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Abstract. Liouville Conformal Field Theory (LCFT) on the disk describes the conformal factor
of the quantum disk, which is the natural random surface in Liouville quantum gravity with disk
topology. Fateev, Zamolodchikov and Zamolodchikov (2000) proposed an explicit expression, the
so-called FZZ formula, for the one-point bulk structure constant for LCFT on the disk. In this paper
we give a proof of the FZZ formula in the probabilistic framework of LCFT, which represents
the first step towards rigorously solving boundary LCFT using conformal bootstrap. In contrast to
previous works, our proof is based on conformal welding of quantum disks and the mating-of-trees
theory for Liouville quantum gravity. As a byproduct of our proof, we also obtain the exact value
of the variance for the Brownian motion in the mating-of-trees theory. Our paper is an essential part
of an ongoing program proving integrability results for Schramm-Loewner evolutions, LCFT, and
in the mating-of-trees theory.
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1. Introduction

Liouville quantum gravity (LQG) first appeared in theoretical physics in A. Polyakov’s
seminal work [37] where he proposed a theory of summation over the space of Rieman-
nian metrics on a given two-dimensional surface. The fundamental building block of his
framework is the Liouville conformal field theory (LCFT), which describes the law of the
conformal factor of the metric tensor of a surface of fixed complex structure. LCFT was
first made rigorous in probability theory in the case of the Riemann sphere in [11], and
then in the case of a simply connected domain with boundary in [27]; see also [12,23,39]
for other topologies.
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On surfaces without boundary, solving Liouville theory amounts to computing the
three-point function on the sphere — which is given by the DOZZ formula proposed in
[14,52] — and arguing that correlation functions of higher order or in higher genus can be
obtained from it using the conformal bootstrap method of [7]. Recently, two major break-
throughs have been achieved, namely the rigorous proof of the DOZZ formula [29] and of
the conformal bootstrap on the sphere [22]. A similar program can be pursued for surfaces
with boundary, where the most basic correlation function is the bulk one-point function
on the disk with expression given by the Fateev—Zamolodchikov—Zamolodchikov (FZZ)
formula proposed in [20]. In this paper we will prove the FZZ formula, which represents
the first step towards rigorously solving boundary LCFT.

Our approach is completely different from the one used in [29, 40, 42] which was
based on the BPZ equations and on the operator product expansion of [7]. As explained in
Section 1.1, that approach has essential obstructions to proving the FZZ formula. Instead,
we rely on the rich interplay between LCFT and the random geometry corresponding to
LQG. In particular, we use the idea of the quantum zipper, which says that the conformal
welding of two LQG type random surfaces gives a LQG type surface decorated with a
Schramm-Loewner evolution (SLE). Building on the original work of [18, 48] and the
recent work of the first and the third authors with Holden [3,4], we prove a new quantum
zipper result and use it to obtain the FZZ formula. As an intermediate step in our proof, we
also obtain the exact value of the variance of the Brownian motion in the mating-of-trees
theory by Duplantier, Miller and Sheffield [18].

Besides its intrinsic interest and its relevance to conformal bootstrap, the FZZ formula
yields integrability results on Gaussian multiple chaos on the unit disk or upper half-plane;
see Section 1.3. Moreover, it is a crucial input to the paper [5] of the first and the third
authors on the integrability of conformal loop ensemble on the sphere. We will discuss
these aspects and related ongoing projects and open questions in Section 1.4, after stating
our main result in Section 1.1 and summarizing the proof strategy in Section 1.2.

1.1. Boundary Liouville conformal field theory and the FZZ formula

In the physics literature, LCFT is defined by a formal path integral. We work on a simply
connected domain with boundary, which by conformal invariance can equivalently be
the upper half-plane H or the unit disk D). For almost all of this paper we will work with
H = {z € C | Imz > 0} with boundary given by the real line R. The most basic observable
of Liouville theory is the correlation function of N marked points in the bulk, z; € H, with
associated weights «; € R and M marked points on the boundary, s; € R, with associated
weights B; € R. The physics path integral definition of this correlation function is then

N M :
DXe‘SL(X)(]_[ XD T e%’mﬂ), (1.1)
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where DX is a formal uniform measure over the space of all maps X from H to R, and
S1.(X) is the so-called Liouville action, expressed by

1
SL(X) = o /H(|af>’x|2 + OR X + dmpe?®)g(x) d*x
1 y
+ E/R(QKgX +;LBe§X)g(x)1/2 dx. (1.2)

Here the background metric is ¢ = g(x)dx?, Ry and K, are respectively the Ricci
and geodesic curvatures on H and R, y € (0, 2) is the coupling parameter for LCFT,
Q = y/2 4 2]y is called the background charge, and u, g > 0 are called cosmological
constants. They tune respectively the interaction strength of the Liouville potentials e?X
andezX . Although the definition of Sy, (X') depends on the choice of the background met-
ric g, the correlation functions depend trivially on this choice thanks to the Weyl anomaly
proved in [27].

As a conformal field theory, it is well known that the (bulk) one-point correlation
function (¢*?(®)) of LCFT must have the following form:

U(w)

m for z € H, (1.3)

(e a¢(2))

where U(a) is called the structure constant and Ay = 5(Q — /2) is called the scaling
dimension. In [20], the following exact formula for U(«) was proposed:

27 TH?/4) & ya yp? 20 4
Urzz(at) := yz_ /2( —) F(———)F(————l)

2ve T'(1 —y2%/4) 2 4 y  y2
x cos((a — Q)ms), (1.4)
where the parameter s is related to the ratio of cosmological constants, £ f’ through the
relation
Tys  ug 7y2 s €[0,1/y) when & —sm 3{2 <1,
cos - == sin 4 with 5 (1.5)
~;z s €i[0,00) when le sin 22— > 1.

Notice Ugzz () depends non-trivially on p, g only through the ratio %, the dependence

being encoded in the intricate relation (1.5) defining the parameter s.

The main result of our paper is that U(e) = Ugzz(«) where U(x) is defined in the
rigorous probabilistic framework. Let us now outline the procedure of [11] adapted to the
case of H in [27] that allows us to give a rigorous meaning to (1.1) and thus for U(w).
All definitions will be precisely restated in Section 2.2. The first step is to interpret the
DX of (1.1) combined with the gradient squared term |08 X|? of Sz (X) as giving the
law of the Gaussian Free Field (GFF). Concretely, let Py be the probability measure
corresponding to the free-boundary GFF on H normalized to have average zero on the
upper half unit circle dD N H. Define now the infinite measure LFp(d¢) obtained by
sampling (%, ¢) according to Py x [e~2€ dc] and setting ¢ (2) = h(z) —2Q log|z|+ + ¢,
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where |z|+ := max(|z], 1). The ¢ is known as the zero mode in physics, which comes
from the fact that the gradient |38 X |? only defines the field up to a global constant, and
one must integrate over this degree of freedom. This construction corresponds to choosing
g(x) = max(1, |x|)~* as the background metric in the Liouville action Sz (X) in (1.1).
The term 2Q log |z|+ comes from the curvature terms of Sy (X). As explained in [27,
42], the choice of the background metric only affects the law of a field by an explicit
multiplicative constant given by the Weyl anomaly.

To make sense of the effect of ¢*?) we let LF](}‘;’Z) = limg_,¢ £%/2 000 OLFy (do),
where ¢, is a suitable regularization at scale ¢ of ¢. By virtue of the Girsanov theorem,
LF](}‘]’I‘ %) can be realized as a sample from LFy plus an «-log singularity at z. Lastly,
to handle the Liouville potentials ¢”* and e X present in Sz (X)), define the bulk and
boundary Gaussian multiplicative chaos (GMC) measures of ¢ as the limits (see e.g.
[8,43])

e’ 42z and ve(R) = li 1
£—

pg(H) = lim 81’2/2[
e—>0

m872/4/ e2%:( g7 (1.6)
H R

Now for y € (0,2) and u, up > 0, set
(e?@) 1= LEG? [e#ro @=15v0®) _ 1] for z € H. (1.7)

We will explain in Section 2.2 that |(e*?®))| < co when @ € (2/y, Q), thanks to the
—1 in (1.7). Moreover, for Ay = 5(Q — «/2), the quantity [Im 2|22« (e2¢()) does not
depend on z € H. For concreteness, we take z = i and set

Ue) := (e%¢D). (1.8)
Now we are ready to state our main result.

Theorem 1.1. Fory € (0,2), x € 2/y, Q) and ju, up > 0, we have U(a) = Ugzz().

The condition @ € (2/y, Q) is required for (1.7) to be finite, but one can extend the
probabilistic definition of U(x) and the result to o € (y/2, Q); see Theorem 1.2 and
Corollary 4.19. So far in the probability literature the exact formulas on LCFT have all
been derived by implementing the BPZ equations and the operator product expansion
of [7], as first performed in [29] proving the DOZZ formula. In the setup of a domain
with boundary the same technique has been applied in the works [40—42], which all com-
pute different cases of boundary Liouville correlations with u = 0, g > 0. This method
has a major obstruction to proving Theorem 1.1. Indeed, in order to define an observable
satisfying the BPZ equation, the range of « needs to contain an interval of length strictly
greater than 2/y. The best range of o for a GMC definition of (e*#?)) is (y/2, Q) (see
Corollary 4.19), which has length exactly 2/y and thus is not sufficient. Another less fun-
damental but technically challenging issue is to reveal the intricate dependence on u, g
in Upzz(«). In the next subsection, we explain our strategy based on the conformal weld-
ing of quantum surfaces that circumvents these difficulties.
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1.2. A proof strategy based on the conformal welding of quantum surfaces

By definition, the FZZ formula describes the joint law of vg(R) and pg(H) in (1.6)
where ¢ is a sample from LF](}‘;[‘ ) Here although LF](}‘])I‘ ) is an infinite measure we adopt
the probability terminology such as “sample” and “law”. The law of vy (R) is encoded in
the limiting case of the FZZ formula where © = 0 and up > 0, which has been obtained
in [40]. Given this result, it turns out that the FZZ formula is equivalent to the statement
that conditioning on vg (R) = 1, the conditional law of 114 (IH) is the inverse gamma distri-
bution with certain parameters. Here the inverse gamma distribution with shape parameter
a and scale parameter b has density 1 x>0%#e_b/ *. The crux of this paper is to
derive the desired inverse gamma distribution using conformal welding of quantum sur-
faces. In this section we sketch this strategy.

Quantum surfaces are the generalization of 2D Riemannian manifolds in the LQG
random geometry. For a fixed y € (0, 2), consider triples (D, &, z) where D is a domain,
h is a variant of Gaussian free field on D, and z € D. We say that (D, h, z) is equivalent to
(5,}7, %) if there exists a conformal map ¥ : D — D such that h=ho ¥ + Qlog|y’| and
¥ (z) = Z. Under this equivalence relation, the intrinsic geometric quantities in y-LQG
such as the quantum area and length measures transform covariantly under conformal
maps. Here the quantum area and length are defined by Gaussian multiplicative chaos as
in (1.6). A quantum surface with one interior marked point is an equivalence class under
this equivalence relation. We can similarly define quantum surfaces with more marked
points or decorated with other natural structures such as curves.

For « € (y/2, Q), sample ¢ from LF](}‘]JI"i) and condition on vg(R) = £ > 0. (This
conditioning makes sense; see Lemma 4.4.) We write the conditional law of the quantum
surface corresponding to (H, ¢,7) as M‘lﬁfok(a; £)*. With this notion, the FZZ formula can
be reduced to the following.

Theorem 1.2. For o € (y/2, Q) the law of the quantum area of a sample from

disk /. 1\# + . . . . . 2 . . 1
Mo (5 1)7 is the inverse gamma distribution with shape ” (Q —a)and scale ———5= ey

When a = y, by [3, 10], M{(a: 1)* describes the law of the so-called quantum disk
with unit boundary length and one interior marked point. In this case, based on the mating-
of-trees theory of Duplantier, Miller, and Sheffield [18], Gwynne and the first author of
this paper [2] proved that the law of the quantum area is the inverse gamma distribution
with shape %(Q — y) and scale m where a? is the unknown variance in the
mating-of-trees theory, which first appeared in [18, Theorem 8.1].

Let us review the mating-of-trees theory. In our proofs we will only use some of
its consequences that can be stated without explicit reference to it. Hence we will keep
our discussion brief and refer to the survey [24] for more background, especially on its
fundamental role in the recent development on the scaling limit of random planar maps.
Recall that the Schramm-Loewner evolution (SLE, ) with a parameter « > 0 is a canonical
family of conformal invariant random planar curves discovered by Schramm [45]. In a
nutshell, mating-of-trees theory says that if we run a space-filling variant of an SLE,/,2
curve on top of an independent y-LQG surface, then this curve-decorated quantum surface
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can be encoded by a two-dimensional correlated Brownian motion (L;, R;) such that

Var[L;] = Var[R;] = a® and Cov(Ly, R;) = —a’cos(y’n/4). (1.9)

Here the mating-of-trees variance a* is an unknown function of the parameter y. As

a first step towards proving Theorem 1.2, we identify the value of a2.
Theorem 1.3. For y € (0, 2), the mating-of-trees variance a> = a>(y) is given by

5 2

sin(my2/4)

We will prove Theorem 1.3 in Section 3. Our proof has two ingredients: a systematic
understanding of the relation between canonical quantum surfaces and LCFT developed
by the first and the third authors with Holden in [3]; the explicit boundary LCFT corre-
lation functions computed by the second author in [40] and in his joint work [42] with
Zhu.

To prove Theorem 1.2, we use the idea of conformal welding which we recall now.
For y € (0,2) and x = y2 € (0, 4), if we run an independent SLE, on top of a cer-
tain type of y-LQG quantum surface, the two quantum surfaces on the two sides of the
SLE curve are independent quantum surfaces. Quantum boundary lengths from the two
sides agree on the curve, defining an unambiguous notion of quantum length on the SLE
curve. Moreover, the original curve-decorated quantum surface can be recovered by glu-
ing the two smaller quantum surfaces according to the quantum boundary lengths. This
recovering procedure is called conformal welding. Such results were first established by
Sheffield [48] and later extended in [4, 18].

In this paper we prove a new conformal welding result that enables us to derive the
inverse gamma distribution in Theorem 1.2. It asserts the existence of an SLE, type curve
n with the following properties. See Figure 1 for an illustration.

e 1 is a simple closed random curve surrounding i that visits 0 and otherwise is in H.

e Suppose ¢ is independent of n and is sampled from the conditional law of LF](P‘;I‘ )
conditioning on vg(R) = 1. Let D,(0) and D, (co0) be the bounded and unbounded
component of H \ 7, respectively. Then as quantum surfaces with marked points,

Fig. 1. Left: A curve 7 independent of a sample ¢ from LF]%‘I[ ) Right: The quantum surfaces
(D7(0),¢,i,0) and (Dy(c0), 9,07, 07) are conditionally independent given the quantum length
of 1. Moreover, (¢, n) can be recovered from the two quantum surfaces by conformal welding.
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(Dy(0),¢,i,0) and (D, (c0), ¢, 07, 07) are conditionally independent given the quan-
tum length of 7.

e The conditional law of (D;(0), ¢, i) conditioning on the quantum length £ of 7 is
MEY (0 O)F.

e The law of the quantum area and quantum lengths of the two boundary arcs of
(Dy(00),¢,07,07) can be explicitly described in terms of the mating-of-trees Brow-
nian motion (L;, R;).

This result is stated as Theorem 4.6 and proved in Sections 4.2 and 5. It relies on the
conformal welding results for finite area quantum surfaces, proved in [4]. The law of
(Dy(00), ¢,07,07) is given by a variant of the so-called two-pointed quantum disk with
weight y? /2, whose quantum length and area distribution are obtained in [4] in terms of
the mating-of-trees Brownian motion; see Section 2.5.

Using the above conformal welding result, we can obtain a recursive relation on the
law of the quantum area of a sample from Mclﬁ’sok (ov; 1)*. Using a path decomposition for
Brownian motion in cones, we prove that the only solution to this recursion is the inverse
gamma distribution in Theorem 1.2, which is identified as the law of the duration of
a certain Brownian motion in cones. For technical reasons, we carry out this argument
for a € (y/2, Q — y/4) first. This gives Theorem 1.1 for & € (2/y, Q — y/4). Since
y/2<2/y < Q —y/4,by the analyticity of U(a) ina € (2/y, Q), we obtain Theorem 1.1
in its full range (2/y, Q), which in turn gives Theorem 1.2 in its full range (y/2, Q). It
also allows us to extend Theorem 1.1 to « € (y/2, Q) for a suitably defined U(x); see
Corollary 4.19. See Section 4 for the detailed argument.

1.3. Exact solvability for moments of a Gaussian multiplicative chaos

It is natural to look at the limits 4 — 0 or up — O in the exact formula of Theorem
1.1. These limits have the effect of deleting one of the two Liouville potentials in (1.2)
and the probabilistic expression for U(w) then reduces up to an explicit prefactor to a
moment of GMC either on the bulk or on the boundary of the domain. In the case of
u — 0, see equation (2.5) for this reduction. Our main result then reduces in this case to
Proposition 2.8 giving an exact formula for the moment of GMC on R. This formula was
derived in [40] and is actually used in our proof of Theorem 1.1. On the other hand, the
limit up — O provides a novel result on the moments of GMC on H.

Proposition 1.4. Let y € (0,2), @ € (y/2,Q), and ¢ = h —2Q log |z|+ + aGu(z,i),
where h is a sample from Py. Then

E[p(H)» @)

2 g (y%/4) %F ya  y? (¢ 2 a—Q
_ﬁ(zya“ F(l—y2/4)) (7_7) (Tﬁ)m(” y )
(1.10)
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A further corollary can be derived if one assumes that the moment %(Q — «) of the
above GMC is an integer n € N. It is a well-known simple Gaussian computation that a
positive integer moment of GMC reduces to a Selberg type integral; see [21] for a review
on these integrals.

Corollary 1.5. Let y € (0,2) andn € N such that 0 < n < 2/y?. Then

1 - 1 1
dzy---dz
o " l_[(lz,- —z; [Pz —?j|y2) ,-I:II(IZ,- —Zi|7*/? |22 + 1|”Q_”"2)

i<j

n
=i( T L2/ ) F(l—y—zn)F(l—n). (1.11)
VI \ 4+ (1-2n) T(1 —y2/4) 2 2

The integral (1.11) resembles the Dotsenko—Fateev integral of [15] appearing in the
context of CFT on the Riemann sphere, with C” being replaced by H". To the best of our
knowledge the above evaluation of (1.11) has not been known. Notice that for y > V2,
there are no valid 7 as the first moment of the GMC on H is not finite. For any y € (0, v/2),
there are finitely many n that satisfy 0 < n < 2/y2. Lastly, let us note by conformal
invariance it is possible to write both of these results on the unit disk D; see for instance

[42, Section 5.3] for how to link moments of GMC on ID and H.

1.4. Perspectives and outlook

In this section we describe several perspectives, ongoing projects, and future directions
related to the FZZ formula.

1.4.1. Integrability and the conformal bootstrap for boundary LCFT. In order to carry
out the conformal bootstrap for LCFT on Riemann surfaces with boundary, along with
the bulk one-point function that we obtained in Theorem 1.1, one needs to compute three
other correlation functions for LCFT on H:

(29 B00)) (5001 5062)) (6371¢(S1)eﬂ72¢(32)eﬁ73¢(s3)>, (1.12)

where z € H, s, 51, 52, 53 € R. For the boundary two-point and three-point functions one
also has the freedom to choose i p as a function defined on the boundary which is constant
on each arc in between boundary insertions. See [42, Figure 1] for a summary.

Along with (e%?(®)), these three correlation functions are the “basic” correlations as
thanks to conformal invariance they depend trivially on z, s7, 52, s3. On the other hand,
their dependence on y, i, g, o, B, B; is non-trivial. Explicit formulas for these functions
have been proposed in the physics papers [20, 26, 38]. In the limiting case where u = 0,
they reduce to moments of the boundary GMC measure and they have been explicitly
computed in [42]. In a work in progress with Zhu, we plan to verify the proposed formulas
for all three correlations for general ;& > 0. The techniques will be a combination of the
tools of the present paper and of [42]. Indeed, the approach in [42] is still applicable to
the second and third correlation functions in (1.12) as there is no bulk insertion. By a
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conformal welding statement similar to the one in this paper, we will get the first one
from the second one and the FZZ formula.

Once the above correlations have been evaluated, the next natural step is to compute
a correlation function with more marked points or on a non-simply-connected surface
with boundary. For this purpose one needs to implement the conformal bootstrap proce-
dure first proposed in physics in [7]. At the level of mathematics this has been achieved
to compute an N -point function on the sphere in the recent breakthrough [22]. One can
expect to adapt the methods of [22] to the case of a surface with boundary, where the FZZ
formula along with the correlations (1.12) are a crucial input. More concretely, in [32] a
bootstrap equation involving the FZZ formula is proposed to compute the partition func-
tion of LCFT on an annulus. We state it here as a conjecture.

Conjecture 1.6. Consider an annulus represented as a cylinder of length wt and of
radius 1. Let ¢ = e 2™% and Zannus be the partition function (no insertion points)
of LCFT on this annulus defined probabilistically in an analogous way to (1.7) (see
also [39]). Then

Zami = [ Urzz(Q + 1Pzl — i)™ ~% [l =gMap. (113)
€ n>1
One has the degree of freedom to choose different values of up for each of the two bound-
aries of the annulus, in which case the two Ugzz functions in the right hand side of (1.13)
must be computed respectively with those two values. The | parameter is the same for
Z annutus and both Ugzz functions. Lastly, the contour of integration € is a suitable defor-
mation of R avoiding the pole at P = 0.

1.4.2. Interplay between three types of integrability in conformal probability. Our paper
is part of an ongoing program of the first and the third authors to prove integrable
results for SLE, LCFT, and mating-of-trees via two connections between these subjects:
(1) equivalent but complementary descriptions of canonical random surfaces in the path
integral (e.g. [11]) and mating-of-trees (e.g. [18]) perspectives; (2) conformal welding of
these surfaces with SLE curves as the interface. We now describe other aspects in this
program that are closely related to this paper.

e Our paper relies on the recent work of the first and the third authors with Holden [3,
4]. In particular, our conformal welding result is built on the one proved in [4] for
two-pointed quantum disks. Our evaluation of the mating-of-trees variance uses the
technique from [3] on the LCFT description of quantum surfaces.

One of the main results in [3] is an exact formula for a variant of SLE curves called the
chordal SLE, (p—; p+) (see Section 2.4). Its proof shares the same starting point with
our proof of the FZZ formula: a conformal welding result for quantum disks.

[3] demonstrated how to get integrability results for SLE using LCFT, mating-of-trees
and conformal welding. Using the same methodology and taking the FZZ formula as
a crucial input, the first and the third authors proved two integrability results on the
conformal loop ensemble in [5]. The first relates the three-point correlation function
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of the conformal loop ensemble on the sphere [28] to the DOZZ formula. The other
addresses a conjecture of Kenyon and Wilson (recorded in [46, Section 4]) on its elec-
trical thickness.

e Our proof of the FZZ formula does not rely on conformal-field-theoretical techniques
such as the BPZ equations and operator product expansion, except for two exact for-
mulas from [40,42]; see (2.6) and (3.4). In an ongoing project with Da Wu, the first and
the third authors aim at using the conformal welding and stochastic calculus methods
in SLE to recover these two formulas. Combined with our paper, this will provide a
proof of the FZZ formula which is fully based on SLE, mating-of-trees, and conformal
welding. It is an interesting open question whether such a proof can be given for the
DOZZ formula.

e The first and the third authors are working on verifying our belief that in a very gen-
eral sense the conformal welding of two quantum surfaces defined by LCFT can be
described by LCFT, where the conformal welding result (Theorem 4.1) in this paper
is a special case. For another instance of this statement, consider a pair of indepen-
dent Liouville fields on a disk with three boundary insertions. If we conformally weld
them along the three boundary arcs, then the resulting surface should be given by a
Liouville field on the sphere with three bulk insertions. Moreover, the magnitude of an
insertion on the sphere is determined by the local rule for conformal welding described
in [18]. More precisely, in the terminology of [18], if we zoom in around an insertion
on the sphere the picture looks like the conformal welding of two quantum wedges
into a quantum cone, which is understood in [18]. In our present case, if we zoom
in around O in Figure 1, the picture will converge to the conformal welding of three
quantum wedges into a single quantum wedge as established in [18].

1.4.3. FZZT branes and related models. We review here several models related to the
FZZ formula in the theoretical physics literature. Boundary Liouville theory admits two
kinds of boundary states, the one studied in the present paper being the so-called Fateev—
Zamolodchikov—Zamolodchikov—Teschner (FZZT) brane [20,50]. The other is the Zamo-
lodchikov—Zamolodchikov (ZZ) brane which corresponds to LCFT on a disk with the
hyperbolic metric as background metric; see [53]. In this ZZ brane setup there is also a
formula for the bulk one-point function [53, (2.16)]. Both the FZZT and ZZ branes play a
role in the relation between matrix models, integrable heirarchies, and Liouville quantum
gravity; see for instance [1] and references therein. Lastly, one can consider LCFT on a
non-orientable surface, the simplest model being the projective plane; see [25, (3.10)] for
the analogue of U(«) in that case. We hope to adapt our methods to study these directions
in the future; see also the review [35] for more details.

Organization of the paper. After providing background in Section 2, we obtain the
mating-of-trees variance in Section 3. Then in Section 4, we carry out the strategy out-
lined in Section 1.2 modulo the proof of the conformal welding result, whose proof is
supplied in Section 5.
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2. Preliminaries

In this section we provide the necessary background for our proofs. We start by fixing
some global notations and conventions in Section 2.1. We then review Liouville CFT and
quantum disks in Sections 2.2 and 2.3, respectively. We will only need these two sections
for the evaluation of the mating-of-trees variance in Section 3. We recall the conformal
welding of quantum disks in Section 2.4 and some properties on two special quantum
disks in Section 2.5.

2.1. Notations and conventions

Throughout the paper we assume y € (0, 2) is the LQG coupling constant. Moreover,
2
0=<+= and «=yp% 2.1)
14

We will work with planar domains including the upper half-plane H = {z € C |
Imz > 0}, the unit disk D = {z € C | |z| < 1}, and the horizontal strip § = R x (0, ). For
adomain D C C, we write dD of D as the set of prime ends of D and call it the boundary
of D. For example, 0H = R U {oco} and 0§ = {z € C |Imz =0 or 1} U {£o0}.

We write I" as the unique meromorphic function such that I'(«) = fooo x* le™*dx
for o > 0. For a > 0 and b > 0, the inverse gamma distribution with shape parameter a
and scale parameter b has the following density:

b1
¥2O () xatl

We will frequently consider non-probability measures and extend the terminology of
probability theory to this setting. In particular, suppose M is a measure on a measurable
space (2, ) such that M(L2) is not necessarily 1, and X is an ¥ -measurable function.
Then we say that (2, ) is a sample space, X is a random variable. We call the push-
forward measure My = X, M the law of X. We say that X is sampled from My. We
also write [ f(x) Mx(dx) as Mx[f] for simplicity. For a finite positive measure M, we
denote its total mass by |M | and write M* = |M|~' M for the corresponding probability
measure.

Let g be a smooth metric on H such that the metric completion of (H, g) is a compact
Riemannian manifold. Let H (I, g) be the Sobolev space whose norm is the sum of
the Dirichlet energy and the L2-norm with respect to (H, g). Let H ' (H) be the dual
space of H(H, g). Then the function space H~'(H) and its topology do not depend
on the choice of g, and it is a Polish (i.e. complete separable metric) space. All random
functions on H considered in this paper will belong to H ~!(IH).

2.2)

2.2. Liouville conformal field theory on the upper half-plane

For convenience we present LCFT on domains conformally equivalent to a unit disk, with
the upper half-plane H as our base domain. Let /1 be the centered Gaussian process on H
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with covariance kernel given by

1
E[h(x)h(y)] = Gu(x,y) := log [Py +2log|x|+ +2log|y[+, (2.3)

where | x|+ := max(|x|, 1) and in the sense that

E[(h. £)(h. g)] = // FEEHA))g() dx dy,

for smooth test functions f, g. Let Py be the law of 4. Using the arguments in [17,47]
it can be shown that Py is a probability measure on the space H ~!(H) defined in Sec-
tion 2.1. For smooth test functions g and f such that f]HI f(2)d?z = f]HI g(z2)d?z =0,
we have E[(h, f)(h,g)] = 27)~" [y Vg - V f d?z. This is the characterizing property
of the free boundary Gaussian free field, which is only uniquely defined modulo an addi-
tive constant. The field 4 is the particular variant where the additive constant is fixed by
requiring the average around the upper half unit circle to be 0.

Given a function f € H~!(H) and z € H U R, let f;(z) be the average of f over
0B¢(z) N H. For h ~ Py, define the random measures

wrp = lim g 12evhe g2, and v, = lim 872/4e”h8/2dz,
&—>0 &—>0

where the convergence holds in probability in weak topology. See [8,43] and refer-
ences therein for more details on this construction. We call uj and vy, the quantum area
and quantum boundary length measures, respectively, corresponding to ¢. For functions
which can be written as a sum of the GFF and a continuous function, quantum length and
area can be defined similarly.

Definition 2.1 (Liouville field). Sample (4, ¢) from the measure Py x [¢e~2¢ dc] on
H~'(H) x R, and let
¢(z) = h(z) —2Qloglz|+ + ¢

be a random field on H. Let LFy be the measure on H ~!(H) which describes the law
of ¢. We call a sample from LFy a Liouville field on H.

The following lemma defines Liouville fields with insertions by making sense of
e®?COLFy (do).

Lemma 2.2. Fora € R and zg € H, the limit LF®*0) := lim_,q £**/2¢@% 0 LFy (d¢p)
exists in the vague topology. Moreover, sample (h,c) from (2Im zo)_az/ 2|Zo|;2a(Q_a) Pu
x [e@=Dedc] and let

¢(z) =h(z) —2Qlog|z|+ + aGu(z,z0) + ¢ forz € H.
Then the law of ¢ is given by LF](I?I[’ZO).

Proof. Sample h from Py, fix ¢ € R and set ¢(z) = h(z) — 20 log|z|4+ + ¢. For a
compactly supported continuous function F on H~!(H) x R, Girsanov’s theorem and
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Varhg(z¢9) = —loge —log(2Im zg) + 4log|zo|+ + 0.(1) give

lim E[s%°/2¢%%:G0) F (1 ¢)]

e—0
— (2 Im ZO)—a2/2|ZO |;20£(Q*(¥) lim ]E[eotceahg(Zo)—%]E[hg(ZQ)z]F(h, C)]
&—0
= (2Imz0)~* /|2 ?* @™ lim E[¢* F(h() + «E[h()hs(i)]. )]
= (2Im 20) /2|20 ¥ @ DR F(h() + e Gu (- i).0)].
Integrating over [e~2¢dc] yields the lemma. |

Definition 2.3. We call a sample from LF](}';I‘ 2) a Liouville field on H with an a-insertion
at z.

The following lemma gives the change of coordinate for the Liouville field under a
conformal map.

Lemma 2.4. For (o, z9) € R x H, let ¥ : H — H be a conformal map such that
Y(z9) = i. Sample ¢ from LFI(;])I"ZO). Then the law of ¢ o Yy~ ! + Q log |(¥y 1) is
|Imzo|_2A“LF](§f’l) where Ay = 5(Q —a/2).

Proof. [27, Theorem 3.5] gives this result when we parameterize the Liouville field in
the disk D, and is adapted from [11, Theorem 3.5]. The same argument as in [27, The-
orem 3.5] applies to the upper half-plane case. Alternatively, the result for D can be
transferred to H via the coordinate change explained in [42, Section 5.3]. We omit the
details. ]

Suppose f is a measurable function on H -1 (H). We recall the convention Mx [ f] of
Section 2.1 and write LESV[f] = [ f(¢) LE&" (dg).

Definition 2.5. Fora € (2/y, Q), u > 0and up € C withRe ug > 0, let
(ead)(z)) _ (e“‘i’(z))yu up = LFI([gsz)[e—MM¢(H)—MBV¢(R) —1] forz e H.
We include in the definition the case of complex pp which will be used in Section 4.

Lemma 2.6. Suppose that a € 2/y, Q), u = 0 and up € C, Re up > 0. Then
|(e*?®)| < 0o. Moreover, the value of |Im z|*2e (¢®9(2)) does not depend on z € H.

Proof. By Lemma 2.2, take ¢(z) = h(z) — 20 log|z|+ + «Gy(z, i) where & is sampled
from Ppg. By integration by parts on the ¢ integral one has

(ex0D)| =

/ de e(a_Q)cE[l _ e—lwwll«a;(H)—MBEV“/ZV(;.(R)]
R

/ dc @ 9e
R

xE [(M/eyc,u,; (H) + g ge”/zvd; (R)) e_“ew“é(H)‘“Be”/z"&(R)} '

1
00—«
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< ! /dce(“_Q)c
0—-alJr

x E[(M)’eycl% (H) + |MB|%eyc/ZVq;(R))e—,u,el’c'uq—b(]HI)—Re(pLB)eVL'/qu;(R)i|

< /dce(a—Q)c
0—-alr

x E[We“%(H)e—uew%(m + |MB|§€VC/ 2p5(R)e” Retume™! 2”4301@}

= 1 Elug(H)7 7] + c2Elvg (R) 7 @)

In the last line above, ¢ and ¢, are explicit positive constants coming from evaluating the
integral over c¢. The two expectations of GMC moments are finite for o € (2/y, Q), thanks
to [27, Corollary 6.11] for the first and [11, Lemma 3.10] adapted to the one-dimensional
case for the second. Hence the claim |(e*?®)| < oo holds. Finally, by Lemma 2.4,
[Im z |22« (¢29(2)) does not depend on z € H. |

The next two statements give the law of the total quantum length vg (R) under LF](;&‘ A,

Lemma 2.7. Fora > y/2, leth ~ Py and ¢(z) = h(z) —2Qlog|z|+ + aGu(z.i). Let
— 2
Up(a) = E[vg(R)V(Q_“)] where the expectation E is with respect to Py. Then

LEG (£ (v (R))] = /Ooo / (0%2_“2/ 20y ()5 @97 e (2.4)

for each non-negative measurable function f on (0, 00). Moreover,

; 2 2 2(0—a 2 _
Py = 2 127 @ )F(;(a—Q))Uo(a) fora € (y/2.0). (2.5

Proof. We sample a real random number ¢ from 2-0?/20@=Q)e g independently of ¢;
then the law of the field ¢ = ¢ + c is LF](}?I’ D To prove (2.4), it suffices to consider the
case f({) = ly<y<p with 0 < a < b. In this case, we have

. o]
LFED[f (vg(R))] = E[ / Lorer2zme@n? e dc]
0
b 2 2/ 2 2
= E[/ vz (R)¥ (@@ /2y @=0) . =y de],
a 14

where we have made the change of variables ¢ = e%cvg(]R). Since Up(ar) =

E[va(R)%(Qﬂ")], by interchanging the integral and expectation we get (2.4).
Note that

<e¢¥¢(i))y0 up = LF](I_(])IL’i)[e_MBV‘Z’(R) —1]

P—, 2 22 Z(@-0)-1
=/ (e HBE — 1) 22720y ()Y de.
0 v
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Now (2.5) follows from
/ (et _1)g5 @D g0 — Mg‘Q "‘)r(;(a - Q)),
0

which is a simple application of integration by parts to the definition of the I" function. =

The following explicit expression of Uy(ar) was proven in [40].

Proposition 2.8 ([40]). For o > y/2 and Uy(«t) defined as in Lemma 2.7, we have

— 22 \F @y )2
U, = — I'f ——-—— 1l 2. 2.6
o(@) (F(l_y2/4)) (2 4) foralla > y/2.  (26)

Proof. This formula is proved in [40] in a different appearance, namely the disk domain D
is used instead of H. To recover our setup, consider the following calculation:

5(Q-a)
E[v:(R)? ©@~9] = lim E 724 p5he(@) % (-2Q10g |z| 1 +aGr (2.0) 4, )
¢ e—>0 R

200_
. Lhe(2)= L2 Elhe (2)2], % (— % log 12| 4 +a G (2,0)) v (@)
=1limE e2"e g le(2)7] o 2Ty Toe Izl HLZ) iz .
R

e—0

This last equation then gives equation (1.15) in [42, Definition 1.5], and (2.6) is simply
[42, Theorem 1.6]. [

2.3. Quantum surface and quantum disks

In this section we review the definition of a few variants of quantum disks that will be
used in our paper. Let OH = {(D,h) | D C C open, h a distribution on D}. We define
an equivalence relation on D H by saying (D, h) ~, (D, fz) if there is a conformal map
v:D — D such that i = Y o, h, where

Yo, h:=hoy '+ Qlog|(y ). (2.7)

A quantum surface is an equivalence class of pairs (D, h) € DJ under the equiv-
alence relation ~,, where D is a disk domain and h is a distribution on D (i.e.
h € C§°(D)"). An embedding of a quantum surface is a choice of representative (D, /).
Consider tuples (D, h,z1,...,Zm, Wi, ..., Wp) z; € D and w; € dD. We write

(D,h,zl,...,zm,wl,...,wn) ~y (D,h,El,...,Em,ﬁl,...,wn)

if there is a conformal map ¥ : D — D such that (2.7) holds and ¥/ (z;) = Z;, ¥ (w;) = ;.
Let ©,, , be the set of equivalence classes of such tuples under ~,,. We write D o as D
for simplicity. The reason we define quantum surface using (2.7) is that the y-LQG quan-
tum area pj is the pushforward of ;. The same holds for the quantum length measure
as long as it is well defined.



M. Ang, G. Remy, X. Sun 16

The set ®,, , can be viewed as the quotient space of

{(h,zl, e Zm, W1y e e, W) | h is a distribution on H,

zl,...,zmeH,wl,...,wnGRU{OO}}

under ~, . Therefore the Borel o-algebra of H~!(H) induces a o-algebra on D, ,. More-
over, a random distribution on H such as a variant of the GFF induces a random variable
valued in Oy, p.

We now define the 2-pointed quantum disk introduced in [18, Section 4.5], which is a
family of measures on Dy ». It is most convenient to describe it using the horizontal strip
§ =R x (0, 7). Let exp : § — H be the exponential map z + e?. Let hg = hp o exp
where Ay is sampled from Ppg. We call hg a free-boundary GFF on §. Its covariance
kernel is given by Gg(z, w) = Gg(e?,e™). The field hg can be written as hs = h° + ht,
where /€ is constant on vertical lines of the form u + [0, i 7] for u € R, and A’ has mean
zero on all such lines [18, Section 4.1.6]. We call ht the lateral component of the free-
boundary GFF on §.

Definition 2.9. For W > y2/2,1let B = Q + y/2 — W/y. Let

v, — By —(Q—-pP) ift =0,
T By + (0 =By ifr <o,

where (Bj)s>0, (Es)szo are independent standard Brownian motions conditioned on
Bas — (Q — B)s < 0 and Bog — (Q — B)s < 0 for all s > 0." Let h!(z) = ¥, for each
z € S andt € R with Rez = ¢. Let h? be a random distribution on § independent of Y,
which has the law of the lateral component ¢ of the free-boundary GFF on §. Let ¢ be
a real number sampled from %e(ﬂ_Q)”dc independent of (h!,h?) and ¢ = h' + h? +c.
Let Mgifzk(W) be the infinite measure on Dy, describing the law of (S, ¢, —o0, 00). We
call a sample from Mgifzk(W) aweight-W quantum disk.

The weight-2 quantum disk e/\/(gifzk(Z) is special because its two marked points are
typical with respect to the quantum boundary length measure [18, Proposition A.8]; see
Proposition 2.11. Based on this we can define the family of quantum disks marked with
quantum typical points. We will use our convention that M¥* = |M |~ M.

Definition 2.10. Let (S, ¢, 00, —oc) be the embedding of a sample from M§(2) as in
Definition 2.9. Let A = pg(S) and L = v4(9S). Let QD be the law of (S, ¢) under the
reweighted measure L_ZcMgikaQ), viewed as a measure on . For non-negative integers
m,n, let (S, ¢) be a sample from A™ L"QD, and then independently sample zy, ..., Z;,
and wq, ..., w, according to /Lf;) and vf;, respectively. Let QD,, , be the law of (S, ¢,
Z1y.ees Zmy W, ..., Wy) viewed as a measure on Dy, ;. We call a sample from QD,, ,
a quantum disk with m interior and n boundary marked points.

'Here we condition on a zero probability event. This can be made sense of via a limiting proce-
dure.
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Proposition 2.11 ([18, Proposition A.8]). We have M§*y(2) = QDg5.

For W > y2/2, we can define the family {:Mgi’szk(W; £, )} >0 of finite measures
such that Mgi’szk(W; £,1") is supported on quantum surfaces with left and right boundary
arcs having quantum lengths £ and £’, respectively and

MGF W) = // MYS WL, tydedl. (2.8)
0

In words, | MG (W: €, £")|d L d{ describes the distribution of the left and right bound-
ary lengths of a sample from MG (W), and MGS (W €, £')* is the probability mea-
sure obtained by conditioning Mgifzk(W) on specific boundary length values. The general
theory of disintegration only specifies M§'S (W €, £') for almost every (£, {). In [4,
Section 2.6] this ambiguity is removed by introducing a suitable topology for which
Mgi,szk(W, £,¢") is continuous in £, £’

We can also define the measure QD,, ,,(£) on D, , which corresponds to restricting
QD,, ,, to the event that the boundary length is £. Since Mgifzk (2) = QDy,, we set

V4
QD (¢) = [ MSifzk(z; x, 0 —x)dx.
0

From here QD,,, ,, () for general m,n can be specified by Definition 2.10 and the require-
ment that

0

If we ignore the boundary marked points of a sample from QD ,(£), its law is
given by £"QD(¥). Therefore, ignoring boundary marked points, the probability measure
QDy_, (£)* does not depend on n and agrees with QD({). The following theorem gives us
a precise way to specify the mating-of-trees variance a? in terms of QD(1)*, which we
will use to evaluate a2.

Theorem 2.12 ([2, Theorem 1.2]). The law of the total quantum area of a sample from
QD(1)* is the inverse gamma distribution with shape parameter 4/y? and scale para-

meter as in (2.2), where a2 is the mating-of-trees variance in [18].

1
2a2sin2(wy2/4)

2.4. SLE and conformal welding of quantum disks

We now review the conformal welding result proved in [4]. We need an important variant
of SLE called SLE, (p—; p+), introduced in [30] and studied e.g. in [16, 33]. The para-
meter range relevant for us is « € (0,4), p— > x/2 —2 and p4+ > «/2 — 2. In this range,
the SLE, (p—; p+) on (H, 0, co) is a probability measure on simple curves on H from 0
to oo which does not touch dH except at the endpoints. For a general simply connected
domain D with boundary points a and b, let ¢ : H — D be a conformal map such that
¥(0) = a and ¥ (c0) = b. The SLE,(p—; p+) on (D, a, b) is defined as the pushfor-
ward by ¥ of the SLE,(p—; p+) on (H, 0, 00). Although there is a degree of freedom
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in choosing ¥, this definition is independent of such choices. We omit the definition of
SLE, (p—; p+) via the Loewner equation as it will not be needed.
For W > y2/2 recall Md‘Sk(W, £,£") from (2.8). For a fixed £ > 0, let

Moz (Wi t) = / Moz Wi, )de, Moz (W:L,) = / Moz (Wit ae.
(2.10)

Then Mgiszk(W) fooo Mgi;k(W £,-)dZ{, hence MdISk(W £,-) is the disintegration of
M%‘“Zk(W) over the left boundary length. The same holds for Md“k(W, -, £) with right
boundary instead. For W_, W, € [y?/2, c0), we will consider the measure

/ MYF (Wi 0) x MGS (Wi L, ) dL. (2.11)
0

For a fixed £ > 0, :Mglszk(W_, ) x MdlSk(W+; £,-) is a product measure on Do » x Dy 2.
Therefore the integration in (2.11) gives another measure on Dg 2 x Do 2.

Theorem 2.13 ([4, Theorem 2.2]). Let y € (0,2) and k = y?. For W_, W4 € [y?/2, 00),
let W =W_+ W4, p-=W_—2and py+ = Wy —2. Suppose (H, ¢,0, o0) is an embed-
ding of a sample from Md‘Sk(W) given by Definition 2.9. Let 1) be an SLE, (p—; p+) curve
on (H, 0, 00) independent of ¢. Let H, and H:’L be the connected components of H \ n
on the left and right side of n respectively. There exists C € (0, 00) such that the law of
(H;, ¢, 0, 00) and (H;,", ¢.0, 00) viewed as a pair of elements in Dy > equals

c / MW, £) x MEE(W,: 0, d . (2.12)

If we are only given the information of (Hj,, ¢, 0, c0) and (H,;r ,$,0,00) as marked
quantum surfaces, we can identify the right boundary of the former to the latter to get a
curve-decorated topological disk, where on the complement of the curve there is a confor-
mal structure. From the classical work of Sheffield [48], outside of a measure-zero event,
this uniquely determines a conformal structure on the entire disk, under which we get
(H, ¢, n, 0, oo) modulo the equivalence relation ~,,. This recovering procedure is called
conformal welding. The reason for this uniqueness is a property satisfied by SLE, (o—; p+)
almost surely, called conformal removability. For more details on Sheffield’s work and
conformal welding, see [9, Section 6].

In words, Theorem 2.13 says that modulo a multiplicative constant, conformally
welding Mglszk(W ) and Md‘Sk(W ), we get MdISk(W) decorated with an independent

SLE(p—: p+)-

2.5. Quantum disks of weight 2 and y? /2

Our proof of the FZZ formula relies on the conformal welding of quantum disks with
weight W € {2, y2/2}. For these two weights the mating-of-trees theory for quantum
disks [2, 18,34] allows us to describe the quantum area and quantum length distributions
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of Mgifzk(W) in terms of Brownian motion. The case W = 2 is essentially Theorem 2.12.
The case W = y2/2 is proved in [4], which we now review.

For 6 € (0,27), let € := {z | arg(z) € (0, 8)} be the cone with angle 6. For z € €y,
let me, (z) denote the probability measure corresponding to Brownian motion started at z
and killed when it exits €. For y > 0, let E), , be the event that BM exits €g on the
boundary interval (ye'?, (y + )e'?), and let me, (2, yel?) = limg_g E_Im*ee @)IE, .-
For x > 0 define mg, (x, yel?) = limy_ 8_1m€9 (x + €i, ye'?). For more details on
these limits see Appendix A. The following result from [4] describes the joint law of the
quantum boundary lengths and quantum area of the weight y2/2 quantum disk, in terms
of the measure me, (x, ye'?) with 6 = 7y?/4.

Proposition 2.14 ([4]). Let = ny?/4 and u = asilne. There is a constant C € (0, 0c0)
such that for all £,r > 0 we have

. L r .
| Mo (v?/2:4.7)] = C‘mtfe (;, ;e’e)

Moreover, the quantum area of a sample from M3 (y?/2; €, r)* agrees in law with the

duration of a path sampled from me, (5, seie)#.

Proof. Consider the shear transformation A = a(Sige - 9) that maps €y to Rﬁ_. It sends
1 —cosf )
) - —cosf 1 ’
and maps 5 — £ and ie’e —ri. Let//v]’l’{2 (£,ri) bethelaw of Z, := AZ; where t — Z,
+

a standard 2D Brownian motion to a Brownian motion with covariance 312(

is sampled from the path measure me, (5, %eie). It is proved in [4, Proposition 7.7] that
for some constant C and all £, 7 > 0 we have |M{S(y?/2:€,r)| = C|M])1’§%r (¢,ri)|, and

that the quantum area of a sample from Mgiszk (y?/2:£,r)* agrees in law with the duration

of a sample from ,u%z (¢, ri)*. Transforming back by A~!, we conclude the proof. |
+

We will also need the length distributions of the weight y2/2 and weight 2 quantum
disk.

Lemma 2.15 ([4, Propositions 7.7 and 7.8]). There are constants Cy, C, € (0, 00) such
that

(2;’)4/"2_1

disk /.,2 /~. — -
MO/ 200 = O s

MEF @0 r)] = Ca(C 4 r)™7* 1
(2.13)

3. Embeddings of quantum disks and the mating-of-trees variance

In this section we prove Theorem 1.3, which says a? = Our starting point is

2
sin(ry2/4) "
the following observation, which expresses a2 in terms of the quantum length distribution
of QD ¢ and QDy 5.
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Lemma 3.1. Recall Definition 2.10 and (2.9). We have

- QDo (0)]
(4/y? = 1)2sin* (xy2/4)|QDy o(0)]

Proof. By Definition 2.10, for a non-negative measurable function f on R we have

for each £ > 0. (3.1

QD11 [f(L)] = QDo,1[f(L)A] = /0 FO)QD 1 (O)[A] d L. (3.2)

By (2.9) we have QD ;[f(L)] = fooo f(O)|QDy ;(£)| d¥, and therefore |QD, ; (€)| =
QDo (O)[A].

Note that QD ; (£)[A] = |QDyg ;(£)|QDy 1 (£)*[A]. By the scaling property of the
quantum disk, we have QDjg ;(£)*[A] = £2QDy ;(1)*[A], which equals £2QD(1)*[A]
since QD 4 (1)* = QD(1)*. By Theorem 2.12 and (2.2), we have QD(1)*[4] = ale where
a= }% and b = (2a2sin®(wy?/4))~". Therefore

|QDy 1 (0)] = QDy,1 ()[4] = |QDy,, (£)|¢> (3.3)

2a2sin’(wy2/4) RV

On the other hand, |QD;;(¢)] = [QD;(£)[¢ and |[QDg,(€)| = |QDg;|¢. By re-
arranging (3.3) we conclude the proof. ]

The next lemma gives the explicit evaluation of QD ,(£)].

Lemma 3.2. For { > 0, we have |QDg»(€)| = R(y; 1, D47 where

Qm)*/r*1
(1—y2/4L (1 — y2 /447>

R(y;1,1) = (3.4)

Proof. Recall that QDg , = MSESZ"(W) with W = 2 by Definition 2.10. Let L; and L,

be the left and right boundary lengths of a sample from Mg“zk (2). By [3, Lemma 3.3], for

U1, 1z > 0, the law of i Ly + Ly is 14>0E(y;u1,u2)€_4/72d€ where E(y;ul,uz)
is explicitly computed by the second author of this paper and Zhu [42]. Setting now 1 =
p2 = 1, since the density of L; + L can also be written as 1¢~0|QDg »(¢)|d{, one

obtains |QDyg ,(£)| = R(y; 1, D472, n

Remark 3.3. The function R(y; 1, 1) in Lemma 3.2 is a boundary variant of the reflection
coefficient R(y) considered in [29,44].

To get a2, it remains to evaluate |QD; o, which follows from the LCFT representation
of QD 1,0+

Theorem 3.4. Let ¢ be a sample of LF]%I”"). Then the law of (H, ¢, i) viewed as a marked

—)2
quantum surface is MQDI,O'



FZZ formula of boundary Liouville CFT via conformal welding 21

Cercle [10] proved that QD0,3(1)# admits a simple LCFT description, which extends
the result in [6] for the quantum sphere. In [3, Section 2], a family of such results was
proved in a systematic way. We will prove Theorem 3.4 based on ideas and results from [3,
Section 2]. We postpone this proof to Section 3.1 and proceed to wrap up the evaluation
of a2.

Proof of Theorem 1.3 given Theorem 3.4. By (2.4) with @ = y and Theorem 3.4, we have

2 2= 20 o Uo(y)e=47*

Q10O = 55 x 227 20y 7 O = BT
2m(Q =y vy 2°12m(Q —y)?

Now by Lemmas 3.1 and 3.2, and plugging in (2.6) and (3.4) and simplifying, we have

— 25
2 _RoiLh  2Plao -y 2 |
Uo(y) — (4/y?—=1Dsin®(my2/4)  T(y2/HT (1 —y?/4)sin’*(y?/4)
Using the identity I'(z)['(1 — z) = @ for z € 7 gives the result. L]

In the rest of this section we first prove Theorem 3.4 in Section 3.1 and then prove in
Section 3.2 related results that will be used in Section 5.

3.1. LCFT descriptions of quantum disks

In this section we prove Theorem 3.4. It uses the so-called uniform embedding of quantum
disks via Haar measures introduced in [3]. Before recalling this result, we first give a
concrete realization of a Haar measure on the group of conformal automorphisms of H.
Sample (p, q.r) from the measure |(p — ¢)(qg — r)(r — p)|~'dpdqdr restricted to triples
(p, q,r) which are oriented counterclockwise on R = dH. Let g be the conformal map
with g(0) = p, g(1) = q, g(—1) = r, and let my be the law of g. We recall the notation
ae,p=pog !+ Qlog|(g~!)| from (2.7). As explained in [3], my is a (left and right
invariant) Haar measure on the conformal automorphism group conf(HH) of H.

Proposition 3.5 ([3, Proposition 2.39]). Let M be a measure on fields ¢ such that the law
of (H, ¢) is QD. If we sample (¢, g) from M x my, then the law of the field g ®,, ¢ is

Y
——— 1 Fgy.
20—y "

Due to the invariance of the Haar measure, the law of g e, ¢ does not depend on the

choice of M. This is called a uniform embedding of QD via my in [3, Theorem 1.2].
In the proof of Theorem 3.4 we will need the following basic fact on myy.

Lemma 3.6. For q sampled from my, the law of g(i) € H is —Z—>d?z.

|Im z|2
We first give a representation of the Haar measure mp where the density of g(i) is
transparent.
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Lemma 3.7. Define three measures A, N, K on the conformal automorphism group
conf(H) on H as follows. Sample t from lt>0% dt and set a : z — tz, sample s from
the Lebesgue measure on R and set n : z — z + s, and sample 0 from 1_z /2 <y <z/2du
and setk : z — % Let A, N, K be the laws of a, n, k respectively. Then the law
ofaonok under A x N x K equals my.

Proof. Set ¢ = a on o k. Then the law of g under A x N x K is a Haar measure on
conf(H); see e.g. [13, Theorem 11.1.3]. By the uniqueness of the Haar measure (see e.g.
[19, Theorem 5.1.1]), the law of g is Cmy for some C € (0, 00). We now check that
C=1.

Define £, := {g(0) € (0. 1), g(~1) < g(0) < g(1), =2 € (1 —&,1+¢).5(0) -
g(=1) € (1,2)}. Then by the definition of mp we get

1 pp=1 pp+(p—r)(1+e) 1
AxNxK[Ed:C/ / f dqdrdp
0 p+(p—r)1—e) (P —7)q—p)g—r)

= C(1 + 0s(1))e/2.

Let E.5 = {(u,t,s) |ue (—(1—-408)¢e/2,(1—-08)¢/2),te(1+6,2—38),s€(0,1/t)}
and E, 5 = {(u.t.s) |ue (—(1+8e/2,(1+8)e/2).te (1—-82+05),s€(0,1/t).

Since Z o, = Z —U— uz? 4+ O(u?) as u — 0 with error uniform for z € {—1,0,1},

it is easy to check that for fixed § and sufficiently small ¢ we have £, 5 C E; C E £,5, and

1-6 1 1
Ax N x K[Ez5] = (1 + di=(l—
x N x K[E;s] = ( d)e /2_8 dt = ( 5)(1 573 8)8,

1 1

AX N x K[Es’g] = (1 +8)(m —m)

Letting ¢ — 0 we have

C/2e[(l—8)(ﬁ ! )(1+5)(ﬁ—ﬁ)]

Letting § — 0, we get C = 1. |

Proof of Lemma 3.6. Under the change of variable x = st and y = ¢, we have yl—zdx dy =
%ds dt. By the definition of A and N in Lemma 3.7, we see that the law of a(n(i)) =
st + ti is ! L d?z if (a,n) is sampled from A x N. Since k fixes i and |K| = 7, the
lawofaonok(l)underAxNxKls lzdzz. n

Proof of Theorem 3.4. We first show that
LFu(dg)ig(d?z) = LEY? (dp)d>z. (3.5)
Let i be sampled from Pp. Note that

E[un(d?2)] = 2Imz) /2|22 4%z,
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More precisely, for any Borel set 4 we have E[u;(4)] = [,(2Im z)_”z/2|z|iy2d22.
Then by Girsanov’s theorem (see e.g. [9, Section 3.5]), for any non-negative measurable
functions f on H~!(H) and g on H we have

/ by ( /H ¢(2) uh(dzz)) Pa(dh)
Z/H/ Flh+ yGaa(2) Padh) @Imz) 7222 g2 d%. (3.6)

Now, recalling the definition of LFy and using

—2
Ih—20 tog 4 +e(d?2) = |2]3797 €7y, (d%2)

gives
/ / F($)8(2) j1g(d>2) LFgy (dg)

= [If 10r-20108 111 + 2P a2 Patahy 0% de.
and applying (3.6), this is equal to
// f(h+yGu(.z) —2Qlog|- |4 + ¢) Pu(dh) e~ dc
x g(z)(2Imz) 7" /? |77 g2,

which can be rewritten as [[ f(¢)g(z) LF]%I"Z)(qu) d?z. Thus we have shown (3.5).

Let M be a measure on H~!(H) such that when v is sampled from M, the law
of the marked quantum surface (H, v, i) is QD; y. By Proposition 3.5, if we sample
(¥, g) from M x my, then the law of the pair (g o, v, g(i)) is the law of (¢, z) under
WLFH(@))MI) (d?z). By (3.5) this equals

14 (y.2) 2
———— LFy" ' (dp)d”z. 3.7)
20—y M

Let S be the quantum surface (H, g o, ¥, g(i)). By Lemma 3.6 the joint law of

(S,g(i)) is QD ¢ x [mdzz]. Comparing to (3.7), we see that if ¢ is sampled from

LF]%"Z), the law of (H, ¢, z) viewed as quantum surfaces with a marked point is
27(0 —y)?
y(Im z)?2

We now give an LCFT description of QD ;, which will be used in the proof of The-
orem 1.1.

QDI,O' |

Lemma 3.8. For x € R, the vague limit LF](P]’I"i)’(y’x) = limg_g &7 /e %¢8(X)LF%’i)(d¢)
exists. Moreover, if we sample (h, ¢) from (%|x|+eGH(i’x))72/2PH x [eW+7v/2=Q)¢ e,

then the law of p = h + yGu(-,i) + £Gu (-, x) —2Q log|- |+ + cis LF%’i)’(y’x).

Proof. The proof is identical to that of Lemma 2.2. ]
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Similarly to Lemma 2.4, for x # x’ € R, LF]%"")’("”C) and LFg’i)’(y’x/) are related by
a conformal coordinate change. Therefore they correspond to the same quantum surface
modulo a multiplicative constant. The next proposition says that the quantum surface

is QDy ;.

Proposition 3.9. Let x¢ € R and let ¢ be a sample from LF](I_;I"i) X0 Then the law of the
quantum surface (H, ¢, i, xo) is Cx,QDy ;1 for some constant Cy,.

Proof. Exactly as in (3.5), we have
LES (dp)vg (dx) = LE ) (dp)dx.

Thus, by Theorem 3.4, if we sample a pair (¢,x) € H~'(H) x R from the measure
LF]%”")’(Y’X) (d¢)dx, then the law of the quantum surface (H, ¢, i, x) is WQDM.
For x € R, let g, be the conformal automorphism of H fixing i and sending x to xo.
Similarly to Lemma 2.4, there is an explicit constant C. such that when ¢ is sampled
from LFg’i)’(y’x) then the law of g, e, ¢ is C)’CLF](}}I"’.)’(V’XO). Thus, when a field ¢ is
sampled from ( f]R C, dx)LF](I%"i)’(y’xO) then the law of the quantum surface (H, ¢, i, x¢)
is WQDM. L]

3.2. Adding a bulk point to a 2-pointed quantum disk

In this section we consider the LCFT description of the weight W quantum disk (i.e.
Mgi’szk(W)) marked by a bulk point. This will be used in the proof of our conformal weld-
ing result, Theorem 4.1.

Definition 3.10. For W > y2/2, recall Mgifzk(W) from Definition 2.9. Let M be a
measure on A ~!(H) such that if ¢ is sampled from M, the law of (H, ¢, 0, 00) is
Mgi’szk(W). Let (¢, z) be sampled from M(d¢) e (d?z). We write M‘f“zk(W) for the law
of (H, ¢, z,0, 00) viewed as a marked quantum surface.

In Definition 3.10, (H, ¢, 0, o) can be replaced by any embedding of a sample from
MG (W). Starting from such an embedding, one simply needs to first reweight by the
total quantum area and then to add a point according to the quantum area measure. Recall
the horizontal strip § = R x (0, 7). Under the coordinates (S, +00), a nice relation
between the Liouville field on § and M (W) has been established in [3], which we
recall now.

Definition 3.11. Let Ps be the law of the free-boundary GFF on § defined above Defi-
nition 2.9 and let Eg be the expectation over Ps. Leta € R, 8 < Q and z € §. Sample
(h,c) from C;ﬂ’i"o)’(a’z) Ps x [eBTe=Deqc] where

CB+N@D)  finy [ [502/200(he(@~(Q—B)Re2D)].
s e—0

Let
¢ =h—(Q—pB)Re-|+aGs(,z)+c¢
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where Gg(w, z) = Gg(e¥, e?). We write LF;ﬁ’ioo)’(a’z) for the law of ¢. If & = 0 we

simply write it as LEY»*%.

Theorem 3.12 ([3, Theorem 2.22]). Fix W > y2/2. Let ¢ be as in Definition 2.9 so that
(8, ¢, 00, —00) is an embedding of a sample from Mgifzk(W). Let T € R be sampled from
the Lebesgue measure dt independently of ¢. Let 5(2) = ¢(z + T). Then the law of $ is

given by 30 ﬁ)zLFéﬂ’iw) where f = Q +y/2—W/y.

When a sample from Md“k(W) is embedded as (S, ¢, 6, £00) for some 8 € (0, ),
then (¢, 0) are uniquely determined by the marked quantum surface structure. The fol-
lowing lemma is a straightforward variant of Theorem 3.12 that describes the joint law of

(¢.0).

Lemma 3.13. Fix W > y2/2and B = Q + y/2 — W/y. When a sample from Md“k(W)
is embedded as (S, ¢,i0, 00, —0), then the law of (¢, 0) is

_r
2(Q - p)?

Proof. By Girsanov’s theorem as in (3.5) in the proof of Theorem 3.4, we have

LFgﬂaiOO),(V,u) (d(]b)lge(o,ﬂ)de.

LES ) (dg)ug(d’2) = LEY 2P (dg)az. CH

Let M be the law of ¢ in Theorem 3.12 so that the law of the marked quantum surface
(8.¢.00,—00) is MG (W). Now we sample (¢.z, T') according to jug(d>z) M (d¢)dt,
where dt corresponds to the Lebesgue measure on R. Similarly to the proof of Theo-
rem 3.4, let 5(2) =¢(z+ T) and u =z — T. Then by Theorem 3.12 and the definition

of MJSK(W), the law of (¢, u) is OB L LFPE (dg) 114 (d22). By (3.8) this equals

_r
2(0 - p)?
Let S be the marked quantum surface (S, 5 u, —00, 00). Since Reu = Rez + T and dt
is translation invariant, the joint law of (S, Reu) is Md‘Sk(W) x dt. Comparing to (3.9),
we see that for each t € R, if (¢, 6) is sampled from LF?”WXG) +(B,£00) (dp)lo<p<d0,

then the law of (§, ¢, 1 + i6, 0o, —00) viewed as a marked quantum surface is M‘lj‘szk(W)
Setting t = 0 we conclude. |

LFfsy’Hie)’(B =) (dp) x 1ge(0,mydbd. (3.9)

The following lemma allows us to transfer the LCFT description of M‘lﬁ,szk(W) from §
to H.

Lemma 3.14. Suppose € R and u € § with Reu = 0. Let exp : § — H be the map
z > e%. If ¢ is sampled from Lng’u) then the law of exp e, ¢ is LF](}(E’e )

Proof. Itis easy to check that for z € § we have

C§0,iw),(d,2) —oc(Q+(x)|Rez|+ RCZ(ZImeZ) o /2
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so for u € § with Reu = 0 we have Cs(o’ioo)’(a’u) = C]ff’eu). Here

C(Ot 20) _ (2Im20) o /2|Z |—206(Q a)

is the prefactor in front of Py x [e@~2)dc] in the description of LF](I_%’ZO) from
Lemma 2.2. Finally, since the law of & := h o exp™! is Py and Gs(z, w) = Gy(e?,e?),
we see that

expe, (h— Q[Re:| + aGs(-.2)) = h—2Qlog|- |4 + aGu(- 7).
Adding a random constant ¢ sampled from e@~2)¢dc completes the proof. ]

We only record the LCFT description of Md“k (2 + y?) since it is particularly simple,
and it is also the only case we need for our conformal welding result in Theorem 4.1.

Lemma 3.15. Sample (¢, X) from LF]%I"i) X dx where dx is the Lebesgue measure on R.
Then the law of (H., h, i, 00, X) viewed as marked quantum surface is 2 Q ,Md‘Sk(Z +72).

Proof. Since W =2 + y2, wehave B = Q + y/2— W/y = 0. By Lemma 3.13, there
is a constant C € (0, co) such that if (¢, 0) is sampled from LF(V’el)(d¢1)lo<g<,,d9
then the law of the marked quantum surface (S, ¢1, 6i, co, —00) is 2Q Md“k(2 + yz)
By Lemma 3.14, if we set ¢, := exp e, ¢, then the law of (¢2,0) i

i0 .
LF]%I”Z )(d¢2)10<9<,,d9, and the law of the marked quantum surface (H, ¢,, e'? 0o, 0)
is 22 MEF 2 + y2).
Finally, let fe : H — H be the conformal automorphism fixing oo and sending % > i

(i.e. fo(z) = 55 —cot0). Setting ¢ := fy ) ¢ and x = fy(0), the law of (¢, 0) is
ﬁLFg’i)(dqﬁ)lkgq,d@ by Lemma 2.4, so it is a calculus exercise to check that the

law of (¢, x) is LF(V ) % dx. On the other hand, the law of the marked quantum surface
(H, ¢.i,00,x) is ZQ MEF (2 + y2). .

4. Proof of the FZZ formula

In this section we carry out the strategy outlined in Section 1.2 to prove Theorem 1.1.
In Section 4.1 we make a precise statement (Theorem 4.1) about the conformal welding
results for QD ; and Md‘Sk (y?/2) that we discussed in Section 1.2. We postpone its proof
to Section 5. In Section 4.2, we prove the extension of it where the weight of the bulk
insertion is generic. Based on this, fora € (y/2, Q — y/4) we identify the inverse gamma
distribution for the area law in Section 4.3. In Section 4.4, by relating the inverse gamma
distribution and the FZZ formula, we prove that U(«) = Upzz() fora € (2/y, O —y/4).
In Section 4.5 we show that U(«) has an analytic extension on a complex neighborhood of
(2/y, Q), which implies U(x) = Upzz(e) fora € (2/y, Q), and hence the inverse gamma
law for this range also. Finally, in Corollary 4.19 we extend the probabilistic definition of
U(w) to the range @ € (y/2, Q) in a way that matches Upzz (o).
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4.1. SLE bubble zipper with a quantum typical bulk insertion

Let Bubblep (i, 0) be the space of counterclockwise simple loops on H that pass through 0
and surround i. More precisely, an oriented simple closed loop 7 on C is in Bubbleg (i, 0)
if and only if 0 € n, n\ {0} C H, i is inside the bounded component of H \ 7, and
n surrounds i counterclockwise. For n € Bubbley (7, 0), let D, (i) and Dy(co) be the
bounded and unbounded components of H \ 5, respectively. The point O corresponds to
two boundary points on D, (co) which we denote by 0~ and 0" such that n goes from 0T
to 0.

Recall QD ; (£) and M§'S(y?/2:£.-) as defined in Sections 2.3 and 2.4. Our proof of
the FZZ formula relies on the following conformal welding equation in the same spirit as
Theorem 2.13.

Theorem 4.1. There exists a unique probability measure m on Bubblen (i, 0) such that
the following holds. Suppose that (¢, n) is sampled from LF%”) X m. Then the law of
(Dy(0),¢,i,0) and (D (00), $,07,0%) viewed as a pair of marked quantum surfaces is
given by

o0
C/ QD ;(r) x ,Mgifzk(yz/l - r)dr  for some constant C € (0, 00).
0

Similarly to Theorem 2.13, Theorem 4.1 says that if we conformally weld QD ;
and M§5(y%/2), we get the curve-decorated quantum surface whose embedding can be

described by LF](}}I”” x m. The proof of Theorem 4.1 uses ideas which are orthogonal to
the rest of the proof of Theorem 1.1. Therefore we postpone the proof of Theorem 4.1 to
Section 5. As part of that proof we will show that the measure m comes from collapsing
the endpoints of a family of SLE, (p—; p+) curves while conditioning on surrounding i.
For the purpose of proving Theorem 4.1, we do not need such a detailed description of m.

4.2. SLE bubble zipper with a generic bulk insertion

In this section we extend Theorem 4.1 from the y-bulk insertion to the case of a generic
one. We start by defining quantum disks with an «-bulk insertion.

Definition 4.2. For o« € R, let ¢ be sampled from LF](}‘])I’ ) We write M‘lnf(}‘(a) for the
infinite measure describing the law of (H, ¢, i) as a marked quantum surface. Similarly,
when ¢ is sampled from LF](}?I’ -9 4 defined in Lemma 3.8, we write M‘ljiflk (o) for the
law of (H, ¢, i, 0) as a marked quantum surface.

Remark 4.3 (Choice of parameterization). Weight and log singularity are two different
parameterizations of vertex insertions for quantum surfaces; see [18, Tables 1.1 and 1.2]

for more choices of parameters. We parameterize Mgiszk(W) using weight W because the

most important property we need for M35 (W) is the conformal welding identity, where
the weights are additive. We parameterize M{i¥(c) by the log singularity o because this
is the one used in the FZZ formula and it behaves nicely under Girsanov transform; see

Lemma 4.7.
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By Proposition 3.9, =M‘lﬁslk()/) = CQD, ; for some constant C. Therefore, Theorem 4.1
says that modulo a multiplicative constant, conformally welding samples from Md‘Sk ()

and zMg‘fzk(yz /2), we get a sample from LF](H}I”I) decorated with an independent SLE curve.
In this section we show that the same holds with y replaced by «.

We first give an explicit description of the disintegration of :Md“k () over the bound-
ary length.

Lemma 4.4. For ¢ € R and h sampled from PH, let h(z) = h(z) =20 log |z|+ +
aGu(z,i) and L = vi(R). For £ > 0, let LFﬁ” () be the law ofh + 2 log T under

(@—0)—1
the reweighted measure 27% 22 ”—
Y [ 3@-0)

quantum surfaces (H, ¢, i) with ¢ sampled from LF](gf ”)(E). Then Md“k(a {) is a mea-
sure on quantum surfaces with boundary length £, and

Py, and let Md“k(a L) be the measure on

gt = [T 0 an st = [T adenae @

Proof. 1t is clear that LF](}%’i)(E)-a.e. we have vy (R) = £. To see that fooo LF](}‘])I"i)(K) dl =

LF](}‘])I‘ ’i), we note that for any non-negative measurable function F on H ~1(H) we have

¢ 2 (7@~
/ / (h+ log + )2—“2/2 Y Pu(dh)dt
Y Ly©@9Q)

= / / F(ii + ¢)27912@=2)¢ g¢ p(dh)
R

using Fubini’s theorem and the change of variable ¢ = %10g %. This yields

f0°° LFI(;;I‘ ’i)(ﬁ) dl = LF](;; ’i), since the left hand side of the above equation characterizes

f0°° LF](}?I’ ’i)(ﬁ) d?{ and the right hand side gives LF](}?I’ *) thanks to Lemma 2.2. The second
identity in (4.1) then follows from definition. ]

We state without proof the variant of this lemma for M‘ljislk ().

Lemma 4.5. For o € R and h sampled from Py, let h(z) = h(z) — 2Q log |z|+ +
aGu(z,i) + LGu(z,0) and L = vz(R). For £ > 0, let LES" (€) be the law of h +

2 @-0)
= log T under the reweighted measure 2% 2122 [ - Py, and let Md‘Sk(oz £) be the

Y 1 3 @—0)+1
measure on quantum surfaces (H, ¢, i) with ¢ sampled from LF(a ')(Z) Then Mdlbk(oz £)
is a measure on quantum surfaces with boundary length £, and

. 0 .
LE&D 00 — / LEG 00y de,  MEK(@) = / M@0 dl.  (42)
0

To generalize Theorem 4.1, we also need to deform our measure on curves. Given
n € Bubbley (7, 0), let ¥, : H — Dy (i) be the unique conformal map fixing 7 and 0. Let
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m be the measure on Bubblep (i, 0) in Theorem 4.1 and A(a) = 5(Q — «/2). Let my be
the measure on Bubbley (i, 0) obtained by reweighting m as follows:

dmg
dm

We now are ready to state the bubble zipper result for quantum disk with «-bulk
insertion. We only consider « > y/2; for such o we have |LF](;])I‘”)(1)| < oo by Lemma 2.7.

() = |y ()[PP2. (4.3)

Theorem 4.6. There exists C € (0, 00) such that the following holds. For o > y/2,
suppose (¢, n) is sampled from LF](}%’I)(I) X My. Then the law of (D;(0), ¢,i,0) and
(Dy(c0), ¢, 07,0%) viewed as a pair of marked quantum surfaces is given by

o0
C / MET (@) x M5 (y?/2:1,r)dr. (4.4)
0

The proof of Theorem 4.6 is similar in spirit to that of [3, Proposition 4.5]. We begin
by explaining how a Liouville field with specified boundary length changes under a suit-
able reweighting.

Lemma 4.7. Leta« > y/2. For any £ > 0 and ¢ € (0, 1), and for any non-negative mea-
surable function f on H~'(H) for which ¢ — f(¢) only depends on ¢|m\ B, (i),

/ [(@) x 3@ lmnde@) gL ED (g) = / f(@)dLES (). @4.5)

Moreover, the same holds when we replace LFg’i) and LF](;E’D with LF%’D’(V’O) and
LF](I—%J),(%O).

Proof. We only explain the proof of (4.5) since the same argument works for LF%’i)’(y’o)

and LF](}?I"i)’(y’O). For a GFF h sampled from Py, let h=h-— 20 1log| - |+ + yGu(,i).
Let 6, be the uniform probability measure on dB,(i) and let § := (2log | - |+, 6¢), where
(-, -) means pairings of generalized functions, hence (-, ;) means average over .. Recall
Gu(x,y) = E[h(x)h(y)] from (2.3). We see that (Gg (-,7), 6) = —log(2¢) + §. Thus,
gs(i) =he(i) + (y — Q)8 — ylog(2¢). Let E = Ep be the expectation over Pp. By the
description of LF]%/’” from Lemma 2.2, we have

/ F(@) x 3@ 1) @9 GLEGD
— 22, 3@y / E[e@ NGO+ 17 1 0)]e¥=2) ge
R
— 2-0%/2(35) b @) @) (- 0)8 / Ee@ 0 17 + 0)]e@D de.  (4.6)
R
Define Gy (z.i) := E[h(2)hs(i)] = (Gu(z,-), 0¢). Then

Gu(z.)mB.6) = Gu(z,i)|m B.¢) + 6.
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By the Girsanov theorem and the fact that f(¢) only depends on ¢|m\ B, (i), we have
/ ]E[e(“_y)hg(i)f(ﬁ—i— C)]e(a—Q)c de
R
= E[e@ D] /R E[f(h + (@ — y)Gi (-, i) + ¢)]e@ D¢ de
= E[e@ k@] /R E[f(h + (& = y)Gu(.i) + (@ —y)§ + )]e® D de. (4.7
Since Var(hs(i)) = [ Gu(z, w) 0,(dz) O, (dw) = —log(2¢) + 28, we have
E[e@ k@] = (2)=2@=1)?o@=1)%5 (4.8)
On the other hand, with the change of variable ¢’ = (¢ — y)d + ¢, we get
[ EU G+ @ pGad) + @~ )3 + 0l do
— o~ (@ 1)(@=0)8 AE[f(g+ (@ —y)Gu(.i) + C/]e(cx—Q)c/ de’
_ o—@—)(@-0)55a?/2 / £(#) dLES.
Combining this with (4.6)—(4.8), since
27%/2(2g) 2@ (@ NW=0) o (26)=3 @1 @8 o p=@=)@=Q)pa/2 _ |

we have
/ F() x 5@ 1) @0 gL R _ / F(¢) dLE@.
Disintegrating over £ completes the proof. ]
We also need the following analog of Lemma 4.7 which is proved in the same way.

Lemma4.8. Leta > y/2, and let n € Bubbley (i, 0). Let Yy, : H — Dy, (i) be the confor-
mal map fixing 0 and i, and let H; ¢ := H \ ¥, (B¢ (i)). Let 8, be the uniform probability
measure on 0B (i) and 0, = (¥n)«be. Forany £ > 0, ¢ € (0, 1) and for any non-negative
measurable function f on H™'(H) for which ¢ +— f(¢) only depends on olu, ., we
have

/ f(¢|Hn£) X g%(az—yZ)e(a—y)Gﬁ,é\g) dLF](éI/,i)(z)
= / F@lm,.) x [ (D297~ aLEE" (0).

Proof. Let§ := (2log| - |+, é;) and Gy (z,i) := (Gu(z. "), é\g). Then for z € H, ¢,

Gr(z.i) = (=log|z = Yy ()| —log|z + Y ()]. ) + 2log |z|4 + 8
=—loglz—i|—log|z +i|+ 2log|z|+ + § = Gu(z,i) + 6.
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Indeed, since —log |z — :| — log |z + | is harmonic on D and v, is conformal, the map
—log |z — ¥y ()| —log |z + ¥ (-)| is harmonic on B, ().

Let n, = ¥ (0B¢(i)). Then 58 is the harmonic measure on 7, viewed from i. It is
well known that [ log |z —i| 6, (dz) is the conformal radius of 7, viewed from i, and
this conformal radius can alternatively be computed as &|, (i)|. Thus (Gm(-, i), és) =
—log |2y, (i)] + 6.

Finally, Var((k, ég)) =/ Gz, i) és(dz) = —log [2ey,(i)| + 28. Now the same
computation as in Lemma 4.7 with 2¢ in (4.6) and (4.8) replaced by 2ev, (i) gives
Lemma 4.8. ]

Proof of Theorem 4.6. With slight abuse of notation, Theorem 4.1 gives
LEYD (1) x m = c/ MEK(ysr) x MEX(p?/2:1,r) dr, (4.9)
0

where (4.9) should be interpreted as saying that when a pair of quantum surfaces is sam-
pled from the right hand side, conformally welded, and then embedded by sending the
bulk and boundary points to i and 0 in H, the law of the resulting field and curve (¢, 1) is
the left hand side. In our argument we will treat the right hand side of (4.9) as a measure

on pairs (¢, n).
We use the notation of Lemma 4.8, so ¥, : Hl — D, (i) is a conformal map. Define

X =¢oyy+ Qlog|y,.

Fore € (0,1) and f a non-negative measurable function of ¢|m, ,, and g a non-negative
measurable function of 1, weighting (4.9) gives

/ f (¢IHn,g)g(n)e%("‘2‘V2)e(“‘y)xs(")LF%’i)(1) xm (4.10)

o 12— o— i is is
B C/o (/ f(@lm,.)gmez@ el ”"s“mi‘,f‘(y;r)xMS,zk(yz/z;l,ﬂ) dar.
4.11)

Since v, is holomorphic, log |, | is harmonic so (log [, ) = log [y, (i)|. Thus

Xe(i) = (X.0,) = (p o Yy + Qlog|yy].60.) = (§.0) + Qlog |y (). (4.12)

By (4.12) and Lemma 4.8, the expression (4.10) equals
N —a? _ ~
[ 1@, gl LD 1) x .
Recall that my = [y, (i)|7**/2+22=2m By Lemma 4.7 the integral (4.11) equals

c / ( / £l g M (e 1) x MIS(2/2:1, r)) dr.
0

The result follows by equating the above two integrals and letting ¢ — 0. ]
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A priori it is not clear whether my is finite. Using Theorem 4.6 we have the following.
Lemma 4.9. Fora € (y/2, Q + 2/y), the measure my, is finite.

Proof. Consider the event that vg (R) € [1, 2] where (¢, 1) is sampled from LF](I_‘])I‘ B % M.
Evaluating the size of this event using the two descriptions of the same measure of Theo-

rem 4.6, since |=Md‘Sk(ot; r)| « ry@Q) by Lemma 4.5 and

043 -1,p4/77—1

disk(,,2 /H.
e/‘/{0,2 (V /Z,E,r) X (54/1,2 +r4/y2)2

by Lemma 2.15, for some constant C € (0, co) we get

A3 =1,4/y2—1

LES) (v (R) € (1,2)}] Imq| = € / / P e e

04/v2=1,4/y2—1 24/y2—1,4/y2—1

Since G2 1rav2)2 < (13r4/72)2

for £ € (1,2), we conclude that
r %a—2

L 4r <oo,
(14 r4/v*)?

LESD {0y (R) € (1,2)}] | mq| < C24/7° / b
0

where finiteness follows from « € (y/2, Q + 2/y). Since LFI(P%J)[{U(,, R) e (1,2)}] >0
we get |[my| < oo. L]

The following proposition is a rephrasing of Theorem 4.6 which is more convenient
for our argument in Section 4.3.

Proposition 4.10. Fixa € (y/2, Q +2/y) and sample ¢ from LESD (1)¥ (so (H, ¢, )
has law M‘lﬁ’sok(a; 1)*). Let 1 be a sample of m?, independent of ¢. Let £ be the quantum
length of n and ¢po = ¢ — %log L. Then (Dy (i), ¢o,i,0) and (Dy(c0),¢,07,07) viewed
as marked quantum surfaces are independent. The law of the former is M‘}“lk (ce; 1)*. The
law of the latter is the probability measure proportional to

0, )
/ r7(°‘_Q)M81,52k(y2/2; 1,r)dr.
0

Proof. From the definition of M{%(: r), we see that if (D, z) is sampled from
MEY(a: r)¥ then (D, ¢ — 2 % logr, z) has law MY (e: 1)F. Since M{5(a: D* and
M“l"slk (or; 1)* are the same 1f we ignore the boundary marked point for Md‘Sk (o; D, by
Theorem 4.6, the joint law of (D5 (i), ¢, i,0) and (D5 (c0), ¢, 07,07) is the probability
measure proportional to

M‘lﬁflk(a; 1)* x/ |<Md‘5k(a r)|=Md“k(y2/2 1,r)dr.
0

Finally, since |¢M°1‘i’slk(oe; )| = r|Md15k(a r)| ocr 7@-0) by Lemma 2.7, we are done. =
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4.3. Identification of the inverse gamma distribution

By definition, M‘lﬁfok(a; ¥ and M‘ﬂslk(a; 1)* are the same if we ignore the boundary
marked point. Therefore, Proposition 4.10 can be viewed as a recursive property for
M‘lhj)k (ar; 1)*. The main goal of this subsection is to use this property to identify the law
of its quantum area.

Proposition 4.11. Fora € (y/2, Q — y/4), the law of the quantum area of a sample from

disk /. 1\# + . . . . . 2 . 1
Mo (5 1)" is the inverse gamma distribution with shape ” (Q —a) and scale ———5> CTnL

In the setting of Proposition 4.10, we write ¢ = 1y (H) and A1 = g, (Dy(i)). Let
A = g (Dy(00)) and recall that £ is the quantum length of 7. Then 4( and +; agree in
law, +41 is independent of (A, £), and

Ao = A+ £2A; (4.13)

since £2 1 (resp. #4) is the quantum area of the region inside (resp. outside) 1. Note that
(s, L) is determined by (D;(00), ¢,07,07), whose law is given by boundary reweight-
ing of M3 (y?/2) at the end of Proposition 4.10. By Proposition 2.14, we can describe
(A, £) in terms of Brownian motion in cones.

Recall from Section 2.5 that for the cone €y = {z | argz € (0, 0)} with 6 € (0,27), the
measure Mg, (z) is the probability measure corresponding to Brownian motion started at
z and killed when it exits €y. For x, y > 0 we define using a limiting procedure a measure
me, (x, ye'?) corresponding to Brownian motion started at x and restricted to the event
that it exits €5 at ye'. Using a similar limiting procedure, we can define me, (x, 0) for
x > 0and me, (z, 0) for z € €y as well; see Appendix A for more details.

As stated in Lemma A.3, essentially by the Markov property of Brownian motion, for
0 < 6 < ¢ < 27 there is a constant ¢ > 0 such that for ¥ > 0 we have

o0
me¢(u,0)# = c/ mfa(u,reie) X mg¢(rei0,0) dr. (4.14)
0

More precisely, if we sample (Z', Z?) from the right hand side of (4.14), the concatena-
tion of Z! (a path from u to re'?) and Z2 (a path from re?? to 0) yields a path Z from u
to 0 whose law is me, (u, 0)#. We refer to Figure 2 for an illustration.

For (Z!, Z?) sampled from (4.14), define the random variables

A = durationof Z', L = Z'(A4)/e'% > 0. (4.15)

Lemma 4.12. The law of (A, L) is the same as that of (A, L/u) in (4.15) with
1
¢ =55 0 =ny?/4andu = —-

Proof. By (4.14), since |mg, (re'?,0)| oc r=7/% = ry©@Q (Corollary A.2), the marginal

law of Z! is given by (f;° r%("‘_Q)mfe (u, re'?) dr)*. The claim with u replaced by
m then follows from Proposition 4.10 and Lemma 2.14. Finally, Theorem 1.3 gives

1 1
— |

asin — \/25inf"
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Fig. 2. We split the Brownian path Z in €y from u to 0 at the time it first hits the ray ei9R+ for
some 6 € (0, ¢) to get the subpaths Z 1 (red) and Z2 (blue). We let A4 be the duration of Z! and
L be such that Le' is the endpoint of Z1.

We now give a characterization of the inverse gamma distribution that implies Propo-
sition 4.11.

Proposition 4.13. Let 0 < 0 < ¢ < 27w and u > 0. Suppose X is a real-valued random
variable independent of (A, L) as sampled in (4.15). Then
L2
XL A+ 5X (4.16)
U

if and only if the law of X is the inverse gamma distribution with shape 7 /¢ and scale
u?/2 as described in (2.2).

Proof of Proposition 4.11 given Proposition 4.13. In (4.13), each of 4( and 4; agrees
in law with the quantum area X of a sample from :M‘lﬁf(}‘(a; 1)*. Moreover, by Propo-

sition 4.10 we know #; is independent of (4, £), so by Lemma 4.12 we have X 4
A+ I;—;X . Then Proposition 4.13 gives the law of X. Here the constraint « < Q — y/4
comes from ¢ = % € (0,2m). n

To prove Proposition 4.13, we need some basic properties of Brownian motion in
cones whose full proofs we defer to Appendix A. See Figure 2 for an illustration.

Lemma 4.14. Suppose 0 < 0 < ¢ < 2w and u > 0, and define Z', Z? by the right hand
side of (4.14). Let A, L be defined as in (4.15), let T be the sum of the durations of Z
and Z?, and let Y = ]’f—i(T — A). Then the laws of both T and Y are the inverse gamma
distribution with shape /¢ and scale u?/2, and Y is independent of (A, L). Moreover;
fore € (0,/p), we have E[(L/u)?] < 1.

Proof. By (4.14), the law of T agrees with that of the duration of a sample from
me, (u, 0)#, which by Corollary A.2 is the inverse gamma distribution with the desired
parameters. By (4.14) and Brownian scaling, the conditional law of Y given (A, L) agrees
with the law of the duration of a sample from me, (ue'?,0)*, and so by Corollary A.2 it
is the inverse gamma with shape 7/¢ and scale u?/2. Finally, the claim E[(L/u)?] < 1
is Lemma A.5. ]
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Proof of Proposition 4.13. With notation as in Lemma 4.14, we have

L2
r=A4+ —Y.
u

Since both T, Y are distributed as inverse gamma with shape /¢ and scale u?/2, and
Y is independent of (A, L), we obtain the “if”” direction of the proposition.

Now we check the converse. Let (41, L1), ..., (4,, L,) be independent copies of
(A, L) in (4.15). Suppose X satisfies (4.16). For any positive integer n, iterating (4.16) n
times shows that X has the same distribution as

L? L2 L2 mL?
A1+—(A2+—( (A + X) )) = Sn+(1_[u—2)x,
1=

where S, is a function of {(A4;, L;)}1<i<n. Since Lemma 4.14 gives E[(L/u)®] < 1 for
some & > 0, by Markov’s inequality we have [];_, Ll.2 /u? — 0 in probability as n — oo,
and hence S;, — X in distribution as n — oo. Thus any solution to (4.16) is the distribu-
tional limit of S,,, which is unique. ]

4.4. From the inverse gamma distribution to the FZZ formula

Recall (¢*?®) from Definition 2.5. By Definitions 2.5 and 4.2, fora € (2/y, Q), 0 = 0
and up > 0,

(ea¢(i)> — LF](I_‘]’I‘J)[e—MMab(H)—MBVé(R) —1]
(&)
- / MEE (e O~ A18E 1] d
0
=/ | MY (e O] M (@ 0)F [~ A1BE — 1] d .
0

Here A represents the quantum area of a quantum surface sampled from Md“k(a £).
Recall Uy(a) from Proposition 2.8. By Lemma 4.4, we have

(e? @) / 07 @Dyl (; 1) e AT1BE _1]dE fora € (2/y. Q).

4.17)
where C = %2_“2/2 Uo(cr). By (4.17) and Proposition 4.11, we can prove Theorem 1.1

fora € 2/y, Q —y/4).
Proposition 4.15. U(x) = Ugzz(a) fora € 2/y, Q —y/4).

In order to prove Proposition 4.15, we first record two simple calculus facts which
will allow us to relate the inverse gamma distribution to the FZZ formula.

Lemma 4.16. Let x € (—1,1) anda € R\ Z. Then

n—1 —
cos(a arccos x) = —sm(na) Z = 2) F(n —;a)r(n 5 a)x”. (4.18)




M. Ang, G. Remy, X. Sun 36

Proof. The function T, (x) = cos(a arccos x) is a generalization of Chebyshev polynomi-
als, which reduces to the usual Chebyshev polynomials when a is a positive integer. For
x € (=1, 1), Taylor expansion gives

o n a+n
T TR Y
n=0
=a Z_: (22;’);: cos(%(a —n))F(a —;—n)r(_a ;n) sm(n% + n)
_—sm(na)z( j)nn‘ 1 (n—;a)r(n;a)xn. [

Lemma4.17. Leta,b,c,A € R satisfya>0,b>—1,¢c <b/2—1/2,0 <A < 2a. Then

0 o0 a2
/ dy yPe™ / dt t€ exp(—yzt - —)
0 0 t

o0

1 —A)" g nt2e—b+1 b 1 n b1
_ ! (242 —c—2)r(2+242) @
22; staeg)l(3r3z) @

Proof. To compute the double integral we expand e~*? and then perform the change
of variable u = y?t, v = a?/t. Hence y = Juv/a, t = a?/v, dydt = rdudv
Therefore

(9] (o] a2
/ dy ybe™ drt€ exp(—yzt — 7)
0

o iy Y o0 [e%e) 2
= Z ( ') / dy yb+"/ dit€ exp(—yzt — a_)
n! 0 0 t

n=0
00
(— l)”/ / e , o

= dudv —— Cv ca " (uv /2+n/2€ u—v

r;) 21)4/1,{1) ( )

1 i (_A)n —n+2c—b+1 *° * b/2+ _ o o
) a du dv yb/?tn/2=1/2,b/24n/2—¢=3/2 ,—u—v

2 n!

n=0

— 1 i (_A)na—n+26—b+11" n i b c 1 r n N b N 1
B 2n=0 n! 2 2 2 ) > ) .

The conditions on the parameters are such that the above integrals and series converge.
For n = 0 in the sum, the integrals over u and v converge respectively if » > —1 and
¢ <b/2—1/2. The condition A > 0 is obvious. The condition A < 2a is required for the
series over n to converge, as can be checked on the last line. ]

Proof of Proposition 4.15. To start off we assume that the parameters u, up > 0 are cho-
sen such that

2
Mo gn ™ ¢ ©.1). (4.20)
7 4
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This constraint will then be lifted by an analyticity argument in the variable ©p. Applying
integration by parts to the integration over £ in (4.17), we get

. C o0 .
(V) = -~ (a” 5 / 07 @D G (@ DF[(2ulA + pg)e A8 g
- 0
© 2 : A 24
_ c// ¥ @D WK (@ (A + 2y A)e ™ 4] dy, @21)
0

where y = /ut, C' = —2(50_0{)“@_“)/” and A = pup/u'/?. Now we use Proposi-
tion 4.11, which requires assuming & < Q — y/4, and we apply Lemma 4.17 twice with

(a,b,c, L) equal to

1 2 2
— Z@-0). @-0)-1.A
(2 sin(wry2/4) ¥ “-0) J/(a 0 )

and

1 2 2
_—  —(a— —(a — A
(2 sin(ny2/4)’ 14 e-O+1 J/(a Q). )

The constraints on (a, b, ¢, A) required by Lemma 4.17 are satisfied provided that
a €(2/y, Q) and (4.20) holds. Hence one arrives at the following power series expansions
in the parameter A:

c’ /0 7 @D IR (g 1) e 4] dy
c’ (—l)"-H : nt 2(0—a)+1
=5 Z TQV sin(wy?/4))" "y
n=0 ’
1 1 1 1
x F(g =0+ E)F(g Q-+ 5), 4.22)

’ * 2 (@—0) 4ydisk # —Ay—y2A

C /0 yv M (a; 1)"[2yAe 1dy

=C" Z (_nk')n (ZW)YH_%(Q_O{)
n=0 :

xr(f+l(a—g)+1)r(ﬁ+1(Q—a)), (4.23)
2y 2y

2 2 (q—
(4sinnZ )V(a =2

n o __
where C" = TC0-a)
applying in (4.23) the identity

C’. By shifting the sum in (4.22) to start at n = 1 and

n n 1

1 n 1
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2
) foll 00 ( )L)n+1 ]T)/z n+3(Q—a)+1
ad(i)y E A in =—~—
(e )= 2 n! (2 - 4 )

n=0
2+ (Q—oc)+ ) (%+%((x—Q)+%)

) n+2(0—a)
S (e t)
4
1 1

we obtain

M8 (S

«r(§+@-o)r ( T (Q—a))

To then obtain the claimed formula Ugzz(«), one simply needs to apply Lemma 4.16
. _ 2 _ . .

with a = 7(0[ — Q) and x = A/sin(;ry?/4). Thanks again to (4.20) and the fact that

a € (2/y, Q), the conditions to apply the lemma are satisfied. This gives

ag(i) pa—0Q wy 1 : 20
(e ) =2C y (x—0) Sin(ZTﬂ(Q — ) (2 51n(7ry2/4))

X cos(%(a -0) arccos(/\ v sin(ny2/4)))
—20"r( 200 =) (1= 200 - ) sty /) costia — Oms)

where the definition of s was given in (1.5); see also (4.24). We compute
2 2 20—
2C”I‘(—(Q — a))F(l -0 - oe)) (2/sin(y2/4)) v (@)
14 14

1
4 2 7(0‘_Q) O—«a 20—
= —(sin —T[Z ) W 2/2(2_y/2a)"(Q «

7 %(Q_“)F y "\\r 200 4 |
(mmm) Gl R

QO—a
:iz—az/Z ﬂr(y—z/‘” T ﬂ_y_z T z_a_i_l
Y 2ve T'(1 —y2/4) 2 4 y y?
U

rzz()/ cos((a — Q)7s).

Putting everything together we conclude that (¢*®®) = U(a) = Ugzz(e) provided that
condition (4.20) holds.
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We will now extend the result by analyticity in pp to the full range of up € (0, 00).
Notice Ugzz(«) contains the factor cos((c — Q)ms) where s and up are related by

- S S LD )
up = up(s) = SnGy2 /) cos > (4.24)

We want to find an open domain D C C of s where the map s — pp(s) will be biholo-

morphic onto its image. Since %| s=0 COS % = 0, we cannot include 0 in D. Since
2,2 . .

cos T =1 — T2=s% + 0(s?) and the second order s? is non-zero, we can include the

sector

Ses:=1{re?? |6 e(—e,m/2+€),0<r <6}

for two small parameters €, § > 0. Indeed, in S¢ s the angle 6 is contained in an interval
of length strictly less than 7. We also want D to contain an open neighborhood in C of
i(8/2, 00) where we wish to extend the equality U(«) = Upzz(r) and an open neighbor-
hood of (§/2,1/(2y)) where we have already established it. From all these considerations
we choose

D:=S8ScsU{x+iy|xe(§/2,1/2y), y € (=8/4,6/4)}
U{x+iy|xe(=8/4,8/4), y € (§/2,00)}.

For ¢, § small, the map s — pp(s) is then a biholomorphic map from D onto its image,
an open domain we call D’. Now the exact formula Ugzz(«) is clearly an analytic
function of wp on D’. We must argue the same is true for the probabilistic definition
U(a) = (e*®*®) Forall up € D', one clearly has Re iz > 0, which by Lemma 2.6 gives
finiteness of |(e*?®)|. Moreover, LF](Ig ’i)[|v¢ (R)e~HHeE)=1pve (R)|] s also finite in the
same region. This implies that LF](I%"i)[—MB Vg (R)e~ o H)=15veR)] is analytic in pup
when Re(pp) > 0. Taking anti-derivative in pup and using the Fubini theorem to inter-
change the integral in .t g and LF](}‘;I‘ ’i), we see that (e*?®)) = LF](Ig ) [e—Hio H)—1pvg (R) _
1] is analytic in up when Re up > 0. Since the equality of analytic functions U(x) =
Urzz (o) in the variable pp holds on the interval given by (4.20) which is contained in the
open set D’, it holds on all of D’. In particular, it holds for Z—%\/sin(nyz/@ € (1, 00).

By continuity we recover the equality at the special value i‘/—%\/sin(n y2/4) = 1. This
completes the proof. ]

4.5. Analyticity in a and the proof of Theorem 1.1

In this section we prove that U(«) is complex analytic in « around (2/y, Q). The proof
utilizes the method given first in [29, 42], adapted to the case where there are both area
and boundary GMC measures in the correlation function. Together with Proposition 4.15
this will conclude the proof of Theorem 1.1. We will then prove Corollary 4.19 and The-
orem 1.2 that extend the range of o from (2/y, Q) to (y/2, Q).

Proposition 4.18. For any compact set K C (2/y, Q), the function o — U() is complex
analytic on a complex neighborhood of the set K.
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Proof. To start, we use the following identity coming from Lemma 2.6:

apiyy _ U@

(e ) = m, (4.25)
to place the bulk insertion at the location 27, and will prove that (¢®??) is analytic in a.
Fix ro such that e™"0 < 1/2. Let & be the free boundary GFF on H, which is normalized
to have zero average over the upper half unit circle. Thanks to the Markov property of the
field (see for instance [9, Theorem 5.5]), we can write the decomposition &2 = hy + h»,
where & is a Dirichlet GFF on B(2i,e™"°) and h, is a field which is independent of /1,
and smooth in a neighborhood of 2i. Notice we placed the insertion at 2i so B(2i,e~"0)
does not intersect the upper half unit circle. Consider now the one-dimensional process
hy,(2i) obtained by taking the mean of /1 (2i) over the circles of radius e™" centered
at 2i, assuming r > ro. The main fact we will use about this field is that &y ,4,(2i) —
h1,-(2i) is a Brownian motion independent of (4(2));em,, where H, := H \ B(2i,e™").
Record also that E[/ , (2i)?] = r — rg and the notation h, := hi,y + hy. From these facts
we can deduce that

a2

E[e1rt1CO= S 1 GO (h(2)) e, )]
— oS Elh @)1= % Elhy r4120)]
% E[eah1,r+1 (2i)—0th1,r(li)]E[eﬂthl,r(2i)—%]E[h1,r(2i)2]F((h(Z))zeHr)]
— E[eahl,r(Zi _%E[h”m)z]F((h(Z))zeH,)]
= E[eahr(zi)—%E[hr(Zi)zlF((h(z))zeHr)]
= B[t 11 @)= T R 1O ((h(2)) e, )]
Now we can obtain U(«) from the limit U(a) = 2-e*/2 lim; o0 Uy (), where

N o2 .
Ur(@) i= [ de e [erhr D=5 Bl 00 exp(—e7up (H,) — 50y (R) — 1)]
R

When « is a complex number, we write « = a + ib. We want to prove there exists a
complex neighborhood V' containing the set K such that for any compact set K’ contained
in V, U, («) converges uniformly as r — oo over K’. Setting h(z) := h(z) + aGpu(z,2i),
we have

|Ur+1(a) = Ur ()]
N o2 ,
_ /]Rdc @0 [o@hr 1N~ Blhr 1120 (o 5oy, (R))

x (exp(—e” up(Hy41)) — exp(—e” pup (H,))) ]|

< Cer?bz/ dc e@=9Q)
R

x E[exp(—e 2y (R)) |exp(—e”® 11 (Hy+1)) — exp(—e?* i (H,)) ]
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r+
<Ce 2

1,2 _

b /R de @O [exp(—e? i (Hy 41)) — exp(—e? uj (H,))]
Q;ll ]
From the second line to the third, we have applied the Girsanov theorem to the real part
of ah,41(2i), before moving the absolute value inside the expression. The last equality
follows from changing the integration variable from ¢ to y = e u;(H;) fori =r,r + 1.
Thus,

r+1;2 Q—a
=Clez? E[puz(Hr1) 7 — pj(H,)

; 12 Q—a
Ur1(@) = Up(@)| < C'e = " E[pj(Hypq \ Hy) 7 |

r o5
< €1 F QIR [y (Hyy \ H,) T .

The first inequality follows from (a + b)* < a® + b for s € (0, 1), and the second since
h and #h differ by roughly ar on H, 4, \ H,.
By the multifractal scaling of GMC (see e.g. [9, Section 3.6] or [43, Section 4]), we

have
_Q-a
_—

Combining this with the previous inequality, we deduce that |U,4+1(x) — Up()| <
e"®?/2=3(2-a%) Choosing the open set V' in such a way that b2/2 < 1(Q — a)* always
holds, all the inequalities we have given before hold true and hence we have shown that
U, (o) converges locally uniformly. Since U, («) is complex analytic in «, this proves the
analyticity of U(x). |

O—a
E[/’«h(HH—l \Hr)T] = e(_qu"'yzqz/z)’,

Proof of Theorem 1.1. From the exact formula, Ugzz (o) is a meromorphic function of «
on C. By uniqueness of meromorphic continuation, Propositions 4.15 and 4.18, we have
U(x) = Upzz(a) foralla € (2/y, Q). [

Proof of Theorem 1.2. Proposition 4.11 proves the theorem for @ € (y/2, Q — y/4).
To complete the proof we consider o € [Q — y/4, Q). Let L be sampled from
the power law %2_“2/2(70(05)6%(“_@_1 d{ where Uy is as in Lemma 2.7, and let
A = L?X where X is sampled from an independent inverse gamma distribution
with shape %(Q — o) and scale m. Let IT be the joint law of (A4, L).
Proposition 4.15 proves that IT[e 4 #BL _ 1] = Upzy(ar) for a € 2/y, Q — y/4),
but the argument works equally well for our range « € [Q — y/4, Q). Conse-
quently, LF%’”[@‘““MH)_“B%(R) — 1] = M[e #A4=#8L _ 1] by Theorem 1.1, so
LF](}‘;I‘ ’i)[vd, (R)e~ o H)=1npve®)] = [1[Le~#A~#BL] Therefore by standard arguments
of characterization of a law by the Laplace transform, the joint law of (g (H), vg(R))
under LF](I_';I‘ ) is the same as that of (A4, L) under IT, which concludes the proof. [

Since we have now established Theorem 1.2 for the whole range @ € (y/2, Q), we
have the following extension of the probabilistic definition of U(«) and of Theorem 1.1,
for which we omit the proof.
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Corollary 4.19. Let o € (y/2, Q). Fork e Nand a € (Q —y(k +1)/2, 0 — yk/2),
define

k
2 _ o0 .
Ue) = 22712, () / z%W—Q)—lE[e—WA—MBf -5 :ci(A)El]dZ. (4.26)
Y 0 i=0

Here the expectation is with respect to the law of A which is distributed according to

1 N ;
4sin?(wy2/4)’ Uo(Ol) 1S
given by the explicit formula (2.6); and the constants c; (A) are specified by the following
expansion in powers of L.

the inverse gamma distribution with shape %(Q — «) and scale

k
eThEAIEE = N7 () + O, (4.27)
i=0
Then this definition of U() is the meromorphic extension of (1.8) on (Q — y(k + 1)/2,
0 — yk/2) and it obeys U(a) = Upzz(a).
Finally, we provide a commonly used form of the FZZ formula; see [20, (2.44)].

Proposition 4.20. Fora € (y/2, Q) and £ > 0, writing A for the random area of a sample
from M“lliSk(a; {), we have

M e ) = 22 Oy 2 (5 - )V‘Q“”
y T(2(Q — ) \2 V sin(wy2/4)
0
Kool sz )

Here, K,(x) is the modified Bessel function of the second kind; see e.g. [36, Sec-
tion 10.25].

Proof. By Theorem 1.2, writing § = and considering £ = 1, we have

1
4sin(my2/4)
, g7 Q- o
MPR @ e ) = o [ 7V @O exp Bl gy
T2(Q-a)to

2 L-o) g /18
F(%(Q — ) (uB) KV(Q_Q)( 4up).

where the last equality follows from a change of variables s = ut and the integral identity

Ku(z) = 2(32)" [7 exp(—s — %)x‘% [36, Eq. 10.32.10] with the choice z = /4up

and v = %(Q —a). As for general £ we have M3 (a; £)#[e 4] = M3 (a; 1)#[e—1t?4],

ME* (@ 0[]

b /7#)5@“”,@ (O
- TGQ ) 2\ sin(ry?/4) @Y sinGry?/4) )

By Lemma 2.7, | M{*(a; )| = %2_"‘2/2(70 (@)€7 @ D=1 5o the result follows. n
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5. Proof of the SLE bubble zipper with a y-bulk insertion

In this section we prove Theorem 4.1. For technical convenience, we will consider
loops on H passing through oo instead of 0. More precisely, let ¥(z) = —z~! and
Bubbley (i, 00) = {n | ¥(n) € Bubbley (i, 0)}. We will find a measure on Bubbley (i, co)
with the desired property and then use ¥ to pull it back to get m in Theorem 4.1. The
proof is a limiting argument based on Lemma 3.15 and a three-disk variant of the confor-
mal welding result in Theorem 2.13. We set up the framework of the proof in Section 5.1
and carry out the details in Sections 5.2 and 5.3.

5.1. A conformal welding of three quantum disks

Set k = y?. Let 1y be an SLE,(y?/2 — 2, y?/2) curve on (H., 0, c0). Let H, the be
right component of H \ 1;. Conditioning on 7, let 7, be an SLE,(0; y2/2 — 2) on
(Hf{l ,0,00). We denote by & (H, 0, co) the law of (17, 12). For a general simply con-
nected domain D with two boundary points (a, b), we write P (D, a, b) for the conformal
image of P (H, 0, 00). As a straightforward extension of Theorem 2.13, we have the fol-

lowing conformal welding result.

Theorem 5.1. Let £,¢ > 0 and let (H, ¢, 0, 00) be an embedding of a sample from
Mgi,szk(Z + 2.0, 0"). Let (91, n2) be sampled from P (H, 0, o0) independent of ¢. Let H,
H}?z and H% be the left, middle, and right components of H \ (11 U 1), respectively. The
joint law of (H1,¢,0,00), (H}lz, ¢,0,00), and (H2, ¢,0, 00) viewed as marked quantum
surfaces equals

o0
C // M (Y2 /26 p) x MEF (25 prq) x MG (y?/2:q:4') dp dg (5.1)
0
for some C € (0, 00).

Proof. This is [4, Theorem 2.3] when W) = W3 = y2/2 and W, = 2. n

Fix § € (0, 1/2). Sample (¢, x) from LFI(HlI”i) x dx and sample (11, n2) from
P (H, x, 00), and restrict to the event that vg(x, 00) € (8, 1/2), vy(R) € (1,2) and i is
between 7, and 7,. Here and later, we write v4(a, b) to denote the vg-length of the inter-
val (a, b). Let Mg be the law of (¢, X, 11, n2) (restricted to the aforementioned event). See
Figure 3.

Lemma 5.2. There exists C > 0 such that for each § € (0,1/2), if (¢, X, 11, 12) is sampled
from Ms then the law of the three marked quantum surfaces of (H, ¢, n1, 12,1, X, 00)
bounded by 01, 1 and 0H is given by

1/2 p2—-b poo poo ) )
C / / / / MK (y?/2:a, p) x MIK(2; p.q)
8 1-b 0 0

X Mgi’szk(yz/2;q,b) dgdpdadb. (5.2)
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$1/2 X xTs

Fig. 3. Tlustration of (¢, X, 71, n2) under M. Sample (¢, x) from LF](I_}I”Z) x dx and sample (11, 72)
from & (H,x, 00). To represent geometrically the condition v (x, 00) € (8, 1/2), consider the points
x1/2 and xg such that vy (x1/2,00) = 1/2 and vy (x5, 00) = §. Then Mg is obtained by restricting
to the event that X € (x1/5, x5), i is in the middle of 71 and 72 and vy (R) € (1,2). Lemma 5.2
describes the law of the three shaded quantum surfaces.

Proof. Lemma 3.15 states that if we sample (¢, x) from LF](Hll”i) x dx then the law of the
quantum surface (H. ¢, i, x, 00) is CM{$(2 + y?) for some constant C. If we further
sample (171, n2) from & (H, x, oo) and restrict to the event that i lies between 1y and 75,
then by Definition 3.10 and Theorem 5.1, the quantum surface (H, ¢, 1, 12,1, X, 00) has

law
C [[[[ Mt /2.9 x ML) x HEEG 250,00 dq dpda db
0

for some C > 0. Further restricting to the event that vy (x, 00) € (§,1/2) and vy (R) € (1,2)
we conclude the proof. ]

In Section 5.2, we will show that the probability measure M f that is proportional
to M concentrates on the event that v, (X, 00) is of order § and log x is of order log §~1.
This effectively collapses the right boundary of (H, ¢, x, co). Building on this, we will
prove the following proposition. Recall that for two probability measures P, Q on the
same measure space, the total variation distance between P and Q is supy | P(A) — Q(A4)|
where the supremum is taken over all measurable sets.

Proposition 5.3. For each § € (0,1/2), let ms be the marginal law of (X, N1, 12)
under M 8#' Let M be LF](H}I/”) restricted to {vg(R) € (1,2)}. Then the total variational
distance of Mg* and M* x mg tends to 0 as § — 0.

In Section 5.3, we prove that by letting § — 0 in the integral (5.2), we get the con-
formal welding of QD ; and Mgifzk(yz /2) as in Theorem 4.1. Moreover, mg from Propo-
sition 5.3 has a weak limit supported on loops rooted at oo, whose pushforward under
z > —z~! gives the measure m in Theorem 4.1.

Our approximation procedure (where we conformally weld three quantum disks and
have one vanish in the § — 0 limit) may seem more complicated than necessary, but it is
advantageous for the following reasons. Firstly, in our setup the law of the field of My is
absolutely continuous with respect to M, so the statement and proof of Proposition 5.3 can
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avoid modifying the field in some way. Secondly, M; arises from a setup where the inter-
faces and field are independent (i.e. (¢, X) ~ LF](H}I”I) x dx then (91, 1n2) ~ P (H, x, 00)).
Finally, this approach allows us to avoid SLE estimates entirely.

5.2. An approximate bubble zipper: proof of Proposition 5.3

Suppose we are in the setting of Lemma 5.2 and Proposition 5.3. We first give a simple
description of the Radon—-Nikodym derivative % For x € R, let p(x) be the conditional
probability that i is between 7 and 7, given x = x. Then p(x) is an even function
determined by the SLE measure & (H, x, 00). Define f : R — R by

Jo PO dy  ifx =0,
= 5.3
70 {—ffp(y)dy if x < 0. G
For each £ € (0, vg(R)), let
x¢ = 1inf{x € R | vg(x, 00) = £}. (5.4)

Lemma 5.4. For a non-negative measurable function F on H~'(H), we have

Ms[F(¢)] = /[f(xg) — (12| F (@) dM.

Proof. By definition, if we sample (¢, x) from M x dx and then sample (11, 12) from
P (H, x, 00), and restrict to the event that X € (x5, Xs) and i is between 1 and 7, then
the law of (¢, x, 1, 172) is Ms. Conditioning on (¢, X), the conditional probability that i

lies between 11 and 75 is ;15/2 p(x)dx = f(x5) — f(x1/2). This gives the result. |

The hardest step in proving Proposition 5.3 is to show that the M g’ -law of ¢ converges

to that of M*, ie., a.s. Z—%‘}:(qb) = |M|(f(xs) — f(x1/2))/|Ms| — 1 as § — 0. In the
argument below, Lemma 5.5 will give that | M| diverges as log §~!. Lemma 5.7 will give
X5 = §7vo oM 45 Lemmas 5.10 and 5.11 will give the asymptotic growth of f(xs).
Putting them together we will get the desired limit.

Let A = v (—00,x) and B = v (x,00). Let P and Q be the quantum lengths of 7,
and n, with respect to ¢.

Lemma 5.5. There exists C € (0, 00) such that limg_,q k’lé‘lT’ill = C. Moreover, the M f -
law of (A, P) converges in total variational distance to the probability measure on

[1,2] x (0, 00) whose density is proportional to
atlvi-1
(a*/7* + p*/r*)2 dadp.

and
(glim M;[B >¢] = (slim Mg[Q >¢l =0 foreache > 0.
—0 —0
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Proof. Our proof relies on (5.2), which gives a description of the joint distribution of
(A, P, Q, B) under M in terms of Md‘Sk(yz /2) and Md“k(2) whose quantum length
distributions are given in Lemma 2.15. Indeed, write g = 4 / y“ > 1. By Lemma 2.15 and
the definition of M‘lj“zk (2; £, r), there exist constants Cy, C, such that

(r)&1

disk 7,2 _
MEF0 /20 = Crgr s

and |Md“k(2 0,r)=Co(l+r) 8T (55
By (5.2), the M g" -law of (A, P, Q, B) is the probability measure supported on the set
Ss = {(a, p,q,b) € (0,00)* | b € (8,1/2),a + b € (1,2)} whose density function is
proportional to

(ap)”! - (bg)s~!
) ’ 7b i g+1 N 5.6
m(a, p.q.b) @ + pF) (P+aq) BF + 47)2 (5.6)
and
|Ms| = C12C2/ m(a, p,q,b)dadpdqdb. (5.7)
Ss

Using the change of variable p = ar and ¢ = bs, we see that

h Wdpdg— ([ ! L
//0 m(a, p,q,b)dp Q—E//O (1+rg)2'(r_|_{;’s)g—1‘(1+Sg)2 e

(5.8)
By the monotone convergence theorem, the last integral converges to
oo $&81
Cs; = //0 (05 621 1 5%)2 drds < oo asb/a — 0.
Therefore
J|| ma.pa.ydpda = 2501+ ongai. 59

Integrating (5.9) over b € (6,1/2),a + b € (1,2) and using (5.7), we get limg_, 10‘ 55‘1

2
= C with C := [ 2 G 5203 da. Since supsc(g.1/2) Ms[B > €] < oo for each & > 0, we
have limg_, ¢ M [B > ¢] = 0.By (5.8), the M #_law of Q /B converges to the probability

measure on (0, 00) that is proportional to 2

(1+ 5)2 In particular, limg_q M [O >¢]=0.

Similarly, the M-law of (4, P /A) converges to the probability measure on [1,2] x (0, c0)
y $ g p y

that is proportional to da  __dr This gives the desired limiting joint distribution
of (4, P). |

a? = (+re)?

We first gather some basic facts on the quantum boundary length under the GFF mea-
sure Pg.

Lemma 5.6. Sample h from Py. For each p > 0 we have Py [v;(0,1) < 1/s] = O(s™?)
as s — 00. Moreover, there exists C € (0, 00) such that Pg[vy(0, y) > t] < CZ_4/V2y

forallt >0andy € (0,1). Finally, lim,,_,,+ “mglt(;g—({;‘y)l = y2Q a.s
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Proof. We first show that if G is a standard Gaussian independent of 4 and y € (0, 1),
then
u(0,y) £ B Qloer 421083160y, (0, 1), (5.10)

Let ¢ be the average of 4 on dB),(0) N H, so the marginal law of ¢ is N(0, 2|log y|).
The conditional law of 1 = h — ¢ given c is the free-boundary GFF on H normalized to
have average zero on 0B, (0) N H. Let y(z) = yz for z € H. Then o ¥ has law Py.
Therefore

vn(0.y) = €50z (0.y) = evp, o1 (0.1) £ eBetELRey, 0, 1),

This proves (5.10).
Now we address the tail bounds in the lemma. [43, Theorem 2.12] gives the bound
Pr[vp(0,1) < 1/s] = O(s™P) as s — o0. [51, Theorem 1.1] gives Pr[v;(0,1) > 5] <
Cs™7* forall s > 0, so using (5.10) and s = te % (Qliogyl=+/2llogy| G) gives
Pulva(0,y) > 1] < CE[(te%(QllogY\—«/leogylG))—4/72] _ Ct_4/y2y.
1

logn

)}. By the tail bounds, we have

For the last assertion, let y, = e—loem* and &n =
vyQ/2+2en | yQ/2—2ey
n ’ Yn

so that y, and ¢, — 0 as

n — oo. Let E, = {vy(0, yn) € (¥

Z n -
PylE;] < Ple>V2oemlG o (yen yeny] 4 Prlvp(0.1) & (vE". vy )]
4
S 2@70(8%“0}5)’;1“ + O(ynyz 811)'

Here, the first term is bounded from above by the standard Gaussian tail bound. We con-

clude that ), Pu[ES] < oo, so the Borel-Cantelli lemma shows that a.s. E, occurs for
. . : logyn1l _ e o : logy| _ 2

all sufficiently large n. Since lim,—, oo WJI’M = 1, this gives lim, . Togv, 0] = 70

a.s. ]

We now give an asymptotic estimate for log x;.

logxs __

Lemma 5.7. M -almost everywhere, limg_ ¢ ogd-T = %

Proof. Recall from Definition 2.3 that ¢ sampled from LF](H’I/’” is given by ¢ = h —
2Q log |z|+ + yGu(-, i) + ¢ where (&, ¢) is sampled from 277?12 Py x [e=Dedc].

2 . .

Thus M € (efyTGH(”l), 1) for all y € (0, 1), and so LF]%I"I)-almost everywhere
€2y (0,y)

log vy (0,y)

imy, o+ fogvn@.9)

= 1. Therefore by the last assertion of Lemma 5.6, we have

logy| 2

(y:i)
————— = —— LF"""-almost everywhere. 5.11)
y—ot [logvg(0,y)] — yQ M
log y —
—logve (y,00) T
log xs
log§—!

%. Hence the same limit holds for M by restricting to vg (R) € (1,2). ]

By Lemma 2.4 applied to the inversion map z > —z 1, this yields limy_, oo

-2 Setting y = x5 so that vy (y,00) =§, we get LF](I_]’I"i)-almost everywhere limg_,
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The following tail bound is quite loose, but suffices for our purposes.

Lemma 5.8. For{ € (0, 1), there exists C¢ € (0, 00) such that
Ml{x, > y}] < Ce(t*7y)" 00 forallt > 0and y > 1. (5.12)

Proof. By the definition of x;, inequality (5.12) is equivalent to M [{vg(y, 00) > t}] <
Ce (14/1’2)1)*(1’5) for all # > 0 and y > 1. Using Lemma 2.4 with the inversion map
z + —z~ !, this is equivalent to

M[{vg(0.y) > 1}] < Ce(t™*"* )37 forallr > 0and y € (0, 1). (5.13)

Recall that M is LF](H’I"i) restricted to {vy(R) € (1,2)}. By Definition 2.3, ¢ sampled
from LF%’” is¢p(z) =h(z) —2Qlog|z|+ + yGu(z,i) + ¢ where (h, ¢) is sampled from
27712 py x [e=9)¢dc]. Since —2Q log |z|+ + yGr(z.i) € (—log2,0) for z € [-1,1],
we have 277°/2¢ %cvh ) <vg(I) < e%cvh (1) forany I C [—1,1]. Since M -a.s. we have
vy(—1,0) < 2, for any r € R we find that

2
27 PM[{vg(0.y) > 1}]
< / PH[e%th(O, y) >t and 2_y2/2e%cvh(—1, 0) < Z]e(y_Q)C dc
R
p
< / PH[e%th(O,y) > t]e¥=2¢ gc
—00

o0
+/ Pu[e2¢v;,(~1,0) <2V2/2+1]e(V—Q)C de.
r

The first term can be bounded using the second assertion in Lemma 5.6

A

r r
f Pu[ev,(0,y) > 1]e? "¢ de < C/ 7 yeve L =9k g
*° —0o0

— zt74/1’2

14

Y
ye2’,

where C € (0, 00) is a constant that can change from line to line. For the second term, by
Lemma 5.6 for any p > 0 we have

o0 o0
/ PH[e%th(—l,O) < 2V2/2+1]e(y—Q)c de < C/ 2?24 1)p =% pe ,(y=Q)e ..
r r
< Cor—0-%p)r

Combining the two bounds gives

M[{v(0,y) > 1}] < C1=/7" ye 3" 4 CeV=0-3Pr,

;izlogt-l-llogy\ . . b4 .
X —— gives (5.13) with { = =—2%—. Varying p € (0, 00), we get all
7"1‘5}7 7+7P

e (0,1). -

Choosing r =
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The next lemma allows us to control f(xj/2).

Lemma 5.9. We have M| f(x1,2)|] < oo.
Proof. We first show there is a constant C > 0 such that

f(y) <Clogy forally > 2. (5.14)

Write p = M[{x1/2 < 0}]. By Lemma 5.7, for § small enough, M [{x5 < S_TIQ}] < p/2.
Let Fs = {x1/2 < Oand x5 > 87ﬁ} so that M[Fs] > p/2. By Lemma 5.4 we have

|Ms| = M[f(xs) — f(x1/2)] = M[1F;(f(x5) — f(x1/2))]. Since f is increasing and
f(0) = 0, we have

Mg, (f(x5) = flray2))) = 672 )MIFs] = 2 f(5770).

By Lemma 5.5, |Ms| = (1 + 05(1))C log §~!. Therefore there exists C € (0, c0) such
that f(S_i) < Clog8~! forall § € (0,1/2). Setting y = 5770 and possibly choosing
C larger we obtain (5.14).

Now we bound M| f(x1,2)]. By (5.3), f is an increasing odd function, so

M[1x1/2>1f(x1/2)] = Z M[12n2x1/2>2n—1 f(X1/2)] = Z f(2”)M[{x1/2 > 2n—1}].
n=1 n=1

(5.15)
By (5.14) and the tail bound of x/, in Lemma 5.8, for a possibly larger C we have

o0 o0
Ml o1 f(x172)] <Y Clog2")M[{x12 > 2"} < C*) " n2™"/? < o0,

n=1 n=1

Since 0 < f(1) < f(2) fort € (0,2), we have M[l1>x, ,,>0f(x1/2)] < f(2)|M| < oo,
hence M[ly, ,>0|f(x1/2)|] = M[lx,,,>0/(x1/2)] < co. As M-almost everywhere
vy (R) > 1, we conclude

Mx1/2 < =yl = M[vg(=y,00) = 1/2] < M[vy(—00,—y) = 1/2]
= M|[xy/2 > y] fory>0.

As f is an odd function, we get M [lx, ,<o| f(x1/2)]] < M[lx, 50| f(x1/2)]] <00. m
Now, we give the asymptotic upper bound on f.
Lemma 5.10. Forany s > 0 we have limsupg_,o |[M| f(§~72 %) /| Ms]| < 1.
Proof. By Lemma 5.4, we have
IMs| = M[f(xs) — f(x12)] = M[l{xs 7%“}0’()@3) — f(x1/2))]

> fE7E ) (M| = M[{xs < 872 )]) — M[| f(x12)]].

>§
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Since limg_.o M[{xs < 8_%“}] = 0 by Lemma 5.7, |[Mg| — oo by Lemma 5.5 and
M| f(x1/2)]] < oo by Lemma 5.9, we are done. [ ]

We next obtain the matching asymptotic lower bound on f.

Lemma 5.11. For any s > 0 we have liminfs_.o |[M| f(§~ vo )/ |Ms| > 1.

Proof. Let Es = {xs > 8_%_S}. By the monotonicity of f we may assume % +5<
8/y2, and by (5.14) and monotonicity we have

|Ms| = M[f(xs) = f(x1/2)] = M[1E; f(x5)] + M[1ge f(xs)] + M| f(x1/2)]]
CM{1g, logxs] + f(8772 ) (|M| ~ M[Es]) + M[| f(x12)]].

IA

We claim that M [1g, log x5] = o(log ™). To see this, we write

o0
M|1Eg;logxs] = [ M[Es N {logxs > w}]dw
0

oo

8
< —2log8_1M[E5] +/ M[{logxs > w}] dw.
Y y%logﬁfl

By Lemma 5.7 the first term is 0(log § ), and for the second term, let ¢ € (0, 1) and use
Lemma 5.8:

o0 a=o4

/oo M[{logxs > w}]dw 5/ Ce87 ey e dw=(1-01C5 7 .

8 — 8 _
log§—1 log§—1
72 og »Z 0g

Thus M [1g,logxs] = o(log §~1). Moreover, limg_,o M [Es] = 0 by Lemma 5.7, | Ms| >
log ! by Lemma 5.5, and M]| f(x1/2)]] < oo by Lemma 5.9. This gives the desired
result. ]

Now we are ready to conclude the proof of Proposition 5.3. We start by the marginal
law of ¢.

Lemma 5.12. The M g‘ -law of ¢ converges to M* in total variational distance as § — 0.

#
Proof. Let Rs(¢p) = %(4&) be the Radon-Nikodym derivative of the marginal of ¢
under M g’ with respect to M. By Lemma 5.4, we have
M|

Rs(¢) = ——(f(x5) — f(x1/2)) almost surely in M*.
| M|

By Lemmas 5.7, 5.10 and 5.11, we see that limg_, %f(xs) =1 as. in M*. Since
lims_,o |Ms| = 0o and —oo < f(x1/2) < 0o a.s. in M*, we see that lims_,g Rs = 1
a.s. in M*. Since M#[Rs(¢)] = 1 for each §, we have lims_.o M*[|Rs(¢p) — 1|]] = 0.
Therefore, with the supremum taken over measurable sets A4, sup, |M g* [4] — M*[A]| =
sup, [M*[14(Rs(¢) — ]| < M*[|Rs(¢) — 1]] — 0, which concludes the proof. m
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We now deal with the joint law of (¢, x).

{0<x<§ 72
total variational distance to M* x rﬁ}*.

Lemma 5.13. Ler mg = 1 2 }p(x)dx. The Mf-law of (¢,x) is 05(1)-close in

Proof. The conditional law of x given ¢ is 1y, ,,<x<xs(f(xs) — F(x12) L p(x)dx.
Let ds(¢) be the total variational distance between this distribution and n%g. Let E5 =
{|10gx% — %| < 1}. By Lemmas 5.7 and 5.12, lims_,o Ms[E§] = 0. Moreover, by
Lemmas 5.5, 5.10 and 5.11, limy_.oo(log y)~! f() is a positive constant, and hence
limg_,o Ms[1Eg;ds(¢)] = 0. We conclude that limg_,o Ms[ds(¢)] = 0 as needed. L]

Proof of Proposition 5.3. Since the conditional law of (11, n2) under M g“ given (¢, x)
only depends on x, Lemma 5.13 implies Proposition 5.3. ]

Remark 5.14. The above argument implies that there exists a constant € € (0, 0o) such

that Iy G
| Ms| 6 and f() _v0

= . 5.16
50 logé—1! Y00 logy 2|M| (5.16)

Moreover, the constant € can be made explicit by keeping track of the various constants in
Lemma 5.5 (see [3, Proposition 5.2] for these constants). We find it interesting that though
the function f is defined in terms of SLE, its asymptotics are derived using properties of
the Liouville field ¢.

5.3. Passing to the limit: proof of Theorem 4.1

The arguments in this section are technical but standard and can be skipped on a first
reading. Sample a pair of quantum surfaces (D, D) from |, 12 Jo. MG (y*/2:a, p) x
QD (p)dpda.Let D; @ D, be the curve-decorated quantum surface obtained by con-
formally welding the right boundary of D; and the total boundary of {,. The surface
D1 & D, naturally carries a marked interior point and a marked boundary point. See Fig-
ure 4. Let (D, ¢p, np, 0, i) be the unique embedding of D; & D, in (D, 0,i). We denote
the law of (¢p, np) by Mp. Let f : H — D be the conformal map with f(i) = 0 and

f(00) = i. We will prove Theorem 4.1 by showing the following.

Proposition 5.15. Under the probability measure Mﬂg proportional to Mp, ¢p and

np are independent, and moreover the law of ¢p o f + Q log|f’| is proportional to
JELEYD () de
1 H .

Recall Ms from Lemma 5.2 and Proposition 5.3. Let (¢, X, 11, 72) be sampled
from M ; .Let Dy 5, D» 5, D35 be the left, right, and middle marked quantum surfaces
in the sample space of My, so that (H, ¢, n1, 12, i, X) is the embedding of the confor-
mally welded surface D; 5 ® Dr 5 B D3 5. Let #=¢go f1+ Qlog|(f~")| and
7% = f ony, so that (D, ¢%,0,7) is the embedding of D15 D Drs5 @ D35 0n(D,0,7)
by forgetting the interfaces and 7’ is the interface between D15 and D, s. See Figure 4.
The following lemma and Proposition 5.3 immediately give Proposition 5.15.
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D
Dy

(¢, D) ~ M (@°, %) ~ M

ﬁdﬂ, Us

Fig. 4. Left: (¢p. np) is obtained by embedding D1 @ D, into (D, 0,7), and (¢8, n‘g) is obtained
by embedding Dy 5 & D, 5 © D35 into (D, 0, 7). Right: We can couple M]g) and MS# so the pink
and blue quantum surfaces agree with high probability. The domains l73 and Ug are the unions of
the pink and blue regions.

Lemma 5.16. There exists a coupling between M g and M]g, such that the following holds.
Vi’e can find random simply connected domains Us, Us C D and a conformal map gs :
Us — Us such that with probability 1 — 0g(1),

o ¢ (2) = ¢% 0 g5(2) + Qlog|g;(2)| for z € Us,

e diam(D \ Us) = 05(1), diam(D \ Us) = os(1),

® sup,cx |gs(z) — z| = 05(1) for any compact K C D.

To prove Lemma 5.16, we use the following basic coupling result on quantum disks.
Let ¢ > 0. For a simply connected quantum surface & decorated with one bulk and one
boundary point, let D¢ be the quantum surface obtained by embedding O as (H, ¢,i,—1)
and setting D? := (Hg, ¢,i,—1,—1 —2¢) where H, = H \ Bs(—1 —¢) with B.(—1 —¢)
={zeC||lz+1+4¢| <¢g}.

Lemma 5.17. For ¢ > 1 and £ > 0, when D and D are sampled from QDLI(E)# and
QD, ; (0)* respectively, the law of De converges to that of DF in total variation distance
asl — ¢

Proof. This can be proved directly via the explicit Liouville field description QD ; (£) in
Proposition 3.9. However, the corresponding statement for QD , (¢)* and QDO’z(Z)# is
already proved in [4, Proposition 2.23]. (In fact, Proposition 2.23 there proved the general
result for Mgifzk(W).) By Definition 2.10, we can transfer the result for QD , (¢)* into the
desired result for QD ; (£)*. n

Proof of Lemma 5.16. Recall the marked quantum surfaces D, O, in the definition of
(¢p, np) and MB. Let A and P be the left and right boundary lengths of D, respectively.

The law of (A, P) is the probability measure on [1,2] x (0, c0) proportional to

MEF(2/2:a, PIIQDy (p)] o a® " /@7 4+ 772 (517
where we have used (5.5) for the expression of |¢M§’)i’szk()/2 /2; a, p)|. Conditioning on
(A, P), the conditional law of (D, D5) is M3X(y2/2; A, P)* x QD ; (P)*.
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Similarly, recall that the law of D 5, D25, D35 is given in (5.2). Let As and P
be the left and right boundary lengths of &; s, respectively. Let Qs and Bs be the left
and right boundary lengths of D3 s, respectively. Then, by Lemma 5.5, the M ;‘ -law of
(As, Ps) weakly converges to the the Mﬁ-law of (.;f, [5), and limg_, M;*[Qg >¢g] =
lims_.o Mf[Bs > ¢] = O forall & > 0.

By Lemma 5.5 we can couple M and M* such that (4, P) = (Ag, Ps) with prob-
ability 1 — o05(1). By Proposition 2.11, a sample from M{$(2: p. ¢)* can be obtained
by sampling a quantum surface from QD, ;(p + q)*, then marking a second bound-
ary point at quantum length p counterclockwise from the marked boundary point. Since
(A, P) = (Ag. Ps) with probability 1 — 05(1) and Q5 — 0 in probability as § — 0, by
Lemma 5.17 we can extend our coupling so that limgs_,o P[(D1, D5) = (D1 s, {Ois)] =1
for any fixed ¢ > 0; consequently, the same holds when ¢ is e.g. a piecewise constant func-
tion of § which decays to O sufficiently slowly as § — 0.

Let Us (resp. 175) be the domain parameterizing the conformal welding of £; and
D5 (resp. 551 and 555") in the aforementioned embedding of D @& D, (resp. D15 B
Dy.s G D3,5)in (ID,0,7). More precisely, Us is the interior of the union of the closures of
the domains corresponding to £ and D5 in our embedding, and the analogous statement
holds for Uy. By definition, the marked quantum surfaces (Us, ¢%,0,7) and (175, ¢D,0,i7)
agree with probability 1 — 0g(1), where i~ is the boundary point immediately to the left
of i. On this event, by the agreement of quantum surfaces, there exists a unique conformal
map g : Us — Us such that pp = ¢% o g5 + Qlog|ggl, gs(0) =0and gs(i™) =i.

Note that the simply connected open sets Us are determined by (¢p, np) and

Mﬁ-almost surely (D U dD) \ Us is decreasing as § — 0

and their intersection equals {i}.  (5.18)

Therefore My-almost surely lims_,o diam(D \ Us) = 0. Hence in our coupling of M}
and MB, diam(D \ 173) = 0g(1) with probability 1 — 05(1). As a basic deterministic fact
in complex analysis, diam(D \ Us) = 0 if and only if the harmonic measure of D \ Us
viewed from 0 in Us tends to 0 as § — 0. Therefore, in our coupling the harmonic mea-
sure of D \ Us viewed from 0 in Us is o5 (1) with probability 1 — 05(1). By conformal
invariance, the same holds for the harmonic measure of D \ Us viewed from 0 in Us. So
diam(D \ Us) = 0g(1) with probability 1 — og(1). This gives the second condition for the

coupling.
Finally, since g5(0) = 0, gs(i—) = i, and diam(D \ Us), diam(D \ 175) — 0 with
probability 1 — 05(1), standard conformal distortion estimates yield the third condition.
(]

Proof of Proposition 5.15. Letting 6 — 0 in Lemma 5.17 and Proposition 5.3, we see that
the law of ¢p o f + Q log| f’| under M is the same as that of ¢ under M*, which is the
probability measure proportional to || 12 LFg’i)(Z) d{. Moreover, the independence of ¢p
and np follows from the asymptotic independence of ¢ and n; under M f established in
Proposition 5.3. u
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Proof of Theorem 4.1. Let again ¥(z) = —z~! and Bubbleg(i, c0) = {n | ¥ (n) €
Bubbley (i, 0)}. By Proposition 5.15, the law of (¢p o f + Qlog|f’|. f~' o np) can
be written as the probability measure proportional to || 12 LF%’”(Z) d{f x m* where m*
is the probability measure on Bubbley (i, o) describing the marginal law of ! o np.
Therefore for some C € (0, 0o0) we have

2 . 2 poo )
/ LEYD(0) dt x m® = c/ / QD (r) x MEX(y2/2:€,r)drdl, (5.19)
1 1 0

in the sense that when a field and curve are sampled from the left hand side of (5.19), the
law of the two quantum surfaces cut out by the curve is the right hand side of (5.19).

A scaling argument shows that (5.19) holds when the integration interval [1, 2] is
replaced by [e 5e 2e %C] for any ¢ € R. Indeed, from Lemma 2.2 and the change of
coordinates ¢/ = ¢ + ¢ it is immediate that when ¢ is sampled from LF](H’{”)(E) then the
law of ¢ + ¢ is e©@~7/2LEY? (¢3¢¢). Similarly, i (H, ¢, i,0) has law QDy ; (r) then
(H, ¢ + c,i,0) has law e(Q_V)CQDLl(e%Cr), and if (H, ¢,0, 1) has law Mg{;k(yz/z;z, r)
then (H, ¢ + ¢, 0, 1) has law chMgifzk(yz/Z e%cﬁ, e%cr). Therefore, adding ¢ to
the fields in (5.19) and changing variables (¢, ') = (e2¢{, eZ¢r) gives (5.19) with
[1, 2] replaced with [e%c, Ze%c]. Summing over the intervals [27,2"*!] for integer n
yields (5.19) with [1, 2] replaced by (0, co). ‘

Finally, since ¥ : z > —z ! satisfies |/(i)| = 1, by Lemma 2.4, LF%”) is mapped to
itself by the coordinate change . Recall the definition of Mg (y2/2:-,r) from (2.10).
Reparameterizing (5.19) via ¢ yields Theorem 4.1. ]

Appendix A. Brownian motion in cones

For¢ € (0,2m) let €y = {z € C | argz € (0, ¢)} be the cone of angle ¢. Following [31,
Section 3] we will define various measures corresponding to Brownian motion in €4 con-
ditioned on certain probability zero events via limiting procedures. These constructions
are in the same spirit as [31, Section 3], but we also consider Brownian path measures in a
cone with an endpoint at its vertex. For more details on the validity of these constructions
see [31, Section 3].

Let KX be the collection of continuous planar curves Z defined on a finite time interval
[0, Tz], where T is the duration of the curve. Endow K with the metric dx (Z1, Z,) =
infy SUPo<;<T, {lt =0@)| 4+ |Z1(t) — Z>2(0(t))|} with the infimum taken over increasing
homeomorphisms 6 : [0, Tz,] — [0, Tz,]. Our Brownian path measures will be non-
probability measures on K equipped with the Borel o-algebra associated to d x .

Let m(z, w; ) denote the measure on K such that |m(z, w; )| = #e“z_“”z/z’ and
m(z, w; t)* is the Brownian bridge from z to w with duration #. Let me, (z, w; 1) be the
restriction of m(z, w; 7) to paths staying in €y, and let me,, (z, w) = fooo me, (z,w;t) dt.

Lemma A.1. For each w € €4 and t > 0, pick any ¥ € (0, ¢) and define the measure

me,, (w, 0;1) := limg_q %mg(b (w, se'¥';t). This limit exists and does not depend
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on the choice of . Moreover, there is a constant C = C(¢) such that for all w, ¢,
lw|?
Ime,, (w,0:7)| = Ct= '\ w|™ /e 2 sin(% arg w). (A.1)

Proof. This result follows from [49, Theorem 2] except that the theorem is about the
Brownian motion in €4 which starts at 0 and ends at w. Our statement follows from the
time reversal symmetry of Brownian path. ]

Define me, (w,0) := [;° me, (w,0;7) dt and me, (u,0) :=1limgo &~ 'me, (u+ic,0)
foru > 0.

Corollary A.2. Suppose ¢ € (0,27),60 € (0,¢) and r > 0. There is a constant cy g €
(0, 00) such that |me,, (re’?,0)| = Co.0 r~7/®. Moreover, the law of the duration of a
sample from me,, (re'?,0)* is the inverse gamma distribution with shape /¢ and scale
r2/2 (recall (2.2)). Similarly, for u > 0, Ime, (u,0)| = c¢u_”/¢_1. Moreover, the law of
the duration of a sample from me, (u, 0)* is the inverse gamma distribution with shape
/¢ and scale u? /2.

Proof. These claims are immediate from Lemma A.1. ]

For 6 € (0, ¢), we describe a path decomposition for me, (u, 0)* where we split the
path at the first time it hits the ray e’ R, . For z € €, let me, (z) denote the probability
measure corresponding to Brownian motion started at z and killed when it exits €y. For
y > 0, let £, ; be the event that Brownian motion exits €y on the boundary interval
(ye'?, (y + e)e’?), and let me, (z, yel?) = lim, o ¢ 'me, (2)|E, . For x > 0 define
me, (x, yel?) = limy_ e tme, (x + &i, yel?).

Lemma A.3. For0 <0 < ¢ < 2m and u > 0, we have

o0
me¢(u,0)=/ mt’e(%rele)Xm~e¢(re’0,0)dr
0

in the sense that when a sample from the right hand side is concatenated to obtain a path
from u to O, the law of this concatenated path is the left hand side.

Proof. Let ¢ = #. For §, ¢ > 0, by the strong Markov property of Brownian motion
we have

o0
me, (u + &i, 8e'V) = / me, (u + i, re'®) x me, (re’, §e'V) dr.
0

Multiplying both sides by %e‘l and letting §, & — 0 yields the assertion. ]
Lemma A.4. For 0 < 0 < 2m, there exists a constant C such that

(ur)n/Ofl

N
Ime, (u, re'?)| = C(u”/" Ty

foru,r > 0.
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Proof. This is equivalent to [4, Lemma C.2] after the shear transform A of Proposi-
tion 2.14. ]

Lemma A.5. Suppose 0 < 0 < ¢ < 2m. Let L be sampled as in (4.15). Then for ¢ €
(0, /@) we have E[(L/u)f] < 1.

Proof. By (4.14), Corollary A.2 and Lemma A.4 the law of L /u is proportional to
Lesolme, (u, uxe'®)| Ime, (uxe'®, 0)|dx o 1xsox™O71(1 4+ x™/0)72 . x7/%dx.

Set f(x) := =*=. When p € (—1,27/6 — 1), we have

sinx °

*° xP 0 wm—0(p+1) 0
/o (14 x7/9)2 . 7 sin(mr —O(p + 1)) ﬂf(n (p+1)
Therefore
£ oo 7/0—1—7/p+e oo ,.mw/0—1—m/¢ _
s[(5) )= [T e [ = L 200
u o (1+x7/9)2 o (14 x7/6)2 f(70/p)
Since f(x) is increasing on (0, w) and 76/¢ € (0, ), we obtain the lemma. |
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