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Abstract

Two-pointed quantum disks with a weight parameter W > 0 are a family of finite-area
random surfaces that arise naturally in Liouville quantum gravity. In this paper we
show that conformally welding two quantum disks according to their boundary lengths
gives another quantum disk decorated with an independent chordal SLE.(p—; p+)
curve. This is the finite-volume counterpart of the classical result of Sheffield (2010)
and Duplantier-Miller-Sheffield (2014) on the welding of infinite-area two-pointed
quantum surfaces called quantum wedges, which is fundamental to the mating-of-
trees theory. Our results can be used to give unified proofs of the mating-of-trees
theorems for the quantum disk and the quantum sphere, in addition to a mating-of-
trees description of the weight W = g quantum disk. Moreover, it serves as a key
ingredient in our companion work, which proves an exact formula for SLE. (p—; p+)
using conformal welding of random surfaces and a conformal welding result giving
the so-called SLE loop.
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1 Introduction

Liouville quantum gravity (LQG) is a theory of random surfaces with close connections
to conformal field theory and random planar maps [Pol81, Dav88, DK89]. For v € (0,2),
the random area measure of a v-LQG surface is of the form e7"d?z where h is a variant of
Gaussian free field and d?z is the Euclidean area measure. Although h is only a Schwartz
distribution which is not pointwise defined, the area measure ¢’"d?z can be understood
by regularizing h and taking a renormalized limit [DS11]. This construction falls into the
general framework of Gaussian multiplicative chaos; see [Kah85, RV14]. Recently the
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Conformal welding of quantum disks

metric associated with LQG surfaces was also rigorously constructed by regularizing the
field [DDDF20, GM21].

Quantum wedges are a natural family of infinite-area v-LQG surfaces with two marked
points on the boundary. Neighborhoods of one point have finite v-LQG area, whereas
neighborhoods of the other one have infinite v-LQG area. A quantum wedge is associated
with a weight parameter W > 0 which describes the singularity at the two marked
points.

A particularly fruitful approach to studying LQG is through its coupling with Schramm-
Loewner evolutions (SLE), which are an important family of conformally invariant random
planar curves associated with a parameter « > 0 [Sch00]. A key LQG/SLE coupling result
is the conformal welding of quantum wedges. For p1, ps > —2, SLE,(p1; p2) is a variant
of SLE,; see Section 2.7. The following result was proved in [DMS14], see Figure 1 for
an illustration.

Set k = +2. For Wy, W, > 0, a weight (W1 +Ws) v-LQG quantum wedge W cut
by an independent SLE,,(W; —2; W5 —2) curve 7 yields two independent v-LQG
quantum wedges W, and W2 of weights W, and W5, respectively. Moreover,
(W, n) is measurable with respect to the quantum surfaces (W;, Ws). (See
Theorem 2.26 for the full statement.)

The conformal welding result for quantum wedges is arguably one of the deepest facts
in random planar geometry. It was proved by Sheffield in [Shel6a] when W; = Wy =2
and generalized in [DMS14]. It is a key input to the mating-of-trees theory of Duplantier,
Miller, and Sheffield [DMS14], which is a powerful framework to study SLE and LQG via
Brownian motion, and is fundamental to the link between LQG and the scaling limits of
random planar maps. See [GHS19] for a survey.

\ARBAR

Figure 1: The conformal welding of quantum wedges [DMS14]. Left. The case Wy, W, >
2 2

%, so each quantum wedge has the disk topology. Right. The case W; > 4 > Wy,

so the second quantum wedge is a chain of disks. Not 111ustrated is the case where

Wi, Wy < L-and Wy + Wy > 7 and the case where Wy + W5 <

For each weight parameter W > 1- there is also an infinite measure on v-LQG sur-
faces with finite v-LQG area called the ( two-pointed) quantum disk of weight W [DMS14].
Quantum disks can be considered the finite-area analog of quantum wedges, and they
also have the topology of a disk with two boundary marked points. We extend the
definition of the quantum disk to W € (0, 772) in Section 2.4, and we view them as the
finite-area analog of quantum wedges of weight W. In this regime, the topology of
quantum wedges and disks is given by a chain of countably many disks; see Figures 1
(right) and 2 (right) for an illustration.

A main result of this paper, Theorem 2.2, is the conformal welding of quantum disks,
which can be informally stated as follows; see Figure 2.

Set k = v2. For W, W5 >0, a weight (W7 + Ws) v-LQG quantum disk D cut
by an independent SLE,(W; — 2; W, — 2) curve 7 yields two quantum disks
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D1, Dy which are conditionally independent given the v-LQG length ¢ of 7;
the conditional law of D; (resp. D») is a weight W; (resp. W>) quantum disk
conditioned on having right (resp. left) boundary arc of length ¢. Moreover,
(D, n) is measurable with respect to the quantum surfaces (D1, Ds).

We similarly show in Theorem 2.4 that cutting a quantum sphere by a certain SLE-type
curve yields a quantum disk. Quantum spheres are quantum surfaces with the topology
of the two-pointed sphere. This result is the finite-area analog of [DMS14, Theorem
1.4], which states that a quantum cone cut by a certain SLE-type curve results in a
quantum wedge. Using [MMQ19], the conformal welding of weight 2 quantum wedges
was extended to the critical case v = 2 and « = 4 in [HP18]. We believe our results
extend to v = 2 via similar considerations; see Remark 2.8.

O-00 Q-0

Figure 2: Theorem 2.2 describes the conformal welding of quantum disks. The cases
2 2
W1, Wa > % (left) and Wy > % > W (right) are illustrated here.

Our proof relies on the intuition that the quantum disk can be obtained from a
quantum wedge by creating and pinching a suitable bottleneck, see the proof outline
towards the end of the introduction for more details. Using our approach, the mating-of-
trees theorems for the quantum sphere and disk can be easily deduced, as we sketch in
Section 7.1. These results were originally proved in [MS19, AG21, DMS14].

In Section 7.2 we give a mating-of-trees description of the weight-%2 quantum disk.
This allows us to express the area and boundary length distribution of this disk in terms
of Brownian motion, and, using properties of Brownian motion, we get an explicit formula
for the joint law of the two boundary lengths.

Our paper is a key ingredient of several concurrent works. In our companion papers,
we prove an exact formula for SLE, (p_; p+) [AHS21] and establish a conformal welding
result for the SLE loop [Zha21] on the quantum sphere [AHS22]. Both papers crucially
rely on the conformal welding result proved in this paper, while the first paper also uses
the integrability result of the weight—%2 quantum disk. In the joint work of the first and
third authors with Remy [ARS21], another conformal welding result is proved based on
our result to prove the so-called FZZ formula in Liouville conformal field theory (LCFT).
More generally, conformal welding of finite-area quantum surfaces is a cornerstone of
the ongoing program of the first and third authors proving exact results for SLE, LCFT
and mating-of-trees by exploring their connections; see [AS21] for another example.

It has been shown in various senses that random planar maps weighted by certain
statistical physics models converge to certain v-LQG random surfaces, where v depends
on the choice of model. For instance, random planar maps with the disk topology
decorated by an FK cluster model, Potts model, or O(n)-loop model with monochromatic
boundary conditions should converge to v-LQG quantum disks with weight 2 for some
v € (v/2,2) in the scaling limit. This was first demonstrated by the pioneering work of
[Shel6b] for the FK cluster model. See [GHS19] for a comprehensive review on the
relation between LQG and random planar maps. Applying our results to W; = Wy = 2
implies that if the boundary condition is Dobrushin (rather than monochromatic), then
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the limiting surface should be a weight 4 quantum disk. Moreover, the natural chordal
interface associated with the Dobrushin boundary condition should converge to SLE,

with £ = 42. In the sense of metric geometry for v = \/g, this follows from the work
of Gwynne and Miller [GM19], where the decorating model is the self avoiding walk;
see Remark 2.6. For Ising-weighted maps (y = V3), [CT20] proves interesting results
consistent with this picture; see Remark 2.7.

Proof idea for disk+disk=disk welding result (Theorems 2.2 and 2.3). We derive
our result from its counterpart for quantum wedges. The crucial step is to define a proper
“bottleneck” around the origin of a weight W > g quantum wedge and, roughly speaking,
condition on the bottleneck being small and the pinched region being large; under such
conditioning, the pinched region becomes close in some sense to a weight W quantum
disk. If one then cuts the weight W quantum wedge (using an SLE,(W; — 2; W, — 2)
curve) into two quantum wedges of weights W7, W5, one expects that each of these
is pinched to get quantum disks of weights W7, W5, as desired. The idea of creating
a disk (or sphere) by pinching a wedge (or cone) has also been considered in e.g.
[DMS14, MS19, AG21, MSW20].

While the high level picture is clear, a direct implementation of this argument seems
exceedingly difficult when Wy, Wy > "2—2 because it is hard to define a tractable bottleneck
event which pinches all three quantum wedges Wi, W,, W to yield quantum disks. For
instance, if one defines a bottleneck for each quantum wedge W;, W,, then these
bottlenecks together should be a bottleneck for W, but the analysis of this bottleneck on
W must consider the conformal welding of Wy, W.

To resolve this, the key insight is our new definition of quantum disks with weight
W' < g Weight W’ quantum wedges are defined as an infinite Poissonian chain of
weight (y2 — W’) quantum disks, and we define a weight W’ quantum disk as a finite
truncation of this chain. Consequently, it is easy to “pinch” a weight W’ quantum wedge
to obtain a weight W’ quantum disk, and this enables us to define a tractable bottleneck
for the above proof sketch when Wy, Wy < 72—2 and Wy + W5 > “’2—2

The same argument shows that for W1, ..., W, € (0, 72—2) with W =5>"W, > z, cutting
a weight W quantum disk by a certain collection of SLE-type curves yields a collection
of quantum disks with weights W1, ..., W,,. Soft arguments then allow us to remove the
weight restrictions, yielding the full theorem.

Paper outline. We give preliminaries and state our conformal welding results (The-
orems 2.2, 2.3, and 2.4) in Section 2, and we prove these results in Sections 3-6. In
Section 7 we give alternative proofs of finite area mating-of-trees theorems, in addition
to giving a novel mating-of-trees representation of the weight W = 'YQ—Q quantum disk. A
more detailed overview of Sections 3-6 can be found at the end of Section 2.

2 Definition of LQG surfaces and statement of the conformal weld-
ing results

The main goal of this section is to precisely state our conformal welding results
and give sufficient background to make these statements. In Section 2.1 we give some
preliminaries, and then we state the conformal welding results in Section 2.2. Some
quantum surfaces and curves are only discussed at high level in Section 2.2, and the rest
of this section is devoted to introducing these random objects. In Section 2.3 we define
quantum wedges, sphere and cones, in Section 2.4 we introduce the thin quantum disk,
and in Section 2.5 we explain some basic properties of quantum disks. In Section 2.6 we
carry out the disintegrations of quantum disks with respect to boundary arc lengths. In
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Section 2.7 we explain some SLE preliminaries. Finally we give an outline for the rest of
the paper in Section 2.8.

2.1 Preliminaries

We define the Neumann Gaussian free field (GFF) on the strip S := R x (0, 7); the
definition extends to other domains by conformal invariance. With slight abuse of
notation we sometimes consider S as a subset of R? and other times of C, so for instance
{0} x [0, 7] is also written as [0,in]. We also write R} := (0,00), R_ := (—00,0) and
Si = Ri X (O,ﬂ').

Consider the space of smooth functions on S with bounded support and mean zero
on [0,¢7], and define the Dirichlet inner product

(f,9)v = % /S V£(z)-Vyg(z)d*z.

Let H(S) be the Hilbert space closure of this space with respect to (-, )y. Then the
Neumann GFF on S normalized to have mean zero on [0, i7] is the random distribution

h= iaifia
=1

where (a;)$2, are i.i.d. standard Gaussians and (f;)$2, is an orthonormal basis for H(S);
one can show the law of i does not depend on the choice of (f;);2,. The above summation
does not converge in H(S), but a.s. converges in the space of distributions [DMS14,
Section 4.1.4].

Define H,y(S) C H(S) (resp. Hiat(S) C H(S)) to be the space of functions which are
constant (resp. have mean zero) on every vertical segment [¢,¢ + i7] for ¢t € R. Then
H(S) = Hav(S) ® Hiat(S) is an orthogonal decomposition, so we have a decomposition
h = h., + hia into its average and lateral components, where h,, (resp. hia;) is constant
(resp. has mean zero) on each segment [t,t + in|, and h,, and hj,; are independent.
With slight abuse of notation, we call h,, and hj,; the projections of h to H,,(S) and
Hiat(S). See [DMS14, Section 4.1.6] for more details. In this paper, we mainly consider
generalized functions which are GFFs plus (possibly random) continuous functions; we
call these fields. For a field ¢ on S, we write ¢, for the average of ¢ on [t,t + in], and
identify the projection of ¢ to H,y(S) with the function (¢y)¢cRr.

In this paper, we will always consider LQG with parameter v € (0,2), and write
Q= % + % We will often keep the dependences on ~ implicit for notational simplicity.
Let

DH :={(D,h) : D C Cisopen, his a distribution on D}.

We will typically take h to be a variant of the GFF. For (D, h), (D, h) € DH, we say that
(D, h) ~. (D, h) if there exists a conformal map ¢ : D — D such that

h=hog+Qlog|y|. (2.1)

For v € (0,2), a v-LQG surface (or quantum surface) is an equivalence class of pairs
(D, h) € DH under the equivalence relation ~., and an embedding of a quantum surface
is a choice of representative (D, h) from the equivalence class. We sometimes abuse
notation and let (D, h) denote a v-LQG surface (i.e., an equivalence class) rather than
an embedding of this v-LQG surface; the meaning will be clear from the context. We
often want to decorate a quantum surface by one or more marked points or curves. In
this case we define equivalence classes via (2.1), and further require that the conformal
map ¢ maps decorations on the first surface to corresponding decorations on the second
surface.
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We frequently consider non-probability measures in this paper, and extend the usual
language of probability theory to this setting. Precisely, consider a triple (2, F, M) with
Q a sample space, F a o-algebra on 2, and M : F — [0, 0] a measure (not necessarily
with M (Q2) = 1). If X is a F-measurable function (“random variable”), its law is the
pushforward measure Mx = X, M. We write X ~ My and say that X is sampled from
Mx. Weighting the law of X by f(X) € R, corresponds to defining the measure Mx

via the Radon-Nikodym derivative % = f. For an event F € F with M[E] € (0,00),
M[-NE]
MIE]

conditioning on F yields the probability measure
(E,]:E) with Fg = {SﬂE : Se .7:}

For W > g the weight W quantum disk was introduced in [DMS14, Section 4.5] in
terms of Bessel processes (see also [GHS19, Section 3.5]). Since this quantum surface
has the topology of the disk, we will call it a thick quantum disk.

Definition 2.1 (Thick quantum disk). For W > 772 write 1= 3 +Q — % Let

on the measurable space

Y_{th—(Q—ﬁ)t ift>0
T BLa+ (Q Bt ift<0

where (B;)s>0 is standard Brownian motions conditioned on Bys — (Q — 5)s < 0, and
(525)520 is an independent copy of (B;)s>o. Let ?Lav(z) = YRe. for each z € S, let ?Llat
be the projection of an independent GFF to H,,+(S), and let P be the law of the field
Nay + hiat. Sample (h, ¢) from the infinite measure P x Ze(A=Q)edc and let i = h+c. Let
MGK(W) be the law of the quantum surface (S, 1), +oc, —oc). We call a sample from
MISK (W) a quantum disk of weight W.

Note that M$SK(W; ¢, ¢') is a measure on v-LQG quantum surfaces with dependence
on ~ implicit. Although the Brownian motions are conditioned on a probability zero event,
they can be understood by limiting procedures. Alternatively, with § = 2 4 %(Q — f3), the
process (Bas — (Q —f)s)s>0 conditioned on Bys —(Q —5)s < 0 for all s > 0 can be sampled
by running a dimension (4 — ) Bessel process (Z;)|o,,] started from Z, = 0 until the first
time 7 that Z, = 1. Then (Ba; — (Q — 8)t)¢>0 is the time-reversal of (% 108 Zt)te(o,-] With
time reparametrized in [0, c0) so the process has quadratic variation 2dt.

Definition 2.1 is a rephrasing of [DMS14, Definition 4.21] using the Bessel process
description [DMS14, Remark 3.7] (see also [PY82]). The law of ¢ corresponds to the fact
that the maximum value of a dimension § = 2 + %(Q — ) Bessel excursion has the power
law 1,,,50m?3dm.

In Section 2.4 we will extend the definition of M3™k(1/) to W € (0, 7—;) and call these
quantum surfaces thin quantum disks. The adjective “thin” here is inherited from thin
quantum wedges defined in [DMS14].

2.2 Main results

In this section we state our conformal welding results. There are several definitions
and details which we only describe at high level; we discuss these more comprehensively
in later subsections.

We will want to conformally weld quantum disks according to the natural v-LQG
boundary measure called quantum length: If h on S is locally absolutely continuous with
respect to a Neumann GFF, then the quantum boundary length measure v, (dz) can be
defined as “ez"(®)dz” (this is done rigorously by mollifying and renormalizing [DS11]),
and satisfies for continuous g the scaling relation v, ,(dz) = €29y, (dz).

For k € (0,4) and p1,p2 > —2, in a simply connected domain with two marked
boundary points SLE, (p1; p2) is a conformally invariant chordal random curve between
these points, with SLE, = SLE(0;0) [LSW03, Dub05]. This is defined in [MS16a,
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Section 2.2] using Loewner evolutions; the details are not needed for our work so we
omit them. While ordinary SLE,; does not hit the domain boundary, when p; (resp. p2) is
strictly less than § — 2 the SLE,(p1; p2) curve a.s. hits the left (resp. right) boundary arc.
SLE, curves arise as the welding interface of v-LQG surfaces by quantum length when
k = 72, and hence one can define the v-LQG length of SLE,-type curves for x = v2 by
pushing forward the length measure along the boundary [Shel6a]. Here and in the rest
of the paper, we will take x = ~2.

We will define for W > 0 and ¢, ¢ > 0 the family of measures {M$K(W;¢,0)} s p~0
such that M$k(W; ¢, ¢') is supported on quantum surfaces with left and right boundary
arcs having quantum lengths ¢ and ¢/, respectively. This family satisfies

Mk (117 — //0 ME(W 0,y dede’ (2.2)

The relation (2.2) in fact characterizes M3(W, ¢, ') modulo a Lebesgue measure zero
set of values of (¢, ¢"). We will remove this ambiguity by introducing a suitable topology
in Sections 2.6 and 4 for which M$k(W, ¢, ¢') is continuous in ¢, ¢

When W > g we let M3SK(W; ¢, (') @ SLE,(p1; p2) denote the measure on curve-
decorated quantum surfaces obtained by taking a quantum disk (S,v,+00,—00) ~
MGisk(W; ¢, ¢") with an arbitrary embedding in S, independently sampling 1 ~ SLE, (p1; p2)
in (S, 400, —00), and outputting (S, v, +00,—00,n). When W € (0, 72—2) the measure
MISK(W;2,0") @ SLE,(p1; p2) corresponds to sampling independent SLE, (p1; p2)-curves
in each component of the thin quantum disk. We emphasize that for all W > 0 our
definition of the measure M3%(W; ¢, ¢') ® SLE,(p1; p2) does not depend on the choice of
embedding. The notation ® here emphasizes that this is not a product measure; indeed
the measure is on the space of curve-decorated quantum surfaces, rather than pairs of
quantum surfaces and curves (from which a curve-decorated quantum surface could be
produced if a choice of embedding is made).

For fixed /, /' /,, a pair of quantum disks from MSk(Wy; 2, 01) x MK (Wy; 04, 0')
can almost surely be conformally welded along their length ¢; boundary arcs accord-
ing to quantum length, to obtain a quantum surface with two marked points joined
by an interface locally absolutely continuous with respect to SLE,(W; — 2; Wy — 2).
See e.g. [Shel6a], [DMS14, Section 3.5] or [GHS19, Section 4.1] for more details on
the conformal welding of quantum surfaces. In the following theorem, we identify
MG (W50, 01) x MGSK(Wa; 44, ) with the law of the curve-decorated quantum surface
obtained from conformal welding.

Theorem 2.2 (Conformal welding of quantum disks). Suppose Wy, W5 > 0. There exists
a constant cw, w, € (0,00) such that for all ¢,¢' > 0, the following identity holds as
measures on the space of curve-decorated quantum surfaces:

MSiSk(Wl + Was 0, g’) ® SLER(W1 —2;Wa — 2)

=cwiws | MWl €r) x MK (Wo; 61, 0) . (2.3)

0
We now generalize to the multiple curve setting. For n > 1 and Wy,...,W,, > 0, we
define a conformally invariant probability measure P4sk(Wy, ..., W,,) on (n — 1)-tuples

of SLE,-type chordal curves in a simply connected domain with two marked points. This
is a special case of multiple SLE; see Section 2.7 for a precise definition. We note that
if (1, p—1) ~ PYSE(W4,...,W,,), then for j = 0,...,n — 1, a.s. n; and n;;; intersect
(other than at their endpoints) if and only if W; < 772 ; here n9 and 7,, denote the domain
boundary arcs.
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We define M3sk(W; ¢, 0') @ PLsk(Wy, ..., W,,) in the same way as MIK(W; /(') @
SLE(p1; p2), and emphasize that this is a measure on curve-decorated quantum surfaces
(with no dependence on embedding).

Theorem 2.3 (Welding multiple disks). Forn € {2,3,...}, consider Wy,...,W,, > 0 and

W =), W,. There exists a constant cy, .. w, € (0,00) such that for all £,{' > 0, the
following identity holds as measures on the space of curve-decorated quantum surfaces:

MKW 0,0) @ PEK(WA, ..., W)

—cwan, [ MERWs 0 0) 5 MV 01, 02)
0
X oo MESKW 0, 0 dey L dl, . (2.4)

Here the integrand on the right hand side is understood as the law of the quantum
surface decorated by n — 1 curves obtained from conformal welding.

Now, we treat the case of quantum spheres. For each W > 0 there is a natural
infinite measure M3"" (W) on sphere-homeomorphic doubly-marked quantum surfaces
called weight W quantum spheres (see Section 2.3). We can also define a conformally
invariant probability measure PSph(Wl, ..., Wy,) on n-tuples of curves in the Riemann

sphere between two marked points (see Section 2.7).

Theorem 2.4 (The quantum sphere case). Forn > 1, consider W1, ...,W,, € (0,00) and
W =", W;. There is a constant ¢y, .. w, € (0,00) such that the following identity holds
as measures on curve-decorated quantum surfaces:

MEPM(W) @ PR (W, ..., W)

X oo X MSSE (Wb, 1, o) dby ... dly, .

Finally, we comment on several works related to Theorem 2.2.

Remark 2.5 (Relation to [MSW20]). [MSW20, Lemma 3.3] is a version of Theorem 2.2
for v > /2 and weights W, = 2 and W, € (0,7% — 2). They identify the law of the left
quantum surface as M$%(2), and note that conditioned on the left boundary lengths of
the components of the right quantum surface, it is a conditionally independent collection
of weight v? — W, quantum disks.

Remark 2.6 (Relation to [GM19]). The argument of [GM19, Theorem 1.5] can be adapted
to show that the free Boltzmann chordal-self-avoiding-walk-decorated quadrangulation of
the disk converges in the Gromov-Hausdorff-Prokhorov-uniform topology to the welding
of %-LQG quantum disks of weight 2 along a boundary arc. Theorem 2.2 identifies
this limit as a weight 4 quantum disk decorated by an independent SLEg/3 curve. This
establishes a scaling limit result of self-avoiding walks to SLEg/3, and can be considered
a finite-area analog of [GM16, Theorem 1.1]. Moreover, based on [GM19] and our Theo-
rem 2.4, we prove in [AHS21, Theorem 6.10] that random quadrangulations decorated
by a self-avoiding polygon converge to a quantum sphere decorated by an SLE loop.
Remark 2.7 (Relation to [CT20]). Theorem 2.2 implies that when a weight W; + W5 quan-
tum disk conditioned to have boundary arc lengths ¢, ¢’ is decorated by an independent
SLE, (W, — 2; W5 — 2), then the law of the interface length L is given by

P[L € da] = Z7' | MG (W1, £, 2) || MG (Wa, 2, )], (2.5)

where 7 is the normalizing constant. In fact, by scaling and resampling properties of the
. _4 _
weight 2 quantum disk we have |MJ%(2, ¢, z)| = C(¢ + 2)">* ' for all £,z > 0 for some

EJP 28 (2023), paper 52. https://www.imstat.org/ejp
Page 8/50


https://doi.org/10.1214/23-EJP943
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Conformal welding of quantum disks

constant C' > 0, and consequently, for v = V3 and W, = W, = 2 the law (2.5) agrees with
the scaling limit result of [CT20, Equation (46)] for the critical Boltzmann triangulation
of the disk decorated by an Ising model with Dobrushin boundary conditions. The
computation identifying (2.5) and this limit law is carried out (in different language)
immediately after [CT20, Equation (46)].

Remark 2.8. We have only stated Theorems 2.3 and 2.4 for the subcritical case k =
~% € (0,4) but we expect that they also hold in the critical case k = 42 = 4 via similar
techniques as in Appendix A and [HP18] (where the latter work builds on [APS19,
MMQ19]). To carry out such an argument, we would take the subcritical theorems as
input and take the limit v 1 2 similarly as in Appendix A, but using additional ingredients
from [HP18, APS19, MMQ19].

2.3 Quantum wedges, spheres and cones

In this section, we recall the definitions of various quantum surfaces frorzn [DMS14,
Section 4.2-4.5]. See also [GHS19, Sections 3.4-3.5]. We omit the weight % quantum
wedge description as it is not needed.

Definition 2.9 (Thick quantum wedge). For W > g let p:= 3 +Q — % (so B <
Q). Then Mvedee (1Y) is the probability measure on doubly-marked quantum surfaces
(8, h,+00, —0), where the field h has independent projections to H.,(S) and Hja.:(S)
given by:

) = [ Bu—(Q-pt ift>0
t'_{égt—(Q—ﬁ)t ift <0’

where (Bs)s>0, (Bs)s>0 are independent standard Brownian motions conditioned
on By, + (Q — B)s > 0 for all s > 0.
 The projection of an independent Neumann GFF on S to H..(S).

The thin quantum wedge arises as a concatenation of thick quantum disks.

Definition 2.10 (Thin quantum wedge). Fix W € (0, l;) and sample a Poisson point
process {(u,D,)} from the measure Lebr, ® M$"%(v> — W). The weight W quantum
wedge is the infinite beaded surface obtained by concatenating the D,, according to the
ordering induced by u. We write M"°¢(\W) for the probability measure on weight W

quantum wedges.

This agrees with the definition in [DMS14, Section 4.4]. Indeed, let M be the
excursion measure of a Bessel process with dimension less than 2, then a Bessel process
can be obtained by sampling a Poisson point process from Lebr, x M and concatenating
the excursions according to the ordering induced by the first coordinate.

Now we define analogs of quantum disks and wedges with no boundaries. For
notational simplicity we work in the cylinder C := R x [0,2n]/ ~, where we identify
R x {0} and R x {27} by the equivalence = ~ z + 27i. We can define H(C), H.v(C), and
Hiat(C) as in the strip setting, and thus make sense of the Neumann GFF in C with mean
zero on [0, 27i].

Definition 2.11 (Quantum sphere). For W > 0, write « = Q) — % Let

B, —(Q—a)t ift>0
Yi=4 3 . ;
B+ (Q-a)t ift<0

where (B;)s>o is standard Brownian motions conditioned on B, — (Q — 8)s < 0, and
(Bs)s>0 is an independent copy of (Bs)s>o. Let hay(z) = Yre, for each z € S, let hy,, be
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the projection of an independent GFF on C to H,.:(C), and let P be the law ofﬁav + lAzlat.
Sample (h, c) from the infinite measure P x ZeX@=Q)e de and let ¢ = I+ c. Let MPM (W)
be the law of the quantum surface (C, ¢, +oco, —00). We call a sample from M;ph(W) a
quantum sphere of weight W .

Definition 2.12 (Quantum cone). For W > 0, leta := Q — % (so a < @). Then Me"¢(W)

is the probability measure on doubly-marked quantum surfaces (C,E, +00, —00), where
the field h has independent projections to H..(C) and Hi.:(C) given by:

~ [ B—-(Q-a)t ift>0
' {B_t(Qa)t ift<0’

where (Bs)s>0, (Bs)s>0 are independent standard Brownian motions conditioned
on B; + (Q —a)s >0 forall s > 0.

 The projection of an independent Neumann GFF on C to H,.4(C).

2.4 Thin quantum disks

In this section we define the thin quantum disk with weight W € (0, 'y2—2) There is a
thin-thick duality W <> 42 — W in the sense that thin quantum disks are a Poissonian
chain of thick quantum disks from M%k(42 — IW). At first glance the nontrivial topology
of thin quantum disks seems unnatural, but this topology enables our arguments in this
paper and subsequent work, and we will see t}gat the thin quantum disks are the natural
analogue of thick quantum disks for W' < (0, %-).

In Definition 2.10, although the thin quantum wedge »V only comes with the ordering
on thick quantum disks and not the labels u, we will see in Corollary 2.14 that {(u,D,)}
is measurable with respect to WW. Therefore it makes sense to define the quantum cut
point measure which assigns mass x to the collection of cut points between the quantum
disks {D, : u < z}.

For each o € (0,1), a Lévy process (L:):>o is called an «-stable subordinator if it is
a.s. increasing and Y, 4 a'/*Y, [Ber96]. The following result is proved (in different
language) in [GHM15, Lemma 2.6]. See also Remark 2.17 for a succinct self-contained
proof.

Lemma 2.13. Consider a weight W € (0, l;) thin quantum wedge. Let L; denote
the total quantum length of the left boundary arcs of the thick quantum disks within
quantum cut point distance t of the root of the quantum wedge. Then (L;);>¢ is a stable
subordinator with exponent 1 — %/—VQV The same holds if L, is instead defined as the sum

of the right boundary arc lengths, or the sum of the perimeters.

Corollary 2.14 (Intrinsic definition of cut point measure). Parametrize the left (or right)
boundary of a thin quantum wedge by quantum length, and let T C R, be the set
corresponding to cut points along this boundary. Then the quantum cut point measure

is given by the (1 — 27@/)—M1'nkowski content measure of T multiplied by a deterministic
constant.

Proof. T is the range of the stable subordinator L; with exponent (1 — QW—‘;V), so the

(1 - 2,y”¥)-Minkowski content on 7 agrees (up to a deterministic constant) with the

pushforward of Lebesgue measure on R under the map ¢ — L; [HS19, Lemma 5.13]. O

We now introduce the infinite measure on thin quantum disks, and note that each thin
quantum disk is a concatenation of quantum surfaces with finite total area and boundary
length.
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Definition 2.15 (Thin quantum disk). For W € (0, 772), we can define the infinite measure
MIK(IW) on two-pointed beaded surfaces as follows. Sample T ~ (1 — %W)‘QLebR+,
then sample a Poisson point process {(u, D,)} from the measure Lebyg 1 Mdlbk( -Ww),
and concatenate the D,, according to the ordering induced by u.

The choice of constant (1 — %W)*2 will be justified in [AHS21, Section 3.2], where,
roughly speaking, we understand thin quantum disks as an “analytic continuation” of
thick quantum disks. The quantum cut point measure on a thin quantum disk is well
defined and measurable with respect to the thin quantum disk, see Corollary 2.14.

2.5 Basic properties of quantum disks

In this section, we discuss some basic properties of quantum disks. For a domain
(D, z,y) we define its left boundary arc to be the clockwise arc from x to y.
Lemma 2.16 (Thick quantum disk boundary length law). For a quantum disk of weight
W e [ ey ,7Q), the M$s&(W)-law of the quantum length of its left boundary arc is

ewt™ 22" de for some ey € (0,00). If W > ~Q, then the MIk(W)-measure of {left
boundary length € I} is infinite for any open interval I C R.
The same is true for the quantum length of the right boundary arc or whole boundary.

Proof. Write 8 = 2 4+ Q — % For 0 < L < L' we have, with (?L, ¢) as in Definition 2.1,

MgiSk[Vﬁ—kc(R) € (L’L/)] = HE|:/ 162 VA(R)G(L L") 26(,6 Qe dC:|

L'
2 — —

’

L
2 _ 2(8_ _
=E = E[VE(]R)W(Q B)} /L yv(ﬁ Q-1 dy,

L

2e
2¢

where we have used the change of variables y = e>“v;(R) (so dc = fy‘ldy) When

W e [7, ~7Q) (so ;(Q -0) < ?), the expectation is finite. This can be proved by Hélder’s
inequality as in the proof of [DMS14, Lemma A.4], or alternatively see [RZ20, Theorem

1.7 and (1.32)]. Since z(ﬁ Q) — 1 = —%W we conclude that the law of the left
boundary arc quantum length is ¢/ Wae, W > 7@ (so ;(Q - 6) > ,;%) then the
expectation is infinite [RV10, Proposition 3.5], as desired. O

Remark 2.17 (Proof of Lemma 2.13). Note that v2 — W > X, so by Lemma 2.16 the left

boundary length of a quantum disk from M$®k(y2 — W) has law H(dL) = cL™ 7 EOTWyr
for some ¢ € (0,00). Therefore, with A a Poisson point process on Lebr, x II(dL), L;
is given by the sum of L over all (u,L) € A with u < ¢, for ¢t > 0. Since IT is the Lévy
measure of a stable subordinator with exponent 722(72 -W)—-1=1-%% W by the Lévy-Itd
2w

decomposition we conclude that (L;):>¢ is a stable subordinator w1th exponent 1-— A

Lemma 2.18 (Thin quantum disk boundary length law). For W € (0, 72—2), the left bound-

ary length of a thin quantum disk from M$%(W) is distributed as CWZ_W%WdE for some
constant cyy € (0,00). The same is true for the right boundary length or the total
boundary length.

Proof. Let (L;);>0 be the stable subordinator of exponent o := 1 — 7 € (0,1) described
in Lemma 2.13 for the left boundary length. Writing C' = (1 — W)™, the Mg**(W)-
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measure of the event that the left boundary arc length lies in [a, b] is given by

oo oo
E[/ 1LT€[¢l,b]CdT:| =CE [/ Lpar,efay) dT]
0 0

b « a [e} b
—CE|[—) - (= = e>—tqe
(&) (@) ] [ema
where ¢y = CalE[L]“]. We are done once we check that E[L] *] < co. Since (L;);>¢ is a
stable subordinator with index a, we know E[e*1] = ¢~*" for some ¢ > 0 for all A > 0;

indeed we have AL 4 Ly« and, since (L¢);>( has nonnegative and stationary increments,
E[e~%t] = e~“. Hence

Ma)E[L7 ] = ]E[/ e‘ALlX"_ld)\} :/ e NN < o0 O
0 0

The exponent —%W in Lemmas 2.16 and 2.18 is natural in light of the following
lemma, which explains how the quantum disk measure scales after adding a constant
to the quantum disk field. We note that Lemmas 2.16 and 2.18 are not immediate
consequences of Lemma 2.19 as it does not yield finiteness/infiniteness of the constant
Cw .

Lemma 2.19 (Scaling property of quantum disks). For W > 0, the following procedures
agree for all A > 0:

 Sample a quantum disk from M$sk(V).
» Sample a quantum disk from A7%W+1M§iiSk(W) then add % log A to its field.

Proof. When W > 772 this is immediate from Definition 2.1 because of the constant term
2 WwW-1)2
c~ e( ;W3 dc (written here in terms of W rather than f3).
2
When W € (0, %), by the previous case the following procedures yield the same law

on beaded quantum surfaces for fixed 7" > 0:

+ Sample a Poisson point process from Lebjy 7] x Mg(y2 — W).
* Sample a Poisson point process from Leb  _ 2 2y, | x M3sk(y2 — W) then
& T

(0.7
add % log X to the field.

In Definition 2.15 we sample T from a multiple of Lebesgue measure, so the scaling by

2 (A2 2
AT (WL m W yields the claim for thin quantum disks. O

2.6 Definition of M$sk(W; ¢, ()
In this section, we explain the construction of the disintegration from (2.2), which is

MR (T17) = / /0 MIE(W 01 05 dby dls

where M$SK(W; ¢, {5) is supported on the set of doubly-marked quantum surfaces with
left and right boundary arcs having quantum lengths ¢, and /5, respectively.

We first give a self-contained introduction on disintegration of measures. See e.g.
[Bog07, Chapter 10.4] for a more comprehensive treatment. Suppose M is a o-finite
measure on a Radon space (X, X) and 7' : X — R" is a measurable function such that the
pushforward T, M is absolutely continuous with respect to Lebr~ (Lebesgue measure on
R™). Then there exists a collection of o-finite measures {M;, ...+, }(t,.,....t,)er» o0 (X, X)
such that:
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e My, .4, is supported on T (ty,...,t,) forall (t1,...,t,) € R™;

» For any A € X the function (t1,...,t,) — M, . ., [A] is measurable, and

n

M[A] = // My, .. 1, [Aldty ... dt,.

We call this collection {M;, . ..} a disintegration, and write M = [[[ My, . ., dti...dt,.
Disintegrations are unique in the sense that for any two disintegrations {M;, ..},
{]\Zl,.--,tn} we have My, = ]\Zl,.--,tn for Lebgr-a.e. (t1,...,t,).

We briefly justify the above claims on disintegrations. When M is a probability
measure we can take M; . to be the regular conditional probability distribution
multiplied by f(t1,...,t,), where T.M = f(t1,...,t,)Lebrn(dt;...dt,). Uniqueness
follows from that of regular conditional probability distributions [Kal02, Chapter 6]. The
extension to o-finite M follows by exhaustion.

If one can specify a choice of disintegration {M;, . } and a sufficiently strong
topology for which the map (¢1,...,t,) — My, .. ., is continuous, then the disintegration
is canonically defined for all (and not just a.e.) (¢1,...,t,). We will do this in detail for

the disintegration (2.2) for the case W > l; and sketch the necessary modifications for
2

W=

Let W > g and define the event
E¢ := {supyy > —C}. (2.6)
teR

We now provide an alternative description of Mk (V) restricted to the event E.

Lemma 2.20. For W > l; and 8 = 3 +Q — % with EC defined in (2.6), we have
MGHW)|g, = (25 —1)71el9=P)C . P.. Here, P is a probability measure on quantum
surfaces (S, 1, +0o, —oco) where the field ¢ has independent projections to H.,(S) and
Hiat(S) given by:

W ._{ ~(+ By — (Q-P)t  ift>0
T ¢+ B+ (Q- Bt ift<0”

where (Bs)s>0, (Bs)s>0 are independent standard Brownian motions conditioned
on By — (Q — B)s < 0 for all s > 0.
¢ The projection of an independent Neumann GFF on S to H.4(S).

Proof. [AG21, Proposition 2.14] explains that MZ** conditioned on E gives the prob-
ability measure F;. To conclude we observe that M§™*(W)[E¢] = [ ZelP=Qede =
Q- B)le@=A) = (27‘{2‘/ — 1) te@=A), 0

The following lemma provides a decomposition of ¢ into independent components.
Lemma 2.21. Fix ( € R and a pair of arbitrary functions f1, fo € H2(S) such that f;
(resp. f2) is supported on [0,1] x [0, 7] (resp. [0,1] x [§,n]) and is positive on the interval
(0,1) (resp. (im,im + 1)), and f1 and f, have Dirichlet energy 1. For i) ~ P sampled
as in Lemma 2.20, we have the following decomposition of v into four independent
components:

Y=vrt+aifitafat+y-. (2.7)
Here ay, a0 ~ N(0,1), ¥4 + a1 f1 + s f5 is a distribution which is harmonic in S_, and 1)_
is a distribution supported in S_. The process (()—)_¢)i>0 4 (Bar — (Q — B)t)1>0 where
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(Bs)s>0 is standard Brownian motion conditioned on By, — (QQ — 8)t <0 for allt > 0, and
independently the projection of v_ to H2(S) agrees in distribution with the projection
to H2(S) of a GFF on S_ with Neumann boundary conditions on 0S_\[0,iw] and zero
boundary conditions on [0, iw].

Proof. Let the projection of 1, to H.y,(S) be given by (v ); = —( fort < 0 and (4 ); = 9
for ¢ > 0. Let the projection of ) to H.,(S) be given by (_); = ¢y + ( for t < 0 and
(v_)y=0fort > 0.

Now we describe the (independent) projections of ¢4 and ©_ to Hjat(S). Let Hyharm C
Hiat(S) (resp. Hgupp C H2(S)) be the subspace of functions harmonic (resp. supported) in
S_ having average zero on all vertical segments [t, ¢ + i7]. Then Hay(S) = Huarm D Hsupp-
We may extend {fi, fo} to an orthonormal basis {f;}n of Hnarm and let {g;}n be an
orthonormal basis of Hg,p,p, then the projection of a Neumann GFF on S to Hiat(S)
can be written as > «; f; + > 5;9; where «;, 5; ~ N(0,1) are independent. Writing the
projections of ¢ and ¢)_ to Hi.(S) as Y ;-5 a;f; and Z;’il B;g;, respectively, gives the
desired decomposition. See [GHS19, Section 3.2.4] for further discussion. O

We note that conditioned on ¢, the conditional law of (vy([—1,0]), vy ([—1 + i, in]))
has a density g, (z,y) dx dy, where g, is a nonnegative bounded continuous function on
R?; indeed, v, ([0,1]) = [, e2*1/1@)y,, (dz) and a; ~ N(0,1), and likewise for vy ([ir, im +
1]).

We are now ready to define the weight-W quantum disk with specified boundary
lengths.

Definition 2.22 (Disintegration of thick quantum disk measure). For W > 72—2 and /1,05 >
0, define M$SK(W; 41, 02) = lime_soo MISK(W; 01, 0o, ), where MISK(W; (1,05, () is the
measure on quantum surfaces (S, v, 400, —o0) defined as follows:

Take (¢4, from (3 — 1)~1e(@=A)< . P (see Lemmas 2.20 and 2.21) and restrict
to the event that dy := {1 — vy, 14_(R\[0,1]) > 0 and da := ly — vy, yy_ (R +im)\[i7, im +
1]) > 0. Weight the measure by gy (di,d2), and let o,z € R be the values such
that ¢ := Yy + Y + a1 f1 + asfs satisfies vy, (R) = ¢ and vy(R + im) = ly. Output
(8,1, 400, —00).

In the above definition, the ( — oo limit makes sense because it is straightforward to
check that

MGHW3 b1, 65,¢) = MW 1,65, g, for ¢ > C.

Therefore we have M$Sk(W; ¢y, bo)lp, = MGSK(W 34y, 09, C).

It is clear that /\/lgiSk(VVHEC = [J5° MGK(W;41,05,¢) dly dly. Sending ¢ — oo, we
obtain (2.2), as desired. We see in the next proposition that this disintegration is
canonical in the sense that the measures M$*(W; ¢, {3) are continuous in (1, ¢3) in
a suitable topology. In terms of notation, we will write M# := M/|M| to denote the
normalized probability measure of a measure M.

Proposition 2.23. For W > 772 the family of measures { M$%(W; (1, ¢5)}4, ¢, is contin-
uous in ({1, ¢s) with respect to the metric

ot 30) = [ e (0115 )#, (1 )*) e

where d is the total variation distance between the laws of (- —7_¢)|s, fori ~ (M|E<)#
and i) ~ (]Tﬂﬁc)#; here, T_; :=inf{t e R : ¢y = —(}.

Recall that the total variation distance between two probability measures P, (Q on
the same measurable space is drv(P, Q) = sup,4 |P(A) — Q(A)| where the supremum is
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taken over measurable sets A; in this particular setting measurability is with respect
to the topology of a local Sobolev space of order —1. If Q is absolutely continuous with
respect to P, we have the equivalent formulation drv(P,Q) = % [ | — 1| P(dw).

Proof. It suffices to show that { M$k(W; (1, ¢2)}s, 4, is continuous in (1, £2) with respect
to each d¢. This follows from the continuity of g, for each ¢, and the Radon-Nikodym
formulation of total variation distance. O

Now we sketch the construction and cont1nu1ty of {Md”k( i1,42)}e, 4, The previous
construction is not apphcable for W = - for two reasons: Firstly, {sup,cg ¢+ > —(}
has infinite Md‘Sk("’ ; 01, l2)-mass, so we 1nstead use By = {sup;er ¥+ € [N, N]} to
define MdlSk(7 01,02, N). Secondly, the description Lemma 2.20 does not apply to
W = g so we use the description of 1 in Definition 2.1 (i.e. with embedding so
o > vy for all t) to establish a ﬁeld decomposition like (2. 7) Then proceeding as
before, we can construct /\/ld“k(7 s 01,02) == limpy 00 M$5(Z-; 41,05, N). This family

{/\/ldlSk(V i01,¢2)}¢, 4, is continuous in (¢4, £>) with respect to the metric
0L = [ e Ny (Mg, ¥, (0], )*) d.
0

where d'y is the total variation distance between the laws of ¥|s, _n for ¢ ~ (M| EN)#
and ) ~ (]\7 | EN>#' where the fields v are chosen with the embedding that 1y > v, for all
t. We note that this approach also works for W > ﬁ, but the previous writeup is more

convenient for our later proof.
For W € (0, %), we can likewise construct a family {MZ$K(W; ¢y, l2)}, ¢, satisfying

MGHE(W) = //0 MKW £y, £2) dby dls

via the earlier discussion on disintegrations. A priori, this family is only unique for a.e.
¢,¢', but we will extend this to a pointwise definition such that (¢, fs) — MSSK(W; 4y, €5)
is continuous in a similar topology as in the thick case. See Section 4.

We now explain how the measure M$sk(W; ¢, ¢') scales when adding a constant to
the field.

Lemma 2.24. For W, /, ¢ > 0, the following procedures agree for all A > 0:

* Take a quantum disk from M$SK(W; e, \');
e Take a quantum disk from )fv%wfl/\/lgiSk(W; £,¢") then add %log)\ to its field.

Proof. Consider the case W > L~ (the other case is similar). Lemma 2.19 tells us that
the measure
e [ MES (W5 axe, bAL') da db agrees with A =@ =2 [[15° pqdisk (W, ot be') da db
(when we add 3 log \ to the field).
Send £ — 0 and note that the first measure converges to A2M$sK(1W; \¢, \'), while
the second converges to Afw%WHMgiSk(W; ¢,¢') (when we add 2 log \ to the resulting
field), as desired. O

2.7 Schramm-Loewner evolution

Now that we have provided details on the quantum surfaces involved in our main
theorems, we turn to the relevant SLE curves in these theorems.
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SLE, is a one-parameter family of conformally invariant random curves introduced
by [Sch00], which arises in the scaling limit of many statistical physics models. It is
conformally invariant in the sense that for any pair (D, z,y), (5, Z,y) of simply connected
domains with two marked boundary points and any conformal map ¢ : D — D with
p(z) =7 and ¢(y) = y, the law of SLE,, in D from z to y agrees with the pullback of the
law of SLE,, in D from 7 to y. For the regime « € (0,4], SLE, is a.s. simple and does not
hit the boundary of D except at  and y.

As explained in Section 2.2, for p1,, pr > —2 we can define a variant called SLE, (p1; pr)-
These curves are still a.s. simple, but when p;, or pg is less than § — 2 the random curve
a.s. hits the corresponding boundary arc.

When x = +2, the +-LQG length of SLE,-type curves can be defined via conformal
welding [Shel6a], or equivalently as a Gaussian multiplicative chaos measure on the
measure defined by the Minkowski content [Ben18]. The quantum length of a curve is
measurable with respect to the curve-decorated quantum surface.

We now inductively define the measure on curves P4sK(Wy, ... W,,) featured in
Theorem 2.3.

Definition 2.25 (Multiple SLE). Consider a simply connected domain D with boundary
marked points x,y, and weights Wy,...,W,, > 0 for some n > 2. Forn = 2, we define
Plisk(Wy, Wy) to be SLE, (W, — 2; Wy — 2) in (D, x,vy). To define the probability measure
Plisk(Wy,...,W,,) on curves (n1,...,n,_1) forn > 3, we first sample n,,_1 ~ SLE, (W, +
<o+ Who1 — 2;W,, — 2) in (D, z,y), then for each connected component (D', 2',y’) of
D\n,,—1 lying to the left of n,,_1 (with marked points the first and last points visited by

Nn_1), we independently sample (n — 2) curve segments from PYsk(Wy, ..., W, _1), and
concatenate them to obtainn — 2 curves 11, ..., Mn—2.
By the conformal invariance of SLE, (p;; p2) curves, the measure PUsk(Wy, ..., W,,) is

also conformally invariant.

We now state the quantum wedge welding theorem of [DMS14], which should be
compared to Theorem 2.3. Although [DMS14, Theorem 1.2] is stated only for the n = 2
case, the general case is not hard to derive from the n = 2 case and is used in, e.g.,
[DMS14, Appendix B], and we explicitly describe it here for the reader’s convenience.
Here, M"Yedee(W) @ Pisk(Wy, ... W,,) is a measure on curve-decorated surfaces.

Theorem 2.26 (Conformal welding of quantum wedges [DMS141]). Consider weights
Wi,...,W,>0and W =}, W;. Then

Mwedge(W) ® PdiSk(Wl, o, Wn) _ Mwedge(Wl) % Mwedge(WQ) N Mwedge(Wn).

Finally we define the analogous probability measure P**" for curves between two
marked points in a sphere with conformal structure. We state the definition for (C, 0, o),
where C = C U {oo} is the Poincaré sphere.

Definition 2.27 (Multiple SLE on sphere). Forn > 1 and Wy, ..., W, > 0, the probability
measure PPM (W4, ..., W,,) on n-tuples of curves (1, . .., Np_1) in C from 0 to oo is defined
as follows. First sample 1 as a whole-plane SLE,((>_7_, W;) — 2) process from 0 to
oo, then sample an (n — 1)-tuple of curves from P4%(Wy,..., W,) in each connected
component of@\no, and concatenate them to getny,...,Nn—1.

2.8 Outline of proofs

We now outline the proof of Theorem 2.3. The proof of Theorem 2.4 is similar and
discussed in Section 6.

We start with a thick quantum wedge (S, h, +00, —o0) embedded so that neighbor-
hoods of +oco have finite quantum boundary length, decorated by independent curves
(m,...,n,) which cut it into independent thin quantum wedges.
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In Section 3 we define a “field bottleneck” event which, roughly speaking, says that
when we explore the field from left to right and stop when the field average process h;
first takes a large negative value, then the quantum lengths of the unexplored boundary
segments and curves are macroscopic. We show that conditioned on the existence of the
field bottleneck, the unexplored region resembles a thick quantum disk decorated by
curves, conditioned on having macroscopic boundary arcs and interfaces.

In Section 4 we show that pinching a thin quantum wedge yields a thin quantum disk,
which allows us to define a “curve bottleneck” event in Section 5. This event roughly
says that, letting zp € R be the point such that the quantum length v, ([z0,0)) is 1,
certain curve segments of 7,...,n,_1 near zy are short, and the curve lengths to the
right of zy are macroscopic. When we condition on this event, the region to the right of
the curve bottleneck resembles a welding of thin quantum disks. We prove that the field
bottleneck and curve bottleneck are compatible in a certain sense, and hence conclude
that a thick curve-decorated quantum disk with macroscopic interfaces, cut along its
curves, yields a collection of thin quantum disks with macroscopic side lengths.

The arguments of Sections 3-5 yield a weaker version of Theorem 2.3. In Section 6
we bootstrap this to the full Theorem 2.3 using a short and relatively easy argument.

3 Pinching a thick quantum wedge yields a quantum disk

The goal of this section is to prove Proposition 3.2, which for W > l; constructs a
curve-decorated weight W quantum disk from a curve-decorated weight W quantum
wedge. It does so by identifying a “field bottleneck” when a quantum wedge is explored
from its infinite end to its finite end, then conditioning on the surface to the right of the
bottleneck being large; in the limit this pinched surface converges to a quantum disk.
More strongly, Proposition 3.2 identifies the law of the triple (field at the bottleneck,
boundary arc length of pinched surface, field and curves in the bulk of pinched surface);
this information will be used in Section 5 to show that the field bottleneck is compatible
with the “curve bottleneck” introduced there.

The limit surface will be M$*k(1W;1) with some conditioning on curves, where
MKW £) is defined as follows.

Definition 3.1 (Disintegration on one boundary length). We define
MGHE(W;0) = / MW, de
0

i.e. we only disintegrate on the left boundary arc length.

Lemmas 2.16 and 2.18 tell us that when W € (0,7Q) the measure MI™k(W; /) is
finite, and hence so is M3k(W; ¢ (') for any ¢ > 0. Conversely when W > ~Q, the
measure M$K(W; () is infinite but o-finite.

Recall that doubly-marked quantum surfaces embedded in (S, +00, —c0) have a field
that is determined modulo translation: (S, h,+o00, —c0) and (S, h(- — t), +00, —c0) are
equivalent as quantum surfaces. We say the canonical embedding of (S, h, +00, —0) is
the embedding where v, (Ry) = % Recall also that for a field h on S, we write h; for the
average of h on [t,t + i7].

Fix W > g and nonnegative Wy, ..., W,, with ) W, = W. Consider a canonically
embedded weight W quantum wedge (S, h, 400, —o0), and let 7—,, = inf{u : h, = —r}.
Independently sample curves (11,...,M,_1) ~ PYKW,...,W,) in (S, +oo0, —00) and
write 0, := R + 7.
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For positive r, (, K, e with » > ( define

Ergx={1<vp(Ry +7,) <1+e3CTHENY (3.1)
o_¢c=if{t >7_, : hy =—C(}, (3.2)
e =1o-¢<ooandwu(n; N(Sy +o_¢+1)) >eforj=1,...,n}, (3.3)

and define the field bottleneck event
BFr ke = Erx NEp .. (3.4)

Proposition 3.2 (Surface description given BF, ¢ i ). Define the rectangle R = [0, S| x
[0, 7] for some S > 0. Then for fixed S, K,e, and U C S a neighborhood of +co excluding
—00, as r — oo then { — oo the following two probability measures have total variation
distance o(1):

e The law of (h(- + 7—)|r, Vn (Rt + 7—), (h|ly,m1 N U, ... ,np—1 NU)) conditioned on

BFT,C7K7£;

e The law of the mutually independent triple (¢ — r,V, (12)\‘[], mnNU,...,0n—1NU)),
whose components we now define. The field ¢ is given by

o= (h+ Q=B Re())] (3.5)

R

where h is a Neumann GFF on S normalized to have mean zero on [0,in], and
8 =73 +Q— . The random variable V is sampled from Unif([1,1 + ez (=THEN),

For the last field-curves tuple, let (8,12,—1—00, —00,M1,---,Mn—1) be a canonically
embedded sample from Mg**(W;1) @ PU5(Wy, ..., W,,) conditioned on v(7;) > ¢
forj=1,...,n.

Th—1
R+, U .
° ° m
T, T+ S eee O_¢ *e° 0

Figure 3: Setup for Proposition 3.2. Since we are sending r — oo then ( — oo, the
regions R + 7_, and point o_. are sent to —oo, and are well separated from each other
and from U with high probability.

We now explain our choice of BF,. ¢ i .. Let zp € R be the point such that v, ([z9,+00)) =
1. In Section 5 we will define a “curve bottleneck” near z,. The choice of upper bound
1+4ez(-rtK *) in L, x means that when we condition on L, g, with high probability 7_,
is close (in the Euclidean metric) to zp, so the field bottleneck is close to the curve
bottleneck. This is necessary for showing compatibility of the bottlenecks. The definition
of E;,c,s comprises two events: 1) the growth of the field average process (h;)¢>-_, to
the value —(, and 2) the curves in the “bulk” having macroscopic length. 1) allows
us to compare the quantum wedge field to that of a quantum disk via Lemma 2.20,
and 2) is a technical condition that later allows us to work with probability measures
rather than infinite measures: although M$*5(1/;1) may be an infinite measure, if we
sample (11,...,1m,) ~ PUK(W,, ... W, ) and restrict to the event that all curves have
macroscopic quantum lengths, the resulting measure is finite.
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Proposition 3.2 gives the near-independence of the field near 7_,. and the field in U
so that, conditioned on BF, ¢ i ., the “curve bottleneck” event which will be defined in
Section 5 is almost measurable with respect to the field and curves near 7_,., so further
conditioning on the curve bottleneck event yields the same limit law of the field and
curves in U.

In order to prove Proposition 3.2, we switch to a more convenient field ) that
resembles h (Lemma 3.3), identify the law of the field and curves in the bulk when we
condition on side length (Lemma 3.4), and, after further conditioning on the bulk field
and curves, identify the law of the unexplored boundary arc length and field near the
bottleneck (Lemma 3.5). Combining these yields Proposition 3.2.

Lemma 3.3. For fixed { > 0, consider (S,1,+00,—00) ~ P (defined in Lemma 2.20).
Then h(- + 7_,)|s, conditioned on {o_¢ < oo} agrees in distribution with (- +7_,)|s,,
where 7_, :=inf{t e R : ¢y = —r}.

Proof. Note that conditioned on {o¢ < oo}, the process (hiy-_,):>0 has the law of
Brownian motion started at —r with variance 2 and downward drift of —(Q — )t (with
f=3+Q— %), conditioned to hit —(. By [DMS14, Lemma 3.6], this is the same law as
(147, )1>0. Finally, each field h, 1 has independent projections to H,y(S) and Hi..(S),
and their projections to H,.:(S) agree in law with the projection of a Neumann GFF on S
to H1at(S). This proves the lemma. O

Recall from Lemma 2.21 the following decomposition of ):

Y=, +Y_ +aifi,

(we have absorbed the term s f> into ¢, to simplify notation), and that the conditional
law of v4([0,1]) given ¢, has a density gy, (¢)dz, where g, is a nonnegative bounded
continuous function. Also note that ¢ | |s, .1 agrees with v|s, ;1 by definition.

Lemma 3.4 (Bulk field and curves given bottleneck). Independently of ¢ sample (11, ...,
Nn1) ~ PYsK(Wy, ... ,W,) and write n,, = R + ir. The conditional law of (¢, n; N
Sty Mu—1NSy) given {vy ([T—,, 00)) € [1, 14—5%(_T‘LK?’)]}H{%+ (n;N(S++1)) > e forj =
1,...,n} converges in total variation as r — oo to that of (¢4, 71 NS4,..., N1 N Sy)
conditioned on vy(R) =1 and {vy, (n; N (Sy +1)) > e forj=1,...,n}.

Proof. Define the event A := {vy, (n; N (S; +1)) > eforallj =1,...,n — 1} and the
shorthand X := (¢, m NSy, ..., 1N Sy).
Writing I, = [1,1 + e2 (~"*5%)], we claim that

Plvy([f-r,0)) € I;] _

li =1
e Plug(R) € 1] ’
and moreover, conditioned on any X = (¢4, 71 NS4, ..., 7,—1NS4) for which v, (Ry) < 1
and A holds, we have the almost sure limit
P T_ I | X
lim PeTr o) €l | X] (3.6)

% Pluy(R) €1, | X]

The lemma follows from these two assertions. Indeed, write £ for the law of X
conditioned on {vy(R) = 1} N A, £, for the law of X given {vy(R) € I,} N A and L, for
the law of X given {vy([T—,,0)) € I,} N A. By Bayes’ theorem we get X-a.s. that when
vy, (Ry) < 1, we have

_dL, Pl o)) €L | X]  Pluy(R) € 1,]
A o O = = R e L X]  Plou(Fr. o)) € L]
EJP 28 (2023), paper 52. https://www.imstat.org/ejp
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so lim, o £, = lim,_,, £, = L where the convergence is in total variation distance.
We justify (3.6); the other limit is similar. By the continuity of g,,, we have

1+e%(—r+K3)

Plry(R) €I | X] _ i E[gy, (z — vy(R\[0,1])) | X]dx

e%(_T+K3) e%(_T""KS)
= Efgy, (1 - vy (R\[0,1])) | X] + or(1),

]P[uw([z,%r(,_o:)jli USRI E[gy, (1 = vy(R\[0,1]) + vy ((—o0, 7—])) | X] + 0,(1).

Clearly vy, ((—o0,7—,]) converges to 0 in probability as » — oo, so since g, is bounded and
continuous, we may divide one of the above equations by the other to obtain (3.6). O

The next result is similar to [Shel6a, Proposition 5.5], with additional details.

Lemma 3.5 (Field near 7_, and boundary length given bottleneck). Condition on any
for which vy, (R4) < 1. We have, 1 -a.s., that the total variation distance between the
following two laws goes to zero as r — oo:

e The law of (¢(-+7_,)|r, vy((T—r, 00))) when we further condition on {vy ((7_,,0)) €
(1,14 e3(-r+E),

e The law of (¢ — r, V') as described in Proposition 3.2 (this law does not depend on

»y).

Proof. For N > 0, we will show that for sufficiently large r > ro(XN), the two laws of
Lemma 3.5 are within oy (1) in total variation. Sending N — oo then implies the desired
result. Elements of this argument are similar to those of Lemma 3.4, so we will be brief.

Because g, is bounded and continuous and the length of the interval [1, 1+4¢% (~"+5")]
goes to zero as r — oo, when we condition on ¢, and {vy([7_,,00)) € [1,1 + ez K]}
the law of the pair (¢|s__n, vy ([T—r, 00))) is within o,.(1) in total variation to an indepen-
dent pair, and the conditional marginal law of v, ([7_,, c0) is close in total variation to
that of V.

Fix N > 0. By the Markov property of the GFF we may further decompose ¢ =
Yy +af+Yn+hy as a sum of mutually independent distributions. Here, ¢ is harmonic
in S_ — N, and hy is a distribution supported in S_ — N with the following description:
The field average process (hy)_n—; agrees in law with (Bg;, — (Q — 8)t):>0 where (By);>0
is standard Brownian motion conditioned on By — (Q — )t < 0 for all ¢t > 0. The
(independent) projection of hy to Ho(S— — N) agrees in law with the projection to
H2(S— — N) of a GFF in S_ — N with Dirichlet boundary conditions on [N, —N +in] and
Neumann boundary conditions elsewhere. Here, Ha(S_— — N) C H2(S) is the subspace of
functions supported in S_ — N.

If we sample ¢ given ¢ and {vy([7_,,0)) € [1,1+ e%(‘”Ks)]}, then for large r
the conditional law of h is within oy (1) in total variation from its unconditioned law
— essentially, conditioned only on v, the length v ((7—,, —N)) converges to zero in
probability as N — oo, so further conditioning on {vy([7—,,o0)) € [1,1 + e3 (-rHE))
weights the law of hy by a g, -dependent factor that is uniformly bounded above and
converges to 1 in probability.

We claim that for large r, the law of ¢)(-+7_,)|r conditioned on ¢} and {vy([7_,,0)) €
[1,1 + e2(—"+5*)]} is within oy (1) in total variation from the law of ¢ — r. By our earlier
discussion we may resample hy from its unconditioned law (incurring an oy (1) total
variation error). We have 7_,, — —oo in probability as r — oo, so since 1 +1n converges
in probability to a constant function in neighborhoods of —oco, and hy is independent of
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Y4 + ¥, we conclude that the law of (hy + ¥4 + ¥n)(- + 7—,)|r + r converges! in total
variation to that of ¢ as r — oo. This (with our earlier oy (1) error) yields the claim.

To summarize, for large r > ro(/N), we know that when we condition ¢ on ¢, and on
{vyp([7=p,00)) € [1,1 + ez (=m+E))}, the law of ¢(- + 7—, )|z is on(1) in total variation to
that of ¢ — r, and v, ((7—,, >0)) is close to independent of ¥)(- + 7_,.)| g and has law close
to that of V. We are done. O

Proof of Proposition 3.2. Let the field ¢ be sampled as in Lemma 3.3, and Aindependently
sample (11, ...,Mn_1) ~ PK(Wy, ..., W, ) and write ,, = R + in. Let (S, ), +00, —o0, 71,

..,Mn—1) be the canonical embedding of (S,,+o00,—00,71,...,N,—1). Consider the
triple

W+ TR, vy (For,00))s (Bluy N U, ur NU)) (3.7)
conditioned on {vy ((7—,,00)) € [1,1+ ez (="+E")]} and on {vy, ;N (S4+1)) >eforj=
1,...,n}. Note that outside an event of probability o(1) as r — o00,{ — oo, the tuple

(Pl NU, ..., 51 NU)is a function of (4,71 NSy, ..., Nu_1 NS4).

Combining Lemmas 3.4 and 3.5, we see that as r — oo, the total variation distance
between (3.7) and the second triple of Proposition 3.2 goes to zero. Also, Lemma 3.3 says
that (3.7) agrees in law with the first triple of Proposition 3.2. These two observations
prove Proposition 3.2. O

4 Decompositions of thin quantum wedges and disks

In this section, we show that thin quantum wedges and disks can be decomposed as
a certain concatenation of bead%d quantum surfaces.

In this section, for W € (0, %) we write M35%(y? — W) for the infinite measure on
simply connected three- pomted quantum surfaces, obtained by first sampling a two-
pointed surface D ~ M35k(y2 — V), then sampling a boundary point from quantum
measure on its left boundary arc (inducing a weighting by the left boundary arc length).

Lemma 4.1. Fix T > 0 and W € (0, 72—2). Let P, denote the law of M$%(W) conditioned
on having quantum cut point measure t, i.e. concatenate the quantum surfaces of a
Poisson point process on Lebjg 3 x Misk(y2 — W). Then the following three procedures
yield the same measure on v-LQG quantum surfaces, and this measure is infinite.

e Sample D’ from Pr. Weight by the left boundary length of D' and sample a point
from the probability measure proportional to the left boundary quantum length
measure.

+ Sample (D', u,D*) from Pr x Leby ) x My55(y? — W). Insert D* into D' at cut
point location u.

« Sample (u, D*) ~ Lebjy 7] x M3'$5(v* — W), and given (u, D*) sample (D1, D;) ~
P, x Pr_,. Concatenate D1,D*, D5.

Proof. The equivalence of the first two procedures above follows immediately from
[PPY92, Lemma 4.1] applied to the Poisson point process on Lebjg 7] X Mo(y2 = W).
The equivalence of the second and third procedures follows from the fact that
a Poisson point process on Lebj 7 X Ms(+* — W) can be obtained as the union of
independent Poisson point processes on Lebjg ., x M (y?—W) and Lebyy, 1) X Ma(y2=W).

1 This follows immediately from the following description of the (independent) projections of hy + ¥4 + ¥
to Hav(S— — N) and H},:(S— — N). The projection to Hav(S— — N), viewed as a stochastic process from
right to left (— IV to —oo) is Brownian motion with variance 2 and downward drift, with random starting value
and conditioned to stay below —(. The projection to H,;(S— — N) in neighborhoods of —cc is close in total
variation to that of a Neumann GFF on S ([AG21, Proposition 2.4]).
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Finally, the measure on quantum surfaces is infinite because M35k (7?2 — W) is infinite
(indeed, the M355(y* — W)-law of the left boundary arc length is a power law by
Lemma 2.16). O

Proposition 4.2 (Decomposition of marked thin quantum wedge). For W € (0, 'V—;), the
following procedures yield the same law.

e Sample (W, () ~ M™&°(W) x Lebg, and mark the point on the left boundary arc
of W at quantum length ¢ from the root.

* Sample (D1, D*, W) from (1 — S W)?- MG (W) x MGE(y? — W) x M¥e48°(W) and
concatenate the three quantum surfaces.

Proof. Since thin quantum wedges are uniquely characterized by their components up
to cut point measure T (for arbitrary T'), it suffices to consider the thin quantum wedge
up to this point. When we then restrict the two measures to the event that the marked
point lies in this initial part of the thin quantum wedge, they agree by Lemma 4.1 (first
and third procedures). Sending 7' — oo yields the result. O

Corollary 4.3. Fix { > 0. For W € (0, l;), the following procedures yield the same
probability measure on pairs of quantum surfaces (Dy,D*, W); see Figure 4.

- Sample a thin quantum wedge W ~ M‘Q"’edge(W) and let p be the point on the left
boundary arc of W at distance ¢ from the root. Let D* be the three-pointed disk
antaining p, and Dy (resp. W) the finite (resp. infinite) beaded component of
W\D".

 Sample (D;,D,W) ~ M$K(W) x M3sk(y2 — W) x M¥edee(W) and condition on
the event of finite measure that the left boundary lengths x,y of D, and D satisfy
r < { < x +y. Mark the point p on D such that the length from p to the quantum
disk tip is © + y — ¢, and call this surface D°.

Proof. As we explain, this follows from Proposition 4.2 by conditioning on the location of
the marked point. Consider a thin quantum wedge decorated by a uniformly chosen point
from its left boundary arc, and condition on the event that the left boundary interval
I. at distance between ¢ — ¢ and ¢ + ¢ from the thin quantum wedge root lies on a
single thick quantum disk and that the marked point lies in /.. By Proposition 4.2 we
may express this as a concatenation of quantum surfaces (Dy, D*, W) ~ ¢ - M$Sk(W) x
MG (42 — W) x M™edee(IW) conditioned on the left boundary lengths z,y of D1, D
satisfying z < ¢/ — ¢ < £ 4+ ¢ < x + y and on the marked point of D* lying in the
corresponding length 2¢ interval. Although D* is weighted by its left boundary length,
restricting to the event that the marked point lies in an interval of length 2¢ removes
this weighting. Sending € — 0 thus yields the result. O

Proposition 4.4 (Decomposition of marked thin quantum disk). The following two pro-
cedures yield the same measure on quantum surfaces.

 Sample a thin quantum disk from M$X(W) weighted by the quantum length of its
left boundary, then sample a point from the probabiility measure proportional to
the left boundary quantum length measure.
* Sample a triple of quantum surfaces from (1 — 5 W)>Mg*K(W) x Mg (y* = W) x
MgsK(W) and concatenate them.
Proof. In Lemma 4.1 sample T' ~ Lebr, and apply the first or third procedure. Here we

use the fact that the law of (¢,T") sampled from 17,Lebg, (dt) x Lebr_ (dT') agrees with
the law of (¢, +t') where ¢,t' are sampled from Lebg, (t) x Lebgr_ (t). O

EJP 28 (2023), paper 52. https://www.imstat.org/ejp
Page 22/50


https://doi.org/10.1214/23-EJP943
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Conformal welding of quantum disks

(X}
P
>

<
L

D.

D.
’ ! )
T _
T ¢ D, Dy

Figure 4: Left. In Corollary 4.3, a thin quantum wedge with point p on its left boundary
at quantum length ¢ from the root decomposes as a concatenation of three quantum
surfaces with some length conditioning. Right. In Corollary 4.5, a thin quantum disk
conditioned to have left boundary length ¢ with point p on its left boundary at quantum
length 6 from v decomposes as a concatenation of three quantum surfaces with some
length conditioning.
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As an immediate corollary, we have for any disintegration Mgs< (W) = [>° Mgisk(W;
£)d¢ with respect to the left boundary length (so Mgisk(w; /) is only uniquely defined
l-a.e.) that the following holds. Recall that M # is the normalization of M to be a
probability measure.

Corollary 4.5. For Lebesgue a.e. { > 0 the following holds. Fix 6 € (0,¢). For W €

(0, 772), the following procedures yield the same measure on triples of quantum surfaces
(Dy,D*, Dy); see Figure 4.

* Sample a thin quantum disk (D, u,v) ~ MISK(W, ¢) and let p be the point on the left
boundary arc of D at distance § from v. Let D*® be the three-pointed disk containing
p, and Dy, D, the two finite beaded components of D\D* (with u € D).

e Sample (D1, D,D3) ~ MISK(W) x MIsk(42 — W) x MSSK(W) and “restrict to”
{r+y+2z=14} and {x < {— ¢ < x+y}, where x,y,x are the left boundary arc
lengths of Dy, D, Dy. Mark the point p on D to get D°.

_ 2
In other words, samplg (z,y) € IRi from the measure 1,y s<pty<t Cx =W

_2 2 _ 2 —
y (WNW)(E —x—y) 7 Vidx dy, and given (z,y) sample (D, D, Dy) ~ MSSk(W;
2)# X MGSE(y2 —W; y)# x MISK(W; £ —x—y)#. Mark the point on the left boundary
of D to get D*. Here, the constant C' is (1 — ,%W)%%Vc,yz_w where ¢y and c.2_y
are the constants of Lemmas 2.16 and 2.18.

The second procedure of Corollary 4.5 does not depend on the choice of {Mgisk(w; 0)}e.
This gives us a way to bootstrap the disintegration { M3%(1¥; )}, (which is only uniquely
defined (-a.e.) to a disintegration {M3%(W; ()}, which is well defined for all ¢ > 0.

Definition 4.6. We define /\/l‘z“Sk(W; ) to be the measure on quantum surfaces uniquely
specified by the disintegration in the previous paragraph.

One can check that M$*5(W; () defined in Definition 4.6 does not depend on §; this
reduces to a computation on the joint law of quantum lengths arising when we mark
two points at distances ¢, ' from one of the quantum disk marked points. Moreover, as
we will see in Lemma 4.7, for each § > 0 the measures {M$%(W;¢)},s are continuous
with respect to the total variation distance of the §-trimming of the quantum disk.
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For a thin quantum disk (D, u,v) with left side length greater than § > 0, we define
the §-trimming of D to be the beaded surface obtained by marking the point on the left
boundary of D at distance  from v, then discarding the beads from v to this marked point
(inclusive), to obtain a beaded quantum surface containing u. Note that this surface is
a.s. nonempty because in the beaded quantum surface (D, u,v), there are a.s. infinitely
many small beads near u.

Lemma 4.7 (Continuity properties of d-trimming). Fix £ > § > 0 and W € (0, 2) Sample
a quantum disk (D,u,v) ~ M3*(W;()#, and let D° be its i-trimming. Repeat the above
procedure replacing { with { to get DS. Then the quantum surfaces D° and D° can be
coupled so that as ¢ — ¢, we have D° = D’ with probability approaching 1. Moreover,
sending § — 0, the left side length of D° converges in probability to .

Proof. By Corollary 4.5, the left side length of D? has probability density function

]-m A—3 - — _ —
fos(x) ;:%)/ zPyP 2(€—x—y) P dy
4,6 L—6—zx

loc(o,e—s) 617P P
Zys l—pl—z)(l—06—a)-P’

where p = %W, and Z; 5 is the normalization constant so that f(f_5 fos(x)dz = 1. (The
equivalence of the two formulae follows immediately from differentiating in 4.)
By continuity, for all z < ¢ — ¢ we have lim;_, Iz s(x) = feo5(r), so we can couple D

and D so that the left side lengths of P° and D° agree with probability 1 — o(1); since the
conditional law of D° given its left boundary length z is M3"%(W; 2)# and likewise for
D?, there is a coupling so D° = D° with probability 1 — o(1).

The second claim is clear from the explicit formula for f; s(x). O

Arguing similarly we can define a disintegration {M3<(W; ¢, ¢')},  for all £,¢'. Let
{MIis (W0, 0')}4., be any disintegration with respect to left and right boundary arc
lengths (i.e. MEK(W) = [ MF*(W;0,0)dédl’, and MF=<(W; ¢, ') is supported on
the set of quantum surfaces with left and right boundary lengths ¢ and ¢’ respectively).
We define M$sk(WW; ¢, ¢') by sampling (:L',;v’, y,y',z,2') € RS from a suitable measure
supported on the set {x +y + 2 = {,2' + 3 + 2’ = {'}, then sampling (D1,D,Ds) ~
MISK(W e 2 2 )# x MK (42 Wy, o/ )# x MESK(W; 2, 2/)#, and concatenating Dy, D, Ds.
The family {Md“k(W, 0,0}, satisfies a similar continuity property: for any § > 0 the
measures {M3S&(W;¢,¢') : ¢ > §} are continuous with respect to the total variation
distance of the §-trimming of the quantum disk.

5 Pinching a curve-decorated bottleneck yields thin quantum
disks

The goal of this section is to prove the following weaker version of Theorem 2.3.
Recall from Definition 3.1 that {M$k(W;¢)}, is the disintegration of M$X(W) with
respect to left boundary arc length.

Proposition 5.1. Let W1,..., W, € (0, 7—;) and W = > W, > L. Then for some constant
cwy,..,\W, € (07OO>,

Mdisk(w. 1) deisk( s Wn)
Mg‘bk(Wn;én,hEn)dﬁl... dl,,.
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Compared to Theorem 2.3, the principal difference is the restriction to W; < 7—22 and

W > 772 We want W; < 772 because it is easy to “pinch” a thin quantum wedge to obtain
a thin quantum disk. The other difference is using M$*X(W; 1) instead of MSisk(W; ¢, ¢);
this simplifies the writeup. We will see in Section 6 that Theorem 2.3 can be derived
relatively easily from Proposition 5.1.

We now give a proof outline for Proposition 5.1. Let (S, h, +00, =00, 11, .-« , Mn—1) ~
Myvedee (W) @ Pisk(Wy, ..., W,,) be a curve-decorated quantum wedge which is canon-
ically embedded (i.e. v,(R4+) = 3). Recall the field bottleneck event BF, ¢ k. from
Proposition 3.2, and that the field bottleneck is located near 7_, = inf{¢t : h; = —r}.
Proposition 3.2 and the SLE independence statement Lemma 5.8 say that (h, 71,...,7,—1)
conditioned on BF, ¢ i . in neighborhoods of +oc and near 7_, are almost independent,
and that conditioned on BF, ¢ ., the law of (h,71,...,7,—1) in neighborhoods of +co
converges to that of M$s%(W, 1) @ PUsk(Wy, ..., W,) conditioned on curve and boundary
lengths being at least . Based on this, our proof of Proposition 5.1 is carried out in four
steps.

Step 1. Introduce a “curve bottleneck” event BC, g .. Conditioning on BC, k., the
pinched region is a conformal welding of thin quantum disks with small offsets
near the bottleneck. This is done in Section 5.1, building on Section 4.

Step 2. Conditioned on BC, g ., the conformal welding of thin quantum disks with small
offsets converges in neighborhoods of +co as » — oo to an exact welding of thin
quantum disks. This is done in Section 5.2.

Step 3. P[BF, ¢ k. |BC, k. — 1asr — 00,{ = 00, K — oo. Consequently, the law
of (h,m,...,nn—1) conditioned on BC, k. is close to its law conditioned on
BF, ¢ k. N BC, k.. This is carried out in Section 5.3.

Step 4. Conditioned on BF, ¢ g ., the event BC, . occurs with uniformly positive proba-
bility for large r, ¢, and is almost measurable with respect to the field and curves
near 7_,. Combining with Proposition 3.2, we conclude that (h,n1,...,7,—1)
conditioned on BF,. ( x . NBC, i . converges in neighborhoods of +-co to a curve-
decorated thick quantum disk. Comparing with Steps 2 and 3 yield the theorem.
This is done in Section 5.4.

5.1 Conditioning on the curve bottleneck event BC, x .

In this section we define BC, i . and discuss the laws of the quantum surfaces arising
upon conditioning on BC,. k..

We start with the definition of BC, g .. Let (S, h, +00, —00) be a quantum wedge W
with weight W, and sample (7y, ..., 7,_1) ~ PUk(Wy, ..., W,,) on S with 7; on the bottom
and 7,_; on top, cutting W into independent quantum wedges Wy, ..., W, of weights
Wi, ...,W, € (0, l;) (Theorem 2.26). Let zp € R be the point such that v, ([z0,0)) =1,
and let D be the thick quantum disk of W, containing z¢; call its left and right marked
points wy, z1 respectively. Iteratively for j = 1,...,n, let D} be the thick quantum disk of
W, containing z;_; on its boundary, and let w;, z; be its left and right marked points. For
j=1,...,n, from w; and tracing 87)]'- in counterclockwise order, let the three boundary
arc lengths be a;,b;,c;, and let ¢; be the length of 7; from z; to +oo (here we write
nn := R + 7). See Figure 5. Finally, define
BCT’K,EIZH{G%(F‘_K}Z)J‘ S [1,2], 6%(T+K)(aj +bj) S [3,4}7 6%(T+K)Cj S [5,6}7 fj >€}.

j=1
(5.1)
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The intervals [1, 2], [3,4], [5, 6] are chosen to ensure the welding offsets ¢;_; — a;,b; for
(-r—K)

j =2,...,n described in Proposition 5.3 are roughly e in magnitude; see Figure 5.

i<

- >4

Figure 5: Top left. Starting with the point 2y € R satisfying v,((z0,00)) = 1, for
J = 1,...,n we iteratively define the thin wedge bead D; C W, containing z;_;, and
call its right marked point z;. Removing D; from W; yields an infinite beaded quantum
surface A; and a finite beaded quantum surface 5B;. Top right. Each D} has three
marked boundary points z;_1, zj, w; and arc lengths a;, b;, c; (although w;4; lies on 82);
we don't treat it as a marked point). Bottom. Conditioned on BC,. g . and on the lengths
(aj,bj, cj,¢;)7_;, the multiply-marked quantum surfaces A := (JA; and B := |JB; are
independent. These surfaces are welded with offsets shown in the diagram (note that
the nontrivial topology of the quantum disks and wedges are not depicted).

Lemma 5.2. Set (d;,b;,¢;) = (e3 "t q;, e3(tK)p 3 +K) ) for j = 1,...,n. Then in
the r — oo limit, conditioned on BC, g . the n + 1 tuples ({1,...,0,_1,0y), (51,51,51), el
(Zin,gn,En) jointly converge in distribution to a collection of n + 1 independent tuples.
The limit law of (¢4, ...,¢,) has density with respect to Lebesgue measure on (&,00)"
given by

R :
EH|/\/t‘21‘sk(Wj;ej_l,@-)\ with (o := 1, (5.2)
j=1

and for each j = 1,...,n, the limit law of (i;, b;,¢;) is supported on the set S; = {b; €
[1,2],(a; + b;) € [3,4],¢; € [5,6]} and has density with respect to Lebesgue measure

1

disk (2 S 4 F =
Z_jl(aj,gj,gj)ESj M2s (’y _Wj’aj +b]’c.7) .

Here the Z, Z,, ..., Z, are nonexplicit normalization constants.

Note that the limit law of (a;,b;,¢;) involves Mg®* rather than Mgk, Roughly
speaking, this is because the marked point on ’Dj‘- is not sampled according to quantum
length measure and hence does not induce a weighting by quantum length.

Implicit in the above lemma is the fact that the integral [/ [ [T_, [M§**(W;,£;_1,4;)]
dly ...d¢, is finite. We show this for n = 2, and the general case follows similarly. Using
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Lemma 2.24,

/ / MEE (W3 1, 00) || ME (W 1, 05)] ey dby
= / ’MgiSk(Wl;l,gl)‘f;?Wz/ ’MgiSk(WQ;l,.’Jﬁ)‘dl‘dgl
€ e/ly

- 6—7%W2|Mgisk(w2;1)}/ |MgiSk(W1;1,€1)’d€1

- E—%W2|Mgisk(w2; 1)HM§hSk(Wl; 1)| < 0.

Proof. Although ¢y = 1 is a constant, we will make statements in terms of ¢, that
generalize to {;. We will also slightly abuse notation and use the same symbol for random
variables and the dummy variables describing their densities.

We first explain the law of (a1,b;,¢1,#1) when we condition on (5.1) for j = 1. Start
with the unconditioned setup, and define x := ¢y — b; and y = a; + b1. Let D; be D] with
the marked point z, forgotten. By Corollary 4.3 the law of (B, D;) agrees with that of
(B}, D)) ~ MI(W;) x MJs%(y2 — W;) conditioned on {2’ < ¢y < 2’ +y'} where 2’ and
y' are the left side lengths of B} and Dj. Thus, using Lemmas 2.18 and 2.16 to obtain the
length laws of M$k(1/;) and Mgisk(y2 — W) respectively, the law of (z,y) is given by

~ _ _ . 2
Zy 110<m<£o<z+y95 Pyt dx dy, with p; := ?WI € (0,1).

Moreover, by doing a change of variables (x,y) — (ax, ay), we see that the normalization
constant 21 =[f 10<m<g0<m+yx*plym*2 dx dy has no dependence on /y; this is important
for subsequent steps where /; is random.

A change of variables yields that when we condition on the event that by € [1,2] and
(@ +b1) € [3,4], the conditional law of (a,b;) = €25 (z 4y — £y, £y — =) has density
given by a W;-dependent constant times (1+o0,.(1))¢g " (a1 +b1 )P ~2 da; db; on its support.
By Corollary 4.3, conditioned on (ay, bl) the conditional law of Dy is M$S%(W1;a; + bl)
hence the conditional law of ¢; given (a, bl) is

‘MgiSk(Wz - Wisay +51f51)’ - ‘MEUSI‘(VZ - Wisay +31751))
Cl1 = —C = -
(a1 + bl)pl_glM?Sk(’YQ - Wi 1))}

C1,

’MgiSk(’Y2 - Wisa1 + b1)‘
where the equality follows from Lemma 2.16. Similarly, since z = (1 — 0,(1))¢y and using
Lemma 2.18, the conditional law of ¢; given (&1,51) is some W;-dependent constant
times (1 + Or(l))glo)l ’MgiSk(Wl; Lo, Kl)’ dly.

By the conditional independence of D; and B; given 61,51, z, when we further condi-
tion on ¢; € [5, 6] the density of (&'1,51,51, ¢1) is a Wi-dependent constant times

(1 + Or(l))’MgiSk(’}/2 - Wl;El +gl,51)‘|Mgi5k(W1;£0,€1)| dEl dgl dEl d£1

We now understand the law of (61,51,51,&) when we condition on (5.1) for j = 1.
Iterating for j = 2,...,n and using the independence of Wy, ..., W, yields the lemma. O

Proposition 5.3. On the event BC,. k ., condition on the lengths (a;,b;,c;,;)}_;. Then
the surfaces B and A to the right and left, respectively, of | J ; D? are a.s. conditionally
independent. The conditional law of B is given by the welding of independent thin
quantum disks B; ~ M$S(W;; 6,1 — b;, ¢;)# for j = 1,...,n, where {, := 1. The
conditional law of A is given by the welding of independent thin quantum wedges
A ~ M35 (W), where the root of A; is welded to the point on the left boundary of
Aj4q at distance c¢; — aj41 from the root forj =1,...,n — 1. See Figure 5.
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Proof. This is immediate from Corollary 4.3. O

5.2 Convergence to welding of thin quantum disks

In this section we prove Proposition 5.4, which roughly says that when we condition on
BC, k. and send r — oo, the surface (Sy +7_, h, +00, 7_,) converges in distribution to a
welding of thin quantum disks, with respect to a suitable topology on quantum surfaces.
Although B = | B; is a welding of quantum disks whose side lengths do not exactly
agree, using Lemma 4.7 it can be coupled to agree (with high probability, near +c0) with
a welding of quantum disks whose side lengths do agree, yielding Proposition 5.4.

For a quantum surface (S, h, +00, —00, 71, - . . , 7, ) embedded in the strip and satisfying
vy(R) > 4, recall from Section 3 its canonical embedding satisfies v, (Ry) = 1.
Proposition 5.4. Condition (S, h,+0c0,—00,n1,...,M,—1) on BC, k. and consider its
canonical embedding. As r — oo, in any neighborhood of +oco excluding —oo, the
field and curves converge in distribution to those of the canonical embedding of a sample
from

Z*l// MISK 1, 00) x MEK(Was 00, 05) X -+ x MES(Wi 0,1, 0,)dly ... dey,,

(5.3)
where Z is a normalization constant, and we understand (5.3) as a probability measure
on field-curves tuples in S obtained by conformally welding n quantum surfaces then
canonically embedding the resulting curve-decorated surface in (S,+o0o0, —o0). The
topology of convergence is, for each neighborhood of +oo not containing —oo, the
product topology of the weak-* topology for fields and Hausdorff topology for curves.

Moreover, we have P[E] . _ | BC, k| — 1 for fixed K as first r — oo then ( — oo; the
event E,. . _ is defined in (3.3).
Proof. We first elaborate on the definition and well-definedness of (5.3) as a measure
on field-curve tuples; a sample from (5.3) is obtained as follows. Fix ¢, = 1 and
sample /4,...,¢,_1 from the distribution (5.2). Sample independent quantum disks
51, e ,En with gj ~ MGk (W, Zj_l, Zj)# Conformally weld them by quantum length
to obtain a quantum surface B with two marked points and n — 1 curves, and embed
B = (S,?L, +00,—00, M1, ..,7n—1) via the canonical embedding. The a.s. existence and
uniqueness of this conformal welding follows from that of thin quantum wedges and the
local absolute continuity of thin quantum disks with respect to thin quantum wedges.

Proving convergence to (5.3). Consider a parameter § > 0; we will send r — oo
then § — 0 in that order, and write o,.(1) (resp. os(1)) for a quantity that tends to zero
in probability as » — oo (resp. r — oo then é — 0). Sample By,..., B, conditioned
on BC, k. and let BY,...,B) be the §-trimmings of Bi,...,B, (so each B} contains
the marked point +oc). Similarly let B¢, ..., B8 be the é-trimmings of By, ...,B,. By
Lemma 4.7, we can couple (B¢,...,B82) = (BS,...,B?) with probability 1 — o,(1). Restrict
to this event.
Let D (resp. D) be the region parametrizing | J 5? (resp. Uy B9). Since g? =
| BY as quantum surfaces, there is a.s. a (random) conformal map ¢ : D — D fixing
+00 so that h|p = (ho ™! + Qlog|(¢~')|)|p. Since h|p € H;}(D) we conclude that

i~z|5 € H (D) also. When we send § — 0, the trimming interface in (S, &, +-00, —00) goes
to —oo in probability. Therefore [AG21, Lemma 2.24] says that for any neighborhood U
of +oo bounded away from —oc, we have sup, ., e®°#|¢/(2) — 1| = 05(1) (the cited lemma
only states boundedness of sup, s |¢'(z) — 1|, but the argument gives exponential decay);

consequently there is a random constant ¢ for which sup, ¢y [¢(2) — 2 + ¢| = 05(1). Since
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both & and & are canonically embedded we have ¢ = 05(1), hence

sup [p(2) — z[ = o0s(1). (5.4)
zeU
This allows us to show that as 7 — oo then J — 0, the tuple (h,71,...,7,-1) converges
to (h,71,...,Mn—1) in distribution: Convergence of the curves in the Hausdorff topology

is immediate from (5.4). For the field, notice that for f a smooth function compactly
supported in U we have

(h, )y = (hoe™ +Qlog (™|, f)v = (b, f o p)v +05(1) = (h, f)v + 05(1),

since supy; |log |[(¢™!)'|| = 05(1) and f oy — f in probability in the C* topology. Since this
holds for all f we obtain convergence in distribution of the field (in the weak-* topology).

Showing P[E] . . | BC, k| — 1 as 7 — oo then ¢ — co. Choose some (random) z < 0
such that v; (7; N (84 +2)) > e for j = 1,...,n. Let ®; be the set of smooth functions
supported in the rectangle [z — 4,z — 1] x [0, 7] with ¢ > 0, [ ¢(2) d*z = 1 and ||¢/[|oc < b
and define

m(h) := ¢len<1€§(h’ ®).

Since h is a distribution and ®} is compact in the space of test functions, m(l~z) is
finite almost surely (see the discussion after Proposition 9.19 in [DMS14] for details).
Fix a nonnegative function f which is constant on vertical segments, supported on
[z — 3,2 — 2] x [0,n], and satisfies [ f(z)d?z = 1. Then since sup,; |¢'(z) — 1| = 0s(1)
and sup, <y [¢(2) — 2| = 05(1), we conclude that for some b depending only on f, we have
|¢'|?f o ¢ € ®} in probability as r — oo then § — 0. Thus, if we condition on the event
{m(h) > —C + 1}, then with probability 1 — o,(1) we have

(h, f) = (ho g™ + Qlog |~ )|, f) = (h, 1|2 0 ) + (Qlog ()], f) > —C.

Since f is constant on vertical segments, there exists some ¢t < x for which h; > —(;
moreover, the quantum lengths of 7; N (S + t) are at least € so E; . _ holds. Since

lime o0 P[m(h) > —¢ + 1] = 1 we obtain the desired result. O

5.3 Compatibility of bottlenecks

In this section, we prove Proposition 5.7, which roughly speaking says that P[BF, ¢ x|
BC, k] = 1 where BF,. ¢ k . is defined in Proposition 3.2. This is tricky because we are
conditioning on the rare event BC, g .. On the other hand, the surface .4 conditioned
on BC, i . is simply a welding of independent quantum wedges with welding offsets
= ¢3(-"=K) (Lemma 5.2 and Proposition 5.3). Let A+ r + K denote the quantum surface
obtained by adding » + K to the field of A. We define a proxy surface A so that the
law of the quantum surface 4 + r + K conditioned on BC, g . is absolutely continuous
with respect to the law of A. We obtain estimates on A in Lemma 5.6, and use these to
analyze A and hence prove Proposition 5.7. .

First we construct the proxy surface A. Consider W = (Sﬁ, ~+00, —00) decorated by

curves (M1, ..., Mn—1) ~ PUK(Wy, ..., W,), conditioned on the following event F': defining
the points 2o, ..., z,, quantum surfaces D5, A;, and lengths a;, b;, ¢; in the same way as

in BC, k., set
F:{3j6[1,2], (@; +b;) € (3,4, ¢ €56 forjzl,...,n}.

Let A := U?:l ﬁl and let U C S be the unbounded connected component of the set
parametrizing A.
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Lemma 5.5. The law of the quantum surface A+ + K conditioned on the event BC, g .
is absolutely continuous with respect to the law of A, with Radon-Nikodym derivative
uniformly bounded for r, K > 0.

Proof. By Lemma 5.2 we know that given BC,. k.., the law of (a;,b;,¢;)/_; = (e2"+%)a;,
(”K)b ,e3(rtK) e, j)j—1 has a density with respect to Lebesgue measure on HJ 1{b €
[1,2], (a; +bj) [3,4],¢; € [5,6]}, and this density is bounded between § and ! uniformly
forall r > 0, for some 0 € (0,1). By the same reasoning, the same is true for (a;, b], ci)i—1,
so the law of (a;, bJ,EJ) 7_; conditioned on BC, k. is absolutely continuous with respect

to the law of (aj , b], ¢;)"_,, and the Radon-Nikodym derivative is uniformly bounded in r.

Jj=1
Given (aj, bj ,¢j)}j—, the conditional law of the quantum surface A + r + K is simply
a welding of independent thin quantum wedges with offsets given by (¢; — @;41) i 11
(Proposition 5.3), and the same is true for ,Z This yields the lemma. O

The quantum surface A can be parametrized as A= ([7 ,/}\L, :oo) where U is defined
above, but we need estimates that hold for any embedding (U, hY, —o0) of A in S fixing
—oo. Recall that for a field ¢ on S we write 1), for the average of ¢ on [t, t + i7].

Lemma 5.6. The following holds with probability approaching 1 as K — oo:

For any simply connected ne1ghborhood UcsS of —o0 and any conformal map
¢ : U — U fixing —oo, writing WY i=hop 4+ Qlog (¢~
the segment [z, x + in] C U, h¥ € (—K, K), and vy, ((x — K27oo) NU) < Le3k*,

1

1

1

1

1

1

1
-© ® ® @ @ @ @
?KB/“ ’?JW T T + 3a T + 4a T +a T

Figure 6: Diagram for argument of Lemma 5.6.

Proof. Leta,b > 0 be absolute constants we choose later. Write 7 = inf{Rez : z € S\U} —
4a. Let @] , be the set of smooth functions supported in the rectangle [z, + 3a] x [0, 7]
with ¢ > () f(;ﬁ d*z =1 and ||¢'||c < b and define

m(h) = inf (h,¢), M(h):= sup (h,o).
PED, , ped!

The random variables m(iAL) and M (iAL) are a.s. finite since % is a distribution and D,
is compact in the space of test functions. Let f be some function supported on [z +
a,T + 2a] x [0,7] which is nonnegative, constant on vertical segments, and satisfies
[fz)d?z=1.

Since the statement of the lemma is translation invariant, we may translate U so
that lim,, . |¢(2) — 2| = 0. By [AG21, Lemma 2.24] we see that for some absolute
constant a (e.g. a = 100 works) we have |p(2) — z|,|¢'(2)], |(¢7!)/(2)| < a for all z with
Rez < inf{Rez: z € 8\[7} — a. Consequently, we can choose b large in terms of a, f so
that |¢'|*f o p € ® , for any U, ¢. Then

(RY, f) = (ho ™ + Qlog|(o™ VY|, f) = (l.|¢'|2f 0 ) + (Qlog [(¢™ )], f),

m(h) — Qloga < (Y, f) < M(h) + Qloga.
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The event {m(lAz) —Qloga > —-K}nN {M(ﬁ) + Qlog a < K} holds with probability approach-
ing 1 as K — oco. On this event, since (¥, f) € (—K, K) we can find some z € [Z+a, 7+2a]
such that ¥ € (—K,K). Moreover, notice that the curve o([Z + 3a,Z + 3a + ix]) is
contained in U and lies to the right of [Z + 2a,Z + 2a + i7] (since |¢(z) — 2| < a for
z € [T+ 3a,T + 3a + in]), so [x,x +in] C U.

Finally, we claim that with probability approaching 1 as K — oo we have v; ((7 —
K2 —a,00)N0) < %e%KB; since |p(z) — z| < a for z to the left of z, this implies the last
assertion of the lemma. Since F' has positive probability, it suffices to prove this claim in
the setting where (S,}Az, +00, —00) is not conditioned on F', so we will assume this. The
left-to-right field average process (ﬁt)telR is Brownian motion started from +oo to —oco
with variance 2 and downward drift. Define the stopping time 7, = inf{t € R : h; = s}.
Fix some large M, then ?L; < M with probability 1 —o,(1), hence 7y < Z with probability
1 — op(1). By Brownian motion estimates we have Tys,2 < Tay — K? — a with probability

tending to 1 as K — oo for fixed M. Finally, since the law of e gK5/2l/ﬁ(TK5/2,OO) does

not depend on K, we have v; ((1ys/2,00)) < 3e3%” with probability 1 — ok (1). Sending
K — oo then M — o0 and combining these three estimates, we conclude that with

probability approaching 1 we have v;((Z — K? — a,00)) < %e%Ks, as desired. O

Recall the event BF, ¢ . = E, x N E] . _ of Proposition 3.2. Abusing notation, define

Gr=< D} (St +70) (5.5)
j=1

i.e. G, is the event that the white regions in Figure 5 (top left) lie to the right of 7_...
More precisely, for j = 1,...,n the curve segments of 7; between w; and +oo lie in
St + 71— (with n,, = R +im).

Proposition 5.7. P[BF,  x. NG, | BC, k.| -+ 1 asr — 00,{ — 00, K — oo in that
order.

Proof. In this argument, we use “with high probability” as shorthand for “with probability
approaching 1 as first » — oo, then ( — oo, and finally K — oo, in that order”.

Let U be the unbounded connected component of the set parametrizing A, let
y = inf{Rez: z € S\U}, and define (Y;);>¢ to be the field average of h on [y — ¢,y —t +im].
We claim that, since BC, k. is measurable with respect to (h|s, 1y, 71,...,7,), when we
condition on BC, g ., the law of (;);>¢ is Brownian motion started at (the random) Yj
with variance 2 and upward drift. This claim follows from a minor modification to the
proof of [AG21, Lemma 2.10], and is essentially a Markov property of the field when we
explore it from right to left, analogous to the domain Markov property of GFFs. We leave
the details to the reader.

Transferring the high probability estimate Lemma 5.6 from Ato A+r+ K using
Lemma 5.5, we conclude that with high probability we can find a point x € R so
that [z,z + 7] C U, the average of h on [z,r + in] is between —r — 2K and —r, and
vn((x — K2,00) N OU) < %e%(*r”{&). Restrict to the event that these occur and choose
z < y to be the rightmost point satisfying these constraints. Since the average of h on
[,z + in] is less than —r, we see that 7_, < z < y; this proves PG, | BC, x| — 1.

We claim that with high probability we have 7_, > z— K?. Indeed, if < ¥, then by the
Markov property of Brownian motion (Y;{ (,_s) —Y,_2):>0 is Brownian motion started at 0
with variance 2 and linear upward drift. Thus with high probability Y (,_s) =Y, > 2K
for all t > K?; in particular the field average on any vertical segment to the left of z — K?
is at least —r with high probability. Consequently, 7_, > = — K?2. The case x = y similarly
yields 7_, > x — K2.
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Finally, we conclude that with high probability
1 ol . il . J .
Vh(['rfra oo)) = Vh([Tfm OQ) ﬂaU) +a1+1< 565(_7+K3) +4e§(—T—K) +1<1 +ei(—7+K3)7

and similarly with high probability v, ([7_,, c0)) > 1. This shows that P[E, i | BC, k] —
1. Combining with the last claim of Proposition 5.4, we conclude that PBF, ¢ x . |
BC, ke] —+ lasr, (, K — oc. O

5.4 Convergence to thick quantum disk

In this section we prove Proposition 5.1. Proposition 5.4 shows that (S, h, +00, —0c0, 71,
..,Mn—1) conditioned on BC, x . approximates a welding of thin quantum disks. From

Sections 5.2 and 5.3, this is close to the law of (S, h, +00, —00, 711, - . ., n—1) conditioned
on BCT,K,E NG,N BFT,C,K,5~

When we condition only on BF, ¢ k., the field and curves in neighborhoods of +oo
resemble those of a quantum disk decorated by macroscopic curves (namely with
quantum lengths at least ¢), and are almost independent from the field and curves
near the bottleneck (Proposition 3.2). On BF, ¢ k., the event BC, k. N G, is almost
determined by the field and curves near the bottleneck, hence the field and curves in
neighborhoods of +oo conditioned on BC,. . N G, N BF,. ¢ k. look like a quantum disk
decorated by macroscopic curves. This concludes the proof of Proposition 5.1.

To that end, we make a general statement about the near-independence of SLE in
spatially separated regions in Lemma 5.8 (whose proof we defer to Appendix B), then
carry out the argument sketched above.

Lemma 5.8 (Near independence of SLE). Suppose (71,...,Mn_1) ~ PIK(W,... ., W,),
and condition on (n NS4, ..., np—1NSy). Then (n NSy, ...,nn—1 NS4 )-almost surely,
as N — oo the total variation distance between the conditional law of (n; N (S— —
N),...,0,—1N(S— — N)) and the unconditioned law of (1N (S—-—=N),...,np—1N(S- —N))
goes to zero.

Recall from Section 2.6 that a quantum surface (S, h, +00, —00, 1, ..., n,) satisfying
vn(R) > 1 is canonically embedded if vj,(R4) = 3.
Proposition 5.9. Consider the canonically embedded curve-decorated surface (S, h, 400,
—00,M, ..., Mn—1) conditioned on BC, . NG, NBF, ¢ i ., where G, is defined as in (5.5).
Send r = o00,( — 00, K — oo in that order. Then in any neighborhood U of oo with
—oo € U, the law of (h|y,m NU,...,n,—1 NU) converges in total variation to the law of
(Yly, mNU,...,0,-1NU), where (S, +00, —00, 9,11, . .., M,_1) is taken from M3k (W, 1)®
PUK(W,...,W,) (with canonical embedding) and conditioned on {v(i};) > ¢ for j =
1,...,n} (with 7, := R +in).

Proof. Recall the setting of Proposition 3.2, which has a further parameter S > 0
describing the length of the rectangle R = [0, 5] x [0,7]. In this proof we will send
parameters r — 00,{ — 00,5 — 00, K — oo in that order. We will write o¢(1) (resp.
0s(1)) for a quantity that goes to zero as r,{ — oo (resp. r,{, S — o0) in that order. Let
U C S be a neighborhood of +00 bounded away from —oo.

First sample (S,h, 400, —00,71,...,M,—1) conditioned only on BF,( k.. Let h =
h(-4+7_r)+rand 7, = (n;—7—,)NRfori=1,...,n—1. By Proposition 3.2 and Lemma 5.8
we know that the joint law of h, (M55 Mn—1),5(0,00) = Land (hly,m NU,..., 0,1 NU)
converges in total variation as r,{ — oo to the independent objects ¢, (9y N R, ..., n,_1 N
R),V and (|, iNU, ..., G.—1NU). Here, ¢ is the field described in (3.5), (1}, ..., 1., _;) ~
Phisk(Wy . W), V ~ Unif([0,e35]), and (¢|y, 7 N U, ..., H._1 NU) is as defined in
Proposition 3.2.
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Similarly to (5.5), define

H.s=4|JD}c(S-+7,+5)
j=1

The event G, N H, s is measurable with respect to the os-algebra F := o (h, (71, ..., Tn-1),
v5(0,00) — 1). Indeed, the point %, := 29 — 7_,. is the point on R, such that v; ([0, %)) =
v5((0,00)) — 1; given this and the translated curves (m1 — 7_,...,7,—1 — 7_,) We can
determine the domains 25]' = D; — 7_,. Thus G, N H, g is the event that z; and all of the
curve segments defining D} are contained in R, so G, N H, s € F.

Now we show that BC, x . NG, N H, g € F. Recall the definition of BC, k. in (5.1)
which involves the lengths {(a;,b;,¢;,¢;)}1<j<n. On G, N H,. 5, the lengths a;,b;, c; are a
function of & and m,...,Nn—1. Moreover, the conditions of BC, g . on ¢4, ..., ¢, hold by
assumption because we have conditioned on BF, ¢ k.. We conclude that BC, x . N G, N
H, s is measurable with respect to F.

Thus, when we sample (S, h, +00, —00, 71, ...,7,—1), then given BF,. ¢ x . N BC; k. N
G, N H, g, the conditional law of (h|y,m1 NU,...,n,—1 N U) converges to the desired
limit (described in Proposition 3.2) as r — 00, { — 00, S — o0, K — oo in that order. To
finish the argument, it suffices to show that P[H, g | BF, ¢ k. NBC, k.. NG, =1 —o0g(1).
This is true because P[H, s | BF, ¢ k. N G,;] = 1 — 0g(1) and, for fixed K, we have
PBC, k. N H,s | BF, ¢ kNG, > 0 uniformly as r — 00,{ — 0,5 — o0; both
statements hold because of the existence of the limit law (¢, (n},...,n,_1), V). O

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. In this proof, when we say “with probability approaching 1” or
“close in distribution”, we mean in the r — o0, ( — oo, K — oo limit, and when we say “in
the bulk”, we mean in neighborhoods of +oco in the canonical embedding.

Proposition 5.7 tells us that P[G, NBF, ¢ i | BC, ¢ ] — 1. Therefore Proposition 5.4
tells us that the law of (h, 71, ..., 7n,) in the bulk conditioned on BC, ¢ . NG, NBF, ¢ k is
close in distribution to that of £ [[[> M§Sc(Wy;1,61) - MGK (W5 b1, 0y) dly ... dUy,.
But Proposition 5.9 tells us that the law of (h,7,...,7,) in the bulk conditioned on
BC,.c,. NG, NBF, ¢ k. is close in distribution to that of M$SK(W; 1) @ Pdsk(Wy, ..., W,,)
conditioned on the event A, that boundary arc and interface lengths are greater than .
Thus for fixed € > 0 and for some constant c. > 0, we have

(MER W5 1) @ PEK (W, ... W) |a. = ce /// [T M= (Wi iy, i) dey . .
€ =1
For any &’ > ¢, by restricting first to A, then to A.., we see that c. = c. so the constant
does not depend on . Sending € — 0 yields Proposition 5.1. O
6 Conclusion of the proofs of conformal welding results

In this section we extend Proposition 5.1 to Theorem 2.3, and explain the argument
modifications needed to obtain Theorem 2.4.

Proof of Theorem 2.3 when Wy,... W, , W # '72—2 We discuss the proof of Theorem 2.3
in three different regimes.

Case 1: Wl,...,Wne(O,g) andW>§.
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Proposition 5.1 tells us that
MGHW;1) @ PER(W, ..., Wy)
=cw,... W, ///00c MESE (W51, 07) x MESK(Wy: 0y, )
- X MSiSk(Wn; Zn_l, En) dly...de,.

Add %1og£ to the field and apply Lemma 2.24 (n + 1) times. Writing ¢; = er for

j=1,...,n—1land /¢ = ¢, then disintegrating with respect to ¢/, we have for a.e. ¢ > 0
that

MPKW 0,0 @ PdiSk(Wl, W)

- X MSIS“(WH;KHJ') dby ... db,_;.

Continuity of M$*k(W; ¢, ¢') and M$%(W,,;£,,_1,¢") in ¢’ (see the proof of Proposition 5.4
for the argument by continuity) then yields the result for all ¢ > 0, establishing Case 1.
Case 2: Wi,...,W, € (0,%) and W < -

Choose W41 € (0 ﬁ) so that 2"*1 Wi = W +W,; > Z. By the definition of

. ? 2 .
Pk, one can sample (11,...,0n_1,7n) ~ PUKWy, ..., W,, W, 1) by first sampling

n ~ PYK(W, 4+ ... + W, W, 1), then independently sampling n — 1 curves in each
bounded connected component D C S\n from Pp(W,...,W,,), and concatenating to get
(M, ...,Mn—1). Therefore, applying Case 1 to the (n + 1)-tuple (W1,...,W;,41) and to the
pair (W, W,,;1) yield

MKW 0,07) @ PUK(Wy, ..o, Whit)
= CW,,....Wni1 ///OO MGEE(W; 0, 47)
X MESKWs 1, 0) x MGK(W,, 05 0,07)dEy .. dly,—y dV
= CWy ot W Wi 1 /0 (MW + -+ Wi £,0,) @ PR, L W)
X My (Whpys €, 07) de.

Disintegrating with respect to ¢ yields the desired identity for a.e. ¢ > 0, and continuity
extends this to all ¢ > 0. Thus we have shown Theorem 2.3 for Case 2.

Case 3: Wq,..., W, € (O,—l—oo)\{l;} and W > -
Choose some sufficiently large N and decompose W; = W} + .- + WZ-N with W/ €

(0, l;) for1 <i<nandl<j <N, then by Case 1 we have for constants cy,...,c, €
(0, 00)
M) = [ / MEHL0,0) x - x MINWN: b, ) dly . dEy .

Here, the right hand side is a measure on curve-decorated surfaces; forgetting the curves
yields the left hand side. Applying Case 1 to the nN weights ((W])J oo (W) and
comparing to the above yields

MPRW0,0)VQP = cw,...w. /// MKW 0, 00) % - X MISKW 1, ) dEy . dly, o
0
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where P is a probability measure on (n — 1)-tuples of curves obtaining by forgetting
some curves of PUk((W{)M | ... (Wi)I,). The same argument using Theorem 2.26
yields M™edee(W) @ P = [[I_, M¥edee(I¥;), and comparing this with Theorem 2.26 for
weights (Wy,...,W,,) yields P = P4sk(W,, ... W,,). Thus we have shown Theorem 2.3

for Case 3.

Case 4: n =2, W; = l; and W, = 2. This follows from applying Case 3 and sending
e —>0whenn=2 W, = 772 + ¢ and W5 = 2. See Appendix A for details.

2

Case 5: Either I = g or some W; = 1.

The case W = 'YZ—Z follows from Case 4 and the argument of Case 2. The case where

W; = l; for some j then follows from the argument of Case 3. O

The proof of Theorem 2.4 is nearly identical to that of Theorem 2.3, so we explain it
briefly. First we will show the analog of Proposition 5.1, and then extend it to the full
result using scaling arguments and Theorem 2.3.

Let C = R x [0,27]/~ be the cylinder (here R and R + 27 are identified under the
relation z ~ z 4+ 271).

Figure 7: Consider a quantum cone (C,h,+o0o0,—0c0) decorated by the curves
(N0, -+ yNn_1) ~ PPY(W1, ..., W,). Let z be the point on 7y with v},-length from +oco
equal to 1. Iteratively for j = 1,...,n, let D} be the component of W; with z;_; on its

boundary, and let w;, z; be its left and right marked points respectively. Let BC, . be
the event that z, lies on 0D} between w; and zp, and that the length bounds (6.1) hold.

Lemma 6.1. Fix n > 2 and fix W1,..., W, € (0, g) Consider a field-curves pair
(¥, 70, - - -, 1) taken from MP"(W;1) @ PPh(Wy,...,W,)). When we condition on
vy (no) = 1 and cut along 7y, . . . ,7,—1, We obtain an n-tuple of quantum surfaces with law

for some ¢y, .._w, € (0,00).

Proof. Consider a quantum cone (C, h, +00, —00) ~ M"¢(TW) decorated by independent
curves (10,71, .-, Mn_1) ~ PPY(W1,...,W,); the curves cut the cone into n indepen-
dent quantum wedges Wi, ..., W, with weights W;,...,W,, [DMS14, Theorems 1.2,
1.5]. We define the event BC, k. as follows: Let 2z, be the point on 7, at distance
1 from +o0, and define the quantum surface D} to be the bead of W; with z; on its
boundary; call its left and right marked points w; and z; respectively. Iteratively define
D3, 22, wa, ..., Dy, 2n, wy similarly, and define (aj, bj, c;,¢;)7_; in the same way as in the
disk case. Let BC, g . be the event that the following holds, see Figure 7:
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e For each j =1,...,n we have the inequalities
e b e (1,2), 2B (q; 4+ b)) € (3,4), e T¢; € (5,6), ¢ >¢ (6.1)

e The point z, lies on the bead D, between the points w; and z.

The exact choice of the second condition is not too important; any suitable variant of
“the cycle of beads Dj,...,D;, closes up” suffices. This condition is used to prove the
analog of Lemma 5.2.

Conditioning on BC, g . gives a decomposition of the quantum cone into the quantum
surfaces A, B, and (D;')?:p where A is infinite and B is finite. As before, when we
condition on the lengths (aj,bj,cj,éj);-”zl, these quantum surfaces become mutually
independent. By following the steps in the proof of Proposition 5.1, we obtain Lemma 6.1.

O

Proof of Theorem 2.4. The theorem in the case n > 2 and Wy,...,W,, € (0, 772) follows
from Lemma 6.1 and a scaling argument using Lemma 2.24 (see Case 1 in the proof
of Theorem 2.3). For the case n = 1 and W; € (0, 72—2), we choose any W7, W} € (0, l;)
with W + W} = W; and apply the n > 2 case and Theorem 2.3. Finally, for the case
where n > 1 and Wy, ..., W, > 0 are arbitrary, we split each thick quantum disk into thin
quantum disks as in the proof of Case 3 of Theorem 2.3. O

7 Application to finite-area mating of trees

We now present two applications of our conformal welding results. In Section 7.1
we explain a unified derivation of the mating-of-trees theorems for the quantum sphere
and disk, building on the mating-of-trees theorem for the 2 — l; quantum wedge from
[DMS14]. Since these results are not new, we only provide proof sketches but the
proofs can be made complete without substantial difficulty by filling in more details. In
Section 7.2, we show a new mating-of-trees theorem for Mgisk(ﬁ), which is crucial for
several subsequent works [AHS21, ARS21].

7.1 Mating of trees for weight 2 quantum disk and weight 4 — v> quantum
sphere

In this section we explain how our arguments and conformal welding theorems
yield a systematic treatment of the quantum sphere and disk mating-of-trees theorems.
The quantum sphere theorem was originally proved in [MS19, Theorem 1.1], and the
quantum disk theorem was shown in [DMS14]? for v E (\/i, 2) and [AG21, Theorem 1.1]
for v € (0, \/5]. As these results are already present in the literature, we only sketch
the proofs — for example, we will rely on several facts concerning Brownian motion
without justification. These proofs demonstrate the robustness of our arguments and the
effectiveness of our conformal welding results.

We start by recalling the setup for the mating-of-trees framework; see [DMS14,
GHS19] for more details. Fix k' = }/—g. We can define space-filling SLE, curves between
two marked boundary points of a simply connected domain; see [MS17, Section 1.2.3]
and [GHS19, Section 3.6.3]. Suppose 7/’ is a space-filling SLE, drawn on an independent
v-LQG quantum surface. We parametrize it so it covers a unit of quantum area per unit
of time. Moreover, at each instant, the boundary of the region 7’ has explored is locally
absolutely continuous with respect to an SLE,; curve, and one can use this to argue that
the boundary a.s. has a well defined quantum length [Shel6a].

2See [MS19, Theorem 2.1] and the paragraph before it for discussion on the proof of the v € [v/2,2)
quantum disk mating-of-trees theorem in [DMS14].
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We can now state the mating-of-trees theorem for the weight 2 — g quantum wedge.

For ~y € (0, /2], consider a weight 2 — l; quantum wedge (S, h, 400, —o0), decorated with
an independent space-filling curve n’ from +oo to —oo parametrized by the quantum
area. For eacht > 0 let p; € R and ¢: € R + ¢7m be the leftmost points such that
[pt,00), (g1, 00) C 7'([0,¢]). The boundary 9(n/([0,t])) has a well defined quantum length.
Let L; be the quantum length of the boundary arc of #'([0,¢]) from »'(¢) to p; minus
vn([pt,>0)), and let R; be the quantum length of the boundary arc of #'([0, ¢]) from »’(t)
to ¢; minus vy,([g;, 0)). See Figure 8 for an illustration. For v € (1/2,2), the weight 2 — l;
quantum wedge is thin, but the same definition applies with p;, ¢;: being the furthest
points on the left and right boundaries from the root for which the space-filling curve
has filled the boundary arcs from p; and ¢;, respectively, to the root.

Theorem 7.1 ([DMS14, Theorem 1.9]). For some v-dependent constant a > 0, the
process (L, R;)1>0 evolves as Brownian motion with covariances given by

Var(L;) = Var(R;) = a®t, Cov(L;, R;) = —cos(my?/4)a*t  fort > 0. (7.1)

Remark 7.2. The variance a? was not known until the work 02f the first and the third
author with Remy [ARS21], which proves that a® = 2/sin(*J-). This formula is not
needed for our paper.

We will use Theorem 7.1 and our conformal welding results to rederive the mating-of-
tree theorems for the quantum sphere and disk.

To that end we need some finite duration variants of the Brownian motion (L;, R;);>0
in Theorem 7.1. They are constructed through limiting procedures in the same spirit
as [LWO04, Section 3], except that we consider Brownian path measures in a cone
]R%r := (0,00)? with an endpoint at the vertex, and we use correlated Brownian motion.
We omit the detailed justification for the existence of the various limits because the
arguments in [LW04] still apply.

Let K be the collection of all continuous planar curves of the form 7 : [0,¢,] —
R?. For n € K we call ¢, the duration of 7. Endow K with the metric di(n1,72) =
infg{supse[o7t7]1] |s = 0(s)| + |mi(s) — n2(0(s))|} with the infimum taken over increasing
homeomorphisms 6 : [0,t,,] — [0,,,]. For z € R3 let u}, (z) denote the proba-
bility measure on K corresponding to a Brownian motion Z:: L, + Ry: started at
z = Lo + Rgt with covariance (7.1), and stopped upon hitting 8]Ri. For g € iRy, let
E,. := {Z exits R% in (q,q + i)}, where (¢,q + €i) means the linear segment on R?
between ¢ and ¢ + ¢i. Define the weak limit u?’Ri (z,q) = lim._,o %u}{i (2)|E,.- Thisis a
finite measure on X, supported on the set of paths from z to ¢q. Similarly, for p € R, we
can set Mg‘i (p,q) = lim._ * u%i (p + i, q). When one of the endpoints of the Brownian
excursion is the origin, we need to normalize differently. Let E. := {Z exits R? in (0,i)}
and define for z € R the finite measure u%i (2,0) = lim. 5_%2%17{1 (2)|g.; Lemma C.1
shows that —7% is the correct exponent. We also define for p € R, the finite mea-

sure u%i (p,0) = lim._,o 2 u%i (p + ig,0). Finally define the Brownian bubble measure

. -4 -1
M%i (Oa 0) = hm&—>0 e M]’lyqi (6, 0)
We note that, as an immediate consequence of the scale invariance of Brownian
motion and the exponents in the above definitions, for any A > 0, z € RZ, and z > 0 we
have

4

_ _a_
u}{i()\z,O) =\ 2 (TA)*u%i (2,0) and u%i (Ax,0) = A" ? 1(T>\)*,u%{i (z,0), (7.2)

where T} : K — K is the rescaling operator given by Ty (n) := Ap(A=2-).
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Figure 8: Top left. Definition of (L, R;) in Theorem 7.1: L, is the quantum length
of the boundary arc of 7/(]0,t]) from #'(t) to p; minus v, ([p:, 00)) (blue minus orange),
and R; is is the quantum length of the boundary arc of 7/([0,¢]) from n'(¢) to ¢; minus
vr([ge, 0)) (green minus red). Top right. Definition of BC, x in the proof of Proposition
7.3. Bottom left. The Brownian motion (L;, R;)jo,4) conditioned on BC, x. Bottom
right. Illustration of (L., R;)[o, 4], Where (L; — La, Ry — Ra)jo,4] ~ Cfooo ug{i((l,é)ﬂ)dé.

We first prove the variant of Theorem 7.1 with the weight 2 — l; quantum wedge

replaced by a weight 2 — g quantum disk. As in Proposition 5.1, we first restrict to the
case when one boundary arc of the disk has quantum length 1.

Proposition 7.3. Suppose we are in the setting of Theorem 7.1 but with the quantum
wedge replaced by a quantum surface (S, h, +co, —o0) sampled from MZisk(2 — 772; 1).
Let (L, Rt)[o, 4) be the boundary length process, where A is the random quantum area of
the quantum disk. Then for some constant C > 0, the law of (L; — L4, R; — RA)[O,A] is
given by C [© /J?Ri(l + ¢i,0) dX.

Sketch of proof. We focus on the v € (0,1/2) case first, so 2 — l; > l; Let (S, h, o0,

—o00,n’) be a weight 2 — 72—2 quantum wedge decorated by a space-filling SLE,.; between
the two marked points. We define the field bottleneck event BF,  x = E, g N E;,C as in
Proposition 3.2, but set instead Ej . := {o_¢ < oo}. That is, remove the curve length
condition.

We now define a curve bottleneck event, see Figure 8 (top right). Decorate the quan-
tum wedge by an independent space-filling SLE,/ curve n’ from +o0o to —oco parametrized
by quantum area, and let (L;, R;)r, be its boundary length process. Let z; be the point
on the left boundary arc (i.e., R) of the quantum wedge at distance 1 from the root, and
let A be the time that 7’ hits zo. Let a be the quantum length of (91([0, A]))\0S. Define
the curve bottleneck event BC,. jx = {e3("+5)q € [1,2]}.

Conditioned on BC, g, by Theorem 7.1 the process (L, Rt)[07 4] evolves as Brownian
motion with covariances (7.1) stopped at the random time A = inf{t : L; = —1}, and
conditioned on (R4 — inf|y 4 R;) € e2(~"~%)[1,2]. Purely using Brownian motion tech-
niques, conditioned on BC, g, in the r — co and K — oo limit, the process (L, Rt)[O,A]
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converges in distribution to C fooo u%Z (1 + ¢i,0) d¢ for an appropriate constant C. See
+

Figure 8 (bottom).

This convergence in distribution of (L;, Rt)[,4] allows us to prove an analog of
Proposition 5.4, where the limiting curve-decorated quantum surface is defined in terms
of its peanosphere Brownian motion. More precisely, the process (L, Rt)[o,4) defines
an equivalence relation ~ on [0, A], and the quotient space [0, A]/~ can be viewed as a
topological disk decorated with a space-filling curve. Since the Brownian motion locally
determines the field and curve in Theorem 7.1 [DMS14, Theorem 1.11], this topological
curve-decorated disk can be endowed with a conformal structure, so it can be viewed as
a certain curve-decorated «v-LQG surface. At this step, we do not identify this limit as a
space-filling SLE,/-decorated quantum disk.

Finally, we have the counterpart of Lemma 5.8: space-filling SLE,. is almost indepen-
dent in spatially separated domains. As in Appendix B, this can be done by an imaginary
geometry argument, using [GMS19, Lemma 2.4] and [AG21, Proposition 2.5(a)].

With these ingredients, the same argument as in Section 5 showing Proposition 5.1
can be applied: Conditioning on BF, ¢ x, the bulk law of the field and curves is almost
independent from their law near the field bottleneck, and sending r,{, K — oo, the
curve-decorated surface converges to a sample from M$k(2 — 772; 1) decorated by
an independent space-filling SLE,/ curve. Conditioned on BF, ¢ k, the event BC, g
is almost measurable with respect to the field and curve near the field bottleneck,
and hence further conditioning on BC,. x does not change the limit law. Finally, since
P[BF, ¢k | BC, k] ~ 1, the limit law of the boundary length process conditioned on
BF, ¢ x NBCx is C [;° ugﬁ (1 + ¢4,0) d¢. This yields Proposition 7.3 for v € (0,/2).

2

. . . . . 2
We adapt this argument for v = v/2 (it does not immediately apply since 2 — =%

is the critical weight for thick quantum disks). Pick W € (0, l;) and consider a weight
2 — 'YQ—Z + W thick quantum wedge decorated by an SLEH(—g; W — 2) curve 5. By
Theorem 2.26 the quantum surface W, (resp. W) to the left (resp. right) of n is a weight
2 — g (resp. weight W) quantum wedge.

Draw a space-filling SLE, curve n on W;. Then Theorem 7.1 yields the boundary
length process of y on W;. Let 2 be the point on R so [z, o) has quantum length 1, let
D be the region explored by n’ up until it hits z, and let U be the union of D with the
bounded components of S\D. Define BC,. ;¢ = {e?("+5)1;, (9U\OS) € [1,2]}. Conditioning
on BC, i and sending r — oo and K — oo (in that order), we understand the limiting
law of (L¢, Rt)o,4], and the limiting decorated quantum surface is a weight 2 — g + W

thick quantum disk decorated by an SLE,{(—V—;; W —2) curve 7 and a space-filling SLE,

curve 7 in the region to the left of 7. By Theorem 2.2 cutting along 7 gives a weight
2

2 — % quantum disk decorated by space-filling SLE,..

2 2 . 2 . .
For v € (1v/2,2), we have 2 — %4 < & so the weight 2 — %~ quantum wedge is thin. On

the left boundary arc of a curve-decorated weight 2 — 772 quantum wedge, let zy be the
point at distance 1 from the root, and let D be the chain of quantum disks between z,
and the root (not including the quantum disk containing zy). Condition on the left side
length of D being at least 1 — ¢. Then Corollary 4.3 tells us that the pinched quantum
surface is a quantum disk, and Theorem 7.1 gives the boundary length process. Finally,
sending € — 0, the boundary length process converges to C fooo ug{i (14 ¢3,0)de. O

Observe that in the above proof, just as in the original proofs of the quantum disk and
sphere mating-of-trees theorems, the proof of Proposition 7.3 is easier when v € (v/2,2).
In this regime, the nontrivial topology that arises in mating of trees creates natural
bottlenecks.
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Corollary 7.4. In the setting of Proposition 7.3 we replace M35k(2 — ”’2—2; 1) by Mgisk(2 —

g) Then for some constant C' > 0, the law of (Ly — La, Ry — Ra)jo,4) is given by
C[I5° g (€4 £5,0) dedr.

Proof. This is a consequence of Proposition 7.3 by scaling, using Lemma 2.24 and (7.2).
O

We now state and give an alternative proof of the sphere variant of the mating-of-trees
theorem [MS19, Theorem 1.1]. Let Psr denote the law of space-filling SLE, between
two boundary points in a simply connected domain, and extend its definition to domains
which are chains of disks by concatenation. The probability measure P;%h for space-filling
SLE, loops on a one-pointed sphere can be defined by arbitrarily picking a second point
on the sphere, drawing a pair of curves from PSPh(2 — §7 2 — "2—2) dividing the sphere
into two (possibly beaded) parts, independently sampling space-filling curves in each
part from Pspr, and concatenating them; see [DMS14, Footnote 4].

Theorem 7.5 (Quantum sphere mating-of-trees). Consider a sample (@,h,o,oo,n’) ~
M (4 — ~2) @ PP with iy parametrized by quantum area. Let (L;, R;) be, respectively,
the left and right quantum boundary lengths of 7([0,t]). For some C > 0, the law
of the process (L:, R;) is C’;f]{%i (0,0) weighted by Brownian excursion duration, i.e.

Ct,,,ug{i(o, 0)(dn) where t, is the duration of 7).

Sketch of proof. Write W =2 — 772 Then Theorem 2.4 gives
2 2

MPM4— ) @ PP (2 - % 2 77) = Cww // MGPEW 0, 0) x MWl 0)dedr’.
0

The definition of P2 then gives
(oo}
MPE (4 —72) @ PEE — 2y / / (MER(W:0,) @ Psr) x (MIH(W, 0, 0)  Psp) de de.
0
Thus, using Corollary 7.4, the boundary length process has law given by
C’// #%2 0,0+ £) x u%z (0+0'i,0)dedl,
0 + +

where pp, (0, + ¢'i) is defined via time-reversal from s, (¢ 4 ¢'i,0), and a sample
+ +
(n},m4) from ME’& (0,€+ £'7) x “E%i (¢ + 'i,0) is interpreted as a path in R? from 0 to 0 by
concatenating n} and 7}.
We now show that the duration-weighted cone excursion measure agrees with the

above law. Since the Brownian excursion measure can be written as a disintegration
over the excursion duration /‘?1/%1 (0,0) = f,° ,u}ﬁ (0,0;1) dt, the duration-weighted cone

excursion measure can be written as f fooo ug{Q (0, 0;t1+t2) dty dts. By the Markov property
+
of Brownian motion we have the path decomposition

//0 uﬂfﬁ (0,05t +13) dty dts = ////0 uﬁfﬁ (0,0 + 0'istq) x /‘%i (£ +0'0,0;t2) dedl’ dty dty
- // j2 (0,64 ) x iy (€4 £,0) de de,
0 + +
as desired. O
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Finally, we can give an alternative proof of the disk variant of the mating-of-trees
theorem [DMS14, AG21]. For a > 0, let (D, h,—i,7) be a quantum surface sampled
from MJk(2; &, 2)#, and let M{*5(2; a)# be the law of the quantum surface (D, h, —).
We can define the probability measure PSOF on space-filling SLE, loops in a disk with
a marked boundary point. This measure is obtained by sampling a curve from Psp
in a two-pointed domain (D, —i, «) and sending x — —i in the clockwise direction; see
[BG20, Appendix A.3] for details. For a sample (D, h, 7/, —i) ~ M$%(2; a)# @ P&, writing
A = pp(D), we define (Ly, Rt)se[o, 4] as follows. Parametrize 7’ so that at time ¢ we have
pr(n'([0,¢])) = t. Let pr € 0D be the furthest point on the clockwise arc from —i so
that the arc from —i to p; € #'([0,¢]), and let L, be the v),-length of the boundary arc of
7'([0,¢]) from 7'(t) to p; plus the v,-length of the clockwise arc of D from p; to —i. Let R;
be the vj,-length of the boundary arc of 7/'([0, ¢]) from 7’() to —i. We call (L¢, R¢)o, 4] the
boundary length process of (D, h,n’, —i). See Figure 9, left.

i

R

Pt

Ry

Figure 9: Left: lllustration of (L;, R;) in Theorem 7.6, namely (L, R;) is the boundary
length process of (D, h,7’, —i) sampled from M¢{*%(2; a)# @ PSOF. With the space-filling
curve parametrized by quantum area, the red quantum length is L; and the blue quan-
tum length R;. The process (L;, Rt)ljo,., (D) is then a Brownian excursion in the cone
R2. Right: Illustration of the proof of Proposition 7.8. Sample (D, h, —i,4,7’) from
MG®K(2;0,2) ® P§. The time 7’ hits i equals the stopping time 7 = inf{t : L, < x}
of (L¢, R¢)o,u,(p))- Since the blue interface is a certain SLE,(p_;p) curve by SLE
duality, the conditional law of the quantum surface (#'([0,7]),h,—i,4) given R, is
M(Q“Sk(g; ¢, R,)*. This gives a Brownian motion description of the quantum area and

lengths of a sample of MgiSk(é—Q), which implies Proposition 7.8.

Theorem 7.6 (Quantum disk mating-of-trees). For any a > 0, the law of the boundary
length process (Ly, Ry) of M{(2;a)# @ P, is ;. (a,0)%.
+

Sketch of proof. Embed a quantum disk from M{¥%(2; a)# as (DD, h, —i) so that the bound-
ary points —i, —1,1 divide dD into arcs with quantum lengths a/3, and for e > 0 let
w. € 0D be the point so the clockwise arc from w. to —i has quantum length . Since
marked points on M$k(2) are independently and uniformly distributed according to the
quantum length measure [DMS14, Proposition A.8], the quantum surface (D, h, —i, p.)
has law M$*k(2;a — ,6)%.

Let 7. be an independent SLER(—%z; g — 2) curve in D from —i to w,, and let its
quantum length be X. Conditioned on X, by Theorem 2.2 the quantum surface D, to the
left of 7. has conditional law M$sk(2 — g; a—e,X)?. Draw an independent space-filling
SLE, curve n. ~ Psr from —i to w. in D.. As ¢ — 0, we have X — 0 in probability and
hence, by Proposition 7.3, the law of the boundary length process of 7. converges to
Hg‘i (a,0)%. Also as € — 0, the curve 7. degenerates to the point —i € 9D in probability,

and hence the law of 5. converges to PSOF. This yields the theorem. O
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7.2 Area and length distribution of the weight 7?/2 quantum disk

The main result of this subsection is the following proposition, which expresses the
area and length distribution of the weight 4?/2 quantum disk in terms of Brownian
measures, and gives an explicit formula for the joint law of the two boundary lengths.

Proposition 7.7. There are constants C, C; € (0,00) such that for all ¢, > 0,

(ET)4/72,1

2
disk (V. _ N —
‘MQ (?,E,TH - CO|,UJ7R3_(&TZ)‘ - 0(64/72 —|—’I“4/72)2'

(7.3)

. 2
Moreover, the quantum area of a sample from M$**(%-;¢,r)# agrees in law with the
duration of a sample from pf,, (¢, 7i)%.
+

Before giving the proof of the proposition we state a counterpart of (7.3) for the
weight 2 quantum disk. The constants C appearing in the propositions is identified in
our companion work [AHS21].

Proposition 7.8. There is a constant C > 0 such that
disk -%-1
|IMSS(2;0,r) | =C(l+71) 7 for {,r > 0.

Proof. By Lemma 2.16, the law of the total quantum boundary length of M$k(2) is
1t>0Ct_%2 dt. By [DMS14, Proposition A.8], if we sample (D, h, —1,1) from M$%(2) and
independently sample z,y € 0D from %, then the quantum surface (D, h, z,y) still
has law M$k(2). Consequently, if a sample from MZ%(2) has total boundary length ¢,
then conditioned on ¢ the left and right boundary lengths agree in law with (Ut, (1 — U)t)
where U is uniformly sampled from [0, 1]. Thus, the result follows from the change of

_ 4 _4
variables 1;50t 7 dtlisysodu = 1g,so(f+ 1) 22 Y d¢ dr where ¢ = ut,r =(1—w)t. 0O
We will now give the proof of Proposition 7.7 using Theorem 7.6 and exact formulas
for the associated planar Brownian motion. We first state a variant of Theorem 7.6.

Lemma 7.9. There is a constant C for which the following holds. Let ¢,z > 0, and sample

(D, h,', —i, i) from M$*¥(2; £, 2) ® P§p. Then the law of (Ls, Ry)[o,,., (> iS Cu%i (L+z,0),

where the process (L, Rt)[o,#h,(u))] is defined as in Theorem 7.6.

Proof. Theorem 7.6 states that if (D, h,7’, —i,) is sampled from M{™(2; £ + z)# @ P

then the law of (L¢, Ry)[o,, (D)) 18 u]}*{Z (¢ +2,0)%. By [DMS14, Proposition A.8] a sample
T

from M$k(2; ¢,7)# can be obtained by sampling from QD; (¢ + z)# and marking another
—1

sHh

boundary point to get length ¢ and z boundary arcs. Since |M$SK(2; ¢, )| oc (£ + x)fé
A
by Proposition 7.8 and |uf. (¢ +2,0)] o< (£ 4 x) ' by (7.2), we get the result. O
+

Proof of Proposition 7.7. See Figure 9, right. For (D, h, —i,4,7’) sampled from Mgk (2;
(,7) @ Psr, let A = pj(D), let 7 be the time that ' hits 4, and let D; = 7/([0,7]). In
[GHS19, Section 3.6.3] it is given a construction of 5’ such that, when 7 is the right
boundary of a certain SLE,; (x" — 6) curve in (D, —i,4), then D; is the region to the left
of n in D. SLE duality (see [Zha08, Theorem 5.1] and [MS16a, Theorem 1.4]) says
that the law of the right boundary of an SLE..(p";p/,) curve is SLE,(p_;p4) where
p—=5—-2+%p and py = k+ £p/ —4; since k' = 18 ' =0and p/, = r’—6, the law of
nis SLE.(%§ — 2; —%). Hence, by Theorem 2.2, the marginal law of the quantum surface
(D1, k|, —i,y' (7)) is given by
> C Mdisk(2 o lz . . disk lzg d f
/0 1M 5 srya)| - MGSY( 5 ,7)dr for some constant C; € (0, 00).
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Lemma 7.9 tells us that for some C3 € (0,00) the boundary length process (L,
Rt) 10,1, (my) of (D, h,—i,4,1") has law Cgu%; (¢ + x,0). The strong Markov property of
Brownian motion applied to the stopping+time 7 yields a path decomposition [Law,
Proposition 1.11]: the law of ((L; — @, Ry) 0,7 (Lstrs Rotr)jo,4—1]) is Ca [ ,u%i (,7i) x

fige (x +7i,0) dr. Hence the marginal law of (L; — x, Rt)[o,7 is
2

/0 Cg‘ﬂ%i (x + ri,O)’ -ug{i (€,71) dr. (7.4)

Disintegrating over r, we see that for every ¢, r,z > 0 we have

01’./\/1(21151‘(2 -5 x)

2
. ‘./\/lgisk(’é;g7 7")

= C’g‘ugﬁ(ﬂc—l—ri,O)‘ : ‘u;{ﬁ(ﬁ,ri)‘.

. . _ 4
Integrating over = > 0, we have [ |Mgs¢(2 — 72—2;7", 7)| dr = |MFsk(2 — l;; r) ocr a2t

by Lemma 2.16 (if 2 — 772 > g) or Lemma 2.18 (if 2 — l; < "2—2), Moreover, by (7.2),
> . _a [ Tz . _4 g
/0 ’u?Ri(:v—km,O)‘dx:r 72/0 ‘ui’{i(;—i—z,O)‘dxmr 2

Thus we get |M§“Sk(7;;£,r)| = C|ug. (¢,7i)| for £,r > 0 for some C' > 0. The second
T

claim follows from the fact that quantum area corresponds to the Brownian excursion
duration. 0

Remark 7.10 (Mating-of-trees for weight 772 quantum disk). The argument of Proposi-
tion 7.7 shows that for some constant C' > 0, the following holds for all /, > 0. Sample
a quantum disk from MSiSk(g;E,r) and decorate it by an independent space-filling
SLE, (0; %/ — 4) curve between its marked boundary points [MS17]. Then a suitably
defined process (L;, R;), which can be viewed as a boundary length process for the
SLE-decorated LQG surface, has law Cug> (£, ri).

A Extension of welding results to I = %2

In the proof of Theorem 2.3 in Section 6 we break the argument into five cases. The
first three cases, which we have proved using the input from Sections 3—5, can be
summarized as follows.

Proposition A.1. Theorem 2.3 holds in the case when Wy, ..., W, , W € (0,00) \ {72—2}

In this appendix we will complete Case 4 of the proof of Theorem 2.3 based on
Proposition A.1. Namely, we extend Theorem 2.3 to include the situation where n = 2
2
and one weight equals %-.

Proposition A.2. Theorem 2.3 holds in the case whenn = 2, W, = 2, and Wy = g

We prove Proposition A.2 by considering the W; = 2 and Ws = 72—2 + ¢ case and then
sending ¢ | 0. We start by proving a continuity result for thick disks in the weight
parameter.

Lemma A.3. Let W > ”72 £>0,and a € (0,1). Let D° ~ (M5 (W + )| a(s))*, where
A(a) is the event that the left and right LQG boundary lengths of D¢ are in (a,a~!). Let
he be such that (S, h®, +00, —00) is an embedding of D¢ for which R has LQG length a.
Then h° restricted to any bounded set converges to h° in total variation distance.

The same result holds if we let Ay, (a) (resp. Ar(a)) be the event that the left (resp.
right) LQG boundary length of the surface is in (a,a~!) and we replace A(a) by Ar(a)
(resp. Agr(a)) in the above statement, where, for the case of Ag(a), we embed the
surfaces such that R, + 7 (instead of R ) has LQG length a.
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Proof. Consider Definition 2.1 with weight parameter W + ¢ instead of W and write
c. instead of c. For § > 0, let A(§) denote the event that c¢. > §. On the event A(J)
and normalizing the measure from which c. is sampled to be a probability measures,
c. converges in total variation distance to ¢y as ¢ — 0. Let hf and h§ be the field h in
Definition 2.1 projected onto #;(S) and H2(S), respectively. Notice that the law of h§
does not depend on ¢, while h§ restricted to any bounded set converges to h{ for the total
variation distance. Combining the convergence results for c. and h{, we get that the
lemma holds with (M$™*(W +¢)|5;,)* instead of (MG (W +¢)|a(a))*. Furthermore,
this convergence is joint with convergence of the event that the left and right LQG
boundary lengths defined by h§ + h§ + c. are in (a,a”!). We obtain the lemma from
this by using that (M$S<(W + ¢)| Afa)nA( 5))# converges in total variation distance to
(MGK(W +€)| a(a)) as & — 0, uniformly in £ € [0, 1]. The proof for the events Ar,(a) and
Ag(a) is identical. O

We will also need a continuity result for SLE.

Lemma A.4. Fore > 0 let 1. be an SLE,(0;7%/2 4+ ¢ — 2) on (S, +00, —x), let D} C S
(resp. D? C S) be the domain below (resp. above) 7., let ¢ : S — Dj be the conformal
map which is fixing oo and 0, and let ¢5 : S — D5 be the conformal map which is fixing
+o0o and iw. Then ¢7 (resp. ¢5) is converging uniformly in law to ¢1 (resp. ¢2) on compact
subsets of SUR (resp. S U (R + iw)), and the convergence is joint for ¢, and ¢,.

Our proof of the lemma relies on the following result, which is a variant of [Kem17,
Lemma 6.1]. The main extension as compared to [Kem17] is that the set A is not required
to be bounded away from R.

Lemma A.5. Let 7 and 77 be curves in H from 0 to co with Loewner driving function
(Wi)e>0 and (Wt)tzo, respectively, and let (g;):>0 and (g:):>o denote the Loewner maps.
For anye € (0,1) thereis a ¢ € (0,1) such that if

A={(t,2) €[0,T] xH : inf |gs(z) —W,| >} and sup |W;— W] <é.
5€[0,t] te[0,T]

then
sup [g¢(2) — ge(2)] <e.
(t,z)€A

Proof. In the proof of [Kem17, Lemma 6.2] it was argued that

) =] < sup W, = 7. fexp(y/ T07(0) ~ ), (a1
s€[0,t
where . .
1) :2/ l0:(2) — Wi "2ds,  1(t) :2/ 1G2(2) — Wa| 2 ds,
0 0
Set

_¢ —2y _1y—1, &
5—3(exp(4t5 )—1) /\10.

Suppose there is a time sg € [0, ¢] such that
[Geo () = Wao| < /2. (A.2)

Let sy be the smallest time satisfying this requirement. Then we get from (A.1) that
|95, (2) — Gso (2)| < /3, so by the triangle inequality

_ — ~ —~ € € €
|gso(’z) - W80| Z |gso(z) - WSo' - ‘gso(z) 7980(2” - ‘WSO - W30| >&— g - E > 5
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This is a contradiction to the definition of sy, and we conclude that there is no time
so € [0,1] satisfying (A.2). Since there is no time sq € [0, t] satisfying (A.2), we have I(t) <
2te=2 and I(t) < 8te2, so the right side of (A.1) is smaller than §(exp(4te™2) — 1) <e. O

Proof of Lemma A.4. We will prove the lemma in the setting of the upper half-plane
H instead of S. Precisely, if 7. is an SLE, (0;+%/2 + & — 2) on (H,0,00), DX C H (resp.
Df C H) is the domain to the left (resp. right) of 77, and o1, : H — Dy (resp. ¢f : H — DR)
is the conformal map which is fixing oo, 0, and 1 (resp. —1), then we will argue that ¢,
(resp. ¢g) is converging uniformly in law to ¢r, (resp. ¢r) on compact subsets of HUR_
(resp. HU R, ), and that the convergence is joint for ¢, and ¢r. The lemma immediately
follows from this upon considering the conformal map z — —logz from (I,0,c0) to
(S, 400, —00).

Consider a coupling of the Loewner driving functions (W¢(t));>o of 7. such that
W¢ converges uniformly to W° on compact sets a.s.; we leave the proof of existence
of such a coupling as an exercise to the reader. Let T' > 0 be a large constant to be
chosen later, and let (g§):>0 be the centered forward Loewner maps of 7).. We can write

(¢5)7" = v 0 65 o g5, where 6. : H — H is given by 05.(2) = 53915 and v5. is the
conformal map fixing 0, —1, and co which sends the domain to the left of 67 o g% (7 |i7,00))
to H.

By A.5, g5 converges uniformly to g% on any subset of H which is bounded away
from 7y ([0, 7). In particular, g5(—d) — g%(—¢) a.s. as € — 0 for any fixed § > 0, and by
harmonic measure considerations we get further that ¢5(0~) — ¢%(07) a.s. as € — 0.
This implies further that 65 converges uniformly to 62 since ¢5(—1) — ¢%(—1) and
g5(07) = g%(07) as.

Fix a compact set K ¢ HUR_. The harmonic measure of ¢; ! (Meli7,00)) @s seen from
any point z € K goes to zero as T goes to oo, uniformly in € and z; this follows e.g. from
Brownian motion considerations and by using the fact that 07 o g5 (7:|[7,~)) converges
in Carathéodory topology as ¢ — 0. Therefore, for any § > 0 we can find T sufficiently
large such that [¢5.(2) — z| < d for all z € (¢%)~(K). Combining this with the previous
paragraph we get a.s. convergence of ¢f, to ¢r, as desired. Convergence of ¢ to ¢r
follows by a similar argument. O

Proof of Proposition A.2. For ¢ > 0, a > 0, and with A(a) as in Lemma A.3 let D¢ ~
(MG (W + § +€)|a@)?, let 7 ~ Phisk(, 772 +¢), and let D5 and D5 denote the
surfaces to the left and right, respectively, of n°. Note that all the considered surfaces
and 7n° are sampled from probability measures. By Proposition A.1, if € > 0 then Dj and
D5 have the law of surfaces sampled from (M§*5(W1)|4, (o))* and (MgiSk(g +8)| An() ™
respectively, and the surfaces are independent conditioned on the event that the right
LQG boundary length of the former surface is equal to the left LQG boundary length

of the latter surface. To conclude it is sufficient to argue that DY and DY have the
2

law of surfaces sampled from (M$S%(W1)| 4, (a))* and (M$=%(%)| 4, (a)) ¥, respectively,
again such that the surfaces are independent given the same condition on the LQG
boundary lengths as before. This is sufficient since it gives (2.4) restricted to the events
A(a), AL (a), Ar(a) and with all the measures normalized to be probability measures. We
get the case of non-probability measures by choosing the constant Copy 22 appropriately
so that the measures on the left and right sides of (2.4) have the same 2total mass, and
sending a — 0 we can remove the constraint on the boundary lengths.

Let h® be the field on S such that (S, k¢, 400, —00) is the embedding of D¢ for which
R+ has LQG length a. Define hi, h5 in the same way for Dj, D5, respectively, except
we require that h§ induces the same length on R, + im as h. Let D, D5 C S denote
the domains to the left and right, respectively, of n°. For j = 1,2 let ¢ : S — Dj be
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the conformal map such that h®| Ds and £ are related by doing a coordinate change as
in (2.1), so in particular ¢j fixes +00 and 0 while ¢5 fixes +00 and i7.

By Lemma A.3, h® restricted to any compact set converges in total variation distance
to h? as e — 0. By Lemma A.4, ¢5 and ¢5 converge jointly in law to ¢ and ¢J, respectively,
uniformly on compact subsets of SUR and S U (R + ir). Since h® and (¢, ¢5) are
independent there is a coupling so that they converge jointly a.s. to h° and (¢9, ¢9),
respectively. Since ¢ and ¢5 are conformal we also get a.s. uniform convergence of
their derivatives on compact sets. Therefore, for any smooth compactly supported test
function f on S,

(A5, f) = (h* 0 ¢5 + Qlog |(67)'], f) — (h® 0 ¢} + Qlog |(#})'], f) = (h1, f) as.,

so h§ converges a.s. to h for the weak-* topology. The same holds for 5. By Lemma A.3,
any limit of h§,h§ describe quantum surfaces sampled from (MZ$5(W1)|4, ())# and

(J\/l(gliSk(VQ—2 +¢)| AR(a))#, respectively, conditioned on the right boundary arc of the former
surface having an equal length as the left boundary arc of the latter surface. In particular,
the limiting fields h{, hJ have the desired laws, which concludes the proof. O

B Proof of SLE local independence lemma

The goal of this section is to prove Lemma 5.8. To clarify the picture we work
in a bounded domain. Let D be the square [—1,1]?> and let z = —i,y = i. Let U =
[-1,1] x [-1,0] denote the lower half of D and let U, = B.(i) N D for e > 0.

Proposition B.1. Supposen > 2 and Wy, W, ..., W, > 0. Sample curves (n1,...,Mn—1)~
PUK(W, ..., W,) from x to y. Let " be the initial segment of 7); run until it exits U,
and let n); be the initial segment of the time-reversal of n; run until it exits U.. Then the
total variation distance between the following two laws is 1 — o.(1):

* The joint law of (ni*®**, ... n5®%) and (nS,...,n5_4).

e The joint law of (75***, ... 5%y and (n5,...,n5_,), where (71,...,7,—1) is inde-
pendently sampled from Pp (W1, ..., W,) and 7j;**"* is defined analogously as 73"
for each j.

Before giving the proof of this proposition, we explain how it yields Lemma 5.8.

Proof of Lemma 5.8. Proposition B.1 yields a variant of Lemma 5.8 where, instead of
taking the intersections of the curves with S, and S_ — N, we instead take the curve
tips run until they exit these two domains. Because the curve tips never revisit their
starting points, there is some random 7" > 0 for which the restrictions of the curve tips
to S + T and S_ — N — T agree with the restrictions of the curves to these regions.
Therefore Lemma 5.8 follows by looking at the curve tips intersected with S + M and
S_ — N — M, and sending M — oo and then N — oo. O

We will understand the single curve (n = 2) case of Proposition B.1 using the frame-
work of imaginary geometry [MS16a, MS16b]. Then we explain the minor modifications
needed for the general n regime.

Consider the n = 2 case and drop the subscript on the curve, i.e., n := ;. Let
p; = W; — 2 for j = 1,2, so the curve n is an SLE,(p1; p2) curve in (D,z,y). One can
couple 1 with an appropriate Dirichlet boundary GFF h!C in D, such that 7 is an angle 5
flow line of h'C. Precisely, when we parametrize by (IH, 0, c0) the imaginary geometry
GFF has boundary values = (4 + p2) on Ry and —Z=(2 — § + p1) on R_, and h'G has
boundary values derived from this by an imaginary geometry coordinate change as
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defined in [MS16a]. By [MS16a, Theorem 1.1], n is a deterministic function of G and
n*tart is determined by h'¢|y.

Although the reversibility of SLE, (W, — 2; W5 — 2) could suggest that 7° is a deter-
ministic function of hIG|UE, this turns out not to be the case. Instead we need to use
the machinery of counterflow lines. Let k' = 1,76. One can couple with h'C a certain
SLEK/(%/ -2+ %pl; K —4+4 %pg) curve ' from y to x such that ' is a deterministic
function of A'¢, and, writing ¢ for the initial segment of 7/ run until it exists Us, the
segment 7’ is determined by h|y;, [MS16a, Theorem 1.11.

Figure 10: Left. For the imaginary geometry h!C, the angle 5 flow line 7 is a.s. the
right boundary of the counterflow line ' (Lemma B.2). Right. The initial segments 752
and 7’° are a.s. determined by h|;y and h|y,, respectively.

Lemma B.2 ([DMS14, Theorem 1.41). Almost surely 7 is the right boundary of /.

Lemma B.3. Fix 6 > 0. On an event of probability 1 — o.(1), the curve segment 7° is
determined by h|y,.

Proof. Write Es. for the event that the curve 7’ does not revisit U. after leaving Us.
Since 7 a.s. does not hit y after leaving Uy, and 7’ is a continuous curve, we conclude
that P[Es.] = 1 — 0.(1). The assertion then follows since on E;., by Lemma B.2 7° is
determined by 7%, which is determined by hlus.- O

Lemma B.4. Let h!C be independently sampled, with the same law as h'G. Then the total
variation distance between the laws of (h'¢|y, h'¢|y,) and (W€ |y, h1C|y,) is 1 — 0s(1).

Proof. We work in the strip (S, +o0, —00) instead. The corresponding imaginary ge-
ometry field B¢ in S has constant boundary conditions on R and R + in (with dif-
ferent values on each line). Let U be a neighborhood of 400 excluding —oo, and let
Uy = (=00, —N) x [0,7]. Let V = S\U, and let I, = 0V NR, I, = 9V N (R + i), and
1= 8‘7\(11 U I). The Markov property of the GFF tells us that EIG|‘7 conditioned on
EIG| 7 is a mixed boundary GFF with constant boundary conditions on /; and /3, and
Dirichlet boundary conditions on / determined by iALIG| i+ By [AG21, Proposition 2.5
(a)], as N — oo, the law of EIG|(7N given 'C|; is within oy (1) in total variation from its
unconditioned law. Mapping back to the square domain D, this yields the lemma. O

Now we can prove the proposition.

Proof of Proposition B.1. For the single curve case n = 2, as we send first ¢ — 0 then
d — 0, outside an event of probability o.(1) the segments 7°*3"* and 7° are respectively
determined by h|y and h|y, (Lemma B.3), and (h|y, h|y;) is 0s(1)-close in total variation
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to (h|y, hlu,) where I is an independent copy of i (Lemma B.4). Therefore (%, n°) is
close in total variation to (7% %), as desired.

We now explain the general n regime. We may couple the tuple (71, ...,n,—1) with
an appropriate imaginary geometry field A'¢ so that each n; is a flow line of h'G with a
certain angle. Lemma B.3 applies for each curve 7;, and Lemma B.4 still applies for h'G,
so the same argument applies. O

C Brownian motion computations

In this appendix we carry out some Brownian motion computations which are needed
in Section 7.2.

Lemma C.1. Consider planar Brownian motion Z = (Z,),>¢ with covariance (7.1) started
at z € R? and run until it exits R? . Then for some C > 0 we have P[Z exits in (0,ei)] =
4
(14 0.(1))Ce +* ase — 0.
11
Proof. First perform the shear transformation z — Az with A = ;( 5189 tai”) and
0 = 7%2, transforming Brownian motion with covariances (7.1) in Ri to standard

4
Brownian motion in the cone {w : argw € (0,6)}. Then map w — w~* to get Brownian
motion in H. This maps the interval (0, ie) C 811{?F to an interval of length proportional to

€37 in OH so P[Z exits in (0,e1)] = (C + 05(1))5%2 for some C. O
Recall the measures p ;. (z,w) defined in Section 7.2.
T

Lemma C.2. There is a constant C > 0 so that for all ¢, > 0 we have
v : e T 42

|uRi(€,m)|:C€~ ra? (07 4?7
Proof. We will use the boundary Poisson kernel for standard Brownian motion in H,
given by Hy(z,y) = = (z—y) 2 for ,y € R; this follows from the limit of the bulk Poisson
kernel ].imé*)() (5_1H]H(x + 52, y) = lim(s*)() (5_1 . m

a\ 0

transforming Brownian motion with covariances (7.1) in IRi to standard Brownian motion
in the cone Cy := {w : argw € (0,0)}. Then, writing p = ——/ and q = ﬁr, we have

asin @

1 1
First perform the shear transformation z — Az with A = 1 (Sin9 tai“g > and 0 = 7%2,

. | =
|/‘L?/R2+ (€, ri)| = C;IL% &11_1}(1) g]PszS[Eq,s]a
where P, corresponds to Brownian motion started at z, and Eq@ is the event that
Brownian motion exits Cy on the boundary interval [¢e??, (¢ + €)e?’], and C > 0 is a
constant. .
Now map from Cy to H by w — w>? to see that

. o1 ~
|u%i(£,m)\:Chm lim —P 4 4 1[E%2 Fan

6—0e—0 0 prZ4ispr? - g7 eq 3

where F 4, is the event that Brownian motion exits H on the interval between
q” ,eq”
4 4 4
—q* and —q»* —eq? " Taking the limit, we see that
4 4 4 4 ’;%_1 ’;%_1
e (€ 7)] = Cp7 g T Hy(p7, g77) = c 2L
: (07 + ¢ )2
Restating this in ¢ and r yields the lemma. O
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