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Abstract
We demonstrate how to obtain integrability results for the
Schramm-Loewner evolution (SLE) from Liouville confor-
mal field theory (LCFT) and themating-of-trees framework
for Liouville quantum gravity (LQG). In particular, we
prove an exact formula for the law of a conformal deriva-
tive of a classical variant of SLE called SLE!("−; "+). Our
proof is built on two connections between SLE, LCFT, and
mating-of-trees. Firstly, LCFT and mating-of-trees provide
equivalent but complementarymethods to describe natural
random surfaces in LQG.Using a novel tool that we call the
uniform embedding of an LQG surface, we extend earlier
equivalence results by allowing fewer marked points and
more generic singularities. Secondly, the conformal weld-
ing of these random surfaces produces SLE curves as their
interfaces. In particular, we rely on the conformal welding
results proved in our companion paper Ang, Holden and
Sun (2023). Our paper is an essential part of a programprov-
ing integrability results for SLE, LCFT, andmating-of-trees
based on these two connections.

1 INTRODUCTION

Two dimensional (2D) conformally invariant random processes have been an active area of
research in probability theory for the last two decades. In this paper, we consider the interplay
between three central topics in this area: Schramm-Loewner evolution (SLE), Liouville confor-
mal field theory (LCFT), and themating-of-trees framework for Liouville quantum gravity (LQG).
SLE [51] is a classical family of random planar curves which describe the scaling limits of many
2D statistical physics model at criticality, for example [12, 40, 53, 60]. LQG is a family of random
planar geometries [15, 22, 31] that naturally arise in the study of string theory and 2D quantum
gravity [45]. It also describes the scaling limit of a large class of random planar maps, see for
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example [30, 32, 57]. LCFT is the 2D quantum field theory that governs LQG which is recently
made rigorous by [14] and follow-up works. Mating-of-trees [21] is an encoding of SLE on the
LQG background via Brownian motions. See [10, 27, 29, 39, 63] and references therein for more
background on these rapidly developing topics.
One key feature shared by the three topics is the rich integrable (i.e., exactly solvable) struc-

ture. First, since its discovery, many exact formulas for SLE have been proved or conjectured; see
for example [7, 18, 52, 54, 59]. Moreover, as an important example of 2D conformal field theory,
LCFT enjoys rich integrability predicted by theoretical physics [8, 16, 24, 64], some of which were
recently proved in [4, 25, 37, 47–49]. Finally, mating-of-trees expresses many observables defined
by SLE and LQG via Brownian motion and related processes; see for example [1, 21, 28, 42, 43]. In
this paperwe demonstrate how to obtain integrable results for SLE fromLCFTandmating-of-trees
by proving an exact formula for a classical variant of SLE called SLE!("−; "+); see Theorem 1.1.
Our paper is part of a program by the first and the third authors connecting the aforementioned

three types of integrable structures and proving new results in each direction. The foundation of
the program are two bridges between these objects. The first bridge is that LCFT [14] and mating-
of-trees [21] provide equivalent but complementary methods to describe natural random surfaces
in LQG. This equivalence was first demonstrated for the quantum sphere in [6] and recently
extended to the quantum disk in [11]. Using what we call the uniform embedding of quantum
surfaces, we provide more conceptual and unified proofs for these facts and greatly extend them;
see Section 1.2.
The second bridge is that random surfaces behave well under conformal welding with SLE

curves as their interfaces. The conformal welding results needed for our paper are established
in our companion paper [3], extending the seminal works [21, 56]. The way we use it to prove
Theorem 1.1 is instrumental for the entire program. In particular, it is crucial to the forthcoming
work of the first and the third authors on the integrability of the conformal loop ensemble [5], as
well as their joint work with Remy [4] on the proof of the FZZ formula in LCFT. See Section 1.3
for an overview of this method.

1.1 An integrability result on $%&'((−; (+)
We now present our main result concerning the integrability of SLE. For ! > 0 and "−, "+ > −2,
the (chordal) SLE!("−; "+) is the natural generalization of the chordal SLE! where one keeps
track of two extra marked points on the domain boundary called force points. The parameters "±
indicate to what extent the force points attract or repulse the curve. In our paper the force points
are always located infinitesimally to the left and right, respectively, of the starting point of the
curve. SLE!("−; "+) was introduced in [38] and studied in for example [17, 41]. See Appendix A.1
for more background.
Let ) be an SLE!("−; "+) curve on the upper half planeH from 0 to∞, which is a random curve

on H ∪ R. When "− > −2 and "+ > (−2) ∨ ( !2 − 4), then the point 1 is almost surely not on the
trace of ) [41]. Therefore, we can define the open set - to be the connected component of H∖)
which contains the point 1. Let / ∶ - → H be the conformal map which fixes /(1) = 1 and maps
the first (resp. last) point on 2- traced by ) to 0 (resp.∞). Note that if "− > !4 − 2 then the curve
does not touch (0,∞) so that / will fix 0, 1,∞ in this case.
Our first main result gives the exact distribution of /′(1) in terms of its moment generating

function. To describe this result, we need the double gamma function Γ5(6)which arises in LCFT.
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2653

We recall its precise definition in (3.1). Using Γ5(6), we introduce
7(8, !, "−, "+) ∶= Γ√!2

( 2√! − √!2 + "+√! + 82
) Γ√!2

( 4√! + "+√! − 82
)

Γ√!2
( 4√! − √!2 + "−+"+√! + 82

)Γ√!2
( 6√! + "−+"+√! − 82

) . (1.1)

Theorem 1.1. Fix ! > 0, "− > −2 and "+ > (−2) ∨ ( !2 − 4). Let 90 = 1! ("+ + 2)("+ + 4 − !2 ). For
any 9 < 90, let : be a solution to 1 − :2 (√!2 + 2√! − :2 ) = 9. Then we have

E[/′(1)9] = 7(:, !, "−, "+)7(√!, !, "−, "+) .
Moreover, for any 9 ≥ 90 we have E[/′(1)9] =∞.

In Theorem 1.1, the value of 7(:, !, "−, "+) does not depend on which value of : is chosen as
the solution of the quadratic equation. Moreover, the point 1 in /′(1) is merely for concreteness.
The result for other points follows from rescaling.
Our proof of Theorem 1.1 does not use stochastic calculus coming from the Loewner evo-

lution definition of SLE!("−; "+), as is done in many exact calculations concerning SLE,
see for example [39]. Instead, we rely on the following ingredients: the description of natu-
ral quantum surfaces in LQG via LCFT; conformal welding of finite volume quantum surfaces
from [3]; the integrability results of Remy and Zhu [48, 49] on boundary LCFT; and mating-of-
trees description of some special quantum surfaces. We will elaborate on these ingredients in
Sections 1.2 and 1.3.

1.2 Two perspectives on random surfaces in LQG

A key ingredient in our proof of Theorem 1.1 is a thorough understanding of two perspectives on
random surfaces in LQG when the underlying complex structure enjoys an abundance of con-
formal symmetries. The first perspective is the quantum surface and the second one is the path
integral formalism of LCFT.
We start by recalling some basic geometric concepts in LQG. We will keep the review brief

and provide more details and references in Section 2.1. The free boundary Gaussian free field
(GFF) on a planar domain - ⊊ < is the Gaussian process on - with covariance kernel given by
the Neumann Green function on -, which can be viewed as a random generalized function on- [55]. There are other variants of the GFF which have the same regularity. Suppose ℎ is a variant
of the GFF defined on -. The >-LQG area measure ?ℎ associated with ℎ is formally defined by@>ℎA26, which is made rigorous by regularization and normalization [22].
Fix > ∈ (0, 2). Suppose C ∶ - → -̃ is a conformal map between two domains - and -̃. For a

generalized function ℎ on -, define
C ∙> ℎ = ℎ◦C−1 + G log||(C−1)′|| where G = >2 + 2> . (1.2)
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2654 ANG et al.

If ℎ is a variant of the GFF, then the pushforward of the >-LQG area measure ?ℎ under C
equals ?ℎ̃ a.s where ℎ̃ = C ∙> ℎ. Equation (1.2) is called the coordinate change formula for>-LQG.
Suppose ℎ is the free boundary GFF on -. If - has a boundary segment H ⊂ R, then we can

define >-LQG boundary length measure Jℎ = @ >2 ℎA6 on H similarly as ?ℎ. For general domains,
the definition of Jℎ can be extended via conformal maps and the coordinate change formula (1.2).
It is also possible to define a random metric on - associated with ℎ (see [15, 31]) but the metric
will not be considered in our paper.
In light of the coordinate change formula, Sheffield [56] introduced the notion of quantum

surface. Suppose ℎ and ℎ̃ are generalized functions on two domains - and -̃, respec-
tively. For > ∈ (0, 2), we say that (-,ℎ) ∼> (-̃, ℎ̃) if there exists a conformal map C ∶ - →-̃ such that ℎ̃ = C ∙> ℎ. A quantum surface is an equivalence class of pairs (-,ℎ) under
this equivalence relation, and an embedding of the quantum surface is a choice of (-,ℎ)
from the equivalence class. We can also consider quantum surfaces decorated by other struc-
tures such as points or curves, via a natural generalization of the equivalence relation; see
Section 4.1.
Liouville conformal field theory (LCFT) is the quantum field theory corresponding to the

Liouville action which originates from Polyakov’s work on quantum gravity and bosonic string
theory [45]. It associates a random field to each two dimensional Riemannian manifold which all
together form a conformal field theory. LCFT was first rigorously constructed on the sphere by
David, Kupiainen, Rhodes and Vargas [14] by making sense of the path integral for the Liouville
action. It was later extended to other surfaces [13, 26, 33, 46].
We will focus on the LCFT on the Riemann sphere Ĉ and the upper half plane H. The basic

inputs are the Liouville fields LFC and LFH. These are infinite measures on the space of general-
ized functions on C and H, obtained from an additive perturbation of GFF. See Definitions 2.24
and 2.4. For 61, … , 6M ∈ C, and :1, … ,:M, one can add insertions to LFC by making sense of∏MN=1 @:NO(6N)LFC(AO), which we denote by LF(61,:1),…, (6M ,:M)C ; see Definition 2.25. We can similarly
define Liouville fields on H with insertions, where for 6M ∈ 2H, we need to replace @:NO(6N) by@ :N2 O(6N). The Liouville correlation functions, which are the fundamental observables in LCFT, are
defined in terms of certain averages over these random fields.
Quantum surfaces and LCFT provide two perspectives on random surfaces in LQG. For ran-

dom surfaces arising as the scaling limit of canonical measures on discrete random surfaces
(a.k.a. random planar maps), both perspectives provide natural and instrumental descriptions.
Their close relation has been demonstrated by Aru et al. [6] for the quantum sphere and by Cer-
clé [11] for the quantum disk. The quantum sphere with M marked points (Definition B.2) is a
quantum surface with spherical topology with Mmarked points defined by Duplantier, Miller and
Sheffield [21]. They arise as the scaling limit of natural planarmapsmodels on the sphere; see [29]
for a review. We similarly have the quantum disk withP interior marked points and Q boundary
marked points; see Definition 2.2. We use QSM and QDP,Q to denote their distributions, respec-
tively. We also writeQS0 asQS andQD0,0 asQD. Without constraints on area or boundary length,
these measures are infinite. The main result of [6] says that modulo a multiplicative constant,LF(61,>),(62,>),(63,>)C equalsQS3 embedded on (C, 61, 62, 63). By [11], the same holds with C replaced
by H, QS3 replaced by QD0,3, and 61, 62, 63 assumed to be on 2H.
One major difference between the two perspectives is that for LCFT, the number of marked

points is often assumed to be such that the marked surface has a unique conformal struc-
ture. On the other hand, many important quantum surfaces do not have enough marked
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2655

points to fix the conformal structure, such as QSM and QD0,M for M ≤ 2. The starting point of
our paper is the observation that even without enough marked points, Liouville fields, pos-
sibly with insertions, describe natural quantum surfaces that are embedded in a uniformly
random way.
To concretely demonstrate our point, let - be either a simply connected domain conformally

equivalent to Ĉ orH. Let conf (-) be the group of conformal automorphisms of-where the group
multiplication is the function composition C ⋅ S = C◦ S. LetT- be a Haar measure on conf (-),
which is both left and right invariant. Suppose U is a sample from T- and ℎ is a function on-. We call the random function U ∙> ℎ the uniform embedding of (-,ℎ) via T- . By the invari-
ance property of T- , the law of U ∙> ℎ only depends on (-,ℎ) as a quantum surface. We writeTĈ ⋉ QS as the law of U◦ℎ where (C,ℎ) is an embedding of a sample from the quantum sphere
measure QS, and U is independently sampled from TĈ. We call TĈ ⋉ QS the uniform embed-
ding of QS viaTĈ. We defineTH ⋉ QD in the exact same way. Here althoughTĈ,TH, QS,QD
are only W-finite measures, we adopt probability terminologies such as sample, law, and
independence.

Theorem 1.2. For > ∈ (0, 2), there exist constants <1 and <2 such that
TĈ ⋉ QS = <1 ⋅ LFC and TH ⋉ QD = <2 ⋅ LFH. (1.3)

We can also consider the uniform embedding of quantum surfaces with marked points. For
example, for X, 5 ∈ - ∪ 2-, let conf (-,X, 5) be the subgroup of conf (-) fixing X, 5 and T-,X,5
be a Haar measure on conf (-,X, 5). For example, QD0,2 can be identified as a measure on<∞0 (-)′∕ conf (-,X, 5) for some domain - with boundary points X, 5, where conf(-,X, 5) is the
subgroup of conf (-) fixing X, 5. ThenT-,X,5 ⋉ QD0,2 can be defined in the sameway asTĈ ⋉ QS
and TH ⋉ QD. We will prove Theorem 1.2 in Section 1.2. The key to our proof is the LCFT
description of the uniform embedding of QS2 and QD0,2 in the cylinder and strip coordinates:

T,−∞,+∞ ⋉ QS2 = <LF(>,+∞),(>,−∞) and

T ,−∞,+∞ ⋉ QD0,2 = <LF(>,−∞),(>,+∞)
(1.4)

where  is a horizontal cylinder and  is a horizontal strip. Although this is essentially equivalent
to the results in [6] and [11] our proof is much shorter. Thanks to the choice of coordinate, the
identities (1.4) are equivalent to an interesting fact about drifted Brownian motion that we prove
as Proposition 2.14. This fact also gives the analogous result if the singularity at the marked points
is more general (see Section 1.3 and Definition 2.1).
Our method for proving Theorem 1.2 is also used to give the LCFT description of QD1,0 in [4,

Section 3]. It can be extended to quantum surfaces decorated with SLE curves. For example, in [2]
we proved that the SLE loop coupled with LFC is the uniform embedding of the welding of two
independent copies of QD.
The LCFT description of quantum surfaces has two advantages. First, it is a common operation

to add marked points to quantum surfaces according to some quantum intrinsic measure. This
operation is tractable on the LCFT side via the Girsanov theorem; see Section 2.4. The second
advantage is that LCFT correlation functions are exactly solvable. In Section 1.3 we will explain
how these ideas can be applied to prove Theorem 1.1.
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2656 ANG et al.

1.3 Integrability of SLE through conformal welding and LCFT

The starting point of our proof of Theorem 1.1 is the conformal welding result we proved
in [3]. For > ∈ (0, 2) and ! = >2 ∈ (0, 4), if we run an independent SLE! on top of a cer-
tain type of >-LQG quantum surface, the two quantum surfaces on the two sides of the SLE
curve are independent. Moreover, the original curve-decorated quantum surface can be recov-
ered by gluing the two smaller quantum surfaces according to the quantum boundary lengths.
The recovering procedure is called conformal welding. Such results were first established by
Sheffield [56] and later extended in [21]. They play a fundamental role in the mating-of-trees
theory.
In [3] we proved conformal welding results for a family of finite-area quantum surfaces, gener-

alizing their infinite-volume counterpart proved in [56] and [21]. We recall them now. ForZ > 0,
letdisk2 (Z) be the 2-pointed quantum disk of weightZ introduced in [21]; see Section 2.1. ForZ ≥ >2∕2, disk2 (Z) is an infinite measure on quantum surfaces with two boundary marked
points. The log-singularity of the field at each marked point is −[ log | ⋅ | where

[ = G + >2 − Z> . (1.5)

The 2-pointed quantum disk QD0,2 is the special case of disk2 (Z) where Z = 2. For Z ∈(0, >2∕2), disk2 (Z) is a Poissonian collection of samples from disk2 (>2 −Z), viewed as an
ordered chain of 2-pointed quantum surfaces.
In [3], we showed that the conformal welding of independent samples from disk2 (Z−) anddisk2 (Z+) gives a sample from disk2 (Z− +Z+) decorated by an independent SLE!(Z− −2;Z+ − 2) running between the two marked point. To put it more formally, we can write this

result as

disk2 (Z− +Z+)⊗ SLE!("−; "+)
= ]Z−,Z+

∞
∫0 Weld(disk2 (Z−; ⋅,8),disk2 (Z+;8, ⋅))A8. (1.6)

In (1.6), "− =Z− − 2, "+ =Z+ − 2, and ]Z−,Z+ is a positive constant which we call the
welding constant. The measure disk2 (Z−; ⋅,8) is defined by the disintegration disk2 (Z−) =∫ ∞0 disk2 (Z−; ⋅,8)A8where 8 represents the quantum length of the right boundary arc.We sim-
ilarly definedisk2 (Z+;8, ⋅) for the left boundary. The operatorWeldmeans conformal welding
along the boundary arc with length 8. See Section 4.1 for more details on (1.6).
At the highest level, our proof of Theorem 1.1 is done in four steps.

(1) Use LCFT to define a variant ofdisk2 (Z)where we add a third boundary marked point with
a generic log singularity.

(2) Prove a version of the conformal welding Equation (1.6) for the three-point variant ofdisk2 (Z).
(3) Show that the welding constants encode the moments of /′(1) in Theorem 1.1.
(4) Use the integrability from LCFT and mating-of-trees to compute the welding constants.
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2657

F IGURE 1 . 1 Illustration of the conformal welding result in (1.7).

We now summarize the key ideas and inputs for implementing the 4-step proof. To keep the pic-
ture simple, we first assume thatZ− ≥ >2∕2 andZ+ ≥ >2∕2 in (1.6). In this case the SLE!("−; "+)
curve does not touch the boundary of the weight (Z− +Z+) quantum disk (see Figure 1.1).
We definedisk2,∙ (Z;:) to be themeasure on quantum surfaces such that after being embedded

in (H, 0,∞, 1), the field is distributed as >2(G−[)2 LF([,0),([,∞),(:,1)
H . For Z = 2 and : = >, by [11],

disk2 (2; >) agrees with QD0,3. As alluded in Section 1.2, we give a concise proof of this result
which also extends to surfaces with other singularities. The new method also allows us to show
thatdisk2,∙ (Z; >) for a generalZ ≥ >2∕2 is obtained by adding todisk2 (Z) an extra point on the
right boundary according to the quantum length measure.
We then extend the welding Equation (1.6). For all : ∈ R we prove that

disk2,∙ (Z− +Z+;:)⊗^("−; "+;:)
= ]Z−,Z+ ∫

∞
0 Weld(disk2 (Z−; ⋅,8),disk2,∙ (Z+;:;8, ⋅))A8. (1.7)

Here, ^("−; "+;:) is a measure on curves obtained from reweighting SLE!("−; "+) by /′(1)1−∆
with ∆ = :2 (G − :2 ) and / as defined in Theorem 1.1. For : = >, this equation is straightforward
from (1.6) by adding a quantum typical point on the right boundary. For general :, this follows
from an application of the Girsanov theorem. The extra factor of /′(1)1−∆ arises in a similar
fashion as the G log term in the >-LQG coordinate change formula (1.2).
By definition, the total mass of^("−; "+;:) equalsE[/′(1)1−∆]. Therefore, forgetting the curve

in (1.7), the integral

∫
∞

0 Weld(disk2 (Z−; ⋅,8),disk2,∙ (Z+;:;8, ⋅))A8
equals <(:)disk2,∙ (Z− +Z+;:) as measures on quantum surfaces, where <(:) =]−1Z−,Z+E[/′(1)1−∆]. To determine <(:) (and hence determine E[/′(1)1−∆] = <(:)∕<(>)),
we only need to match the distribution of a single observable on both sides. The one we choose
is the left boundary length ofdisk2,∙ (Z− +Z+;:).
Let H and ` be the left and right, respectively, boundary lengths of a sample from disk2 (Z).

Then both of disk2,∙ (Z;:)[@−aH] and disk2 (Z)[1 − @−a1H−a2`] are LCFT correlation functions
computed by Remy and Zhu [48, 49]. In particular, let `([; a1, a2) = disk2 (Z)[1 − @−a1H−a2`]
withZ = >(G + >2 − [). Then ` is the so-called boundary reflection coefficient. This allows us to
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2658 ANG et al.

compare the left boundary length of disk2,∙ (Z− +Z+;:) on both sides of (1.7) and express
E[/′(1)1−∆] in terms of certain explicitly known LCFT correlation functions.
Due to the integration on the right side of (1.7) the expression for E[/′(1)1−∆] using LCFT is

far from the neat product form in Theorem 1.1. However, forZ− = 2 or >2∕2, the mating-of-trees
theory provides a simple description of the area and boundary lengths distribution ofdisk2 (Z−)
in terms of 2D Brownian motion in cones. The case with Z− = 2 is known from [1] and [21].
The case with Z− = >2∕2 is obtained in our paper [3]. This allows us to prove Theorem 1.1 for! ∈ (0, 4), "− ∈ {0, !∕2 − 2}, and "+ ≥ !∕2 − 2 (recall that "− =Z− − 2 and ! = >2).
The same argument can also be run whenZ+ ∈ (0, >2∕2) to cover the range "+ ∈ (−2, !∕2 −2). For Z ∈ (0, >2∕2), disk2 (Z) is a chain of disk2 (>2 −Z)-quantum disks. In this case we

can still definedisk2,∙ (Z;:). This new quantum surface is not so natural from the perspective of
either [21] or [14] but it becomes natural after we combine the two. Due to Campbell’s formula for
Poisson point process, both of the boundary length distributions of disk2 (Z) and disk2,∙ (Z;:)
can be computed in terms of their counterparts with Z replaced by >2 −Z. This allows us to
carry out the proof as before. Our computation shows that the boundary length distribution ofdisk2 (Z) in the thin regime is an analytic continuation of the boundary length distribution in
the thick regime, which provides a probabilistic counterpart for a well-known numerical fact on
the reflection coefficient: `([; a1, a2)`(2G − [; a1, a2) = 1.
To prove the general case of Theorem 1.1, we consider the pair of SLE curves which are the

interfaces when conformally welding 2(Z1), 2(Z2), and 2(Z3). This allow us to derive
a multiplicative relation on E[/′(1)9] with different parameters. Specializing toZ1 = 2 orZ1 =>2∕2 and using the proved case of Theorem 1.1with "− =Z1 − 2, we obtain two functional equa-
tions on E[/′(1)9]. In the "−-variable, it is a pair of explicit shift equations relating the value of
E[/′(1)9] at "− to the value at "− + >2∕2 or "− + 2. Setting [ = G + >2 − Z1> as in (1.5), the two

shifts in "− transfer to [ → [ + >2 and [ → [ + 2> , respectively. Interestingly, the numerical values>2 , 2> for the shifts turn out to be exactly those appearing in shift relations for DOZZ formula [16,
37, 62, 64] and other correlation functions in LCFT (see e.g. [37, 49]).
Similarly as in the LCFT context, if ! = >2 is irrational, then this pair of shift relations has a

uniquemeromorphic solution. On the other hand, we can check that the explicit function in The-
orem 1.1 is such a solution. This gives Theorem 1.1 for irrational ! ∈ (0, 4). By a standard continuity
argument, it extends to all ! ∈ (0, 4]. Finally the result for ! > 4 follows from the SLE duality [19,
41, 65].
The core of the argument outlined above is to compare boundary lengths of quantum surfaces

on the two sides of the conformal welding Equation (1.7). It is equally interesting to compare
quantum area and to consider quantum surfaces with marked points in the bulk. This idea is
explored in [4] by the first and the third author with Remy to prove the Fateev-Zamolodchikov-
Zamolodchikov (FZZ) formula [24] for the one-point disk partition function of LCFT. Moreover
in [5] of the first and the third authors, this idea is used to prove two integrable results on the
conformal loop ensemble (CLE). One result relates the three-point correlation function of CLE
on the sphere [34] to the DOZZ formula in LCFT. The other addresses a conjecture of Kenyon and
Wilson (recorded in [54]) on the electrical thickness of CLE loops.
Organization of the paper. In the rest of the paper, we first develop the idea of uniform

embedding described in Section 1.2 and prove Theorem 1.2 in Section 1.2. Then in Section 3 we
relate some explicit boundary LCFT correlation functions computed by Remy and Zhu [48, 49]
to variants of quantum disks. In Section 1.3 we prove the welding equation (1.7). In Section 5 we
prove Theorem 1.1 based on (1.7) following the outline in Section 1.3.
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2659

2 QUANTUM SURFACE AND LIOUVILLE FIELD

In this section we develop the ideas outlined in Section 1.2. In Sections 2.1 and 2.2 we review
background on quantum surfaces and LCFT which will be used throughout the paper. In Sec-
tion 2.3 we show that when two-pointed quantum disks are embedded in the strip or cylinder
with uniformly chosen translation, the field is described by LCFT. In Section 2.4 we discuss
how to add a third point sampled from quantum measure, which will recover the main result
in [11]. (The sphere case is treated in parallel in Appendix B.) Finally in Section 2.5 we prove
Theorem 1.2.
We will frequently consider non-probability measures and extend the terminology of probabil-

ity theory to this setting. In particular, supposeb is a measure on ameasurable space (Ω,) such
that b(Ω) is not necessarily 1, and d is an  -measurable function. Then we say that (Ω,) is
a sample space and that d is a random variable. We call the pushforward measure bd = d∗b
the law of d. We say that d is sampled from bd . We also write ∫ C(8)bd(A8) as bd[C] orbd[C(8)] for simplicity. For a finite positive measure b, we denote its total mass by |b| and
letb# = |b|−1b denote the corresponding probability measure.

2.1 Preliminaries on the GFF and quantum surfaces

We recall the GFF on the upper half-plane H and the horizontal strip  = R × (0,g). For ∈ {H,}, we fix a finite measure P on  . Consider the Dirichlet inner product ⟨C, S⟩∇ ∶=(2g)−1 ∫ ∇C ⋅ ∇S. Leti() be the Hilbert space closure of
⎧
⎪
⎨
⎪⎩
C is smooth on  and ∫

C AP = 0⎫⎪⎬
⎪⎭

with respect to (⋅, ⋅)∇. Let (jN)∞N=1 be i.i.d. standard Gaussian random variables and (CN)∞N=1 be an
orthonormal basis for i(). Then the summation

ℎ ∶= ∑
N jNCN (2.1)

does not converge in i() but a.s. converges in the space of distributions [21, Section 4.1.4]; see
Remark 2.3. We call ℎ a GFF on  with normalization ∫ ℎ AP = 0, and denote its law by k .
In this paper for each ∈ {H,}wewill only consider one normalizationmeasureP. For =

H, it is the uniformmeasure on the unit semi-circle centered at the origin. For =  , it is the uni-
form measure on {0} × (0,g). This way, ℎ and ℎH are related by the exponential map between 
andH. It will be convenient to have their explicit covariance kernels l (6,m) = E[ℎ (6)ℎ (m)]:lH(6,m) = − log |6 − m| − log |6 − m| + 2 log |6|+ + 2 log |m|+.l (6,m) = − log |@6 − @m| − log |@6 − @m| +max(2Re 6, 0) + max(2Rem, 0). (2.2)

Here |6|+ means max{|6|, 1}. Moreover, l (6,m) = E[ℎ (6)ℎ (m)] means that for any com-
pactly supported test function " on  , the variance of (ℎ, ") is ∬ l (6,m)"(6)"(m)A26 A2m.
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2660 ANG et al.

See [49, Definition 1.1] for (2.2) in the case of lH, and the other identity follows from l (6,m) =lH(@6, @m).
We now recall the radial-lateral decomposition of ℎ . Leti1() ⊂ i() (resp.i2() ⊂ i())

be the subspace of functions which are constant (resp. have mean zero) on {n} × [0,g] for each n ∈
R. This gives the orthogonal decomposition i() = i1()⊕i2(). If we write ℎ = ℎ1 + ℎ2
with ℎ1 ∈ i1() and ℎ2 ∈ i2(), then ℎ1 and ℎ2 are independent. Moreover, {ℎ1 (n)}n∈R has the
distribution of {p2n}n≥R where pn is a standard two-sided Brownian motion. See [21, Section 4.1.6]
for more details.
We now recall the concept of a quantum surface. For Q ∈ N, consider tuples (-,ℎ, 61, … , 6Q)

such that - ⊂ C is a domain, ℎ is a distribution on -, and 6N ∈ ∪- ∪ 2-. Let (-̃, ℎ̃, 6̃1, … , 6̃Q) be
another such tuple. We say

(-,ℎ, 61, … , 6Q) ∼> (-̃, ℎ̃, 6̃1, … , 6̃Q)
if there is a conformal map / ∶ -̃ → - such that ℎ̃ = C ∙> ℎ = ℎ◦C−1 + G log|(C−1)′| and /(6̃N) =6N for all N. An equivalence class for ∼> is called a quantum surface with Q marked points.
We write (-,ℎ, 61, … , 6Q)∕∼> as the marked quantum surface represented by (-,ℎ, 61, … , 6Q).
When it is clear from context, we simply let (-,ℎ, 61, … , 6Q) denote the marked quantum surface
it represents.
Suppose O is a random function on H which can be written as ℎ + S where ℎ is sampled

from kH and S a possibly random function that is continuous on H ∪ 2H except at finitely
many points. For q > 0 and 6 ∈ H ∪ 2H, we write Oq(6) for the average of O on 2pq(6) ∩ H
where pq(6) = {m ∶ |6 − m| < q}, and define the random measure ?qO ∶= q>2∕2@>Oq(6) A26 on H,
where A26 is Lebesgue measure on H. Almost surely, as q → 0, the measures ?qO converge
weakly to a limiting measure ?O called the quantum area measure [22, 58]. We also define
the quantum boundary length measure JO ∶= limq→0 q>2∕4@ >2Oq(8)A8. Suppose C ∶ H → - is a
conformal map and Õ = C ∙> O. If - = H, then ?Õ is the pushforward of ?O under C and the
same holds for JÕ. We can use this to unambiguously extend the definition of the quantum
area and boundary length measures to any (-, Õ) that is equivalent to (H,O) as a quantum
surface.
We now recall various notions of quantum disk introduced in [21].

Definition 2.1. ForZ ≥ >22 , let [ = G + >2 − Z> < G. Let
sn = {p2n − (G − [)n if n ≥ 0p̃−2n + (G − [)n if n < 0,

where (pa)a≥0 is a standard Brownian motion conditioned on p2a − (G − [)a < 0 for all a > 0,1
and (p̃a)a≥0 is an independent copy of (pa)a≥0. Let ℎ1(6) = sRe 6 for each 6 ∈  . Let ℎ2 be inde-
pendent of ℎ1 and have the law of the projection of ℎ onto i2(). Let ℎ̂ = ℎ1 + ℎ2 . Let t be
a real number sampled from >2 @([−G)]A] independent of ℎ̂ and O = ℎ̂ + t. Let disk2 (Z) be the
1Here we condition on a zero probability event. This can be made sense of via a limiting procedure.
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2661

infinite measure describing the law of ( ,O,−∞, +∞)∕∼>. We call a sample from disk2 (Z) a
(two-pointed) quantum disk of weightZ.

The parameter [ measures the magnitudes of log-singularities at the corresponding marked
points. We use the weightZ as the chief parameter for its convenience in stating conformal weld-
ing results in Section 1.3. Fordisk2 (2)we have [ = >. In this case the marked points are quantum
typical, namely, conditioning on the quantum surface, the twomarked points are sampled accord-
ing to the quantum length and areameasure, respectively; see the discussion belowDefinition 2.2.
This allowsus to define general quantumdisksmarkedwith quantum typical points. In the follow-
ing definitionwe recall the convention thatb# = |b|−1b is the probabilitymeasure proportional
to a finite measureb.

Definition 2.2. Let ( ,O, +∞,−∞)∕∼> be a sample from disk2 (2). Let QD be the law of( ,O)∕∼> under the reweighted measure JO(2)−2disk2 (2). For integers P,Q ≥ 0, let ( ,O)
be a sample from ?O()PJO(2)QQD, and then independently sample 61, … , 6P and m1, … ,mQ
according to ?#O and J#O , respectively. Let QDP,Q be the law of

( ,O, 61, … , 6P,m1, … ,mQ)∕∼>.
We call a sample from QDP,Q a quantum disk withP interior and Q boundary marked points.
By [21, Propositions A.8] disk2 (2) = QD0,2, which means the marked points on disk2 (2) are

quantum typical.
We conclude this subsection with a remark on the function space that variants of the GFF take

values in, which applies throughout the paper.

Remark 2.3. For  ∈ {H,}, let S be a smooth metric on  such that the metric completion of( , S) is a compact Riemannian manifold. Let i1( , S) be the Sobolev space whose norm is the
sumof theH2-normwith respect to ( , S) and theDirichlet energy. Leti−1() be the dual space ofi1( , S). Then the function spacei−1() and its topology does not depend on the choice of S, and
is a Polish (i.e., complete separable metric) space. Moreover, the GFFmeasure k is supported oni−1(). This follows from a straightforward adaptation of results in [20, 55] as pointed out in [14,
Section 2]. Random functions on  in our paper, such as the ones in Definition 2.1 and B.1 are the
sum of a sample from k and a function on  that is continuous everywhere except having log
singularities at finitely many points. Both of these functions belong to i−1(). So we view their
laws as measures on the Polish space i−1().
2.2 Preliminaries on Liouville conformal field theory

In this section we review some random fields arising in the context of LCFT. We define the Liou-
ville field on  ∈ {H,} with boundary insertions following [33, 49]. We will not discuss bulk
insertions as they are not needed here.

Definition 2.4. Let (ℎ, t) be sampled from kH × [@−G]A]] and set O = ℎ(6) − 2G log |6|+ + t. We
write LFH as the law of O and call a sample from LFH a Liouville field on H.
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2662 ANG et al.

Let ([N , aN) ∈ R × 2H for N = 1,… ,P, where P ≥ 1 and the aN are distinct. The Liouville field
with insertions ([N , aN)1≤N≤P is defined formally by∏PN=1 @ [N2 O(aN)LFH(AO). To make it rigorous we
need to replace @ [2 O(a) by the regularization q [24 @ [2 Oq(a) and send q → 0. We first give a definition
without taking limit and then justify it in the subsequent lemma.

Definition 2.5. Let ([N , aN) ∈ R × 2H for N = 1,… ,P, whereP ≥ 1 and the aN are pairwise distinct.
Let (ℎ, t) be sampled from <([N ,aN)NH kH × [@( 12 ∑N [N−G)]A]] where

<([N ,aN)NH = P∏
N=1 |aN|−[N

(G−[N2 )+ @∑Pu=N+1 [N[u4 lH(aN ,au).
Let O(6) = ℎ(6) − 2G log |6|+ +∑PN=1 [N2 lH(6, aN) + t. We write LF([N ,aN)NH for the law of O and call a
sample from LF([N ,aN)NH the Liouville field on H with insertions ([N , aN)1≤N≤P.
Lemma 2.6. Suppose a ∉ {a1, … , aP}. Then in the topology of vague convergence of measures, we
have limq→0 q [24 @ [2 Oq(a)LF([N ,aN)NH (AO) = LF([N ,aN)N ,([,a)H . (2.3)

Proof. Consider bounded continuous functions C on i−1(H) and S on R, and suppose S is com-
pactly supported. For ℎ sampled from kH let Õ ∶= ℎ +∑N [N2 l(⋅, aN) − 2G log | ⋅ |+ and let EH

denote the expectation over kH. Then

limq→0<([N ,aN)NH ∫
R

EH

[q [24 @ [2 (Õq(a)+])C(Õ)S(])]@( 12 ∑N [N−G)] A]
= |a| [22 −G[+ @ 14 ∑N [[NlH(a,aN)<([N ,aN)NH

⋅ limq→0 ∫R

EH

[@ [2 ℎq(a)]−1EH

[@ [2 ℎq(a)C(Õ)S(])]@( [2 + 12 ∑N [N−G)] A]
= <([,a),([N ,aN)NH ∫

R

EH

[C(Õ + [2lH(⋅, a))S(])]@( [2 + 12 ∑N [N−G)] A].
The first equality follows from expanding the definition of Õ and noting that Var(ℎq(a)) =−2 log q + 4 log |a|+ + w(1) so

E

[@ [2 ℎq(a)] = (1 + w(1))q− [24 |a| [22+ .
For the second equality, we have the prefactor

|a| [22 −G[+ @ 14 ∑N [[NlC(a,aN)<([N ,aN)NH = <([,a),([N ,aN)NH
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2663

by definition. Moreover, Girsanov’s theorem gives EH[@ [2 ℎq(a)]−1EH[@ [2 ℎq(a)C(Õ)] = EH[C(Õ +[2lH,q(⋅, a))] where lH,q(m, a) is the average of lH(m, ⋅) on 2pq(a) ∩ H. Since limq→0 lH,q(⋅, a)→lH(⋅, a) ini−1(H), the equality follows from the bounded convergence theorem. □
Definitions 2.4 and 2.5 correspond to the LCFT on H with background metric S(8) = |8|−4+ , as

defined in [33, Section 3.5]. See also [49, Section 5.3] for more details. When the Seiberg bounds∑ [N > 2G, [N < G hold, the measure @−??O(H)−?2JO(2H)LF([N ,aN)NH (AO) is finite for cosmological con-
stants ?,?2 > 0. Its total mass gives the Liouville correlation functions on H. In this section the
finiteness of @−??O(H)−?2JO(2H)LF([N ,aN)NH (AO) is irrelevant, so we do not put any constraint on([N)1≤N≤P.
LCFT on the half-plane is conformally covariant. To state this, for ameasureb on distributions

on a domain -, and a conformal map C ∶ - → -̃, we define C∗b as the pushforward ofb under
the map O ↦ O◦C−1 + G log |(C−1)′|, and recall the conformal automorphism group conf (H) of
H.

Proposition 2.7. For [ ∈ R, set ∆[ ∶= [2 (G − [2 ). Let C ∈ conf (H) and ([N , aN) ∈ R × 2H be such
that C(aN) ≠ ∞ for all 1 ≤ N ≤ P. Then LFH = C∗LFH and

LF([N ,C(aN))NH = P∏
N=1 |C′(aN)|−∆[N C∗LF([N ,aN)NH .

Proof. Theorem 3.5 in [33] is stated for LCFT on the unit disk, but the result holds also for
LCFT on H by their Proposition 3.7. Rephrasing using H, in [33, Theorem 3.5] they consider@−??O(H)−?2JO(2H)LF([N ,aN)NH (AO) for ?,?2 > 0. But this readily implies the statement for ? = ?2 = 0,
that is proves Proposition 2.7. □
In Definition 2.5we did not consider the case a1 =∞. We now give a definition of this field and

check that it can be obtained by sending a → ∞.

Definition 2.8. Let [ ∈ R and ([N , aN) ∈ R × 2H for N = 2,… ,P, where P ≥ 1 and the aN are
pairwise distinct. Let (ℎ, t) be sampled from <([,∞),([N ,aN)N

H kH × [@( [2 + 12 ∑N [N−G)]A]] where
<([,∞),([N ,aN)N

H = P∏
N=2 |aN|−[N

(G−[N2 −[2 )+ @∑Pu=N+1 [N[u4 lH(aN ,au).
Let O(6) = ℎ(6) + ([ − 2G) log |6|+ +∑PN=2 [N2 lH(6, aN) + t. We write LF([,∞),([N ,aN)N

H for the law ofO and call a sample from LF([,∞),([N ,aN)N
H the Liouville field onHwith insertions ([,∞), ([N , aN)2≤N≤P.

Lemma 2.9. With notation as in Definition 2.8, we have the convergence in the vague topology on
measures oni−1(H) (see Remark 2.3)

limz→+∞z[(G−[2 )LF([,z),([N ,aN)NH = LF([,∞),([N ,aN)N
H .
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2664 ANG et al.

Proof. In the topology of i−1(H), we have lH(⋅, z)→ 2 log | ⋅ |+ as z → +∞. Thus we
have ℎ − 2G log | ⋅ |+ + [2lH(⋅, z) +∑PN=2 [N2 lH(⋅, aN)→ ℎ + ([ − 2G) log | ⋅ |+ +∑PN=2 [N2 lH(⋅, aN),
and moreover limz→+∞ z[(G−[2 )<([,z),([N ,aN)NH = <([,∞),([N ,aN)

H . This yields the result. □
When [1 = [2 it is more convenient to put the field on the strip  and put these two insertions

at ±∞. We will use this in the three-point case.

Definition 2.10. Let (ℎ, t) be sampled from <([,±∞),([3,a3) k × [@([+ [32 −G)]A]] where [ ∈ R and([3, a3) ∈ R × 2 , and
<([,±∞),([3,a3) = @(−[32 (G−[32 )+ [[32 )

|Re a3|.
Let O(6) = ℎ(6) − (G − [)|Re 6| + [32 l (6, a3) + t. Wewrite LF([,±∞),([3,a3) for the law of O. In the
special case [3 = 0, we instead write LF([,±∞) .

Our next lemma explains how the fields of Definitions 2.5, 2.8, and 2.10 are related under
change of coordinates. We state this for two specific choices of conformal maps, and in light of
Proposition 2.7, this covers all cases. Let exp ∶  → H be the exponentiation map exp(6) = @6.
Lemma 2.11. Let [ ∈ R and ([3, a3) ∈ R × 2 , then

LF([,∞),([,0),([3,@a3 )
H = @−[32 (G−[32 )Re a3 exp∗ LF([,±∞),([3,a3) .

Similarly, if [1, [2, [3 ∈ R and C ∈ Conf(H) satisfies C(0) = 0,C(1) = 1,C(−1) =∞, then

LF([1,∞),([2,0),([3,1)
H = 2∆[1−∆[2+∆[3 ⋅ C∗LF([1,−1),([2,0),([3,1)H .

Proof. If ℎ is sampled from k then ℎ̃ ∶= ℎ◦ log has law kH, and l (6,m) = lH(@6, @m). Thus
ℎ̃(⋅) + ([ − 2G) log|⋅|+ + [2lH(⋅, 0) + [32 lH(⋅, @a3 )

= exp ∙>(ℎ(⋅) − (G − [)|Re ⋅| + [32 l (⋅, a3)).
Combining this with <([,∞),([,0),([3,@a3 )

H = @−[32 (G−[32 ) Re a3<([,±∞),([3,a3) gives the first assertion.
For z > 0 let Cz(6) ∶= 2z6(z+1)6+z−1 , which is the conformal map such that Cz(0) = 0,Cz(1) =1,Cz(−1) = z. By Proposition 2.7 and using the z → ∞ asymptotics |C′z(−1)| = (1 + wz(1)) z22 ,

|C′z(0)| = 2 + wz(1) and |C′z(1)| = 12 + wz(1), we have
z2∆[1 LF([1,z),([2,0),([3,1)H = (1 + wz(1))2∆[1−∆[2+∆[3 (Cz)∗LF([1,−1),([2,0),([3,1)H

as z → ∞. The z → ∞ limit of the left hand side is LF([1,∞),([2,0),([3,1)
H by Lemma 2.9. Similarly,

since Cz → C in the topology of uniform convergence of an analytic function and its derivative on
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2665

compact sets, we have limz→∞(Cz)∗LF([1,−1),([2,0),([3,1)H = C∗LF([1,−1),([2,0),([3,1)H in the vague
topology. This gives the second assertion. □
We conclude with an observation that is useful in Section 2.4.

Lemma 2.12. Let E denote the expectation over the probability measure k for  ∈ {H,}. Let
E [Jℎ(A{)] be the measure on R given by | ↦ E [Jℎ(|)]. We similarly define EH[Jℎ(A{)]. Then

<([,±∞),(>,{) A{ = @ >2 (−(G−[)|Re{|)E [Jℎ(A{)],<(>,{)H A{ = @−2>G log |{|+EH[Jℎ(A{)].
Proof. We present the argument for the first identity; the other uses an identical argument. For
any smooth compactly supported function S ∶ R → R, by [9, Theorem 1.1] we have

∫
R

@ >2 (−(G−[)|Re{|)S({)E [Jℎ(A{)]
= limq→0 ∫R

@ >2 (−(G−[)|Re{|)S({)E [q>2∕4@ >2 ℎq({)]A{. (2.4)

Now, since Var(ℎq({)) = −2 log q + 2|Re{| + wq(1), we have E [q>2∕4@ >2 ℎq({)] = (1 + wq(1))@ >24 |Re{|, where the error terms are uniformly small for { in the support of S. Therefore the limit
in (2.4) equals ∫

R
@ >2 (−(G−[)|Re{|)S({)@ >24 |Re{| A{ = ∫

R
S({)<([,±∞),(>,{) A{, as desired. □

2.3 LCFT description of two-pointed quantum disks

The main result of this section is the following theorem.

Theorem 2.13. FixZ > >22 . Let O be as in Definition 2.1 so that ( ,O, +∞,−∞) is an embedding
of a sample fromdisk2 (Z). Let } ∈ R be sampled from the Lebesgue measure An independently ofO. Let Õ(6) = O(6 + }). Then the law of Õ is given by >2(G−[)2 LF([,±∞) where [ = G + >2 − Z> .
By Definition 2.10, the proof of Theorem 2.13 reduces to the following proposition on Brownian

motion. See Figure 2.1.

Proposition 2.14. Fix X > 0. Then {d1(n)}n∈R and {d2(n)}n∈R defined below agree in distribution.∙ Let (p̂n)n≥0 be standard Brownian motion conditioned on p̂n − Xn < 0 for all n > 0. Let (p̃n)n≥0 be
an independent copy of (p̂n)n≥0. Let

sn = ⎧
⎪
⎨
⎪⎩

p̂n − Xn if n ≥ 0p̃−n + Xn if n < 0.
Sample (t,}) ∈ R2 from @−2X] A] An independent of s. Set d1(n) = sn−} + t for n ∈ R.
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2666 ANG et al.

F IGURE 2 . 1 Illustration of the processes from Proposition 2.14 and Lemma 2.15. Left: The maximal value
of d1(n) is t. It is achieved at time } whose law is the Lebesgue measure on R. Middle: On both [0,∞) and(−∞, 0], the process d2(n) is a drifted Brownian motion starting from t′. Right: The process {|bn }n≤0 is a drifted
Brownian motion conditioned on staying below −b, and {|bn }n≥0 is a drifted Brownian motion starting from −b.

∙ Let (pn)n∈R be standard two-sided Brownian motion with p0 = 0. Sample t′ from 12X2 @−2X]A]
independent of p. Set d2(n) = pn − X|n| + t′ for n ∈ R.

The starting point of the proof of Proposition 2.14 is the following lemma.

Lemma 2.15. Let (Z̃n)n≥0 be a standard Brownianmotion conditioned on Z̃n − Xn < 0 for all n > 0.
Let (Zn)n≥0 be a standard Brownian motion independent of (Z̃n)n≥0. Forb ∈ R, let

|bn = {Zn − Xn −b if n ≥ 0Z̃−n + Xn −b if n < 0
and 8 be the a.s. unique time such that |b8 = maxn∈R |bn . Then (sn + t)n∈R conditioned on {t >−b} agrees in distribution with (|bn+8)n∈R, where sn and t are as defined in Proposition 2.14.
Proof. Consider the excursion measure Λ away from zero of the Bessel process with dimension(2 − 2X). LetΛb be the probabilitymeasure corresponding toΛ conditioning on the event that the
maxima of the excursion is bigger than @b . Then Lemma 2.15 follows from comparing two ways
of representing Λb in terms of drifted Brownian motion. As explained in Proposition 3.4 and
Remark 3.7 in [21], given a sample @ fromΛb , if we reparameterize log @ by its quadratic variation
then it becomes a process onR, which is well definedmodulo horizontal translations. If we fix the
process by requiring that 0 is the smallest time when it hits −b, then we get a process whose law
is the same as |b . If we fix the process by requiring that it achieves the maximal value at n = 0,
then we get a process whose law is the same as the conditional law of (sn + t)n∈R conditioned on{t > −b}. This gives Lemma 2.15. □
Lemma 2.16. The law of d1(0) in Proposition 2.14 is 12X2 @−2X]A].
Proof. We write M1 for the measure on the sample space that generates d1. We must show
thatM1[d1(0) > −b] = ∫ ∞−b 12X2 @−2X] A] = 14X3 @2Xb for anyb ∈ R. By Lemma 2.15 and with the
notations |b and 8 defined there, we have

M1[d1(0) > −b ∣ t > −b] = ∫
R

P[|b8+n > −b]An = ∫
R

P[|bn > −b]An,
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2667

where the last equality follows from Fubini’s Theorem and the translation invariance of Lebesgue
measure. For each n > 0we haveP[|bn > −b] = P[Zn > Xn] = P[� > X√n]where {Za ∶ a ≥ 0}
is standard Brownian motion and � ∼ �(0, 1), and for n < 0 we a.s. have |bn ≤ −b. Therefore

∫
R

P[|bn > −b]An = ∫
∞

0 ∫
∞

X√n 1√2g@−82∕2 A8 An = ∫
∞

0 82X2 1√2g@−82∕2 A8 = 12X2 .
Since M1[t > −b] = ∫ ∞−b @−2X] A] = 12X @2Xb , we conclude

M1[d1(0) > −b] = M1[d1(0) > −b ∣ t > −b]M1[t > −b] = 14X3 @2Xb . □
Using Lemmas 2.15 and 2.16 we show that the laws of d1 and d2 agree.

Proof of Proposition 2.14. In the setting of Lemma 2.15, given |b , let � be sampled from Lebesgue
measure on R. Then by Lemma 2.15, the conditional law of {d1(n) ∶ n ∈ R} given t > −b is the
same as the law of {|bn+� ∶ n ∈ R}. Consequently, the conditional law of {d1(n) ∶ n ∈ R} givend1(0) > −b is the same as the conditional law of {|bn+� ∶ n ∈ R} given |b� > −b. By definition,
on the event that |b� > −b, we must have � > 0. By the Markov property of Brownian motion,
conditioning on the event that|b� > −b and the value of|b� , the processes {|bn+� − |b� ∶ n ≥ 0}
and {|bn+� − |b� ∶ n ≤ 0} are conditionally independent. Moreover, the conditional law of {|bn+� −|b� ∶ n ≥ 0} equals the law of (pn − Xn)n≥0 where pn is a standard Brownian motion. Varyingb,
we see that conditioning on d1(0), the conditional law of {d1(n) − d1(0) ∶ n ≥ 0} and {d1(n) −d1(0) ∶ n ≤ 0} are conditionally independent. Moreover, the conditional law of {d1(n) − d1(0) ∶n ≥ 0} equals the law of (pn − Xn)n≥0.
On the other hand, by the symmetry built into the definition ofd1, we see that {d1(−n) ∶ n ∈ R}

has the same law as {d1(n) ∶ n ∈ R}. Therefore conditioning on d1(0), the conditional law of{d1(−n) − d1(0) ∶ n ≥ 0} is also given by (pn − Xn)n≥0. Since by Lemma 2.16 the law of d1(0) is
the same as d2(0), by the definition of d2 we see that the law of d1 is the same as that ofd2. □
Proof of Theorem 2.13. Consider Proposition 2.14 where we have replaced @−2X] A] An with>4 @−2X] A] An in the definition of d1, and replaced 12X2 @−2X] A] with >8X2 @−2X] A] in the definition ofd2. The proposition still holds since we are merely scaling both laws by >4 . Choose X = 12(G − [)
and let d1 and d2 be defined as in this modified setting.
Recall ℎ1,ℎ2 , t from Definition 2.1 so that O = ℎ1 + ℎ2 + t. By definition, the law of {ℎ1(6 +}) + t}6∈ equals that of {d1(2 Re 6)}6∈ ; the prefactor >4 in >4 @−2X] A] An matches the product of>2 (from Definition 2.1) and 12 (reparametrized Lebesgue measure in definition of d1). Since the

law of ℎ2 is translation invariant, the law of {Õ(6) = O(6 + }) ∶ 6 ∈ } agrees with {d1(2 Re 6) +ℎ2 (6) ∶ 6 ∈ }, where ℎ2 is independently sampled from d1.
On the other hand, by Definition 2.10, suppose d2(n) is independent of ℎ2 , then the law of{d2(2 Re 6) + ℎ2 (6) ∶ 6 ∈ } is >8X2 LF([,±∞) . Since >8X2 = >2(G−[)2 , and the laws of d1 and d2 agree

by Proposition 2.14, the law of Õ is >2(G−[)2 LF([,±∞) as desired. □
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2668 ANG et al.

2.4 Adding a third point to a two-pointed quantum disk

In this section we show that LF([,−∞),([,+∞),(>,0) describes a two-pointed quantum disk with an
additional marked point defined as follows.

Definition 2.17. Fix Z > >22 . Let (-, X, 5) be a simply-connected domain with two boundary
points and let (-,O, X, 5) be an embedding of a sample from disk2 (Z) and JO be the quan-
tum length measure. Let H be the JO-length of the right boundary of (-, X, 5), namely the
counterclockwise arc from X to 5. Now suppose (-,O, X, 5) is from the reweighted measureHdisk2 (Z). Given O, sample � from the probability measure proportional to the restriction
of JO to the right boundary. We write disk2,∙ (Z) as the law of the marked quantum surface(-,O, X, 5, �)∕∼>.
Proposition 2.18. For Z > >22 , let O be sampled from >2(G−[)2 LF([,−∞),([,+∞),(>,0) where [ = > +2> − Z> . Then ( ,O,−∞, +∞, 0)∕∼> is a sample fromdisk2,∙ (Z).
Remark 2.19. Our disk2,∙ (2) equals QD0,3 restricted to the event � that the three boundary
points are in the clockwise order. Setting : = > in Proposition 2.18 and using the change of
coordinate from Proposition 2.7 and Lemma 2.11 gives the following. Suppose (H,O, a1, a2, a3) is
an embedding of QD0,3|� , where a1, a2, a3 are three fixed distinct clockwise-oriented points on2H. Then the law of O is <LF(>,a1),(>,a2),(>,a3)H with < = >2(G−>)2 . The main result of [11] is equiv-
alent to this statement without identifying <. We can also recover the result of [6] on QS3, see
Proposition 2.26.

To prove Proposition 2.18, we start with an infinite-measure variant of the rooted measure in
LQG. The argument via Girsanov’s theorem is standard we give the full detail as variants of it will
be used repeatedly. In the statement we recall Remark 2.3 that k is understood as a measure oni−1(). Moreover, we write E as the expectation over k .
Lemma 2.20. Let G(Aℎ,A{) = Jℎ(A{)k (Aℎ) for (ℎ,{) ∈ i−1() × R. Namely, G is the (infinite)
measure oni−1() × R such that for non-negative measurable functions C oni−1() and S on R
we have

∫ C(ℎ)S({)G(Aℎ,A{) = ∫ C(ℎ)(∫
R

S({)Jℎ(A{))k (Aℎ).
Let " be such that "({)A{ = E [Jℎ(A{)] with the latter measure defined in Lemma 2.12. Then

∫ C(ℎ)S({)G(Aℎ,A{) = ∫
R

E
[C(ℎ + >2l (⋅,{))]S({)"({)A{.

Proof. It suffices to assume that S is a compactly supported continuous function on R andC is a bounded and continuous function on i−1(). For q > 0, let Jℎ,q(A8) = q>2∕4@ >2 ℎq(8)A8.
Since limq→0 ∫R

S({) Jℎ,q(A{) = ∫
R
S({) Jℎ(A{) in H1 with respect to k (see e.g. [9, Theorem 1.1]),
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2669

we have

limq→0 ∫ C(ℎ)(∫
R

S({) Jℎ,q(A{))k (Aℎ) = ∫ C(ℎ)(∫
R

S({) Jℎ(A{))k (Aℎ)
= ∫ C(ℎ)S({)G(Aℎ,A{). (2.5)

Let l ,q(6,{) = E [ℎ(6)ℎq({)], where the latter is understood via the q-circle average of l (6, ).
By Girsanov’s theorem, the left side of (2.5) equals

∫
R

E
[C(ℎ + >2l ,q(⋅,{))]S({)E

[q>2∕4@ >2 ℎq({)] A{.
Since "({)A{ = limq→0 E [q>2∕4@ >2 ℎq({)]A{ and limq→0 l ,q(⋅,{) = l (⋅,{) in i−1(), we get the
desired result. □
The following lemma is a variant of Lemma 2.20 for Liouville fields. For notational convenience

we use the notionb[C(O)] = ∫ C(O)b(AO).
Lemma 2.21. Let LF([,±∞),([u ,au)u be as in Definition 2.10. Let C and S be non-negative measurable
functions as in Lemma 2.20. Then

LF([,±∞)
[C(O)∫

R

S({)JO (A{)] = ∫
R

LF([,±∞),(>,{) [C(O)]S({)A{. (2.6)

Proof. By Definition 2.10 the left side of (2.6) can be written as

∬ C(ℎ − (G − [)|Re ⋅| + ])(∫
R

S({)@ >2 (−(G−[)|Re{|+]) Jℎ(A{))
k (Aℎ)@([−G)] A].

By Lemma 2.20, the integration over k with a fixed ] is given by
∬ C(ℎ + >2l (⋅,{) − (G − [)|Re ⋅| + ])S({)@ >2 (−(G−[)|Re{|+])

"({) ⋅ @([−G)]k (Aℎ)A{ (2.7)

where "({) is as in Lemma 2.20. Recall <([,±∞),(>,{) in the definition of LF([,±∞),(>,{) . By
Lemma 2.12 we have <([,±∞),(>,{) A{ = @ >2 (−(G−[)|Re{|)"({)A{.
Therefore the integral in (2.7) becomes

∬ C(ℎ − (G − [)|Re ⋅| + >2l (⋅,{) + ])S({)@ >2 ] ⋅ @([−G)] ⋅ <([,±∞),(>,{)k (Aℎ)A{.
Further integrating over ] we get ∫

R
LF([,±∞),(>,{) [C(O)]S({)A{ as desired. □
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2670 ANG et al.

Proof of Proposition 2.18. Our proof is based on Theorem 2.13 and (2.6). For { ∈ R, letb{∙ be such
that ( ,O,−∞ +∞,{)∕∼> is a sample fromdisk2,∙ if O is a sample fromb{∙ . We must show thatb0∙ = >2(G−[)2 LF([,±∞),(>,0) .
Letb0 be the law of O in Definition 2.1where ( ,O, +∞,−∞)∕∼> is a sample fromdisk2 (Z).

Let G0 be the measure on {(O, 6) ∶ O is a distribution on  , 6 ∈ R} such that for non-negative
measurable functions C and S we have

∫ C(O)S(6)G0(AO, A6) = ∫ C(O)(∫
R

S(6) JO(A6))b0(AO).
Then theG0-law of ( ,O,−∞, +∞, 6)∕∼> isdisk2,∙ (Z). Let (O, �) and } be sampled from G0 × An,
where An is the Lebesgue measure on R. Set � = � − } and Õ(⋅) = O(⋅ + }). Letb be the law of(Õ,�). Then by definition

b[C(Õ)S({)] = ∫
R

b{∙ [C(Õ)]S({)A{. (2.8)

On the other hand, note that the JO(R)−1G0-law of O isb0. Therefore, by Theorem 2.13, the law
of Õ under JÕ(R)−1b is >2(G−[)2 LF([,±∞) . Moreover, conditioning on Õ, the conditional law of � is
the probability measure proportional to JÕ|R. Therefore,

b[C(Õ)S({)] = >2(G − [)2 LF([,±∞)
[C(Õ)∫

R

S({) JÕ(A{)].
By Lemma 2.21, we have

b[C(Õ)S({)] = >2(G − [)2 ∫R

LF([,±∞),(>,{) [C(O)]S({)A{. (2.9)

Combining (2.8) and (2.9) we getb{∙ [C(Õ)] = >2(G−[)2 LF([,±∞),(>,{) [C(Õ)], since S can be arbitrary.
Setting { = 0 and varying C we conclude the proof. □
2.5 Uniform embedding of the quantum sphere and quantum disk

With notation as in Section 1.2, Theorem 2.13 says that the uniform embedding of disk2 (Z) in( ,−∞, +∞) is given by a constant multiple of LF([,±∞) . More precisely

T ,−∞,+∞ ⋉disk2 (Z) = >2(G − [)2 LF([,±∞) , [ = G + >2 − Z> .
It is in fact a general phenomenon that uniform embedding of random surfaces appearing in the
framework of [21] are given by a Liouville field. In this section we demonstrate this point by prov-
ing Theorem 1.2, which concerns the uniform embedding of the quantum sphere and disk. Unlike
the rest of the paper, which focuses on LQG surfaces with disk topology, in this subsectionwe treat
the sphere and disk in parallel.
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2671

We first give a precise definition of the notation⋉ that represents uniform embedding. Letl be
a locally compact Lie group. SupposeΩ is a Polish spacewith a continuousl-action (S,8)↦ S ⋅ 8.
Namely, S1 ⋅ (S2 ⋅ 8) = (S1 ⋅ S2) ⋅ 8 for all S1, S2 ∈ l and 8 ∈ Ω; moreover, (S,8)↦ S ⋅ 8 is con-
tinuous. Let Ω∕l be such that � ∈ Ω∕l if and only if � = {S8 ∶ S ∈ l} for some 8 ∈ Ω. We
let g ∶ Ω → Ω∕l be the quotient map and endow Ω∕l with the quotient topology. We endow
the Borel W-algebra on l,Ω and Ω∕l. Suppose T is a right invariant Haar measure. That is,∫l C(Sℎ)T(AS) = ∫l C(S)T(AS) for each non-negative measurable function C on l and eachℎ ∈ l.
Definition 2.22. For each � ∈ Ω∕l, choose 8 ∈ g−1(�). We write T⋉ � for the pushforward
measure of T under l ∋ S ↦ S ⋅ 8 ∈ Ω, that is for each Borel � ⊂ Ω we have T⋉ �(�) =∫Ω 1S⋅8∈� P(AS). For a W-finite measure J̃ on Ω∕l, we write the measure ∫Ω∕l[T⋉ �] J̃(A�) asT⋉ J̃. Namely,T⋉ J̃(�) = ∫Ω∕l[T⋉ �](�) J̃(A�) for each Borel set � ⊂ Ω.
Lemma 2.23. For each W-finite measure J on Ω, let g∗J be the pushforward of J by g. Then the
pushforward ofT× J under (S,8)↦ S ⋅ 8 equalsT⋉g∗J.
Proof. For each non-negative continuous function C onΩ, let �C(8) = ∫l C(S ⋅ 8)T(AS). SinceT
is right invariant, �C(8) only depends on g(8). Equivalently, there exists a non-negative continu-
ous function �̃C on Ω∕l such that �C = �̃C◦g. For each W-finite measure J on (Ω,), by Fubini’s
Theorem,

∫l×Ω C(S ⋅ 8)T(AS)J(A8) = ∫Ω �C(8) J(A8) = ∫Ω∕l �̃C(�)g∗J(A�). (2.10)

The last integral in (2.10) is precisely ∫Ω∕l(∫ C(8′)T⋉ �(A8′))g∗J(A�). This concludes the
proof. □
The proof of Theorem 1.2 relies on the LCFT description of the three-pointed quantum diskQD0,3 and sphere QS3. The description of QD0,3 was obtained in [11] which we recovered and

refined in Proposition 2.18 and Remark 2.19. In Appendix B, following the same proof we recover
and refine the LCFT description of QS3 obtained in [6]. In particular, we prove a more general
result (Proposition B.7) in analogy to Proposition 2.18. The original definition of QS3 is recalled
in Appendix B but the LCFT description in Proposition 2.26 is what we need for the rest of this
section. The unpointed quantum sphere QS in Theorem 1.2 can be obtained by deweighting the
cubic power of the total quantum area of a sample from QS3 and forgetting the three marked
points; see Definition B.2.
We first recall the basic setup of LCFT on C following [14, 37, 63], and then state the LCFT

description of QS3 as Proposition 2.26 (see Appendix B for the proof). Let kC be the law of the
GFF onCnormalized to have average zero on the unit circle, which has covariance kernel (see [37,
(2.1), Remark 2.1])

lC(6,m) = − log |6 − m| + log |6|+ + log |m|+.
Definition 2.24. Let (ℎ, t) be sampled from kC × [@−2G]A]] and set O = ℎ(6) − 2G log |6|+ + t.
We write LFC as the law of O and call a sample from LFC a Liouville field on C.
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2672 ANG et al.

Definition 2.25. Let (:N , 6N) ∈ R × C for N = 1,… ,P, where P ≥ 1 and the 6N are distinct. Let(ℎ, t) be sampled from <(:N ,6N)NC kC × [@(∑N :N−2G)]A]] where
<(:N ,6N)NC = P∏

N=1 |6N|−:N(2G−:N)+ @∑Pu=N+1 :N:ulC(6N ,6u).
Let O(6) = ℎ(6) − 2G log |6|+ +∑PN=1 :NlC(6, 6N) + t. We write LF(:N ,6N)NC for the law of O and call
a sample from LF(:N ,6N)NC the Liouville field on C with insertions (:N , 6N)1≤N≤P.
Proposition 2.26. Suppose (C,O,{1,{2,{3) is an embedding ofQS3, where{1,{2,{3 are three fixed
distinct points on C. Then the law of O isg>2(G − >)2 LF(>,{1),(>,{2),(>,{3)C .
To make sense of TĈ ⋉ QS, consider the function space i−1(C) defined as i−1(H)

in Remark 2.3 with C in place of H. The conformal coordinate change C ∙> O = O◦C−1 +G log|(C−1)′| defines a continuous group action of conf (Ĉ) on i−1(C), where conf (Ĉ) is con-
formal automorphism group on Ĉ. By the definition of quantum surface, we can view QS as
a measure on i−1(C)∕ conf (Ĉ). Since conf (Ĉ) is a locally compact Lie group, it has a unique
right invariant Haar measure modulo a multiplicative constant, andmoreover, the measure is left
invariant as well since conf (Ĉ) is unimodular; (see e.g. [23, Corollary 5.5.5]). FromDefinition 2.22,
we get the precise meaning ofTĈ ⋉ QS. The uniform embeddingTH ⋉ QD of QD is defined in
the same way.
The starting point of the proof of Theorem 1.2 is the LCFTdescription of the uniformembedding

ofQS3 andQD0,3 instead ofQS andQD. Tomake sense ofTĈ ⋉ QS3, we viewQS3 as ameasure on
the quotient space of ΩC × C3 under the conf (Ĉ)-action (ℎ, X, 5, ])↦ (C ∙> ℎ,C(X),C(5),C(])).
ThenTĈ ⋉ QS3 is a measure onΩC × C3. We similarly defineTĈ ⋉ QS3. The following lemma
gives a concrete realization ofTH ⋉ QD0,3 andTĈ ⋉ QS3.
Lemma 2.27. Let (C,O,X, 5, ]) be an embedding of a sample from QS3. Let U be a sample
from a Haar measure TĈ on conf (Ĉ) that is independent of (O, X, 5, ]). Then the law of (U ∙>O, U(X), U(5), U(])) isTĈ ⋉ QS3. In particular, it does not depend on the law of (O, X, 5, ]). Similarly,
let (H,O,X, 5, ]) be an embedding of a sample from QD0,3, and � an independent sample from a
Haar measureTH on conf (H). Then the law of (� ∙> O, �(X), �(5), �(])) isTH ⋉ QD0,3.
Proof. This immediately follows from Lemma 2.23. □
We now give an explicit description ofTĈ andTH.

Lemma 2.28. Let U be sampled from a Haar measureTĈ of conf (Ĉ). Then there exists a constant< ∈ (0,∞) such that the law of (U(0), U(1), U(−1)) is <|(� − �)(� − z)(z − �)|−2 A2� A2� A2z.
Similarly, let � be sampled from a Haar measure TH of conf (H). Then there exists a constant< ∈ (0,∞) such that the law of (�(0), �(1), �(−1)) is <|(� − �)(� − z)(z − �)|−1 A� A� Az restricted

to the set of triples (�, �, z) ∈ R3 that are counterclockwise aligned on 2H.

 10970312, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22180 by U

niversity O
f Pennsylvania, W

iley O
nline Library on [05/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



INTEGRABILITY OF SLE VIA CONFORMALWELDING 2673

Proof. We prove the first assertion; the second follows from the same arguments. By the unique-
ness of Haar measure, it suffices to show that if (�,�, �) is sampled from |(� − �)(� − z)(z −�)|−2 A2� A2� A2z and U is the unique Mobius transformation mapping (0, 1,−1) to (�,�, �), then
the law of U is a Haar measure on conf (Ĉ). Namely for each S ∈ conf (Ĉ), S◦U agrees in law
with U. This is equivalent to the statement that (S(�), S(�), S(�)) agrees in law with (�,�, �). This
is straightforward to check when S is a translation, dilation, or inversion. Since these generateconf (Ĉ), we are done. □
Wewill give the LCFT description ofTĈ ⋉ QS3 andTH ⋉ QD0,3 in Proposition 2.30 below. In

its proof we need Proposition 2.7 and its sphere counterpart, which we recall now.

Proposition 2.29 [14, Theorem 3.5]. For : ∈ R, set ∆: ∶= :2 (G − :2 ). Let C ∈ conf (Ĉ) and(:N , 6N) ∈ R × C be such that C(6N) ≠ ∞ for all 1 ≤ N ≤ P. Recall the notation C∗ in Proposition 2.7.
Then LFC = C∗LFC and LF(:N ,C(6N))NC = P∏

N=1 |C′(6N)|−2∆:N C∗LF(:N ,6N)NC .
Proposition 2.30. Suppose theHaarmeasuresTĈ,TH are such that the constant< in Lemma 2.28
is equal to 1. Then for non-negative measurable functions C and S oni−1(C) and C3, respectively,

TĈ ⋉ QS3[C(O)S(�, �, z)]= g>2(G − >)2 ∫C3 LF(>,�),(>,�),(>,z)C [C(O)]S(�, �, z)A2� A2� A2z, (2.11)

and for non-negative measurable functions C and S oni−1(H) and R3, respectively,
TH ⋉ QD0,3[C(O)S(�, �, z)]

= >2(G − >)2 ∫R3 LF(>,�),(>,�),(>,z)H [C(O)]S(�, �, z)A� A� Az. (2.12)

Proof. We prove (2.11); the proof of (2.12) is similar. In Lemma 2.27, we choose (X, 5, ]) =(0, 1,−1). By Proposition B.7, the law of O is 2g>(G−>)2 ⋅ LF(>,0),(>,1),(>,−1)C . Given three distinct points�, �, z in C3. Suppose C ∈ conf (Ĉ) maps (0, 1,−1) to (�, �, z). Then we can explicit get C(6) =(��−2�z+z�)6+�(�−z)(2�−�−z)6+�−z and

C′(0) = 2(� − �)(� − z)(z − �)(� − z)2 , C′(1) = 2(� − �)(� − z)(z − �)4(z − �)2 ,
C′(−1) = 2(� − �)(� − z)(z − �)4(� − �)2 . (2.13)

Recall notations from Proposition 2.29. Since ∆> = 1, we have
C∗LF(>,0),(>,1),(>,−1)C = |C′(0)C′(1)C′(−1)|2LF(>,�),(>,�),(>,z)C= <|(� − �)(� − z)(z − �)|2LF(>,�),(>,�),(>,z)C .
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2674 ANG et al.

Since the law of (U(0), U(1), U(−1)) is |(� − �)(� − z)(z − �)|−2 A2� A2� A2z, and TĈ ⋉ QS3
describes the law of (U ∙> O, U(0), U(1), U(−1)), we obtain (2.11). □
To pass from the uniform embedding of QD0,3 and QS3 to that of QD and QS, we need

Lemma 2.21 and its sphere counterpart, which we state below and prove in Appendix B.

Lemma 2.31. We have

LF(:N ,6N)NC

[C(O)∫
C

S({)?O(A{)] = ∫
C

LF(:N ,6N)N ,(>,{)C [C(O)]S({)A2{
for non-negative measurable functions C and S.
Proposition 2.32. Suppose theHaarmeasuresTĈ,TH are such that the constant< in Lemma 2.28
is equal to 1, then

TĈ ⋉ QS = g>2(G − >)2 LFC and TH ⋉ QD = >2(G − >)2 LFH.
Proof. Repeatedly applying Lemma 2.31, we get

LFC

[C(O)∫
C3 S(�, �, z)?O(A�)?O(A�)?O(Az)]

= ∫
C3 LF(>,�),(>,�),(>,z)C [C(O)]S(�, �, z)A2� A2� A2z. (2.14)

Setting S = 1 in Proposition 2.30 and (2.14), we have TĈ ⋉ QS3[C(O)] =g>2(G−>)2 LFC[C(O)?O(C)3]. By the definition of TĈ ⋉ QS3 in Lemma 2.27 the marginal law
of the field underTĈ ⋉ QS3 is ?O(C)3TĈ ⋉ QS. ThereforeTĈ ⋉ QS = g>2(G−>)2 LFC. The proof
ofTH ⋉ QD = >2(G−>)2 LFH is identical. □
Proof of Theorem 1.2. This follows from Proposition 2.32 by the uniqueness of Haar measure
modulo multiplication by a constant. □
Our proof of Theorem 1.2 demonstrates how to go fromQS3 = <LF(>,0),(>,1),(>,−1)C toTĈ ⋉ QS =<LFC through Proposition 2.30 and de-weighting. Similar arguments can also give results such

as TĈ,0 ⋉ QS1 = <LF(>,0)C , where TĈ,0 is a Haar measure on the subgroup of conf (Ĉ) fixing 0.
We do not need these statements so we omit the details.

3 QUANTUM SURFACE AND LIOUVILLE CORRELATION
FUNCTION

In this section we consider disks with two or three marked boundary points and we derive the
law of boundary lengths of these surfaces. More specifically, we consider surfaces sampled fromdisk0,2 (Z) anddisk2,∙ (Z;:), both thick and thin variants. The proofs are based on the integrability
of boundary LCFT from [49]. Interestingly, we will see in Propositions 3.6 and 3.12 below that the
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2675

same formulas apply for thick and thin variants of the same disk, which provides a probabilistic
interpretation of identities satisfied by the reflection coefficient of boundary LCFT.

3.1 Reflection coefficient and thick quantum disk

We recall the double gamma function Γ5(6) which is prevalent in LCFT. See for example [61] for
more detail. For 5 > 0, Γ5(6) is the meromorphic function in C such that for Re 6 > 0,

lnΓ5(6) = ∫
∞

0 1n
⎛
⎜
⎜
⎜
⎜⎝

@−6n − @−(5+ 15)n∕2(1 − @−5n)(1 − @− 15 n)

−( 12 (5 + 15) − 6)22 @−n + 6 − 12 (5 + 15)n ⎞
⎟
⎟
⎟⎠
An (3.1)

and it satisfies the shift equations

Γ5(6)Γ5(6 + 5) = 1√2gΓ(56)5−56+12 , Γ5(6)Γ5 (6 + 15) = 1√2gΓ
(156)(15)− 15 6+12 . (3.2)

These shift equations allow us tomeromorphically extend Γ5(6) from {Re 6 > 0} toC, where it has
simple poles at −Q5 − P 15 for nonnegative integersP,Q. We also define the double sine function

�5(6) ∶= Γ5(6)Γ5 (5 + 15 − 6) .
We will only work with Γ>2 , except in the proof of Lemma 5.12, where Γ 2> also appears.
Inspecting (3.1), we see that Γ 2> = Γ>2 .
We can now recall the boundary Liouville reflection coefficient from [49]. For ?1,?2 > 0, letWu ∈ C be such that ?u = @Ng>(Wu−G2 ) and ReWu = G2 for u = 1, 2. Let

`([,?1,?2) = (2g) 2> (G−[)− 12 ( 2>)
>2 (G−[)− 12

(G − [)Γ(1 − >24 )
2> (G−[)

⋅ Γ >2
([ − >2) @Ng(W1+W2−G)(G−[)Γ>2 (G − [)�>2
([2 + W2 − W1) �>2

([2 + W1 − W2) . (3.3)
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2676 ANG et al.

For ? > 0, let
`([,?, 0) = `([, 0,?) = ? 2> (G−[) (2g) 2> (G−[)− 12 ( 2> ) >2 (G−[)− 12

(G − [)Γ(1 − >24 ) 2> (G−[)
Γ>2 ([ − >2 )Γ>2 (G − [) . (3.4)

For ?1,?2 ≥ 0 not both zero, the meromorphic function [ ↦ `([,?1,?2) is positive and finite
in ( >2 ,G + >2 ), has a pole at >2 and a zero at G + >2 (along with other poles and zeros). In particular,
although the term 1G−[ suggests that there should be a pole at [ = G, this cancels with a zero
coming from 1Γ >2 (G−[) to give `(G,?1,?2) = 1. The function ` is called the normalized reflection
coefficient. The unnormalized version is defined by

`([,?1,?2) = −Γ(1 − 2> (G − [))`([,?1,?2). (3.5)

The following solvability result was proved in [49]; see Theorem 1.7 and Section 1.3 there.

Proposition 3.1 [49]. Let [ ∈ ( >2 ,G) and Z = >(> + 2> − [), and let ?1,?2 ≥ 0 not both be zero.
Recall the field ℎ̂ from the definition ofdisk2 (Z) in Definition 2.1. We have

E

[(?1Jℎ̂(R) + ?2Jℎ̂(R + gN)) 2> (G−[)] = `([,?1,?2).
Remark 3.2. Proposition 3.1 is only stated in [49] for [ ∈ ( >2 ,G). However, it extends to the case[ = G, whereZ = >22 . In this case, it simply says that a zerothmoment is equal to 1 = `(G,?1,?2).
When [ ≤ >2 the expectation is infinite, since 2> (G − [) ≥ 4>2 and the moment of the Gaussian
multiplicative chaos of order at least 4>2 is infinite [50, Section 2].
Lemma 3.3. ForZ ∈ [ >22 , >G) and [ = > + 2> − Z> , writing H1,H2 for the left and right boundary
lengths of a quantum disk fromdisk0,2 (Z), the law of ?1H1 + ?2H2 is

��>0`([;?1,?2)�− 2>2Z A�.
Proof. To simplify notation we explain the proof for ?1 = 1 and ?2 = 0— the general case follows
identically. For 0 < � < �′ we have

disk0,2 [Jℎ̂+](R) ∈ (�,�′)] = E

[
∫

∞
−∞ �@ >2 ]Jℎ̂(R)∈(�,�′) >2 @([−G)]A]]

= E

[

∫
�′

� Jℎ̂(R) 2> (G−[)� 2> ([−G) ⋅ �−1 A�], (3.6)
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2677

where we have used the change of variables � = @ >2 ]Jℎ̂(R) (so A] = 2> �−1A�). Interchanging
integral and expectation and applying Proposition 3.1 and Remark 3.2, we obtain the result. □
For Z > >22 , the integral disk2 (Z)[@−?1H1−?2H2 ] is infinite. The below proposition shows

that we can obtain a finite integral by subtracting an appropriate polynomial which makes the
integrand sufficiently small for small boundary lengths. Furthermore, the integral can be
expressed in terms of the reflection coefficient `. We will see in Proposition 3.6 below that the
formula also extends to the case of thin disks, in which case it is not necessary to subtract a
polynomial.

Proposition 3.4. For Z ∈ ( >22 , >2) and [ = > + 2> − Z> , and writing H1,H2 for the left and right
boundary lengths of a quantum disk fromdisk2 (Z), we have

disk2 (Z)[@−?1H1−?2H2 − 1] = >2(G − [)`([;?1,?2). (3.7)

More generally, suppose Z ∈ ( >22 , >G) and there is a positive integer Q such that Z ∈(Q>22 , (Q + 1) >22 ). Let kQ(8) = ∑Q−1M=0 8MM! be the Q-term Taylor polynomial of @8 . Then
disk2 (Z)[@−?1H1−?2H2 − kQ(−?1H1 − ?2H2)] = >2(G − [)`([,?1,?2).

Proof. Write : = 2Z>2 ∈ (1, 2). Using integration by parts, we have
∫

∞
0 (1 − @−�) ⋅ �−: A� = 1: − 1 ∫

∞
0 @−��−(:−1) A� = Γ(2 − :): − 1 .

Thus, by Lemma 3.3, we have

disk2 (Z)[1 − @−?1H1−?2H2 ] = `([,?1,?2)∫ ∞
0 (1 − @−�) ⋅ �−: A�

= Γ(2 − :): − 1 `([,?1,?2).
Themore general version similarly follows from the following identity for Q a positive integer and� ∈ (Q,Q + 1)

∫
∞

0 (@−� − kQ(�))�−� A� = Γ(1 − �).
Indeed, repeatedly integrating by parts gives

∫
∞

0 (@−� − kQ(�))�−� A� = 11 − � ∫
∞

0 (@−� − kQ−1(�))�−(�−1) A� = …
= 1

∏QM=1(M − �) ∫ ∞
0 @−��(�−Q) A�,

and since the last integral equals Γ(Q + 1 − �), repeatedly using Γ(8 + 1) = 8Γ(8) yields the
result. □
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2678 ANG et al.

F IGURE 3 . 1 Suppose 0 <Z < >22 . Left: In Definition 3.5, we define the weightZ thin quantum disk with
weightZ via concatenation of an ordered Poissonian collection of weight (>2 −Z) thick quantum disks. Right:
In Definition 3.11 we define the measuredisk2,∙ (Z;:) on quantum surfaces obtained by sampling three quantum
surfaces from (1 − 2>2Z)2disk2 (Z) ×disk2,∙ (>2 −Z;:) ×disk2 (Z) (depicted in grey, pink, grey) and
concatenating them. Both: The length of the left boundary (depicted in blue) is given by the sum of the left
boundary lengths of the constituent components, and the analogous statement is true for the length of the right
boundary (depicted in red).

3.2 Thin quantum disks and thick/thin duality

The reflection coefficient ` satisfies the following reflection identity; see [49, Eq (3.28)].
`([;?1,?2)`(2G − [;?1,?2) = 1. (3.8)

In Section 3.1, we saw that for [ ∈ ( >2 ,G) the function ` describes quantum lengths for the thick
quantum disk. In this section, we give an analogous interpretation for ` in the regime [ ∈ (G,G +>2 ) via the thin quantum disk defined in [3]. See Figure 3.1.

Definition 3.5 (Thin quantum disk). For Z ∈ (0, >22 ), we can define the infinite measure
disk2 (Z) on two-pointed beaded surfaces as follows. Sample } from (1 − 2>2Z)−2LebR+ , then
sample a Poisson point process {({,{)} from the measure �n∈[0,}]An ×disk2 (>2 −Z), and con-
catenate the{’s according to the ordering induced by {. We call a sample fromdisk2 (Z) a thin
quantum disk with weightZ. We call the total sum of the left (resp., right) boundary lengths of
all the{’s the left (resp., right) boundary length of the thin quantum disk.

The choice of the constant (1 − 2>2Z)−2 above is justified by the following proposition, which
states that the quantum disk boundary length distribution extends analytically from thick to thin
quantum disks, hence giving a probabilistic meaning to ` and ` for [ ∈ (G,G + >2 ).
Proposition 3.6. ForZ ∈ (0, >22 ) and [ = > + 2> − Z> ∈ (G,G + >2 ), let H1 and H2 be the left and
right boundary lengths of a thin quantum disk from disk2 (Z). For constants ?1,?2 ≥ 0 not both
zero, the law of ?1H1 + ?2H2 is

��>0`([,?1,?2)�− 2>2Z A�,
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2679

and
disk2 (Z)[@−?1H1−?2H2 ] = >2(G − [)`([;?1,?2).

Proof. Note that disk2 (Z) is defined using Poisson point processes. Our proposition will be
an immediate consequence of Campbell’s formula for the Laplace functional for Poisson point
processes (see e.g. [36, Section 3.2]): For any measure space (�,P) and measurable functionC ∶ � → (0,∞) such that ∫�min(C(8), 1)P(A8) <∞, we have for a Poisson point process Π on(�,P) that

E

[exp(− ∑
d∈ΠC(d)

)] = exp(∫�(@−C(8) − 1)P(A8)).
For fixed } > 0we can set �} = [0,}] × �̃ where �̃ is the space of two-pointed quantum disks, andP} = Leb[0,}] ×disk2 (>2 −Z). Letting Π} be a Poisson point process on (�} ,P}) and C() =?1�1 + ?2�2 where �1,�2 are the quantum lengths of the boundary arcs of, we have

E

[exp(− ∑
(n,)∈Π} C()

)] = exp(−}disk2 (>2 −Z)[1 − @−C()]).
Integrating against �}>0(1 − 2>2Z)−2 A}, we get

disk2 (Z)[@−?1H1−?2H2 ] = 1(1 − 2>2Z)2disk2 (>2 −Z)[1 − @−C()] .
Proposition 3.4 givesdisk2 (>2 −Z)[1 − @−C()]) = >2(G−[)`(2G − [;?1,?2), and combining with
the reflection identity (3.8) and 1 − 2Z>2 = 2([−G)> yields the second claim.
The first assertion then follows from the fact that ?1H1 + ?2H2 has a power law with exponent− 2>2Z [3, Lemma 2.17], and a similar computation as in Proposition 3.4 to derive the coefficient

of the power law. □
3.3 Quantum disk with a third marked boundary point

We consider the following variant of ` and ` which has an additional parameter :.
i([,[,:)(0,1,0) = ⎛

⎜
⎜
⎜⎝

2g( >2 ) >24 Γ(1 − >24 )
⎞
⎟
⎟
⎟⎠

2> (G−[− 12:)

⋅ Γ >2 ( 12:)2Γ>2 (G − [ + 12:)Γ>2 ([ + 12: − >2 )Γ>2 ( 2> )Γ>2 (G − [)2Γ>2 (:) ,
i([,[,:)(0,1,0) = 2>Γ(2>(12: + [ − G))i([,[,:)(0,1,0) .
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2680 ANG et al.

The notations i([,[,:)(0,1,0) and i([,[,:)(0,1,0) are inherited from [49] where more general more parameters
are considered. The following proposition is proved in [48].

Proposition 3.7. Suppose : > 0, :2 + [ > >2 , and [ < G. Let /̃ = ℎ + (: − 2G) log | ⋅ |+ +[2lH(⋅, 0) + [2lH(⋅, 1), with ℎ sampled from kH. Then

E

[J/̃((0, 1)) 2> (G−[− 12:)] = i([,[,:)(0,1,0) .
Proof. The restriction of /̃ to (0, 1) agrees with that of ℎ − [ log| ⋅ | − [ log| ⋅ −1|, so J/̃(A8)|[0,1] =8−>2 [(1 − 8)−>2 [?ℎ(A8)|[0,1]. Thus the moment we consider agrees with b(>,�,X, 5) of [48]
with X = 5 = −>2[ and � = 2> (G − [ − 12:), and [48, Theorem 1.1] shows this quantity equalsi([,[,:)(0,1,0) . □
Recalldisk2,∙ (Z) from Definition 2.17. We now extenddisk2,∙ (Z) whenZ > >22 to have a third

marked point with general : insertion.
Definition 3.8. For Z > >22 and : ∈ R, let disk2,∙ (Z;:) be the law on quantum surfaces( ,O,−∞, +∞, 0) with O sampled from>2 (G − [)−2LF([,−∞),([,+∞),(:,0) .
We call the boundary arc between the two [ singularities which contains (resp. does not contain)
the : singularity themarked (resp. unmarked) boundary arc.
By Proposition 2.18 we havedisk2,∙ (Z; >) = disk2,∙ (Z). The next proposition describes the law

of the unmarked boundary arc ofdisk2,∙ (Z;:) for some range of :, [.
Proposition 3.9. Suppose : > 0, :2 + [ > >2 , and [ < G are as in Proposition 3.7. When a quantum
disk is sampled fromdisk2,∙ (Z;:), the law of its unmarked boundary length is

��>0(G − [)−2i([,[,:)(0,1,0) � 2> ([+12:−G)−1 A�. (3.9)

Proof. By Lemma 2.11 we have LF([,∞),([,0),(:,1)
H = exp∗ LF([,±∞),(:,0) , and by Lemma 2.11 and

Proposition 2.7 we have LF(:,∞),([,0),([,1)
H = C∗LF([,∞),([,0),(:,1)

H where C ∈ Conf(H) is the confor-
mal map with C(0) = 1,C(1) =∞,C(∞) = 0. Therefore, the law of JO(R + gN) with O sampled
from LF([,±∞),(:,0) agrees with the law of J/((0, 1)) with / sampled from LF(:,∞),([,0),([,1)

H .
Proposition 3.7 and the argument of Lemma 3.3 show that J/((0, 1)) has law given by��>0 2>i([,[,:)(0,1,0) � 2> ([+12:−G)−1 A�, so recalling the factor >2 (G − [)−2 in the definition ofdisk2,∙ (Z;:),
we obtain the stated result. □
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2681

We note that if : ≥ G, then the quantum length of the marked boundary arc is a.s.
infinite because the field blows up sufficiently quickly near the marked point. Nev-
ertheless, the unmarked boundary arc a.s. has finite quantum length as shown in
Proposition 3.9.
The functions ` and i are closely related as shown in [49, Lemma 3.4]. As a corollary of that

relation we have

i([,[,:)(0,1,0) = `([, 1, 0)2i(2G−[,2G−[,:)(0,1,0) for all :, [ ∈ R. (3.10)

We now give probabilistic meaning to (3.10) for some range of : and [.
We first recall a fact from [3] which will help us define a variant of the thin quantum disk with

an additional :-insertion.
Lemma 3.10 [3, Proposition 4.4]. ForZ ∈ (0, >22 ) we have

disk2,∙ (Z) = (1 − 2>2Z)2disk2 (Z) ×disk2,∙ (>2 −Z) ×disk2 (Z),
where the right hand side is the infinite measure on ordered collection of quantum surfaces obtained
by concatenating samples from the three measures.

Definition 3.11. SupposeZ ∈ (0, >22 ) and : ∈ R. Given a sample (�1, �2, �3) from
(1 − 2>2Z)2disk2 (Z) ×disk2,∙ (>2 −Z;:) ×disk2 (Z),

let � be their concatenation in the sense of Lemma 3.10with : in place of >. We define the infinite
measuredisk2,∙ (Z;:) to be the law of �. Let H be the sum of the left boundary lengths of �1 and�3, and the unmarked boundary length of �2. We call H the unmarked boundary length of �.
See Figure 3.1 for an illustration of Definition 3.11. Themeasuredisk2,∙ (Z;:) does not naturally

arise in either the quantum surface or the LCFT perspective, but is quite natural in our context.
The next proposition says that i([,[,:)(0,1,0) describes the law of its unmarked boundary length and
gives a probabilistic realization of (3.10).

Proposition 3.12. ForZ ∈ (0, >22 ), let [ = > + 2> − Z> ∈ (G,G + >2 ). Suppose : > 2([ − G). Then
the law of the unmarked boundary length H of a sample fromdisk2,∙ (Z;:) is

��>0(G − [)−2i([,[,:)(0,1,0) � 2> ([+12:−G)−1 A�. (3.11)

Moreover, for ? > 0, we have
disk2,∙ (Z;:)[@−?H] = >2 (G − [)−2i([,[,:)(0,1,0) ?− 2> ([+12:−G). (3.12)
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2682 ANG et al.

Proof. ByProposition 3.9 the lawof the unmarked boundary lengthH′ of a sample fromdisk2,∙ (>2 −Z;:) is 2>i(2G−[,2G−[,:)(0,1,0) �5−1 A� with 5 = 2> ( 12: + G − [) > 0. Therefore for ? > 0 we have
disk2,∙ (>2 −Z;:)[@−?H′]

= (G − [)−2i(2G−[,2G−[,:)(0,1,0) Γ(2>(12: + G − [))? 2> ( 12:+G−[)
= >2 (G − [)−2i(2G−[,2G−[,:)(0,1,0) ? 2> ([−G− 12:).

Now by Definition 3.11, for ? > 0 we have
disk2,∙ (Z;:)[@−?H] =(1 − 2>2Z)2disk2 (Z)[@−?H2 ]

×disk2,∙ (>2 −Z;:)[@−?H′] ×disk2 (Z)[@−?H2 ],
where H2 in disk2 (Z)[@−?H2 ] means the right boundary length of a sample from disk2 (Z). By
Proposition 3.6, we have

disk2 (Z)[@−?H2 ] = >2(G − [)`([; 0,?)
= >2(G − [)`([; 0, 1)? 2> (G−[).

Using (3.10) we get (3.12), which further implies (3.11). □
4 SLE OBSERVABLES VIA CONFORMALWELDING

In this section, we prove Proposition 4.5, which is a conformal welding result. Although the
measures involved are infinite, a constant of proportionality that arises is finite and encodes the
information of the SLE observable in Theorem 1.1.

4.1 Conformal welding of quantum disks

In this section we recall the main result from our companion paper [3], saying that SLE!("−; "+)
arise as the interface between two quantum disks conformally welded together.
We start by extending the definition of a quantum surface to the case where the surface is dec-

orated by a curve. Recall from Section 2.1 that a >-LQG surface with Q marked points is defined
to be an equivalence class of tuples (-,ℎ, 61, … , 6Q) where - ⊂ C is a domain, ℎ is a distribution
on -, and 6u ∈ 2- ∪ - for u = 1,… ,Q. A curve-decorated quantum surface with Qmarked points
is similarly defined to be an equivalence class of tuples (-,ℎ, 61, … , 6Q, ))where ) ∶ [0, n)]→ - is
a parametrized curve on -. More precisely, we say that (-,ℎ, 61, … , 6Q, )) ∼> (-̃, ℎ̃, 6̃1, … , 6̃Q, )̃)
if there is a conformal map C ∶ - → -̃ such that ℎ̃ = C ∙> ℎ, 6̃u = C(6u) for u = 1,… ,Q, and)̃(n) = C()(n)).
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2683

For Z > 0, let disk2 (Z;�, z) be the measure on weight Z quantum disks restricting to the
event that the left and right boundary arcs have lengths � and z, respectively. More precisely,

disk2 (Z) = ∬
∞

0 disk2 (Z;�, z)A�Az. (4.1)

In particular, |disk2 (Z;�, z)|A�Az is the law of the left and right boundary lengths, and the nor-
malized probability measuredisk2 (Z;�, z)# isdisk2 (Z) conditioned on the boundary lengths
being �, z. The identity (4.1) a priori only specifies disk2 (Z;�, z) for almost every �, z. But a
canonical version of {disk2 (Z;�, z) ∶ �, z > 0} can be chosen such that it is continuous in �, z
in a proper topology. See [3, Section 2.6] for details.
For fixed �, z,8, a pair of quantum disks from disk2 (Z1;�,8) ×disk2 (Z2;8, z) can a.s. be

conformally welded along their length 8 boundary arcs according to quantum length, yielding a
quantum surface with two boundary marked points joined by an interface. This follows from the
local absolute continuity of weightZ quantum disks with respect to weightZ quantum wedges,
and the conformal welding theorem for quantum wedges [21, Theorem 1.2]. See for example [21,
56, Section 3.5], or [29, Section 4.1] for more information on conformal welding in the setting of
LQG surfaces.
For Z1,Z2 > 0, we now define an infinite measure disk2 (Z1 +Z2;�, z)⊗ SLE!(Z1 −2;Z2 − 2) on curve-decorated quantum surfaces. When Z1 +Z2 ≥ >22 , we first sample O such

that the law of the ( ,O,−∞, +∞) viewed as a quantum surface is disk2 (Z1 +Z2;�, z) and
then independently sampling an independent SLE!(Z1 − 2;Z2 − 2) curve ) in ( ,−∞, +∞)
and parametrize ) by its quantum length. We denote the law of the curve-decorated surface( ,O, ),−∞, +∞) by disk2 (Z1 +Z2;�, z)⊗ SLE!(Z1 − 2;Z2 − 2). When Z1 +Z2 < >22 , we
first sample a quantum surface with the topology of a chain of beads fromdisk2 (Z1 +Z2;�, z),
then decorate each bead by an independent SLE!(Z1 − 2;Z2 − 2) between the twomarked points
of the bead. We denote the law of this chain of curve-decorated surfacesdisk2 (Z1 +Z2;�, z)⊗SLE!(Z1 − 2;Z2 − 2).
The next result shows that the conformal welding of two quantum disks gives the type of curve-

decorated surface defined above. ForZ−,Z+ > 0 and �,8, z > 0, we write
Weld(disk2 (Z−;�,8),disk2 (Z+;8, z))

for the measure on curve-decorated quantum surfaces obtained by first sampling (−,+)
from disk2 (Z−;�,8) ×disk2 (Z+;8, z) and then conformally welding −,+ along their
length 8 boundary arcs. This conformal welding is a.e. well defined; see [3, Theorem 2.2] for
details.

Proposition 4.1 [3, Theorem 2.2]. SupposeZ−,Z+ > 0. There exists a constant ]Z−,Z+ ∈ (0,∞)
such that for all �, z > 0 the following identity holds as measures on the space of curve-decorated
quantum surfaces:

disk2 (Z− +Z+;�, z)⊗ SLE!(Z− − 2;Z+ − 2)
= ]Z−,Z+ ∫

∞
0 Weld(disk2 (Z−;�,8),disk2 (Z+;8, z)) A8.
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2684 ANG et al.

4.2 Conformal welding of����� and�����,∙
ForZ > 0withZ ≠ >22 , letdisk2 (Z;�) ∶= ∫ ∞0 disk2 (Z;�, z)Az. Then {disk2 (Z;�)}�>0 is the
disintegration of disk2 (Z) over its left boundary length. Namely samples from disk2 (Z;�)
have left boundary length � anddisk2 (Z) = ∫ ∞0 disk2 (Z;�)A�. Recalldisk2,∙ (Z;:) from Def-
initions 3.8 and 3.11, where we insert a third boundary marked point. We now give a concrete
description of its disintegration over the unmarked boundary arc length. We start from the thick
disk caseZ > >22 .
Lemma 4.2. ForZ > >22 , [ = G + >2 − Z> , and : > max(0, > − 2[), sample ℎ from k (the GFF

on ). Let ℎ̃ = ℎ − (G − [)|Re ⋅| + :2l (⋅, 0) and H = Jℎ̃(R + gN). For � > 0, let LF([,±∞),(:,0) ,�
be the law of ℎ̃ + 2> log �H under the reweighted measure 2> �

2> ([+ :2 −G)−1
H 2> ([+ :2 −G) k (Aℎ). Let disk2,∙ (Z;:;�)

be the law of the marked quantum surface ( ,O,−∞, +∞, 0) where O is sampled from >2 (G −[)−2LF([,±∞),(:,0) ,� . Then samples fromdisk2,∙ (Z;:;�) have unmarked boundary arc length � and
disk2,∙ (Z;:) = ∫

∞
0 disk2,∙ (Z;:;�)A� and

|disk2,∙ (Z;:;�)| = (G − [)−2i([,[,:)(0,1,0) � 2> ([+12:−G)−1. (4.2)

Proof. The first assertion is clear since Jℎ̃+ 2> log �H (R + gN) = �H Jℎ̃(R + gN) = �. We now prove that

LF([,±∞),(:,0) = ∫
∞

0 LF([,±∞),(:,0) ,� A�. (4.3)

For any nonnegative measurable function 7 oni−1() we have
∫

∞
0 ∫ 7(ℎ̃ + 2> log �H)2> �

2> ([+ :2−G)−1
H 2> ([+ :2−G) k (Aℎ)A� = ∫ ∫

R

7(ℎ̃ + ])@([+ :2−G)] A] k (Aℎ)
using Fubini’s theorem and the change of variables ] = 2> log �H . Therefore (4.3) holds. By Def-
inition 3.8 of disk2,∙ (Z;:), we have disk2,∙ (Z;:) = ∫ ∞0 disk2,∙ (Z;:;�)A�. The second identify
in (4.2) then directly follows from Proposition 3.9. □
If Z ∈ (0, >22 ), [ = G + >2 − Z> , : > 0 and 12: > [ − G, then for each � > 0 we can similarly

define the correspondingmeasuredisk2,∙ (Z;:;�) on quantum surfaceswith unmarked boundary
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2685

F IGURE 4 . 1 Proposition 4.5 whenZ+ > >22 . Left: Illustration of (4.6). Right: Definition of /) .
arc length � via

disk2,∙ (Z;:;�) ∶= (1 − 2>2Z)2 ∫ �
0 ∫

�−8
0 disk2 (Z;8) ×disk2,∙ (>2 −Z;:; �)

×disk2 (Z;� − 8 − �)A� A8 (4.4)

where the integrand is understood as concatenation of surfaces in the sense of Lemma 3.10.

Lemma 4.3. ForZ ∈ (0, >22 ), (4.2) still holds with thedisk2,∙ (Z;:;�) defined above.
Proof. The first claim is immediate from Definition 3.11, and the second then follows from
Proposition 3.12. □
Recall that the special case of disk2,∙ (Z;:) with : = > is disk2,∙ (Z) from Definition 2.17. We

now give a variant of Proposition 4.1 fordisk2,∙ (Z; >). TheWeld notation in our next two results
is used analogously as in Proposition 4.1.

Lemma 4.4. ForZ−,Z+ > 0 withZ+,Z− +Z+ ≠ >22 , there is a constant ]Z−,Z+ ∈ (0,∞) such
that for each � > 0

disk2,∙ (Z− +Z+; >;�)⊗ SLE!(Z− − 2;Z+ − 2)
= ]Z−,Z+ ∫

∞
0 Weld(disk2 (Z−;�,8),disk2,∙ (Z+; >;8)) A8. (4.5)

Proof. In Proposition 4.1, sample a marked point from quantum length measure on the boundary
arc of length z (thus weighting by z). The result then follows from Proposition 2.18 or Lemma 3.10,
depending on whether the quantum disks are thick or thin. □
We now extend Lemma 4.4 todisk2,∙ (Z;:); see Figure 4.1 for an illustration. We first introduce

an: variant of SLE!(Z− − 2;Z+ − 2). Given a curve ) on from−∞ to∞, let- be the connected
component of ∖) containing 0 on its boundary, and let /) ∶ - →  be the conformal map fixing0 and sending the first (resp. last) point on 2- hit by ) to −∞ (resp. +∞). For : ∈ R, let ∆(:) =:2 (G − :2 ). For Z−,Z+ > 0, we define the measure ^(Z−,Z+,:) on curves on  such that its
Radon-Nikodym derivative with respect to SLE!(Z− − 2;Z+ − 2) is:

A^(Z−,Z+,:)A SLE!(Z− − 2;Z+ − 2) ()) = /′)(0)1−∆(:).
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2686 ANG et al.

When Z− +Z+ ≥ >22 , we define disk2,∙ (Z− +Z+;:;�)⊗^(Z−,Z+,:) in the exact same
way as disk2,∙ (Z− +Z+; >;�)⊗ SLE!(Z− − 2;Z+ − 2) in Lemma 4.4 with ^(Z−,Z+,:) in
place of SLE!(Z− − 2;Z+ − 2). WhenZ− +Z+ < >22 , we still definedisk2,∙ (Z− +Z+;:;�)⊗^(Z−,Z+,:) as a chain of curve-decorated quantum surfaces as disk2,∙ (Z− +Z+; >;�)⊗SLE!(Z− − 2;Z+ − 2), except that for the quantum surface containing the additional
boundary marked point, we use^(Z−,Z+,:) instead of SLE!(Z− − 2;Z+ − 2) to decorate that
surface.

Proposition 4.5. For Z− ≥ >22 and Z+ > 0 with Z+ ≠ >22 , there is a constant ]Z−,Z+ ∈ (0,∞)
such that for all : ∈ R and � > 0

disk2,∙ (Z− +Z+;:;�)⊗^(Z−,Z+,:)
= ]Z−,Z+ ∫

∞
0 Weld(disk2 (Z−;�,8),disk2,∙ (Z+;:;8)) A8. (4.6)

In the next section we will use Proposition 4.5 to compute |^(Z−,Z+,:)|, which equals
E[/′(0)1−∆(:)] by definition. The key to the proof of Proposition 4.5 is the following lemma based
on Girsanov theorem.

Lemma 4.6. Let :1,:2, [ ∈ R and � > 0. Then we have the weak convergence of measures
limq→0 q 14 (:22−:21)@ (:2−:1)2 Oq(0)LF([,±∞),(:1,0) ,� (AO) = LF([,±∞),(:2,0) ,� , (4.7)

andmoreover |q 14 (:22−:21)@ (:2−:1)2 Oq(0)LF([,±∞),(:1,0) ,� (AO)|∕|LF([,±∞),(:2,0) ,� | = 1 + wq(1)where the errorwq(1) converge to 0 uniformly in �.
Proof. When O is sampled from (LF([,±∞),(:,0) ,1 )#, the law of O + 2> log� is (LF([,±∞),(:,0) ,� )#.
Moreover, by Lemma 4.2

||||@ (:2−:1)2 Oq(0)LF([,±∞),(:1,0) ,� (AO)||||
||||@ (:2−:1)2 Oq(0)LF([,±∞),(:1,0) ,1 (AO)|||| =

|||LF([,±∞),(:2,0) ,� |||
|||LF([,±∞),(:2,0) ,1 |||

= � 2> ([+ :22 −G)−1.

Therefore, it suffices to prove (4.7) for � = 1. To this end, for q > 0, let l ,q(6, 0) ∶= E[ℎ(6)ℎq(0)].
For a distribution ℎ, let ℎ̃u ∶= ℎ − (G − [)|Re ⋅| + :u2 l (⋅, 0) for u = 1, 2, and let ℎ̃2,q ∶= ℎ̃1 +:2−:12 l ,q. Let C be a bounded and continuous functional oni−1() (see Remark 2.3). Then

∫ q 14 (:22−:21)@ (:2−:1)2 (ℎ̃1q (0)− 2> log Jℎ̃1 (R+gN))C(ℎ̃1 − 2> log Jℎ̃1 (R + gN))
2>Jℎ̃1 (R + gN)− 2> ([+ :12 −G)k (Aℎ)
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2687

= ∫ (1 + wq(1))E[@ :2−:12 ℎq(0)]−1@ :2−:12 ℎq(0)C(ℎ̃1 − 2> log Jℎ̃1 (R + gN))
2>Jℎ̃1 (R + gN)− 2> ([+ :22 −G)k (Aℎ)

= ∫ (1 + wq(1))C(ℎ̃2,q − 2> log Jℎ̃2,q (R + gN))2>Jℎ̃2,q (R + gN)− 2> ([+ :22 −G)k (Aℎ)
q→0⟶ ∫ C(ℎ̃2 − 2> log Jℎ̃2 (R + gN))2>Jℎ̃2 (R + gN)− 2> ([+ :22 −G)k (Aℎ)
= ∫ C(O)LF([,±∞),(:2,0) ,� (AO).

In the first equality, we are using that the average of −(G − [)|Re ⋅| + :12 l (⋅, 0) on 2pq(0) ∩ 
is −:1 log q + wq(1), and E[@ :2−:12 ℎq(0)] = (1 + wq(1))q− 14 (:2−:1)2 . The second equality uses Gir-
sanov’s theorem, and the final limit uses the dominated convergence theorem and Jℎ̃2 (R + gN) =(1 + wq(1))Jℎ̃2,q (R + gN) with error wq(1) uniform in ℎ (indeed sup6∈R+gN |l (6, 0) − l ,q(6, 0)| =wq(1)). Since C can be arbitrary we obtain (4.7) for � = 1. □
Proof of Proposition 4.5. We will weight (4.5) to obtain the proposition. We explain first the caseZ+ > >22 , then the modifications needed forZ+ < >22 .
Consider Z+ > >22 and let [+ = G + >2 − Z+> , [ = G + >2 − Z> . Sample (s, )) from >2 (G −[)−2LF([,±∞),(>,0) ,� × SLE!(Z− − 2;Z+ − 2), so the surface ( ,s,−∞, +∞, 0)∕∼> has law given

by the left hand side of (4.5). Let j) be the map from the connected component of ∖) containing
the boundary arc RgN to  such that j) fixes ±∞ and gN. Set

d = s◦/−1) + G log|||(/−1) )′|||, � = s◦j−1) + G log|||(j−1) )′|||. (4.8)

By Lemma 4.4, the conditional law of ( ,�, ±∞)∕∼> given d is disk2 ( >22 ;�, Jd(R + gN))#, and
the marginal law of d is

]Z−,Z+ ∫
∞

0 ∫
∞

0 `([1; 1, 0)8− 2>Z− >2 (G − [)−2LF([+,−∞),([+,+∞),(>,0) ,8 A8. (4.9)

Here, the expression >2 (G − [)−2LF([+,−∞),([+,+∞),(>,0) comes from Proposition 2.18, and the

prefactor arises from theweighting induced bywelding since |disk2 (Z−;�)| = `([1; 1, 0)�− 2>Z− .
By Lemma 4.6, if we weight the law of (d,�) by q 14 (:2−>2)@ :−>2 dq(0), as q → 0 the marginal law ofd converges to

]Z−,Z+ ∫
∞

0 `([1; 1, 0)8− 2>Z− >2 (G − [)−2LF([+,−∞),([+,+∞),(:,0) ,8 A8, (4.10)
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2688 ANG et al.

and moreover the conditional law of ( ,�, ±∞)∕∼> given d is stilldisk2 ( >22 ;�, Jd(R + gN))# in
the limit.
For q ∈ (0, 1) let �q denote the uniform probability measure on 2pq(0) ∩  such that we haveℎq(0) = (ℎ, �q). Let �)q = (/−1) )∗�q denote the pushforward of � under /−1) . By Schwarz reflec-

tion we can extend /−1) ∶  →  to a holomorphic map C from R × (−g,g) to itself. Since C′ is
holomorphic, log |C′| is harmonic andhence (log |C′|, �q) = log |C′(0)| by themean value property
of harmonic functions. Thus, by (4.8)

dq(0) = (s◦/−1 + G log |(/−1) )′|, �q) = (s, �)q ) + G log |(/−1) )′(0)|, (4.11)

and so weighting d by q 14 (:2−>2)@ :−>2 dq(0) corresponds to weighting (s, )) by
q 14 (:2−>2)@ :−>2 ((s,�)q )−G log |/′)(0)|) = ( q/′)(0)

) 14 (:2−>2)@ :−>2 (s,�)q ) ⋅ |/′)(0)| 14:2−G2 :+1. (4.12)

Now we note that for any fixed curve )0 in  ∪ 2 from −∞ to +∞ that does not hit 0, we have a
distortion estimate |(/−1)0 )′(6) − (/−1)0 )′(0)|∕|(/−1)0 )′(0)| = wq(1) for |6| < q, with wq(1) not depend-
ing on )0. This follows for example from [39, Theorem 3.21], which gives the analogous bound for
interior points and can be applied to /−1)0 after extension by Schwarz reflection. Thus, when ℎ is
sampled from k we haveE[@ :−>2 (ℎ,�)0q )] = (1 + wq(1))( q/′)0 (0) )−( :−>2 )2

, where wq(1) does not depend
on )0. Using this fact and the argument of Lemma 4.6, we obtain Lemma 4.6 with q replaced
by q∕/′)0 (0) and Oq replaced by (O, �)0q ), where the wq(1) errors do not depend on )0. Therefore,
for any bounded measurable function S on the space of curves in  from −∞ to +∞ equipped
with the Hausdorff topology and any bounded continuous function 7 ∶ (i−1())3 → R we
have

limq→0 ∫
⎛
⎜
⎜
⎜⎝
∫

( q/′)(0)
) 14 (:2−>2)@ :−>2 (s,�)q )7(d,s,�)

⋅ >2 (G − [)−2LF([,±∞),(>,0) ,� (As))S())^(Z−,Z+,:)(A))
= ∫

(
∫ 7(d̃, s̃, �̃)>2 (G − [)−2LF([,±∞),(:,0) ,� (As̃))S()̃)^(Z−,Z+,:)(A)̃),

where d,� (resp. d̃, �̃) are the functions of (s, )) (resp. (s̃, )̃)) given by (4.8). That is, as q → 0
the weighted law of (d,s,�, )) converges to the law of (d̃, s̃, �̃, )̃). Thus, when (s̃, )̃) is sam-
pled from >2 (G − [)−2LF([,±∞),(:,0) ,� × ^(Z−,Z+,:), the law of d̃ is (4.10), and the conditional

law of ( , �̃, ±∞) given d̃ is disk2 ( >22 ;�, Jd(R + gN))#. This concludes the proof in the caseZ+ > >22 .
For the case Z+ < >22 , the quantum surface to the right of the curve is no longer simply

connected. By Lemma 3.10, this quantum surface can be described as the concatenation of
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2689

(1,∙,2) sampled from
`([1; 1, 0)H− 2>Z−(1 − 2>2Z+)2disk2 (Z+) ×disk2,∙ (>2 −Z+) ×disk2 (Z+), (4.13)

where H is the sum of the left boundary lengths of (1,∙,2). Parametrizing ∙ as( ,d,−∞, +∞, 0), and arguing exactly as before, we obtain the proposition. □
5 THE SHIFT RELATIONS AND PROOF OF THEOREM 1.1

In this section we use the welding equation from Proposition 4.5 and the integrability for quan-
tum disks from LCFT and mating-of-trees to prove Theorem 1.1 as outlined in Section 1.3. In
Section 5.1, we recall the mating-of-trees theorem for the quantum disk which gives the joint
law of the boundary lengths in disk2 (2). Using this theorem we further derive the analogous
result for disk2 ( >22 ). In Section 5.2 we obtain Theorem 1.1 in the cases where [− corresponds

to Z− ∈ { >22 , 2} and [+ to generic Z+. This is based on exact results on the length distribution
of quantum disks from Section 5.1 for the two special weights, and the ones from Section 3 via
LCFT for generic weight. Finally, we derive shift relations in Section 5.3 and complete the proof of
Theorem 1.1.

5.1 Integrability of weights � and ��∕� quantum disk via mating
of trees

Although Lemma 3.3 and Proposition 3.4 and their thin quantum disk counterparts uniquely
characterize the total mass of disk2 (Z;�, z) in terms of the reflection coefficient `, it is quite
complicated in general. ForZ ∈ {2, >2∕2}, we have a much simpler description from [3].

Proposition 5.1 [3, Propositions 7.7 and 7.8]. For �, z > 0 we have
|disk2 (2;�, z)| = <1(� + z)− 4>2 −1 and |||||

disk2
(>22 ;�, z)|||||

= <2 (�z)4∕>2−1(�4∕>2 + z4∕>2 )2 .
The following proposition gives the values of <1 and <2; we do not need it for the rest of the

paper but include it for completeness.

Proposition 5.2. For �, z > 0 we have
|disk2 (2;�, z)| = (2g) 4>2 −1

(1 − >24 )Γ(1 − >24 ) 4>2 (� + z)− 4>2 −1,
|||||
disk2

(>22 ;�, z)|||||
= 4>2 (�z)4∕>2−1(�4∕>2 + z4∕>2 )2 .
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2690 ANG et al.

Proof. By Lemma 3.3 with Z = 2 , the law of the quantum length of the left boundary arc of
disk2 (2) is ��>0`(>, 1, 0)�− 4>2 with `(>, 1, 0) as in (3.4). By Proposition 5.1, we have

`(>, 1, 0) = ∫
∞

0 <1(1 + z)− 4>2 −1 Az = <1>24 ,
and applying the shift equations (3.2) to (3.4), we have

`(>, 1, 0) = (2g) 4>2 − 32 ( 2> )− 12−>24
(1 − >24 )Γ(1 − >24 ) 4>2 −1

Γ>2 ( >2 )Γ>2 (G)
Γ>2 (G)Γ>2 ( 2> )

Γ>2 ( 2> )Γ>2 ( 2> − >2 )
= >24 (2g) 4>2 −1

(1 − >24 )Γ(1 − >24 ) 4>2 .
This gives <1. Similarly, by Lemma 3.3 with Z = >22 , the law of the quantum length of the left

boundary arc of disk2 ( >22 ) is ��>0�−1A�. By Proposition 5.1 and using the change of variablesn = z4∕>2 , we have
1 = ∫

∞
0 <2 z4∕>2−1(1 + z4∕>2 )2 Az = <2>24 ∫

∞
0 1(1 + n)2 = <2>24 . □

5.2 Special cases of Theorem 1.1

In this section, we leverage exact formulas for |disk2 (2;�, z)| and |disk2 ( >22 ;�, z)| to show
Proposition 5.6, which is Theorem 1.1 in the cases where ! ∈ (0, 4) and "− ∈ {0, !2 }.
We will use the parameters from LQG and conformal welding to express the moment in

Theorem 1.1. More precisely, for > ∈ (0, 2), 9 ∈ R and [−, [+ < G + >2 we setP9>([−, [+) ∶= E[/′(1)9] (5.1)

where E[/′(1)9] is the moment in Theorem 1.1 with

! = >2 ∈ (0, 4), "− = >2 − >[− > −2, and "+ = >2 − >[+ > −2. (5.2)

We first make some basic observations onP9>([−, [+).
Lemma 5.3. If P9>([−, [+) <∞ and 9 < 9′ then P9>([−, [+) < P9′> ([−, [+). Moreover,P0>([−, [+) = 1.
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2691

Proof. From the definition of /, we see that /′(1) > 1 a.s., giving the monotonicity property. The
second observation is trivial. □
Since we can conformally map from (H, 0,∞, 1) to ( ,−∞, +∞, 0), from the definition of^(Z−,Z+,:) above Proposition 4.5, we see that

|^(Z−,Z+,:)| = P9>([−, [+) withZ± = >(> + 2> − [±). (5.3)

Nowwe can computeP9>([−, [+) by computing |^(Z−,Z+,:)| via Proposition 4.5. Based on this
idea, the following lemma computesP9>(>, [+) for [+ ≠ G and a certain range of 9, modulo a [+-
dependent multiplicative constant. The range of 9 below does not contain 0. Later we will remove
this restriction so that the constant can be recovered fromP0>([−, [+) = 1.
Lemma 5.4. For any [+ ∈ (−∞,G) ∪ (G,G + >2 ) and : ∈ (2|[+ − G|, 4G − 2[+), set 9 = 1 −:2 (G − :2 ). Then there is a constant < = <>([+) ∈ (0,∞) not depending on : such that

P9>(>, [+) = <>([+)Γ(2>(G − [+ + 12:))Γ(2>(2G − [+ − 12:)). (5.4)

Proof. Set Z− = 2 and Z+ = >(> + 2> − [+) and consider Proposition 4.5 with these parame-

ters. Set [ = [+ − 2> so that Z− +Z+ = >(> + 2> − [). By Proposition 3.9 and (5.3), since : >0 ∨ 2(G − [+), the unmarked boundary arc’s length of a sample from disk2,∙ (Z− +Z+;:;�)⊗^(Z−,Z+,:) has the power law distribution �8>0ℭ8 2> ([+12:−G)−1A8 where
ℭ = (G − [)−2i([,[,:)(0,1,0) |^(Z−,Z+,:)| = (G − [)−2i([,[,:)(0,1,0) P9>(>, [+). (5.5)

We now evaluate ℭ via the right hand side of (4.6). By Proposition 3.9 if [+ < G or Proposi-
tion 3.12 if [+ ∈ (G,G + >2 ), the right hand side of (4.6) gives, with <̃ = <̃>([+) a constant not
depending on :,

ℭ = ]Z−,Z+ ∫
∞

0 |disk2 (2; 1,�)| ⋅ (G − [+)−2i([+,[+,:)(0,1,0) � 2> ([++ 12:−G)−1 A�
= <̃>([+)i([+,[+,:)(0,1,0) Γ(2>([+ + 12: − G))Γ(2>(2G − [+ − 12:)). (5.6)

The second equality follows from |disk2 (2; 1,�)| ∝ (1 + �)− 4>2 −1 (Proposition 5.1) and the beta
function integral Γ(8)Γ(�)Γ(8+�) = ∫ ∞0 �8−1(1+�)8+� A� for 8 = 2> ([+ + 12: − G) > 0 and � = 2> (2G − [+ −12:) > 0. Here, we absorb the constant ]Z−,Z+ into <̃>([+). Note that the hypotheses of Propo-
sition 3.9 (if [+ < G) or Proposition 3.12 (if [+ ∈ (G,G + >2 )) and the inequalities 8, � > 0 all hold
because of our conditions on :, [+.
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2692 ANG et al.

Comparing (5.5) and (5.6), we get

P9>(>, [+) = <̃>([+) (G − [)2Γ(2>([+ + 12: − G))
⋅ Γ(2>(2G − [+ − 12:))i([+,[+,:)(0,1,0)i([,[,:)(0,1,0) .

Using the shift relation (3.2) for Γ>2 and [+ = [ + 2> , we can expressi([+,[+,:)(0,1,0) ∕i([,[,:)(0,1,0) as
⎛
⎜
⎜
⎜⎝

2g( >2 ) >24 Γ(1 − >24 )
⎞
⎟
⎟
⎟⎠

4>2 Γ>2 (G − [)2Γ>2 (G − [+)2 Γ>2 (G − [+ + 12:)Γ>2 (G − [ + 12:)
Γ>2 ([+ + 12: − >2 )Γ>2 ([ + 12: − >2 )

= <̂>([+)Γ( 2> (G − [+ + 12:))Γ( 2> ([+ + 12: − G))
where <̂>([+) = ⎛

⎜
⎜
⎜⎝

2g( >2 ) >24 Γ(1 − >24 )
⎞
⎟
⎟
⎟⎠

4>2 Γ>2 (G − [+ + 2> )2Γ>2 (G − [+)2
(2>)

4> ([+−G).
Setting <>([) = <̃>([+)<̂>([+)(G − [)2 we conclude the proof. □
The following lemma is the counterpart of Lemma 5.4with [− = G instead of [− = >. The proof

follows the exact same steps as that of Lemma 5.4, withdisk2 ( >22 ) in place ofdisk2 (2).
Lemma 5.5. Let [+ ∈ (−∞,G) ∪ (G,G + >2 ). Let : ∈ (2|[+ − G|, 4G − 2[+) and 9 = 1 − :2 (G −:2 ). Then there is a constant < = <>([+) ∈ (0,∞) not depending on : such that

P9>(G, [+) = <>([+)Γ(>2(G − [+ + 12:))Γ(>2(2G − [+ − 12:)).
Proof. This proof is essentially the same as Lemma 5.4. We consider the density of the unmarked
boundary arc length of a sample fromdisk2,∙ (Z− +Z+;:;�)⊗^(Z−,Z+,:), which is given by�8>0ℭ8 2> ([+12:−G)−1A8 with

ℭ = (G − [)−2i([,[,:)(0,1,0) P9>(G, [+), where [ = [+ − >2 .
We now use Propositions 4.5 and 5.1 to compute the ℭ from the right side of (4.6). By Propo-

sition 3.9 if [+ < G or Proposition 3.12 if [+ ∈ (G,G + >2 ), the right hand side of (4.6) gives, with
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2693

<̃ = <̃>([+) a constant not depending on :,
ℭ = ]Z−,Z+ ∫

∞
0 |disk2

(>22 ; 1,�)| ⋅ (G − [+)−2i([+,[+,:)(0,1,0) � 2> ([++ 12:−G)−1 A�
= <̃>([+)i([+,[+,:)(0,1,0) Γ(>2([+ + 12: − >))Γ(>2(2G − [+ − 12:)),

where the second equality follows from |disk2 ( >22 ; 1,�)| ∝ � 4>2 −1
(1+� 4>2 )2 (Proposition 5.1) and the

beta function integral Γ(8)Γ(2−8)Γ(2) = ∫ ∞0 n8−1(1+n)2 An = 4>2 ∫ ∞0 � 4>2 8−1
(1+� 4>2 )2 A� with the change of variablesn = �4∕>2 and with 8 = >2 ([+ + 12: − >) ∈ (0, 2). Note that the hypotheses of Proposition 3.9 (if[+ < G) or Proposition 3.12 (if [+ ∈ (G,G + >2 )) and the bound 8 ∈ (0, 2) all hold because of our

conditions on :, [+.
The rest of the argument is identical to the proof of Lemma 5.4 except this time

i([+,[+,:)(0,1,0)i([,[,:)(0,1,0) = 2g( >2 ) >24 Γ(1 − >24 )
Γ>2 (G − [+ + >2 )2Γ>2 (G − [+)2 (>2) >2 (2[+−>−G)

⋅ Γ( >2 (G − [+ + 12:))Γ( >2 ([+ + 12: − >))
since [+ − [ = >2 instead of 2> . We omit the rest of the details. □
The following is equivalent to Theorem 1.1 for ! < 4 and "− ∈ {0, !2 − 2}.

Proposition 5.6. Let [+ < G + >2 , and let 90 = 1! ("+ + 2)("+ + 4 − !2 ) where ! = >2 and "+ =>2 − >[+. For 9 < 90, let : be either solution to 1 − :2 (G − :2 ) = 9. Then
P9>(>, [+) = Γ( 2> (G − [+ + 12:))Γ( 2> (2G − [+ − 12:))Γ( 2> (G − [+ + >2 ))Γ( 2> (G − [+ + 2> )) ,
P9>(G, [+) = Γ( >2 (G − [+ + 12:))Γ( >2 (2G − [+ − 12:))Γ( >2 (G − [+ + >2 ))Γ( >2 (G − [+ + 2> )) .

Proof. We prove theP9>(>, [+) identity using Lemma 5.4; the proof of theP9>(G, [+) identity using
Lemma 5.5 is the same.
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2694 ANG et al.

First fix any [+ ≠ G. By Proposition A.1P9>(>, [+) <∞ for all 9 < 90, so we can apply Morera’s
theorem and Fubini’s theorem to see that 9 ↦ P9>(>, [+) is holomorphic on {9 ∈ C ∶ Re 9 < 90}.
By Lemma 5.4, this function agrees with the right hand side of (5.4) for some interval in R, so by
the uniqueness of holomorphic extensions (5.4) is true for all 9 ∈ R with 9 < 90. Setting 9 = 0
and : = >, we deduce that <([+) in Lemma 5.4 equals Γ( 2> (G − [+ + >2 ))−1Γ( 2> (G − [+ + 2> ))−1,
completing the proof for [+ ≠ G.
When [+ = G and 9 < 0we obtain the result from the [+ ≠ G case by taking the approximating

sequence (!Q, "Q−, "Q+) = (!, >2 − >[−, >2 − >[Q+)with [+ ∶= G − 1Q in Lemma A.3. Then the same
holomorphic extension argument as above allows us to address all 9 < 90. □
Remark 5.7. The expressions in Proposition 5.6 can be written as hypergeometric functions:

P9>(>, [+) = 271(2>(:2 − >2), 2>(:2 − 2>), 2>(G − [+ + :2); 1),
P9>(G, [+) = 271(>2(:2 − >2), >2(:2 − 2>), >2(G − [+ + :2); 1).

It would be interesting to derive these hypergeometric functions from differential equations,
similarly to some other SLE formulas, see for example [39].

5.3 Proof of Theorem 1.1 via shift equations

In this section we complete the proof of Theorem 1.1. We first state a composition relation forP9> ,
then derive shift relations, and finally show that these relations determineP9> .
Lemma 5.8 (Composition relation). For [, [−, [+ < G + >2 and 9 < 0, we have

P9>([ + [− − G − >2 , [+) = P9>([, [− + [+ − G − >2)P9>([−, [+).
Proof. Let " = >2 − >[, "± = >2 − >[±. Independently sample an SLE!("; "− + "+ + 2) curve )1
and an SLE!("−; "+) curve )2 in H from 0 to ∞, let -u be the connected component of H∖)u
containing 1 on its boundary for u = 1, 2, and let /u ∶ -u → H be the conformal map such that/u(1) = 1 and the first (resp. last) point on 2-u traced by )u is mapped to 0 (resp. ∞). Let ) ∶=/−11 ()2) and / ∶= /2◦/1. The theory of imaginary geometry [41, Proposition 7.4] tells us that the
law of ) is SLE!(" + "− + 2; "+). Thus, since /′(1) = /′1(1)/′2(1) and /1,/2 are independent,

P9>([ + [− − G − >2 , [+) = E[/′(1)9] = E[/′1(1)9]E[/′2(1)9]
= P9>([, [− + [+ − G − >2)P9>([−, [+).

Here the assumption 9 < 0 ensures the finiteness of the two sides. □
We immediately deduce the following shift relations.
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2695

Lemma 5.9 (Shift relations forP9>). For [−, [+ < G + >2 , 9 < 0 and : a solution to 1 − :2 (G − :2 ) =9,
P9>([− − 2> , [+)P9>([−, [+)

= Γ( 2>(2G + >2 − [− − [+ + 12:))Γ( 2>(3G + >2 − [− − [+ − 12:))Γ( 2> (2G + > − [− − [+))Γ( 2> (3G − [− − [+)) ,
P9>([− − >2 , [+)P9>([−, [+)

= Γ( >2(2G + >2 − [− − [+ + 12:))Γ( >2(3G + >2 − [− − [+ − 12:))Γ( >2 (2G + > − [− − [+))Γ( >2 (3G − [− − [+)) .
Proof. For the first identity, set [ = > in Lemma 5.8, then use Proposition 5.6 to eliminate the termP9>(>, [− + [+ − G − >2 ). For the second identity, set [ = G in Lemma 5.8, then use Proposition 5.6
to eliminate the termP9>(G, [− + [+ − G − >2 ). □
We now use the shift relations to prove Theorem 1.1 in some regime.

Proposition 5.10. Theorem 1.1 holds when ! ∈ (0, 4)∖Q and 9 < 0. Namely, using the identifi-
cation of parameters from (5.2), for >2 = ! ∈ (0, 4)∖Q, [−, [+ < G + >2 , 9 < 0 and : a solution to1 − :2 (G − :2 ) = 9, we have

P9>([−, [+) = Γ>2 (2G + > − [− − [+)Γ>2 (3G − [− − [+)Γ>2 (2G + >2 − [− − [+ + 12:)Γ>2 (3G + >2 − [− − [+ − 12:)
⋅Γ >2 (G − [+ + 12:)Γ>2 (2G − [+ − 12:)Γ>2 (G − [+ + >2 )Γ>2 (G − [+ + 2> ) . (5.7)

Proof. We first show that there is a function ]([+,:) such that
P9>([−, [+)

= ]([+,:) Γ>2 (2G + > − [− − [+)Γ>2 (3G − [− − [+)Γ>2 (2G + >2 − [− − [+ + 12:)Γ>2 (3G + >2 − [− − [+ − 12:) . (5.8)

Let P̃9>([−, [+) denote the right hand side of (5.8) divided by ]([+,:). Using the shift relations ofΓ>2 (3.2) it is easy to check that the equations of Lemma 5.9 still hold whenP9> is replaced by P̃9> .
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2696 ANG et al.

Consequently, for all [+, [− < G + >2 we have
P9>([− − 2> , [+)P̃9>([− − 2> , [+) =

P9>([−, [+)P̃9>([−, [+) = P9>([− − >2 , [+)P̃9>([− − >2 , [+) .
Keep [+ fixed. Since >2 ∉ Q, starting from [− = 0 and making upward jumps [− ↦ [− + 2> and
downward jumps [− ↦ [− − >2 , we conclude that for [− in a dense subset of (−∞,G + >2 )we haveP9>([−, [+)∕P̃9>([−, [+) = P9>(0, [+)∕P̃9>(0, [+) =∶ ]([+,:), that is (5.8) holds for a dense set of[− ∈ (−∞,G + >2 ).
Since 9 < 0, by Lemmas 5.3 and 5.8we haveP9>([− − (G + >2 − [), [+) = P9>([, [− + [+ − G −>2 )P9>([−, [+) < P9>([−, [+) for all [ < G + >2 , so P9>([−, [+) is monotone in [−. The right hand

side of (5.8) is continuous in [−, so by monotonicity we can extend (5.8) from a dense set to the
full range [− ∈ (−∞,G + >2 ). Thus we have shown (5.8).
Now, both Proposition 5.6 and Equation (5.8) give expressions forP9>(G, [+), in the latter case,

in terms of ]([+,:). Comparing these yields
]([+,:) Γ>2 (G + > − [+)Γ>2 (2G − [+)Γ>2 (G + >2 − [+ + 12:)Γ>2 (2G + >2 − [+ − 12:)

= Γ( >2 (G − [+ + 12:))Γ( >2 (2G − [+ − 12:))Γ( >2 (G − [+ + >2 ))Γ( >2 (G − [+ + 2> )) .
We may simplify this using the shift relations for Γ>2 to get

]([+,:) = Γ>2 (G − [+ + 12:)Γ>2 (2G − [+ − 12:)Γ>2 (G − [+ + >2 )Γ>2 (G − [+ + 2> ) ,
and eliminating ]([+,:) from (5.8) gives (5.7). □
We now extend Proposition 5.10 to all rational ! ∈ (0, 4] by continuity, to all 9 < 90 by

holomorphicity, and to all ! > 4 by SLE duality, thus proving Theorem 1.1.

Lemma 5.11. Theorem 1.1 holds for ! ∈ (0, 4] and "−, "+ > −2.
Proof. We first prove the result for 9 < 0. Extend the definition ofP9> in (5.1) to > = 2; this is the
only place in the paper where we consider > = 2 (corresponding to ! = 4 and G = 2). As before,
for each > ∈ (0, 2] it suffices to prove (5.7) for all [−, [+ < G + >2 .
We first show that

(5.7) holds for ! ∈ (0, 4], 9 < 0, {[−, [+ ≤ G} ∪ {[− = >, [+ < G + >2}. (5.9)
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INTEGRABILITY OF SLE VIA CONFORMALWELDING 2697

For ! = >2 ∈ (0, 4], 9 < 0, and [± ≤ G, (5.7) follows from Proposition 5.10 and LemmaA.3 applied
to the sequence (!Q, "Q−, "Q+) = (!Q, "−, "+), where (!Q)Q≥1 is an increasing sequence of irrational
numbers with limit !, and "Q± = "± = >2 − >[±. Likewise, when ! ∈ (0, 4], 9 < 0, and "− =0, "+ ∈ (0, !2 − 2), (5.7) follows from Proposition 5.10 and LemmaA.6. Thus we have verified (5.9).
Now consider any [−, [+ < G + >2 and 9 < 0. Using Lemma 5.8 yields P9>(>, [− + [+ − G −>2 )P9>([−, [+) = P9>([− − 2> , [+) and, for any sufficiently negative [ ≪ 0,

P9>([, [+ − 2>)P9>(>, [+) = P9>([ − 2> , [+)
= P9>(> + 2> + [ − [−, [− + [+ − 2G)P9>([− − 2> , [+).

EliminatingP9>([− − 2> , [+) yields
P9>([−, [+) = P9>([, [+ − 2> )P9>(>, [+)P9>(> + 2> + [ − [−, [− + [+ − 2G)P9>(>, [− + [+ − G − >2 ) . (5.10)

For [ negative enough, each of the four factors on the right side of (5.10) can be evaluated by (5.9),
which gives meromorphic functions in [− and [+ on a complex neighborhood of (−∞,G + >2 ).
This means that P9>([−, [+) is meromorphic in [− and [+ on a complex neighborhood of(−∞,G + >2 ). This shows that (5.7) holds for all [−, [+ < G + >2 and 9 < 0.
Now, we extend from 9 < 0 to the full result. Indeed, as in the proof of Proposition 5.6, by holo-

morphic extension in 9 (5.7) holds for all 9 < 90 = 1! ("+ + 2)("+ + 4 − !2 ). For 9 ≥ 90 and q > 0,
by Lemma 5.3we haveP9>([−, [+) ≥ P90−q> ([−, [+). Since 90 is achieved when : = 2([+ − G), by
the explicit formula in (5.7), we have limq→0+P90−q> ([−, [+) =∞ henceP9>([−, [+) =∞. □
The following lemma treats the case ! > 4 using SLE duality.

Lemma 5.12. Theorem 1.1 holds for ! ∈ (4,∞), "− > −2 and "+ > !2 − 4.
Proof. By SLE duality (see [65, Theorem 5.1] and [41, Theorem 1.4]) the right boundary of anSLE!("−; "+) has the law of an SLE!̃("̃−; "̃+) curve, where !̃ = 16! < 4, "̃− = !̃2 − 2 + !̃4"− and"̃+ = !̃ + !̃4"+ − 4. Hence when 9 < 9̃0 = 1̃! ("̃+ + 2)("̃+ + 4 − !̃2 ), by Lemma 5.11 we have

E[/′(1)9] = 7(:̃, !̃, "̃−, "̃+)7(√!̃, !̃, "̃−, "̃+) ,
where :̃ solves

1 − :̃2
(√!̃2 + 2√!̃ − :̃2

) = 9.
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2698 ANG et al.

Once can easily verify that 90 = 9̃0, and2√! + "−√! = 2√!̃ + "̃−√!̃ , 4√! + "+√! = 4√!̃ + "̃+√!̃ ,2√! +
√!2 = 2√!̃ +

√!̃2 . (5.11)

The last identity above means we can take : = :̃. Comparing 7(:, !, "−, "+) and 7(:̃, !̃, "̃−, "̃+),
using (5.11) we can pair up their terms so their arguments agree. Since Γ√!∕2 = Γ√!̃∕2 as √!2 = 2√!̃ ,
we get termwise equality. Thus 7(:, !, "−, "+) = 7(:̃, !̃, "̃−, "̃+), and similarly 7(√!, !, "−, "+) =7(√!̃, !̃, "̃−, "̃+). We conclude that

E[/′(1)9] = 7(:̃, !̃, "̃−, "̃+)7(√!̃, !̃, "̃−, "̃+) = 7(:, !, "−, "+)7(√!, !, "−, "+) ,
hence Theorem 1.1 holds for ! ∈ (4,∞), "− > −2, "+ > !2 − 4 and 9 < 90.
It remains to check that E[/′(1)9] =∞ for all 9 ≥ 90. As before, we have /′(1) > 1 a.s., so the

function 8 ↦ E[/′(1)8] is increasing onR, and from the explicit formula we have just shown, we
see that E[/′(1)9] ≥ limq→0+ E[/′(1)90−q] =∞. □
Proof of Theorem 1.1. The heart of the argument is Proposition 5.10, and Lemmas 5.11 and 5.12 tie
up the remaining details. □
ACKNOWLEDGMENTS
We are grateful to Manan Bhatia, Ewain Gwynne, Matthis Lehmkuehler, Steffen Rohde, Scott
Sheffield, Pu Yu, and Dapeng Zhan for helpful discussions. We also thank the anonymous ref-
eree for helpful comments. M.A. was partially supported by NSF grant DMS-1712862. N.H. was
supported by Dr Max Rössler, the Walter Haefner Foundation, and the ETH Zürich Foundation,
along with grant 175505 of the Swiss National Science Foundation. X.S. was supported by the
Simons Foundation as a Junior Fellow at the Simons Society of Fellows, and by the NSF grant
DMS-2027986 and the Career award 2046514.

REFERENCES
1. M. Ang and E. Gwynne, Liouville quantum gravity surfaces with boundary as matings of trees, Ann. Inst. Henri

Poincaré Probab. Stat. 57 (2021), no. 1, 1–53. DOI 10.1214/20-AIHP1068.
2. M. Ang, N. Holden, and X. Sun, Conformal welding of quantum disks, Electron. J. Probab. 28 (2023), 1–50. DOI

10.1214/23-EJP943.
3. M. Ang, N. Holden, and X. Sun, The SLE loop via conformal welding of quantum disks, Electron. J. Probab. 28

(2023), 1–20. DOI 10.1214/23-EJP914.
4. M. Ang, G. Remy, and X. Sun, FZZ formula of boundary Liouville CFT via conformal welding, J. Eur. Math. Soc.

(to appear).
5. M. Ang and X. Sun, Integrability of the conformal loop ensemble, arXiv e-print, 2021.
6. J. Aru, Y.Huang, andX. Sun,Two perspectives of the 2Dunit area quantum sphere and their equivalence, Comm.

Math. Phys. 356 (2017), no. 1, 261–283. DOI 10.1007/s00220-017-2979-6.

 10970312, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22180 by U

niversity O
f Pennsylvania, W

iley O
nline Library on [05/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1214/20-AIHP1068
https://doi.org/10.1214/23-EJP943
https://doi.org/10.1214/23-EJP914
https://doi.org/10.1007/s00220-017-2979-6


INTEGRABILITY OF SLE VIA CONFORMALWELDING 2699

7. J. Aru, T. Lupu, and A. Sepúlveda, Extremal distance and conformal radius of a <H�4 loop, Ann. Probab. 50
(2022), no. 2, 509–558. DOI 10.1214/21-AOP1538.

8. A.A. Belavin,A.M. Polyakov, andA. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quan-
tum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. https://doi-org.libproxy.mit.edu/10.1016/0550-
3213(84)90052-X.

9. N. Berestycki,An elementary approach to Gaussianmultiplicative chaos, Electron. Commun. Probab. 22 (2017),
Paper No. 27, 12. DOI 10.1214/17-ECP58.

10. N. Berestycki and E. Powell, Introduction to the Gaussian Free Field and Liouville Quantum Gravity, 2021.
Available at https://homepage.univie.ac.at/nathanael.berestycki/?page_id=184.

11. B. Cerclé,Unit boundary length quantumdisk: a study of twodifferent perspectives and their equivalence, ESAIM:
Probab. Stat. 25 (2021), 433–459.

12. D. Chelkak, H. Duminil-Copin, C. Hongler, A. Kemppainen, and S. Smirnov, Convergence of Ising interfaces to
Schramm’s SLE curves, C. R. Math. Acad. Sci. Paris 352 (2014), no. 2, 157–161. DOI 10.1016/j.crma.2013.12.002.

13. F. David, R. Rhodes, and V. Vargas, Liouville quantum gravity on complex tori, J. Math. Phys. 57 (2016), no. 2,
022302, 25. DOI 10.1063/1.4938107.

14. F. David, A. Kupiainen, R. Rhodes, and V. Vargas, Liouville quantum gravity on the Riemann sphere, Comm.
Math. Phys. 342 (2016), no. 3, 869–907. DOI 10.1007/s00220-016-2572-4.

15. J. Ding, J. Dubédat, A. Dunlap, and H. Falconet, Tightness of Liouville first passage percolation for > ∈ (0, 2),
Publ.Math. Inst. Hautes Études Sci. 132 (2020), 353–403. https://doi-org.libproxy.mit.edu/10.1007/s10240-020-
00121-1.

16. H. Dorn and H.-J. Otto, Two- and three-point functions in Liouville theory, Nuclear Phys. B 429 (1994), 375–388.
17. J. Dubédat, �H�(!, ")martingales and duality, Ann. Probab. 33 (2005), no. 1, 223–243. https://doi-org.libproxy.

mit.edu/10.1214/009117904000000793.
18. J. Dubédat, Excursion decompositions for SLE and Watts’ crossing formula, Probab. Theory Related Fields 134

(2006), no. 3, 453–488. DOI 10.1007/s00440-005-0446-3.
19. J. Dubédat, Duality of Schramm-Loewner evolutions, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 697–724.
20. J. Dubédat, SLE and the free field: partition functions and couplings, J. Amer. Math. Soc. 22 (2009), no. 4, 995–

1054. DOI 10.1090/S0894-0347-09-00636-5.
21. B. Duplantier, J. R.Miller, and S. Sheffield,Liouville quantumgravity as amating of trees, Astérisque 427 (2021).
22. B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Invent. Math. 185 (2011), no. 2, 333–393.

DOI 10.1007/s00222-010-0308-1.
23. J. Faraut,Analysis on Lie groups, Cambridge Studies in AdvancedMathematics, vol. 110, pp. x+302, Cambridge

University Press, Cambridge, 2008. An introduction. DOI 10.1017/CBO9780511755170.
24. V. Fateev, A. Zamolodchikov, and A. Zamolodchikov, Boundary Liouville field theory I. Boundary state and

boundary two-point function, arXiv preprint hep-th/0001012 (2000).
25. C. Guillarmou, R. Rhodes, and V. Vargas, Polyakov’s formulation of 2A bosonic string theory, Publ. Math. Inst.

Hautes Études Sci. 130 (2019), 111–185. DOI 10.1007/s10240-019-00109-6.
26. C. Guillarmou, A. Kupiainen, R. Rhodes, and V. Vargas, Conformal bootstrap in Liouville Theory, Acta Math.

(to appear).
27. E. Gwynne, Random surfaces and Liouville quantum gravity, Notices Amer. Math. Soc. 67 (2020), no. 4, 484–

491. https://doi-org.libproxy.mit.edu/10.1090/noti.
28. E. Gwynne, N. Holden, and J. Miller, Dimension transformation formula for conformal maps into the comple-

ment of an SLE curve, Probab. Theory Related Fields 176 (2020), no. 1–2, 649–667. https://doi-org.libproxy.mit.
edu/10.1007/s00440-019-00952-y.

29. E. Gwynne, N. Holden, and X. Sun, Mating of trees for random planar maps and Liouville quantum gravity: a
survey, Topics in statistical mechanics, Panor. Synthèses, vol. 59, Soc. Math. France, Paris, 2023, pp. 41–120.

30. E. Gwynne and J.Miller,Convergence of the self-avoidingwalk on randomquadrangulations to SLE8∕3 on√8∕3-
Liouville quantum gravity, Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 2, 305–405. DOI 10.24033/asens.246.

31. E. Gwynne and J. Miller, Existence and uniqueness of the Liouville quantum gravity metric for > ∈ (0, 2), Invent.
Math. 223 (2021), no. 1, 213–333. https://doi-org.libproxy.mit.edu/10.1007/s00222-020-00991-6.

32. N. Holden and X. Sun, Convergence of uniform triangulations under the Cardy embedding, Acta Math. 230
(2023), no. 1, 93–203.

 10970312, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22180 by U

niversity O
f Pennsylvania, W

iley O
nline Library on [05/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1214/21-AOP1538
https://doi-org.libproxy.mit.edu/10.1016/0550-3213(84)90052-X
https://doi-org.libproxy.mit.edu/10.1016/0550-3213(84)90052-X
https://doi.org/10.1214/17-ECP58
https://homepage.univie.ac.at/nathanael.berestycki/?page_id=184
https://doi.org/10.1016/j.crma.2013.12.002
https://doi.org/10.1063/1.4938107
http://doi.org/10.1007/s00220-016-2572-4
https://doi-org.libproxy.mit.edu/10.1007/s10240-020-00121-1
https://doi-org.libproxy.mit.edu/10.1007/s10240-020-00121-1
https://doi-org.libproxy.mit.edu/10.1214/009117904000000793
https://doi-org.libproxy.mit.edu/10.1214/009117904000000793
https://doi.org/10.1007/s00440-005-0446-3
http://doi.org/10.1090/S0894-0347-09-00636-5
http://doi.org/10.1007/s00222-010-0308-1
https://doi.org/10.1017/CBO9780511755170
https://doi.org/10.1007/s10240-019-00109-6
https://doi-org.libproxy.mit.edu/10.1090/noti
https://doi-org.libproxy.mit.edu/10.1007/s00440-019-00952-y
https://doi-org.libproxy.mit.edu/10.1007/s00440-019-00952-y
https://doi.org/10.24033/asens.246
https://doi-org.libproxy.mit.edu/10.1007/s00222-020-00991-6


2700 ANG et al.

33. Y. Huang, R. Rhodes, and V. Vargas, Liouville quantum gravity on the unit disk, Ann. Inst. Henri Poincaré
Probab. Stat. 54 (2018), no. 3, 1694–1730. DOI 10.1214/17-AIHP852.

34. Y. Ikhlef, J. L. Jacobsen, and H. Saleur, Three-Point Functions in c≤1 Liouville Theory and Conformal Loop
Ensembles, Phys. Rev. Lett. 116 (2016), no. 13, 130601.

35. A. Kemppainen, Schramm-Loewner evolution, SpringerBriefs in Mathematical Physics, vol. 24, pp. ix+145,
Springer, Cham, 2017, DOI 10.1007/978-3-319-65329-7.

36. J. F. C. Kingman, Poisson processes, Oxford Studies in Probability, vol. 3, pp. viii+104, The Clarendon Press,
Oxford University Press, New York, 1993. Oxford Science Publications.

37. A. Kupiainen, R. Rhodes, and V. Vargas, Integrability of Liouville theory: proof of the DOZZ formula, Ann. of
Math. (2) 191 (2020), no. 1, 81–166. https://doi-org.libproxy.mit.edu/10.4007/annals.2020.191.1.2.

38. G. Lawler, O. Schramm, andW.Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003),
no. 4, 917–955 (electronic). DOI 10.1090/S0894-0347-03-00430-2.

39. G. F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs, vol. 114,
pp. xii+242, American Mathematical Society, Providence, RI, 2005.

40. G. F. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-erased random walks and
uniform spanning trees, Ann. Probab. 32 (2004), no. 1B, 939–995. DOI 10.1214/aop/1079021469.

41. J. Miller and S. Sheffield, Imaginary geometry I: interacting SLEs, Probab. Theory Related Fields 164 (2016), no.
3–4, 553–705. DOI 10.1007/s00440-016-0698-0.

42. J. Miller and S. Sheffield, Liouville quantum gravity spheres as matings of finite-diameter trees, Ann. Inst. Henri
Poincaré Probab. Stat. 55 (2019), no. 3, 1712–1750. DOI 10.1214/18-aihp932.

43. J. Miller, S. Sheffield, and W. Werner, Simple conformal loop ensembles on Liouville quantum gravity, Ann.
Probab. 50 (2022), no. 3, 905–949. DOI 10.1214/21-aop1550.

44. J. Miller and H. Wu, Intersections of SLE Paths: the double and cut point dimension of SLE, Probab. Theory
Related Fields 167 (2017), no. 1–2, 45–105. DOI 10.1007/s00440-015-0677-x.

45. A.M. Polyakov,Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981), no. 3, 207–210. DOI 10.1016/0370-
2693(81)90743-7.

46. G. Remy, Liouville quantum gravity on the annulus, J. Math. Phys. 59 (2018), no. 8, 082303, 26. DOI 10.1063/1.
5030409.

47. G. Remy, The Fyodorov-Bouchaud formula and Liouville conformal field theory, Duke Math. J. 169 (2020), no.
1, 177–211. https://doi-org.libproxy.mit.edu/10.1215/00127094-2019-0045.

48. G. Remy and T. Zhu, The distribution of Gaussian multiplicative chaos on the unit interval, Ann. Probab. 48
(2020), no. 2, 872–915. https://doi-org.libproxy.mit.edu/10.1214/19-AOP1377.

49. G. Remy and T. Zhu, Integrability of boundary Liouville conformal field theory, Comm. Math. Phys. 395 (2022),
no. 1, 179–268. DOI 10.1007/s00220-022-04455-1.

50. R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: A review, Probab. Surv. 11 (2014),
315–392. DOI 10.1214/13-PS218.

51. O. Schramm, Scaling limits of loop-erased randomwalks and uniform spanning trees, Israel J. Math. 118 (2000),
221–288. DOI 10.1007/BF02803524.

52. O. Schramm, A percolation formula, Electron. Commun. Probab. 6 (2001), 115–120.
53. O. Schramm and S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field, Acta Math. 202

(2009), no. 1, 21–137. DOI 10.1007/s11511-009-0034-y.
54. O. Schramm, S. Sheffield, and D. B.Wilson,Conformal radii for conformal loop ensembles, Comm.Math. Phys.

288 (2009), no. 1, 43–53. DOI 10.1007/s00220-009-0731-6.
55. S. Sheffield,Gaussian free fields formathematicians, Probab. TheoryRelated Fields 139 (2007), no. 3–4, 521–541.
56. S. Sheffield, Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab. 44

(2016), no. 5, 3474–3545. DOI 10.1214/15-AOP1055.
57. S. Sheffield, Quantum gravity and inventory accumulation, Ann. Probab. 44 (2016), no. 6, 3804–3848. DOI 10.

1214/15-AOP1061.
58. S. Sheffield and M. Wang, Field-measure correspondence in Liouville quantum gravity almost surely commutes

with all conformal maps simultaneously, arxiv e-prints, 2016.
59. S. Sheffield and D. B. Wilson, Schramm’s proof of Watts’ formula, Ann. Probab. 39 (2011), no. 5, 1844–1863. DOI

10.1214/11-AOP652.

 10970312, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22180 by U

niversity O
f Pennsylvania, W

iley O
nline Library on [05/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1214/17-AIHP852
https://doi.org/10.1007/978-3-319-65329-7
https://doi-org.libproxy.mit.edu/10.4007/annals.2020.191.1.2
http://doi.org/10.1090/S0894-0347-03-00430-2
http://doi.org/10.1214/aop/1079021469
http://doi.org/10.1007/s00440-016-0698-0
https://doi.org/10.1214/18-aihp932
https://doi.org/10.1214/21-aop1550
http://doi.org/10.1007/s00440-015-0677-x
http://doi.org/10.1016/0370-2693(81)90743-7
http://doi.org/10.1016/0370-2693(81)90743-7
https://doi.org/10.1063/1.5030409
https://doi.org/10.1063/1.5030409
https://doi-org.libproxy.mit.edu/10.1215/00127094-2019-0045
https://doi-org.libproxy.mit.edu/10.1214/19-AOP1377
https://doi.org/10.1007/s00220-022-04455-1
http://doi.org/10.1214/13-PS218
http://doi.org/10.1007/BF02803524
http://doi.org/10.1007/s11511-009-0034-y
http://doi.org/10.1007/s00220-009-0731-6
http://doi.org/10.1214/15-AOP1055
http://doi.org/10.1214/15-AOP1061
http://doi.org/10.1214/15-AOP1061
https://doi.org/10.1214/11-AOP652


INTEGRABILITY OF SLE VIA CONFORMALWELDING 2701

60. S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad.
Sci. Paris Sér. I Math. 333 (2001), no. 3, 239–244. DOI 10.1016/S0764-4442(01)01991-7.

61. M. Spreafico, On the barnes double zeta and gamma functions, J. Number Theory 129 (2009), no. 9, 2035–2063.
62. J. Teschner, On the Liouville three point function, Phys. Lett. B 363 (1995), 65–70.
63. V. Vargas, Lecture notes on Liouville theory and the DOZZ formula, arxiv e-prints, 2017.
64. A. Zamolodchikov and A. Zamolodchikov, Conformal bootstrap in Liouville field theory, Nuclear Phys. B 477

(1996), 577–605.
65. D. Zhan, Duality of chordal SLE, Invent. Math. 174 (2008), no. 2, 309–353. DOI 10.1007/s00222-008-0132-z.

APPENDIX A: BACKGROUNDS ON SCHRAMM-LOEWNER EVOLUTIONS
In this section we provide further background on SLE!("−; "+) that is relevant to Theorem 1.1.

A1 The Loewner evolution definition of SLE!("−; "+)
LetH be the upper half-plane. For a continuous function (Zn)n≥0 that we call the driving function
consider the solution Sn(6) of the Loewner differential equation

Sn(6) = ∫
n

0 2Sa(6) −Za Aa, S0(6) = 6, 6 ∈ H.
For each 6 ∈ H let �6 denote the supremum of times n > 0 such that Sn(6) is well-defined. For
certain choices ofZ one can show that there exists a unique continuous curve ) in H from 0 to∞ such that if �n ⊂ H denotes the set of points in H which are disconnected from∞ by )([0, n])
then �n = {6 ∈ H ∶ �6 ≤ n}. We say thatZ is the Loewner driving function of ). By settingZn =√!pn for a standard Brownian motion (pn)n≥0 and ! > 0 we get the curve ) which is known as a
Schramm-Loewner evolution with parameter ! (SLE!). See for example [39, 51] for more details.
SLE!("−; "+) is the natural generalization of SLE! when we keep track of two additional

marked points on the domain boundary. Let "−, "+ > −2. Given a standard Brownian motion(pn)n≥0 consider the solutionsZ, ± of the following stochastic differential equations
Zn = √!pn + ∫

n
0 "−Za −  −a Aa + ∫

n
0 "+Za −  +a Aa,  ±n = ∫

n
0 2 ±a − Za Aa (A1)

with initial condition (Z0, −0 , +0 ) = (0, 0, 0). The uniqueness in law of the solution was proved
in [41, Theorem 2.2].
Moreover, one can show that there is a unique curve ) from 0 to∞ in H which has Loewner

driving function given byZ. We call ) an SLE!("−; "+). See [17, 38, 41] for further details.
A2 Finiteness of moments
In this section we prove the following finiteness of moment statement.

Proposition A.1. For ! ∈ (0, 4) and "−, "+ > −2, sample ) ∼ SLE!("−; "+) in H from 0 to∞. Let90 = 1! ("+ + 2)("+ + 4 − !2 ). Let- be the connected component ofH∖) containing 1 on its boundary,
and let / be the conformal map from - to H with /(1) = 1 and mapping the first (resp. last) point
on 2- traced by ) to 0 (resp.∞). Then E[/′(1)9] <∞ when 9 < 90.
Lemma A.2. Proposition A.1 holds when "− = 0.
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Proof. By [44, Theorem 1.8], we have P[/′(1) > �] = �−90+w(1) as � → ∞. Since E[/′(1)9] =9−1 ∫ ∞0 �9−1P[/′(1) > �]A�, we conclude. □
Proof of Proposition A.1. We first inductively show that Proposition A.1 holds for "− = 2Q for
nonnegative integers Q. The case Q = 0 is shown in Lemma A.2, and if we have proved the state-
ment for some Q, then we obtain it for Q + 1 by using Lemma 5.8 with [ = >, [− = > − 2>Q and[+ = > − "+> . Here we use that C(8) = 1! (8 + 2)(8 + 4 − !2 ) is increasing on [ !2 − 2,∞).
Now, we extend the proof to arbitrary "− > −2. Pick Q ∈ N with 2Q > "− + 2, and

apply Lemma 5.8 with [ = > + 2> − 2Q−2−"−> and [± = > − "±> to get P9([ + [− − > − 2> ; [+) =P9([, [− + [− − > − 2> )P9([−, [+). By our inductive argument, the left hand side is finite for9 < 90, and hence so isP9([−, [+). This translates to the desired finiteness. □
A3 Continuity of moments in SLE parameters
Now, we prove continuity results (Lemmas A.3 and A.6) used in the proof of Theorem 1.1. We start
from the case when the curve does not touch the domain boundary.

Lemma A.3. Consider a sequence (!Q, "Q−, "Q+)Q≥1 such that !Q ∈ (0, 4], "Q−, "Q+ ≥ !Q2 − 2, and
which converges componentwise to (!, "−, "+). Let ) be sampled from SLE!("−; "+) and let / be
the mapping out function of the domain to the right of ) fixing 0, 1,∞. Define )Q and /Q simi-
larly for the parameters !Q, "Q−, "Q+. Then there is a coupling of ), )Q such that /′Q(1)→ /′(1) in
probability.

To prove Lemma A.3, we recall [3, Lemma A.5], whose proof builds on [35]. It gives continuity
of the mapping out function Sn in the Loewner driving functionZ.

Lemma A.4 Lemma A.5 in [3]. Let ) and )̃ be curves in H from 0 to ∞ with Loewner driving
function (Zn)n≥0 and (Z̃n)n≥0, respectively, and let (Sn)n≥0 and (S̃n)n≥0 denote the Loewner maps. For
any q ∈ (0, 1) there is a ¡ ∈ (0, 1) such that if

| = {(n, 6) ∈ [0,}] × H ∶ infa∈[0,n] |Sa(6) −Za| > q} and supn∈[0,}] |Zn − Z̃n| ≤ ¡.
then sup(n,6)∈| |Sn(6) − S̃n(6)| < q.
LemmaA.5. Consider a sequence (!Q, "Q−, "Q+)Q≥1 such that!Q ∈ (0, 4], "Q−, "Q+ ≥ !Q2 − 2, andwhich
converges componentwise to (!, "−, "+). As Q → ∞, the driving function of SLE!Q ("Q−; "Q+) converges
in law to that of SLE!("−; "+) in the uniform topology on compact sets.

Proof. Let (pn)n≥0 be a standard Brownian motion and let (Zn, −n , +n ) be the solution to (A.1)
as defined and constructed in [41, Definition 2.1, Theorem 2.2]. Similarly let (pQn )n≥0 be standard
Brownian motion and (ZQn , Q,−n , Q,+n ) the corresponding stochastic process for SLE!Q ("Q−; "Q+).
We claim that there exists a coupling of these processes such that for fixed } > 0 we havesupn∈[0,}] |Zn −ZQn | → 0 in probability as Q → ∞. This claim immediately yields the lemma. This
claim would follow from easy stochastic calculus arguments if we consider SLE!("−; "+) with
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force points away from zero. The adaptation from non-zero force points to the 0± case is also con-
sidered in the proof of the uniqueness in law of the solution to the SDE system ([41, Theorem 2.2]).
A minor modification of that argument gives the result so we omit the details. □
Proof of LemmaA.3. Consider a coupling such that the convergence in LemmaA.5 in almost sure.
By the argument of [3, LemmaA.4], for any compact� ⊂ (H∖)) ∪ R+ we have /Q → / uniformly
on� in probability. By Schwarz reflection,/ (resp./Q) can be extended to a conformalmap /̃ (resp./̃Q) from the right connected component of C ⧵ () ∪ )) (resp. C ⧵ ()Q ∪ )Q)) to C ⧵ R−. Cauchy’s
integral formula then gives convergence of /′Q(1) to /′(1) in probability. □
The following lemmagives the counterpart of LemmaA.3 in the boundary touching case. In this

case, we only consider curves with a single force point at 0+, namely SLE!("+) ∶= SLE!(0; "+).
This simplifies the analysis of the driving function in Lemma A.7 and also suffices for our
application.

Lemma A.6. Suppose ! ≤ 4 and "+ ∈ (−2, !2 − 2), and let ) be sampled from SLE!("+). Let -
be the connected component of component of H∖) with 1 on its boundary, and let / ∶ - → H be
the conformal map fixing 1 and mapping the first (resp. last) boundary point traced by ) to 0 (resp.∞). Letting (!Q)Q≥1 be a sequence tending to ! and sampling )Q ∼ SLE!Q ("+)with force point at 0+,
we likewise define domains -Q and maps /Q ∶ -Q → H. Then there is a coupling of ), )Q such that/′Q(1)→ /′(1) in probability.
Lemma A.7. In the setting of Lemma A.6 we can couple (ZQ, +,Q) and (Z, +) such that for
any }, supn∈[0,}] |ZQn −Zn| + | +,Qn −  +n | converges a.s. to 0 and the zero set of (ZQn −  +,Qn )n∈[0,}]
converges a.s. to the zero set of (Zn −  +n )n∈[0,}] for the Hausdorff topology.
Proof. Since "− = 0 the law of  +n − Zn is given by a multiple of a Bessel process. Using this and
the continuity property of Bessel processes in its dimension we get the lemma. □
Proof of LemmaA.6. Consider a coupling such that the convergence in LemmaA.7 is a.s. Let �Q, �
(resp. WQ,W) be such that

2- = )([�,W]) ∪ [)(�), )(W)], 2-Q = )Q([�Q,WQ]) ∪ [)Q(�Q), )Q(WQ)].
Lemma A.7 implies that �Q → � and WQ → W a.s. Let /̃ ∶ S�(-)→ H be such that / = /̃◦S� and
define /̃Q similarly. Then the chain rule for differentiation gives the following

/′Q(1) = (SQ�Q )′(1) ⋅ /̃′Q(SQ�Q (1)), /′(1) = S′�(1) ⋅ /̃′(S�(1)). (A2)

Extending [39, equation (4.5)] to points on R we get

Ṡ′n(1) = − S′n(1)(Sn(1) −Zn)2 ,
and the analogous equation for SQn . By using this, �Q → �, (ZQn )→ (Zn), and the fact that the
denominator on the right side in the last display is bounded away from 0 during [0, �], we get that
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a.s.,

(SQ�Q )′(1)→ S′�(1).
Combining this with (A.2), in order to conclude the proof of the lemma it is sufficient to show
that /̃′Q(SQ�Q (1))→ /̃′(S�(1)) a.s.
Let )̃ ∶ [�,∞)→ H ∪ {0} be defined by )̃(n) = S�()(n)), and define )̃Q ∶ [�Q,∞)→ H ∪ {0}

by )̃Q(n) = SQ�Q ()Q(n)). We will now argue that )̃Q([�Q,WQ]) converges in Hausdorff topology to)̃([�,W]), which is sufficient to conclude the proof of the lemma since it implies /̃′Q(SQ�Q (1))→/̃′(S�(1)) a.s. Let ℎmax = sup{Im()̃(n)) ∶ n ∈ [�,W]}. For q ∈ (0, 1) pick ā(q), a(q) > 0 such that)̃Q([�Q + ā(q),WQ − a(q)]) is an excursion above the line {6 ∶ Im(6) = qℎmax} which attains the
value ℎmax . Notice that this a.s. uniquely specifies ā(q), a(q).
Since )̃([�,W − a(q)]) is a simple curve, Lemma A.4 implies that for any neighborhood | of)̃([�,W − a(q)])wewill have )̃Q([�Q,WQ − a(q)]) ⊂ | for all sufficiently large Q. Since the half-plane

capacity of )̃Q([�Q,WQ − a(q)]) converges to the half-plane capacity of )̃([�,W − a(q)]), this implies
that )̃Q([�Q,WQ − a(q)]) converges to )̃([�,W − a(q)]) for the Hausdorff distance, and that )̃Q(WQ −a(q)) converges to )̃(W − a(q)). To conclude that )̃Q([�Q,WQ]) converges to )̃([�,W]) for theHausdorff
distance it thus suffices to prove

limq→0 supQ∈N
diam()̃Q([WQ − a(q),WQ]))→ 0. (A3)

Let HqQ be a simple curve of diameter wq(1) which connects )̃Q(WQ − a(q)) to R and is disjoint from)̃Q([�Q,WQ − a(q)]) except at its end-points. The curve HqQ ∪ )̃Q([�Q,WQ − a(q)]) is simple and divides
H into a bounded and an unbounded set; let -̃qQ denote the bounded set. To prove (A.3) it is
sufficient to argue

(N) limq→0 supQ∈N
diam()̃Q([WQ − a(q),WQ]) ∩ -̃qQ)→ 0 and

(NN) limq→0 supQ∈N
diam()̃Q([WQ − a(q),WQ]) ⧵ -̃qQ)→ 0. (A4)

We see that (ii) holds since otherwise there would be a (random) constant ] > 0 independent of q
such that for arbitrarily large Q and all � > 1 sufficiently large, � times the harmonic measure of)̃Q([WQ − a(q),WQ]) seen from N� inH ⧵ )̃Q([�Q,WQ])would be at least ]; this contradicts the assumed
convergence of (ZQ, Q,+).
To prove that (i) holds we can first proceed similarly as in the proof of (ii) and use harmonic

measure considerations and convergence of (ZQ, Q,+) to conclude that
limq→0 supQ∈N

diam()̃Q([�Q, �Q + ā(q)]))→ 0. (A5)

By Lemma A.4 the map SQ�Q converges uniformly to S� away from the hull of )Q|[0,�Q]. Com-
bining this with (A.5) we get that for any ¡ > 0 we can find a sufficiently small q > 0, such
that )Q([�Q, �Q + ā(q)]) is contained in the ¡-neighborhood of the hull of )Q|[0,�Q]. By reversibil-
ity of SLE!Q ("+) the same property holds for )Q([WQ − a(q),WQ]) and the hull created by )Q|[WQ ,∞).
Applying the map SQ�Q this gives (i). □
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APPENDIX B: THE LCFT DESCRIPTION OF ¥$¦
In this section we prove Proposition 2.26 and Lemma 2.31. Our proofs closely follow those of
Proposition 2.18 and Lemma 2.21, respectively, which are the corresponding statements for the
disk case.
It will be convenient to work on the cylinder rather than C. Define the cylinder  by  ∶=([0, 2g] × R)∕∼ where (8, 0) ∼ (8, 2g) for all 8 ∈ R, and let k be the law of the GFF ℎ on 

normalized to have average zero on (0, 2g). This way, ℎC ∼ kC and ℎ are related by the expo-
nential map between C and . We can then deduce the covariance kernel of ℎ from that of ℎC:l(6,m) = − log |@6 − @m| +max(Re 6, 0) + max(Rem, 0).
As in the horizontal strip case, we have a radial-lateral decomposition of ℎ . We writei1() ⊂i() (resp. i2() ⊂ i()) for the subspace of functions which are constant (resp. have mean

zero) on {n} × [0, 2g] for each n ∈ R. We have the orthogonal decomposition i() = i1()⊕i2(). In this case the projection of ℎ ontoi1() has the distribution of {pn}n∈R.
Now, we introduce the weight-Z quantum sphere of [21].

Definition B.1. ForZ > 0 and : = G − Z2> < G, let
sn = {pn − (G − :)n if n ≥ 0p̃−n + (G − :)n if n < 0,

where (pa)a≥0 is a standard Brownian motion conditioned on pa − (G − :)a < 0 for all a > 0, and(p̃a)a≥0 is an independent copy of (pa)a≥0. Let ℎ1(6) = sRe 6 for each 6 ∈ . Let ℎ2 be independent
of ℎ1 and have the law of the projection of ℎ ontoi2(). Let ℎ̂ = ℎ1 + ℎ2 . Let t be a real number
sampled from >2 @2(:−G)]A] independent of ℎ̂ and O = ℎ̂ + t. Let sph2 (Z) be the infinite mea-
sure describing the law of (,O,−∞, +∞)∕∼>. We call a sample fromsph2 (Z) a (two-pointed)
quantum sphere of weightZ.

The case where Z = 4 − >2 is special since conditioned on the quantum surface, the two
marked points are independently distributed according to the quantum area measure, motivating
the following definition.

Definition B.2. Let (,O, +∞,−∞)∕∼> be a sample from sph2 (4 − >2). Let QS be the law of(,O)∕∼> under the reweighted measure ?O()−2sph(4 − >2). ForP ≥ 0, let (,O) be a sample
from ?O()PQS, and then independently sample 61, … , 6P according to ?#O . Let QSP be the law
of (,O, 61, … , 6P)∕∼>. We call a sample from QSP a quantum sphere withP marked points.

We havesph2 (4 − >2) = QS2 [21, Proposition A.11].
Recall the Liouville field on the plane defined in Definition 2.10. When :1 = :2 we often prefer

to put the field on the cylinder.

Definition B.3. Let (ℎ, t) be sampled from <(:,±∞),(:3,63) k × [@(2:+:3−2G)]A]] where : ∈ R,(:3, 63) ∈ R × , and
<(:,±∞),(:3,63) = @(−:3(G−:32 )+::3)|Re 63|.
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Let O(6) = ℎ(6) − (G − :)|Re 6| + :3l(6, 63) + t. Wewrite LF(:,±∞),(:3,63) as the law of O. When:3 = 0, we write it as LF(:,±∞) .

Our next lemma relates the fields of Definitions 2.25 and B.3 under change of coordinates for
one choice of conformal map. The proof is identical to that of Lemma 2.11.

Lemma B.4. Let : ∈ R and (:3, 63) ∈ R × . Let C ∶  → C be the unique conformal map
satisfying C(−∞) = 0,C(+∞) = −1 and C(63) = 1. Then

LF(:,−1),(:,0),(:3,1)C = 2−2∆:3 ⋅ C∗LF(:,±∞),(:3,63) .
We give an LCFT description of the quantum sphere.

Theorem B.5. FixZ > 0 and let O be as in Definition B.1 so that (,O, +∞,−∞) is an embedding
of a sample fromsph2 (Z). Let } ∈ R be sampled from the Lebesgue measure An independently ofO. Let Õ(6) = O(6 + }). Then the law of Õ is given by >4(G−:)2 LF(:,±∞) where : = G − Z2> .
Proof. We follow the proof of Theorem 2.13, except that we set X = (G − :), and no factor of 12 is
incurred since the projection of ℎ ∼ k to1() is standard Brownian motion with no factor of 2
in its time parametrization. So the prefactor is instead >4X2 = >4(G−:)2 . □
Now, we give an LCFT description of a weightZ quantum sphere with a marked point added.

Definition B.6. FixZ > 0. Let (-,O, X, 5) be an embedding of a sample fromsph2 (Z) and ?O
be the quantum are measure. Let | be the total ?O-area of -. Now consider (-,O, X, 5) from the
reweighted measure|sph2 (Z). Given O, sample � from the probability measure proportional to?O. We writesph2,∙ (Z) as the law of the marked quantum surface (-,O, X, 5, �)∕∼>.
Proposition B.7. ForZ > 0, let O be sampled from g>2(G−:)2 ⋅ LF(:,±∞),(>,0) where : = G − Z2> . Then(,O,−∞, +∞, 0)∕∼> is a sample fromsph2,∙ (Z).
Proof. The argument is identical to that of Proposition 2.18, except that we use the following in
place of Lemma 2.21.

LF(:,±∞)
[C(O)∫ S({)?O(A{)

] = ∫ LF(:,±∞),(>,{) [C(O)]S({) Leb(A{). (B1)

In Proposition 2.18, the prefactor >2(G−[)2 agrees with that of Theorem 2.13. The prefactor g>2(G−:)2
in this proposition instead differs from that of Theorem B.5 by a factor of 2g, because  is defined
from R × [0, 2g] hence Leb in (B.1) contributes a factor of 2g. □
Finally, we prove Proposition 2.26 and Lemma 2.31.
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Proof of Proposition 2.26. By definition,sph2,∙ (4 − >2) = QS3. Thus the result follows by setting: => in PropositionB.7 andusing the change of coordinate fromProposition 2.29 andLemmaB.4. □
Proof of Lemma 2.31. We focus on proving

LFC

[C(O)∫
C

S({)?O(A{)] = ∫
C

LF(>,{)C [C(O)]S({)A2{. (B2)

Once this is done, we can add insertions (:N , 6N)N to both sides of (B.2) using the sphere analog of
Lemma 2.6 and its proof. This gives the general case.
The proof of (B.2) is almost identical to that of Lemma 2.21 so we only point out the

modifications. First, as in Lemma 2.20, by the Girsanov theorem we have

∫ C(ℎ)(∫
C

S({)?ℎ(A{))kC(Aℎ) = ∫
C

EC[C(ℎ + >lC(⋅,{))]S({)"({)A{.
where EC is the expectation over kC and "({) is defined by "({)A{ = EC[?ℎ(A{)]. On the
other hand, the sphere analog of Lemma 2.12 gives <(>,{)C A{ = @−2>G log |6|+"({)A{. Now the same
argument as in the proof of Lemma 2.21 gives (B.2). □
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