let L be a continuous bounded function on  × [0,∞). Then z[L(D1,?0 , R1,?0 )]→z[L(D10, R10)] as ? → ∞, uniformly in !′ ∈ (4, 8), equivalently 1 ∈ (0, 2 −√2).
Proof. Fix 1 as above, and let us assume that the processes D1,?0 as ? varies and D10 are coupled
together in the natural way: using the same underlying O10 andK10. By Remark 2.1, in particular
(2.4), it suffices to prove that

R1,?0 → R10 (2.9)

in probability as ? → ∞, uniformly in 1. In other words, to show that the time spent by O10 in
excursions of maximum height less than 2−? (before first hitting 2P) goes to 0 uniformly in 1 as? → ∞.
To do this, let us consider the total (that is, cumulative) duration w1,? of such excursions of O10,

before the first time {1 that O10 reaches P. The reason for restricting to this time interval is to use
the final observation in Remark 2.7: that the integrand in the definition of p1 is deterministically
bounded up to time {1. This will allow us to transfer the question to one about Bessel processes.
And, indeed, since the number of times that O10 will reach P before time R10 is a geometric random
variable with success probability uniformly bounded away from 0 (due to Lemma 2.8), it is enough
to show that w1,? tends to 0 in probability as ? → ∞, uniformly in 1.
For this, we first note that by Remark 2.7, for any j, N > 0 we can write

ℙ(w1,? > j) ⩽ ℙ({1 > N) + ℚ1(exp(−p1{1 + 12 ⟨p1⟩{1 )}{w1,?>j}}{{1⩽N}),
where p1 is as defined in Remark 2.7 and under ℚ1, O10 has the law of

√!′ times a Bessel process
of dimension J(!′) = 3 − 8∕!′. Since ℙ({1 > N)→ 0 as N → ∞, uniformly in 1 (this is proved,
for example, in [52]), it suffices to show that for any fixed N, the second term in the above
equation tends to 0 uniformly in 1 as ? → ∞.
To this end, we begin by using Cauchy–Schwarz to obtain the upper bound

ℚ1(exp(−p1{1 + 12⟨p1⟩{1}{w1,?>j}}{{1⩽N}))2 ⩽ ℚ1(exp(−2p1{1 + ⟨p1⟩{1 )}{{1⩽N})ℚ1(}{w1,?>j}).
Then, because we are on the event that {1 ⩽ N, and the integrand in the definition of p1 is deter-
ministically bounded up to time {1, we have that ℚ1(exp(−2p1{1 + ⟨p1⟩{1 )}{{1⩽N}) ⩽ c for some
constant c = c(N) not depending on 1. So it remains to show that the ℚ1 expectation of w1,?, goes
to 0 uniformly in 1 as ? → ∞.
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458 ARU et al.

Recall that under ℚ1, O10 has the law of
√!′ times a Bessel process of dimension J(!′) = 3 −8∕!′. Now, by [47, Theorem 1] we can construct a dimension J(!′)Bessel process by concatenating

excursions from a Poisson point process Λ with intensity ∫ ∞0 QJ−3~QJ HQ times Lebesgue measure
on v × ℝ, where ~QJ is a probability measure on Bessel excursions with maximum height Q for
each Q > 0. Moreover, by Brownian scaling, ~QJ (=) = ~1J(=Q), =Q(8) = Q−1=(Q28) for 0 ⩽ 8 ⩽ x(=Q) =Q−2x(=). (For proofs of these results, see, for example, [47].)
Now, if we let C = inf {5 ∶ (=, 5) ∈ Λ and sup =(8) ⩾ P}, then conditionally on C, we can writew!′,? as the sum of the excursion lifetimes x(=) over points (=, 5) in a (conditionally independent)

Poisson point process with intensity

∫
2−?

0 QJ−3~QJ HQ × Leb([0,C]).
Note that by definition of the Poisson point process, C is an exponential random variable with
associated parameter ∫ ∞P QJ−3 HQ, and so has uniformly bounded expectation in !′. Since Brown-
ian scaling also implies that ~QJ (x(=)) = Q2~1J(x(=Q)) for excursions =, Campbell’s formula yields
that the expectation of w!′,? is of order 2−?J. This indeed converges uniformly to 0 in J ⩾ 1
(equivalently !′, 1), which completes the proof. □

Lemma 2.11. For any fixed ? ∈ ℕ, (D1,?0 , R1,?0 ) converges to (D?0 , R?0 ) in law as 1 ↓ 0, with respect to
the Carathéodory × Euclidean topology.
Proof of Proposition 2.5. This follows by combining Lemma 2.10 and Lemma 2.11, plus the fact that(D?0 , R?0 ) ⇒ (D0, R0) as ? → ∞. □

2.2.3 Convergence at a fixed level of approximation as !′ ↓ 4
The remainder of this section will now be devoted to proving Lemma 2.11. This is slightly trickier,
and so we will break down its proof further into Lemmas 2.12 and 2.13.
Let us first set up for the statements of these lemmas. For !′ ∈ (4, 8) (equiv. 1 ∈ (0, 2 −√2)) we

set ^1,?S = (K10)N1,?S for 1 ⩽ S ⩽ Λ1,? and then write
�1,? = (^1,?1 ,^1,?2 , … ,^1,?Λ1,? ).

For the CLE4 case, we write
�? = (^?1 ,^?2 , … ,^?Λ? ),

where the ^? are as defined in Section 2.1.5. Also recall the definition of the excursions(=1,?S )1⩽S⩽Λ1,? of O1 above height 2−?. Define the corresponding excursions (=?S )S⩽Λ? for the uniformCLE4 exploration, and denote
�1,? = (=1,?1 , =1,?2 , … , =1,?Λ1,? ), �? = (=?1 , =?2 , … , =?Λ? ).
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 459

Thus,�1,?,�? live in the space of sequences of finite length, taking values in F<. We equip this
space with topology such that �(?) → � as ? → ∞ if and only if the vector length of �(?) is equal
to the length of� for all ? ⩾ �0 large enough, and such that every component of�(?) (for ? ⩾ �0)
converges to the corresponding component of�with respect to the Euclidean distance. Similarly,�1,?, �? live in the space of sequences of finite length, taking values in the space v of excursions
away from {0, 2P}.
We equip this sequence spacewith topology such that �(k) → � ask → ∞ if and only if the vector

length of �(k) is equal to the vector length of � for all k large enough, togetherwith component-wise
convergence with respect to Hv .
Lemma 2.12. For any ? ∈ ℕ, (�1,?, R1,?) ⇒ (�?, R?) as 1 → 0.
Proof. This is a direct consequence of Lemma 2.8 and the definition of R1,?, R?. □

Lemma 2.13. For any ? ∈ ℕ, �1,? → �? in law as 1 → 0.
This second lemma will take a bit more work to prove. However, we can immediately see how

the two together imply Lemma 2.11.

Proof of Lemma 2.11. Lemmas 2.12 and 2.13 imply that the driving functions of D1,?0 converge in
law to the driving function of D?0 with respect to the Skorokhod topology. This implies the result
by Remark 2.1. □

Our new goal is therefore to prove Lemma 2.13. The main ingredient is the following (recall
that N1,?1 is the start time of the first excursion of O10 away from 0 that reaches height 2−?).
Lemma 2.14. For any G ≠ 0 and ? ∈ ℕ fixed,

z[^1,?1 ] = z[ exp(iG ∫ N1,?10 cot((O10)8∕2)H8) ]→ 0 as 1 ↓ 0. (2.10)

For the proof of Lemma 2.14, we are going to use Remark 2.7. That is, the fact that O10 behaves
very much like

√!′ times a Bessel process of dimension J = 3 − 8∕!′ ∈ (1, 2). The Bessel pro-
cess is much more convenient to work with (in terms of exact calculations) because of its scaling
properties. Indeed, for Bessel processes we have the following lemma:

Lemma 2.15. Let Õ1 be√!′ = √!′(1) times a Bessel process of dimension 3 − 8∕!′ (started from 0)
and Ñ1,s be the start time of the first excursion in which it exceeds 2−s. Then for G ≠ 0,

|z[exp(2 iG ∫ Ñ1,s
0 (Õ18)−1 H8)]| → 0

as 1 ↓ 0 for anys large enough.

(The assumption thats is sufficiently large here is made simply for convenience of proof.)
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460 ARU et al.

Proof. By changing the value of G appropriately, we can instead take Õ1 to be a Bessel process of
dimension J(!′) = 3 − 8∕!′ (that is, we forget about the multiplicative factor of√!′). Note thatJ(!′) ∈ (1, 2) for !′ < 8 and J(!′) ↓ 1 as !′ ↓ 4. By standard Itô excursion theory, Õ1 can be formed
by gluing together the excursions of a Poisson point process Λ with intensity ~J(!) × Leb[0,∞),
where ~J is the Bessel-J excursionmeasure. Asmentioned previously, it is a classical result thatwe
can decompose ~J(⋅) = ∫ ∞0 QJ−3~QJ (⋅)HQ (there is a multiplicative constant that we can set to one
without loss of generality) where ~QJ is a probability measure on excursions withmaximumheight
exactly Q for each Q > 0 and thatmoreover by Brownian scaling, ~QJ (=) = ~1J(=Q), =Q(8) = Q−1=(Q28)
for 0 ⩽ 8 ⩽ x(=Q) = Q−2x(=).
Let C!′s (H)= Exp

( (2−s)J−22 − J )
(2.11)

be the smallest 5 such that (=, 5) is in the Poisson process for some = with sup(=) > 2−s. Then
conditionally on C!′s , the collection of points (=, 5) in the Poisson process with 5 ⩽ C!′s is simply a
Poisson process Λ(C!′s ) with intensity ∫ 2−s0 QJ−3~QJ × Leb([0,C!′s ]). So, if for any given excursion= ∈ v, we define

;(=) = ∫
x(=)

0 1=(8) H8
(setting ;(=) =∞ if the interval diverges), we have

z(e2 iG ∫ Ñ1,s0 (Õ18 )−1 H8 |C!′s) = z(e2 iG∑(=,5)∈Λ(C!′s ) ;(=) |C!′s) = exp(C!′s ∫
2−s

0 QJ−3~QJ (1 − e2 iG;(=))),
(2.12)

where in the final equality we have applied Campbell’s formula for the Poisson point processΛ(C!′s ).
The real part of 1 − e2 iG;(=) is bounded above by 2G2;(=)2. Then using the Brownian scal-

ing property of ~QJ explained before, we can bound ~QJ (ℜ(1 − e2 iG;(=))) by G2Q2~1J(;2). Using
the fact that ~1J(;2) <∞, which can be obtained from a direct calculation, it follows that
∫ 2−s0 QJ−3~QJ (ℜ(1 − e2 iG;(=)))HQ < (2 − J)−12−s(J−2) for all s ⩾ a0 = a0(G), where a0 <∞
does not depend on J < 3∕2 (say). This allows us to take expectations over C!′s in (2.12) (recall
the distribution of C!′s from (2.11)) to obtain that

||||z(e2 iG ∫ Ñ1,s0 (Õ18 )−1 H8)|||| = |||||
1 − 2s(J−2)(2 − J)∫ 2−s

0 QJ−3~QJ ((1 − cos(2G;(=)) + i sin(2G;(=))))HQ|||||
−1

⩽ |||||
2s(J−2)(2 − J)∫ 2−s

0 QJ−3~QJ (sin(2G;(=)))HQ|||||
−1

⩽ |||||
(2 − J)∫ 1

0 qJ−3~2−sqJ (sin(2G;(=)))Hq|||||
−1

(2.13)

for alls ⩾ a0 and J ∈ (1, 3∕2).
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 461

We now fix G ≠ 0 and s ⩾ a0 for the rest of the proof. Our aim is to show that the final
expression in (2.13) converges to 0 as J ↓ 1 (equivalently 1 ↓ 0). To do this, we use the Brown-
ian scaling property of ~QJ again to write ~2−sqJ (sin(2G;(=))) = ~1J(sin(2−s+1Gq;(=))) for each q.
We also observe that

q−1~1J(sin(2−s+1Gq;(=)))→ ~1J(2−s+1G;(=))
as q ↓ 0, which follows by dominated convergence since sin(B)∕B → 1 as B ↓ 0. Moreover (by
Lemma 2.8, say) the convergence is uniform in J. This means that for some �G,s ∈ (0, 1) andkG,s <∞ depending only on G ands, we have that

|~1J(sin(2−s+1Gq;(=))) ⩾ kG,sq for all q ⩾ �G,s.
It follows that

|||||
(2 − J)∫ 1

0 qJ−3~2−sqJ (sin(2G;(=)))Hq||||| ⩾ (2 − J)kG,s ∫
�G,s

0 qJ−2 Hq − (2 − J)∫ 1
�G,s qJ−3 Hq

⩾ kG,s�J−1G,sJ − 1 − (1 − �J−2G,s )
for all J ∈ (1, 3∕2). Since this expression converges to∞ as J ↓ 1, and the final term in (2.13) is its
reciprocal, the proof is complete. □

With this in hand, the proof of Lemma 2.14 follows in a straightforward manner.

Proof of Lemma 2.14. In order to do a Bessel process comparison and use Lemma 2.15, we need
to replace the fixed ? in (2.10) by some s which is very large (so we are only dealing with time
intervals where O10 is tiny). However, this is not a problem, since fors ⩾ ? we can write

∫
N1,?10 cot((O10)8∕2)H8 = ∫

N1,s10 cot((O10)8∕2)H8 + ∫
N1,?1N1,s1 cot((O10)8∕2)H8,

where the two integrals are independent. This means that |z[ exp(SG ∫ N1,?10 cot((O10)8∕2)H8) ]| is
actually increasing in ? for any fixed 1, so proving (2.10) fors > ? also proves it for ?.
So we can write, for anys ⩾ ?

||||||
z[exp(iG ∫ N1,?10 cot((O10)∕2)H8)]|||||| ⩽

||||||
z[exp(iG ∫ N1,s10 cot((O10)8∕2)H8)]||||||

which is, by the triangle inequality, less than
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462 ARU et al.

||||||
z[exp(2 iG ∫ Ñ1,s

0 (Õ18)−1 H8)]||||||

+||||||z
[exp(iG ∫ N1,s10 cot((O10)8∕2)H8)] − z[exp(2 iG ∫ Ñ1,s

0 (Õ18)−1 H8)]||||||
.

Now, using that (1∕q − (1∕2) cot(q∕2)) ↓ 0 as q ↓ 0, and an argument almost identical to the first
half of the proof of Lemma 2.10, the second term above converges to 0 as s → ∞, uniformly in1. Since Lemma 2.15 says that the first term converges to 0 as 1 → 0 for any s large enough, this
completes the proof. □

Proof of Lemma 2.13. Equation (2.10) implies that the law of ^1,?1 converges to the uniform
distribution on the unit circle as !′ ↓ 4. The full result then follows by the Markov property
of O10. □

2.2.4 Summary

So, we have now tied up all the loose ends from the proof of Proposition 2.5. Recall that this propo-
sition asserted the convergence in law of a single SLE!′(!′ − 6) branch in <, targeted at 0, to the
corresponding uniform CLE4 exploration branch. Let us conclude this subsection by noting that
the same result holds when we change the target point.
For B ∈ < not necessarily equal to 0, we define B to be the space of evolving domains whose

image after applying the conformal map ;(f) = (f − B)∕(1 − B̄f) from < → <, B ↦ 0, lies in.
From the convergence in Proposition 2.6, plus the target invariance of radial SLE!′(!′ − 6) and

the uniform CLE4 exploration, it is immediate that
Corollary 2.16. For any B ∈ , (T1B, R1B) ⇒ (TB, RB) inB × ℝ as 1 → 0.
Recall that R10,B is the last time that O1B hits 0 before first hitting 2P and [R0,B, RB] is the time

interval during which TB traces the outermost CLE4 loop surrounding B. Note that R1B − R10,B is
equal to the length of the excursion e1,?Λ1,? and similarly RB − R0,B is the length of the excursion eΛ?
(for every ?), so that by Lemma 2.12 the following extension holds.
Corollary 2.17. For any fixed B ∈ 

(T1B, R1B, R10,B) ⇒ (TB, RB, R0,B)
as 1 → 0.
2.3 Convergence of the CLE3′ loops
Recall that for B ∈ , 1B (respectively, B) denotes the outermost CLE!′ loop (respectively, CLE4
loop) containing B and1B (respectively,B) denotes the connected component of the complement
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 463

of 1B (respectively, B) containing B. By definition we have
1B = (T1B)R1B and B = (TB)RB , (2.14)

where {(T1B)5 ; 5 ⩾ 0} and {(TB)5 ; 5 ⩾ 0} are processes in B describing radial SLE!′(!′ − 6) pro-
cesses and a uniform CLE4 exploration, respectively, toward B. See Section 2.1.6 for more details.
In this subsection we will prove the convergence of 1B ⇒ B with respect to the Hausdorff

distance. That this might be non-obvious is illustrated by the following difference: in the limitFTB = B, whereas this is not at all the case for 1 > 0. Nevertheless, we have
Proposition 2.18. For any B ∈  (T1B,1B,1B) ⇒ (TB,B,B)
as 1 ↓ 0, with respect to the product topology generated by (B ×Hausdorff × Carathéodory viewed
from B) convergence.
Given (2.14), and that we already know the convergence of T1B as 1 ↓ 0, the proof of

Proposition 2.18 boils down to the following lemma.

Lemma 2.19. Suppose that (T0,,0) is a subsequential limit in law of (T10,10,10) as 1 ↓ 0 (with
the topology of Proposition 2.18). Then we have  = 0 almost surely.
Proof of Proposition 2.18 given Lemma 2.19. By conformal invariance we may assume that B = 0.
Observe that by Corollary 2.16, we already know that (T10,10) ⇒ (T0,0) as 1 → 0, with respect to
the product ( × Carathéodory ) topology. Indeed, if one takes a sequence 1? converging to 0, and
a coupling of (T1?0 , R1?0 )?∈ℕ and (T0, R0) so that (T1?0 , R1?0 )→ (T0, R0) almost surely as ? → ∞, it is
clear due to (2.14) that each 1?0 also converges to 0 almost surely. Also note that (10) is tight in1 with respect to the Hausdorff topology, since all the sets in question are almost surely contained
in <. Thus (D10,10,10) is tight in the desired topology, and the limit is uniquely characterized by
the above observation and Lemma 2.19. This yields the proposition. □

2.3.1 Strategy for the proof of Lemma 2.19

At this point, we know the convergence in law of (T10,10)→ (T0,0) as 1 ↓ 0, and we know that10 is the connected component of < ⧵ 10 containing 0 for every 1. Given a subsequential limit(T0,0,) in law of (T10,10,10), the difficulty in concluding that  = 0 lies in the fact that
Carathéodory convergence (which is what we have for10) does not ‘see’ bottlenecks; see Figure 6.
To proceed with the proof, we first show that any part of the supposed limit  that does not

coincide with 0 must lie outside of 0.
Lemma 2.20. With the setup of Lemma 2.19, we have  ⊆ ℂ ⧵ 0 almost surely.
Once we have this ‘one-sided’ result, it suffices to prove that the laws of  and 0 coincide.

Lemma 2.21. Suppose that  is as in Lemma 2.19. Then the law of  is equal to the law of 0.
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464 ARU et al.

0

F IGURE 6 The sequence of domains enclosed by the thick black curves will converge in the Carathéodory
sense (viewed from 0), but not in the Hausdorff sense, to the dotted domain. This is the type of behavior that must
be ruled out to deduce convergence of CLE loops (in the Hausdorff sense) from convergence of the radial SLE (in
the Carathéodory sense).

The first lemma follows almost immediately from the Carathéodory convergence of 10 → 0
(see the next subsection). To prove the second lemma, we use the fact that CLE! for ! ∈ (0, 8) is
inversion invariant: more correctly, a whole-plane version of CLE! is invariant under the mappingB ↦ 1∕B. Roughly speaking, thismeans that forwhole-planeCLE,we canuse inversion invariance
to obtain the complementary result to Lemma 2.20, and deduce Hausdorff convergence in law of
the analogous loops. We then have to do a little work, using the relation between whole-plane
CLE and CLE in the disk (a Markov property), to translate this back to the disk setting and obtain
Lemma 2.21.

2.3.2 Preliminaries on Carathéodory convergence

We first record the following standard lemma concerning Carathéodory convergence, which will
be useful in what follows.

Lemma 2.22 (Carathéodory kernel theorem). Suppose that (>?)?⩾1 is a sequence of simply con-
nected domains containing 0, and for each ?, write�? for the connected component of the interior of∩k⩾?>k containing 0. Define the kernel of (>?)?⩾1 to be ∪?�? if this is non-empty, otherwise declare
it to be {0}.
Suppose that (>?)?⩾1 and > are simply connected domains containing 0. Then >? → > with

respect to the Carathéodory topology (viewed from 0) if and only if every subsequence of the >? has
kernel>.
One immediate consequence of this is the following.

Corollary 2.23. Suppose that (�?,d?) ⇒ (�,d) as ? → ∞ for the product (Hausdorff ×
Carathéodory topology), where for each fixed ?, the coupling of�? andd? is such thatd? is a simply
connected domain with 0 ∈ d?, and �? is a compact subset of ℂ with �? ⊆ ℂ ⧵ d? almost surely.
Then � ⊆ ℂ ⧵ d almost surely.

Proof. By Skorokhod embedding, we may assume without loss of generality that (�?,d?)→(�,d) almost surely as ? → ∞.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 465

For [ ∈ ℕ write �[ for the connected component of int(∩k⩾[dk) containing 0. By assump-
tion, �? ⊆ ℂ ⧵ d? for every ? almost surely, which means that �? ⊆ ℂ ⧵ �[ for all ? ⩾ [ almost
surely. Since �? converges to � in the Hausdorff topology, we have � ⊆ ℂ ⧵ �[ for each [, which
implies that � ⊆ ℂ ⧵ ∪[�[ almost surely. Finally, because d? → d in the Carathéodory topology,
the Carathéodory kernel theorem gives that ∪[�[ = d almost surely. Hence � ⊆ ℂ ⧵ d almost
surely, as desired. □

In particular:

Proof of Lemma 2.20. This is a direct consequence of Corollary 2.23. □

Now, if>? ⊆ ℂ are such that 1∕>? ∶= {B ∶ 1∕B ∈ >?} is a simply connected domain containing
0 for each ?, we say that >? → > with respect to the Carathéodory topology seen from∞, if and
only if 1∕>? → 1∕> with respect to the Carathéodory topology seen from 0. It is clear from this
definition and the above arguments (or similar) that the following properties hold.

Lemma 2.24. Suppose that >? ∈ ℂ are simply connected domains such that 1∕>? is simply
connected containing 0 for each ?. Then∙ if (>?,�?) ⇒ (>,�) jointly with respect the product (Carathéodory seen from ∞× Hausdorff)
topology, for some compact sets �? with �? ⊆ ℂ ⧵ >? for each ?, then � ⊆ ℂ ⧵ > almost surely;∙ if (>?,d?) ⇒ (>,d) jointly with respect the product (Carathéodory seen from∞× Carathéodory
seen from 0) topology, for some simply connected domains< ⊇ d? ∋ 0withd? ⊆ ℂ ⧵ >? for each?, then d ⊆ ℂ ⧵ > almost surely.

Proof. The first bullet point follows fromCorollary 2.23 by considering 1∕>?, 1∕> and 1∕�?, 1∕�.
For the second, let us assume by Skorohod embedding that (>?,d?)→ (>,d) almost surely in the
claimed topology. Then the compact sets Fd? ∶= d̄? ⧵ d? ⊂ <̄ are tight for theHausdorff topology,
and hence have some subsequential limit F. (The argument of) Corollary 2.23 implies that F ⊂ ℂ ⧵> and F ⊂ ℂ ⧵ d almost surely. Since> is an open simply connected domain containing∞ andd
is an open simply connected domain containing 0, this implies thatd ⊂ ℂ ⧵ > almost surely. □

2.3.3 Whole-plane CLE and conclusion of the proofs

As mentioned previously, we would now like to use some kind of symmetry argument to prove
Lemma 2.21. However, the symmetry we wish to exploit is not present for CLE in the unit disk,
and so we have to go through an argument using whole-plane CLE instead. Whole-plane CLE
was first introduced in [34] and is, roughly speaking, the local limit of CLE in (any) sequence of
domains with size tending to∞. The key symmetry property of whole-plane CLE!′ that we will
use is its invariance under applying the inversion map B ↦ 1∕B [27, 34]. More precisely:
Lemma 2.25. Let Γ!′ be a whole-plane CLE!′ with !′ ∈ [4, 8).∙ (Inversion invariance) The image of Γ!′ under B ↦ 1∕B has the same law as Γ!′ .∙ (Markov property)Consider the collection of loops in Γ!′ that lie entirely inside< and surround 0.
Write �11 (with 1 = 1(!′) as usual) for the connected component containing 0 of the complement of
the outermost loop in this collection. Write )12 for the second outermost loop in this collection. Then
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466 ARU et al.

the image of )12 under the conformal map �11 → < sending B to 0 with positive derivative at 0 has
the same law as the outermost loop surrounding 0 for a CLE!′ in <.

Proof. The inversion invariance is shown in [34, Theorem 1.1] for !′ = 4 and [27, Theorem 1.1] for!′ ∈ (4, 8). The Markov property follows from [27, Lemma 2.9] when !′ > 4 and [34, Theorem 1]
when !′ = 4. □

Let us now state the convergence result that we will prove for whole-plane CLE!′ as !′ ↓ 4, and
show how it implies Lemma 2.21.
For 1 > 0, we extend the above definitions and write )11, )12 for the largest and second largest

whole-plane CLE!′ loops containing 0, which are entirely contained in the unit disk. We let �1S be
the connected component ofℂ ⧵ )1S containing 0 for S = 1, 2 and letv1S be the connected component
containing∞. When 1 = 0wewrite )1, )2 for the corresponding loops of a whole-planeCLE4, and�1,v1, �2,v2 for the corresponding domains containing 0 and ∞. Note that in this case we have�S = ℂ ⧵ vS and vS = ℂ ⧵ �S for S = 1, 2.
Lemma 2.26. (�11,v11, �12,v12) ⇒ (�1,v1, �2,v2) as 1 → 0, with respect to the product
Carathéodory (seen from (0,∞, 0,∞) in the four coordinates) topology.

Proof of Lemma 2.21 given Lemma 2.26. Suppose that (�11, )11) converges in law to (�1, )) along some
subsequence, with respect to the product (Carathéodory seen from 0 × Hausdorff) topology. By
the above lemma, we can extend this convergence to the joint convergence of (�11, )11,v12, �12)→(�1, ),v2, �2). But then Corollary 2.23 and Lemma 2.24 imply that ) ⊆ ℂ ⧵ �2 = v2 and ) ⊆ ℂ ⧵ v2 =�2 almost surely. This implies that ) ⊆ )2 = F(v2) = F(�2) almost surely. Moreover, it is not hard to
see (using the definition of Hausdorff convergence) that )⦓ ⧵ ) = ∅, else )12 would not disconnect
0 from∞ for small 1. So ) = )2 almost surely.
Now consider, for each 1, the unique conformal map g 11 ∶ �11 → < that sends 0→ 0 and has(g 11)′(0) > 0. Then the above considerations imply that if g 11()12) converges in law along some sub-

sequence, with respect to theHausdorff topology, then the limitmust have the law of g1()2), where
g1 ∶ �1 → < is defined in the sameway as g 11 butwith �11 replaced by �1. Since the law of g 11()12) is the
same as that of 10 for every 1 and the law of g1()2) has the law of 0, this proves Lemma 2.21. □

Proof of Lemma 2.19 and Proposition 2.18. Combining Lemmas 2.20 and 2.21 yields Lemma 2.19.
As explained previously, this implies Proposition 2.18. □

So, we are left only to prove Lemma 2.26, concerning whole-plane CLE. We will build up to this
with a sequence of lemmas: first proving convergence of nested CLE loops in very large domains,
then transferring this to whole-plane CLE and finally appealing to inversion invariance to obtain
the result.

Lemma 2.27. Fix Y > 1. For !′ ∈ (4, 8) and a CLE!′ in Y<, denote by (\1S )S⩾1 the sequence of nested
loops containing 0, startingwith the second smallest loop to fully enclose the unit disk (set equal to the
boundary ofY< if only one or no loops inY< actually surround<) and such that \1S surrounds \1S+1 for
all S. Write (y1S )S⩾1 for the connected components containing 0 of the complements of the (\1S )S⩾1. Then(y1S )S⩾1 converges in law to its CLE4 counterpart as 1 → 0, with respect to the product Carathéodory
topology viewed from 0.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 467

Proof. By Corollary 2.16 and scale invariance of CLE, together with the iterative nature of the
construction of nested loops, we already know that the sequence of nested loops in Y< containing
0, starting from the outermost one, converges as 1 → 0, with respect to the product Carathéodory
topology viewed from 0. Taking a coupling where this convergence holds almost surely, it suffices
to prove that the index of the smallest loop containing the unit disk also converges almost surely.
This is a straightforward consequence of the kernel theorem— Lemma 2.22— plus the fact that
the smallest CLE4 loop in Y< that contains < actually contains (1 + A)< for some strictly positiveA almost surely. □

Lemma 2.28. The statement of the above lemma holds true if we replace the CLEs inY<with whole-
plane versions.

Proof. For fixed ! ∈ [4, 8), let Γℂ, ΓY< denote whole-plane CLE!′ and CLE!′ on Y<, respectively.
The key to this lemma is [46, Theorem 9.1], which states (in particular) that ΓY< rapidly converges
to Γℂ in the following sense. For some w,� > 0, ΓY< and Γℂ can be coupled so that for any A > 0
and Y > A, with probability at least 1 − w(Y∕A)−�, there is a conformal map � from some d ⊃(Y∕A)1∕4< to d′ ⊃ (Y∕A)1∕4<, which maps the nested loops of ΓY< — starting with the smallest
containing A<— to the corresponding nested loops of Γℂ, and has low distortion in the sense that
|�′(B) − 1| ⩽ w(Y∕A)−� on Y1∕4<.
In fact, it is straightforward to see that w and � (which in principle depend on !) may be chosen

uniformly for ! ∈ [4, 6] (say). Indeed, it follows from the proof in [46] that they depend only on
the law of the log conformal radius of the outermost loop containing 0 for a CLE!′ in <, and
this varies continuously in !, [52]. Hence, the result follows by letting Y → ∞ in Lemma 2.27
and noting that the second smallest loop containing < is contained in A< with arbitrarily high
probability as A → ∞, uniformly in !. □

Proof of Lemma 2.26. Lemmas 2.28 and 2.25 (inversion invariance) imply that (�11, �12) ⇒ (�1, �2)
and (v11,v12) ⇒ (v1,v2) as 1 → 0. This ensures that (�11,v11, �12,v12) is tight in 1, so we need only
prove that if (�1, v̂1, �2, v̂2) is a subsequential limit of (�11,v11, �12,v12), then v̂1 = v1 = int(ℂ ⧵ �1)
and v̂2 = v2 = int(ℂ ⧵ �2) almost surely. Note that (v̂1, v̂2) has the same law as (v1,v2), and since�11 ⊆ ℂ ⧵ v11 for all 1, Lemma 2.24 implies that �1 ⊆ ℂ ⧵ v̂1. In other words v̂1 ⊆ v1 almost surely.
Then because v̂1 and v1 have the same law, we may deduce that they are equal almost surely.
Similarly, we see that v̂2 = v2 almost surely. □

2.3.4 Conclusion

Recall that for B ∈ <, (1B,S ,1B,S)S⩾1 (respectively, (B,S ,B,S)S⩾1) denotes the sequence of nestedCLE!′ (respectively, CLE4) bubbles and loops containing B. By the Markov property and iterative
nature of the construction, it is immediate from Proposition 2.18 that

Corollary 2.29. For fixed B ∈ 
(T1B, (1B,S)S⩾1, (1B,S)S⩾1) ⇒ (TB, (B,S)S⩾1, (B,S)S⩾1)

as 1 ↓ 0, with respect to the product topology generated by (B ×∏ Hausdorff ×∏ Carathéodory
viewed from B) convergence.
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468 ARU et al.

3 THE UNIFORM SPACE-FILLING SLE4
In this section we show that the ordering on points (with rational coordinates) in the disk,
induced by space-filling SLE!′ with !′ > 4, converges to a limiting ordering as !′ ↓ 4. We call
this the uniform space-filling SLE4.† Nonetheless, we can describe explicitly the law of this
ordering, which for any two fixed points comes down to the toss of a fair coin. As for !′ > 4, there
would be other ways to define a space-filling SLE4 process, by considering different explorations
of CLE4.
Let us now recall some notation in order to properly state the result. For 1 ∈ (0, 2 −√2) andB,f ∈ , we define 1B,f to be the indicator function of the event that the space-filling SLE!′ U1

hits B before f (see Section 2.1.7). By convention we set this equal to 1 when B = f.
To describe the limit as !′ ↓ 0, we define = (B,f)B,f∈ to be a collection of random variables,

coupled with (TB)B∈ such that conditionally given (TB)B∈:∙ B,B = 1 for all B ∈  almost surely;∙ B,f is a Bernoulli( 12 ) random variable for all B,f ∈  with B ≠ f;∙ B,f = 1 − f,B for all B,f ∈  with B ≠ f almost surely;∙ for all B,f1,f2 ∈  with B ≠ f1,f2, if TB separates B from f2 at the same time as it separatesB from f1 then B,f1 = B,f2 , otherwise B,f1 and B,f2 are independent.
Lemma 3.1. There is a unique joint law on ((TB)B∈,) satisfying the above requirements, and
such that the marginal law of (TB)B∈ is that of a branching uniform CLE4 exploration. With this
law, almost surely defines an order on any finite subset of by declaring that B ⪯ f if and only ifB,f = 1.
We will prove the lemma in just a moment. The main result of this section is the following.

Proposition 3.2. ((T1B)B∈, (1B,f)B,f∈) converges to ((TB)B∈, (B,f)B,f∈), in law as 1 ↓ 0,
with respect to the product topology (∏ B × ∏× discrete), where (B,f)B,f∈ is as defined in
Lemma 3.1.

Proof of Lemma 3.1. Themain observation is that if a joint law ((TB)B∈,) as in the lemma exists,
then for all B,f, q ∈  we almost surely have

{B,f = 1} ∩ {f,q = 1} ⇒ {B,q = 1}. (3.1)

To verify this, we assume that B,f, q are distinct (else the statement is trivial) with B,f = 1 andf,q = 1. Since f,B = 1 − B,f = 0 this implies that q and B are not separated from f by Tf at
the same time. If Tf separates B from f strictly before separating q from f, then TB separatesq and f from B at the same time, so B,q = B,f = 1. If Tf separates q from f strictly before
separating B from f, then Tq separates B and f from q at the same time, so B,q = 1 − q,B =1 − q,f = f,q = 1. In either case it must be that B,q = 1.
We now showwhy this implies that for any {B1, … , Bk}with BS ∈  distinct, there exists a unique

a conditional law on (BS ,B[ )1⩽S,[⩽k given (TB)B∈, satisfying the requirements of the lemma. We
† This name is partially inspired from the fact that the process is constructed via a uniform CLE4 exploration, and partly
since, every time the domain of exploration is split into two components, the components are ordered uniformly at random.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 469

argue by induction on the number of points. Indeed, suppose it is true with 1 ⩽ k ⩽ ? − 1 for
some ? and take {B1, … , B?} in  distinct. We construct the conditional law of (BS ,B[ )1⩽S,[⩽? given(TB)B∈ as follows.∙ To define (B1,BS )1⩽S⩽?:
– partition the indices {2, … ,?} into equivalence classes {w1, … ,w�} such that S ∼ [ if and only
if TB1 separates B1 from BS and B[ at the same time;

– for each equivalence class sample an independent Bernoulli(1∕2) random variable; and
– set B1,BS to be the random variable associated with class [S] for every S.∙ Given (B1,BS )1⩽S⩽? and (TB)B∈, defineBS ,B[ with [S] ≠ [[] by setting it equal toB1,B[ if BS andB1 are separated from B[ at the same time, orB1,BS if B[ and B1 are separated from BS at the same
time.∙ For each 1 ⩽ \ ⩽ � consider the connected component >\ ⊂ < in the branching CLE4 explo-
ration that contains points BS with [S] = w\ when they are separated from B1. The CLE4
explorations inside these components are mutually independent, independent of the CLE4
exploration before this separation time, and each has the same law as (TB)B∈ after mapping to
the unit disk. Thus, since each equivalence class contains strictly less than ? points, using the
induction hypothesis, we can define (BS ,B[ )S≠[,[S]=[[]=w\ for 1 ⩽ \ ⩽ � such that
– the collections for different \ are mutually independent; and
– (BS ,B[ )S≠[,[S]=[[]=w\ for each \ is independent of the CLE4 exploration outside of>\, and after
conformally mapping everything to the unit disk, is coupled the exploration inside >\ as in
the statement of Lemma 3.1.

Using the induction hypothesis, it is straightforward to see that this defines a conditional law on(BS ,B[ )1⩽S≠[⩽? given (TB)B∈ that satisfies the conditions of the Lemma. Moreover, note that the
first two bullet points above, together with (3.1), define the law of (B1,B[ )1⩽[⩽? and (BS ,B[ )[S]≠[[]
(satisfying the requirements) uniquely. Combining with the uniqueness in the induction hypoth-
esis, it follows easily that the conditional law of (BS ,B[ )1⩽S≠[⩽? given (TB)B∈ (satisfying the
requirements) is unique.
Consequently, given (TB)B∈, there exists a unique conditional law on the product space{0, 1}× equipped with the product {-algebra, such that if  = (B,f)B,f∈ has this law then

it satisfies the conditions above Lemma 3.1.
This concludes the existence anduniqueness statement of the lemma. The property (3.1) implies

that  does almost surely define an order on any finite subset of . □

In the coming subsections we will prove Proposition 3.2. Since tightness of all the random
variables in question is immediate (either by definition or from our previous work) it suffices
to characterize any limiting law. We begin in Section 3.1 by showing this for the order of two
points; see just below for an outline of the strategy. Then, we will prove that the time at which
they are separated by the SLE!′(!′ − 6) converges (for the− log CR parameterization with respect
to either of the points). This is important for characterizing joint limits, when there are three or
more points being considered. It also turns out to be non-trivial, due to pathological behavior that
cannot be ruled out when one only knows convergence of the SLE branches in the spacesB. We
conclude the proof in a third subsection, and finally combine this with the results of Section 2 to
summarize the ‘Euclidean’ part of this paper in Proposition 3.12.
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470 ARU et al.

3.1 Convergence of order for two points

In this section we show that for two distinct points B,f ∈ <, the law of the order in which they
are visited by the space-filling SLE!′ U1, converges to the result of a fair coin toss as !′ ↓ 4. That
is, 1B,f converges to a Bernoulli(1∕2) random variable as 1 ↓ 0. The rough outline of the proof is
as follows
Recall that U1 is determined by an SLE!′(!′ − 6) branching tree, in which U1B denotes the

SLE!′(!′ − 6) branch toward B (parameterized according to minus log conformal radius as seen
from B). If we consider the time {1B,f at which U1B separates B and f, then for every 1 > 0, 1B,f is
actually measurable with respect to U1B([0,{1B,f]). So what we are trying to show is that this mea-
surability turns to independence in the 1 ↓ 0 limit. This means that we will not get very far if we
consider the conditional law of 1B,f given U1B([0,{1B,f]), so instead we have to look at times just
before{1B,f. Namely, wewill consider the times{1B,f,J thatf is sent first sent towithin distance J of
the boundary by the Loewner maps associated with U1B. We will show that for any fixed J ∈ (0, 1),
the conditional probability that1B,f = 1, given U1B([0,{1B,f,J]), converges to 1∕2 as 1 → 0. Knowing
this for every J allows us to reach the desired conclusion.
To show that these conditional probabilities do tend to 1∕2 for fixed J, we apply the Markov

property at time {1B,f,J. This tells us that after mapping (T1B){1B,f,J to the unit disc, the remainder ofU1B evolves as a radial SLE!′(!′ − 6)with a force point somewhere on the unit circle. And we know
the law of this curve: initially it evolves as a chordal SLE!′ targeted at the force point, and after the
force point is swallowed, it evolves as a radial SLE!′(!′ − 6) in the to-be-discovered domain with
force point starting adjacent to the tip. So we need to show that for such a process, the behavior
is ‘symmetric’ in an appropriate sense. In fact, we have to deal with two scenarios, according to
whether the images of B andf are separated or not when the force point is swallowed. If they are
separated, our argument becomes a symmetry argument for chordal SLE!′ . If they are not, our
argument becomes a symmetry argument for space-filling SLE!′ . For a more detailed outline of
the strategy, and the bulk of the proof, see Lemma 3.8.
At this point, let us just record the required symmetry property of space-filling SLE!′ in the

following lemma.

Lemma 3.3. Let U1 be a space-filling SLE!′(1) in <, as above. Then for any Q ∈ <:
ℙ(U1 hits 0 before Q)→ 12 as 1 → 0.

Proof. For this we use a conformal invariance argument. Namely, we note that by conformal
invariance of U1, applying the map B ↦ 1 − Q̄1 − Q B − Q1 − Q̄B
from < to < that sends 1 to 1 and Q to 0, we have

ℙ[U1 hits 0 before Q] = ℙ[U1 hits Q̂ before 0] = 1 − ℙ[U1 hits 0 before Q̂],
where Q̂ = −Q(1 − Q̄)(1 − Q)−1 is the image of 0 under the conformal map, and |Q̂| = |Q|. Hence
it suffices to show that

ℙ[U1 hits 0 before Q] − ℙ[U1 hits 0 before Q̂]→ 0
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 471

as 1 → 0. By rotational invariance, if we write U1O for a space-filling SLE!′ starting at eSO, then it is
enough to show that

ℙ[U1O hits 0 before |Q|] − ℙ[U10 hits 0 before |Q|]→ 0
as 1 → 0, for any O ∈ [0, 2P].
However, this is easily justified, becausewe can couple an SLE!′(!′ − 6) from 1 to 0 and another

from eSO to 0, so that they successfully couple (that is, coincide for all later times) before 0 is
separated from |Q| with arbitrarily high probability (uniformly in O) as !′ ↓ 4. This follows from
Lemma 2.14, target invariance of the SLE!′(!′ − 6) and (2.9); that is, because in an arbitrarily small
amount of time as !′ ↓ 4, the SLE!′(!′ − 6) will have swallowed every point on F<. □

Now we proceed with the setup for the main result of this section (Proposition 3.4). Recall
that TB ∈  is the sequence of domains formed by the branch of the uniform CLE4 exploration
toward B in <. For f ≠ B, we write {B,f for the first time that TB separates B from f and let B,f
be a Bernoulli random variable (taking values {0, 1} eachwith probability 1∕2) that is independent
of {(TB)5 ; 5 ∈ [0,{B,f]}.
We define elements

D1B,f = {(T1B)5∧{1B,f ; 5 ⩾ 0} and DB,f = {(TB)5∧{B,f ; 5 ⩾ 0}
of. These are, respectively, the domain sequences formed by the SLE!′(!′ − 6) and the uniformCLE4 exploration branches toward B, stoppedwhen B andf become separated. By definition, they
are parameterized such that − log CR(0; (D1B,f)5) = 5 ∧ {1B,f for all 5.
Proposition 3.4. Fix B ≠ f ∈ . Then if (T,) is a subsequential limit in law of (T1B,1B,f) (with
respect to the productB × discrete topology), (T,)must satisfy the following property. IfD is equal
toT stopped at the first time that f is separated from B, then

(D,) (\jf)= (DB,f,B,f).
Note that this does not yet imply that the times at which B and f are separated converge.
To set up for the proof of this proposition, we define for 1, J > 0, {1B,f,J to be the first time 5

that, under the conformal map g5[D1B], the image off is at distance J from F<; see Figure 7 for an
illustration. Define {B,f,J in the same way for 1 = 0. Write D1B,f,J and DB,f,J for the same things
as D1B,f and DB,f, but with the time now cut off at {1B,f,J and {B,f,J, respectively.
Lemma 3.5.

(a) (D1B,f,J,{1B,f,J) ⇒ (DB,f,J,{B,f,J) as 1 → 0 for every fixed J > 0.
(b) (DB,f,J,{B,f,J) ⇒ (DB,f,{B,f) as J → 0.
Proof. For (a) we use that T1B ⇒ TB in B. Taking a coupling (TB, (T1B)1>0) such that this con-
vergence is almost sure, it is clear from the definition of convergence in B that, under this
coupling, (D1B,f,J,{1B,f,J)→ (DB,f,J,{B,f,J) almost surely for every J > 0. Statement (b) holds
because {B,f,J → {B,f almost surely as J → 0. Indeed, {B,f,J is almost surely increasing in J and
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472 ARU et al.
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F IGURE 7 The SLE!′ (!′ − 6) branch U1B, run up to time {1B,f,J . This is the first time that under the Loewner
map, f is sent within distance J of the boundary. The future of the curve has image Ũ1 under this map, and is an
SLE!′ (!′ − 6) starting from Q1 = U1B({1B,f,J) with a force point at Q2 ∈ F<. B is visited before f by the original
space-filling SLE!′ if and only if when Ũ1 separates 0 and f′ (the image of f), the component containing 0 is
‘monocolored’.

bounded above by {B,f so must have a limit {∗ ⩽ {B,f as J → 0. On the other hand, f cannot
be mapped anywhere at positive distance from the boundary under g{∗[TB], so it must be that{∗ ⩾ {B,f. □

Thus, we can reduce the proof of Proposition 3.4 to the following lemma.

Lemma 3.6. For any continuous bounded function L with respect to B, and any fixed J > 0, we
have that

z[1B,fL(D1B,f,J)]→ 12z[L(DB,f,J)]
as 1 → 0.
Proof of Proposition 3.4 given Lemma 3.6. Consider a subsequential limit as in Proposition 3.4.
Write D̃J for T stopped at the first time that f is sent within distance J of F< under the Loewner
flow. Then it is clear (by taking a couplingwhere the convergence holds almost surely) that (D̃J,)
is equal to the limit in law of (D1B,f,J,1B,f) as 1 → 0 along the subsequence.
On the other hand, Lemma 3.6 implies that the law of such a limit is that of DB,f,J together

with an independent Bernoulli random variable. Indeed, any continuous bounded function with
respect to the product topology on B × {0, 1} is of the form (D,Q)→ }{Q=1}L(D) + }{Q=0}�(D)
for L,� bounded and continuous with respect to B. Moreover, }{Q=0}� = � − }{Q=1}� and we
already know that z[�(D1B,f,J)]→ z[�(DB,f,J)] as 1 → 0.
So (D̃J,) has the law ofTB,f,J plus an independent Bernoulli random variable for each J > 0.

Combining with (b) of Lemma 3.5 yields the proposition. □
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 473

The proof of Lemma 3.6will take up the remainder of this subsection. An important ingredient
is the following result of [32], about the convergence of SLE!′ to SLE4 as !′ ↓ 4.
Theorem 3.7 [32, Theorem 1.10]. Chordal SLE!′ between two boundary points in the disk converges
in law to chordal SLE4 as !′ ↓ 4. This is with respect to supremum norm on curves viewed up to
time reparameterization.

Proof of Lemma 3.6. Since L is bounded, subsequential limits of z[1B,fL(D1B,f,J)] always exist.
Therefore, we need only to show that such a limit must be equal to (1∕2)z[L(DB,f,J)]. For this, we
apply the map g{1B,f,J [T1B]: recall that this is the unique conformal map from (T1B){1B,f,J to < that
sends B to 0 and has positive real derivative at B; see Figure 7. We then use the Markov property ofSLE!′(!′ − 6). This tells us that conditionally onD1B,f,J, the image of U1B under thismap is that of anSLE!′(!′ − 6) started at some Q1 ∈ F<with a force point at Q2 ∈ F< (where Q1,Q2 are measurable
with respect to D1B,f,J). Let us call this curve Ũ1. Let f′ be the image of f under g{1B,f,J [T1B], which
is also measurable with respect tod1B,f,J and has |f′| = 1 − J almost surely. Then the conditional
expectation of1B,f givenD1B,f,J can be written as a probability for Ũ1. Namely, it is just the proba-
bility that when Ũ1 first separatesf′ and 0, the component containing 0 either has boundarymade
up of entirely of the left-hand side of Ũ1 and the clockwise arc from Q1 to Q2, or the right-hand side
of Ũ1 and the complementary counterclockwise arc. We denote this event for Ũ1 by1.
Therefore, by dominated convergence, Lemma 3.6 follows from Lemma 3.8 stated and proved

below. □

Lemma 3.8. Let Ũ1 be an SLE!′(!′ − 6) started at some Q1 ∈ F< with a force point at Q2 ∈ F<. Fixf′ ∈ <. Let1 be the event that when Ũ1 first separatesf′ and 0, the component containing 0 either
has boundary made up of entirely of the left-hand side of Ũ1 and the clockwise arc from Q1 to Q2, or
the right-hand side of Ũ1 and the complementary counterclockwise arc.

ℙ(1)→ 12 as 1 → 0 (equivalently as !′ ↓ 4). (3.2)

Another way to describe the event 1 is the following. If the clockwise boundary arc from Q1
to Q2 together with the left-hand side of Ũ1 is colored red, and the counterclockwise boundary arc
together with the right-hand side of Ũ1 is colored blue (as in Figures 7 and 8) then1 is the event
that when 0 and f′ are separated, the component containing 0 is ‘monocolored’.
Outline for the proof of Lemma 3.8. Note that until the first time that 0 is separated from Q2, Ũ1

has the law (up to time reparameterization) of a chordal SLE!′ from Q1 to Q2 in <; see Lemma 2.4.
Importantly, we know by Theorem 3.7 that this converges to chordal SLE4 as !′ ↓ 4.
This is the main ingredient going into the proof, for which the heuristic is as follows. If Ũ1 is

very close to a chordal SLE4, then after some small initial time it should not hit the boundary of< again until getting very close to Q2. At this point either f′ and 0will be on the ‘same side of the
curve’ (scenario on the right-hand side of Figure 8) or they will be on ‘different sides’ (scenario on
the left-hand side of Figure 8).∙ In the latter case (left-hand side of Figure 8), note that Ũ is very unlikely to return anywhere near
to 0 or f′ before swallowing the force point at Q2. Hence, whether or not 1 occurs depends
only on whether the curve goes on to hit the boundary ‘just to the left’ of Q2, or ‘just to the right’.
Indeed, hitting on one side will correspond to 0 being in a monocolored red bubble when it is
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F IGURE 8 Illustration of Lemma 3.8. The two scenarios that can occur when the force point Q2 is
swallowed by Ũ1 . On the left, 0 and f′ are on opposite sides of the curve (there is also an analogous scenario when
0 is on the ‘blue side’ and f′ is on the ‘red side’). If this happens, we are interested whether Ũ1 hits the blue or the
red part of F< first. On the right, they are on the same side of the curve and we are interested in what happens
after Q2 is swallowed.
separated fromf′, meaning that1 will occur, while hitting on the other sidewill correspond tof′ being in a monocolored blue bubble, and it will not. By the Markov property and symmetry,
we will argue that each of these happen with (conditional) probability close to 1∕2.∙ In the former case (right-hand side of Figure 8), Ũwill go on to swallow the force point Q2 before
separating 0 and f′, with high probability as !′ ↓ 4. Once this has occurred, Ũ1 will continue
to evolve in the cut-off component containing 0 and f′, as an SLE!′(!′ − 6) with force point
initially adjacent to the tip. But then by mapping to the unit disk again, the conditional proba-
bility of1 becomes the probability that a space-filling SLE!′ visits one particular point before
another. This converges to 1∕2 as !′ ↓ 4 by Lemma 3.3.

Proof of Lemma 3.8. Let us now proceed with the details. For G > 0 small, let Ũ1G be Ũ1 run until the
first entry time C1G of < ∩ %Q2 (G). By Theorem 3.7, the probability that Ũ1 separates 0 orf′ from Q2
before time C1G tends to 0 as 1 → 0 for any fixed G < |Q2 − Q1|. We write v1G,b for this event.
We also fix a G′ > 0, chosen such that Q1, 0 and f′ are contained in the closure of < ⧵ %Q2 (G′).

Again from the convergence to SLE4 we can deduce that
ℙ(Ũ1 revisits < ⧵ %Q2 (G′) after time C1G) → 0 as G → 0, uniformly in 1. (3.3)

The point of this is that Ũ1 cannot ‘change between the configurations in Figure 8’ without going
back into < ⧵ %Q2 (G′). Write:∙ v1G,l for the intersection of (v1G,b)c and the event that Ũ1G ∪ %Q2 (G) separates 0 and f′ in <, with
0 on the left of Ũ1G;∙ v1G,r for the same thing but with left replaced by right; and
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 475

∙ v1G,s for the intersection of (v1G,b)c and the event that Ũ1G ∪ %Q2 (G) does not separate 0 and f′ in<.
Then we can decompose

ℙ(1) = z[ℙ(1 |v1G,b)}v1G,b + ℙ(1 |v1G,l)}v1G,l + ℙ(1 |v1G,r)}v1G,r + ℙ(1 |v1G,s)}v1G,s]= z[1}v1G,b]
1©

+ z[ℙ(1 |v1G,l)}v1G,l]
2©

+ z[ℙ(1 |v1G,r)}v1G,r]
3©

+ z[ℙ(1 |v1G,s)}v1G,s].
4©

By the observations of the previous paragraph, ℙ(v1G,b)→ 0 as 1 → 0 for any fixed G, and therefore
also

1© → 0 as 1 → 0 for any fixed G. (3.4)

Let us now describe what is going on with the terms 2©, 3© and 4©. The term 2© corresponds
to the left-hand side scenario of Figure 8, and the term 3© corresponds to the same scenario, but
when 0 and f′ lie on opposite sides of the curve to those illustrated in the figure. We will show
that

limG→0 lim1→0 ( 2© + 3©) = 12ℙ(SLE4 from Q1 to Q2 in < separates f′ and 0) =∶ �2 . (3.5)

The term 4© corresponds to the scenario on the right-hand side of Figure 8. We will show that

limG→0 lim1→0 4© = 12(1 − �) = 12ℙ(SLE4 from Q1 to Q2 in < does not separate f′ and 0). (3.6)

Combining (3.5), (3.6), (3.4) and the decomposition ℙ(1) = 1© + 2© + 3© + 4© gives (3.2), and
thus completes the proof. So all that remains is to show (3.5) and (3.6).
Proof of (3.5). First, by (3.3), we can pick G small enough such that the differences
(
2© − z[ℙ(Ũ1|[C1G ,∞) hits the clockwise arc between Q1 and Q2 first |v1G,l) }v1G,l]) and

(
3© − z[ℙ(Ũ1|[C1G ,∞) hits the counterclockwise arc between Q1 and Q2 first |v1G,r) }v1G,r])

are arbitrarily small, uniformly in 1. All we are doing here is using the fact that ifG is small enough,Ũ1 will not return anywhere close to 0 orf′ after time C1G. This allows us to reduce the problem to
estimating conditional probabilities for chordal SLE!′ . To estimate these probabilities (the condi-
tional probabilities in the displayed equations above) we can use Theorem 3.7, plus symmetry. In
particular, Theorem 3.7 implies that for a chordal SLE!′ curve on ℍ from 0 to∞, the probability
that it hits [Y,∞) before (−∞,−]] for any fixed ],Y ∈ (0,∞) can be made arbitrary close to the
probability that it hits [max(],Y),∞) before (−∞,−max(],Y)] as !′ ↓ 4. This is because SLE4
does not hit the boundary apart from at the end points and the convergence is in the uniform
topology. Since the probability that chordal SLE!′ in ℍ from 0 to ∞ hits [max(],Y),∞) before(−∞,−max(],Y)] is 1∕2 for every !′ by symmetry, we see that the probability of hitting [Y,∞)
before (−∞,−]] converges to 1∕2 as !′ ↓ 4.
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476 ARU et al.

We use this to observe, by conformally mapping to ℍ that

ℙ(Ũ1|[C1G ,∞) hits the clockwise arc between Q1 and Q2 first | Ũ1([0,C1G])) → 12
almost surely as 1 → 0. Using this along with dominated convergence, we obtain (3.5).
Proof of (3.6). Write v1 for the event that Ũ1 swallows the force point Q2 before separating 0 andf′. Then we can rewrite 4 as

z[1(}v1G,8 − }v1 )] + z[1}v1 ]. (3.7)

Applying (3.3) shows that the first term tends to 0 as G → 0, uniformly in 1. Let us now show that
the second tends to (1∕2)(1 − �) as 1 → 0.
To do this, we condition on Ũ1 run up to the time C10 that the force point Q2 is swallowed. Con-

ditioned on this initial segment we can use the Markov property of SLE!′(!′ − 6) to describe the
future evolution of Ũ1. Indeed, it is simply that of a radial SLE!′(!′ − 6) started from Ũ1(C10) ∈ F<
and targeted toward 0, with force point located infinitesimally close to the starting point. Viewing
the evolution of Ũ1 after time C10 as one branch of a space-filling SLE!′ we then have

z[1}v1 ] = z[ℙ(space-filling SLE!′ started from Ũ1(C10) hits 0 before f′)}v1 ]
which we further decompose as12ℙ(v1) + z[(ℙ(space-filling SLE!′ started from Ũ1(C10) hits 0 before f′) − 1∕2)}v1].
Since the first term above tends to (1∕2)(1 − �) as 1 → 0, it again suffices by dominated
convergence (and by applying a rotation) to show that for any Q ∈ <:

ℙ(U1 hits 0 before Q)→ 12 as 1 → 0.
This is precisely the statement of Lemma 3.3. Thus we conclude the proof of (3.6), and therefore

Lemma 3.8. □

3.2 Convergence of separation times

We now want to prove that for B ≠ f the actual separation times {1B,f converge to the separation
time {B,f in law (jointly with the exploration) as 1 → 0. The difficulty is as follows. Supposewe are
on a probability spacewhere U1B converges almost surely to UB. Thenwe can deduce (by Lemma 3.5)
that any limit of {1B,f must be greater than or equal to {B,f. But it still could be the case that B andf are ‘almost separated’ at some sequence of times that converge to {B,f as 1 ↓ 0, but that the U1B
then go on to do something else for a macroscopic amount of time before coming back to finally
separate B and f. Note that in this situation the U1B would be creating ‘bottlenecks’ at the almost
separation times, so it would not contradict Proposition 3.4).
The main result of this subsection is the following.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 477

Proposition 3.9. For any B ≠ f ∈ 
(T1B,{1B,f) ⇒ (TB,{B,f) (3.8)

as 1 → 0, with respect to Carathéodory convergence in in the first coordinate, and convergence inℝ in the second.

Remark 3.10. It is easy to see that {1B,f is tight in 1 for any fixed B ≠ f ∈ <. For example, this
follows from Corollary 2.29, which implies that minus the log conformal radius, seen from B, of
the first CLE!′ loop containing B and not f, is tight. Since {1B,f is bounded above by this minus
log conformal radius, tightness of {1B,f follows.
There is one situation where convergence of the separation times is already easy to see from

our work so far. Namely, when B and f are separated (in the limit) at a time when a CLE4 loop
has just been drawn. More precisely:

Lemma 3.11. Suppose that 1? ↓ 0 is such that
(T1?B ,T1?f ,{1?B,f,{1?f,B,1?B,f) ⇒ (TB,T∗f,{∗B,f,{∗f,B,∗) as ? → ∞

(where at this point we know thatTB,T∗f have the samemarginal laws asTB,Tf , but not necessarily
the same joint law). Then on the event that TB separates f from B at a time {B,f when a CLE4 loop is completed, we have that almost surely:∙ {∗B,f = {B,f;∙ T∗f is equal toTB (modulo time reparameterization), up to the time {f,B that B is separated fromf;∙ {∗f,B = {f,B; and∙ conditionally on the above event occurring, ∗ is independent of TB,T∗f and has the law of a
Bernoulli( 12 ) random variable.

Proof. Without loss of generality, by switching the roles of B andf if necessary and by theMarkov
property of the explorations, it suffices to consider the case that = B is the outermostCLE4 loop
(generated by TB) containing B.
By Skorokhod embedding together with Corollary 2.17 and Proposition 2.18, we may assume

that we are working on a probability space where the convergence assumed in the lemma holds
almost surely, jointly with the convergence 1?B → B (in the Hausdorff sense), 1?B = (T1?B )R1?B →
B = (TB)RB = int(B) (in the Carthéodory sense) and (R1?0,B, R1?B )→ (R0,B, RB). (Recall the defini-
tions of these times from Section 2.1.6). We may also assume that the convergence {1?B,f,J → {B,f,J
holds almost surely as ? → ∞ for all rational J > 0.
Nowwe restrict to the event v thatTB separates B fromf at time RB, so that in particularf is at

positive distance from B ∪ (TB)RB = (TB)RB . The Hausdorff convergence 1?B → B thus implies
that f ∈ < ⧵ 1?B for all ? large enough (that is, f is outside of the first CLE!′(1?) loop containingB), and therefore that {1?B,f ⩽ R1?B for all ? large enough (that is, separation occurs no later than this
loop closure time). Since {∗B,f is defined to be the almost sure limit of {1?B,f as ? → ∞, and we have
assumed that R1?B → RB almost surely, this implies that {∗B,f ⩽ RB almost surely on the event v. On
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478 ARU et al.

the other hand,we know that{1?B,f ⩾ {1?B,f,J and{1?B,f,J → {B,f,J as? → ∞ for all rational positive J,
so that{∗B,f ⩾ {B,f,J for all J and therefore{∗B,f ⩾ limJ→ {B,f,J = {B,f = RB almost surely. Together
this implies that {B,f = RB = {∗B,f on the event v.
Next, observe that by the same argument as in the penultimate sentence above, we have {∗f,B ⩾{f,B with probability 1. Moreover, we saw that on the event v,f ∈ < ⧵ 1?B for all ? large enough.

But we also have that {1?B,f → RB, so that {1?B,f > R1?0,B and therefore f ∈ (T1?B,f)R1?0,B ⧵ 1?B for all ?
large enough. Hence,

{∗f,B = lim? {1?f,B ⩽ lim? − log CR(f, (T1?B,f)R1?0,B ⧵ 1?B ) = − log CR(f, (TB)R0,B ⧵ B) = {f,B.
Combining the two inequalities above gives the third bullet point of the lemma, and since T1?f,B
andT1?B,f agree up to time parameterization until B andf are separated for every ?, we also obtain
the second bullet point.
For the final bullet point, if we write TB,f for TB stopped at time {B,f, we already know from

the previous subsection that the law of ∗ given TB,f is fair Bernoulli. Moreover, since 1?B,f and(g{1?B,f [T1?B ]((T1?B )8+{1?B,f ) ; 8 ⩾ 0) are independent for every ?, it follows that ∗ is independent of(g{∗B,f [TB]((TB)8+{∗B,f ) ; 8 ⩾ 0). So in general (that is, without restricting to the event v) we can
say that, given (g{∗B,f [TB]((TB)8+{∗B,f ) ; 8 ⩾ 0) and ((TB)5 ; 5 ⩽ {B,f), ∗ has the conditional law of
a Bernoulli(1∕2) random variable. Since the event v (that {B,f = RB) is measurable with respect
to ((TB)5 ; 5 ⩽ {B,f), and we have already seen that {B,f = {∗B,f on this event, we deduce the final
statement of the lemma. □

Proof of Proposition 3.9. By tightness (Remark 3.10), and since we already know the convergence
in law of (T1B, ({1B,f,J)J>0) to (TB, ({B,f,J)J>0) , it suffices to prove that any joint subsequential
limit in law of (TB, ({B,f,J)J>0,{∗B,f) of (T1B, ({1B,f,J)J>0,{1B,f) has {∗B,f = {B,f almost surely. So let
us assume that we have such a subsequential limit (along some sequence 1? ↓ 0) and that we
are working on a probability space where the convergence holds almost surely. As remarked pre-
viously, since {1?B,f ⩾ {1?B,f,J for each J > 0 and limJ lim? {1?B,f,J = limJ {B,f,J = {B,f, we already
know that {∗B,f ⩾ {B,f almost surely. So we just need to prove that ℙ({B,f + 8 ⩽ {∗B,f) = 0, or
alternatively, that limJ→0 ℙ({B,f,J + 8 ⩽ {∗B,f) = 0 for any 8 > 0 fixed. Since {B,f,J and {∗B,f are
the almost sure limits of {1?B,f,J and {1?B,f as ? → ∞, it is sufficient to prove that for each 8 > 0

lim supJ→0 lim sup1→0 ℙ({1B,f,J + 8 ⩽ {1B,f) = 0.
The strategy of the proof is to use Lemma 3.11 to say that (when J and 1 are small), U1B will separate
lots of CLE!′ loops from B during the time interval [{1B,f,J,{1B,f,J + 8]. Then we will argue that
this is very unlikely to happen during the time interval [{1B,f,J,{1B,f], which means that {1B,f <{1B,f,J + 8 with high probability.
More precisely, let us assume from now on that 8 > 0 is fixed, and write A for the collection

of faces (squares) of Aℤ2 that intersect <. We write Ñ1J,A for the event that there exists N ∈ A that
is separated by U1B from B during the interval [{1B,f,J,{1B,f,J + 8] and such that B is visited by the
space-filling SLE!′ before N. We write N1J,A for the same event but with the interval [{1B,f,J,{1B,f]
instead. So if the event {{1B,f,J + 8 ⩽ {1B,f} occurs, then either N1J,A occurs or Ñ1J,A does not. Hence,
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 479

for any A > 0:
lim supJ→0 lim sup1→0 ℙ({1B,f,J + 8 ⩽ {1B,f) ⩽ lim supJ→0 lim sup1→0 ℙ(N1J,A) + lim supJ→0 lim sup1→0 ℙ((Ñ1J,A)c).

We will show that

lim infJ↓0 lim inf1↓0 ℙ(Ñ1J,A)→ 1 as A → 0, (3.9)

and that for any A > 0,
limJ↓0 lim1↓0 ℙ(N1J,A) = 0. (3.10)

Let us start with (3.9). First, Lemma 3.11 tells us that sincemany N ∈ A will be separated from B
by the CLE4 exploration during the time interval [{B,f,{B,f + 8] as A ↓ 0, the same will be true for
the space-filling SLE!′ on the time interval [{1B,f,J,{1B,f,J + 8)when 1, J are small. More precisely,
for any fixed k ∈ ℕ, J > 0, the lemma implies that

lim inf1↓0 ℙ(U1B([{1B,f,J,{1B,f,J + 8]) separates k squares in A from B) ⩾ �J,k,A,
where �J,k,A is the probability thatTB disconnects at least k squares in A from B by distinct CLE4
loops during the time interval [{B,f,J,{B,f,J + 8]. Moreover, since {B,f,J → {B,f as J → 0 almost
surely, lim inf J↓0 �J,k,A is equal to the probability �k,A that TB disconnects at least k squares in A
from B by distinctCLE4 loops during the time interval [{B,f,{B,f + 8]. Note that since 8 is positive
(and fixed), �k,A → 1 as A → 0 for any fixed k.
This is almost exactlywhatwe need.However, recall that although Ñ1J,A only requires one N ∈ A

to be disconnected from B by U1B([{1B,f,J,{1B,f,J + 8]), it also requires that this B is visited by the
space-filling SLE!′ before N. This is why we ask for k squares to be separated because then by
Lemma 3.11, whether they are visited before or after B converges to a sequence of independent
coin tosses. Namely, for any k ∈ ℕ,

lim infJ↓0 lim inf1↓0 ℙ(Ñ1J,A) ⩾ (1 − 2−k) lim infJ↓0 lim inf1↓0 ℙ(U1B([{1B,f,J,{1B,f,J + 8])
separates k squares in A from B)

⩾ (1 − 2−k) lim infJ↓0 �J,k,A
⩾ (1 − 2−k)�k,A.

The lim inf as A → 0 of the left-hand side above is therefore greater than or equal to (1 −2−k) limA→0 �k,A = (1 − 2−k) for every k. Since k was arbitrary this concludes the proof of (3.9).
Hence, to conclude the proof of the proposition, it suffices to justify (3.10). Although this is a

statement purely about SLE, it turns out to be somewhat easier to prove using the connection
with LQG in [18]. Thus we postpone the proof of (3.10) to Section 4.4, at which point we will have
introduced the necessary objects and stated the relevant theorem of [18]. Let us emphasize that
this proof will rely only on [18] and basic properties of LQG (and could be read immediately by
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480 ARU et al.

someone already familiar with the theory) so it is safe from now on to treat Proposition 3.9 as
being proved. □

3.3 Convergence of the partial order: Proof of Proposition 3.2

Recall that Proposition 3.2, stated at the very beginning of Section 3, asserts the joint convergence
of the branching SLE!′ and the collection of order variables to the limit

((TB)B∈, (B,f)B,f∈)
defined in Lemma 3.1. Completing the proof is now simply a case of putting together our
previous results.

Proof of Proposition 3.2. The following three claims are the main ingredients. □

Claim 1. (T1B)B∈ ⇒ (TB)B∈.
Proof. This follows from Corollary 2.16, Proposition 3.9 and the fact that for every 1 andB,f ∈ , T1B and T1f agree (up to time change) until B and f are separated, and then evolve
independently. □

Claim 2. For any B,f ∈ , (T1B,T1f,1B,f) ⇒ (TB,Tf,B,f).
Proof. As usual, due to tightness, it is enough to show that any subsequential limit (T∗B ,T∗f,∗) of(T1B,T1f,1B,f), along a sequence 1? ↓ 0, has the correct joint distribution. In fact, we may assume
that

(T1?B ,T1?f ,{1?B,f,{1?f,B,1?B,f) ⇒ (T∗B ,T∗f,{∗B,f,{∗f,B,∗)
and verify the same statement, where by Proposition 3.9 and Claim 1, we already know that

(T∗B ,T∗f,{∗B,f,{∗f,B) (H)= (TB,Tf,{B,f,{f,B)
(in particular,T∗B andT∗f agree up to time reparameterization until B andf are separated at times{∗B,f, {∗f,B).
Now, Proposition 3.4 implies that, given T∗B and T∗f stopped at times {∗B,f,{∗f,B, respectively,

the conditional law of ∗ is fair Bernoulli. On the other hand, since
1?B,f , (g{1?B,f [T1?B ]((T1?B )8+{1?B,f ) ; 8 ⩾ 0) and (g{1?f,B [T1?f ]((T1?f )8+{1?f,B ) ; 8 ⩾ 0)

are mutually independent for every ?, it follows that ∗ is independent of
(g{∗B,f [T∗B]((TB)8+{∗B,f ) ; 8 ⩾ 0) , (g{∗f,B [T∗f]((Tf)8+{∗f,B ) ; 8 ⩾ 0).

This provides the claim. □
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 481

Claim 3. For any B,f ∈ , ((T1q)q∈,1B,f) ⇒ ((Tq)q∈,B,f).
Proof. The same argument as for Claim 2 extends directly to this slightly more general setting (we
omit the details).
With Claim 1 in hand (and the argument proving Lemma 3.1) all we need to show is that for

any subsequential limit in law ((TB)B∈, (∗B,f)B,f∈) of ((T1B)B∈, (1B,f)B,f∈) as 1 → 0, the con-
ditional law of (∗B,f)B,f∈ given (TB)B∈ satisfies the bullet points above Lemma 3.1. That is,
(a) ∗B,B = 1 for all B ∈ ; (b) ∗B,f = 1 − ∗f,B for all B,f ∈  distinct; (c) ∗B,f is (conditionally)
Bernoulli(1∕2) for any such B,f; and (d) for all B,f1,f2 ∈  with B ≠ f1,f2, if TB separates B
from f1 at the same time as it separates B from f1 then∗B,f1 = ∗B,f2 ; otherwise ∗B,f1 and ∗B,f2
are (conditionally) independent.
Observe that (a) and (b) follow by definition of the1B,f, and (c) follows from Claim 3. The first

case of (d) also follows by definition, and the second follows from the definition of 1B,f1 ,1B,f2
togetherwith the branching property of (T1B)B∈ and the convergence of the separation times. □

3.4 Joint convergence of SLE, CLE and the order variables

The results of Sections 2 and 3 give the final combined result:

Proposition 3.12.

((T1B)B∈, (1B,S)B∈,S⩾1, (1B,S)B∈,S⩾1, (1B,f)B,f∈)⇒((TB)B∈, (B,S)B∈,S⩾1, (B,S)B∈,S⩾1, (B,f)B,f∈)
as 1 ↓ 0, with respect to the product topology

∏


B × ∏
×ℕHausdorff × ∏

×ℕCarathéodory viewed from B × ∏
× discrete.

Proof. Since we know that all the individual elements in the above tuples converge, the
laws are tight in 1. Combining Proposition 3.2 and Corollary 2.29 (in particular, using that(B,S)B∈,S⩾1, (B,S)B∈,S⩾1 are deterministic functions of (TB)B∈) ensures that any subsequential
limit has the correct law. □

4 LIOUVILLE QUANTUMGRAVITY ANDMATING OF TREES

4.1 Liouville quantum gravity

Let d ⊂ ℂ be a simply connected domain with harmonically non-trivial boundary. For ;, g ∈w∞(d) define the Dirichlet inner product by
(;, g)∇ = 12P ∫d ∇;(B) ⋅∇g(B)H2B.
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482 ARU et al.

Let�(d) be theHilbert space closure of the subspace of functions ; ∈ w∞(d) for which (;,;)∇ <∞, where we identify two functions that differ by a constant. Letting (;?) be an orthonormal basis
for�(d), the free boundary Gaussian free field (GFF) ℎ on d is defined by

ℎ = ∞∑
?=1�?;?,

where (�?) is a sequence of independent and identically distributed standard normal randomvari-
ables and the convergence is almost sure in the space of generalized functions modulo constants.
The free boundary GFF is only defined modulo additive constant here, but we remark that there
are several natural ways to fix the additive constant, for example, by requiring that testing the
field against a fixed test function gives zero. If this is done in an arbitrary way (that is, picking
some arbitrary test function in the previous sentence) the resulting field almost surely lives in the
space�−1

loc(d): this is the space of generalized functions whose restriction to any bounded domain> ⊂ d is an element of the Sobolev space �−1(>); see [11, 55] for more details.
Let  = ℝ × (0,P) denote the infinite strip. By, for example, [18, Lemma 4.3], �() has an

orthogonal decomposition�() = �1()⊕�2(), where�1() is the subspace of�() consist-
ing of functions (modulo constants) which are constant on vertical lines of the form G + [0, iP]
and�1() is the subspace of�() consisting of functions which have mean zero on all such ver-
tical lines. This leads to a decomposition ℎ = ℎ1 + ℎ2 of the free boundary GFF ℎ on  , whereℎ1 (respectively, ℎ2) is the projection of ℎ onto �1() (respectively, �2()). We call ℎ2 the lateral
component of ℎ.
Now let d ⊂ ℂ be as before, and let � be an instance of the free-boundary GFF on d with the

additive constant fixed in an arbitrary way. Set ℎ = � + ;, where ; is a (possibly random) contin-
uous function on d. For J > 0 and B ∈ d let ℎJ(B) denote the average of ℎ on the circle F%J(B)
if %J(B) ⊂ d; otherwise set ℎJ(B) = 0. For / ∈ (√2, 2) and 1 = 2 − / the field ℎ induces an area
measure �1ℎ on d, which is defined by the following limit in probability for any bounded open set$ ⊆ d:

�1ℎ($) = limJ→0(21)−1 ∫$ exp (/ℎJ(B))J/2∕2 H2B.
Note that the definitions for 1 > 0 differ by a factor of 21 from the definitions normally found in
the literature. This is natural in the context of this paper, where we will be concerned with taking1 ↓ 0 (see below). Indeed, for / = 2 (which will correspond to the limit as 1 ↓ 0) we define:

�ℎ($) = limJ→0∫$ (−ℎJ + log(1∕J)) exp(2ℎJ(B))J H2B.
If ; extends continuously to Fd, boundary measures ~1ℎ and ~ℎ can be defined similarly by

~1ℎ($) = limJ→0 (21)−1 ∫$ exp(/2ℎJ(B))J/2∕4 HB,
~ℎ($) = limJ→0 ∫$

(−ℎJ2 + log(1∕J)) J exp(ℎJ(B))HB.
See [9, 19, 48] for proofs of these facts.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 483

A pair (d,ℎ) defines a so-called /-LQG surface. More precisely, a /-LQG surface is an equiv-
alence class of pairs (d,ℎ) where d is as above and ℎ is a distribution, and we define two pairs(d1,ℎ1) and (d2,ℎ2) to be equivalent if there is a conformal map e ∶ d1 → d2 such that

ℎ1 = ℎ2◦e +  / log |e′|,  / ∶= 2∕/ + /∕2. (4.1)

With this definition, if ℎ1,ℎ2 are absolutely continuous with respect to a GFF plus a continuous
function we have �1ℎ2 = e∗(�1ℎ1 ) and ~1ℎ2 = e∗(~1ℎ1 ) for 1 ∈ (0, 2 −√2). The analogous identities
also hold for 1 = 0.
The LQG disk is an LQG surface of special interest, since it arises in scaling limit results con-

cerning random planar maps, for example, [13, 24]. The following is our definition of the unit
boundary length /-LQG disk in the subcritical case. Our field is equal to −2/−1 log(21) plus the
field defined in, for example, [18]: this is because we want it to have boundary length 1 for our
definition of ~1ℎ (which is (21)−1 times the usual one).
Definition 4.1 (Unit boundary length /-LQG disk for / ∈ (√2, 2)). Let ℎ2 be a field on the strip = ℝ × (0, iP) with the law of the lateral component of a free boundary GFF on  . Let ℎ11 be a
function on  such that ℎ11(8 + i q) = 18, where
(i) (18)8⩾0 has the law of %28 − (2∕/ − /∕2)8 conditioned to be negative for all time, for % a

standard Brownian motion started from 0; and
(ii) (1−8)8⩾0 is independent of (18)8⩾0 and satisfies (1−8)8⩾0 H= (18)8⩾0.
Set ℎ1s = ℎ11 + ℎ2 and let ℎ̂1 be the distribution on  whose law is given by

ℎ1s − 2/−1 log ~1ℎ1s (F) reweighted by ~1ℎ1s (F)4∕/2−1. (4.2)

Then the surface defined by ( , ℎ̂1) has the law of a unit boundary length /-LQG disk.

See [30, Definition 2.4 and Remark 2.5] for a proof that the above does correspond to−2/−1 log(21) + the unit boundary length disk of [18]. Note that (see, for example, [18, Lemma
4.20]) ~1ℎs (F) is finite for each fixed 1 > 0, so that the above definition makes sense. In fact, we
can say something stronger, namely Lemma 4.2. We remark that the power 1∕17 in the lemma
has not been optimized.

Lemma 4.2. There exists w ∈ (0,∞) not depending on 1 ∈ (0, 2 −√2) such that
ℙ[~1ℎ1s (F) > Q] ⩽ wQ−1∕17 for all Q ⩾ 1.

Moreover, for any fixed Q, ℙ[~1ℎ1s ((−∞,−�) ∪ (� ∪∞) × i{0,P}) > Q]→ 0 as � → ∞, uniformly
in 1.
Finally, if ℎs is defined in the same way as ℎ1s above but instead letting (8)8⩾0 have the law of(−√2) times a three-dimensional Bessel process, then we also have that

ℙ[~ℎs (F) > Q] ⩽ wQ−1∕17 for all Q ⩾ 1.
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484 ARU et al.

Proof. Let us first deal with the subcritical measures. In this case, we write

y1k = ~1ℎ2 ([k, k + 1] × {0, iP})
for k ∈ ℤ. Then the law of y1k does not depend on k since the law of ℎ2 is translation invariant; see,
for example, [11, Remark 5.48]. Furthermore, by [49, Theorem 1.1], z((y10)') is uniformly bounded
in 1 for any ' < 1. (The result of [49] showsuniformboundedness of themoment for a field that dif-
fers fromℎ2 in [0, 1] × {0} or [0, 1] × {iP} by a centeredGaussian functionwith uniformly bounded
variance.) Letting j1k = sup8∈[k,k+1] =(/∕2)18 we then have that

~1ℎ1s (F) ⩽ ∑
k∈ℤ j1ky1k.

Thus, since∑k∈ℤ(|k| ∨ 1)−2 < 10, a union bound gives
ℙ[~1ℎ1s (F) > Q] ⩽ ∑

k∈ℤ
(ℙ[j1k > Q1∕2(|k| ∨ 1)−4] + ℙ[y1k > 0.1Q1∕2(|k| ∨ 1)2]). (4.3)

Taking ' = 3∕4 (for example), using the uniform bound on z((y1k)') and applying Chebyshev’s
inequality gives that ∑k∈ℤ ℙ[y1k > 0.1Q1∕2(|k| ∨ 1)2] ⩽ c0Q−3∕8 for some universal constant c0.
Furthermore, since 1 is stochastically dominated by (−√2) times a three-dimensional Bessel
process; see [35, Lemma 12.4], we have that for (p(5))5⩾0 such a process and (K(5))5⩾0 a standard
linear Brownian motion:

ℙ[j1k > Q1∕2(|k| ∨ 1)−4] ⩽ ℙ[ inf8∈[k,k+1]p(8) < /−1 log(Q−1∕2(|k| ∨ 1)4)]
⩽ ℙ[ inf8∈[k,k+1] |K(8)| < /−1 log(Q−1∕2(|k| ∨ 1)4)]3

for allQ and k, wherewe used to get the second inequality thatp H= |(K1,K2,K3)| forK1,K2,K3
independent copies of K. The probability on the right side is 0 if |k| ⩽ Q1∕8 and otherwise it
is bounded above by c1|k|−1∕2/−1 log(Q−1∕2(|k| ∨ 1)4) where c1 is another universal constant.
Therefore, for a final universal constant c2 > 0,
∑
k∈ℤℙ[j1k > Q1∕2(|k| ∨ 1)−4] ⩽ 2 ∑

k∈ℤ∶ |k|>Q1∕8
(c1|k|−1∕2/−1 log(Q−1∕2(|k| ∨ 1)4))3 ⩽ c2Q−1∕17.

The same bounds yield the second statement of the lemma.
Finally, exactly the same proof works in the case of the critical measure, using [49, Section 1.1.1]

to see that yk = ~ℎ2 ([k, k + 1])has a finite 'thmoment, which does not depend on k by translation
invariance. □

We may now define the critical unit boundary length LQG disk as follows.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 485

Definition 4.3 (Unit boundary length 2-LQG disk). Letting ℎs be as in Lemma 4.2 we define the
unit boundary length 2-LQG disk to be the surface ( , ℎ̂), where

ℎ̂ ∶= ℎs − log ~ℎs (F).
Note that ~ℎs (FN) is finite by Lemma 4.2.

Remark 4.4. Readers may have previously encountered the above as the definition of a quantum
diskwith twomarked boundary points. A quantum surfacewith kmarked points is an equivalence
class of (d,ℎ,Q1, … ,Qk)with Q1, … ,Qk ∈ d, using the equivalence relation described by (4.1), but
with the additional requirement that e maps marked points to marked points. In this paper we
will use Definitions 4.1 and 4.3 to define specific equivalence class representatives of quantum
disks, but we will always consider them as quantum surfaces without any marked points. That is,
we will consider their equivalence classes under the simple relation (4.1).

The following lemma says that the subcritical disk converges to the critical disk as 1 ↓ 0 (equiv-
alently, / ↑ 2). We say that a sequence of measures (�̄?)?∈ℕ on a metric space v (equipped with
the Borel {-algebra) converges weakly to ameasure �̄ if for all$ ⊆ v such that �̄(F$) = 0we have�̄?($)→ �̄($).
Lemma 4.5. For 1 > 0 let ℎ̂1 be the field of Definition 4.1 and ℎ̂ be the field of Definition 4.3.
Then (ℎ̂1,�1̂ℎ1 , ~1̂ℎ1 ) ⇒ (ℎ̂,�ℎ̂, ~ℎ̂), where the first coordinate is equipped with the �−1loc() topology
and the second and third coordinates are equipped with the weak topology of measures on  andF , respectively.
Proof. To conclude it is sufficient to prove the following, for an arbitrary sequence 1? ↓ 0:
(i) we have convergence in law along the sequence 1? if we replace ℎ̂ by ℎs, and ℎ̂1? by ℎ1?s for

every ?; and
(ii) there exists a coupling of the (~ℎ1?s ) such that ~1?ℎ1s (F)4∕/2−1 → 1 in ]1 as ? → ∞.

To see (i), first observe that the processes 1 converge to  in law as 1 → 0, with respect to the
topology of uniform convergence on compacts of time. Indeed for any fixed J > 0, if C1J (respec-
tively,CJ) is the first time that1 (respectively,) hits−J, it is easy to see that1(⋅ + C1J) converges
to(⋅ + CJ) in law in the specified topology as 1 → 0: a consequence of the fact that the drift coef-
ficient in 1 goes to 0, and by applying the Markov property at time C1J,CJ. Moreover, CJ,C1J
converge to 0 in probability as J → 0, uniformly in 1: this is true since CJ,C1J are stochastically
dominated by their counterparts for non-conditioned (drifted) Brownian motion, and the result
plainly holds for the non-conditioned versions. Combining these observations yields the assertion.
We may therefore couple ℎ1?s and ℎs so that their lateral components are identical, and the

components that are constant on vertical lines converge almost surely on compacts as ? → ∞.
For this coupling, the result of [6] implies that

~1?ℎ1?s ($)→ ~ℎs ($) and �1?ℎ1?s (>)→ �ℎs (>) (4.4)

in probability as ? → ∞, for any bounded subsets$ ⊂ F and> ⊂  . More precisely [6, Sections
4.1.1 and 4.1.2] proves that ~1?ℎ ($)→ ~1?ℎ ($), when ℎ is a specific field on  that differs from ℎs
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486 ARU et al.

by a bounded continuous function on $ (similarly for �). Since adding a continuous function ;
to ℎmodifies the boundary measure locally by exp((/∕2);) and the bulk measure by exp(/;) we
deduce (4.4). To conclude that (ℎ1?s , ~1?ℎ1?s ,�1?ℎ1?s )→ (ℎs, ~ℎs ,�ℎs )
in probability for this coupling (with the correct topology), and thus complete the proof of
(i), it remains to show that ~?ℎ1?s (F)→ ~ℎs (F) and �?ℎ1?s ()→ �ℎs () in probability as ? →∞. For this, we use the second assertion of Lemma 4.2 together with the fact that ~ℎs () =lim�→∞ ~ℎs ((−�,�) × i{0,P}) by definition. Combining with (4.4) yields the desired conclusion
for the boundary measures. A similar argument can be applied for the bulk measures, where we
may use, for example, [2, Theorem 1.2; 4, Theorem 1.2] to get the uniform 'th moment bound for' < 1 as in the proof of 4.2.
For (ii), first observe that ~1?ℎ1?s (F)4∕/2−1 ⇒ 1

in law since 4∕/2 − 1→ 0 and ~1?ℎ1?s (F)→ ~ℎs (F).
Furthermore, Lemma 4.2 gives the uniform integrability of ~1ℎ1s (F)4∕/2−1 in 1. Combining these
two results we get (ii). □

Remark 4.6. We reiterate that �ℎ̂() <∞ and ~ℎ̂(F) = 1 almost surely. Moreover, we have the
convergence �1̂ℎ1 () ⇒ �ℎ̂() <∞ as 1 → 0.
Remark 4.7. For y > 0we define the y-boundary length disk to be a surfacewith the law of ( ,ℎy),
where ℎy = ℎ + 2/−1 log(y) for ℎ as in Definition 4.1 or 4.3. Lemma 4.5 also holds if we assume
all the disks are y-boundary length disks.
The fields that appear in the statement of our main theorem are defined as follows.

Definition 4.8. We define fields ℎ1 (respectively, ℎ) to be parameterizations of unit boundary
length /-LQG disks (respectively, the 2-LQG disk) by < instead of  . More specifically we takee ∶ < →  to be the conformal map from  to < that sends +∞,−∞, iP to 1,−1, i, respectively.
Then we set

ℎ1 = ℎ̂1◦e +  / log |e′| and ℎ = ℎ̂◦e + 2 log |e′|,
where ℎ̂1 (respectively, ℎ̂) is the field in the strip  corresponding to Definition 4.1 (respectively,
Definition 4.3).

Remark 4.9. Lemma 4.5 clearly also implies the convergence

(ℎ1,�1ℎ1 , ~1ℎ1 ) ⇒ (ℎ,�ℎ, ~ℎ)
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 487

as 1 → 0 (with respect to �−1loc(<) convergence in the first coordinate, and weak convergence of
measures on <, F< in the final coordinates).

In fact, it implies the convergence of various embeddings of quantum disks. Of particular use
to us will be the following:

Lemma 4.10. Suppose that for each 1, ℎ̂1 is as in Remark 4.7 for some y > 0 and that ℎ̃1 is defined
by choosing a point B1 from �1̂ℎ1 in  , defining ¤1 ∶  → < conformal such that ¤1(B1) = 0 and(¤1)′(B1) > 0, and setting

ℎ̃1 ∶= ℎ̂1◦(¤1)−1+ / log |((¤1)−1)′|.
Suppose similarly that (ℎ̃, �̃) is defined by taking the field ℎ̂ in Remark 4.7 with the same y > 0,

picking a point B from �ℎ̂; taking ¤ ∶  → < conformal with ¤′(B) > 0 and ¤(B) = 0; and setting
ℎ̃ = ℎ̂ + ¤−1+2 log |(¤−1)′| , �̃ = �ℎ̃.

Then as 1 → 0, we have that
(ℎ̃1,�1̃ℎ1 ) ⇒ (ℎ̃, �̃).

Moreover, for anys > 0
ℙ(�1̃ℎ1 (< ⧵ (1 − J)<) > s)→ 0 as J → 0 (4.5)

uniformly in 1. This convergence is also uniform over y ∈ [0,w] for any 0 < w <∞.

Proof. We assume that y = 1; the result for other y and the uniform convergence in (4.5) follows
immediately from the definition in Remark 4.7.
The proof then follows from Lemma 4.5. We take a coupling where the convergence is almost

sure: in particular, the fields ℎ̂1 converge almost surely to ℎ̂ in�−1loc() and the measures �1̂ℎ1 con-
verge weakly almost surely to �ℎ̂ in  . This means that we can sample a sequence of B1 from the�1̂ℎ1 and B from �ℎ̂, such that B1 → B ∈  almost surely. Since B ∈  is at positive distance fromF , this implies that the conformal maps ¤1 converge to ¤ almost surely on compacts of  and
therefore that ℎ̃1 → ℎ̃ in �−1loc(<) and �1̃ℎ1 converges weakly to �̃. Finally, (4.5) follows from the
convergence proved above, and the fact that it holds for the limit measure �ℎ̃. □

Later, wewill also need to consider fields obtained from the field ℎ̃1 of Lemma 4.10 via a random
rotation. For this purpose, we record the following remark.

Remark 4.11. Suppose that ℎ? are a sequence of fields coupled with some rotations O? such
that ℎ̄? = ℎ?◦O? − 2/−1? log ~ℎ? (F<) has the law of ℎ̃1? from Lemma 4.10 with y = 1, for some1? ↓ 0, /? = /(1?). Suppose further that (ℎ?, ~ℎ? (F<),�ℎ? (<)) ⇒ (ℎ, ~∗,�∗) in �−1loc(<) × ℝ × ℝ as? → ∞. Then ~∗ = ~ℎ(F<) and �∗ = �ℎ(<) almost surely. Indeed, (ℎ?, ~ℎ? (F<),�ℎ? (<), O?, ℎ̄?)
is tight in ?, and any subsequential limit (ℎ, ~∗,�∗, O, ℎ̄) has (ℎ, ~∗,�∗) coupled as above.
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488 ARU et al.

z z

F IGURE 9 The left-hand side figure is an illustration of the branch of a space-filling SLE!′ (!′ > 4) toward
some point B ∈ <, and stopped at some time before it reaches B. The space-filling SLE itself will fill in the
monocolored components that are separated from B as it creates them, so if 5 is equal to the total /-LQG area of
the gray-shaded region on the right-hand side figure, then the space-filling SLE has visited precisely this gray
region at time 5. We then define the left (respectively, right) boundary length of the space-filling SLE at time 5 to
be the /-LQG boundary length of the red (respectively, blue) curve shown on the right-hand side figure.

Since �ℎ? ($) = (~ℎ? (F<))2�ℎ̄? (O−1? ($)) for every ? and $ ⊂ < it follows from Lemma 4.10 that�∗ = (~∗)2�ℎ̄(<) and ~ℎ̄(F<) = 1 almost surely. On the other hand, it is not hard to see that ℎ̄
must be equal to ℎ◦O − log ~∗ almost surely, which implies the result.
4.2 Mating of trees

Mating of trees theory, [18], provides a powerful encoding of LQG and SLE in terms of Brownian
motion. We will state the version in the unit disk < below.
Let � ∈ (−1, 1) and let p(c) be c times a standard planar Brownian motion with correlation� > 0, started from (1,0) or (0,1). Condition on the event that p first leaves the first quadrant at

the origin (0,0); this is a zero probability event but can be made sense of via a limiting procedure;
see, for example, [2, Proposition 4.2].We call the resulting conditioned process (restricted until the
time atwhich the process first leaves the first quadrant) aBrownian cone excursionwith correlation�. Note that we use the same terminology for the resulting process for any c and either choice of
(1,0) or (0,1) for the starting point.
To state the mating of trees theorem (disk version) we first introduce some notation. Let (<,ℎ1)

denote a unit boundary length /-LQG disk for / ∈ (√2, 2), embedded as described in Defini-
tion 4.8. Let U1 denote a space-filling SLE!′ in <, starting and ending at 1, which is independent
of ℎ. Recall that this is defined from a branching SLE!′ as described in Section 2.1.7, where the
branch targeted toward B ∈ < is denoted by U1B (one can obtain U1B from U1 by deleting time inter-
vals on which U1 is exploring regions of < that have been disconnected from B). Parameterize U1
by the area measure induced by ℎ. Let p1 = (]1,Y1) denote the process started at (0,1) and ending
at (0,0) which encodes the evolution of the left-hand side and right-hand side boundary lengths
of U1; see Figure 9.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 489

The following theorem follows essentially from [18]. For precise statements, see [40, Theorem
2.1] for the law of p1 and see [40, Theorem 7.3] for the law of the monocolored components.

Theorem 4.12 [18, 40]. In the setting above, p1 has the law of a Brownian cone excursion with
correlation − cos(P/2∕4). The pair (ℎ1, U1) is measurable with respect to the {-algebra generated
by p1 . Furthermore, if B is sampled from �1ℎ1 renormalized to be a probability measure, then the
monocolored complementary components of U1B define independent /-LQGdisks conditioned on their/-LQG boundary lengths and areas, that is, if we condition on the ordered sequence of boundary
lengths and areas of the monocolored domains> disconnected from B by U1B then the corresponding
LQG surfaces (>,ℎ|>) are independent /-LQG disks with the given boundary lengths and areas.

Remark 4.13. In fact, we now know from [4] that the variance c2 of the Brownian motion from
which the law of p1 can be constructed is equal to 1∕(1 sin(P/2∕4)), where / = /(1) = 2 − 1. In
particular, the variance is of order 1−2.
For each fixed B ∈ < there is a natural parameterization of U1B called its quantumnatural param-

eterizationwhich is defined in terms of p1 as follows. First define ¥ = inf {5 ⩾ 0 ∶ U1(5) = B} to be
the time at which U1 first hits B. Then let 1,¥ denote the set of 8 ∈ [0, ¥] for which we cannot find a
cone excursion ` ⊂ [0, ¥] (that is, ` = [51, 52] ⊂ [0, ¥] such that (^18 ,�18 ) ⩾ (^152 ,�152 ) on `, and either^151 = ^152 or�151 = �152) such that 8 ∈ `.We call the times in1,¥ ancestor-free times relative to time ¥.
It is possible to show (see [18, Section 1.4.2]) that the local time of 1,¥ is well defined.† Let ($1,¥5 )5⩾0
denote the increasing function describing the local time of 1,¥ such that $1,¥0 = 0 and $1,¥5 = $1,¥¥
for 5 ⩾ ¥. Then let C1,¥5 for 5 ∈ [0,$1,¥¥ ] denote the right-continuous inverse of $1,¥.
Definition 4.14 (Quantum natural parameterization). With the above definitions

(U1B(C1,¥5 ))5∈[0,$1,¥¥ ]
defines a parameterization of U1B which is called its quantum natural parameterization.

4.3 Convergence of the mating of trees Brownian functionals

Let p1 be the process from Theorem 4.12 and let ^1 = ($1,%1), where
$15 = j1(]15 + Y15 ), %15 = Y15 − ]15 , j21 = 1 + cos(P/2∕4)1 − cos(P/2∕4) , 5 ⩾ 0.

Note that j1 = 1P∕2 + l(1) and that ^1 is an uncorrelated Brownian excursion with
variance 2(1 + cos(P/2∕4))(1 sin(P/2∕4))−1 = P + l(1) in the cone {B ∈ ℂ ∶ arg(B) ∈ [−P∕2 +tan−1(j1),P∕2 − tan−1(j1))}, starting from (j1, 1) and ending at the origin (see Figure 10). Also
† This local time (and the corresponding local time for 1 = 0 defined below) is defined only up to a deterministic
multiplicative constant. We fix this constant in the proof of Lemma 4.15.
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490 ARU et al.

(0, 1)

(0, 0)

(aε, 1)

(0, 0)
(x, y) (aε(x + y), y − x)

tan−1(aε)

Zε = (Lε, Rε) Xε = (Aε, Bε)

F IGURE 1 0 The transformation from p1 to ^1

define the processes ˆ̂1,¥ = ($̂1,¥, %̂1,¥) for each ¥ < �1(<), by setting
ˆ̂1,¥5 = ^1,¥C1,¥5 ; 5 > 0.

We will prove in this subsection that all the quantities defined above have a joint limit in law
as 1 ↓ 0. Namely, let us consider an uncorrelated Brownian excursion^ = ($,%) in the right half-
plane from (0,1) to (0,0); the process can, for example, be constructed via a limiting procedure
where we condition a standard planar Brownian motion from (0,1) to (0,0) on first leaving {B ∶Re(B) > −J} at a point B̂ where | Im(B̂)| < J. For ¥ less than the total duration of ^, let ¥ ⊂ [0, ¥]
denote the set of times at which $ has a backward running infimum relative to time ¥, that is,8 ∈ ¥ if $G > $8 for all G ∈ (8, ¥]. Let ($¥5 )5⩾0 denote the increasing function describing the local
time of ¥ such that $¥0 = 0 and $¥5 = $¥¥ for 5 ⩾ ¥. Then let C¥ denote the right-continuous inverse
of $¥, and define ˆ̂¥ = ($̂¥, %̂¥) by ˆ̂¥5 = ^¥C¥5 .
We set .-1 = (^1, (1,¥)¥, ($1,¥)¥, (C1,¥)¥, ( ˆ̂1,¥)¥)

and .- = (^, (¥)¥, ($¥)¥, (C¥)¥, ( ˆ̂¥)¥)
where the indexing is over ¥ ∈ ℝ+ ∩ ℚ.
Then we have the following convergence.

Lemma 4.15. .-1 ⇒ .- as 1 ↓ 0, where we use the Hausdorff topology on the second coordinate and
the Skorokhod topology on the remaining coordinates.

Proof. First we consider the infinite volume case where ^1 is a two-sided planar Brown-
ian motion started from 0, with the same variance and covariance as before, namely variance2(1 + cos(P/2∕4))(1 sin(P/2∕4))−1 = P + l(1) and covariance 0. In this infinite volume setting we
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 491

define (1,¥)¥, ($1,¥)¥, (C1,¥)¥, ( ˆ̂1,¥)¥ similar to before, such that for 1 ∈ (0, 2 −√2), 1,¥ ⊂ (−∞, ¥)
is the set of ancestor-free times relative to time ¥, $1,¥ ∶ ℝ → (−∞, 0] is an increasing process given
by the local time of 1,¥ satisfying $1,¥8 ≡ 0 for 8 ⩾ ¥, C1,¥ ∶ (−∞, 0)→ (−∞, 0) is the right-inverse
of $1,¥ and ˆ̂1,¥8 = ^1C1,¥8 . We make a similar adaptation of the definition to the infinite volume set-
ting for 1 = 0; in particular, ^ is (

√P times) a standard uncorrelated two-sided Brownian motion
planar motion. By translation invariance in law of ^1 and ^, and since ^1 and ^ determine the
rest of the objects in question, it is sufficient to show convergence for ¥ = 0.
First we claim that for all 1 ∈ [0, 2 −√2) we can sample 1,0 by considering a PPP in the sec-

ond quadrant with intensity HQ × q−�(1)Hq for �(1) = 1 + 2∕(2 − 1)2 = 1 + 2∕/2, such that points(Q, q) of this PPP are in bijection with the complementary components of 1,0 with q representing
the length of the component and Q representing the relative ordering of the components. (In the
case 1 = 0, 0,0 refers to 0.) For 1 = 0 the claim follows since $ restricted to the complemen-
tary components of 0 has law given by the Brownian excursion measure. For 1 ∈ (0, 2 −√2) the
claim follows from [18]: It is explained in [18, Section 1.4.2] that 1,0 has the law of the zero set of
some Bessel process, which verifies the claimmodulo the formula for �(1). The dimension of 1,0
is 2∕/2 [20, Table 1 and Example 2.3], and we get the formula for �(1) by adding 1 to this number.
Next we argue that the marginal law of 1,0 converges to the marginal law of 0. Consider the

definition of these sets via PPP as described in the previous paragraph. Since lim1→0 �(1) = �(0) =3∕2, the PPP for 1 ∈ (0, 2 −√2) converge in law to the PPP for 1 = 0 on all sets bounded away fromq = 0. This implies that for any compact interval � we have convergence in law of 1,0 ∩ � to 0 ∩ �
for the Hausdorff distance.
Now we will argue that if ̃1,0 ⊂ (−∞, 0) denotes the backward running infima of $1 relative

to time 0, then

(^1,1,0, ̃1,0) ⇒ (^,0,0).
Since (^1, ̃1,0) ⇒ (^,0) and 1,0 ⇒ 0, we need only to prove that for any almost surely sub-
sequential limit (^,0, ̃0) we have 0 = ̃0 almost surely. Observe that ̃1,0 ⊂ 1,0 since ̃1,0
denotes the backward running infima of $1, 1,0 denotes the set of ancestor-free times of $1
relative to time 0, and a time which is a backward running infimum of $1 relative to time 0
cannot be inside a cone excursion, hence it is ancestor-free. The observation ̃1,0 ⊂ 1,0 implies
that ̃0 ⊂ 0 almost surely in any subsequential limit (^,0, ̃0). Since ̃0 H= 0, this implies that0 = ̃0 almost surely.
Next we will argue that (1,0,$1,0,C1,0) ⇒ (0,$0,C0), assuming we choose the multiplicative

constant consistently when defining $1,0 and $0. The convergence result follows again from the
construction of 1,0 and 0 via a PPP, since the Q coordinate of the PPP defines the local time
(modulo multiplication by a deterministic constant).
Using that (1,0,$1,0,C1,0) ⇒ (0,$0,C0), that 1,0 and 0 determine the other two elements in

this tuple and that (^1,1,0) ⇒ (^,0), we get
(^1,1,0,$1,0,C1,0) ⇒ (^0,0,$0,C0).

We conclude that the lemma holds in the infinite volume setting by using that

ˆ̂1,08 = ^1C1,08 and ˆ̂8 = ^C08 .
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492 ARU et al.

To conclude the proof we will transfer from the infinite volume setting to the finite volume set-
ting. Let us start by recalling that there is a natural infinite measure O1 on Brownian excursions in
the cone 1 ∶= {B ∈ ℂ ∶ arg(B) ∈ (−P∕2 + tan−1(j1),P∕2 − tan−1(j1))} which is uniquely char-
acterized (modulo multiplication by a constant) by the following property. Let ^1 be as in the
previous paragraph, let J > 0 and let `1 = [51, 52] ⊂ ℝ− be the interval with largest left end point51 of length at least J during which ^1 makes an excursion in the cone 1. Here a cone excursion
in 1 is a path starting at (yj1, y) + B0 for some y > 0 and B0 ∈ ℂ, ending at B0, and otherwise
staying inside B0 + 1. Define

�15 = (^15+51 − ^152 ) (4.6)

for 5 ∈ [0, 52 − 51] so that �1 is a path that starts at (yj1, y) for some y > 0, ends at the origin and
otherwise stays inside 1. Then �1 has law O1 restricted to excursions of length at least J. (Here
and in the rest of the proof, when we work with a non-probability measure of finite mass, we will
often assume that it been renormalized to be a probability measure.); see [62].
The measure O1 allows a disintegration O1 = ∫ ∞0 Oy1 Hy, where a path sampled from Oy1 almost

surely starts at (yj1, y). Furthermore, for y, y′ > 0, a path sampled from Oy1 and rescaled by y′∕y so
it ends at (y′j1, y′) (andwith Brownian scaling of time), has law Oy′1 . Finally, an excursion sampled
from O11 is equal in law to the excursion in the statement of the lemma; see [2].
Let us now use these facts to complete the proof. We define a function ;1 such that for ^1

a two-sided planar Brownian motion as above we have ;1(^1) = ((1,¥)¥, ($1,¥)¥, (C1,¥)¥, ( ˆ̂1,¥)¥)
almost surely. For �1 a Brownian cone excursion in 1 starting at (j1, 1) we define ;1(�1) such
that (�1,;1(�1)) is equal in law to the tuple .-1 in the theorem statement. We also extend the
definition of ;1 to the case of Brownian excursions �1 in 1 starting at (yj1, y) for general y > 0
in the natural way.
Now let �1 be coupled with ^1 as in (4.6) for some fixed J > 0, and let v1 be the event that �1

starts at (yj1, y) for y ∈ [1, 2]. Define ;,v similarly for 1 = 0. We claim that

(^1,;1(^1),�1,;1(�1),v1) ⇒ (^,;(^),�,;(�),v) (4.7)

as 1 → 0. In fact, this claim is immediate since if (^1,;1(^1)) converges to (^,;(^)) then (by
convergence of 1,0) we also have convergence of the interval `1, which further gives convergence
of (�1,;1(�1),v1) to (�,;(�),v).
With �1 as in the previous paragraph let �̃1 denote a random variable which is obtained by

conditioning on v1 and then applying a Brownian rescaling of �1 so that �̃1 starts at (j1, 1).
We get from (4.7) that (�̃1,;1(�̃1)) ⇒ (�̃,;(�̃)). Note that if we condition the excursions in the
statement of the lemma to have duration at least J, then these have exactly the same laws as(�̃1,;1(�̃1), �̃,;(�̃)) conditioned to have duration at least J. Thus the lemma follows upon tak-
ing J → 0, since the probability that the considered excursions have duration at least J tends to 1,
uniformly in 1. □

4.4 Proof of (3.10)

Let us first recall the statement of (3.10). We have fixed B,f ∈ <, and as usual, U1 denotes a
space-filling SLE!′ in <, while U1B denotes the branch in the associated branching SLE!′ toward
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 493

B, parameterized by − log conformal radius seen from B. For J > 0, we have defined the times{1B,f,J that f is sent first sent to within distance J of F< by the Loewner maps associated with U1B,
and {1B,f = {1B,f,0 to be the first time that B and f are separated by U1B. For A > 0, we denote the
collection of faces (squares) of Aℤ2 that intersect < by A. Finally, we write N1J,A for the event that
there exists N ∈ A that is separated by U1B from B during the interval {1B,f,J,{1B,f] and such that B
is visited by the space-filling SLE!′ U1, before N. The statement of (3.10) is then that

limJ↓0 lim1↓0 ℙ(N1J,A) = 0.
Themating of trees theorem (Theorem 4.12) together with the convergence proved in the previ-

ous subsection nowmake the proof of this statement reasonably straightforward. Indeed, in plain
language, it says that the probability of an SLE!′(!′ − 6) branch almost separating two points B
andf (where ‘almost’ is encoded by a small parameter J) but then going on to separate a bicolored
component of macroscopic size from B at some time 5 strictly before separating B from f, goes to
0 as J → 0, uniformly in !′. The idea is to couple this SLE with an independent /-LQG disk and
note that if the event mentioned above were to occur, then the component > containing B and f
at time 5 would have a small ‘bottleneck’ and hence define a very strange distribution of /-LQG
mass when viewed as a /-LQG surface. On the other hand, if we sample several points from the/-LQG area measure on the disk, then one of these is likely to be in the bicolored component sep-
arated from B andf at time 5. So the mating of trees theorem says that> should really look like a
quantum disk, and in particular, have a rather well behaved distribution of /-LQG mass without
bottlenecks. This contradiction will lead us to the proof of (3.10).
Let us now get on with the details. For 1 ∈ (0, 2 −√2) we consider a CLE!′ exploration along-

side an independent unit boundary length quantum disk ℎ1 as in Definition 4.8. We write �1 for
its associated LQG area measure and let q1 be a point in < sampled from �1 normalized to be a
probability measure. We let B ∈  be fixed.

Corollary 4.16. Consider the event $1J,s,¦ that∙ 1B,q1 = 1 (that is, the component containing B when q1 and B are separated is monocolored);∙ when D1B,q1 (this monocolored component) is mapped to <, with a point in the interior chosen
proportionally to �1|D1B,q1 sent to 0, the resulting quantum mass of < ⧵ (1 − 10J<) is greater thans.

Then for everys we have that

limJ→0 lim sup1→0 ℙ($1J,s,¦) = 0.
Proof. Theorem 4.12 says that themonocolored components separated from q1 by U1q1 are quantum
disks conditionally on their boundary lengths and areas. Moreover, we know that the total mass
of the original disk ℎ1 converges in law to something almost surely finite as 1 → 0, by Lemma 4.5
and Remark 4.6. Recalling the definition of %̂ from Section 4.3, we also know that the largest
quantum boundary length among all monocolored components separated from q1 has law given
by the largest jump of %̂¥, for ¥ chosen uniformly in (0,�1(<)). Indeed, if ¥ corresponds to q1 as in
the paragraph above Definition 4.14, then ¥ is a uniform time in (0,�1(<)) and the jumps of %̂¥ are
precisely the quantum boundary lengths of the monocolored components disconnected from q1.
By Lemma 4.15 we may deduce that the law of this largest jump converges to something almost
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494 ARU et al.

surely finite as 1 → 0. Thus, by choosing �,] large enough, we may work on an event with arbi-
trarily high probability (uniformly in 1) where there are fewer than � monocolored components
separated for q1 with mass at least s, and where they all have ~1 boundary length less than ].
Lemma 4.10 then provides the result. □

We also need one more elementary property of radial Loewner chains to assist with the proof
of (3.10).

Lemma4.17. Consider the image (g5(B))5⩾0 of a point B ∈ <under the radial Loewner flow (g5)5⩾0 =(g5[T])5⩾0 corresponding to T ∈ . Then with probability one, |g5(B)| is a non-decreasing function
of time (until point B is swallowed).
Proof. From the radial Loewner equation one can compute directly that, until point B is
swallowed,

F5(|g5(B)|2) = 2|g5(B)|ℜ(K5 + g5(B)K5 − g5(B)
).

Sinceℜ((1 + Q)∕(1 − Q)) > 0 for any Q ∈ <, the right-hand side above must be positive. □

Proof of (3.10). Fix A > 0 and suppose that ℙ(N1J,A) ⩾ j for some j > 0. Recall that N1J,A is the event
that there exists N ∈ A that is separated by U1B from B during the interval [{1B,f,J,{1B,f] and such
that the disconnected component containing B is monocolored. Let ℎ1,�1, q1 be as above Corol-
lary 4.16, and let j′ = inf 1>0 minN∈A ℙ(q1 ∈ N). Then j′ is strictly positive, due to the convergence
result Lemma 4.8, plus the fact thatminN∈A ℙ(q ∈ N) > 0when q is picked from the critical LQG
areameasure for a critical unit boundary length disk. By independence,we thenhaveℙ(v1J) ⩾ jj′,
where v1J is the event that {B,q1 ∈ [{1B,f,J,{1B,f] and 1B,q = 1.
We can also choose ¦,s small enough and � large enough that on an event L1s,¦,� with

probability ⩾ 1 − jj′∕2, uniformly in 1:∙ %B(¦) ⊂ \1B (respectively, %f(¦) ⊂ \1f) where \B (respectively, \1f) is the first nested CLE!′ bubble
containing B (respectively,f) that is entirely contained in %B(|B − f|∕3)) (respectively, %f(|B −f|∕3);∙ %B(¦) and %f(¦) have �-mass greater than or equal tos;∙ if we map \1B (respectively, \1f) to < with B (respectively, f) sent to 0, then the images of %B(¦)
and %f(¦) are contained in (1∕2)<; and∙ �1(<) ⩽ �.

Again this is possible because such ¦,s,� can be chosen when 1 = 0, !′ = 4, and we can appeal
to the convergence results Proposition 2.18 and Lemma 4.8. Note that on the event L1¦,s,� :
(i) %f(¦) and %B(¦) are contained in (T1B)5 for all 5 ∈ ({1B,f,J,{1B,f);
(ii) for any 5 ∈ ({1B,f,J,{1B,f) and conformal map sending (T1B)5 to <with B′ ∈ %B(¦) sent to 0, the

image of %f(¦) is contained in a 10J neighborhood of F<.
Point (ii) follows because any such conformal map can be written as the composition of a confor-
mal map (T1B)5 to < sending B to 0, and then a conformal map from < → < sending the image ofB′, which lies in (1∕2)<, to 0. By Lemma 4.17, ¦ is sent to distance at most J from the boundary by
the first of these two maps. The third bullet point in the definition of L¦,s,� then implies that the
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 495

whole of %f(¦) is actually sent within distance 4J of F<. Distortion estimates near the boundary
for the second conformal map allow one to deduce (ii).
To finish the proof, we consider the event v1J ∩ L1s,¦,� which has probability ⩾ jj′∕2 by con-

struction. Conditionally on this event, if we sample a point from T1B,q1 according to the measure�1, then this point will lie in %B(¦)with conditional probability⩾ s∕�. If this happens, then upon
mapping to the unit disk with this point sent to the origin, a set of �1 mass ⩾ s (namely %B(¦))
will necessarily be sent to < ⧵ (1 − 10J)< (see point (ii) above). Note thats∕� is a function c(j)
of j only (and in particular does not depend on 1, J).
So in summary, if ℙ(N1J,A) ⩾ j, then ℙ($1J,s,¦) > jj′c(j) for some s(j), ¦(j), c(j) depending

only on j, where $1J,s,¦ is as in Corollary 4.16. This means that if (3.10) does not hold, thenlimJ→0 lim sup1→0 ℙ($1J,s,¦) > 0 for some s, ¦. This contradicts Corollary 4.16, and hence (3.10)
is proved. □

5 MATING OF TREES FOR 3 = 4 AND JOINT CONVERGENCE OF
CLE, LQG AND BROWNIANMOTIONS AS 3′ ↓ 4
Before stating the main theorems, let us briefly take stock of the progress so far. Recall that to
each 1 ∈ (0, 2 −√2) we associate !′ = !′(1) = 16∕(2 − 1)2, and write (T1B)B∈ for the SLE!′(!′ −6) branches from 1 to B in a branching SLE!′ in <. These are generated by curves (U1B)B∈, so
that (T1B)5 is the connected component of < ⧵ U1B containing B for every B and 5. Recall that this
branching SLE defines a nested CLE!′ which we denote by Γ1, and a space-filling SLE!′ which we
denote by U1. The space-filling SLE!′ U1 then determines an order on the points in: for B,f ∈ 
we denote by 1B,f the random variable that is 1 if B is visited before f by U1 (or B = f) and 0
otherwise. We combine these and set

,)-1 = ((T1B)B,Γ1, (1B,f)B,f)
for each 1, where B,f are indexed by .
When !′ = 4we have analogous objects.Wewrite Γ for a nested CLE4 in<, andwe assume thatΓ is coupled with a branching uniform CLE4 exploration that explores its loops. We write TB for

the branch toward each B ∈  in this exploration. Finally, we define a collection of independent
coin tosses (B,f)B,f∈ as described at the start of Section 3. Combining these, we set

,)- = ((TB)B,Γ, (B,f)B,f).
The processes T1B,TB are each parameterized by − log conformal radius seen from B, and

equipped with the topology of B for every B ∈ . The loop ensembles Γ1,Γ are equipped with
the topology of Hausdorff convergence for the countable collection of loops surrounding eachB ∈ .
We also consider, for each 1, a unit boundary length LQG disk as in Definition 4.8, independent

of ,)-1 and write
)*+1 = (�1ℎ1 , ~1ℎ1 ,ℎ1)
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496 ARU et al.

for the associated area measure, boundary length measure and field. We denote by

)*+ = (�ℎ, ~ℎ,ℎ)
its critical counterpart, which we also sample independently of ,)-. We equip the fields with
the �−1(<) topology, and the measures with the weak topology for measures on < andF<, respectively.
Then by Remark 4.9, Proposition 3.12 and the independence of ,)-1 and )*+1 (respectively, ,)-

and )*+), we have that
Proposition 5.1. (,)-1, )*+1) ⇒ (,)-, )*+) as 1 → 0.
Additionally, for every 1 ∈ (0, 2 −√2) by themating of trees theorem, Theorem 4.12, (,)-1, )*+1)

determines a collection of Brownian observables

.-1 = (^1, (1,¥)¥, ($1,¥)¥, (C1,¥)¥, ( ˆ̂1,¥)¥)
as explained in Section 4.3. Recall that^1 is√P times an uncorrelated Brownian excursion in the
cone {B ∈ ℂ ∶ arg(B) ∈ [−P∕2 + tan−1(j1),P∕2 − tan−1(j1))}, starting from (j1, 1) and ending at
the origin, where j1 = √(1 + cos(P/2∕4))∕(1 − cos(P/2∕4))) = P1∕2 + l(1). The indexing of the
above processes is over ¥ ∈ ℝ+ ∩ ℚ. If we also write

.- = (^, (¥)¥, ($¥)¥, (C¥)¥, ( ˆ̂¥)¥),
for a tuple with law as described in Section 4.3, then by Lemma 4.15 we have that

Proposition 5.2. .-1 ⇒ .- as 1 → 0.
Here, 1,¥,¥ are equipped with the Hausdorff topology, and the stochastic processes in the

definition of .-1, .- are equipped with the Skorokhod topology.
We now wish to describe the joint limit of (,)-1, )*+1, .-1) as 1 → 0. For this, we first need to

introduce a little notation.
For B,f ∈ , B ≠ f, we can consider the first time {1B,f (defined by ,)-1) at which B andf are in

different complementary components of< ⧵ U1B. We let>1 = >1(B,f) ⊂ < denote the component
which is visited first by the space-filling SLE!′ U1. We say that >1 = >1(B,f) is the monocolored
component when B and f are separated. Let us define

§1B ∶= {> ⊂ < ∶ > = >1(B,f) for some B ≠ f with 1B,f = 0}
to be the set of monocolored components separated from B by U1B. Note that these are natu-
rally ordered, according to the order that they are visited by U1. In fact, we may also associate
orientations to the elements of §1B: we say that > ∈ §1B is ordered clockwise (respectively, coun-
terclockwise) if the boundary of > is visited by U1B in a clockwise (respectively, counterclockwise)
order, and in this case we write sgn(>) = −1 (respectively, +1).
Remark 5.3. For 1 ∈ (0, 2 −√2), by Theorem 4.12 and the definitions above, we have that
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 497

∙ the duration of p1 is equal to �1ℎ1 (<), hence ^1 = 0 for all 5 ⩾ �1ℎ1 (<) almost surely;∙ for B ∈ , the time 51B at which U1 visits B is almost surely given by �1ℎ1 (∪>∈§1B>) = ∑§1B �1ℎ1 (>);∙ the ordered ~1ℎ1 boundary lengths of the components of§1B are almost surely equal to the ordered
jumps of (%̂1,51B ), and the sign of each jump is equal to the sign of the corresponding element of§1B; and∙ the ordered �1ℎ1 masses of the components of §1B are almost surely equal to the ordered jumps
of C1,51B .
We can also define analogous objects associated with the CLE4 exploration: if B and f are

separated at time {B,f by the CLE4 exploration branch toward B, and B,f = 1 we set >(B,f) =(TB){B,f ; ifB,f = 0we set>(B,f) = (Tf){f,B . The set§B is then defined in exactly the sameway.
Note that in this case the elements of §B are ordered by declaring that > comes before >′ if and
only if> = >(B,f) and>′ = >(B,f′) forf ≠ f′ such thatf′,f = 0. We now say that> ∈ §B is
ordered clockwise (respectively, counterclockwise) if there is an even (respectively, odd) number
of loops which enclose >, and write sgn(>) = −1 (respectively, +1).
The main ingredient that will allow us to describe the joint limit of (,)-1, )*+1, .-1) is the

following:

Proposition 5.4. Given (,)-1, )*+1), denote by B1 a point sampled from �1ℎ1 in < (normalized to
be a probability measure) and given (,)-, )*+), denote by B a point sampled in the same way from�ℎ. For given J > 0, write (>11, … ,>1�1 ) for the ordered components of §1B1 with �1ℎ1 area ⩾ J, and
define (>1, … ,>�) similarly for the ordered components of §B with �ℎ area ⩾ J. Suppose that f1S
for 1 ⩽ S ⩽ �1 (respectively,fS for 1 ⩽ S ⩽ �) are sampled from �1|>1S (respectively, �|>S ) normalized
to be probabilitymeasures, and g 1S ∶ >1S → < (respectively, gS ∶ >S → <) are the conformalmaps that
sendf1S to 0 (respectively,fS to 0) with positive real derivative atf1S (respectively,fS). Set sgn(>1S ) =f1S = 0 (respectively, sgn(>S) = fS = 0) and g 1S (ℎ1) (respectively, gS(ℎ)) to be the 0 function for S > �1
(respectively, S > �). Then
(,)-1, )*+1, B1, (sgn(>1S ))S⩾1, (f1S )S⩾1, (g 1S (ℎ1))S⩾1) ⇒ (,)-, )*+, B, (sgn(>S))S⩾1, (fS)S⩾1, (gS(ℎ))S⩾1)

as 1 → 0.† The fields g 1S (ℎ1) and g(ℎ) above are defined using the change of coordinates formula (4.1).
In other words, the ordered and signed sequence of monocolored quantum surfaces separated

from B1? converges almost surely, as a sequence of quantum surfaces (see above (4.1)) to the
ordered sequence of monocolored quantum surfaces separated from B as ? → ∞.
From this, we can deduce our main theorem.

Theorem 5.5. (,)-1, )*+1, .-1) converges jointly in law to a tuple (,)-, )*+, .-) as 1 ↓ 0. In the lim-
iting tuple, ,)-, )*+, .- have marginal laws as above, ,)- and )*+ are independent, and (,)-, )*+)
determines .-.
†With respect to the Euclidean topology in the third coordinate, and the topology in the final coordinates defined such
that ((8?S )S⩾1, (f?S )S⩾1, (ℎ?S )S⩾1)→ ((8S)S⩾1, (fS)S⩾1, (ℎS)S⩾1) as ? → ∞ if and only if the number of non-zero components on
the left-hand side is equal to the number �? of non-zero components on the right-hand side for all ? large enough, and
the first � components converge in the product discrete × Euclidean × �−1(<) topology.
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498 ARU et al.

TABLE 1¨© (ª«©, «¬­)
Duration of ^ �ℎ(<){5f < 5B} {f,B = 1} =‘f ordered before B’5B �ℎ({f ∈  ∶ ®f,B = 1}) =‘quantum area of points ordered before B’$5B Quantum natural distance of B from F<
Jumps of %̂5B LQG boundary lengths of ‘components ordered before B’
Sign of jump Parity of # {CLE4 loops surrounding component}
Jumps of C5B LQG areas of ‘components ordered before B’
CRT encoded by $ CLE4 exploration branches parameterized by quantum natural distance

Furthermore, we have the following explicit description of the correspondence between (,)-, )*+)
and .- in the limit. Suppose that B ∈ < is sampled from the critical Liouville measure � normalized
to be a probability measure. Then∙ ^5 = 0 for all 5 ⩾ �(<) almost surely and the conditional law of

5B ∶= �ℎ(∪>∈§B>)
(5.1)

given (,)-, )*+, .-) is uniform on (0,�(<)),∙ ^5B = ($5B ,%5B ) satisfies the following for a deterministic constant c > 0:
$5B = c lim infJ→0 J�J and %5B = 1 + ∑

>∈§B sgn(>)~ℎ(>) (5.2)

almost surely, where for J > 0,�J is the number of domains> ∈ §B such that ~ℎ(F>) ∈ (J∕2, J),∙ the ordered collection (�ℎ(>), sgn(>)~ℎ(F>))>∈§B is almost surely equal to the ordered collection
of jumps of (C5B , %̂5B ) (where (C5B , %̂5B ) are defined from .- as in Section 4.3).
Note that

$5B = $̂$5B5B = $5B5B (5.3)

is the limit as 1 → 0 of the total length of the SLE!′(!′ − 6) branch toward B in the quantumnatural
parameterization. We can therefore view $5B as a limiting ‘quantum natural distance’ of B from
the boundary of the disk. In a similar vein, we record in Table 1 some of the correspondences
between the CLE4 decorated critical LQG disk with order variables (,)-, )*+) and the Brownian
excursion .-, where B,f are points sampled from the critical LQG measure �ℎ in the bulk.
Proof of Theorem 5.5 given Proposition 5.4. Since we know the marginal convergence of each com-
ponent of (,)-1, )*+1, .-1), we know that the triple is tight in 1. Thus our task is to characterize
any subsequential limit (,)-, )*+, .-) of (,)-1, )*+1, .-1). Note that Proposition 5.1 already tells us
that (,)-, )*+) are independent, and Proposition 5.2 tells us that the marginal law of .- is that of a
Brownian half-plane excursion plus associated observables.

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12689, W

iley O
nline Library on [05/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 499

To characterize the law of (,)-, )*+, .-) we will prove that if B ∈ < is sampled according to �ℎ
in <, conditionally independently of the rest of (,)-, )*+, .-) then
(i) the duration of ^ is equal to �ℎ(<) almost surely;
(ii) 5B defined by (5.1) is conditionally uniform on (0,�ℎ(<)) given (,)-, )*+, .-);
(iii) the ordered collection (�ℎ(>), sgn(>)~ℎ(F>))>∈§B is almost surely equal to the ordered

collection of jumps of (C5B , %̂5B ) (defined from .- as in Section 4.3); and
(iv) $5B ,%5B satisfy (5.2) almost surely.
Let us remark already that the above claim is enough to complete the proof of the theorem.
Indeed, suppose that (,)-, )*+, .-) is a subsequential limit in law of (,)-1, )*+1, .-1) as 1 → 0
and let (,)-, )*+, .-, .-′) be coupled so that (,)-, )*+, .-) is equal in law to (,)-, )*+, .-′), while.-, .-′ are conditionally independent given ,)-, )*+. Further sample B from �ℎ in <, condition-
ally independently of the rest of (,)-, )*+, .-, .-′), so that (i)–(iv) hold for (,)-, )*+, .-, B) and for(,)-, )*+, .-′, B) (with ^,$,% replaced by their counterparts ^′,$′,%′ for .-′.) Then by (i) and
(ii), and since ^(.-), ^(.-′) are almost surely continuous, if ℙ(.- ≠ .-′) were strictly positive
then ℙ(^(.-)5B ≠ ^(.-′)5B ) would be strictly positive as well. This would contradict (iii) and (iv),
so we conclude that .- = .-′ almost surely. This means that .- is determined by (,)-, )*+), and
the explicit description in the statement of the theorem also follows immediately.
The same argument implies that the law of any subsequential limit is unique. More concretely,

suppose that 1?, 1′? are two sequences tending to 0 as ? → ∞, such that (,)-1? , )*+1? , .-1? ) ⇒(,)-, )*+, .-) and (,)-1′? , )*+1′? , .-1′? ) ⇒ (,)-′, )*+′, .-′) as ? → ∞. Then we can also take a joint
subsequential limit of (,)-1? , )*+1? , .-1? , ,)-1′? , )*+1′? , .-1′? ); call it (,)-, )*+, .-, ,)-′, )*+′, .-′)where
necessarily ,)- = ,)-′ and )*+ = )*+′, since we already know the convergence (,)-1, )*+1) ⇒(,)-, )*+). Repeating the argument of the previous paragraph gives that .- = .-′ almost surely.
In particular, the marginal law of (,)-′, )*+′, .-′) is the same as that of (,)-, )*+, .-).
So we are left to justify the above claim. To this end, let

(,)-, )*+, .-) (5.4)

be a subsequential limit, along some subsequence of 1. By Proposition 5.4 and passing to a further
subsequence if necessary we may extend this to the convergence

(,)-1? , )*+1? , B1? , .-1? ,((sgn(>1? ,JS ))S⩾1, (g 1? ,JS (ℎ1? ))S⩾1)J∈ℚ∩(0,1))⇒(,)-, )*+, B, .-, ((sgn(>JS ))S⩾1, (gJS (ℎ))S⩾1)J∈ℚ∩(0,1)) (5.5)

along some 1? ↓ 0, where for every J∈ ℚ ∩ (0, 1) the joint law of
(,)-1? , )*+1? , B1? , .-1? ,((sgn(>1? ,JS ))S⩾1, (g 1? ,JS (ℎ1? ))S⩾1)J∈ℚ∩(0,1)))
and

(,)-, )*+, B, (sgn(>JS )S⩾1, gJS (ℎ)S⩾1))
are as in Proposition 5.4 (now with the dependence on J indicated for clarity) and the joint law of(,)-, )*+, .-) is the one assumed in (5.4). Note that the conditional law of B given (,)-, )*+, .-) is
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500 ARU et al.

that of a sample from�ℎ, since the same is true at every approximate level and since�1?ℎ1? converges
as part of )*+1? .
We next argue that the convergence (5.5) necessarily implies the joint convergence

(,)-1? , )*+1? , B1? , .-1? ,((sgn(>1? ,JS ))
S⩾1 ,(g 1? ,JS (ℎ1? ))S⩾1 ,(�1?ℎ1? (>1? ,JS ))

S⩾1 ,
(~1?ℎ1? (F>1? ,JS ))

S⩾1
)

J∈ℚ∩(0,1)
)

⇒(,)-, )*+, B, .-, ((sgn(>JS ))S⩾1, (gJS (ℎ))S⩾1, (�ℎ(>JS ))S⩾1, (~ℎ(F>JS ))S⩾1)J∈ℚ∩(0,1)) (5.6)

as ? → ∞, where the initial components are exactly as in (5.5). Indeed, we know that the tuple
on the left is tight in ?, because the first six terms are tight by above and both (�1?ℎ1? (>1? ,JS ))S⩾1
and (~1?ℎ1? (F>1? ,JS ))S⩾1 are sequences with only a tight number of non-zero terms, and with all
non-zero terms bounded by convergent quantities in ()*+1? , .-1? ). On the other hand, for any
fixed J, S and ?,

�1?ℎ1? (>1? ,JS ) = �1?
g
1? ,JS (ℎ1? )(<) and ~1?ℎ1? (F>1? ,JS ) = ~1?

g
1? ,JS (ℎ1? )(F<),

so by Theorem 4.12, (g 1? ,JS (ℎ1? ),�1?ℎ1? (>1? ,JS ), ~1?ℎ1? (F>1? ,JS )) is a sequence of /(1?)-quantum disks
together with their quantum boundary lengths and areas. We can therefore apply Remark 4.11 to
deduce that any subsequential limit in law (gS(ℎ),�∗, ~∗) of (g 1? ,JS (ℎ1? ),�1?ℎ1? (>1? ,JS ), ~1?ℎ1? (F>1? ,JS ))
must be equal to

(gJS (ℎ),�gJS (ℎ)(<), ~gJS (ℎ)(F<)) = (gJS (ℎ),�ℎ(>JS ), ~ℎ(F>JS )).
This concludes the proof of (5.6).
So to summarize, if we have any subsequential limit (,)-, )*+, .-) of (,)-1, )*+1, .-1) we can

couple it with B (whose conditional law given (,)-, )*+, .-) is that of a sample from �ℎ) and with(>S , gS)S⩾1 for every positive J ∈ ℚ, such that the joint convergence (5.6) holds along some sub-
sequence 1? ↓ 0. By Skorokhod embedding we may assume that this convergence is almost sure,
and so just need to prove that (i)–(iv) hold for the limit. This essentially follows from Remark 5.3
and the convergence of the final coordinates in (5.6); we give the details for each point below.

(i) This holds since ^1? = 0 for all 5 ⩾ �1? (<) almost surely for every ?, and (�1?ℎ1? (<),^1? )→(�ℎ(<),^) almost surely.
(ii) The convergence of the areas in (5.6) implies that

51?B1? = ∑

§1?B1?
�1?ℎ1? (>)

converges almost surely to 5B defined in (5.1) along the subsequence 1? ↓ 0. On the other
hand, 51?B is conditionally uniform on (0,�1?ℎ1? (<)) given (,)-1? , )*+1? , .-1? ) for every ?.
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 501

(iii) The ordered collection of jumps of (C1? ,51?B1? , %̂1? ,51?B1? ) converge almost surely to the ordered col-
lection of jumps of (C5B , %̂5B ) on the one hand, by definition of the convergence (.-1? , B1? )→(.-, B) (and by considering a sequence B? ∈  converging to B). On the other hand, they are
equal to the ordered collection (�1?ℎ1? (>), sgn(>)~1?ℎ1? (F>))>∈§1?B for every ?. Since this latter
collection converges almost surely to the ordered collection (�ℎ(>), sgn(>)~ℎ(F>))>∈§B , we
obtain (iii).

(iv) This follows from (iii) and the fact that the marginal law of ^ = ($,%) is that of a Brownian
excursion in the right half-plane. Specifically, the first coordinate of ^ at a given time 5 can
almost surely be recovered from the jumps of its inverse local time at backward running
infima with respect to time 5, see (5.3), and the second coordinate can also be recovered from
the collection of its signed jumps when reparameterized by this inverse local time. When5 = 5B, the values are recovered exactly using the formula (5.2) after using (iii) to translate
between (�ℎ(>), sgn(>)~ℎ(F>))>∈§B and (C5B , %̂5B ). □

5.1 Proof of Proposition 5.4

In this subsection, J is fixed, so we omit it from the notation (just as in the statement of Propo-
sition 5.4). Since the convergence of �1ℎ1 to �ℎ is included in the convergence of (,)-1, )*+1) to(,)-, )*+) it is clear (for example, by working on a probability space where the convergence holds
almost surely) that (,)-1, )*+1, B1) ⇒ (,)-, )*+, B) as 1 → 0. From here, the proof proceeds via the
following steps.

(1) The tuples on the left-hand side in Proposition 5.4 are tight in 1, so we may take a subsequen-
tial limit (,)-, )*+, B, (8S)S⩾1, (fS)S⩾1, (ℎS)S⩾1) (that we will work with for the remainder of the
proof).

(2) fS ∈ < ⧵ Γ (that is, fS is not on any nested CLE4 loop) for all S almost surely.
(3) If g̃S ∶ >(B,fS)→< are conformal with g̃S(fS) = 0 and g̃ ′S (fS) > 0, then ℎS = g̃S(ℎ) for each S

almost surely.†
(4) Given (,)-, )*+, B), the fS are conditionally independent and distributed according to �ℎ in

each >(B,fS).
(5) {> ∈ §B ∶ �ℎ(>) ⩾ J} = {>(B,fS)}S⩾1 almost surely, where the set on the left is ordered as

usual.
(6) 8S = sgn(>(B,fS)) for each S almost surely.
These clearly suffice for the proposition.

Proof of (1). Tightness of the first five components follows from the fact that (,)-1, )*+1, B1) ⇒(,)-, )*+, B) as 1 → 0, plus the tightness of the quantum boundary lengths in§1B (recall that these
converge when .-1 converges). To see the tightness of (g 1S (ℎ1))S⩾1 we note that there are at most�1ℎ1 (d)∕J non-zero terms, where �1ℎ1 (<) is tight in 1. Moreover, each non-zero g 1S (ℎ1) has the law
of ℎ̃1◦O1 + j1, where ℎ̃1 is as in Lemma 4.10, O1 are random rotations (which automatically form
a tight sequence in 1) and j1 are some tight sequence of real numbers. This implies the result by
Lemma 4.10. □

†Once we have point (5), it follows that these are equal to the (gS)�S=1.
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502 ARU et al.

Proof of (2). Suppose that (q1[)[⩾1 are sampled conditionally independently according to �1ℎ1 in<, normalized to be a probability measure. Then (,)-1, )*+1, (q1[)[⩾1) ⇒ (,)-, )*+, (q[)[⩾1) where
the (q[)[⩾1 are sampled conditionally independently from �ℎ and almost surely all lie in < ⧵ Γ.
On the other hand, since ,)-1 and )*+1 are independent, one can sample (f1S )S⩾1 by taking(,)-1, )*+1, (q1[)[⩾1) and then setting f1S = q1[ for each S, with [ = min{k ∶ qk ∈ >1S }. □

Proof of (3). By Skorokhod’s theorem, we may work on a probability space where we have the
almost sure convergence

(,)-1? , )*+1? , B1? , (sgn(>1?S ))S , (f1?S )S , (g 1?S (ℎ1? ))S)→ (,)-, )*+, B, (8S)S , (fS)S , (ℎS)S) (5.7)

along a sequence 1? ↓ 0. It is then natural to expect, since the f1?S converge almost surely to thefS and ,)-1? converges almost surely to ,)-, that the maps g 1?S will converge to g̃S described in (3).
Since ℎ1? also converges almost surely to ℎ (as part of the convergence )*+1? → )*+) it therefore
follows ℎS will almost surely be equal to g̃S(ℎ) for each S. This is the essence of the proof. However,
one needs to take a little care with the statement concerning the convergence g 1?S → g̃S , since the
domains >1?S and >(B,fS) are defined in terms of points that are not necessarily in , while the
convergence of ,)-1 → ,)- is stated in terms pairs of points in .
To carry out the careful argument, let us fix S ⩾ 1. Since fS ∈ < ⧵ Γ almost surely by (2),

there exists A > 0 and q ∈  such that %(q, A) ⊂ %(fS , 2A) ⊂ >(B,fS) = (TfS ){fS ,B . By taking A
smaller if necessary, we can also find Q ∈  with %(Q, A) ⊂ %(B, 2A) ⊂ (TB){B,fS . Note that B,fS =Q,q = 0 by definition. Due to the almost sure convergence B1? → B, f1?S → fS , and ,)-1? → ,)-
it then follows that >1? (B1? ,f1?S ) = >1? (Q, q) = (T1?q ){1?q,Q , and 1?Q,q = 1?B1? ,f1?S = 0 for all ? large
enough. Moreover, we know that the maps ;1? ∶ < → >1? (B1? ,f1?S ) = (T1?q ){q,Q with ;1? (0) = q,(;1? )′(0) > 0 converge on compacts of < to ; ∶ < → >(Q, q) = (Tq){q,Q sending 0 to q and with;′(0) > 0.
On the other hand, (g̃S)−1 = ;◦e where e ∶ < → < sends 0↦ ;−1(fS) and has e′(0) > 0, and(g 1?S )−1 = ;1?◦e1? for each 1?, where e1? ∶ < → < has e1? (0) = (;1? )−1(f1?S ) and (e1? )′(0) > 0.

Since f1?S → fS almost surely, and the f1?S are uniformly close to q and bounded away from the
boundary of >1? (Q, q), this implies that (g 1?S )−1 converges to g̃−1S uniformly on compacts of <.
In turn, this implies that ℎS restricted to any compact of < is equal to g̃S(ℎ), which verifies thatℎS = gS(ℎ) almost surely. □

Proof of (4). For this it suffices to prove that for each S,
(,)-1? , )*+1? , B1? ,f1?S , g 1?S (ℎ1? ),�1?g1?S (ℎ1? )) ⇒ (,)-, )*+, B,fS ,ℎS ,�ℎS )

as ? → ∞, where the convergence of the final components is in the sense of weak convergence
for measures on <. Note that if we work on a space where all but the last components con-
verge almost surely, as in (3), then the proof of (3) shows that ℎS = g̃S(ℎ) and that (g 1?S )−1 →(g̃S)−1 almost surely when restricted to compact subsets of <. This implies the almost sure
convergence of the measures �1?

g
1?S (ℎ1? ) to �ℎS when restricted to compact subsets of <. On the

other hand, �g
1?S (ℎ1? )(<) is a tight sequence in ?, and by Remark 4.11, any subsequential limit
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BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY 503

(,)-, )*+, B,fS ,ℎS ,s) of (,)-1? , )*+1? , B1? ,f1?S , g 1?S (ℎ1? ),�1?g1?S (ℎ1? )(<)) hass = �ℎS (<) almost surely.
Combining these observations yields the result. □

Proof of (5). As in (3) we assume that we are working on a probability space where we have almost
sure convergence along a sequence 1? ↓ 0, so we need to show that the limiting domains>(B,fS)
are precisely the elements of§B that have �ℎ area greater than or equal to J. The same argument
as for (4) gives that each>(B,fS) is a component of§B with �ℎ area greater than or equal to J. So
it remains to show that they are the only such elements of§B.
For this, suppose that > ∈ §B has �ℎ(>) ⩾ J. Then �ℎ(>) = J + A for some A > 0 with proba-

bility 1. Choosingf ∈ , j > 0 such that> = >(B,f) ⊃ %(f,j) it is easy to see that>(B,f) is the
almost sure Carathéodory limit seen from f of >1? (B1? ,f) as 1? → 0. Using the convergence of�1?ℎ1? to �ℎ and Corollary 2.23, we therefore see that lim? �1?ℎ1? (>1? (B1? ,f)) ⩾ �ℎ(>(B,f)) = J + A
and so >1? (B1? ,f) = >1?S = >1? (B1? ,f1?S ) for some S and all ? large enough. From here we may
argue as in the proof of (3) to deduce that the Carathéodory limit of >1? (B1? ,f1?S ) is equal to>(B,fS). Thus, since > = >(B,f) is the Carathéodory limit of >1? (B1? ,f) which is equal to>1? (B1,f1?S ) for all ? large enough, we conclude that > = >(B,fS).
The fact that the orders of the collections in (3) coincide follows from the convergence of the

order variables as part of ,)-1 → ,)- (and the argumentwe have nowused several times that allows
one to transfer from B1,f1S to points in : we omit the details). □

Proof of (6). Let us work under almost sure convergence as in the proof of (3), fix S ⩾ 1 and defineQ, q, A as in the proof of (3). By Proposition 3.2, we know that {1?q,Q → {q,Q almost surely as ? → ∞,
and that sgn(>1?S ) is determined by the number of loops nested around q which T1?q discovers
before or at time {1?q,Q (see the definition of CLE loops from the space-filling/branching SLE!′
in Section 2.1.6). If {q,Q occurs between two such times for Tq , it is clear from the almost sure
convergence of {1?q,Q and T1?q that the number of loop closure times for T1?q occurring before or at{1?q,Q converges to the number of loop closure times forTq,Q occurring before or at time {q,Q. If {q,Q
is a loop closure time for Tq , the result follows from Lemma 3.11. □

5.2 Discussion and outlook

The results obtained above open the road to several very natural questions related to the critical
mating of trees picture. We will describe some of those below. Roughly, they can be stated as
follows:

1. Can one obtain a version of critical mating of trees where there is bi-measurability between the
decoratedLQGsurface and the pair of Brownianmotions (with possibly additional information
included)?

2. There is an interesting relation to growth-fragmentation processes studied in [1]. Can one
combine these two point of views in a fruitful way?

3. The Brownian motion $ encodes a distance of each point to the boundary, and in particular
between any CLE4 loop and the boundary. What is its relation to the CLE4 metric introduced
in [59]?

4. Can one prove convergence of observables in critical FK-decorated random planar maps
toward the observables in the critical mating of trees picture?
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504 ARU et al.

Let us finallymention that there are also other interesting questions in the realmof critical LQG,
for example, the behavior of height functions on top of critical planar maps, which are certainly
worth exploring too.

5.2.1 Measurability

In the subcritical mating of trees, that is, when !′ > 4, / < 2 and we consider the coupling(,)-, )*+, .-) described in the introduction or in Section 5 (for simplicity without subscripts), [18]
proves that in the infinite-volume setting the pair (,)-, )*+) determines .- and vice versa. In par-
ticular, (,)-, )*+) can be obtained from .- via a measurable map. This result is extended to the
finite volume case of LQG disks in [2].
By contrast, some of this measurability gets lost when we consider our critical setting. The

easier direction to consider is whether (,)-, )*+) determine .-. In the subcritical case this comes
basically from the construction, and it does not matter what we really mean by ,)-: the nested
CLE!′ , the space-filling SLE!′ and the radial exploration tree of CLE!′ are all measurable with
respect to one another. This, however, gets more complicated in the critical case. First, the ques-
tion of whether the nested CLE4 determines the uniform exploration tree of CLE4 is already not
straightforward; this is a theorem of an unpublished work [59]. Moreover, the nested CLE4 no
longer determines the space-filling exploration from Section 3: indeed, we saw that to go from the
uniform exploration tree to the ordering on points, some additional order variables are needed.
These order variables are, however, the onlymissing informationwhen going from (,)-, )*+) to .-:
the conclusion of Theorem 5.5 is that when we include the order variables in ,)- (in other words
consider the space-filling exploration) then indeed .- is measurable with respect to (,)-, )*+).
In the converse direction, things are trickier. In the coupling considered in this paper, .- does

not determine the pair (,)-, )*+); however, we conjecture that (,)-, )*+) is determined modulo a
countable number of ‘rotations’. Informally, one can think of these rotations as follows: a rotation
is an operation where we stop the CLE4 exploration at a time when the domain of exploration
is split into two domains d and d′, we consider the LQG surfaces (d,ℎ) and (< ⧵ d,ℎ), and we
conformally weld these two surfaces together differently. The field and loop ensemble (,̂)-, )̂*+)
of the new surface will be different than the pair (,)-, )*+) of the original surface, but their law
is unchanged if we choose the new welding appropriately (for example, if we rotate by a fixed
amount of LQG length), and .- is pathwise unchanged. Therefore performing such a rotation gives
us two different pairs (,)-, )*+) and (,̂)-, )̂*+)with the same law, andwhich are associatedwith the
same .-. We believe that these rotations are the only missing part needed to obtain measurability
in this coupling. In fact, by considering a different CLE4 exploration, where loops are pinned
in a predetermined way (for example, where all loops are pinned to some trunk, such as in, for
example, [36]), one could imagine obtaining a different coupling of (,)-, )*+, .-), where .- does
determine (,)-, )*+).
5.2.2 Growth fragmentation

We saw below the statement of Theorem 5.5 how certain observables in the Brownian excursion .-
map to observables (for example, quantum boundary lengths and areas of discovered CLE loops)
in (,)-, )*+), when we restrict to a single uniform CLE4 exploration branch. Given the definition
of the branching CLE4 exploration (recall that the explorations toward any two points coincide
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exactly until they are separated by the discovered loops and then evolve independently) this is one
way to define an entire branching process from the Brownian excursion.
In fact, this embedded branching processwas already described completely, and independently,

in an earlier work of Aïdekon and Da Silva [1]. Namely, given ^ = ($,%) with law as in Theo-
rem 5.5, one can consider for any j ⩾ 0 the countable collection of excursions of ^ to the right
side of the vertical line with horizontal component j. Associated with each such excursion is
a total displacement (the difference between the vertical coordinate of the start and end points)
and a sign (depending onwhich of these coordinates is larger). In [1], the authors prove that if one
considers the evolution of these signed displacements as j increases, then one obtains a signed
growth fragmentation process with completely explicit law. The fact that this process is a growth
fragmentationmeans, roughly speaking, that it can be described by the evolving ‘mass’ of a family
of cells: the mass of the initial cell evolves according to a positive self-similar Markov process, and
every time this mass has a jump, a new cell with exactly this mass is introduced into the system.
Each such new cell initiates an independent cell systemwith the same law. In the setting of signed
growth fragmentations, masses may be both positive and negative.
In the coupling (,)-, )*+, .-), such a growth fragmentation is therefore naturally embedded in.-. It corresponds to a parameterization of the branching uniform CLE4 exploration by quantum

natural distance from the boundary (that is, by the value of the $ component), and branching
occurs whenever components of the disk become disconnected in the exploration. At any given
time, the absolute mass of a fragment is equal to the quantum boundary length of the correspond-
ing component, and the sign of the fragment is determined by the number of CLE4 loops that
surround this component.
Let us alsomention that growth fragmentations in the setting of CLE on LQGwere also studied

in [43, 44], and coincide with the growth fragmentations obtained as scaling limits from random
planar map explorations in [12]. Taking ! → 4 in these settings (either ! ↑ 4 in [43] or ! ↓ 4 in
[44]) is also very natural and would give other insights about ! = 4 than those obtained in this
paper. Lehmkuehler takes this approach in [36].

5.2.3 Link with the conformally invariant metric on CLE4
Recall the uniformCLE4 exploration from Section 2.1.5, which was introduced byWerner andWu
[64]. Werner and Wu interpret the time 5 at which a loop  of the CLE4 Γ is added, with the time
parameterization (2.8), as the distance of  to the boundary F<; we refer to it here as the CLE4
exploration distance of  to F<. In an unpublished work, Sheffield, Watson and Wu [59] prove
that this distance is the distance as measured by a conformally invariant metric on Γ ∪ {F<}. This
metric is conjectured to be the limit of the adjacency metric on CLE!′ loops as !′ ↓ 4. It is also
argued in [59] that the uniform exploration of Γ is determined by Γ.
Our process $ also provides a way to measure the distance of a CLE4 loop  to F<, as we pre-

viously discussed below (5.3) in the case of a point. Namely, for an arbitrary point B enclosed by define

5() ∶= �ℎ(∪>∈§B> ⧵ int()), (5.8)

where int() ⊂ < is the domain enclosed by . It is not hard to see that 5() does not depend on
the choice of B. We call $5() the quantum natural distance of  to F<. Note that $5() can also
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be defined similarly as in (5.2) by counting the number of CLE4 loops of length in (J∕2, J) that
are encountered before  in the CLE4 exploration and then sending J → 0 while renormalizing
appropriately. We remark that, in contrast to the CLE4 exploration distances, we do not expect
that the quantum natural distances to the boundary defined here correspond to a conformally
invariant metric on Γ.
It is natural to conjecture that the CLE4 exploration distance and the quantum natural distance

are related via a Lamperti type transform

$5() = c0 ∫ C
0 ~ℎ(Fd5)H5 (5.9)

for some deterministic constant c0 > 0, where C is the CLE4 exploration distance of a loop fromF< and for 5 ∈ [0,C), d5 is the connected component containing  of <minus the loops at CLE4
exploration distance less than 5 from F<. This is natural since the distances are invariant under
the application of a conformal map (where the field ℎ is modified as in (4.1)), since the CLE4
exploration is uniform for both distances (so if two loops,′ haveCLE4 exploration distance 5, 5′,
respectively, to F< then 5 < 5′ if and only if$5() < $5(′)), and since the left and right sides of (5.9)
transform similarly upon adding a constant c to the field ℎ (namely, both sides are multiplied by=c). Proving or disproving (5.9) is left as an open problem.We remark that several earlier papers [7,
26, 30, 54, 57] have proved uniqueness of lengths or distances in LQG via an axiomatic approach,
with axioms of a rather similar flavor to the above, but these proofs do not immediately apply to
our setting.

5.2.4 Discrete models

Themating of trees approach to LQG coupledwith CLE is inspired by certain randomwalk encod-
ings of random planar maps decorated by statistical physics models. The first such encoding is
the hamburger/cheeseburger bijection of Sheffield [58] for random planar maps decorated by the
critical Fortuin–Kasteleyn random cluster model (FK-decorated planar map).
In the FK-decorated planarmap each configuration is a planarmapwith an edge subset, whose

weight is assigned according to the critical FKmodel with parameter ' > 0. Sheffield encodes this
model by five-letter words whose symbol set consists of hamburger, cheeseburger, hamburger
order, cheeseburger order and fresh order. The fraction � of fresh orders within all orders is given
by

√' = 2�1−� . As we read the word, a hamburger (respectively, cheeseburger) will be consumed
by either a hamburger (respectively, cheeseburger) order or a fresh order, in a last-come-first-serve
manner. In this setting, the discrete analog of our Brownianmotion ($,%) is the net change in the
burger count and the burger discrepancy since time zero, which we denote by (?,?).
It was proved in [58] that 1(5∕12 ,5∕12 ) converges in law to (%15 ,%2�5), where %1,%2 are inde-

pendent standard one-dimensional Brownian motions and � = max{1 − 2�, 0}. When � ∈ (0, 12 ),
the correlation of (%15 + %2�5,%15 − %2�5) is the same as for the left and right boundary length pro-
cesses of space-filling SLE!′ decorated /-LQG (cf. Theorem 4.12) where ' = 2 + 2 cos(8P∕!′) and/2 = 16∕!′. This is consistent with the conjecture that under these parameter relations, LQG cou-
pledwithCLE (equivalently, space-filling SLE) is the scaling limit of the FK-decorated planarmap
for ' ∈ (0, 4). Indeed, based on the Brownian motion convergence in [58], it was shown in [22, 28,
29] that geometric quantities such as loop lengths and areas converge as desired.
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When ' = 4 and � = 12 , we have %2�5 = 0, just as in the !′ ↓ 4 limit of LQG coupled with CLE,
where the correlation of the left and right boundary length processes tend to 1. We believe that
the process (15∕12 , Var[1−2 ]−15∕12 ) converges in law to (%15 ,%25 ); moreover, based on this con-
vergence and results in our paper, it should be possible to extract the convergence of the loop
lengths and areas for FK decorated planar map to the corresponding observables in critical LQG
coupled withCLE4. We leave this as an open question. It would also be very interesting to identify
the order of the normalization Var[1−2 ]−1, which is related to the asymptotic of the partition
function of the FK-decorated planar map with ' = 4.
Anothermodel of decorated randomplanarmaps that is believed to converge (after uniformiza-

tion) to CLE decorated LQG is the O(?) loop model, where the critical case ! = 4 corresponds to? = 2. It is therefore also interesting to ask whether our Brownian half-plane excursion .- can
be obtained as a scaling limit of a suitable boundary length exploration process in this discrete
setting. In fact, a very closely related question was considered in [15], where the authors iden-
tify the scaling limit of the perimeter process in peeling explorations of infinite volume critical
Boltzmann random planar maps (see [14] for the relationship between these maps and the O(2)
model). Modulo finite/infinite volume differences, this scaling limit, which is a Cauchy process,
corresponds to a single ‘branch’ in our Brownian motion (see Section 5.2.2).
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