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Conformal welding of quantum disks*
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Abstract

Two-pointed quantum disks with a weight parameter W > 0 are a family of finite-area
random surfaces that arise naturally in Liouville quantum gravity. In this paper we
show that conformally welding two quantum disks according to their boundary lengths
gives another quantum disk decorated with an independent chordal SLE(⇢�; ⇢+)
curve. This is the finite-volume counterpart of the classical result of Sheffield (2010)
and Duplantier-Miller-Sheffield (2014) on the welding of infinite-area two-pointed
quantum surfaces called quantum wedges, which is fundamental to the mating-of-
trees theory. Our results can be used to give unified proofs of the mating-of-trees
theorems for the quantum disk and the quantum sphere, in addition to a mating-of-

trees description of the weight W = �2

2 quantum disk. Moreover, it serves as a key
ingredient in our companion work, which proves an exact formula for SLE(⇢�; ⇢+)
using conformal welding of random surfaces and a conformal welding result giving
the so-called SLE loop.
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1 Introduction

Liouville quantum gravity (LQG) is a theory of random surfaces with close connections
to conformal field theory and random planar maps [Pol81, Dav88, DK89]. For � 2 (0, 2),
the random area measure of a �-LQG surface is of the form e�hd2z where h is a variant of
Gaussian free field and d2z is the Euclidean area measure. Although h is only a Schwartz
distribution which is not pointwise defined, the area measure e�hd2z can be understood
by regularizing h and taking a renormalized limit [DS11]. This construction falls into the
general framework of Gaussian multiplicative chaos; see [Kah85, RV14]. Recently the
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Conformal welding of quantum disks

metric associated with LQG surfaces was also rigorously constructed by regularizing the
field [DDDF20, GM21].

Quantum wedges are a natural family of infinite-area �-LQG surfaces with two marked
points on the boundary. Neighborhoods of one point have finite �-LQG area, whereas
neighborhoods of the other one have infinite �-LQG area. A quantum wedge is associated
with a weight parameter W > 0 which describes the singularity at the two marked
points.

A particularly fruitful approach to studying LQG is through its coupling with Schramm-
Loewner evolutions (SLE), which are an important family of conformally invariant random
planar curves associated with a parameter  > 0 [Sch00]. A key LQG/SLE coupling result
is the conformal welding of quantum wedges. For ⇢1, ⇢2 > �2, SLE(⇢1; ⇢2) is a variant
of SLE; see Section 2.7. The following result was proved in [DMS14], see Figure 1 for
an illustration.

Set  = �2. ForW1,W2 > 0, a weight (W1+W2) �-LQG quantum wedgeW cut
by an independent SLE(W1�2;W2�2) curve ⌘ yields two independent �-LQG
quantum wedges W1 and W2 of weights W1 and W2, respectively. Moreover,
(W, ⌘) is measurable with respect to the quantum surfaces (W1,W2). (See
Theorem 2.26 for the full statement.)

The conformal welding result for quantum wedges is arguably one of the deepest facts
in random planar geometry. It was proved by Sheffield in [She16a] when W1 = W2 = 2
and generalized in [DMS14]. It is a key input to the mating-of-trees theory of Duplantier,
Miller, and Sheffield [DMS14], which is a powerful framework to study SLE and LQG via
Brownian motion, and is fundamental to the link between LQG and the scaling limits of
random planar maps. See [GHS19] for a survey.

Figure 1: The conformal welding of quantum wedges [DMS14]. Left. The caseW1,W2 �

�2

2 , so each quantum wedge has the disk topology. Right. The case W1 �
�2

2 > W2,
so the second quantum wedge is a chain of disks. Not illustrated is the case where
W1,W2 < �2

2 and W1 +W2 �
�2

2 and the case where W1 +W2 < �2

2 .

For each weight parameter W �
�2

2 there is also an infinite measure on �-LQG sur-
faces with finite �-LQG area called the (two-pointed) quantum disk of weightW [DMS14].
Quantum disks can be considered the finite-area analog of quantum wedges, and they
also have the topology of a disk with two boundary marked points. We extend the
definition of the quantum disk to W 2 (0, �

2

2 ) in Section 2.4, and we view them as the
finite-area analog of quantum wedges of weight W . In this regime, the topology of
quantum wedges and disks is given by a chain of countably many disks; see Figures 1
(right) and 2 (right) for an illustration.

A main result of this paper, Theorem 2.2, is the conformal welding of quantum disks,
which can be informally stated as follows; see Figure 2.

Set  = �2. For W1,W2 > 0, a weight (W1 +W2) �-LQG quantum disk D cut
by an independent SLE(W1 � 2;W2 � 2) curve ⌘ yields two quantum disks
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Conformal welding of quantum disks

D1,D2 which are conditionally independent given the �-LQG length ` of ⌘;
the conditional law of D1 (resp. D2) is a weight W1 (resp. W2) quantum disk
conditioned on having right (resp. left) boundary arc of length `. Moreover,
(D, ⌘) is measurable with respect to the quantum surfaces (D1,D2).

We similarly show in Theorem 2.4 that cutting a quantum sphere by a certain SLE-type
curve yields a quantum disk. Quantum spheres are quantum surfaces with the topology
of the two-pointed sphere. This result is the finite-area analog of [DMS14, Theorem
1.4], which states that a quantum cone cut by a certain SLE-type curve results in a
quantum wedge. Using [MMQ19], the conformal welding of weight 2 quantum wedges
was extended to the critical case � = 2 and  = 4 in [HP18]. We believe our results
extend to � = 2 via similar considerations; see Remark 2.8.

Figure 2: Theorem 2.2 describes the conformal welding of quantum disks. The cases
W1,W2 �

�2

2 (left) and W1 �
�2

2 > W2 (right) are illustrated here.

Our proof relies on the intuition that the quantum disk can be obtained from a
quantum wedge by creating and pinching a suitable bottleneck, see the proof outline
towards the end of the introduction for more details. Using our approach, the mating-of-
trees theorems for the quantum sphere and disk can be easily deduced, as we sketch in
Section 7.1. These results were originally proved in [MS19, AG21, DMS14].

In Section 7.2 we give a mating-of-trees description of the weight-�
2

2 quantum disk.
This allows us to express the area and boundary length distribution of this disk in terms
of Brownian motion, and, using properties of Brownian motion, we get an explicit formula
for the joint law of the two boundary lengths.

Our paper is a key ingredient of several concurrent works. In our companion papers,
we prove an exact formula for SLE(⇢�; ⇢+) [AHS21] and establish a conformal welding
result for the SLE loop [Zha21] on the quantum sphere [AHS22]. Both papers crucially
rely on the conformal welding result proved in this paper, while the first paper also uses
the integrability result of the weight-�

2

2 quantum disk. In the joint work of the first and
third authors with Remy [ARS21], another conformal welding result is proved based on
our result to prove the so-called FZZ formula in Liouville conformal field theory (LCFT).
More generally, conformal welding of finite-area quantum surfaces is a cornerstone of
the ongoing program of the first and third authors proving exact results for SLE, LCFT
and mating-of-trees by exploring their connections; see [AS21] for another example.

It has been shown in various senses that random planar maps weighted by certain
statistical physics models converge to certain �-LQG random surfaces, where � depends
on the choice of model. For instance, random planar maps with the disk topology
decorated by an FK cluster model, Potts model, or O(n)-loop model with monochromatic
boundary conditions should converge to �-LQG quantum disks with weight 2 for some
� 2 (

p
2, 2) in the scaling limit. This was first demonstrated by the pioneering work of

[She16b] for the FK cluster model. See [GHS19] for a comprehensive review on the
relation between LQG and random planar maps. Applying our results to W1 = W2 = 2
implies that if the boundary condition is Dobrushin (rather than monochromatic), then
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Conformal welding of quantum disks

the limiting surface should be a weight 4 quantum disk. Moreover, the natural chordal
interface associated with the Dobrushin boundary condition should converge to SLE

with  = �2. In the sense of metric geometry for � =
q

8
3 , this follows from the work

of Gwynne and Miller [GM19], where the decorating model is the self avoiding walk;
see Remark 2.6. For Ising-weighted maps (� =

p
3), [CT20] proves interesting results

consistent with this picture; see Remark 2.7.

Proof idea for disk+disk=disk welding result (Theorems 2.2 and 2.3). We derive
our result from its counterpart for quantum wedges. The crucial step is to define a proper
“bottleneck” around the origin of a weightW > �2

2 quantum wedge and, roughly speaking,
condition on the bottleneck being small and the pinched region being large; under such
conditioning, the pinched region becomes close in some sense to a weight W quantum
disk. If one then cuts the weight W quantum wedge (using an SLE(W1 � 2;W2 � 2)
curve) into two quantum wedges of weights W1,W2, one expects that each of these
is pinched to get quantum disks of weights W1,W2, as desired. The idea of creating
a disk (or sphere) by pinching a wedge (or cone) has also been considered in e.g.
[DMS14, MS19, AG21, MSW20].

While the high level picture is clear, a direct implementation of this argument seems
exceedingly difficult whenW1,W2 �

�2

2 because it is hard to define a tractable bottleneck
event which pinches all three quantum wedges W1,W2,W to yield quantum disks. For
instance, if one defines a bottleneck for each quantum wedge W1,W2, then these
bottlenecks together should be a bottleneck for W, but the analysis of this bottleneck on
W must consider the conformal welding of W1,W2.

To resolve this, the key insight is our new definition of quantum disks with weight
W 0 < �2

2 . Weight W 0 quantum wedges are defined as an infinite Poissonian chain of
weight (�2 �W 0) quantum disks, and we define a weight W 0 quantum disk as a finite
truncation of this chain. Consequently, it is easy to “pinch” a weight W 0 quantum wedge
to obtain a weight W 0 quantum disk, and this enables us to define a tractable bottleneck
for the above proof sketch when W1,W2 < �2

2 and W1 +W2 > �2

2 .

The same argument shows that forW1, . . . ,Wn 2 (0, �
2

2 ) withW =
P

Wj >
�2

2 , cutting
a weight W quantum disk by a certain collection of SLE-type curves yields a collection
of quantum disks with weights W1, . . . ,Wn. Soft arguments then allow us to remove the
weight restrictions, yielding the full theorem.

Paper outline. We give preliminaries and state our conformal welding results (The-
orems 2.2, 2.3, and 2.4) in Section 2, and we prove these results in Sections 3–6. In
Section 7 we give alternative proofs of finite area mating-of-trees theorems, in addition
to giving a novel mating-of-trees representation of the weight W = �2

2 quantum disk. A
more detailed overview of Sections 3–6 can be found at the end of Section 2.

2 Definition of LQG surfaces and statement of the conformal weld-
ing results

The main goal of this section is to precisely state our conformal welding results
and give sufficient background to make these statements. In Section 2.1 we give some
preliminaries, and then we state the conformal welding results in Section 2.2. Some
quantum surfaces and curves are only discussed at high level in Section 2.2, and the rest
of this section is devoted to introducing these random objects. In Section 2.3 we define
quantum wedges, sphere and cones, in Section 2.4 we introduce the thin quantum disk,
and in Section 2.5 we explain some basic properties of quantum disks. In Section 2.6 we
carry out the disintegrations of quantum disks with respect to boundary arc lengths. In
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Section 2.7 we explain some SLE preliminaries. Finally we give an outline for the rest of
the paper in Section 2.8.

2.1 Preliminaries

We define the Neumann Gaussian free field (GFF) on the strip S := R ⇥ (0,⇡); the
definition extends to other domains by conformal invariance. With slight abuse of
notation we sometimes consider S as a subset of R2 and other times of C, so for instance
{0} ⇥ [0,⇡] is also written as [0, i⇡]. We also write R+ := (0,1), R� := (�1, 0) and
S± := R± ⇥ (0,⇡).

Consider the space of smooth functions on S with bounded support and mean zero
on [0, i⇡], and define the Dirichlet inner product

(f, g)r =
1

2⇡

Z

S
rf(z) ·rg(z) d2z.

Let H(S) be the Hilbert space closure of this space with respect to (·, ·)r. Then the
Neumann GFF on S normalized to have mean zero on [0, i⇡] is the random distribution

h =
1X

i=1

↵ifi,

where (↵i)1i=1 are i.i.d. standard Gaussians and (fi)1i=1 is an orthonormal basis for H(S);
one can show the law of h does not depend on the choice of (fi)1i=1. The above summation
does not converge in H(S), but a.s. converges in the space of distributions [DMS14,
Section 4.1.4].

Define Hav(S) ⇢ H(S) (resp. Hlat(S) ⇢ H(S)) to be the space of functions which are
constant (resp. have mean zero) on every vertical segment [t, t + i⇡] for t 2 R. Then
H(S) = Hav(S)�Hlat(S) is an orthogonal decomposition, so we have a decomposition
h = hav + hlat into its average and lateral components, where hav (resp. hlat) is constant
(resp. has mean zero) on each segment [t, t + i⇡], and hav and hlat are independent.
With slight abuse of notation, we call hav and hlat the projections of h to Hav(S) and
Hlat(S). See [DMS14, Section 4.1.6] for more details. In this paper, we mainly consider
generalized functions which are GFFs plus (possibly random) continuous functions; we
call these fields. For a field  on S, we write  t for the average of  on [t, t + i⇡], and
identify the projection of  to Hav(S) with the function ( t)t2R.

In this paper, we will always consider LQG with parameter � 2 (0, 2), and write
Q = �

2 + 2
� . We will often keep the dependences on � implicit for notational simplicity.

Let
DH := {(D,h) : D ⇢ C is open, h is a distribution on D}.

We will typically take h to be a variant of the GFF. For (D,h), ( eD,eh) 2 DH, we say that
(D,h) ⇠� ( eD,eh) if there exists a conformal map ' : eD ! D such that

eh = h � '+Q log |'0
|. (2.1)

For � 2 (0, 2), a �-LQG surface (or quantum surface) is an equivalence class of pairs
(D,h) 2 DH under the equivalence relation ⇠� , and an embedding of a quantum surface
is a choice of representative (D,h) from the equivalence class. We sometimes abuse
notation and let (D,h) denote a �-LQG surface (i.e., an equivalence class) rather than
an embedding of this �-LQG surface; the meaning will be clear from the context. We
often want to decorate a quantum surface by one or more marked points or curves. In
this case we define equivalence classes via (2.1), and further require that the conformal
map ' maps decorations on the first surface to corresponding decorations on the second
surface.
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We frequently consider non-probability measures in this paper, and extend the usual
language of probability theory to this setting. Precisely, consider a triple (⌦,F ,M) with
⌦ a sample space, F a �-algebra on ⌦, and M : F ! [0,1] a measure (not necessarily
with M(⌦) = 1). If X is a F -measurable function (“random variable”), its law is the
pushforward measure MX = X⇤M . We write X ⇠ MX and say that X is sampled from
MX . Weighting the law of X by f(X) 2 R+ corresponds to defining the measure fMX

via the Radon-Nikodym derivative dfMX
dMX

= f . For an event E 2 F with M [E] 2 (0,1),

conditioning on E yields the probability measure M [ ·\E]
M [E] on the measurable space

(E,FE) with FE = {S \ E : S 2 F}.

For W �
�2

2 , the weight W quantum disk was introduced in [DMS14, Section 4.5] in
terms of Bessel processes (see also [GHS19, Section 3.5]). Since this quantum surface
has the topology of the disk, we will call it a thick quantum disk.

Definition 2.1 (Thick quantum disk). For W �
�2

2 , write � := �
2 +Q�

W
� . Let

Yt =

⇢
B2t � (Q� �)t if t � 0
eB�2t + (Q� �)t if t < 0

,

where (Bs)s�0 is standard Brownian motions conditioned on B2s � (Q � �)s < 0, and
( eB2s)s�0 is an independent copy of (Bs)s�0. Let bhav(z) = YRe z for each z 2 S, let bhlat

be the projection of an independent GFF to Hlat(S), and let P be the law of the field
bhav + bhlat. Sample (bh, c) from the infinite measure P ⇥

�
2 e

(��Q)cdc and let  = bh+ c. Let
M

disk
2 (W ) be the law of the quantum surface (S, ,+1,�1). We call a sample from

M
disk
2 (W ) a quantum disk of weight W .

Note that Mdisk
2 (W ; `, `0) is a measure on �-LQG quantum surfaces with dependence

on � implicit. Although the Brownian motions are conditioned on a probability zero event,
they can be understood by limiting procedures. Alternatively, with � = 2 + 2

� (Q� �), the
process (B2s�(Q��)s)s�0 conditioned on B2s�(Q��)s < 0 for all s > 0 can be sampled
by running a dimension (4� �) Bessel process (Zs)[0,⌧ ] started from Z0 = 0 until the first
time ⌧ that Z⌧ = 1. Then (B2t � (Q� �)t)t�0 is the time-reversal of ( 2� logZt)t2[0,⌧ ] with
time reparametrized in [0,1) so the process has quadratic variation 2dt.

Definition 2.1 is a rephrasing of [DMS14, Definition 4.21] using the Bessel process
description [DMS14, Remark 3.7] (see also [PY82]). The law of c corresponds to the fact
that the maximum value of a dimension � = 2+ 2

� (Q� �) Bessel excursion has the power

law 1m>0m��3dm.
In Section 2.4 we will extend the definition of Mdisk

2 (W ) to W 2 (0, �
2

2 ), and call these
quantum surfaces thin quantum disks. The adjective “thin” here is inherited from thin
quantum wedges defined in [DMS14].

2.2 Main results

In this section we state our conformal welding results. There are several definitions
and details which we only describe at high level; we discuss these more comprehensively
in later subsections.

We will want to conformally weld quantum disks according to the natural �-LQG
boundary measure called quantum length : If h on S is locally absolutely continuous with
respect to a Neumann GFF, then the quantum boundary length measure ⌫h(dx) can be
defined as “e

�
2 h(x)dx” (this is done rigorously by mollifying and renormalizing [DS11]),

and satisfies for continuous g the scaling relation ⌫h+g(dx) = e
�
2 g(x)⌫h(dx).

For  2 (0, 4) and ⇢1, ⇢2 > �2, in a simply connected domain with two marked
boundary points SLE(⇢1; ⇢2) is a conformally invariant chordal random curve between
these points, with SLE = SLE(0; 0) [LSW03, Dub05]. This is defined in [MS16a,
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Section 2.2] using Loewner evolutions; the details are not needed for our work so we
omit them. While ordinary SLE does not hit the domain boundary, when ⇢1 (resp. ⇢2) is
strictly less than 

2 � 2 the SLE(⇢1; ⇢2) curve a.s. hits the left (resp. right) boundary arc.
SLE curves arise as the welding interface of �-LQG surfaces by quantum length when
 = �2, and hence one can define the �-LQG length of SLE-type curves for  = �2 by
pushing forward the length measure along the boundary [She16a]. Here and in the rest
of the paper, we will take  = �2.

We will define for W > 0 and `, `0 > 0 the family of measures {M
disk
2 (W ; `, `0)}`,`0>0

such that Mdisk
2 (W ; `, `0) is supported on quantum surfaces with left and right boundary

arcs having quantum lengths ` and `0, respectively. This family satisfies

M
disk
2 (W ) =

ZZ 1

0
M

disk
2 (W ; `, `0) d` d`0. (2.2)

The relation (2.2) in fact characterizes Mdisk
2 (W, `, `0) modulo a Lebesgue measure zero

set of values of (`, `0). We will remove this ambiguity by introducing a suitable topology
in Sections 2.6 and 4 for which M

disk
2 (W, `, `0) is continuous in `, `0.

When W �
�2

2 , we let Mdisk
2 (W ; `, `0) ⌦ SLE(⇢1; ⇢2) denote the measure on curve-

decorated quantum surfaces obtained by taking a quantum disk (S, ,+1,�1) ⇠

M
disk
2 (W ; `, `0)with an arbitrary embedding in S, independently sampling ⌘ ⇠ SLE(⇢1; ⇢2)

in (S,+1,�1), and outputting (S, ,+1,�1, ⌘). When W 2 (0, �
2

2 ), the measure
M

disk
2 (W ; `, `0)⌦ SLE(⇢1; ⇢2) corresponds to sampling independent SLE(⇢1; ⇢2)-curves

in each component of the thin quantum disk. We emphasize that for all W > 0 our
definition of the measure M

disk
2 (W ; `, `0)⌦ SLE(⇢1; ⇢2) does not depend on the choice of

embedding. The notation ⌦ here emphasizes that this is not a product measure; indeed
the measure is on the space of curve-decorated quantum surfaces, rather than pairs of
quantum surfaces and curves (from which a curve-decorated quantum surface could be
produced if a choice of embedding is made).

For fixed `, `0, `1, a pair of quantum disks from M
disk
2 (W1; `, `1) ⇥ M

disk
2 (W2; `1, `0)

can almost surely be conformally welded along their length `1 boundary arcs accord-
ing to quantum length, to obtain a quantum surface with two marked points joined
by an interface locally absolutely continuous with respect to SLE(W1 � 2;W2 � 2).
See e.g. [She16a], [DMS14, Section 3.5] or [GHS19, Section 4.1] for more details on
the conformal welding of quantum surfaces. In the following theorem, we identify
M

disk
2 (W1; `, `1)⇥M

disk
2 (W2; `1, `0) with the law of the curve-decorated quantum surface

obtained from conformal welding.

Theorem 2.2 (Conformal welding of quantum disks). Suppose W1,W2 > 0. There exists
a constant cW1,W2 2 (0,1) such that for all `, `0 > 0, the following identity holds as
measures on the space of curve-decorated quantum surfaces:

M
disk
2 (W1 +W2; `, `

0)⌦ SLE(W1 � 2;W2 � 2)

= cW1,W2

Z 1

0
M

disk
2 (W1; `, `1)⇥M

disk
2 (W2; `1, `

0) d`1. (2.3)

We now generalize to the multiple curve setting. For n > 1 and W1, . . . ,Wn > 0, we
define a conformally invariant probability measure P

disk(W1, . . . ,Wn) on (n� 1)-tuples
of SLE-type chordal curves in a simply connected domain with two marked points. This
is a special case of multiple SLE ; see Section 2.7 for a precise definition. We note that
if (⌘1, . . . , ⌘n�1) ⇠ P

disk(W1, . . . ,Wn), then for j = 0, . . . , n� 1, a.s. ⌘j and ⌘j+1 intersect

(other than at their endpoints) if and only if Wj <
�2

2 ; here ⌘0 and ⌘n denote the domain
boundary arcs.
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We define M
disk
2 (W ; `, `0) ⌦ P

disk(W1, . . . ,Wn) in the same way as M
disk
2 (W ; `, `0) ⌦

SLE(⇢1; ⇢2), and emphasize that this is a measure on curve-decorated quantum surfaces
(with no dependence on embedding).

Theorem 2.3 (Welding multiple disks). For n 2 {2, 3, . . . }, consider W1, . . . ,Wn > 0 and
W =

P
i Wi. There exists a constant cW1,...,Wn 2 (0,1) such that for all `, `0 > 0, the

following identity holds as measures on the space of curve-decorated quantum surfaces:

M
disk
2 (W ; `, `0)⌦ P

disk(W1, . . . ,Wn)

= cW1,...,Wn

ZZZ 1

0
M

disk
2 (W1; `, `1)⇥M

disk
2 (W2; `1, `2)

⇥ · · ·⇥M
disk
2 (Wn; `n�1, `

0) d`1 . . . d`n�1. (2.4)

Here the integrand on the right hand side is understood as the law of the quantum
surface decorated by n� 1 curves obtained from conformal welding.

Now, we treat the case of quantum spheres. For each W > 0 there is a natural
infinite measure M

sph
2 (W ) on sphere-homeomorphic doubly-marked quantum surfaces

called weight W quantum spheres (see Section 2.3). We can also define a conformally
invariant probability measure P

sph(W1, . . . ,Wn) on n-tuples of curves in the Riemann
sphere between two marked points (see Section 2.7).

Theorem 2.4 (The quantum sphere case). For n � 1, consider W1, . . . ,Wn 2 (0,1) and
W =

P
i Wi. There is a constant bcW1,...,Wn 2 (0,1) such that the following identity holds

as measures on curve-decorated quantum surfaces:

M
sph
2 (W )⌦ P

sph(W1, . . . ,Wn)

= bcW1,...,Wn

ZZZ 1

0
M

disk
2 (W1; `0, `1)⇥M

disk
2 (W2; `1, `2)

⇥ · · ·⇥M
disk
2 (Wn; `n�1, `0) d`0 . . . d`n�1.

Finally, we comment on several works related to Theorem 2.2.

Remark 2.5 (Relation to [MSW20]). [MSW20, Lemma 3.3] is a version of Theorem 2.2
for � >

p
2 and weights W1 = 2 and W2 2 (0, �2 � 2). They identify the law of the left

quantum surface as Mdisk
2 (2), and note that conditioned on the left boundary lengths of

the components of the right quantum surface, it is a conditionally independent collection
of weight �2 �W2 quantum disks.

Remark 2.6 (Relation to [GM19]). The argument of [GM19, Theorem 1.5] can be adapted
to show that the free Boltzmann chordal-self-avoiding-walk-decorated quadrangulation of
the disk converges in the Gromov-Hausdorff-Prokhorov-uniform topology to the welding

of
q

8
3 -LQG quantum disks of weight 2 along a boundary arc. Theorem 2.2 identifies

this limit as a weight 4 quantum disk decorated by an independent SLE8/3 curve. This
establishes a scaling limit result of self-avoiding walks to SLE8/3, and can be considered
a finite-area analog of [GM16, Theorem 1.1]. Moreover, based on [GM19] and our Theo-
rem 2.4, we prove in [AHS21, Theorem 6.10] that random quadrangulations decorated
by a self-avoiding polygon converge to a quantum sphere decorated by an SLE loop.

Remark 2.7 (Relation to [CT20]). Theorem 2.2 implies that when a weightW1+W2 quan-
tum disk conditioned to have boundary arc lengths `, `0 is decorated by an independent
SLE(W1 � 2;W2 � 2), then the law of the interface length L is given by

P[L 2 dx] = Z�1
��Mdisk

2 (W1, `, x)
����Mdisk

2 (W2, x, `
0)
��, (2.5)

where Z is the normalizing constant. In fact, by scaling and resampling properties of the

weight 2 quantum disk we have |M
disk
2 (2, `, x)| = C(`+ x)

� 4
�2 �1 for all `, x > 0 for some
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constant C > 0, and consequently, for � =
p
3 and W1 = W2 = 2 the law (2.5) agrees with

the scaling limit result of [CT20, Equation (46)] for the critical Boltzmann triangulation
of the disk decorated by an Ising model with Dobrushin boundary conditions. The
computation identifying (2.5) and this limit law is carried out (in different language)
immediately after [CT20, Equation (46)].

Remark 2.8. We have only stated Theorems 2.3 and 2.4 for the subcritical case  =
�2 2 (0, 4) but we expect that they also hold in the critical case  = �2 = 4 via similar
techniques as in Appendix A and [HP18] (where the latter work builds on [APS19,
MMQ19]). To carry out such an argument, we would take the subcritical theorems as
input and take the limit � " 2 similarly as in Appendix A, but using additional ingredients
from [HP18, APS19, MMQ19].

2.3 Quantum wedges, spheres and cones

In this section, we recall the definitions of various quantum surfaces from [DMS14,
Section 4.2–4.5]. See also [GHS19, Sections 3.4–3.5]. We omit the weight �

2

2 quantum
wedge description as it is not needed.

Definition 2.9 (Thick quantum wedge). For W > �2

2 , let � := �
2 + Q �

W
� (so � <

Q). Then M
wedge(W ) is the probability measure on doubly-marked quantum surfaces

(S,eh,+1,�1), where the field eh has independent projections to Hav(S) and Hlat(S)
given by:

•

eht :=

⇢
B2t � (Q� �)t if t � 0
eB�2t � (Q� �)t if t < 0

,

where (Bs)s�0, ( eBs)s�0 are independent standard Brownian motions conditioned
on eB2s + (Q� �)s > 0 for all s > 0.

• The projection of an independent Neumann GFF on S to Hlat(S).

The thin quantum wedge arises as a concatenation of thick quantum disks.

Definition 2.10 (Thin quantum wedge). Fix W 2 (0, �
2

2 ) and sample a Poisson point
process {(u,Du)} from the measure LebR+ ⌦M

disk
2 (�2 �W ). The weight W quantum

wedge is the infinite beaded surface obtained by concatenating the Du according to the
ordering induced by u. We write M

wedge(W ) for the probability measure on weight W
quantum wedges.

This agrees with the definition in [DMS14, Section 4.4]. Indeed, let M be the
excursion measure of a Bessel process with dimension less than 2, then a Bessel process
can be obtained by sampling a Poisson point process from LebR+ ⇥M and concatenating
the excursions according to the ordering induced by the first coordinate.

Now we define analogs of quantum disks and wedges with no boundaries. For
notational simplicity we work in the cylinder C := R ⇥ [0, 2⇡]/ ⇠, where we identify
R⇥ {0} and R⇥ {2⇡} by the equivalence x ⇠ x+ 2⇡i. We can define H(C),Hav(C), and
Hlat(C) as in the strip setting, and thus make sense of the Neumann GFF in C with mean
zero on [0, 2⇡i].

Definition 2.11 (Quantum sphere). For W > 0, write ↵ = Q�
W
2� . Let

Yt =

⇢
Bt � (Q� ↵)t if t � 0
eB�t + (Q� ↵)t if t < 0

,

where (Bs)s�0 is standard Brownian motions conditioned on Bs � (Q � �)s < 0, and
( eBs)s�0 is an independent copy of (Bs)s�0. Let bhav(z) = YRe z for each z 2 S, let bhlat be
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the projection of an independent GFF on C to Hlat(C), and let P be the law of bhav + bhlat.
Sample (bh, c) from the infinite measure P ⇥

�
2 e

2(↵�Q)c dc and let  = bh+ c. Let Msph
2 (W )

be the law of the quantum surface (C, ,+1,�1). We call a sample from M
sph
2 (W ) a

quantum sphere of weight W .

Definition 2.12 (Quantum cone). ForW > 0, let ↵ := Q�
W
2� (so ↵ < Q). ThenM

cone(W )

is the probability measure on doubly-marked quantum surfaces (C,eh,+1,�1), where
the field eh has independent projections to Hav(C) and Hlat(C) given by:

•

eht :=

⇢
Bt � (Q� ↵)t if t � 0
eB�t � (Q� ↵)t if t < 0

,

where (Bs)s�0, ( eBs)s�0 are independent standard Brownian motions conditioned
on eBs + (Q� ↵)s > 0 for all s > 0.

• The projection of an independent Neumann GFF on C to Hlat(C).

2.4 Thin quantum disks

In this section we define the thin quantum disk with weight W 2 (0, �
2

2 ). There is a
thin-thick duality W $ �2 �W in the sense that thin quantum disks are a Poissonian
chain of thick quantum disks from M

disk
2 (�2 �W ). At first glance the nontrivial topology

of thin quantum disks seems unnatural, but this topology enables our arguments in this
paper and subsequent work, and we will see that the thin quantum disks are the natural
analogue of thick quantum disks for W 2 (0, �

2

2 ).
In Definition 2.10, although the thin quantum wedge W only comes with the ordering

on thick quantum disks and not the labels u, we will see in Corollary 2.14 that {(u,Du)}
is measurable with respect to W. Therefore it makes sense to define the quantum cut
point measure which assigns mass x to the collection of cut points between the quantum
disks {Du : u  x}.

For each ↵ 2 (0, 1), a Lévy process (Lt)t�0 is called an ↵-stable subordinator if it is

a.s. increasing and Yat
d
= a1/↵Yt [Ber96]. The following result is proved (in different

language) in [GHM15, Lemma 2.6]. See also Remark 2.17 for a succinct self-contained
proof.

Lemma 2.13. Consider a weight W 2 (0, �
2

2 ) thin quantum wedge. Let Lt denote
the total quantum length of the left boundary arcs of the thick quantum disks within
quantum cut point distance t of the root of the quantum wedge. Then (Lt)t�0 is a stable
subordinator with exponent 1� 2W

�2 . The same holds if Lt is instead defined as the sum
of the right boundary arc lengths, or the sum of the perimeters.

Corollary 2.14 (Intrinsic definition of cut point measure). Parametrize the left (or right)
boundary of a thin quantum wedge by quantum length, and let T ⇢ R+ be the set
corresponding to cut points along this boundary. Then the quantum cut point measure
is given by the (1� 2W

�2 )-Minkowski content measure of T multiplied by a deterministic
constant.

Proof. T is the range of the stable subordinator Lt with exponent (1 �
2W
�2 ), so the

(1 �
2W
�2 )-Minkowski content on T agrees (up to a deterministic constant) with the

pushforward of Lebesgue measure on R under the map t 7! Lt [HS19, Lemma 5.13].

We now introduce the infinite measure on thin quantum disks, and note that each thin
quantum disk is a concatenation of quantum surfaces with finite total area and boundary
length.
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Definition 2.15 (Thin quantum disk). ForW 2 (0, �
2

2 ), we can define the infinite measure
M

disk
2 (W ) on two-pointed beaded surfaces as follows. Sample T ⇠ (1� 2

�2W )�2LebR+ ,

then sample a Poisson point process {(u,Du)} from the measure Leb[0,T ]⇥M
disk
2 (�2�W ),

and concatenate the Du according to the ordering induced by u.

The choice of constant (1� 2
�2W )�2 will be justified in [AHS21, Section 3.2], where,

roughly speaking, we understand thin quantum disks as an “analytic continuation” of
thick quantum disks. The quantum cut point measure on a thin quantum disk is well
defined and measurable with respect to the thin quantum disk, see Corollary 2.14.

2.5 Basic properties of quantum disks

In this section, we discuss some basic properties of quantum disks. For a domain
(D,x, y) we define its left boundary arc to be the clockwise arc from x to y.

Lemma 2.16 (Thick quantum disk boundary length law). For a quantum disk of weight
W 2 [�

2

2 , �Q), the M
disk
2 (W )-law of the quantum length of its left boundary arc is

cW `
� 2

�2 W
d` for some cW 2 (0,1). If W � �Q, then the M

disk
2 (W )-measure of {left

boundary length 2 I} is infinite for any open interval I ⇢ R+.

The same is true for the quantum length of the right boundary arc or whole boundary.

Proof. Write � = �
2 +Q�

W
� . For 0 < L < L0 we have, with (bh, c) as in Definition 2.1,

M
disk
2 [⌫bh+c(R) 2 (L,L0)] = E

Z 1

�1
1
e
�
2
c⌫bh(R)2(L,L0)

�

2
e(��Q)c dc

�

= E

"Z L0

L
⌫bh(R)

2
� (Q��)y

2
� (��Q)

· y�1 dy

#
= E

h
⌫bh(R)

2
� (Q��)

i Z L0

L
y

2
� (��Q)�1 dy,

where we have used the change of variables y = e
�
2 c⌫bh(R) (so dc = 2

� y
�1dy). When

W 2 [�
2

2 , �Q) (so 2
� (Q��) < 4

�2 ), the expectation is finite. This can be proved by Hölder’s
inequality as in the proof of [DMS14, Lemma A.4], or alternatively see [RZ20, Theorem
1.7 and (1.32)]. Since 2

� (� � Q) � 1 = �
2
�2W , we conclude that the law of the left

boundary arc quantum length is c`
� 2

�2 W
d`. If W � �Q (so 2

� (Q � �) �
4
�2 ) then the

expectation is infinite [RV10, Proposition 3.5], as desired.

Remark 2.17 (Proof of Lemma 2.13). Note that �2 �W > �2

2 , so by Lemma 2.16 the left

boundary length of a quantum disk from M
disk
2 (�2�W ) has law ⇧(dL) = cL

� 2
�2 (�2�W )

dL
for some c 2 (0,1). Therefore, with ⇤ a Poisson point process on LebR+ ⇥ ⇧(dL), Lt

is given by the sum of L over all (u, L) 2 ⇤ with u  t, for t � 0. Since ⇧ is the Lévy
measure of a stable subordinator with exponent 2

�2 (�2�W )�1 = 1� 2W
�2 , by the Lévy-Itô

decomposition we conclude that (Lt)t�0 is a stable subordinator with exponent 1� 2W
�2 .

Lemma 2.18 (Thin quantum disk boundary length law). For W 2 (0, �
2

2 ), the left bound-

ary length of a thin quantum disk from M
disk
2 (W ) is distributed as cW `

� 2
�2 W

d` for some
constant cW 2 (0,1). The same is true for the right boundary length or the total
boundary length.

Proof. Let (Lt)t�0 be the stable subordinator of exponent ↵ := 1� 2W
�2 2 (0, 1) described

in Lemma 2.13 for the left boundary length. Writing C = (1 � 2
�2W )�2, the M

disk
2 (W )-
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measure of the event that the left boundary arc length lies in [a, b] is given by

E

Z 1

0
1LT2[a,b]C dT

�
= CE

Z 1

0
1T 1/↵L12[a,b] dT

�

= CE

✓
b

L1

◆↵
�

✓
a

L1

◆↵�
=

Z b

a
cW `↵�1 d`,

where cW = C↵E[L�↵
1 ]. We are done once we check that E[L�↵

1 ] < 1. Since (Lt)t�0 is a
stable subordinator with index ↵, we know E[e��L1 ] = e�c�↵

for some c > 0 for all � > 0;

indeed we have �L1
d
= L�↵ and, since (Lt)t�0 has nonnegative and stationary increments,

E[e�Lt ] = e�ct. Hence

�(↵)E[L�↵
1 ] = E

Z 1

0
e��L1�↵�1 d�

�
=

Z 1

0
e�c�↵

�↵�1d� < 1.

The exponent � 2
�2W in Lemmas 2.16 and 2.18 is natural in light of the following

lemma, which explains how the quantum disk measure scales after adding a constant
to the quantum disk field. We note that Lemmas 2.16 and 2.18 are not immediate
consequences of Lemma 2.19 as it does not yield finiteness/infiniteness of the constant
cW .

Lemma 2.19 (Scaling property of quantum disks). For W > 0, the following procedures
agree for all � > 0:

• Sample a quantum disk from M
disk
2 (W ).

• Sample a quantum disk from �
� 2

�2 W+1
M

disk
2 (W ) then add 2

� log � to its field.

Proof. When W �
�2

2 , this is immediate from Definition 2.1 because of the constant term

c ⇠ e
(� 2

�2 W�1) �
2 c dc (written here in terms of W rather than �).

When W 2 (0, �
2

2 ), by the previous case the following procedures yield the same law
on beaded quantum surfaces for fixed T > 0:

• Sample a Poisson point process from Leb[0,T ] ⇥M
disk
2 (�2 �W ).

• Sample a Poisson point process from Leb
[0,�

� 2
�2 (�2�W )+1

T ]
⇥ M

disk
2 (�2 � W ) then

add 2
� log � to the field.

In Definition 2.15 we sample T from a multiple of Lebesgue measure, so the scaling by

�
� 2

�2 (�2�W )+1
= �

� 2
�2 W+1 yields the claim for thin quantum disks.

2.6 Definition of Mdisk
2 (W ; `1, `2)

In this section, we explain the construction of the disintegration from (2.2), which is

M
disk
2 (W ) =

ZZ 1

0
M

disk
2 (W ; `1, `2) d`1 d`2

where M
disk
2 (W ; `1, `2) is supported on the set of doubly-marked quantum surfaces with

left and right boundary arcs having quantum lengths `1 and `2, respectively.
We first give a self-contained introduction on disintegration of measures. See e.g.

[Bog07, Chapter 10.4] for a more comprehensive treatment. Suppose M is a �-finite
measure on a Radon space (X,X ) and T : X ! R

n is a measurable function such that the
pushforward T⇤M is absolutely continuous with respect to LebRn (Lebesgue measure on
R

n). Then there exists a collection of �-finite measures {Mt1,...,tn}(t1,...,tn)2Rn on (X,X )
such that:
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• Mt1,...,tn is supported on T�1(t1, . . . , tn) for all (t1, . . . , tn) 2 Rn;

• For any A 2 X the function (t1, . . . , tn) 7! Mt1,...,tn [A] is measurable, and

M [A] =

ZZZ
Mt1,...,tn [A] dt1 . . . dtn.

We call this collection {Mt1,...,tn} a disintegration, and write M =
RRR

Mt1,...,tn dt1 . . . dtn.
Disintegrations are unique in the sense that for any two disintegrations {Mt1,...,tn},

{fMt1,...,tn} we have Mt1,...,tn = fMt1,...,tn for LebRn -a.e. (t1, . . . , tn).
We briefly justify the above claims on disintegrations. When M is a probability

measure we can take Mt1,...,tn to be the regular conditional probability distribution
multiplied by f(t1, . . . , tn), where T⇤M = f(t1, . . . , tn)LebRn(dt1 . . . dtn). Uniqueness
follows from that of regular conditional probability distributions [Kal02, Chapter 6]. The
extension to �-finite M follows by exhaustion.

If one can specify a choice of disintegration {Mt1,...,tn} and a sufficiently strong
topology for which the map (t1, . . . , tn) 7! Mt1,...,tn is continuous, then the disintegration
is canonically defined for all (and not just a.e.) (t1, . . . , tn). We will do this in detail for

the disintegration (2.2) for the case W > �2

2 and sketch the necessary modifications for

W = �2

2 .

Let W > �2

2 and define the event

bE⇣ := {sup
t2R

 t > �⇣}. (2.6)

We now provide an alternative description of Mdisk
2 (W ) restricted to the event bE⇣ .

Lemma 2.20. For W > �2

2 and � = �
2 + Q �

W
� , with

bE⇣ defined in (2.6), we have

M
disk
2 (W )| bE⇣

= ( 2W�2 � 1)�1e(Q��)⇣
· P⇣ . Here, P⇣ is a probability measure on quantum

surfaces (S, ,+1,�1) where the field  has independent projections to Hav(S) and
Hlat(S) given by:

•

 t :=

⇢
�⇣ +B2t � (Q� �)t if t � 0

�⇣ + eB�2t + (Q� �)t if t < 0
,

where (Bs)s�0, ( eBs)s�0 are independent standard Brownian motions conditioned
on eB2s � (Q� �)s < 0 for all s > 0.

• The projection of an independent Neumann GFF on S to Hlat(S).

Proof. [AG21, Proposition 2.14] explains that Mdisk
2 conditioned on bE⇣ gives the prob-

ability measure P⇣ . To conclude we observe that M
disk
2 (W )[ bE⇣ ] =

R1
�⇣

�
2 e

(��Q)cdc =
�
2 (Q� �)�1e(Q��)⇣ = ( 2W�2 � 1)�1e(Q��)⇣ .

The following lemma provides a decomposition of  into independent components.

Lemma 2.21. Fix ⇣ 2 R and a pair of arbitrary functions f1, f2 2 H2(S) such that f1
(resp. f2) is supported on [0, 1]⇥ [0, ⇡2 ] (resp. [0, 1]⇥ [⇡2 ,⇡]) and is positive on the interval
(0, 1) (resp. (i⇡, i⇡ + 1)), and f1 and f2 have Dirichlet energy 1. For  ⇠ P⇣ sampled
as in Lemma 2.20, we have the following decomposition of  into four independent
components:

 =  + + ↵1f1 + ↵2f2 +  �. (2.7)

Here ↵1,↵2 ⇠ N(0, 1),  ++↵1f1+↵2f2 is a distribution which is harmonic in S�, and  �

is a distribution supported in S�. The process (( �)�t)t�0
d
= (B2t � (Q� �)t)t�0 where
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(Bs)s�0 is standard Brownian motion conditioned on B2t � (Q� �)t  0 for all t > 0, and
independently the projection of  � to H2(S) agrees in distribution with the projection
to H2(S) of a GFF on S� with Neumann boundary conditions on @S�\[0, i⇡] and zero
boundary conditions on [0, i⇡].

Proof. Let the projection of  + toHav(S) be given by ( +)t ⌘ �⇣ for t  0 and ( +)t =  t

for t � 0. Let the projection of  � to Hav(S) be given by ( �)t =  t + ⇣ for t  0 and
( �)t ⌘ 0 for t � 0.

Now we describe the (independent) projections of  + and  � to Hlat(S). Let Hharm ⇢

Hlat(S) (resp. Hsupp ⇢ H2(S)) be the subspace of functions harmonic (resp. supported) in
S� having average zero on all vertical segments [t, t+ i⇡]. Then Hav(S) = Hharm �Hsupp.
We may extend {f1, f2} to an orthonormal basis {fi}N of Hharm and let {gj}N be an
orthonormal basis of Hsupp, then the projection of a Neumann GFF on S to Hlat(S)
can be written as

P
↵ifi +

P
�jgj where ↵i,�j ⇠ N(0, 1) are independent. Writing the

projections of  + and  � to Hlat(S) as
P1

i=3 ↵ifi and
P1

j=1 �jgj , respectively, gives the
desired decomposition. See [GHS19, Section 3.2.4] for further discussion.

We note that conditioned on  +, the conditional law of (⌫ ([�1, 0]), ⌫ ([�1 + i⇡, i⇡]))
has a density g +(x, y) dx dy, where g + is a nonnegative bounded continuous function on

R
2; indeed, ⌫ ([0, 1]) =

R 1
0 e

�
2↵1f1(x)⌫ +(dx) and ↵1 ⇠ N(0, 1), and likewise for ⌫ ([i⇡, i⇡+

1]).
We are now ready to define the weight-W quantum disk with specified boundary

lengths.

Definition 2.22 (Disintegration of thick quantum disk measure). For W > �2

2 and `1, `2 >
0, define M

disk
2 (W ; `1, `2) = lim⇣!1 M

disk
2 (W ; `1, `2, ⇣), where M

disk
2 (W ; `1, `2, ⇣) is the

measure on quantum surfaces (S, ,+1,�1) defined as follows:
Take ( +, �) from ( 2W�2 � 1)�1e(Q��)⇣

· P⇣ (see Lemmas 2.20 and 2.21) and restrict
to the event that d1 := `1 � ⌫ ++ �(R\[0, 1]) > 0 and d2 := `2 � ⌫ ++ �((R+ i⇡)\[i⇡, i⇡+
1]) > 0. Weight the measure by g +(d1, d2), and let ↵1,↵2 2 R be the values such
that  :=  + +  � + ↵1f1 + ↵2f2 satisfies ⌫ (R) = `1 and ⌫ (R + i⇡) = `2. Output
(S, ,+1,�1).

In the above definition, the ⇣ ! 1 limit makes sense because it is straightforward to
check that

M
disk
2 (W ; `1, `2, ⇣) = M

disk
2 (W ; `1, `2, ⇣

0)| bE⇣
for ⇣ 0 > ⇣.

Therefore we have M
disk
2 (W ; `1, `2)| bE⇣

= M
disk
2 (W ; `1, `2, ⇣).

It is clear that Mdisk
2 (W )| bE⇣

=
RR1

0 M
disk
2 (W ; `1, `2, ⇣) d`1 d`2. Sending ⇣ ! 1, we

obtain (2.2), as desired. We see in the next proposition that this disintegration is
canonical in the sense that the measures M

disk
2 (W ; `1, `2) are continuous in (`1, `2) in

a suitable topology. In terms of notation, we will write M# := M/|M | to denote the
normalized probability measure of a measure M .

Proposition 2.23. For W > �2

2 , the family of measures {Mdisk
2 (W ; `1, `2)}`1,`2 is contin-

uous in (`1, `2) with respect to the metric

d(M, fM) =

Z 1

0
e�⇣d⇣

⇣
(M | bE⇣

)#, (fM | bE⇣
)#

⌘
d⇣,

where d⇣ is the total variation distance between the laws of  (·�⌧�⇣)|S+ for  ⇠ (M | bE⇣
)#

and  ⇠ (fM | bE⇣
)#; here, ⌧�⇣ := inf{t 2 R :  t = �⇣}.

Recall that the total variation distance between two probability measures P,Q on
the same measurable space is dTV(P,Q) = supA |P (A)�Q(A)| where the supremum is
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Conformal welding of quantum disks

taken over measurable sets A; in this particular setting measurability is with respect
to the topology of a local Sobolev space of order �1. If Q is absolutely continuous with
respect to P , we have the equivalent formulation dTV(P,Q) = 1

2

R
|
dQ
dP (!)� 1|P (d!).

Proof. It suffices to show that {Mdisk
2 (W ; `1, `2)}`1,`2 is continuous in (`1, `2) with respect

to each d⇣ . This follows from the continuity of g + for each  + and the Radon-Nikodym
formulation of total variation distance.

Now we sketch the construction and continuity of {Mdisk
2 (�

2

2 ; `1, `2)}`1,`2 . The previous

construction is not applicable for W = �2

2 for two reasons: Firstly, {supt2R  t > �⇣}

has infinite M
disk
2 (�

2

2 ; `1, `2)-mass, so we instead use bEN = {supt2R  t 2 [�N,N ]} to

define M
disk
2 (�

2

2 ; `1, `2, N). Secondly, the description Lemma 2.20 does not apply to

W = �2

2 , so we use the description of  in Definition 2.1 (i.e. with embedding so
 0 �  t for all t) to establish a field decomposition like (2.7). Then proceeding as
before, we can construct Mdisk

2 (�
2

2 ; `1, `2) := limN!1 M
disk
2 (�

2

2 ; `1, `2, N). This family

{M
disk
2 (�

2

2 ; `1, `2)}`1,`2 is continuous in (`1, `2) with respect to the metric

d0(M, fM) =

Z 1

0
e�Nd0N

⇣
(M | bEN

)#, (fM | bEN
)#

⌘
dN,

where d0N is the total variation distance between the laws of  |S+�N for  ⇠ (M | bEN
)#

and  ⇠ (fM | bEN
)#, where the fields  are chosen with the embedding that  0 �  t for all

t. We note that this approach also works for W > �2

2 , but the previous writeup is more
convenient for our later proof.

For W 2 (0, �
2

2 ), we can likewise construct a family {M
disk
2 (W ; `1, `2)}`1,`2 satisfying

M
disk
2 (W ) =

ZZ 1

0
M

disk
2 (W ; `1, `2) d`1 d`2

via the earlier discussion on disintegrations. A priori, this family is only unique for a.e.
`, `0, but we will extend this to a pointwise definition such that (`1, `2) 7! M

disk
2 (W ; `1, `2)

is continuous in a similar topology as in the thick case. See Section 4.
We now explain how the measure M

disk
2 (W ; `, `0) scales when adding a constant to

the field.

Lemma 2.24. For W, `, `0 > 0, the following procedures agree for all � > 0:

• Take a quantum disk from M
disk
2 (W ;�`,�`0);

• Take a quantum disk from �
� 2

�2 W�1
M

disk
2 (W ; `, `0) then add 2

� log � to its field.

Proof. Consider the case W �
�2

2 (the other case is similar). Lemma 2.19 tells us that
the measure

"�2
RR 1+"

1 M
disk
2 (W ; a�`, b�`0) da db agrees with �

2
� (��Q)"�2

RR 1+"
1 M

disk
2 (W ; a`, b`0) da db

(when we add 2
� log � to the field).

Send "! 0 and note that the first measure converges to �2Mdisk
2 (W ;�`,�`0), while

the second converges to ��
2
�2 W+1

M
disk
2 (W ; `, `0) (when we add 2

� log � to the resulting
field), as desired.

2.7 Schramm-Loewner evolution

Now that we have provided details on the quantum surfaces involved in our main
theorems, we turn to the relevant SLE curves in these theorems.
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SLE is a one-parameter family of conformally invariant random curves introduced
by [Sch00], which arises in the scaling limit of many statistical physics models. It is
conformally invariant in the sense that for any pair (D,x, y), ( eD, ex, ey) of simply connected
domains with two marked boundary points and any conformal map ' : D ! eD with
'(x) = ex and '(y) = ey, the law of SLE in D from x to y agrees with the pullback of the
law of SLE in eD from ex to ey. For the regime  2 (0, 4], SLE is a.s. simple and does not
hit the boundary of D except at x and y.

As explained in Section 2.2, for ⇢L, ⇢R > �2we can define a variant called SLE(⇢L; ⇢R).
These curves are still a.s. simple, but when ⇢L or ⇢R is less than 

2 � 2 the random curve
a.s. hits the corresponding boundary arc.

When  = �2, the �-LQG length of SLE-type curves can be defined via conformal
welding [She16a], or equivalently as a Gaussian multiplicative chaos measure on the
measure defined by the Minkowski content [Ben18]. The quantum length of a curve is
measurable with respect to the curve-decorated quantum surface.

We now inductively define the measure on curves P
disk(W1, . . . ,Wn) featured in

Theorem 2.3.

Definition 2.25 (Multiple SLE). Consider a simply connected domain D with boundary
marked points x, y, and weights W1, . . . ,Wn > 0 for some n � 2. For n = 2, we define
P

disk(W1,W2) to be SLE(W1 � 2;W2 � 2) in (D,x, y). To define the probability measure
P

disk(W1, . . . ,Wn) on curves (⌘1, . . . , ⌘n�1) for n � 3, we first sample ⌘n�1 ⇠ SLE(W1 +
· · · + Wn�1 � 2;Wn � 2) in (D,x, y), then for each connected component (D0, x0, y0) of
D\⌘n�1 lying to the left of ⌘n�1 (with marked points the first and last points visited by
⌘n�1), we independently sample (n� 2) curve segments from P

disk(W1, . . . ,Wn�1), and
concatenate them to obtain n� 2 curves ⌘1, . . . , ⌘n�2.

By the conformal invariance of SLE(⇢1; ⇢2) curves, the measure P
disk(W1, . . . ,Wn) is

also conformally invariant.
We now state the quantum wedge welding theorem of [DMS14], which should be

compared to Theorem 2.3. Although [DMS14, Theorem 1.2] is stated only for the n = 2
case, the general case is not hard to derive from the n = 2 case and is used in, e.g.,
[DMS14, Appendix B], and we explicitly describe it here for the reader’s convenience.
Here, Mwedge(W )⌦ P

disk(W1, . . . ,Wn) is a measure on curve-decorated surfaces.

Theorem 2.26 (Conformal welding of quantum wedges [DMS14]). Consider weights
W1, . . . ,Wn > 0 and W =

P
i Wi. Then

M
wedge(W )⌦ P

disk(W1, . . . ,Wn) = M
wedge(W1)⇥M

wedge(W2)⇥ · · ·⇥M
wedge(Wn).

Finally we define the analogous probability measure P
sph for curves between two

marked points in a sphere with conformal structure. We state the definition for (bC, 0,1),
where bC = C [ {1} is the Poincaré sphere.

Definition 2.27 (Multiple SLE on sphere). For n � 1 and W1, . . . ,Wn > 0, the probability
measure Psph(W1, . . . ,Wn) on n-tuples of curves (⌘0, . . . , ⌘n�1) in bC from 0 to1 is defined
as follows. First sample ⌘0 as a whole-plane SLE((

Pn
j=1 Wj) � 2) process from 0 to

1, then sample an (n � 1)-tuple of curves from P
disk(W1, . . . ,Wn) in each connected

component of bC\⌘0, and concatenate them to get ⌘1, . . . , ⌘n�1.

2.8 Outline of proofs

We now outline the proof of Theorem 2.3. The proof of Theorem 2.4 is similar and
discussed in Section 6.

We start with a thick quantum wedge (S, h,+1,�1) embedded so that neighbor-
hoods of +1 have finite quantum boundary length, decorated by independent curves
(⌘1, . . . , ⌘n) which cut it into independent thin quantum wedges.
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In Section 3 we define a “field bottleneck” event which, roughly speaking, says that
when we explore the field from left to right and stop when the field average process ht

first takes a large negative value, then the quantum lengths of the unexplored boundary
segments and curves are macroscopic. We show that conditioned on the existence of the
field bottleneck, the unexplored region resembles a thick quantum disk decorated by
curves, conditioned on having macroscopic boundary arcs and interfaces.

In Section 4 we show that pinching a thin quantum wedge yields a thin quantum disk,
which allows us to define a “curve bottleneck” event in Section 5. This event roughly
says that, letting z0 2 R be the point such that the quantum length ⌫h([z0,1)) is 1,
certain curve segments of ⌘1, . . . , ⌘n�1 near z0 are short, and the curve lengths to the
right of z0 are macroscopic. When we condition on this event, the region to the right of
the curve bottleneck resembles a welding of thin quantum disks. We prove that the field
bottleneck and curve bottleneck are compatible in a certain sense, and hence conclude
that a thick curve-decorated quantum disk with macroscopic interfaces, cut along its
curves, yields a collection of thin quantum disks with macroscopic side lengths.

The arguments of Sections 3–5 yield a weaker version of Theorem 2.3. In Section 6
we bootstrap this to the full Theorem 2.3 using a short and relatively easy argument.

3 Pinching a thick quantum wedge yields a quantum disk

The goal of this section is to prove Proposition 3.2, which for W > �2

2 constructs a
curve-decorated weight W quantum disk from a curve-decorated weight W quantum
wedge. It does so by identifying a “field bottleneck” when a quantum wedge is explored
from its infinite end to its finite end, then conditioning on the surface to the right of the
bottleneck being large; in the limit this pinched surface converges to a quantum disk.
More strongly, Proposition 3.2 identifies the law of the triple (field at the bottleneck,
boundary arc length of pinched surface, field and curves in the bulk of pinched surface);
this information will be used in Section 5 to show that the field bottleneck is compatible
with the “curve bottleneck” introduced there.

The limit surface will be M
disk
2 (W ; 1) with some conditioning on curves, where

M
disk
2 (W ; `) is defined as follows.

Definition 3.1 (Disintegration on one boundary length). We define

M
disk
2 (W ; `) :=

Z 1

0
M

disk
2 (W ; `, `0) d`0,

i.e. we only disintegrate on the left boundary arc length.

Lemmas 2.16 and 2.18 tell us that when W 2 (0, �Q) the measure M
disk
2 (W ; `) is

finite, and hence so is M
disk
2 (W ; `, `0) for any `0 > 0. Conversely when W � �Q, the

measure M
disk
2 (W ; `) is infinite but �-finite.

Recall that doubly-marked quantum surfaces embedded in (S,+1,�1) have a field
that is determined modulo translation: (S, h,+1,�1) and (S, h(· � t),+1,�1) are
equivalent as quantum surfaces. We say the canonical embedding of (S, h,+1,�1) is
the embedding where ⌫h(R+) =

1
2 . Recall also that for a field h on S, we write ht for the

average of h on [t, t+ i⇡].

Fix W > �2

2 and nonnegative W1, . . . ,Wn with
P

Wj = W . Consider a canonically
embedded weight W quantum wedge (S, h,+1,�1), and let ⌧�r = inf{u : hu = �r}.
Independently sample curves (⌘1, . . . , ⌘n�1) ⇠ P

disk(W1, . . . ,Wn) in (S,+1,�1) and
write ⌘n := R+ i⇡.
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For positive r, ⇣,K, " with r > ⇣ define

Er,K = {1  ⌫h(R+ + ⌧�r)  1 + e
�
2 (�r+K3)

}, (3.1)

��⇣ = inf{t > ⌧�r : ht = �⇣}, (3.2)

E0
r,⇣," = {��⇣ < 1 and ⌫h(⌘j \ (S+ + ��⇣ + 1)) > " for j = 1, . . . , n}, (3.3)

and define the field bottleneck event

BFr,⇣,K," := Er,K \ E0
r,⇣,". (3.4)

Proposition 3.2 (Surface description given BFr,⇣,K,"). Define the rectangle R = [0, S]⇥
[0,⇡] for some S > 0. Then for fixed S,K, ", and U ⇢ S a neighborhood of +1 excluding
�1, as r ! 1 then ⇣ ! 1 the following two probability measures have total variation
distance o(1):

• The law of (h(· + ⌧�r)|R, ⌫h(R+ + ⌧�r), (h|U , ⌘1 \ U, . . . , ⌘n�1 \ U)) conditioned on
BFr,⇣,K,";

• The law of the mutually independent triple (� � r, V, ( b |U , b⌘1 \ U, . . . , b⌘n�1 \ U)),
whose components we now define. The field � is given by

� =
⇣
bh+ (Q� �)Re(·)

⌘���
R

(3.5)

where bh is a Neumann GFF on S normalized to have mean zero on [0, i⇡], and
� = �

2 +Q�
W
� . The random variable V is sampled from Unif([1, 1 + e

�
2 (�r+K3)]).

For the last field-curves tuple, let (S, b ,+1,�1, b⌘1, . . . , b⌘n�1) be a canonically
embedded sample from M

disk
2 (W ; 1)⌦P

disk(W1, . . . ,Wn) conditioned on ⌫ b (b⌘j) > "
for j = 1, . . . , n.

Figure 3: Setup for Proposition 3.2. Since we are sending r ! 1 then ⇣ ! 1, the
regions R+ ⌧�r and point ��⇣ are sent to �1, and are well separated from each other
and from U with high probability.

We now explain our choice of BFr,⇣,K,". Let z0 2 R be the point such that ⌫h([z0,+1))=
1. In Section 5 we will define a “curve bottleneck” near z0. The choice of upper bound
1 + e

�
2 (�r+K3) in Er,K means that when we condition on Er,K , with high probability ⌧�r

is close (in the Euclidean metric) to z0, so the field bottleneck is close to the curve
bottleneck. This is necessary for showing compatibility of the bottlenecks. The definition
of E0

r,⇣," comprises two events: 1) the growth of the field average process (ht)t�⌧�r to
the value �⇣, and 2) the curves in the “bulk” having macroscopic length. 1) allows
us to compare the quantum wedge field to that of a quantum disk via Lemma 2.20,
and 2) is a technical condition that later allows us to work with probability measures
rather than infinite measures: although M

disk
2 (W ; 1) may be an infinite measure, if we

sample (⌘1, . . . , ⌘n) ⇠ P
disk(W1, . . . ,Wn) and restrict to the event that all curves have

macroscopic quantum lengths, the resulting measure is finite.
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Proposition 3.2 gives the near-independence of the field near ⌧�r and the field in U
so that, conditioned on BFr,⇣,K,", the “curve bottleneck” event which will be defined in
Section 5 is almost measurable with respect to the field and curves near ⌧�r, so further
conditioning on the curve bottleneck event yields the same limit law of the field and
curves in U .

In order to prove Proposition 3.2, we switch to a more convenient field  that
resembles h (Lemma 3.3), identify the law of the field and curves in the bulk when we
condition on side length (Lemma 3.4), and, after further conditioning on the bulk field
and curves, identify the law of the unexplored boundary arc length and field near the
bottleneck (Lemma 3.5). Combining these yields Proposition 3.2.

Lemma 3.3. For fixed ⇣ > 0, consider (S, ,+1,�1) ⇠ P⇣ (defined in Lemma 2.20).
Then h(·+ ⌧�r)|S+ conditioned on {��⇣ < 1} agrees in distribution with  (·+ e⌧�r)|S+ ,
where e⌧�r := inf{t 2 R :  t = �r}.

Proof. Note that conditioned on {�⇣ < 1}, the process (ht+⌧�r )t�0 has the law of
Brownian motion started at �r with variance 2 and downward drift of �(Q� �)t (with
� = �

2 +Q�
W
� ), conditioned to hit �⇣. By [DMS14, Lemma 3.6], this is the same law as

( t+e⌧�r )t�0. Finally, each field h, has independent projections to Hav(S) and Hlat(S),
and their projections to Hlat(S) agree in law with the projection of a Neumann GFF on S

to Hlat(S). This proves the lemma.

Recall from Lemma 2.21 the following decomposition of  :

 =  + +  � + ↵1f1,

(we have absorbed the term ↵2f2 into  + to simplify notation), and that the conditional
law of ⌫ ([0, 1]) given  + has a density g +(x)dx, where g + is a nonnegative bounded
continuous function. Also note that  +|S++1 agrees with  |S++1 by definition.

Lemma 3.4 (Bulk field and curves given bottleneck). Independently of  sample (⌘1, . . . ,
⌘n�1) ⇠ P

disk(W1, . . . ,Wn) and write ⌘n = R + i⇡. The conditional law of ( +, ⌘1 \

S+, . . . , ⌘n�1\S+) given {⌫ ([e⌧�r,1)) 2 [1, 1+e
�
2 (�r+K3)]}\{⌫ +(⌘j\(S++1)) > " for j =

1, . . . , n} converges in total variation as r ! 1 to that of ( +, ⌘1 \ S+, . . . , ⌘n�1 \ S+)
conditioned on ⌫ (R) = 1 and {⌫ +(⌘j \ (S+ + 1)) > " for j = 1, . . . , n}.

Proof. Define the event A := {⌫ +(⌘j \ (S+ + 1)) > " for all j = 1, . . . , n � 1} and the
shorthand X := ( +, ⌘1 \ S+, . . . , ⌘n�1 \ S+).

Writing Ir = [1, 1 + e
�
2 (�r+K3)], we claim that

lim
r!1

P[⌫ ([e⌧�r,1)) 2 Ir]

P[⌫ (R) 2 Ir]
= 1,

and moreover, conditioned on anyX = ( +, ⌘1\S+, . . . , ⌘n�1\S+) for which ⌫ +(R+) < 1
and A holds, we have the almost sure limit

lim
r!1

P[⌫ ([e⌧�r,1)) 2 Ir | X]

P[⌫ (R) 2 Ir | X]
= 1. (3.6)

The lemma follows from these two assertions. Indeed, write L for the law of X
conditioned on {⌫ (R) = 1} \A, Lr for the law of X given {⌫ (R) 2 Ir} \A and eLr for
the law of X given {⌫ ([e⌧�r,1)) 2 Ir} \A. By Bayes’ theorem we get X-a.s. that when
⌫ +(R+) < 1, we have

lim
r!1

d eLr

dLr
(X) = lim

r!1

P[⌫ ([e⌧�r,1]) 2 Ir | X]

P[⌫ (R) 2 Ir | X]
·

P[⌫ (R) 2 Ir]

P[⌫ ([e⌧�r,1]) 2 Ir]
= 1,
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so limr!1 eLr = limr!1 Lr = L where the convergence is in total variation distance.
We justify (3.6); the other limit is similar. By the continuity of g + we have

P[⌫ (R) 2 Ir | X]

e
�
2 (�r+K3)

=

R 1+e
�
2
(�r+K3)

1 E
⇥
g +(x� ⌫ (R\[0, 1])) | X

⇤
dx

e
�
2 (�r+K3)

= E
⇥
g +(1� ⌫ (R\[0, 1])) | X

⇤
+ or(1),

P[⌫ ([e⌧�r,1)) 2 Ir | X]

e
�
2 (�r+K3)

= E
⇥
g +(1� ⌫ (R\[0, 1]) + ⌫ ((�1, e⌧�r])) | X

⇤
+ or(1).

Clearly ⌫ ((�1, e⌧�r]) converges to 0 in probability as r ! 1, so since g is bounded and
continuous, we may divide one of the above equations by the other to obtain (3.6).

The next result is similar to [She16a, Proposition 5.5], with additional details.

Lemma 3.5 (Field near ⌧�r and boundary length given bottleneck). Condition on any  +

for which ⌫ +(R+) < 1. We have,  +-a.s., that the total variation distance between the
following two laws goes to zero as r ! 1:

• The law of ( (·+e⌧�r)|R, ⌫ ((e⌧�r,1))) when we further condition on {⌫ ((e⌧�r,1)) 2
[1, 1 + e

�
2 (�r+K)]}.

• The law of (�� r, V ) as described in Proposition 3.2 (this law does not depend on
 +).

Proof. For N > 0, we will show that for sufficiently large r > r0(N), the two laws of
Lemma 3.5 are within oN (1) in total variation. Sending N ! 1 then implies the desired
result. Elements of this argument are similar to those of Lemma 3.4, so we will be brief.

Because g + is bounded and continuous and the length of the interval [1, 1+e
�
2 (�r+K3)]

goes to zero as r ! 1, when we condition on  + and {⌫ ([e⌧�r,1)) 2 [1, 1 + e
�
2 (�r+K3)]}

the law of the pair ( |S��N , ⌫ ([e⌧�r,1))) is within or(1) in total variation to an indepen-
dent pair, and the conditional marginal law of ⌫ ([e⌧�r,1) is close in total variation to
that of V .

Fix N > 0. By the Markov property of the GFF we may further decompose  =
 ++↵f+ N +hN as a sum of mutually independent distributions. Here,  N is harmonic
in S� �N , and hN is a distribution supported in S� �N with the following description:
The field average process (hN )�N�t agrees in law with (B2t � (Q��)t)t�0 where (Bt)t�0

is standard Brownian motion conditioned on B2t � (Q � �)t < 0 for all t > 0. The
(independent) projection of hN to H2(S� � N) agrees in law with the projection to
H2(S��N) of a GFF in S��N with Dirichlet boundary conditions on [�N,�N + i⇡] and
Neumann boundary conditions elsewhere. Here, H2(S� �N) ⇢ H2(S) is the subspace of
functions supported in S� �N .

If we sample  given  + and {⌫ ([e⌧�r,1)) 2 [1, 1 + e
�
2 (�r+K3)]}, then for large r

the conditional law of hN is within oN (1) in total variation from its unconditioned law
— essentially, conditioned only on  +, the length ⌫ ((e⌧�r,�N)) converges to zero in
probability as N ! 1, so further conditioning on {⌫ ([e⌧�r,1)) 2 [1, 1 + e

�
2 (�r+K3)]}

weights the law of hN by a g + -dependent factor that is uniformly bounded above and
converges to 1 in probability.

We claim that for large r, the law of  (·+e⌧�r)|R conditioned on  + and {⌫ ([e⌧�r,1)) 2

[1, 1 + e
�
2 (�r+K3)]} is within oN (1) in total variation from the law of �� r. By our earlier

discussion we may resample hN from its unconditioned law (incurring an oN (1) total
variation error). We have e⌧�r ! �1 in probability as r ! 1, so since  ++ N converges
in probability to a constant function in neighborhoods of �1, and hN is independent of
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 + +  N , we conclude that the law of (hN +  + +  N )(·+ e⌧�r)|R + r converges1 in total
variation to that of � as r ! 1. This (with our earlier oN (1) error) yields the claim.

To summarize, for large r > r0(N), we know that when we condition  on  + and on
{⌫ ([e⌧�r,1)) 2 [1, 1 + e

�
2 (�r+K3)]}, the law of  (· + e⌧�r)|R is oN (1) in total variation to

that of �� r, and ⌫ ((e⌧�r,1)) is close to independent of  (·+ e⌧�r)|R and has law close
to that of V . We are done.

Proof of Proposition 3.2. Let the field  be sampled as in Lemma 3.3, and independently
sample (⌘1, . . . , ⌘n�1) ⇠ P

disk(W1, . . . ,Wn) and write ⌘n = R+ i⇡. Let (S, b ,+1,�1, b⌘1,
. . . , b⌘n�1) be the canonical embedding of (S, ,+1,�1, ⌘1, . . . , ⌘n�1). Consider the
triple

( (·+ e⌧�r)|R, ⌫ ((e⌧�r,1)), ( b |U , b⌘1 \ U, . . . , b⌘n�1 \ U)) (3.7)

conditioned on {⌫ ((e⌧�r,1)) 2 [1, 1 + e
�
2 (�r+K3)]} and on {⌫ +(⌘j \ (S+ + 1)) > " for j =

1, . . . , n}. Note that outside an event of probability o(1) as r ! 1, ⇣ ! 1, the tuple
( b |U , b⌘1 \ U, . . . , b⌘n�1 \ U) is a function of ( +, ⌘1 \ S+, . . . , ⌘n�1 \ S+).

Combining Lemmas 3.4 and 3.5, we see that as r ! 1, the total variation distance
between (3.7) and the second triple of Proposition 3.2 goes to zero. Also, Lemma 3.3 says
that (3.7) agrees in law with the first triple of Proposition 3.2. These two observations
prove Proposition 3.2.

4 Decompositions of thin quantum wedges and disks

In this section, we show that thin quantum wedges and disks can be decomposed as
a certain concatenation of beaded quantum surfaces.

In this section, for W 2 (0, �
2

2 ) we write M
disk
2,• (�2 �W ) for the infinite measure on

simply connected three-pointed quantum surfaces, obtained by first sampling a two-
pointed surface D ⇠ M

disk
2 (�2 � W ), then sampling a boundary point from quantum

measure on its left boundary arc (inducing a weighting by the left boundary arc length).

Lemma 4.1. Fix T > 0 and W 2 (0, �
2

2 ). Let Pt denote the law of Mdisk
2 (W ) conditioned

on having quantum cut point measure t, i.e. concatenate the quantum surfaces of a
Poisson point process on Leb[0,t] ⇥M

disk
2 (�2 �W ). Then the following three procedures

yield the same measure on �-LQG quantum surfaces, and this measure is infinite.

• Sample D
0 from PT . Weight by the left boundary length of D0 and sample a point

from the probability measure proportional to the left boundary quantum length
measure.

• Sample (D0, u,D•) from PT ⇥ Leb[0,T ] ⇥ M
disk
2,• (�2 � W ). Insert D• into D

0 at cut
point location u.

• Sample (u,D•) ⇠ Leb[0,T ] ⇥ M
disk
2,• (�2 � W ), and given (u,D•) sample (D1,D2) ⇠

Pu ⇥ PT�u. Concatenate D1,D•,D2.

Proof. The equivalence of the first two procedures above follows immediately from
[PPY92, Lemma 4.1] applied to the Poisson point process on Leb[0,T ] ⇥M2(�2 �W ).

The equivalence of the second and third procedures follows from the fact that
a Poisson point process on Leb[0,T ] ⇥ M2(�2 � W ) can be obtained as the union of
independent Poisson point processes on Leb[0,u]⇥M2(�2�W ) and Leb[u,T ]⇥M2(�2�W ).

1This follows immediately from the following description of the (independent) projections of hN +  + +  N

to Hav(S� � N) and Hlat(S� � N). The projection to Hav(S� � N), viewed as a stochastic process from
right to left (�N to �1) is Brownian motion with variance 2 and downward drift, with random starting value
and conditioned to stay below �⇣. The projection to Hlat(S� �N) in neighborhoods of �1 is close in total
variation to that of a Neumann GFF on S ([AG21, Proposition 2.4]).
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Finally, the measure on quantum surfaces is infinite because M
disk
2,• (�2�W ) is infinite

(indeed, the M
disk
2,• (�2 � W )-law of the left boundary arc length is a power law by

Lemma 2.16).

Proposition 4.2 (Decomposition of marked thin quantum wedge). For W 2 (0, �
2

2 ), the
following procedures yield the same law.

• Sample (W, `) ⇠ M
wedge(W )⇥ LebR+ and mark the point on the left boundary arc

of W at quantum length ` from the root.

• Sample (D1,D•,W) from (1� 2
�2W )2 ·Mdisk

2 (W )⇥M
disk
2,• (�2�W )⇥M

wedge(W ) and
concatenate the three quantum surfaces.

Proof. Since thin quantum wedges are uniquely characterized by their components up
to cut point measure T (for arbitrary T ), it suffices to consider the thin quantum wedge
up to this point. When we then restrict the two measures to the event that the marked
point lies in this initial part of the thin quantum wedge, they agree by Lemma 4.1 (first
and third procedures). Sending T ! 1 yields the result.

Corollary 4.3. Fix ` > 0. For W 2 (0, �
2

2 ), the following procedures yield the same
probability measure on pairs of quantum surfaces (D1,D•,W); see Figure 4.

• Sample a thin quantum wedge fW ⇠ M
wedge
2 (W ) and let p be the point on the left

boundary arc of fW at distance ` from the root. Let D• be the three-pointed disk
containing p, and D1 (resp. W) the finite (resp. infinite) beaded component of
fW\D

•.

• Sample (D1,D,W) ⇠ M
disk
2 (W ) ⇥ M

disk
2 (�2 � W ) ⇥ M

wedge(W ) and condition on
the event of finite measure that the left boundary lengths x, y of D1 and D satisfy
x < ` < x+ y. Mark the point p on D such that the length from p to the quantum
disk tip is x+ y � `, and call this surface D

•.

Proof. As we explain, this follows from Proposition 4.2 by conditioning on the location of
the marked point. Consider a thin quantum wedge decorated by a uniformly chosen point
from its left boundary arc, and condition on the event that the left boundary interval
I" at distance between ` � " and ` + " from the thin quantum wedge root lies on a
single thick quantum disk and that the marked point lies in I✏. By Proposition 4.2 we
may express this as a concatenation of quantum surfaces (D1,D•,W) ⇠ c · Mdisk

2 (W )⇥
M

disk
2,• (�2 � W ) ⇥ M

wedge(W ) conditioned on the left boundary lengths x, y of D1,D
satisfying x < ` � " < ` + " < x + y and on the marked point of D

• lying in the
corresponding length 2" interval. Although D

• is weighted by its left boundary length,
restricting to the event that the marked point lies in an interval of length 2" removes
this weighting. Sending "! 0 thus yields the result.

Proposition 4.4 (Decomposition of marked thin quantum disk). The following two pro-
cedures yield the same measure on quantum surfaces.

• Sample a thin quantum disk from M
disk
2 (W ) weighted by the quantum length of its

left boundary, then sample a point from the probabiility measure proportional to
the left boundary quantum length measure.

• Sample a triple of quantum surfaces from (1� 2
�2W )2Mdisk

2 (W )⇥M
disk
2,• (�2 �W )⇥

M
disk
2 (W ) and concatenate them.

Proof. In Lemma 4.1 sample T ⇠ LebR+ and apply the first or third procedure. Here we
use the fact that the law of (t, T ) sampled from 1T>tLebR+(dt)⇥ LebR+(dT ) agrees with
the law of (t, t+ t0) where t, t0 are sampled from LebR+(t)⇥ LebR+(t

0).
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Figure 4: Left. In Corollary 4.3, a thin quantum wedge with point p on its left boundary
at quantum length ` from the root decomposes as a concatenation of three quantum
surfaces with some length conditioning. Right. In Corollary 4.5, a thin quantum disk
conditioned to have left boundary length ` with point p on its left boundary at quantum
length � from v decomposes as a concatenation of three quantum surfaces with some
length conditioning.

As an immediate corollary, we have for any disintegration M
disk
2 (W ) =

R1
0

fMdisk
2 (W ;

`)d` with respect to the left boundary length (so fMdisk
2 (W ; `) is only uniquely defined

`-a.e.) that the following holds. Recall that M# is the normalization of M to be a
probability measure.

Corollary 4.5. For Lebesgue a.e. ` > 0 the following holds. Fix � 2 (0, `). For W 2

(0, �
2

2 ), the following procedures yield the same measure on triples of quantum surfaces
(D1,D•,D2); see Figure 4.

• Sample a thin quantum disk ( eD, u, v) ⇠ fMdisk
2 (W, `) and let p be the point on the left

boundary arc of eD at distance � from v. Let D• be the three-pointed disk containing
p, and D1, D2 the two finite beaded components of D\D

• (with u 2 D1).

• Sample (D1,D,D2) ⇠ M
disk
2 (W ) ⇥ M

disk
2 (�2 � W ) ⇥ M

disk
2 (W ) and “restrict to”

{x + y + z = `} and {x < ` � � < x + y}, where x, y, x are the left boundary arc
lengths of D1,D,D2. Mark the point p on D to get D•.

In other words, sample (x, y) 2 R
2
+ from the measure 1x<`��<x+y<` Cx

� 2
�2 W

y
� 2

�2 (�2�W )
(` � x � y)

� 2
�2 W

dx dy, and given (x, y) sample (D1,D,D2) ⇠ fMdisk
2 (W ;

x)#⇥ fMdisk
2 (�2�W ; y)#⇥ fMdisk

2 (W ; `�x�y)#. Mark the point on the left boundary
of D to get D•. Here, the constant C is (1� 2

�2W )2c2W c�2�W where cW and c�2�W

are the constants of Lemmas 2.16 and 2.18.

The second procedure of Corollary 4.5 does not depend on the choice of {fMdisk
2 (W ; `)}`.

This gives us a way to bootstrap the disintegration {fMdisk
2 (W ; `)}` (which is only uniquely

defined `-a.e.) to a disintegration {M
disk
2 (W ; `)}` which is well defined for all ` > 0.

Definition 4.6. We define M
disk
2 (W ; `) to be the measure on quantum surfaces uniquely

specified by the disintegration in the previous paragraph.

One can check that Mdisk
2 (W ; `) defined in Definition 4.6 does not depend on �; this

reduces to a computation on the joint law of quantum lengths arising when we mark
two points at distances �, �0 from one of the quantum disk marked points. Moreover, as
we will see in Lemma 4.7, for each � > 0 the measures {Mdisk

2 (W ; `)}`>� are continuous
with respect to the total variation distance of the �-trimming of the quantum disk.
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For a thin quantum disk (D, u, v) with left side length greater than � > 0, we define
the �-trimming of D to be the beaded surface obtained by marking the point on the left
boundary of D at distance � from v, then discarding the beads from v to this marked point
(inclusive), to obtain a beaded quantum surface containing u. Note that this surface is
a.s. nonempty because in the beaded quantum surface (D, u, v), there are a.s. infinitely
many small beads near u.

Lemma 4.7 (Continuity properties of �-trimming). Fix ` > � > 0 and W 2 (0, �
2

2 ). Sample
a quantum disk (D, u, v) ⇠ M

disk
2 (W ; `)#, and let D� be its �-trimming. Repeat the above

procedure replacing ` with è to get eD�. Then the quantum surfaces D
� and eD� can be

coupled so that as è! `, we have D
� = eD� with probability approaching 1. Moreover,

sending � ! 0, the left side length of D� converges in probability to `.

Proof. By Corollary 4.5, the left side length of D� has probability density function

f`,�(x) :=
1x2(0,`��)

Z`,�

Z `�x

`���x
x�pyp�2(`� x� y)�p dy

=
1x2(0,`��)

Z`,�

�1�p

1� p

x�p

(`� x)(`� � � x)1�p
,

where p = 2
�2W , and Z`,� is the normalization constant so that

R `��
0 f`,�(x)dx = 1. (The

equivalence of the two formulae follows immediately from differentiating in �.)
By continuity, for all x < ` � � we have limè!` fè,�(x) = f`,�(x), so we can couple D

and eD so that the left side lengths of D� and eD� agree with probability 1� o(1); since the
conditional law of D� given its left boundary length x is Mdisk

2 (W ;x)# and likewise for
eD�, there is a coupling so D

� = eD� with probability 1� o(1).
The second claim is clear from the explicit formula for f`,�(x).

Arguing similarly we can define a disintegration {M
disk
2 (W ; `, `0)}`,`0 for all `, `0. Let

{fMdisk
2 (W ; `, `0)}`,`0 be any disintegration with respect to left and right boundary arc

lengths (i.e. Mdisk
2 (W ) =

RR1
0

fMdisk
2 (W ; `, `0) d` d`0, and fMdisk

2 (W ; `, `0) is supported on
the set of quantum surfaces with left and right boundary lengths ` and `0 respectively).
We define M

disk
2 (W ; `, `0) by sampling (x, x0, y, y0, z, z0) 2 R

6
+ from a suitable measure

supported on the set {x + y + z = `, x0 + y0 + z0 = `0}, then sampling (D1,D,D2) ⇠

fMdisk
2 (W ;x, x0)#⇥ fMdisk

2 (�2�W ; y, y0)#⇥ fMdisk
2 (W ; z, z0)#, and concatenating D1,D,D2.

The family {M
disk
2 (W ; `, `0)}`,`0 satisfies a similar continuity property: for any � > 0 the

measures {M
disk
2 (W ; `, `0) : ` > �} are continuous with respect to the total variation

distance of the �-trimming of the quantum disk.

5 Pinching a curve-decorated bottleneck yields thin quantum
disks

The goal of this section is to prove the following weaker version of Theorem 2.3.
Recall from Definition 3.1 that {Mdisk

2 (W ; `)}` is the disintegration of Mdisk
2 (W ) with

respect to left boundary arc length.

Proposition 5.1. Let W1, . . . ,Wn 2 (0, �
2

2 ) and W =
P

Wi >
�2

2 . Then for some constant
cW1,...,Wn 2 (0,1),

M
disk
2 (W ; 1)⌦ P

disk(W1, . . . ,Wn)

= cW1,...,Wn

ZZZ 1

0
M

disk
2 (W1; 1, `1)⇥M

disk
2 (W2; `1, `2)

⇥ · · ·⇥M
disk
2 (Wn; `n�1, `n) d`1 . . . d`n.
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Compared to Theorem 2.3, the principal difference is the restriction to Wi <
�2

2 and

W > �2

2 . We want Wi <
�2

2 because it is easy to “pinch” a thin quantum wedge to obtain
a thin quantum disk. The other difference is using M

disk
2 (W ; 1) instead of Mdisk

2 (W ; `, `0);
this simplifies the writeup. We will see in Section 6 that Theorem 2.3 can be derived
relatively easily from Proposition 5.1.

We now give a proof outline for Proposition 5.1. Let (S, h,+1,�1, ⌘1, . . . , ⌘n�1) ⇠
M

wedge(W )⌦ P
disk(W1, . . . ,Wn) be a curve-decorated quantum wedge which is canon-

ically embedded (i.e. ⌫h(R+) = 1
2 ). Recall the field bottleneck event BFr,⇣,K," from

Proposition 3.2, and that the field bottleneck is located near ⌧�r = inf{t : ht = �r}.
Proposition 3.2 and the SLE independence statement Lemma 5.8 say that (h, ⌘1, . . . , ⌘n�1)
conditioned on BFr,⇣,K," in neighborhoods of +1 and near ⌧�r are almost independent,
and that conditioned on BFr,⇣,K,", the law of (h, ⌘1, . . . , ⌘n�1) in neighborhoods of +1

converges to that of Mdisk
2 (W, 1)⌦P

disk(W1, . . . ,Wn) conditioned on curve and boundary
lengths being at least ". Based on this, our proof of Proposition 5.1 is carried out in four
steps.

Step 1. Introduce a “curve bottleneck” event BCr,K,". Conditioning on BCr,K,", the
pinched region is a conformal welding of thin quantum disks with small offsets
near the bottleneck. This is done in Section 5.1, building on Section 4.

Step 2. Conditioned on BCr,K,", the conformal welding of thin quantum disks with small
offsets converges in neighborhoods of +1 as r ! 1 to an exact welding of thin
quantum disks. This is done in Section 5.2.

Step 3. P[BFr,⇣,K," | BCr,K,"] ! 1 as r ! 1, ⇣ ! 1,K ! 1. Consequently, the law
of (h, ⌘1, . . . , ⌘n�1) conditioned on BCr,K," is close to its law conditioned on
BFr,⇣,K," \ BCr,K,". This is carried out in Section 5.3.

Step 4. Conditioned on BFr,⇣,K,", the event BCr,K," occurs with uniformly positive proba-
bility for large r, ⇣, and is almost measurable with respect to the field and curves
near ⌧�r. Combining with Proposition 3.2, we conclude that (h, ⌘1, . . . , ⌘n�1)
conditioned on BFr,⇣,K," \BCr,K," converges in neighborhoods of +1 to a curve-
decorated thick quantum disk. Comparing with Steps 2 and 3 yield the theorem.
This is done in Section 5.4.

5.1 Conditioning on the curve bottleneck event BCr,K,"

In this section we define BCr,K," and discuss the laws of the quantum surfaces arising
upon conditioning on BCr,K,".

We start with the definition of BCr,K,". Let (S, h,+1,�1) be a quantum wedge W

with weightW , and sample (⌘1, . . . , ⌘n�1) ⇠ P
disk(W1, . . . ,Wn) on S with ⌘1 on the bottom

and ⌘n�1 on top, cutting W into independent quantum wedges W1, . . . ,Wn of weights

W1, . . . ,Wn 2 (0, �
2

2 ) (Theorem 2.26). Let z0 2 R be the point such that ⌫h([z0,1)) = 1,
and let D•

1 be the thick quantum disk of W1 containing z0; call its left and right marked
points w1, z1 respectively. Iteratively for j = 1, . . . , n, let D•

j be the thick quantum disk of
Wj containing zj�1 on its boundary, and let wj , zj be its left and right marked points. For
j = 1, . . . , n, from wj and tracing @D•

j in counterclockwise order, let the three boundary
arc lengths be aj , bj , cj , and let `j be the length of ⌘j from zj to +1 (here we write
⌘n := R+ i⇡). See Figure 5. Finally, define

BCr,K," :=
n\

j=1

n
e

�
2 (r+K)bj 2 [1, 2], e

�
2 (r+K)(aj + bj) 2 [3, 4], e

�
2 (r+K)cj 2 [5, 6], `j>"

o
.

(5.1)
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The intervals [1, 2], [3, 4], [5, 6] are chosen to ensure the welding offsets cj�1 � aj , bj for
j = 2, . . . , n described in Proposition 5.3 are roughly e

�
2 (�r�K) in magnitude; see Figure 5.

Figure 5: Top left. Starting with the point z0 2 R satisfying ⌫h((z0,1)) = 1, for
j = 1, . . . , n we iteratively define the thin wedge bead D

•
j ⇢ Wj containing zj�1, and

call its right marked point zj . Removing Dj from Wj yields an infinite beaded quantum
surface Aj and a finite beaded quantum surface Bj . Top right. Each D

•
j has three

marked boundary points zj�1, zj , wj and arc lengths aj , bj , cj (although wj+1 lies on @D•
j

we don’t treat it as a marked point). Bottom. Conditioned on BCr,K," and on the lengths
(aj , bj , cj , `j)nj=1, the multiply-marked quantum surfaces A :=

S
Aj and B :=

S
Bj are

independent. These surfaces are welded with offsets shown in the diagram (note that
the nontrivial topology of the quantum disks and wedges are not depicted).

Lemma 5.2. Set (eaj ,ebj ,ecj) := (e
�
2 (r+K)aj , e

�
2 (r+K)bj , e

�
2 (r+K)cj) for j = 1, . . . , n. Then in

the r ! 1 limit, conditioned on BCr,K," the n+ 1 tuples (`1, . . . , `n�1, `n), (ea1,eb1,ec1), . . . ,
(ean,ebn,ecn) jointly converge in distribution to a collection of n + 1 independent tuples.
The limit law of (`1, . . . , `n) has density with respect to Lebesgue measure on (",1)n

given by

1

Z

nY

j=1

��Mdisk
2 (Wj ; `j�1, `j)

�� with `0 := 1, (5.2)

and for each j = 1, . . . , n, the limit law of (eaj ,ebj ,ecj) is supported on the set Sj = {ebj 2

[1, 2], (eaj +ebj) 2 [3, 4],ecj 2 [5, 6]} and has density with respect to Lebesgue measure

1

Zj
1(eaj ,ebj ,ecj)2Sj

���Mdisk
2 (�2 �Wj ;eaj +ebj ,ecj)

���.

Here the Z,Z1, . . . , Zn are nonexplicit normalization constants.

Note that the limit law of (eaj ,ebj ,ecj) involves M
disk
2 rather than M

disk
2,• . Roughly

speaking, this is because the marked point on D
•
j is not sampled according to quantum

length measure and hence does not induce a weighting by quantum length.
Implicit in the above lemma is the fact that the integral

RRR1
"

Qn
j=1

��Mdisk
2 (Wj , `j�1, `j)

��
d`1 . . . d`n is finite. We show this for n = 2, and the general case follows similarly. Using
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Lemma 2.24,
ZZ 1

"

��Mdisk
2 (W1; 1, `1)

����Mdisk
2 (W2; `1, `2)

�� d`2 d`1

=

Z 1

"

��Mdisk
2 (W1; 1, `1)

��`
� 2

�2 W2

1

Z 1

"/`1

��Mdisk
2 (W2; 1, x)

�� dx d`1

< "
� 2

�2 W2
��Mdisk

2 (W2; 1)
��
Z 1

"

��Mdisk
2 (W1; 1, `1)

�� d`1

< "
� 2

�2 W2
��Mdisk

2 (W2; 1)
����Mdisk

2 (W1; 1)
�� < 1.

Proof. Although `0 = 1 is a constant, we will make statements in terms of `0 that
generalize to `j . We will also slightly abuse notation and use the same symbol for random
variables and the dummy variables describing their densities.

We first explain the law of (ea1,eb1,ec1, `1) when we condition on (5.1) for j = 1. Start
with the unconditioned setup, and define x := `0 � b1 and y = a1 + b1. Let D1 be D

•
1 with

the marked point z0 forgotten. By Corollary 4.3 the law of (B1,D1) agrees with that of
(B0

1,D
0
1) ⇠ M

disk
2 (W1)⇥M

disk
2 (�2 �W1) conditioned on {x0 < `0 < x0 + y0} where x0 and

y0 are the left side lengths of B0
1 and D

0
1. Thus, using Lemmas 2.18 and 2.16 to obtain the

length laws of Mdisk
2 (W1) and M

disk
2 (�2 �W1) respectively, the law of (x, y) is given by

bZ�1
1 10<x<`0<x+yx

�p1yp1�2 dx dy, with p1 :=
2

�2
W1 2 (0, 1).

Moreover, by doing a change of variables (x, y) 7! (↵x,↵y), we see that the normalization
constant bZ1 =

RR
10<x<`0<x+yx�p1yp1�2 dx dy has no dependence on `0; this is important

for subsequent steps where `j is random.
A change of variables yields that when we condition on the event that eb1 2 [1, 2] and

(ea1 + eb1) 2 [3, 4], the conditional law of (ea1,eb1) = e
�
2 (r+K)(x+ y � `0, `0 � x) has density

given by aW1-dependent constant times (1+or(1))`
�p1
0 (ea1+eb1)p1�2 dea1 deb1 on its support.

By Corollary 4.3, conditioned on (ea1,eb1) the conditional law of D1 is Mdisk
2 (W1;ea1 +eb1)#,

hence the conditional law of ec1 given (ea1,eb1) is
���Mdisk

2 (�2 �W1;ea1 +eb1,ec1)
���

���Mdisk
2 (�2 �W1;ea1 +eb1)

���
dec1 =

���Mdisk
2 (�2 �W1;ea1 +eb1,ec1)

���

(ea1 +eb1)p1�2
��Mdisk

2 (�2 �W1; 1))
�� dec1,

where the equality follows from Lemma 2.16. Similarly, since x = (1� or(1))`0 and using
Lemma 2.18, the conditional law of `1 given (ea1,eb1) is some W1-dependent constant
times (1 + or(1))`

p1
0

��Mdisk
2 (W1; `0, `1)

�� d`1.
By the conditional independence of D1 and B1 given ea1,eb1, x, when we further condi-

tion on ec1 2 [5, 6] the density of (ea1,eb1,ec1, `1) is a W1-dependent constant times

(1 + or(1))
���Mdisk

2 (�2 �W1;ea1 +eb1,ec1)
���
��Mdisk

2 (W1; `0, `1)
�� dea1 deb1 dec1 d`1.

We now understand the law of (ea1,eb1,ec1, `1) when we condition on (5.1) for j = 1.
Iterating for j = 2, . . . , n and using the independence ofW1, . . . ,Wn yields the lemma.

Proposition 5.3. On the event BCr,K,", condition on the lengths (aj , bj , cj , `j)nj=1. Then
the surfaces B and A to the right and left, respectively, of

S
j D

•
j are a.s. conditionally

independent. The conditional law of B is given by the welding of independent thin
quantum disks Bj ⇠ M

disk
2 (Wj ; `j�1 � bj , `j)# for j = 1, . . . , n, where `0 := 1. The

conditional law of A is given by the welding of independent thin quantum wedges
Aj ⇠ M

wedge
2 (Wj), where the root of Aj is welded to the point on the left boundary of

Aj+1 at distance cj � aj+1 from the root for j = 1, . . . , n� 1. See Figure 5.
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Proof. This is immediate from Corollary 4.3.

5.2 Convergence to welding of thin quantum disks

In this section we prove Proposition 5.4, which roughly says that when we condition on
BCr,K," and send r ! 1, the surface (S++⌧�r, h,+1, ⌧�r) converges in distribution to a
welding of thin quantum disks, with respect to a suitable topology on quantum surfaces.
Although B =

S
Bj is a welding of quantum disks whose side lengths do not exactly

agree, using Lemma 4.7 it can be coupled to agree (with high probability, near +1) with
a welding of quantum disks whose side lengths do agree, yielding Proposition 5.4.

For a quantum surface (S, h,+1,�1, ⌘1, . . . , ⌘n) embedded in the strip and satisfying
⌫ (R) > 1

2 , recall from Section 3 its canonical embedding satisfies ⌫h(R+) =
1
2 .

Proposition 5.4. Condition (S, h,+1,�1, ⌘1, . . . , ⌘n�1) on BCr,K," and consider its
canonical embedding. As r ! 1, in any neighborhood of +1 excluding �1, the
field and curves converge in distribution to those of the canonical embedding of a sample
from

Z�1

ZZZ 1

"
M

disk
2 (W1; 1, `1)⇥M

disk
2 (W2; `1, `2)⇥ · · ·⇥M

disk
2 (Wn; `n�1, `n) d`1 . . . d`n,

(5.3)
where Z is a normalization constant, and we understand (5.3) as a probability measure
on field-curves tuples in S obtained by conformally welding n quantum surfaces then
canonically embedding the resulting curve-decorated surface in (S,+1,�1). The
topology of convergence is, for each neighborhood of +1 not containing �1, the
product topology of the weak-* topology for fields and Hausdorff topology for curves.

Moreover, we have P[E0
r,⇣," | BCr,K,"] ! 1 for fixed K as first r ! 1 then ⇣ ! 1; the

event E0
r,⇣," is defined in (3.3).

Proof. We first elaborate on the definition and well-definedness of (5.3) as a measure
on field-curve tuples; a sample from (5.3) is obtained as follows. Fix è

0 = 1 and
sample è

1, . . . , èn�1 from the distribution (5.2). Sample independent quantum disks
eB1, . . . , eBn with eBj ⇠ M

disk
2 (Wj ; èj�1, èj)#. Conformally weld them by quantum length

to obtain a quantum surface eB with two marked points and n � 1 curves, and embed
eB = (S,eh,+1,�1, e⌘1, . . . , e⌘n�1) via the canonical embedding. The a.s. existence and
uniqueness of this conformal welding follows from that of thin quantum wedges and the
local absolute continuity of thin quantum disks with respect to thin quantum wedges.

Proving convergence to (5.3). Consider a parameter � > 0; we will send r ! 1

then � ! 0 in that order, and write or(1) (resp. o�(1)) for a quantity that tends to zero
in probability as r ! 1 (resp. r ! 1 then � ! 0). Sample B1, . . . ,Bn conditioned
on BCr,K," and let B

�
1, . . . ,B

�
n be the �-trimmings of B1, . . . ,Bn (so each B

�
j contains

the marked point +1). Similarly let eB�1, . . . , eB�n be the �-trimmings of eB1, . . . , eBn. By
Lemma 4.7, we can couple (B�1, . . . ,B

�
n) = ( eB�1, . . . , eB�n) with probability 1� or(1). Restrict

to this event.
Let eD (resp. D) be the region parametrizing

Sn
1
eB�j (resp.

Sn
1 B

�
j ). Since

Sn
1
eB�j =

Sn
1 B

�
j as quantum surfaces, there is a.s. a (random) conformal map ' : eD ! D fixing

+1 so that h|D = (eh � '�1 + Q log |('�1)0|)|D. Since h|D 2 H�1
loc (D) we conclude that

eh| eD 2 H�1
loc (

eD) also. When we send � ! 0, the trimming interface in (S,eh,+1,�1) goes
to �1 in probability. Therefore [AG21, Lemma 2.24] says that for any neighborhood U
of +1 bounded away from �1, we have supz2U eRe z

|'0(z)� 1| = o�(1) (the cited lemma
only states boundedness of supz2U |'0(z)� 1|, but the argument gives exponential decay);
consequently there is a random constant c for which supz2U |'(z)� z + c| = o�(1). Since
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both h and eh are canonically embedded we have c = o�(1), hence

sup
z2U

|'(z)� z| = o�(1). (5.4)

This allows us to show that as r ! 1 then � ! 0, the tuple (h, ⌘1, . . . , ⌘n�1) converges
to (eh, e⌘1, . . . , e⌘n�1) in distribution: Convergence of the curves in the Hausdorff topology
is immediate from (5.4). For the field, notice that for f a smooth function compactly
supported in U we have

(h, f)r = (eh � '�1 +Q log |('�1)0|, f)r = (eh, f � ')r + o�(1) = (eh, f)r + o�(1),

since supU
��log |('�1)0|

�� = o�(1) and f �'! f in probability in the C1 topology. Since this
holds for all f we obtain convergence in distribution of the field (in the weak-* topology).

Showing P[E0
r,⇣," | BCr,K,"] ! 1 as r ! 1 then ⇣ ! 1. Choose some (random) x ⌧ 0

such that ⌫eh(e⌘j \ (S+ + x)) > " for j = 1, . . . , n. Let �1
b be the set of smooth functions

supported in the rectangle [x� 4, x� 1]⇥ [0,⇡] with � � 0,
R
�(x) d2x = 1 and k�0k1  b

and define
m(eh) := inf

�2�1
b

(eh,�).

Since eh is a distribution and �1
b is compact in the space of test functions, m(eh) is

finite almost surely (see the discussion after Proposition 9.19 in [DMS14] for details).
Fix a nonnegative function f which is constant on vertical segments, supported on
[x � 3, x � 2] ⇥ [0,⇡], and satisfies

R
f(x)d2x = 1. Then since supz2U |'0(z) � 1| = o�(1)

and supz2U |'(z)� z| = o�(1), we conclude that for some b depending only on f , we have
|'0

|
2f � ' 2 �1

b in probability as r ! 1 then � ! 0. Thus, if we condition on the event
{m(eh) > �⇣ + 1}, then with probability 1� or(1) we have

(h, f) = (eh � '�1 +Q log |('�1)0|, f) = (eh, |'0
|
2f � ') + (Q log |('�1)0|, f) > �⇣.

Since f is constant on vertical segments, there exists some t < x for which ht > �⇣;
moreover, the quantum lengths of ⌘j \ (S+ + t) are at least " so E0

r,⇣," holds. Since

lim⇣!1P[m(eh) > �⇣ + 1] = 1 we obtain the desired result.

5.3 Compatibility of bottlenecks

In this section, we prove Proposition 5.7, which roughly speaking says thatP[BFr,⇣,K," |

BCr,K,"] ⇡ 1 where BFr,⇣,K," is defined in Proposition 3.2. This is tricky because we are
conditioning on the rare event BCr,K,". On the other hand, the surface A conditioned
on BCr,K," is simply a welding of independent quantum wedges with welding offsets
⇣ e

�
2 (�r�K) (Lemma 5.2 and Proposition 5.3). Let A+ r+K denote the quantum surface

obtained by adding r + K to the field of A. We define a proxy surface bA so that the
law of the quantum surface A+ r +K conditioned on BCr,K," is absolutely continuous
with respect to the law of bA. We obtain estimates on bA in Lemma 5.6, and use these to
analyze A and hence prove Proposition 5.7.

First we construct the proxy surface bA. Consider cW = (S,bh,+1,�1) decorated by
curves (b⌘1, . . . , b⌘n�1) ⇠ P

disk(W1, . . . ,Wn), conditioned on the following event F : defining
the points bz0, . . . , bzn, quantum surfaces bD•

j , bAj , and lengths baj ,bbj ,bcj in the same way as
in BCr,K,", set

F =
n
bbj 2 [1, 2], (baj +bbj) 2 [3, 4], bcj 2 [5, 6] for j = 1, . . . , n

o
.

Let bA :=
Sn

i=1
bAi and let bU ⇢ S be the unbounded connected component of the set

parametrizing bA.

EJP 28 (2023), paper 52.
Page 29/50

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP943
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Conformal welding of quantum disks

Lemma 5.5. The law of the quantum surface A+ r+K conditioned on the event BCr,K,"

is absolutely continuous with respect to the law of bA, with Radon-Nikodym derivative
uniformly bounded for r,K > 0.

Proof. By Lemma 5.2 we know that given BCr,K,", the law of (eaj ,ebj ,ecj)nj=1 = (e
�
2 (r+K)aj ,

e
�
2 (r+K)bj , e

�
2 (r+K)cj)nj=1 has a density with respect to Lebesgue measure on

Qn
j=1{

ebj 2
[1, 2], (eaj+ebj) 2 [3, 4],ecj 2 [5, 6]}, and this density is bounded between � and ��1 uniformly
for all r > 0, for some � 2 (0, 1). By the same reasoning, the same is true for (baj ,bbj ,bcj)nj=1,

so the law of (eaj ,ebj ,ecj)nj=1 conditioned on BCr,K," is absolutely continuous with respect

to the law of (baj ,bbj ,bcj)nj=1, and the Radon-Nikodym derivative is uniformly bounded in r.

Given (eaj ,ebj ,ecj)nj=1 the conditional law of the quantum surface A+ r +K is simply
a welding of independent thin quantum wedges with offsets given by (ecj � eaj+1)

n�1
j=1

(Proposition 5.3), and the same is true for bA. This yields the lemma.

The quantum surface bA can be parametrized as bA = (bU,bh,�1) where bU is defined
above, but we need estimates that hold for any embedding (U,bhU ,�1) of bA in S fixing
�1. Recall that for a field  on S we write  t for the average of  on [t, t+ i⇡].

Lemma 5.6. The following holds with probability approaching 1 as K ! 1:
For any simply connected neighborhood U ⇢ S of �1 and any conformal map

' : bU ! U fixing �1, writing bhU := bh � '�1 +Q log |('�1)0|, there exists x 2 R so that
the segment [x, x+ i⇡] ⇢ U , bhU

x 2 (�K,K), and ⌫bhU ((x�K2,1) \ U) < 1
2e

�
2 K

3

.

Figure 6: Diagram for argument of Lemma 5.6.

Proof. Let a, b > 0 be absolute constants we choose later. Write bx = inf{Re z : z 2 S\bU}�

4a. Let �1
a,b be the set of smooth functions supported in the rectangle [bx, bx+ 3a]⇥ [0,⇡]

with � � 0,
R
�(x) d2x = 1 and k�0k1  b and define

m(bh) := inf
�2�1

a,b

(bh,�), M(bh) := sup
�2�1

a,b

(bh,�).

The random variables m(bh) and M(bh) are a.s. finite since bh is a distribution and �1
a,b

is compact in the space of test functions. Let f be some function supported on [bx +
a, bx + 2a] ⇥ [0,⇡] which is nonnegative, constant on vertical segments, and satisfiesR
f(z) d2z = 1.
Since the statement of the lemma is translation invariant, we may translate U so

that limz!�1 |'(z) � z| = 0. By [AG21, Lemma 2.24] we see that for some absolute
constant a (e.g. a = 100 works) we have |'(z) � z|, |'0(z)|, |('�1)0(z)| < a for all z with
Re z < inf{Re z : z 2 S\bU}� a. Consequently, we can choose b large in terms of a, f so
that |'0

|
2f � ' 2 �1

a,b for any U,'. Then

(bhU , f) = (bh � '�1 +Q log |('�1)0|, f) = (bh, |'0
|
2f � ') + (Q log |('�1)0|, f),

m(bh)�Qlog a  (bhU , f)  M(bh) +Qlog a.
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The event {m(bh)�Qlog a > �K}\{M(bh)+Qlog a < K} holds with probability approach-
ing 1 asK ! 1. On this event, since (bhU , f) 2 (�K,K)we can find some x 2 [bx+a, bx+2a]
such that bhU

x 2 (�K,K). Moreover, notice that the curve '([bx + 3a, bx + 3a + i⇡]) is
contained in U and lies to the right of [bx + 2a, bx + 2a + i⇡] (since |'(z) � z| < a for
z 2 [bx+ 3a, bx+ 3a+ i⇡]), so [x, x+ i⇡] ⇢ U .

Finally, we claim that with probability approaching 1 as K ! 1 we have ⌫bh((bx �

K2
� a,1) \ bU) < 1

2e
�
2 K

3

; since |'(z)� z| < a for z to the left of bx, this implies the last
assertion of the lemma. Since F has positive probability, it suffices to prove this claim in
the setting where (S,bh,+1,�1) is not conditioned on F , so we will assume this. The
left-to-right field average process (bht)t2R is Brownian motion started from +1 to �1

with variance 2 and downward drift. Define the stopping time b⌧s = inf{t 2 R : bht = s}.
Fix some largeM , then bhbx < M with probability 1�oM (1), hence b⌧M < bx with probability
1� oM (1). By Brownian motion estimates we have b⌧K5/2 < b⌧M �K2

� a with probability

tending to 1 as K ! 1 for fixed M . Finally, since the law of e�
�
2 K

5/2

⌫bh(⌧K5/2 ,1) does

not depend on K, we have ⌫bh((⌧K5/2 ,1)) < 1
2e

�
2 K

3

with probability 1� oK(1). Sending
K ! 1 then M ! 1 and combining these three estimates, we conclude that with
probability approaching 1 we have ⌫bh((bx�K2

� a,1)) < 1
2e

�
2 K

3

, as desired.

Recall the event BFr,⇣,K," = Er,K \ E0
r,⇣," of Proposition 3.2. Abusing notation, define

Gr :=

8
<

:

n[

j=1

D
•
j ⇢ (S+ + ⌧�r)

9
=

;; (5.5)

i.e. Gr is the event that the white regions in Figure 5 (top left) lie to the right of ⌧�r.
More precisely, for j = 1, . . . , n the curve segments of ⌘j between wj and +1 lie in
S+ + ⌧�r (with ⌘n = R+ i⇡).

Proposition 5.7. P[BFr,⇣,K," \ Gr | BCr,K,"] ! 1 as r ! 1, ⇣ ! 1,K ! 1 in that
order.

Proof. In this argument, we use “with high probability” as shorthand for “with probability
approaching 1 as first r ! 1, then ⇣ ! 1, and finally K ! 1, in that order”.

Let U be the unbounded connected component of the set parametrizing A, let
y = inf{Re z : z 2 S\U}, and define (Yt)t�0 to be the field average of h on [y� t, y� t+ i⇡].
We claim that, since BCr,K," is measurable with respect to (h|S++y, ⌘1, . . . , ⌘n), when we
condition on BCr,K,", the law of (Yt)t�0 is Brownian motion started at (the random) Y0

with variance 2 and upward drift. This claim follows from a minor modification to the
proof of [AG21, Lemma 2.10], and is essentially a Markov property of the field when we
explore it from right to left, analogous to the domain Markov property of GFFs. We leave
the details to the reader.

Transferring the high probability estimate Lemma 5.6 from bA to A + r + K using
Lemma 5.5, we conclude that with high probability we can find a point x 2 R so
that [x, x + i⇡] ⇢ U , the average of h on [x, x + i⇡] is between �r � 2K and �r, and
⌫h((x�K2,1) \ @U) < 1

2e
�
2 (�r+K3). Restrict to the event that these occur and choose

x  y to be the rightmost point satisfying these constraints. Since the average of h on
[x, x+ i⇡] is less than �r, we see that ⌧�r < x  y; this proves P[Gr | BCr,K,"] ! 1.

We claim that with high probability we have ⌧�r > x�K2. Indeed, if x < y, then by the
Markov property of Brownian motion (Yt+(y�x)�Yy�x)t�0 is Brownian motion started at 0
with variance 2 and linear upward drift. Thus with high probability Yt+(y�x)�Yy�x > 2K
for all t > K2; in particular the field average on any vertical segment to the left of x�K2

is at least �r with high probability. Consequently, ⌧�r > x�K2. The case x = y similarly
yields ⌧�r > x�K2.
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Finally, we conclude that with high probability

⌫h([⌧�r,1)) = ⌫h([⌧�r,1)\@U)+a1+1 
1

2
e

�
2 (�r+K3)+4e

�
2 (�r�K)+1 < 1+ e

�
2 (�r+K3),

and similarly with high probability ⌫h([⌧�r,1)) > 1. This shows that P[Er,K | BCr,K,"] !
1. Combining with the last claim of Proposition 5.4, we conclude that P[BFr,⇣,K," |

BCr,K,"] ! 1 as r, ⇣,K ! 1.

5.4 Convergence to thick quantum disk

In this section we prove Proposition 5.1. Proposition 5.4 shows that (S, h,+1,�1, ⌘1,
. . . , ⌘n�1) conditioned on BCr,K," approximates a welding of thin quantum disks. From
Sections 5.2 and 5.3, this is close to the law of (S, h,+1,�1, ⌘1, . . . , ⌘n�1) conditioned
on BCr,K," \Gr \ BFr,⇣,K,".

When we condition only on BFr,⇣,K,", the field and curves in neighborhoods of +1

resemble those of a quantum disk decorated by macroscopic curves (namely with
quantum lengths at least "), and are almost independent from the field and curves
near the bottleneck (Proposition 3.2). On BFr,⇣,K,", the event BCr,K," \ Gr is almost
determined by the field and curves near the bottleneck, hence the field and curves in
neighborhoods of +1 conditioned on BCr,K," \Gr \ BFr,⇣,K," look like a quantum disk
decorated by macroscopic curves. This concludes the proof of Proposition 5.1.

To that end, we make a general statement about the near-independence of SLE in
spatially separated regions in Lemma 5.8 (whose proof we defer to Appendix B), then
carry out the argument sketched above.

Lemma 5.8 (Near independence of SLE). Suppose (⌘1, . . . , ⌘n�1) ⇠ P
disk(W1, . . . ,Wn),

and condition on (⌘1 \ S+, . . . , ⌘n�1 \ S+). Then (⌘1 \ S+, . . . , ⌘n�1 \ S+)-almost surely,
as N ! 1 the total variation distance between the conditional law of (⌘1 \ (S� �

N), . . . , ⌘n�1\(S��N)) and the unconditioned law of (⌘1\(S��N), . . . , ⌘n�1\(S��N))
goes to zero.

Recall from Section 2.6 that a quantum surface (S, h,+1,�1, ⌘1, . . . , ⌘n) satisfying
⌫h(R) > 1

2 is canonically embedded if ⌫h(R+) =
1
2 .

Proposition 5.9. Consider the canonically embedded curve-decorated surface (S, h,+1,
�1, ⌘1, . . . , ⌘n�1) conditioned on BCr,K,"\Gr \BFr,⇣,K,", where Gr is defined as in (5.5).
Send r ! 1, ⇣ ! 1,K ! 1 in that order. Then in any neighborhood U of +1 with
�1 62 U , the law of (h|U , ⌘1 \ U, . . . , ⌘n�1 \ U) converges in total variation to the law of
( b |U , b⌘1\U, . . . , b⌘n�1\U), where (S,+1,�1, b , b⌘1, . . . , b⌘n�1) is taken fromM

disk
2 (W, 1)⌦

P
disk(W1, . . . ,Wn) (with canonical embedding) and conditioned on {⌫ b (b⌘j) > " for j =

1, . . . , n} (with b⌘n := R+ i⇡).

Proof. Recall the setting of Proposition 3.2, which has a further parameter S > 0
describing the length of the rectangle R = [0, S] ⇥ [0,⇡]. In this proof we will send
parameters r ! 1, ⇣ ! 1, S ! 1,K ! 1 in that order. We will write o⇣(1) (resp.
oS(1)) for a quantity that goes to zero as r, ⇣ ! 1 (resp. r, ⇣, S ! 1) in that order. Let
U ⇢ S be a neighborhood of +1 bounded away from �1.

First sample (S, h,+1,�1, ⌘1, . . . , ⌘n�1) conditioned only on BFr,⇣,K,". Let eh =
h(·+⌧�r)+r and e⌘i = (⌘i�⌧�r)\R for i = 1, . . . , n�1. By Proposition 3.2 and Lemma 5.8
we know that the joint law of eh, (e⌘1, . . . , e⌘n�1), ⌫eh(0,1)� 1 and (h|U , ⌘1 \U, . . . , ⌘n�1 \U)
converges in total variation as r, ⇣ ! 1 to the independent objects �, (⌘01 \R, . . . , ⌘0n�1 \

R), V and ( b |U , b⌘1\U, . . . , b⌘n�1\U). Here, � is the field described in (3.5), (⌘01, . . . , ⌘
0
n�1) ⇠

P
disk(W1, . . . ,Wn), V ⇠ Unif([0, e

�
2 K ]), and ( b |U , b⌘1 \ U, . . . , b⌘n�1 \ U) is as defined in

Proposition 3.2.
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Similarly to (5.5), define

Hr,S =

8
<

:

n[

j=1

D
•
j ⇢ (S� + ⌧�r + S)

9
=

;.

The event Gr \Hr,S is measurable with respect to the �-algebra F := �(eh, (e⌘1, . . . , e⌘n�1),
⌫eh(0,1)� 1). Indeed, the point ez0 := z0 � ⌧�r is the point on R+ such that ⌫eh([0, ez0]) =
⌫eh((0,1)) � 1; given this and the translated curves (⌘1 � ⌧�r, . . . , ⌘n�1 � ⌧�r) we can

determine the domains eD•
j = D

•
j � ⌧�r. Thus Gr \Hr,S is the event that ez0 and all of the

curve segments defining @D•
j are contained in R, so Gr \Hr,S 2 F .

Now we show that BCr,K," \Gr \Hr,S 2 F . Recall the definition of BCr,K," in (5.1)
which involves the lengths {(aj , bj , cj , `j)}1jn. On Gr \Hr,S , the lengths aj , bj , cj are a
function of eh and e⌘1, . . . , e⌘n�1. Moreover, the conditions of BCr,K," on `1, . . . , `n hold by
assumption because we have conditioned on BFr,⇣,K,". We conclude that BCr,K," \Gr \

Hr,S is measurable with respect to F .
Thus, when we sample (S, h,+1,�1, ⌘1, . . . , ⌘n�1), then given BFr,⇣,K," \ BCr,K," \

Gr \ Hr,S , the conditional law of (h|U , ⌘1 \ U, . . . , ⌘n�1 \ U) converges to the desired
limit (described in Proposition 3.2) as r ! 1, ⇣ ! 1, S ! 1,K ! 1 in that order. To
finish the argument, it suffices to show that P[Hr,S | BFr,⇣,K," \BCr,K," \Gr] = 1� oS(1).
This is true because P[Hr,S | BFr,⇣,K," \ Gr] = 1 � oS(1) and, for fixed K, we have
P[BCr,K," \ Hr,S | BFr,⇣,K," \ Gr] > 0 uniformly as r ! 1, ⇣ ! 1, S ! 1; both
statements hold because of the existence of the limit law (�, (⌘01, . . . , ⌘

0
n�1), V ).

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. In this proof, when we say “with probability approaching 1” or
“close in distribution”, we mean in the r ! 1, ⇣ ! 1,K ! 1 limit, and when we say “in
the bulk”, we mean in neighborhoods of +1 in the canonical embedding.

Proposition 5.7 tells us that P[Gr \BFr,⇣,K," | BCr,C,"] ! 1. Therefore Proposition 5.4
tells us that the law of (h, ⌘1, . . . , ⌘n) in the bulk conditioned on BCr,C," \Gr \BFr,⇣,K," is
close in distribution to that of 1

Z

RRR1
" M

disk
2 (W1; 1, `1) · · ·Mdisk

2 (Wn; `n�1, `n) d`1 . . . d`n.
But Proposition 5.9 tells us that the law of (h, ⌘1, . . . , ⌘n) in the bulk conditioned on
BCr,C," \Gr \BFr,⇣,K," is close in distribution to that of Mdisk

2 (W ; 1)⌦P
disk(W1, . . . ,Wn)

conditioned on the event A" that boundary arc and interface lengths are greater than ".
Thus for fixed " > 0 and for some constant c" > 0, we have

(Mdisk
2 (W ; 1)⌦ P

disk(W1, . . . ,Wn))|A" = c"

ZZZ 1

"

nY

i=1

M
disk
2 (Wi; `i�1, `i) d`1 . . . d`n.

For any "0 > ", by restricting first to A" then to A"0 , we see that c" = c"0 so the constant
does not depend on ". Sending "! 0 yields Proposition 5.1.

6 Conclusion of the proofs of conformal welding results

In this section we extend Proposition 5.1 to Theorem 2.3, and explain the argument
modifications needed to obtain Theorem 2.4.

Proof of Theorem 2.3 when W1, . . . ,Wn,W 6= �2

2 . We discuss the proof of Theorem 2.3
in three different regimes.

Case 1: W1, . . . ,Wn 2 (0, �
2

2 ) and W > �2

2 .
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Proposition 5.1 tells us that

M
disk
2 (W ; 1)⌦ P

disk(W1, . . . ,Wn)

= cW1,...,Wn

ZZZ 1

0
M

disk
2 (W1; 1, è1)⇥M

disk
2 (W2; è1, è2)

⇥ · · ·⇥M
disk
2 (Wn; èn�1, èn) dè1 . . . dèn.

Add 2
� log ` to the field and apply Lemma 2.24 (n + 1) times. Writing `j = `èj for

j = 1, . . . , n� 1 and `0 = `èn, then disintegrating with respect to `0, we have for a.e. `0 > 0
that

M
disk
2 (W ; `, `0)⌦ P

disk(W1, . . . ,Wn)

= cW1,...,Wn

ZZZ 1

0
M

disk
2 (W1; `, `1)⇥M

disk
2 (W2; `1, `2)

⇥ · · ·⇥M
disk
2 (Wn; `n�1, `

0) d`1 . . . d`n�1.

Continuity ofMdisk
2 (W ; `, `0) andM

disk
2 (Wn; `n�1, `0) in `0 (see the proof of Proposition 5.4

for the argument by continuity) then yields the result for all `0 > 0, establishing Case 1.

Case 2: W1, . . . ,Wn 2 (0, �
2

2 ) and W < �2

2 .

Choose Wn+1 2 (0, �
2

2 ) so that
Pn+1

1 Wi = W + Wn+1 > �2

2 . By the definition of
P

disk, one can sample (⌘1, . . . , ⌘n�1, ⌘n) ⇠ P
disk(W1, . . . ,Wn,Wn+1) by first sampling

⌘ ⇠ P
disk(W1 + · · · + Wn,Wn+1), then independently sampling n � 1 curves in each

bounded connected component D ⇢ S\⌘ from PD(W1, . . . ,Wn), and concatenating to get
(⌘1, . . . , ⌘n�1). Therefore, applying Case 1 to the (n+ 1)-tuple (W1, . . . ,Wn+1) and to the
pair (W,Wn+1) yield

M
disk
2 (W ; `, `00)⌦ P

disk(W1, . . . ,Wn+1)

= cW1,...,Wn+1

ZZZ 1

0
M

disk
2 (W1; `, `1)

⇥ · · ·⇥M
disk
2 (Wn; `n�1, `

0)⇥M
disk
2 (Wn+1; `

0, `00) d`1 . . . d`n�1 d`
0

= cW1+···+Wn,Wn+1

Z 1

0

�
M

disk
2 (W1 + · · ·+Wn; `, `n)⌦ P

disk(W1, . . . ,Wn)
�

⇥M
disk
2 (Wn+1; `

0, `00) d`0.

Disintegrating with respect to `0 yields the desired identity for a.e. `0 > 0, and continuity
extends this to all `0 > 0. Thus we have shown Theorem 2.3 for Case 2.

Case 3: W1, . . . ,Wn 2 (0,+1)\{�
2

2 } and W > �2

2 .
Choose some sufficiently large N and decompose Wi = W 1

i + · · · +WN
i with W j

i 2

(0, �
2

2 ) for 1  i  n and 1  j  N , then by Case 1 we have for constants c1, . . . , cn 2

(0,1)

M
disk
2 (Wi; `, `

0) = ci

ZZZ 1

0
M

disk
2 (W 1

i ; `, `1)⇥ · · ·⇥M
disk
2 (WN

i ; `N , `0) d`1 . . . d`N�1.

Here, the right hand side is a measure on curve-decorated surfaces; forgetting the curves
yields the left hand side. Applying Case 1 to the nN weights ((W j

1 )
N
j=1, . . . , (W

j
n)

N
j=1) and

comparing to the above yields

M
disk
2 (W ; `, `0)⌦P = cW1,...,Wn

ZZZ 1

0
M

disk
2 (W1; `, `1)⇥· · ·⇥M

disk
2 (Wn; `n�1, `

0) d`1 . . . d`n�1
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where P is a probability measure on (n � 1)-tuples of curves obtaining by forgetting
some curves of Pdisk((W j

1 )
N
j=1, . . . , (W

j
n)

N
j=1). The same argument using Theorem 2.26

yields M
wedge(W )⌦ P =

Qn
i=1 M

wedge(Wi), and comparing this with Theorem 2.26 for
weights (W1, . . . ,Wn) yields P = P

disk(W1, . . . ,Wn). Thus we have shown Theorem 2.3
for Case 3.

Case 4: n = 2, W1 = �2

2 and W2 = 2. This follows from applying Case 3 and sending

"! 0 when n = 2, W1 = �2

2 + " and W2 = 2. See Appendix A for details.

Case 5: Either W = �2

2 or some Wj =
�2

2 .

The case W = �2

2 follows from Case 4 and the argument of Case 2. The case where

Wj =
�2

2 for some j then follows from the argument of Case 3.

The proof of Theorem 2.4 is nearly identical to that of Theorem 2.3, so we explain it
briefly. First we will show the analog of Proposition 5.1, and then extend it to the full
result using scaling arguments and Theorem 2.3.

Let C = R ⇥ [0, 2⇡]/⇠ be the cylinder (here R and R + 2⇡i are identified under the
relation x ⇠ x+ 2⇡i).

Figure 7: Consider a quantum cone (C, h,+1,�1) decorated by the curves
(⌘0, . . . , ⌘n�1) ⇠ P

sph(W1, . . . ,Wn). Let z0 be the point on ⌘0 with ⌫h-length from +1

equal to 1. Iteratively for j = 1, . . . , n, let D•
j be the component of Wj with zj�1 on its

boundary, and let wj , zj be its left and right marked points respectively. Let BCr,K," be
the event that zn lies on @D•

1 between w1 and z0, and that the length bounds (6.1) hold.

Lemma 6.1. Fix n � 2 and fix W1, . . . ,Wn 2 (0, �
2

2 ). Consider a field-curves pair

( , ⌘0, . . . , ⌘n�1) taken from M
sph
2 (W ; 1) ⌦ P

sph(W1, . . . ,Wn). When we condition on
⌫ (⌘0) = 1 and cut along ⌘0, . . . , ⌘n�1, we obtain an n-tuple of quantum surfaces with law

bcW1,...,Wn

ZZZ 1

0
M

disk
2 (W1; 1, `1)⇥ · · ·⇥M

disk
2 (Wn; `n�1, 1) d`1 . . . d`n�1

for some bcW1,...,Wn 2 (0,1).

Proof. Consider a quantum cone (C, h,+1,�1) ⇠ M
cone(W ) decorated by independent

curves (⌘0, ⌘1, . . . , ⌘n�1) ⇠ P
sph(W1, . . . ,Wn); the curves cut the cone into n indepen-

dent quantum wedges W1, . . . ,Wn with weights W1, . . . ,Wn [DMS14, Theorems 1.2,
1.5]. We define the event BCr,K," as follows: Let z0 be the point on ⌘0 at distance
1 from +1, and define the quantum surface D

•
1 to be the bead of W1 with z0 on its

boundary; call its left and right marked points w1 and z1 respectively. Iteratively define
D

•
2 , z2, w2, . . . ,D•

n, zn, wn similarly, and define (aj , bj , cj , `j)nj=1 in the same way as in the
disk case. Let BCr,K," be the event that the following holds, see Figure 7:
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• For each j = 1, . . . , n we have the inequalities

e
�
2 (r+K)bj 2 (1, 2), e

�
2 (r+K)(aj + bj) 2 (3, 4), e

�
2 (r+K)cj 2 (5, 6), `j > "; (6.1)

• The point zn lies on the bead D
•
1 , between the points w1 and z0.

The exact choice of the second condition is not too important; any suitable variant of
“the cycle of beads D

•
1 , . . . ,D

•
n closes up” suffices. This condition is used to prove the

analog of Lemma 5.2.
Conditioning on BCr,K," gives a decomposition of the quantum cone into the quantum

surfaces A,B, and (D•
j )

n
j=1, where A is infinite and B is finite. As before, when we

condition on the lengths (aj , bj , cj , `j)nj=1, these quantum surfaces become mutually
independent. By following the steps in the proof of Proposition 5.1, we obtain Lemma 6.1.

Proof of Theorem 2.4. The theorem in the case n � 2 and W1, . . . ,Wn 2 (0, �
2

2 ) follows
from Lemma 6.1 and a scaling argument using Lemma 2.24 (see Case 1 in the proof
of Theorem 2.3). For the case n = 1 and W1 2 (0, �

2

2 ), we choose any W 0
1,W

0
2 2 (0, �

2

2 )
with W 0

1 + W 0
2 = W1 and apply the n � 2 case and Theorem 2.3. Finally, for the case

where n � 1 and W1, . . . ,Wn > 0 are arbitrary, we split each thick quantum disk into thin
quantum disks as in the proof of Case 3 of Theorem 2.3.

7 Application to finite-area mating of trees

We now present two applications of our conformal welding results. In Section 7.1
we explain a unified derivation of the mating-of-trees theorems for the quantum sphere
and disk, building on the mating-of-trees theorem for the 2� �2

2 quantum wedge from
[DMS14]. Since these results are not new, we only provide proof sketches but the
proofs can be made complete without substantial difficulty by filling in more details. In
Section 7.2, we show a new mating-of-trees theorem for Mdisk

2 (�
2

2 ), which is crucial for
several subsequent works [AHS21, ARS21].

7.1 Mating of trees for weight 2 quantum disk and weight 4 � �2 quantum
sphere

In this section we explain how our arguments and conformal welding theorems
yield a systematic treatment of the quantum sphere and disk mating-of-trees theorems.
The quantum sphere theorem was originally proved in [MS19, Theorem 1.1], and the
quantum disk theorem was shown in [DMS14]2 for � 2 (

p
2, 2) and [AG21, Theorem 1.1]

for � 2 (0,
p
2]. As these results are already present in the literature, we only sketch

the proofs — for example, we will rely on several facts concerning Brownian motion
without justification. These proofs demonstrate the robustness of our arguments and the
effectiveness of our conformal welding results.

We start by recalling the setup for the mating-of-trees framework; see [DMS14,
GHS19] for more details. Fix 0 = 16

�2 . We can define space-filling SLE0 curves between
two marked boundary points of a simply connected domain; see [MS17, Section 1.2.3]
and [GHS19, Section 3.6.3]. Suppose ⌘0 is a space-filling SLE0 drawn on an independent
�-LQG quantum surface. We parametrize it so it covers a unit of quantum area per unit
of time. Moreover, at each instant, the boundary of the region ⌘0 has explored is locally
absolutely continuous with respect to an SLE curve, and one can use this to argue that
the boundary a.s. has a well defined quantum length [She16a].

2See [MS19, Theorem 2.1] and the paragraph before it for discussion on the proof of the � 2 [
p
2, 2)

quantum disk mating-of-trees theorem in [DMS14].
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We can now state the mating-of-trees theorem for the weight 2� �2

2 quantum wedge.

For � 2 (0,
p
2], consider a weight 2� �2

2 quantum wedge (S, h,+1,�1), decorated with
an independent space-filling curve ⌘0 from +1 to �1 parametrized by the quantum
area. For each t > 0 let pt 2 R and qt 2 R + i⇡ be the leftmost points such that
[pt,1), [qt,1) ⇢ ⌘0([0, t]). The boundary @(⌘0([0, t])) has a well defined quantum length.
Let Lt be the quantum length of the boundary arc of ⌘0([0, t]) from ⌘0(t) to pt minus
⌫h([pt,1)), and let Rt be the quantum length of the boundary arc of ⌘0([0, t]) from ⌘0(t)

to qt minus ⌫h([qt,1)). See Figure 8 for an illustration. For � 2 (
p
2, 2), the weight 2� �2

2
quantum wedge is thin, but the same definition applies with pt, qt being the furthest
points on the left and right boundaries from the root for which the space-filling curve
has filled the boundary arcs from pt and qt, respectively, to the root.

Theorem 7.1 ([DMS14, Theorem 1.9]). For some �-dependent constant a > 0, the
process (Lt, Rt)t�0 evolves as Brownian motion with covariances given by

Var(Lt) = Var(Rt) = a
2t, Cov(Lt, Rt) = � cos(⇡�2/4)a2t for t � 0. (7.1)

Remark 7.2. The variance a2 was not known until the work of the first and the third
author with Remy [ARS21], which proves that a2 = 2/ sin(⇡�

2

4 ). This formula is not
needed for our paper.

We will use Theorem 7.1 and our conformal welding results to rederive the mating-of-
tree theorems for the quantum sphere and disk.

To that end we need some finite duration variants of the Brownian motion (Lt, Rt)t�0

in Theorem 7.1. They are constructed through limiting procedures in the same spirit
as [LW04, Section 3], except that we consider Brownian path measures in a cone
R

2
+ := (0,1)2 with an endpoint at the vertex, and we use correlated Brownian motion.

We omit the detailed justification for the existence of the various limits because the
arguments in [LW04] still apply.

Let K be the collection of all continuous planar curves of the form ⌘ : [0, t⌘] !

R
2. For ⌘ 2 K we call t⌘ the duration of ⌘. Endow K with the metric dK(⌘1, ⌘2) =

inf✓{sups2[0,t⌘1 ]
|s � ✓(s)| + |⌘1(s) � ⌘2(✓(s))|} with the infimum taken over increasing

homeomorphisms ✓ : [0, t⌘1 ] ! [0, t⌘2 ]. For z 2 R
2
+ let µ�

R
2
+
(z) denote the proba-

bility measure on K corresponding to a Brownian motion Zt = Lt + Rti started at
z = L0 + R0i with covariance (7.1), and stopped upon hitting @R2

+. For q 2 iR+, let
Eq," := {Z exits R2

+ in (q, q + "i)}, where (q, q + "i) means the linear segment on R2

between q and q + "i. Define the weak limit µ�
R

2
+
(z, q) = lim"!0

1
"µ

�
R

2
+
(z)|Eq," . This is a

finite measure on K, supported on the set of paths from z to q. Similarly, for p 2 R+ we
can set µ�

R
2
+
(p, q) = lim"!0

1
"µ

�
R

2
+
(p+ i", q). When one of the endpoints of the Brownian

excursion is the origin, we need to normalize differently. Let E" := {Z exits R2
+ in (0, "i)}

and define for z 2 R
2
+ the finite measure µ�

R
2
+
(z, 0) = lim"!0 "

� 4
�2 µ�

R
2
+
(z)|E" ; Lemma C.1

shows that �
4
�2 is the correct exponent. We also define for p 2 R+ the finite mea-

sure µ�
R

2
+
(p, 0) = lim"!0

1
"µ

�
R

2
+
(p + i", 0). Finally define the Brownian bubble measure

µ�
R

2
+
(0, 0) = lim"!0 "

� 4
�2 �1

µ�
R

2
+
(", 0).

We note that, as an immediate consequence of the scale invariance of Brownian
motion and the exponents in the above definitions, for any � > 0, z 2 R

2
+, and x > 0 we

have

µ�
R

2
+
(�z, 0) = �

� 4
�2 (T�)⇤µ

�
R

2
+
(z, 0) and µ�

R
2
+
(�x, 0) = �

� 4
�2 �1

(T�)⇤µ
�
R

2
+
(x, 0), (7.2)

where T� : K ! K is the rescaling operator given by T�(⌘) := �⌘(��2
· ).
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Figure 8: Top left. Definition of (Lt, Rt) in Theorem 7.1: Lt is the quantum length
of the boundary arc of ⌘0([0, t]) from ⌘0(t) to pt minus ⌫h([pt,1)) (blue minus orange),
and Rt is is the quantum length of the boundary arc of ⌘0([0, t]) from ⌘0(t) to qt minus
⌫h([qt,1)) (green minus red). Top right. Definition of BCr,K in the proof of Proposition
7.3. Bottom left. The Brownian motion (Lt, Rt)[0,A] conditioned on BCr,K . Bottom
right. Illustration of (Lt, Rt)[0,A], where (Lt � LA, Rt �RA)[0,A] ⇠ C

R1
0 µ�

R
2
+
((1, `), 0)d`.

We first prove the variant of Theorem 7.1 with the weight 2 �
�2

2 quantum wedge

replaced by a weight 2� �2

2 quantum disk. As in Proposition 5.1, we first restrict to the
case when one boundary arc of the disk has quantum length 1.

Proposition 7.3. Suppose we are in the setting of Theorem 7.1 but with the quantum
wedge replaced by a quantum surface (S,eh,+1,�1) sampled from M

disk
2 (2 �

�2

2 ; 1).
Let (Lt, Rt)[0,A] be the boundary length process, where A is the random quantum area of
the quantum disk. Then for some constant C > 0, the law of (Lt � LA, Rt � RA)[0,A] is
given by C

R1
0 µ�

R
2
+
(1 + `i, 0) d`.

Sketch of proof. We focus on the � 2 (0,
p
2) case first, so 2 � �2

2 > �2

2 . Let (S, h,+1,

�1, ⌘0) be a weight 2� �2

2 quantum wedge decorated by a space-filling SLE0 between
the two marked points. We define the field bottleneck event BFr,⇣,K = Er,K \E0

r,⇣ as in
Proposition 3.2, but set instead E0

r,⇣ := {��⇣ < 1}. That is, remove the curve length
condition.

We now define a curve bottleneck event, see Figure 8 (top right). Decorate the quan-
tum wedge by an independent space-filling SLE0 curve ⌘0 from +1 to �1 parametrized
by quantum area, and let (Lt, Rt)R+ be its boundary length process. Let z0 be the point
on the left boundary arc (i.e., R) of the quantum wedge at distance 1 from the root, and
let A be the time that ⌘0 hits z0. Let a be the quantum length of (@⌘([0, A]))\@S. Define
the curve bottleneck event BCr,K = {e

�
2 (r+K)a 2 [1, 2]}.

Conditioned on BCr,K , by Theorem 7.1 the process (Lt, Rt)[0,A] evolves as Brownian
motion with covariances (7.1) stopped at the random time A = inf{t : Lt = �1}, and
conditioned on (RA � inf [0,A] Rt) 2 e

�
2 (�r�K)[1, 2]. Purely using Brownian motion tech-

niques, conditioned on BCr,K , in the r ! 1 and K ! 1 limit, the process (Lt, Rt)[0,A]
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converges in distribution to C
R1
0 µ�

R
2
+
(1 + `i, 0) d` for an appropriate constant C. See

Figure 8 (bottom).
This convergence in distribution of (Lt, Rt)[0,A] allows us to prove an analog of

Proposition 5.4, where the limiting curve-decorated quantum surface is defined in terms
of its peanosphere Brownian motion. More precisely, the process (Lt, Rt)[0,A] defines
an equivalence relation ⇠ on [0, A], and the quotient space [0, A]/⇠ can be viewed as a
topological disk decorated with a space-filling curve. Since the Brownian motion locally
determines the field and curve in Theorem 7.1 [DMS14, Theorem 1.11], this topological
curve-decorated disk can be endowed with a conformal structure, so it can be viewed as
a certain curve-decorated �-LQG surface. At this step, we do not identify this limit as a
space-filling SLE0 -decorated quantum disk.

Finally, we have the counterpart of Lemma 5.8: space-filling SLE0 is almost indepen-
dent in spatially separated domains. As in Appendix B, this can be done by an imaginary
geometry argument, using [GMS19, Lemma 2.4] and [AG21, Proposition 2.5(a)].

With these ingredients, the same argument as in Section 5 showing Proposition 5.1
can be applied: Conditioning on BFr,⇣,K , the bulk law of the field and curves is almost
independent from their law near the field bottleneck, and sending r, ⇣,K ! 1, the
curve-decorated surface converges to a sample from M

disk
2 (2 �

�2

2 ; 1) decorated by
an independent space-filling SLE0 curve. Conditioned on BFr,⇣,K , the event BCr,K

is almost measurable with respect to the field and curve near the field bottleneck,
and hence further conditioning on BCr,K does not change the limit law. Finally, since
P[BFr,⇣,K | BCr,K ] ⇡ 1, the limit law of the boundary length process conditioned on
BFr,⇣,K \ BCr,K is C

R1
0 µ�

R
2
+
(1 + `i, 0) d`. This yields Proposition 7.3 for � 2 (0,

p
2).

We adapt this argument for � =
p
2 (it does not immediately apply since 2� �2

2 = �2

2

is the critical weight for thick quantum disks). Pick W 2 (0, �
2

2 ) and consider a weight

2 �
�2

2 + W thick quantum wedge decorated by an SLE(�
�2

2 ;W � 2) curve ⌘. By
Theorem 2.26 the quantum surface W1 (resp. W2) to the left (resp. right) of ⌘ is a weight
2� �2

2 (resp. weight W ) quantum wedge.
Draw a space-filling SLE0 curve ⌘0 on W1. Then Theorem 7.1 yields the boundary

length process of ⌘0 on W1. Let z0 be the point on R so [z0,1) has quantum length 1, let
D be the region explored by ⌘0 up until it hits z0, and let U be the union of D with the
bounded components of S\D. Define BCr,K = {e

�
2 (r+K)⌫h(@U\@S) 2 [1, 2]}. Conditioning

on BCr,K and sending r ! 1 and K ! 1 (in that order), we understand the limiting

law of (Lt, Rt)[0,A], and the limiting decorated quantum surface is a weight 2� �2

2 +W

thick quantum disk decorated by an SLE(�
�2

2 ;W � 2) curve ⌘ and a space-filling SLE0

curve ⌘0 in the region to the left of ⌘. By Theorem 2.2 cutting along ⌘ gives a weight
2� �2

2 quantum disk decorated by space-filling SLE0 .

For � 2 (
p
2, 2), we have 2� �2

2 < �2

2 so the weight 2� �2

2 quantum wedge is thin. On

the left boundary arc of a curve-decorated weight 2� �2

2 quantum wedge, let z0 be the
point at distance 1 from the root, and let D be the chain of quantum disks between z0
and the root (not including the quantum disk containing z0). Condition on the left side
length of D being at least 1� ". Then Corollary 4.3 tells us that the pinched quantum
surface is a quantum disk, and Theorem 7.1 gives the boundary length process. Finally,
sending "! 0, the boundary length process converges to C

R1
0 µ�

R
2
+
(1 + `i, 0) d`.

Observe that in the above proof, just as in the original proofs of the quantum disk and
sphere mating-of-trees theorems, the proof of Proposition 7.3 is easier when � 2 (

p
2, 2).

In this regime, the nontrivial topology that arises in mating of trees creates natural
bottlenecks.
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Corollary 7.4. In the setting of Proposition 7.3 we replace M
disk
2 (2� �2

2 ; 1) by M
disk
2 (2�

�2

2 ). Then for some constant C > 0, the law of (Lt � LA, Rt � RA)[0,A] is given by
C
RR1

0 µ�
R

2
+
(`+ `0i, 0) d` d`0.

Proof. This is a consequence of Proposition 7.3 by scaling, using Lemma 2.24 and (7.2).

We now state and give an alternative proof of the sphere variant of the mating-of-trees
theorem [MS19, Theorem 1.1]. Let PSF denote the law of space-filling SLE0 between
two boundary points in a simply connected domain, and extend its definition to domains
which are chains of disks by concatenation. The probability measure Psph

SF for space-filling
SLE0 loops on a one-pointed sphere can be defined by arbitrarily picking a second point
on the sphere, drawing a pair of curves from P

sph(2 � �2

2 , 2 � �2

2 ), dividing the sphere
into two (possibly beaded) parts, independently sampling space-filling curves in each
part from PSF, and concatenating them; see [DMS14, Footnote 4].

Theorem 7.5 (Quantum sphere mating-of-trees). Consider a sample (bC, h, 0,1, ⌘0) ⇠

M
sph
2 (4� �2)⌦ P

sph
SF with ⌘0 parametrized by quantum area. Let (Lt, Rt) be, respectively,

the left and right quantum boundary lengths of ⌘([0, t]). For some C > 0, the law
of the process (Lt, Rt) is Cµ�

R
2
+
(0, 0) weighted by Brownian excursion duration, i.e.

Ct⌘µ
�
R

2
+
(0, 0)(d⌘) where t⌘ is the duration of ⌘.

Sketch of proof. Write W = 2� �2

2 . Then Theorem 2.4 gives

M
sph
2 (4� �2)⌦ P

sph(2�
�2

2
, 2�

�2

2
) = bcW,W

ZZ 1

0
M

disk
2 (W ; `, `0)⇥M

disk
2 (W ; `0, `) d` d`0.

The definition of Psph
SF then gives

M
sph
2 (4��2)⌦P

sph
SF = bcW,W

ZZ 1

0

�
M

disk
2 (W ; `, `0)⌦ PSF

�
⇥
�
M

disk
2 (W ; `0, `)⌦ PSF

�
d` d`0.

Thus, using Corollary 7.4, the boundary length process has law given by

C

ZZ 1

0
µ�
R

2
+
(0, `+ `0i)⇥ µ�

R
2
+
(`+ `0i, 0) d` d`0,

where µ�
R

2
+
(0, ` + `0i) is defined via time-reversal from µ�

R
2
+
(` + `0i, 0), and a sample

(⌘01, ⌘
0
2) from µ�

R
2
+
(0, `+ `0i)⇥ µ�

R
2
+
(`+ `0i, 0) is interpreted as a path in R2

+ from 0 to 0 by

concatenating ⌘01 and ⌘
0
2.

We now show that the duration-weighted cone excursion measure agrees with the
above law. Since the Brownian excursion measure can be written as a disintegration
over the excursion duration µ�

R
2
+
(0, 0) =

R1
0 µ�

R
2
+
(0, 0; t) dt, the duration-weighted cone

excursion measure can be written as
RR1

0 µ�
R

2
+
(0, 0; t1+t2) dt1 dt2. By the Markov property

of Brownian motion we have the path decomposition

ZZ 1

0
µ�
R

2
+
(0, 0; t1+t2) dt1 dt2 =

ZZZZ 1

0
µ�
R

2
+
(0, `+ `0i; t1)⇥ µ�

R
2
+
(`+ `0i, 0; t2) d` d`

0 dt1 dt2

=

ZZ 1

0
µ�
R

2
+
(0, `+ `0i)⇥ µ�

R
2
+
(`+ `0i, 0) d` d`0,

as desired.
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Finally, we can give an alternative proof of the disk variant of the mating-of-trees
theorem [DMS14, AG21]. For a > 0, let (D, h,�i, i) be a quantum surface sampled
from M

disk
2 (2; a

2 ,
a
2 )

#, and let Mdisk
1 (2; a)# be the law of the quantum surface (D, h,�i).

We can define the probability measure P
�
SF on space-filling SLE0 loops in a disk with

a marked boundary point. This measure is obtained by sampling a curve from PSF

in a two-pointed domain (D,�i, x) and sending x ! �i in the clockwise direction; see
[BG20, Appendix A.3] for details. For a sample (D, h, ⌘0,�i) ⇠ M

disk
1 (2; a)#⌦P

�
SF, writing

A = µh(D), we define (Lt, Rt)t2[0,A] as follows. Parametrize ⌘0 so that at time t we have
µh(⌘0([0, t])) = t. Let pt 2 @D be the furthest point on the clockwise arc from �i so
that the arc from �i to pt 2 ⌘0([0, t]), and let Lt be the ⌫h-length of the boundary arc of
⌘0([0, t]) from ⌘0(t) to pt plus the ⌫h-length of the clockwise arc of D from pt to �i. Let Rt

be the ⌫h-length of the boundary arc of ⌘0([0, t]) from ⌘0(t) to �i. We call (Lt, Rt)[0,A] the
boundary length process of (D, h, ⌘0,�i). See Figure 9, left.

Figure 9: Left: Illustration of (Lt, Rt) in Theorem 7.6, namely (Lt, Rt) is the boundary
length process of (D, h, ⌘0,�i) sampled from M

disk
1 (2; a)# ⌦ P

�
SF. With the space-filling

curve parametrized by quantum area, the red quantum length is Lt and the blue quan-
tum length Rt. The process (Lt, Rt)|[0,µh(D)] is then a Brownian excursion in the cone
R

2
+. Right: Illustration of the proof of Proposition 7.8. Sample (D, h,�i, i, ⌘0) from

M
disk
2 (2; `, x) ⌦ P

�
SF. The time ⌘0 hits i equals the stopping time ⌧ = inf{t : Lt  x}

of (Lt, Rt)[0,µh(D)]. Since the blue interface is a certain SLE(⇢�; ⇢+) curve by SLE
duality, the conditional law of the quantum surface (⌘0([0, ⌧ ]), h,�i, i) given R⌧ is

M
disk
2 (�

2

2 ; `, R⌧ )#. This gives a Brownian motion description of the quantum area and

lengths of a sample of Mdisk
2 (�

2

2 ), which implies Proposition 7.8.

Theorem 7.6 (Quantum disk mating-of-trees). For any a > 0, the law of the boundary
length process (Lt, Rt) of Mdisk

1 (2; a)# ⌦ P
�
SF is µ�

R
2
+
(a, 0)#.

Sketch of proof. Embed a quantum disk fromM
disk
1 (2; a)# as (D, h,�i) so that the bound-

ary points �i,�1, 1 divide @D into arcs with quantum lengths a/3, and for " > 0 let
w" 2 @D be the point so the clockwise arc from w" to �i has quantum length ". Since
marked points on M

disk
2 (2) are independently and uniformly distributed according to the

quantum length measure [DMS14, Proposition A.8], the quantum surface (D, h,�i, p")
has law M

disk
2 (2; a� ", ")#.

Let ⌘" be an independent SLE(�
�2

2 ; �
2

2 � 2) curve in D from �i to w", and let its
quantum length be X. Conditioned on X, by Theorem 2.2 the quantum surface D" to the
left of ⌘" has conditional law M

disk
2 (2� �2

2 ; a� ", X)#. Draw an independent space-filling
SLE0 curve ⌘0" ⇠ PSF from �i to w" in D". As "! 0, we have X ! 0 in probability and
hence, by Proposition 7.3, the law of the boundary length process of ⌘0" converges to
µ�
R

2
+
(a, 0)#. Also as "! 0, the curve ⌘" degenerates to the point �i 2 @D in probability,

and hence the law of ⌘0" converges to P
�
SF. This yields the theorem.
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7.2 Area and length distribution of the weight �2/2 quantum disk

The main result of this subsection is the following proposition, which expresses the
area and length distribution of the weight �2/2 quantum disk in terms of Brownian
measures, and gives an explicit formula for the joint law of the two boundary lengths.

Proposition 7.7. There are constants C,C0 2 (0,1) such that for all `, r > 0,

|M
disk
2 (

�2

2
; `, r)| = C0|µ

�
R

2
+
(`, ri)| = C

(`r)4/�
2�1

(`4/�2 + r4/�2)2
. (7.3)

Moreover, the quantum area of a sample from M
disk
2 (�

2

2 ; `, r)# agrees in law with the
duration of a sample from µ�

R
2
+
(`, ri)#.

Before giving the proof of the proposition we state a counterpart of (7.3) for the
weight 2 quantum disk. The constants C appearing in the propositions is identified in
our companion work [AHS21].

Proposition 7.8. There is a constant C > 0 such that

|M
disk
2 (2; `, r)| = C(`+ r)

� 4
�2 �1 for `, r > 0.

Proof. By Lemma 2.16, the law of the total quantum boundary length of Mdisk
2 (2) is

1t>0Ct
� 4

�2 dt. By [DMS14, Proposition A.8], if we sample (D, h,�1, 1) from M
disk
2 (2) and

independently sample x, y 2 @D from ⌫h
⌫h(@D) , then the quantum surface (D, h, x, y) still

has law M
disk
2 (2). Consequently, if a sample from M

disk
2 (2) has total boundary length t,

then conditioned on t the left and right boundary lengths agree in law with (Ut, (1� U)t)
where U is uniformly sampled from [0, 1]. Thus, the result follows from the change of

variables 1t>0t
� 4

�2 dt11>u>0 du = 1`,r>0(`+ r)
� 4

�2 �1
d` dr where ` = ut, r = (1� u)t.

We will now give the proof of Proposition 7.7 using Theorem 7.6 and exact formulas
for the associated planar Brownian motion. We first state a variant of Theorem 7.6.

Lemma 7.9. There is a constant C for which the following holds. Let `, x > 0, and sample
(D, h, ⌘0,�i, i) from M

disk
2 (2; `, x)⌦P

�
SF. Then the law of (Lt, Rt)[0,µh(D)] is Cµ�

R
2
+
(`+x, 0),

where the process (Lt, Rt)[0,µh(D)] is defined as in Theorem 7.6.

Proof. Theorem 7.6 states that if (D, h, ⌘0,�i, i) is sampled from M
disk
1 (2; `+ x)# ⌦ P

�
SF

then the law of (Lt, Rt)[0,µh(D)] is µ
�
R

2
+
(`+ x, 0)#. By [DMS14, Proposition A.8] a sample

from M
disk
2 (2; `, r)# can be obtained by sampling from QD1(`+ x)# and marking another

boundary point to get length ` and x boundary arcs. Since |M
disk
2 (2; `, x)| / (`+ x)

� 4
�2 �1

by Proposition 7.8 and |µ�
R

2
+
(`+ x, 0)| / (`+ x)

� 4
�2 �1 by (7.2), we get the result.

Proof of Proposition 7.7. See Figure 9, right. For (D, h,�i, i, ⌘0) sampled from M
disk
2 (2;

`, x) ⌦ P
�
SF, let A = µh(D), let ⌧ be the time that ⌘0 hits i, and let D1 = ⌘0([0, ⌧ ]). In

[GHS19, Section 3.6.3] it is given a construction of ⌘0 such that, when ⌘ is the right
boundary of a certain SLE0(0 � 6) curve in (D,�i, i), then D1 is the region to the left
of ⌘ in D. SLE duality (see [Zha08, Theorem 5.1] and [MS16a, Theorem 1.4]) says
that the law of the right boundary of an SLE0(⇢0�; ⇢

0
+) curve is SLE(⇢�; ⇢+) where

⇢� = 
2 � 2+ 

4⇢
0
� and ⇢+ = + 

4 ⇢
0
+ � 4; since 0 = 16

 , ⇢
0
� = 0 and ⇢0+ = 0 � 6, the law of

⌘ is SLE(2 � 2;�
2 ). Hence, by Theorem 2.2, the marginal law of the quantum surface

(D1, h|D1 ,�i, ⌘0(⌧)) is given by

Z 1

0
C1

����M
disk
2 (2�

�2

2
; r, x)

���� · M
disk
2 (

�2

2
; `, r) dr for some constant C1 2 (0,1).
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Lemma 7.9 tells us that for some C2 2 (0,1) the boundary length process (Lt,
Rt)[0,µh(D)] of (D, h,�i, i, ⌘0) has law C2µ

�
R

2
+
(` + x, 0). The strong Markov property of

Brownian motion applied to the stopping time ⌧ yields a path decomposition [Law,
Proposition 1.11]: the law of ((Lt � x,Rt)[0,⌧ ], (Ls+⌧ , Rs+⌧ )[0,A�⌧ ]) is C2

R1
0 µ�

R
2
+
(`, ri) ⇥

µ�
R

2
+
(x+ ri, 0) dr. Hence the marginal law of (Lt � x,Rt)[0,⌧ ] is

Z 1

0
C2

���µ�
R

2
+
(x+ ri, 0)

��� · µ�
R

2
+
(`, ri) dr. (7.4)

Disintegrating over r, we see that for every `, r, x > 0 we have

C1

����M
disk
2 (2�

�2

2
; r, x)

���� ·
����M

disk
2 (

�2

2
; `, r)

���� = C2

���µ�
R

2
+
(x+ ri, 0)

��� ·
���µ�
R

2
+
(`, ri)

���.

Integrating over x > 0, we have
R1
0 |M

disk
2 (2� �2

2 ; r, x)| dx = |M
disk
2 (2� �2

2 ; r)| / r
� 4

�2 +1

by Lemma 2.16 (if 2� �2

2 �
�2

2 ) or Lemma 2.18 (if 2� �2

2 < �2

2 ), Moreover, by (7.2),
Z 1

0

���µ�
R

2
+
(x+ ri, 0)

��� dx = r
� 4

�2

Z 1

0

���µ�
R

2
+
(
x

r
+ i, 0)

��� dx / r
� 4

�2 +1
.

Thus we get |Mdisk
2 (�

2

2 ; `, r)| = C|µ�
R

2
+
(`, ri)| for `, r > 0 for some C > 0. The second

claim follows from the fact that quantum area corresponds to the Brownian excursion
duration.

Remark 7.10 (Mating-of-trees for weight �
2

2 quantum disk). The argument of Proposi-
tion 7.7 shows that for some constant C > 0, the following holds for all `, r > 0. Sample
a quantum disk from M

disk
2 (�

2

2 ; `, r) and decorate it by an independent space-filling

SLE0(0; 
0

2 � 4) curve between its marked boundary points [MS17]. Then a suitably
defined process (Lt, Rt), which can be viewed as a boundary length process for the
SLE-decorated LQG surface, has law CµR2

+
(`, ri).

A Extension of welding results to W = �2

2

In the proof of Theorem 2.3 in Section 6 we break the argument into five cases. The
first three cases, which we have proved using the input from Sections 3—5, can be
summarized as follows.

Proposition A.1. Theorem 2.3 holds in the case when W1, . . . ,Wn,W 2 (0,1) \ {�
2

2 }.

In this appendix we will complete Case 4 of the proof of Theorem 2.3 based on
Proposition A.1. Namely, we extend Theorem 2.3 to include the situation where n = 2

and one weight equals �2

2 .

Proposition A.2. Theorem 2.3 holds in the case when n = 2, W1 = 2, and W2 = �2

2 .

We prove Proposition A.2 by considering the W1 = 2 and W2 = �2

2 + " case and then
sending " # 0. We start by proving a continuity result for thick disks in the weight
parameter.

Lemma A.3. Let W �
�2

2 , " � 0, and a 2 (0, 1). Let D"
⇠ (Mdisk

2 (W + ")|A(a))
#, where

A(a) is the event that the left and right LQG boundary lengths of D" are in (a, a�1). Let
h" be such that (S, h",+1,�1) is an embedding of D" for which R+ has LQG length a.
Then h" restricted to any bounded set converges to h0 in total variation distance.

The same result holds if we let AL(a) (resp. AR(a)) be the event that the left (resp.
right) LQG boundary length of the surface is in (a, a�1) and we replace A(a) by AL(a)
(resp. AR(a)) in the above statement, where, for the case of AR(a), we embed the
surfaces such that R+ + i⇡ (instead of R+) has LQG length a.
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Proof. Consider Definition 2.1 with weight parameter W + " instead of W and write
c" instead of c. For � > 0, let eA(�) denote the event that c" � �. On the event eA(�)
and normalizing the measure from which c" is sampled to be a probability measures,
c" converges in total variation distance to c0 as " ! 0. Let h"1 and h"2 be the field bh in
Definition 2.1 projected onto H1(S) and H2(S), respectively. Notice that the law of h"2
does not depend on ", while h"1 restricted to any bounded set converges to h0

1 for the total
variation distance. Combining the convergence results for c" and h0

1, we get that the
lemma holds with (Mdisk

2 (W + ")| eA(�))
# instead of (Mdisk

2 (W + ")|A(a))
#. Furthermore,

this convergence is joint with convergence of the event that the left and right LQG
boundary lengths defined by h"1 + h"2 + c" are in (a, a�1). We obtain the lemma from
this by using that (Mdisk

2 (W + ")|A(a)\ eA(�))
# converges in total variation distance to

(Mdisk
2 (W + ")|A(a))

# as � ! 0, uniformly in " 2 [0, 1]. The proof for the events AL(a) and
AR(a) is identical.

We will also need a continuity result for SLE.

Lemma A.4. For " � 0 let ⌘" be an SLE(0; �2/2 + " � 2) on (S,+1,�1), let D1
" ⇢ S

(resp. D2
" ⇢ S) be the domain below (resp. above) ⌘", let �"1 : S ! D"

1 be the conformal
map which is fixing ±1 and 0, and let �"2 : S ! D"

2 be the conformal map which is fixing
±1 and i⇡. Then �"1 (resp. �

"
2) is converging uniformly in law to �1 (resp. �2) on compact

subsets of S [R (resp. S [ (R+ i⇡)), and the convergence is joint for �1 and �2.

Our proof of the lemma relies on the following result, which is a variant of [Kem17,
Lemma 6.1]. The main extension as compared to [Kem17] is that the set A is not required
to be bounded away from R.

Lemma A.5. Let ⌘ and e⌘ be curves in H from 0 to 1 with Loewner driving function
(Wt)t�0 and (fWt)t�0, respectively, and let (gt)t�0 and (egt)t�0 denote the Loewner maps.
For any " 2 (0, 1) there is a � 2 (0, 1) such that if

A = {(t, z) 2 [0, T ]⇥H : inf
s2[0,t]

|gs(z)�Ws| > "} and sup
t2[0,T ]

|Wt �
fWt|  �.

then
sup

(t,z)2A
|gt(z)� egt(z)| < ".

Proof. In the proof of [Kem17, Lemma 6.2] it was argued that

|gt(z)� egt(z)|  sup
s2[0,t]

|Ws �
fWs|(exp(

q
I(t)eI(t))� 1), (A.1)

where

I(t) = 2

Z t

0
|gs(z)�Ws|

�2 ds, eI(t) = 2

Z t

0
|egs(z)� fWs|

�2 ds.

Set
� =

"

3
(exp(4t"�2)� 1)�1

^
"

10
.

Suppose there is a time s0 2 [0, t] such that

|egs0(z)� fWs0 |  "/2. (A.2)

Let s0 be the smallest time satisfying this requirement. Then we get from (A.1) that
|gs0(z)� egs0(z)| < "/3, so by the triangle inequality

|egs0(z)� fWs0 | � |gs0(z)�Ws0 |� |egs0(z)� gs0(z)|� |fWs0 �Ws0 | > "�
"

3
�

"

10
>
"

2
.
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This is a contradiction to the definition of s0, and we conclude that there is no time
s0 2 [0, t] satisfying (A.2). Since there is no time s0 2 [0, t] satisfying (A.2), we have I(t) <
2t"�2 and eI(t) < 8t"�2, so the right side of (A.1) is smaller than �(exp(4t"�2)� 1) < ".

Proof of Lemma A.4. We will prove the lemma in the setting of the upper half-plane
H instead of S. Precisely, if b⌘" is an SLE(0; �2/2 + " � 2) on (H, 0,1), DL

" ⇢ H (resp.
DR
" ⇢ H) is the domain to the left (resp. right) of b⌘", and �"L : H! D"

L (resp. �"R : H! D"
R)

is the conformal map which is fixing 1, 0, and 1 (resp. �1), then we will argue that �"L
(resp. �"R) is converging uniformly in law to �L (resp. �R) on compact subsets of H [R�
(resp. H [R+), and that the convergence is joint for �L and �R. The lemma immediately
follows from this upon considering the conformal map z 7! � log z from (H, 0,1) to
(S,+1,�1).

Consider a coupling of the Loewner driving functions (W "(t))t�0 of b⌘" such that
W " converges uniformly to W 0 on compact sets a.s.; we leave the proof of existence
of such a coupling as an exercise to the reader. Let T > 0 be a large constant to be
chosen later, and let (g"t )t�0 be the centered forward Loewner maps of b⌘". We can write

(�"L)
�1 =  "T � ✓"T � g"T , where ✓

"
T : H! H is given by ✓"T (z) =

z�g"
T (0�)

g"
T (0�)�g"

T (�1) and  
"
T is the

conformal map fixing 0, �1, and 1 which sends the domain to the left of ✓"T � g"T (b⌘"|[T,1))
to H.

By A.5, g"T converges uniformly to g0T on any subset of H which is bounded away
from b⌘0([0, T ]). In particular, g"T (��) ! g0T (��) a.s. as " ! 0 for any fixed � > 0, and by
harmonic measure considerations we get further that g"T (0

�) ! g0T (0
�) a.s. as " ! 0.

This implies further that ✓"T converges uniformly to ✓0T since g"T (�1) ! g0T (�1) and
g"T (0

�) ! g0T (0
�) a.s.

Fix a compact set K ⇢ H [R�. The harmonic measure of ��1
L (b⌘"|[T,1)) as seen from

any point z 2 K goes to zero as T goes to 1, uniformly in " and z; this follows e.g. from
Brownian motion considerations and by using the fact that ✓"T � g"T (b⌘"|[T,1)) converges
in Carathéodory topology as "! 0. Therefore, for any � > 0 we can find T sufficiently
large such that | "T (z)� z| < � for all z 2 ( "T )

�1(K). Combining this with the previous
paragraph we get a.s. convergence of �"L to �L as desired. Convergence of �"R to �R
follows by a similar argument.

Proof of Proposition A.2. For " � 0, a > 0, and with A(a) as in Lemma A.3 let D"
⇠

(Mdisk
2 (W1 + �2

2 + ")|A(a))
#, let ⌘" ⇠ P

disk(W1,
�2

2 + "), and let D"
1 and D

"
2 denote the

surfaces to the left and right, respectively, of ⌘". Note that all the considered surfaces
and ⌘" are sampled from probability measures. By Proposition A.1, if " > 0 then D

"
1 and

D
"
2 have the law of surfaces sampled from (Mdisk

2 (W1)|AL(a))
# and (Mdisk

2 (�
2

2 +")|AR(a))
#,

respectively, and the surfaces are independent conditioned on the event that the right
LQG boundary length of the former surface is equal to the left LQG boundary length
of the latter surface. To conclude it is sufficient to argue that D

0
1 and D

0
2 have the

law of surfaces sampled from (Mdisk
2 (W1)|AL(a))

# and (Mdisk
2 (�

2

2 )|AR(a))
#, respectively,

again such that the surfaces are independent given the same condition on the LQG
boundary lengths as before. This is sufficient since it gives (2.4) restricted to the events
A(a), AL(a), AR(a) and with all the measures normalized to be probability measures. We
get the case of non-probability measures by choosing the constant c

W1,
�2

2

appropriately

so that the measures on the left and right sides of (2.4) have the same total mass, and
sending a ! 0 we can remove the constraint on the boundary lengths.

Let h" be the field on S such that (S, h",+1,�1) is the embedding of D" for which
R+ has LQG length a. Define h"1, h

"
2 in the same way for D

"
1,D

"
2, respectively, except

we require that h"2 induces the same length on R+ + i⇡ as h. Let D"
1, D

"
2 ⇢ S denote

the domains to the left and right, respectively, of ⌘". For j = 1, 2 let �"j : S ! D"
j be
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the conformal map such that h"|D"
j
and h"j are related by doing a coordinate change as

in (2.1), so in particular �"1 fixes ±1 and 0 while �"2 fixes ±1 and i⇡.
By Lemma A.3, h" restricted to any compact set converges in total variation distance

to h0 as "! 0. By Lemma A.4, �"1 and �
"
2 converge jointly in law to �01 and �

0
2, respectively,

uniformly on compact subsets of S [ R and S [ (R + i⇡). Since h" and (�"1,�
"
2) are

independent there is a coupling so that they converge jointly a.s. to h0 and (�01,�
0
2),

respectively. Since �"1 and �"2 are conformal we also get a.s. uniform convergence of
their derivatives on compact sets. Therefore, for any smooth compactly supported test
function f on S,

(h"1, f) = (h" � �"1 +Q log |(�"1)
0
|, f) ! (h0

� �01 +Q log |(�01)
0
|, f) = (h0

1, f) a.s.,

so h"1 converges a.s. to h0
1 for the weak-* topology. The same holds for h"2. By Lemma A.3,

any limit of h"1, h
"
2 describe quantum surfaces sampled from (Mdisk

2 (W1)|AL(a))
# and

(Mdisk
2 (�

2

2 + ")|AR(a))
#, respectively, conditioned on the right boundary arc of the former

surface having an equal length as the left boundary arc of the latter surface. In particular,
the limiting fields h0

1, h
0
2 have the desired laws, which concludes the proof.

B Proof of SLE local independence lemma

The goal of this section is to prove Lemma 5.8. To clarify the picture we work
in a bounded domain. Let D be the square [�1, 1]2 and let x = �i, y = i. Let U =
[�1, 1]⇥ [�1, 0] denote the lower half of D and let U" = B"(i) \D for " > 0.

Proposition B.1. Suppose n � 2 andW1,W2, . . . ,Wn > 0. Sample curves (⌘1, . . . , ⌘n�1)⇠
P

disk(W1, . . . ,Wn) from x to y. Let ⌘startj be the initial segment of ⌘j run until it exits U ,
and let ⌘"j be the initial segment of the time-reversal of ⌘j run until it exits U". Then the
total variation distance between the following two laws is 1� o"(1):

• The joint law of (⌘start1 , . . . , ⌘startn�1 ) and (⌘"1, . . . , ⌘
"
n�1).

• The joint law of (e⌘start1 , . . . , e⌘startn�1 ) and (⌘"1, . . . , ⌘
"
n�1), where (e⌘1, . . . , e⌘n�1) is inde-

pendently sampled from PD(W1, . . . ,Wn) and e⌘startj is defined analogously as ⌘startj

for each j.

Before giving the proof of this proposition, we explain how it yields Lemma 5.8.

Proof of Lemma 5.8. Proposition B.1 yields a variant of Lemma 5.8 where, instead of
taking the intersections of the curves with S+ and S� �N , we instead take the curve
tips run until they exit these two domains. Because the curve tips never revisit their
starting points, there is some random T > 0 for which the restrictions of the curve tips
to S+ + T and S� � N � T agree with the restrictions of the curves to these regions.
Therefore Lemma 5.8 follows by looking at the curve tips intersected with S+ +M and
S� �N �M , and sending M ! 1 and then N ! 1.

We will understand the single curve (n = 2) case of Proposition B.1 using the frame-
work of imaginary geometry [MS16a, MS16b]. Then we explain the minor modifications
needed for the general n regime.

Consider the n = 2 case and drop the subscript on the curve, i.e., ⌘ := ⌘1. Let
⇢j = Wj � 2 for j = 1, 2, so the curve ⌘ is an SLE(⇢1; ⇢2) curve in (D,x, y). One can
couple ⌘ with an appropriate Dirichlet boundary GFF hIG in D, such that ⌘ is an angle ⇡

2
flow line of hIG. Precisely, when we parametrize by (H, 0,1) the imaginary geometry
GFF has boundary values ⇡p


(4 + ⇢2) on R+ and �

⇡p

(2 � 

4 + ⇢1) on R�, and hIG has
boundary values derived from this by an imaginary geometry coordinate change as
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defined in [MS16a]. By [MS16a, Theorem 1.1], ⌘ is a deterministic function of hIG and
⌘start is determined by hIG

|U .
Although the reversibility of SLE(W1 � 2;W2 � 2) could suggest that ⌘" is a deter-

ministic function of hIG
|U" , this turns out not to be the case. Instead we need to use

the machinery of counterflow lines. Let 0 = 16
 . One can couple with hIG a certain

SLE0(
0

2 � 2 + 0

4 ⇢1;
0
� 4 + 0

4 ⇢2) curve ⌘
0 from y to x such that ⌘0 is a deterministic

function of hIG, and, writing ⌘0 � for the initial segment of ⌘0 run until it exists U�, the
segment ⌘0 � is determined by h|U� [MS16a, Theorem 1.1].

Figure 10: Left. For the imaginary geometry hIG, the angle ⇡
2 flow line ⌘ is a.s. the

right boundary of the counterflow line ⌘0 (Lemma B.2). Right. The initial segments ⌘start

and ⌘0 � are a.s. determined by h|U and h|U� , respectively.

Lemma B.2 ([DMS14, Theorem 1.4]). Almost surely ⌘ is the right boundary of ⌘0.

Lemma B.3. Fix � > 0. On an event of probability 1 � o"(1), the curve segment ⌘" is
determined by h|U� .

Proof. Write E�," for the event that the curve ⌘0 does not revisit U" after leaving U�.
Since ⌘0 a.s. does not hit y after leaving U�, and ⌘0 is a continuous curve, we conclude
that P[E�,"] = 1 � o"(1). The assertion then follows since on E�,", by Lemma B.2 ⌘" is
determined by ⌘0 �, which is determined by h|U� .

Lemma B.4. Let ehIG be independently sampled, with the same law as hIG. Then the total
variation distance between the laws of (hIG

|U , hIG
|U�) and (ehIG

|U , hIG
|U�) is 1� o�(1).

Proof. We work in the strip (S,+1,�1) instead. The corresponding imaginary ge-
ometry field bhIG in S has constant boundary conditions on R and R + i⇡ (with dif-
ferent values on each line). Let bU be a neighborhood of +1 excluding �1, and let
bUN = (�1,�N) ⇥ [0,⇡]. Let bV = S\bU , and let I1 = @ bV \ R, I2 = @ bV \ (R + i⇡), and
I = @ bV \(I1 [ I2). The Markov property of the GFF tells us that bhIG

|bV conditioned on
bhIG

|bU is a mixed boundary GFF with constant boundary conditions on I1 and I2, and

Dirichlet boundary conditions on I determined by bhIG
|bU . By [AG21, Proposition 2.5

(a)], as N ! 1, the law of bhIG
|bUN

given bhIG
|bU is within oN (1) in total variation from its

unconditioned law. Mapping back to the square domain D, this yields the lemma.

Now we can prove the proposition.

Proof of Proposition B.1. For the single curve case n = 2, as we send first " ! 0 then
� ! 0, outside an event of probability o"(1) the segments ⌘start and ⌘" are respectively
determined by h|U and h|U� (Lemma B.3), and (h|U , h|U�) is o�(1)-close in total variation
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to (eh|U , h|U�) where eh is an independent copy of h (Lemma B.4). Therefore (⌘start, ⌘") is
close in total variation to (e⌘start, ⌘"), as desired.

We now explain the general n regime. We may couple the tuple (⌘1, . . . , ⌘n�1) with
an appropriate imaginary geometry field hIG so that each ⌘j is a flow line of hIG with a
certain angle. Lemma B.3 applies for each curve ⌘j , and Lemma B.4 still applies for hIG,
so the same argument applies.

C Brownian motion computations

In this appendix we carry out some Brownian motion computations which are needed
in Section 7.2.

Lemma C.1. Consider planar Brownian motion Z = (Zt)t�0 with covariance (7.1) started
at z 2 R

2
+ and run until it exits R2

+. Then for some C > 0 we have P[Z exits in (0, "i)] =

(1 + o"(1))C"
� 4

�2 as "! 0.

Proof. First perform the shear transformation z 7! ⇤z with ⇤ = 1
a

✓
1

sin ✓
1

tan ✓
0 1

◆
and

✓ = ⇡�2

4 , transforming Brownian motion with covariances (7.1) in R2
+ to standard

Brownian motion in the cone {w : argw 2 (0, ✓)}. Then map w 7! w
4
�2 to get Brownian

motion in H. This maps the interval (0, i") ⇢ @R2
+ to an interval of length proportional to

"
4
�2 in @H so P[Z exits in (0, "i)] = (C + o"(1))"

4
�2 for some C.

Recall the measures µ�
R

2
+
(z, w) defined in Section 7.2.

Lemma C.2. There is a constant C > 0 so that for all `, r > 0 we have

|µ�
R

2
+
(`, ri)| = C`

4
�2 �1

r
4
�2 �1

(`
4
�2 + r

4
�2 )�2.

Proof. We will use the boundary Poisson kernel for standard Brownian motion in H,
given byHH(x, y) =

1
⇡ (x�y)�2 for x, y 2 R; this follows from the limit of the bulk Poisson

kernel lim�!0 ��1HH(x+ �i, y) = lim�!0 ��1
·

�
⇡((x�y)2+�2) .

First perform the shear transformation z 7! ⇤z with ⇤ = 1
a

✓
1

sin ✓
1

tan ✓
0 1

◆
and ✓ = ⇡�2

4 ,

transforming Brownian motion with covariances (7.1) inR2
+ to standard Brownian motion

in the cone C✓ := {w : argw 2 (0, ✓)}. Then, writing p = 1
a sin ✓ ` and q = 1

a sin ✓ r, we have

|µ�
R

2
+
(`, ri)| = C lim

�!0
lim
"!0

1

�"
Pp+i�[ eEq,"],

where Pz corresponds to Brownian motion started at z, and eEq," is the event that
Brownian motion exits C✓ on the boundary interval [qei✓, (q + ")ei✓], and C > 0 is a
constant.

Now map from C✓ to H by w 7! w
4
�2 to see that

|µ�
R

2
+
(`, ri)| = C lim

�!0
lim
"!0

1

�"
P

p
4
�2 +i�p

4
�2 �1 [ bE

q
4
�2 ,"q

4
�2 �1 ],

where bE
q

4
�2 ,"q

4
�2 �1 is the event that Brownian motion exits H on the interval between

�q
4
�2 and �q

4
�2

� "q
4
�2 �1. Taking the limit, we see that

|µ�
R

2
+
(`, ri)| = Cp

4
�2 �1

q
4
�2 �1

HH(p
4
�2 , q

4
�2 ) = C

p
4
�2 �1

q
4
�2 �1

(p
4
�2 + q

4
�2 )2

.

Restating this in ` and r yields the lemma.
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