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We demonstrate how to obtain integrability results for the
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proof is built on two connections between SLE, LCFT, and
mating-of-trees. Firstly, LCFT and mating-of-trees provide
equivalent but complementary methods to describe natural
random surfaces in LQG. Using a novel tool that we call the
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interfaces. In particular, we rely on the conformal welding
results proved in our companion paper Ang, Holden and
Sun (2023). Our paper is an essential part of a program prov-
ing integrability results for SLE, LCFT, and mating-of-trees

based on these two connections.

1 | INTRODUCTION

Two dimensional (2D) conformally invariant random processes have been an active area of
research in probability theory for the last two decades. In this paper, we consider the interplay
between three central topics in this area: Schramm-Loewner evolution (SLE), Liouville confor-
mal field theory (LCFT), and the mating-of-trees framework for Liouville quantum gravity (LQG).
SLE [51] is a classical family of random planar curves which describe the scaling limits of many
2D statistical physics model at criticality, for example [12, 40, 53, 60]. LQG is a family of random
planar geometries [15, 22, 31] that naturally arise in the study of string theory and 2D quantum
gravity [45]. It also describes the scaling limit of a large class of random planar maps, see for
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example [30, 32, 57]. LCFT is the 2D quantum field theory that governs LQG which is recently
made rigorous by [14] and follow-up works. Mating-of-trees [21] is an encoding of SLE on the
LQG background via Brownian motions. See [10, 27, 29, 39, 63] and references therein for more
background on these rapidly developing topics.

One key feature shared by the three topics is the rich integrable (i.e., exactly solvable) struc-
ture. First, since its discovery, many exact formulas for SLE have been proved or conjectured; see
for example [7, 18, 52, 54, 59]. Moreover, as an important example of 2D conformal field theory,
LCFT enjoys rich integrability predicted by theoretical physics [8, 16, 24, 64], some of which were
recently proved in [4, 25, 37, 47-49]. Finally, mating-of-trees expresses many observables defined
by SLE and LQG via Brownian motion and related processes; see for example [1, 21, 28, 42, 43]. In
this paper we demonstrate how to obtain integrable results for SLE from LCFT and mating-of-trees
by proving an exact formula for a classical variant of SLE called SLE,(po_; o, ); see Theorem 1.1.

Our paper is part of a program by the first and the third authors connecting the aforementioned
three types of integrable structures and proving new results in each direction. The foundation of
the program are two bridges between these objects. The first bridge is that LCFT [14] and mating-
of-trees [21] provide equivalent but complementary methods to describe natural random surfaces
in LQG. This equivalence was first demonstrated for the quantum sphere in [6] and recently
extended to the quantum disk in [11]. Using what we call the uniform embedding of quantum
surfaces, we provide more conceptual and unified proofs for these facts and greatly extend them;
see Section 1.2.

The second bridge is that random surfaces behave well under conformal welding with SLE
curves as their interfaces. The conformal welding results needed for our paper are established
in our companion paper [3], extending the seminal works [21, 56]. The way we use it to prove
Theorem 1.1 is instrumental for the entire program. In particular, it is crucial to the forthcoming
work of the first and the third authors on the integrability of the conformal loop ensemble [5], as
well as their joint work with Remy [4] on the proof of the FZZ formula in LCFT. See Section 1.3
for an overview of this method.

1.1 | Anintegrability result on SLE, (o_;p,)

We now present our main result concerning the integrability of SLE. For x > 0 and p_, p, > —2,
the (chordal) SLE, (o_; o) is the natural generalization of the chordal SLE, where one keeps
track of two extra marked points on the domain boundary called force points. The parameters o,
indicate to what extent the force points attract or repulse the curve. In our paper the force points
are always located infinitesimally to the left and right, respectively, of the starting point of the
curve. SLE,(p_; p,) was introduced in [38] and studied in for example [17, 41]. See Appendix A.1
for more background.

Letn be an SLE, (o_; p) curve on the upper half plane H from 0 to oo, which is a random curve
on HUR. When p_ > —2and p, > (-2) Vv (g — 4), then the point 1 is almost surely not on the
trace of 7 [41]. Therefore, we can define the open set D to be the connected component of H\7
which contains the point 1. Let ¢ : D — H be the conformal map which fixes (1) = 1 and maps
the first (resp. last) point on 8D traced by 7 to O (resp. o). Note that if p_ > E — 2 then the curve
does not touch (0, co) so that 3 will fix 0, 1, co in this case.

Our first main result gives the exact distribution of ¢’(1) in terms of its moment generating
function. To describe this result, we need the double gamma function I',(z) which arises in LCFT.
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We recall its precise definition in (3.1). Using [';(z), we introduce

2 Ve | pe X 4 P+ X
F%(ﬁ_7+ﬁ+5> FX/T;<W+_K_E>

F(x,K,p_,p+) = (11)

Theorem 1.1. Fixx >0, p_ > —2and p, > (-2)V (g —4). Let 1y = i(p+ +2)(oy +4— g). For

. a \/1? 2 ay
any A < A, let a be a solution to 1 — 5(7 + A E) = L. Then we have
F(a,x,0_,p4)
E[$'(1)}] = —————.
F(\/E’ K’p—’p+)

Moreover, for any A > A, we have E[¢'(1)*] = co.

In Theorem 1.1, the value of F(a, x, p_, p,) does not depend on which value of « is chosen as
the solution of the quadratic equation. Moreover, the point 1 in ¢’(1) is merely for concreteness.
The result for other points follows from rescaling.

Our proof of Theorem 1.1 does not use stochastic calculus coming from the Loewner evo-
lution definition of SLE,(o_;p,), as is done in many exact calculations concerning SLE,
see for example [39]. Instead, we rely on the following ingredients: the description of natu-
ral quantum surfaces in LQG via LCFT; conformal welding of finite volume quantum surfaces
from [3]; the integrability results of Remy and Zhu [48, 49] on boundary LCFT; and mating-of-
trees description of some special quantum surfaces. We will elaborate on these ingredients in
Sections 1.2 and 1.3.

1.2 | Two perspectives on random surfaces in LQG

A key ingredient in our proof of Theorem 1.1 is a thorough understanding of two perspectives on
random surfaces in LQG when the underlying complex structure enjoys an abundance of con-
formal symmetries. The first perspective is the quantum surface and the second one is the path
integral formalism of LCFT.

We start by recalling some basic geometric concepts in LQG. We will keep the review brief
and provide more details and references in Section 2.1. The free boundary Gaussian free field
(GFF) on a planar domain D ¢ C is the Gaussian process on D with covariance kernel given by
the Neumann Green function on D, which can be viewed as a random generalized function on
D [55]. There are other variants of the GFF which have the same regularity. Suppose h is a variant
of the GFF defined on D. The y-LQG area measure u; associated with & is formally defined by
e’"d?z, which is made rigorous by regularization and normalization [22].

Fix y € (0,2). Suppose f : D — D is a conformal map between two domains D and D. For a
generalized function h on D, define

foyh=hof™1 +Qlog|(f1)| whereQ = g + = 1.2)

XIN
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If h is a variant of the GFF, then the pushforward of the y-LQG area measure u;, under f
equals yj; a.s where h=f *, h. Equation (1.2) is called the coordinate change formula for
y-LQG.

Suppose h is the free boundary GFF on D. If D has a boundary segment L C R, then we can
define y-LQG boundary length measure v, = eghdz on L similarly as u;,. For general domains,
the definition of v, can be extended via conformal maps and the coordinate change formula (1.2).
It is also possible to define a random metric on D associated with h (see [15, 31]) but the metric
will not be considered in our paper.

In light of the coordinate change formula, Sheffield [56] introduced the notion of quantum
surface. Suppose h and h are generalized functions on two domains D and D, respec-
tively. For y E~(0, 2), we say that (D,h) ~, (D, h) if there exists a conformal map f : D —
D such that h = f e+, h. A quantum surface is an equivalence class of pairs (D,h) under
this equivalence relation, and an embedding of the quantum surface is a choice of (D, h)
from the equivalence class. We can also consider quantum surfaces decorated by other struc-
tures such as points or curves, via a natural generalization of the equivalence relation; see
Section 4.1.

Liouville conformal field theory (LCFT) is the quantum field theory corresponding to the
Liouville action which originates from Polyakov’s work on quantum gravity and bosonic string
theory [45]. It associates a random field to each two dimensional Riemannian manifold which all
together form a conformal field theory. LCFT was first rigorously constructed on the sphere by
David, Kupiainen, Rhodes and Vargas [14] by making sense of the path integral for the Liouville
action. It was later extended to other surfaces [13, 26, 33, 46].

We will focus on the LCFT on the Riemann sphere C and the upper half plane H. The basic
inputs are the Liouville fields LF and LFy. These are infinite measures on the space of general-
ized functions on C and H, obtained from an additive perturbation of GFF. See Definitions 2.24
and 2.4. For z,...,z; € C, and ay,...,ay, one can add insertions to LF- by making sense of

define Liouville fields on I with insertions, where for z, € dH, we need to replace e%¢Z) by

e%ﬂz"). The Liouville correlation functions, which are the fundamental observables in LCFT, are
defined in terms of certain averages over these random fields.

Quantum surfaces and LCFT provide two perspectives on random surfaces in LQG. For ran-
dom surfaces arising as the scaling limit of canonical measures on discrete random surfaces
(a.k.a. random planar maps), both perspectives provide natural and instrumental descriptions.
Their close relation has been demonstrated by Aru et al. [6] for the quantum sphere and by Cer-
clé [11] for the quantum disk. The quantum sphere with k marked points (Definition B.2) is a
quantum surface with spherical topology with k marked points defined by Duplantier, Miller and
Sheffield [21]. They arise as the scaling limit of natural planar maps models on the sphere; see [29]
for a review. We similarly have the quantum disk with m interior marked points and n boundary
marked points; see Definition 2.2. We use QS, and QD,, , to denote their distributions, respec-
tively. We also write QS,, as QS and QD as QD. Without constraints on area or boundary length,
these measures are infinite. The main result of [6] says that modulo a multiplicative constant,
LFfél’”'(ZZ’V)’(ZS’” equals QS; embedded on (C, zy, 2, z3). By [11], the same holds with C replaced
by H, QS; replaced by QD) 5, and zy, z,, z3 assumed to be on dH.

One major difference between the two perspectives is that for LCFT, the number of marked
points is often assumed to be such that the marked surface has a unique conformal struc-
ture. On the other hand, many important quantum surfaces do not have enough marked
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points to fix the conformal structure, such as QS; and QDO,k for k < 2. The starting point of
our paper is the observation that even without enough marked points, Liouville fields, pos-
sibly with insertions, describe natural quantum surfaces that are embedded in a uniformly
random way.

To concretely demonstrate our point, let D be either a simply connected domain conformally
equivalent to C or H. Let conf(D) be the group of conformal automorphisms of D where the group
multiplication is the function composition f - g = fo g. Let mp be a Haar measure on conf(D),
which is both left and right invariant. Suppose f is a sample from mp and h is a function on
D. We call the random function f s, h the uniform embedding of (D, h) via mp. By the invari-
ance property of mp, the law of f «,, h only depends on (D, h) as a quantum surface. We write
mg X QS as the law of foh where (C, h) is an embedding of a sample from the quantum sphere
measure QS, and { is independently sampled from mg. We call mg X QS the uniform embed-
ding of QS via mg. We define my; X QD in the exact same way. Here although mg, myy, QS, QD
are only o-finite measures, we adopt probability terminologies such as sample, law, and
independence.

Theorem 1.2. Fory € (0, 2), there exist constants C, and C, such that

We can also consider the uniform embedding of quantum surfaces with marked points. For
example, for a,b € D UJD, let conf(D, a, b) be the subgroup of conf(D) fixing a,b and mp ,
be a Haar measure on conf(D,a,b). For example, QDO’2 can be identified as a measure on
Cy (D) / conf(D, a, b) for some domain D with boundary points a, b, where conf(D, a, b) is the
subgroup of conf(D) fixing a, b. Thenmyp , , X QD , can be defined in the same way as mg X QS
and my; X QD. We will prove Theorem 1.2 in Section 1.2. The key to our proof is the LCFT
description of the uniform embedding of QS, and QD , in the cylinder and strip coordinates:

me_ 100 X QS, = CLF(CVs"'w),()/,—oo) and
(1.4)
mgs _,+00 X QD0,2 = CLFg/'_OO)-(}’,+oo)

where C is a horizontal cylinder and S is a horizontal strip. Although this is essentially equivalent
to the results in [6] and [11] our proof is much shorter. Thanks to the choice of coordinate, the
identities (1.4) are equivalent to an interesting fact about drifted Brownian motion that we prove
as Proposition 2.14. This fact also gives the analogous result if the singularity at the marked points
is more general (see Section 1.3 and Definition 2.1).

Our method for proving Theorem 1.2 is also used to give the LCFT description of QD, , in [4,
Section 3]. It can be extended to quantum surfaces decorated with SLE curves. For example, in [2]
we proved that the SLE loop coupled with LF is the uniform embedding of the welding of two
independent copies of QD.

The LCFT description of quantum surfaces has two advantages. First, it is a common operation
to add marked points to quantum surfaces according to some quantum intrinsic measure. This
operation is tractable on the LCFT side via the Girsanov theorem; see Section 2.4. The second
advantage is that LCFT correlation functions are exactly solvable. In Section 1.3 we will explain
how these ideas can be applied to prove Theorem 1.1.
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1.3 | Integrability of SLE through conformal welding and LCFT

The starting point of our proof of Theorem 1.1 is the conformal welding result we proved
in [3]. For y € (0,2) and x = y? € (0,4), if we run an independent SLE, on top of a cer-
tain type of y-LQG quantum surface, the two quantum surfaces on the two sides of the SLE
curve are independent. Moreover, the original curve-decorated quantum surface can be recov-
ered by gluing the two smaller quantum surfaces according to the quantum boundary lengths.
The recovering procedure is called conformal welding. Such results were first established by
Sheffield [56] and later extended in [21]. They play a fundamental role in the mating-of-trees
theory.

In [3] we proved conformal welding results for a family of finite-area quantum surfaces, gener-
alizing their infinite-volume counterpart proved in [56] and [21]. We recall them now. For W > 0,
let M‘zliSk(W) be the 2-pointed quantum disk of weight W introduced in [21]; see Section 2.1. For
W >vy?/2, MgiSk(W) is an infinite measure on quantum surfaces with two boundary marked
points. The log-singularity of the field at each marked point is — log| - | where

_oll W
ﬁ_Q+§—7. (15)

The 2-pointed quantum disk QD , is the special case of MgiSk(W) where W =2. For W €
0,72%/2), M‘zliSk(W) is a Poissonian collection of samples from .MgiSk()/2 — W), viewed as an
ordered chain of 2-pointed quantum surfaces.

In [3], we showed that the conformal welding of independent samples from MgiSk(W_) and
MgiSk(W+) gives a sample from MgiSk(W_ + W) decorated by an independent SLE,(W_ —

2; W, — 2) running between the two marked point. To put it more formally, we can write this
result as

MISE(W_ + W) ® SLE(p_; o)

= cw_w, / Weld(MIK W _; -, x), MIK(W ;s x, ) dx. (1.6)
0

In (1.6), p- =W_ -2, p, =W, =2, and ¢y _y, is a positive constant which we call the
welding constant. The measure MgiSk(W_; -,x) is defined by the disintegration M‘ZHSk(W_) =
fooo MgiSk(W_; -, X) dx where x represents the quantum length of the right boundary arc. We sim-
ilarly define MgiSk(W+; x, -) for the left boundary. The operator Weld means conformal welding
along the boundary arc with length x. See Section 4.1 for more details on (1.6).

At the highest level, our proof of Theorem 1.1 is done in four steps.

(1) Use LCFT to define a variant of MgiSk(W) where we add a third boundary marked point with
a generic log singularity.
(2) Prove a version of the conformal welding Equation (1.6) for the three-point variant of
Mdisk(W)
5 .
(3) Show that the welding constants encode the moments of 1’(1) in Theorem 1.1.
(4) Use the integrability from LCFT and mating-of-trees to compute the welding constants.
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W_ + W, W W,

FIGURE 1.1 Illustration of the conformal welding result in (1.7).

We now summarize the key ideas and inputs for implementing the 4-step proof. To keep the pic-
ture simple, we first assume that W_ > y2/2and W, > y?/2in (1.6). In this case the SLE, (o_; o)
curve does not touch the boundary of the weight (W_ + W) quantum disk (see Figure 1.1).

We define Mg}fk(W; ) to be the measure on quantum surfaces such that after being embedded

in (IH, 0, 00, 1), the field is distributed as mLFg’O)’(ﬁ’m)’(a’l). For W =2 and a =y, by [11],

MgiSk(2;y) agrees with QD ;. As alluded in Section 1.2, we give a concise proof of this result
which also extends to surfaces with other singularities. The new method also allows us to show
that Mgffk(W; y) for a general W > y2 /2 is obtained by adding to MgiSk(W) an extra point on the
right boundary according to the quantum length measure.

We then extend the welding Equation (1.6). For all « € IR we prove that

MW _+ W5 0) @ m(p_; pys )

=, [ WSOV 0, MOV i, ) . 1.7)
0

Here, m(p_; o, ; &) is a measure on curves obtained from reweighting SLE,(o_; p,) by ¢'(1)} =%
with A = %(Q - %) and ¥ as defined in Theorem 1.1. For @ = y, this equation is straightforward
from (1.6) by adding a quantum typical point on the right boundary. For general «, this follows
from an application of the Girsanov theorem. The extra factor of /(1) arises in a similar
fashion as the Q log term in the y-LQG coordinate change formula (1.2).

By definition, the total mass of m(po_; p.; a) equals IE[¢’(1)!~2]. Therefore, forgetting the curve
in (1.7), the integral

/ Weld(MSHW_; -, x), MISKW 5 a5 x, ) dx
0

equals C(a)Mgf?k(W_ +W,;a) as measures on quantum surfaces, where C(a)=
cv‘Vl_’W+1E[1,b’ (1)'72]. To determine C(c) (and hence determine E[¢/(1)!72] = C(a)/C(y)),
we only need to match the distribution of a single observable on both sides. The one we choose
is the left boundary length of Mgffk(W_ + W, a).

Let L and R be the left and right, respectively, boundary lengths of a sample from MgiSk(W).
Then both of M‘Ziffk(W; a)[e~sL] and MgiSk(W)[l — e 1l=%R] are LCFT correlation functions
computed by Remy and Zhu [48, 49]. In particular, let R(B;s;,s,) = M‘zliSk(W)[l — e~SiL—%2R]
with W = y(Q + g — B). Then R is the so-called boundary reflection coefficient. This allows us to
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2658 | ANG ET AL.

compare the left boundary length of Mgffk(W_ + W, ;a) on both sides of (1.7) and express
E[%’(1)!~2] in terms of certain explicitly known LCFT correlation functions.

Due to the integration on the right side of (1.7) the expression for IE[¢’(1)'=2] using LCFT is
far from the neat product form in Theorem 1.1. However, for W_ = 2 or y?/2, the mating-of-trees
theory provides a simple description of the area and boundary lengths distribution of MgiSk(W_)
in terms of 2D Brownian motion in cones. The case with W_ = 2 is known from [1] and [21].
The case with W_ = y2/2 is obtained in our paper [3]. This allows us to prove Theorem 1.1 for
x €(0,4), p_ €{0,x/2—2},and p, > x/2 — 2 (recall that p_ = W_ — 2 and x = y?).

The same argument can also be run when W, € (0,y?/2) to cover the range p, € (—=2,%/2 —
2). For W € (0,7%/2), MgiSk(W) is a chain of /\/l‘é“Sk(;/2 — W)-quantum disks. In this case we
can still define M‘Zlffk(W; a). This new quantum surface is not so natural from the perspective of
either [21] or [14] but it becomes natural after we combine the two. Due to Campbell’s formula for
Poisson point process, both of the boundary length distributions of MgiSk(W) and Mgffk(W; o)
can be computed in terms of their counterparts with W replaced by y?> — W. This allows us to
carry out the proof as before. Our computation shows that the boundary length distribution of
MgiSk(W) in the thin regime is an analytic continuation of the boundary length distribution in
the thick regime, which provides a probabilistic counterpart for a well-known numerical fact on
the reflection coefficient: R(S; sq, s,)R(2Q — ;51,5,) = 1.

To prove the general case of Theorem 1.1, we consider the pair of SLE curves which are the
interfaces when conformally welding M,(W7), M,(W5), and M,(W3). This allow us to derive
a multiplicative relation on E[¢’(1)*] with different parameters. Specializing to W, = 2 or W, =
y2/2 and using the proved case of Theorem 1.1 with p_ = W, — 2, we obtain two functional equa-
tions on E[¢’(1)*]. In the p_-variable, it is a pair of explicit shift equations relating the value of
E[¢'(1)*] at p_ to the value at p_ + y2/2 or p_ + 2. Setting § = Q + % - % as in (1.5), the two

shiftsin p_ transfertof - 8 + g andf — B+ %, respectively. Interestingly, the numerical values
14

g, 2 for the shifts turn out to be exactly those appearing in shift relations for DOZZ formula [16,

37,y62, 64] and other correlation functions in LCFT (see e.g. [37, 49]).

Similarly as in the LCFT context, if x = y? is irrational, then this pair of shift relations has a
unique meromorphic solution. On the other hand, we can check that the explicit function in The-
orem 1.1is such a solution. This gives Theorem 1.1 for irrational x € (0, 4). By a standard continuity
argument, it extends to all ¥ € (0, 4]. Finally the result for ¥ > 4 follows from the SLE duality [19,
41, 65].

The core of the argument outlined above is to compare boundary lengths of quantum surfaces
on the two sides of the conformal welding Equation (1.7). It is equally interesting to compare
quantum area and to consider quantum surfaces with marked points in the bulk. This idea is
explored in [4] by the first and the third author with Remy to prove the Fateev-Zamolodchikov-
Zamolodchikov (FZZ) formula [24] for the one-point disk partition function of LCFT. Moreover
in [5] of the first and the third authors, this idea is used to prove two integrable results on the
conformal loop ensemble (CLE). One result relates the three-point correlation function of CLE
on the sphere [34] to the DOZZ formula in LCFT. The other addresses a conjecture of Kenyon and
Wilson (recorded in [54]) on the electrical thickness of CLE loops.

Organization of the paper. In the rest of the paper, we first develop the idea of uniform
embedding described in Section 1.2 and prove Theorem 1.2 in Section 1.2. Then in Section 3 we
relate some explicit boundary LCFT correlation functions computed by Remy and Zhu [48, 49]
to variants of quantum disks. In Section 1.3 we prove the welding equation (1.7). In Section 5 we
prove Theorem 1.1 based on (1.7) following the outline in Section 1.3.
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING 2659

2 | QUANTUM SURFACE AND LIOUVILLE FIELD

In this section we develop the ideas outlined in Section 1.2. In Sections 2.1 and 2.2 we review
background on quantum surfaces and LCFT which will be used throughout the paper. In Sec-
tion 2.3 we show that when two-pointed quantum disks are embedded in the strip or cylinder
with uniformly chosen translation, the field is described by LCFT. In Section 2.4 we discuss
how to add a third point sampled from quantum measure, which will recover the main result
in [11]. (The sphere case is treated in parallel in Appendix B.) Finally in Section 2.5 we prove
Theorem 1.2.

We will frequently consider non-probability measures and extend the terminology of probabil-
ity theory to this setting. In particular, suppose M is a measure on a measurable space (Q, F) such
that M(Q) is not necessarily 1, and X is an F-measurable function. Then we say that (Q, F) is
a sample space and that X is a random variable. We call the pushforward measure My = X, M
the law of X. We say that X is sampled from M. We also write | f(x) Myx(dx) as Mx[f] or
Mx[ f(x)] for simplicity. For a finite positive measure M, we denote its total mass by |M| and
let M# = |M|~'M denote the corresponding probability measure.

2.1 | Preliminaries on the GFF and quantum surfaces

We recall the GFF on the upper half-plane H and the horizontal strip S = R X (0, 7). For
X € {H, S}, we fix a finite measure m on X. Consider the Dirichlet inner product (f,g)y :=
@m)™ » Vf - Vg. Let H(X) be the Hilbert space closure of

fissmoothonXand/fdm=0
X

with respect to (-, -)y. Let (§;)2, be i.i.d. standard Gaussian random variables and (f;);2, be an
orthonormal basis for H(X’). Then the summation

hy 1= Z &ifi (2.1)

does not converge in H(X) but a.s. converges in the space of distributions [21, Section 4.1.4]; see
Remark 2.3. We call hy a GFF on & with normalization f y hdm =0, and denote its law by Py.
In this paper for each X € {lH, S} we will only consider one normalization measure m. For X’ =
H, it is the uniform measure on the unit semi-circle centered at the origin. For X = S, it is the uni-
form measure on {0} X (0, r). This way, hg and hy; are related by the exponential map between S
and H. It will be convenient to have their explicit covariance kernels Gy(z, w) = E[hy(2)hy(w)]:

Gu(z,w) = —log|z —w| —log |z —w| + 2log|z|, + 21log |w|,.
_ (2.2)
Gs(z,w) = —log|e? — e¥| —log|e® — e¥| + max(2 Re z,0) + max(2 Re w, 0).

Here |z|, means max{|z|,1}. Moreover, Gx(z,w) = E[hy(z)hy(w)] means that for any com-
pactly supported test function p on X, the variance of (h,p) is [[,, Gx(z, w)p(2)p(w) d*z d*w.
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See [49, Definition 1.1] for (2.2) in the case of Gy, and the other identity follows from Gg(z, w) =
Gpi(e?,ev).

‘We now recall the radial-lateral decomposition of hg. Let H,(S) C H(S) (resp. H,(S) C H(S))
be the subspace of functions which are constant (resp. have mean zero) on {t} X [0, 7] foreach t €
RR. This gives the orthogonal decomposition H(S) = H;(S) @ H,(S). If we write hs = h}, + h%
with h, € H(S)and h? € H,(S), then h}, and h?, are independent. Moreover, {h}(t)},cr has the
distribution of {B,};>r where B; is a standard two-sided Brownian motion. See [21, Section 4.1.6]
for more details.

We now recall the concept of a quantum surface. For n € N, consider tuples (D, h, z1, ..., 2;,)
such that D c C is a domain, h is a distribution on D, and z; € UD U dD. Let (D, h, Z1,..,2y) be
another such tuple. We say

(D, h,zy, .. 2y) ~, D, M, 2y, ..., Zy)

if there is a conformal map ¢ : D — Dsuchthath = f «, h = hof ™! + Qlog|(f™')'| and $(Z;) =
z; for all i. An equivalence class for ~, is called a quantum surface with n marked points.
We write (D, h, z1, ..., 2,)/ ~, as the marked quantum surface represented by (D, h, zy, ..., z,,).
When it is clear from context, we simply let (D, h, z, ..., Z,,) denote the marked quantum surface
it represents.

Suppose ¢ is a random function on H which can be written as h + g where h is sampled
from Py and g a possibly random function that is continuous on H U JH except at finitely
many points. For ¢ > 0 and z € HuU dH, we write ¢.(z) for the average of ¢ on dB.(z) nH
where B,(z) = {w : |z — w| < &}, and define the random measure ,u; c= g7*/2e7%:(2) 427 on H,
where d?z is Lebesgue measure on H. Almost surely, as ¢ — 0, the measures ,u; converge
weakly to a limiting measure uy called the quantum area measure [22, 58]. We also define

the quantum boundary length measure vy := lim,_, 572/4e§¢5(x)dx. Suppose f : H— D is a
conformal map and ¢ = f y ¢. If D = H, then pg is the pushforward of ug under f and the
same holds for vz. We can use this to unambiguously extend the definition of the quantum
area and boundary length measures to any (D,$) that is equivalent to (H, ¢) as a quantum
surface.

We now recall various notions of quantum disk introduced in [21].

2
Definition 2.1. For W > %, letf=Q+ g Yo Q. Let
Y

By —(Q—-p) ift>0
B, +Q=pt ift<o0

where (Bj)ss is a standard Brownian motion conditioned on B, — (Q — 8)s < 0 for all s > 0,!
and (By);> is an independent copy of (By),so. Let h'(z) = Yy, for each z € S. Let hé be inde-
pendent of ! and have the law of the projection of hg onto H,(S). Let h=hn'+ hé. Let c be
a real number sampled from ge(ﬁ_@cdc independent of I and ¢ = h+ec. Let MgiSk(W) be the

! Here we condition on a zero probability event. This can be made sense of via a limiting procedure.
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infinite measure describing the law of (S, ¢, —c0, +00)/~,. We call a sample from MgiSk(W) a
(two-pointed) quantum disk of weight W.

The parameter 8 measures the magnitudes of log-singularities at the corresponding marked
points. We use the weight W as the chief parameter for its convenience in stating conformal weld-
ing results in Section 1.3. For MgiSk(Z) we have 8 = y. In this case the marked points are quantum
typical, namely, conditioning on the quantum surface, the two marked points are sampled accord-
ing to the quantum length and area measure, respectively; see the discussion below Definition 2.2.
This allows us to define general quantum disks marked with quantum typical points. In the follow-
ing definition we recall the convention that M# = |M|~! M is the probability measure proportional
to a finite measure M.

Definition 2.2. Let (S, ¢, +00,—0c0)/~, be a sample from MgiSk(Z). Let QD be the law of
(S,¢)/~, under the reweighted measure v¢(68)_2MgiSk(2). For integers m,n > 0, let (S, ¢)
be a sample from uy(S)"v4(0S5)"QD, and then independently sample z, ..., z,, and wy, ..., w,
according to ,uj; and vj;, respectively. Let QD,, ,, be the law of

(59 ¢’ 2153 2y W15 -ee s wn)/Ny'

We call a sample from QD,, ,, a quantum disk with m interior and n boundary marked points.

By [21, Propositions A.8] MgiSk(Z) = QD ,, which means the marked points on MgiSk(Z) are
quantum typical.

We conclude this subsection with a remark on the function space that variants of the GFF take
values in, which applies throughout the paper.

Remark 2.3. For X € {IH, S}, let g be a smooth metric on X such that the metric completion of
(X, g) is a compact Riemannian manifold. Let H!(X, g) be the Sobolev space whose norm is the
sum of the L?-norm with respect to (X, g) and the Dirichlet energy. Let H~'(X) be the dual space of
H'(X, g). Then the function space H~!(X) and its topology does not depend on the choice of g, and
is a Polish (i.e., complete separable metric) space. Moreover, the GFF measure P is supported on
H~(X). This follows from a straightforward adaptation of results in [20, 55] as pointed out in [14,
Section 2]. Random functions on X in our paper, such as the ones in Definition 2.1 and B.1 are the
sum of a sample from P, and a function on X that is continuous everywhere except having log
singularities at finitely many points. Both of these functions belong to H~!(X). So we view their
laws as measures on the Polish space H~1(X).

2.2 | Preliminaries on Liouville conformal field theory

In this section we review some random fields arising in the context of LCFT. We define the Liou-
ville field on X € {lH, S} with boundary insertions following [33, 49]. We will not discuss bulk
insertions as they are not needed here.

Definition 2.4. Let (h, c) be sampled from Py x [e"%dc] and set ¢ = h(z) — 2Qlog |z|,. + c. We
write LFy; as the law of ¢ and call a sample from LFy; a Liouville field on H.
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Let (8;,s;)) € Rx0H fori =1,...,m, where m > 1 and the s; are distinct. The Liouville field
Bi /e
with insertions (8;, 5;)1<j<pm, is defined formally by H:il e7¢(s‘)LFH(d¢). To make it rigorous we
£ [y
need to replace e2% by the regularization ¢ 4 ¢2%®) and send ¢ — 0. We first give a definition
without taking limit and then justify it in the subsequent lemma.

Definition 2.5. Let(B;,s;) € R x dHfori = 1,..., m, where m > 1and the s; are pairwise distinct.
1
Let (h, ¢) be sampled from C](Ifi’si)iPH X [e(E Z ﬁi—Q)Cdc] where
m Bi B
) —pi(Q-5) ym  BBig o
CI([fl,Sz)l — H |Si|+ < 2 )eZFM 2 G]H(Sz,S})
i=1

Let ¢(z) = h(z) —2Qlog|z|, + eril %G]H(z, s;) + ¢. We write LF](I/{S"’S")" for the law of ¢ and call a

sample from LFﬁi’Si)" the Liouville field on H with insertions (8;, ;)1 <i<m-

Lemma 2.6. Suppose s & {1, ...,S,,}. Then in the topology of vague convergence of measures, we
have

g B o), o s):
}:I_I)I(l) ET€E¢E(S)LF§§“SI)I (d¢) — LFI(.[fl’SI)l’(B,S). (23)

Proof. Consider bounded continuous functions f on H~!(IH) and g on R, and suppose g is com-
pactly supported. For h sampled from Py let ¢ :=h + 2 %G(-,si) —2Qlog| - |, and let Ey
denote the expectation over Py;. Then

5 B B ~ Iy g
lim C](gl’sl)l/ E]H [E 2 62(¢€(S)+C)f(¢)g(c)]e(2 Z, Bi Q)C de
R

e—=0

2

8
708 1y 68.Gr(s,5) ~(Bissi)i
=lslp e POy

B -1 8 _ o1y 5 0)e
lim / Exy [e?hf(s)] o [ei"s(”f(qﬁ)g(c)]e(z*zZiﬁ‘ Q) g
R

e—0

_ A(B9).(Bisi)i
o |

- il g 0)e
E]H [f(¢ + gG]H(sS))g(C)] €(2+2 Zi Bi Q) de.
R

The first equality follows from expanding the definition of ¢ and noting that Var(h.(s)) =
—2loge +4log|s|, + o(1) so

2 B

i
E [eEhg(s)] =1 +o01)e «[s|].

For the second equality, we have the prefactor

2

B
L QB 15 88 G a(Bus) S
512 Pei TACCED) B _ cB9E)
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£ 8 ~ ~
by definition. Moreover, Girsanov’s theorem gives Ey [ezhg(s)]_llEH[eth(s) f@)] =Eulf(o+

§GHE(~, 5))] where Gy ((w, 5) is the average of G (w, -) on dB.(s) N H. Since lim,_,( Gy (-, s) =
Gy (-, s) in H~1(H), the equality follows from the bounded convergence theorem. O

Definitions 2.4 and 2.5 correspond to the LCFT on H with background metric g(x) = |x|;4, as
defined in [33, Section 3.5]. See also [49, Section 5.3] for more details. When the Seiberg bounds
Y B; > 2Q, B; < Q hold, the measure e~ ##(F—#avp(@ H)LF(Hfi’Si)i(dqﬁ) is finite for cosmological con-
stants u, uy > 0. Its total mass gives the Liouville correlation functions on H. In this section the
finiteness of e‘”“@b(H)_“@%@H)Lng’Si)i(d¢) is irrelevant, so we do not put any constraint on

(ﬁi)1§i§m~

LCFT on the half-plane is conformally covariant. To state this, for a measure M on distributions
on a domain D, and a conformal map f : D — D, we define f,M as the pushforward of M under
the map ¢ — ¢of~! + Qlog|(f~1)|, and recall the conformal automorphism group conf(IH) of
H.

Proposition 2.7. For 3 € R, set Ag := g(Q — g). Let f € conf(H) and (f;,s;) € R x 6H be such
that f(s;) # oo forall1 <i < m. Then LFy = f,LFy and

m
Lng’f(Si))i — H |fl(Si)|—A6i f*Lng’si)i'
i=1

Proof. Theorem 3.5 in [33] is stated for LCFT on the unit disk, but the result holds also for
LCFT on H by their Proposition 3.7. Rephrasing using H, in [33, Theorem 3.5] they consider
e—/‘%(H)_l‘d%(aH)LF}(gi i (dg) for u, uz > 0. But this readily implies the statement for u = 5 = 0,
that is proves Proposition 2.7. O

In Definition 2.5 we did not consider the case s; = co0. We now give a definition of this field and
check that it can be obtained by sending s — 0.

Definition 2.8. Let 8 € R and (B;,s;) € RxJH for i =2,...,m, where m > 1 and the s; are

B .1
e(5+5 E,‘ Bi_Q)C

pairwise distinct. Let (h, ¢) be sampled from C](If 008 i’S")"P]H x| dc] where

m —g;(0-Fi_E m  BiBj
C](If,oo),(ﬁi,si)i _ H |Si|+ﬁl(Q 2 2 )ezf=i+1 TJG]H(Si’Sj).

i=2

Let ¢(z) = h(z) + (B — 2Q)log |z|, + 2:12 %G]H(z, s;) + ¢. We write LFg’m)’(ﬁi’si)i for the law of

¢ and call a sample from LFg’w)’(ﬁ oS the Liouville field on H with insertions (3, 00), (8;, 5i)2<i<m-

Lemma 2.9. With notation as in Definition 2.8, we have the convergence in the vague topology on
measures on H~'(IH) (see Remark 2.3)

_£ o) 5
lim rﬁ(Q Z)LFg’r)’(ﬁ“Sl)l — LFEIE»OO),(ﬁL’St)l.

r—+o0o
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Proof. In the topology of H-!(H), we have Gy(-,r) — 2log|-|, as r — +oco. Thus we

have h—2Qlog| |, + £Gu(,r) + T1, 2G50 > h+ (B—2Q)log| - 4 + X1, Z6uC5),
B
and moreover lim,_, ;. P (Q_E)Cﬁf O Bsdi C](If ) (Bisi) g yields the result. O

When ; = 3, it is more convenient to put the field on the strip S and put these two insertions
at +o00. We will use this in the three-point case.

B3 _
Definition 2.10. Let (h, ¢) be sampled from Cff’im),(ﬁ3,S3) Pox [ 579%Gc] where € R and
(B3,53) € R x3S, and

Cg@,ioo)’(r@&%) — e(‘% (Q—%)+%)|Res3| .

Letp(z) = h(z) — (Q — B)|Re z| + %Gs(z, s3) + ¢. We write LFf’im)’(53’s3) for the law of ¢. In the

special case §; = 0, we instead write LFEf’i‘x’),

Our next lemma explains how the fields of Definitions 2.5, 2.8, and 2.10 are related under
change of coordinates. We state this for two specific choices of conformal maps, and in light of
Proposition 2.7, this covers all cases. Let exp : S — H be the exponentiation map exp(z) = e=.

Lemma 2.11. Let § € R and ($33,53) € R X3S, then

Y -
LEEDBOE) _ 2 (Q-2 ) Ress exp, LFE==)6as0),

Similarly, if B1, >, 3 € R and f € Conf(IH) satisfies f(0) = 0, f(1) = 1, f(—1) = oo, then

,00),(82,0),(B3,1 — ,—1),(82,0),(B3,1
LFgl )(ﬁZ )(53 ) — ZAﬁl A52+A53 . f*LFl(Ifl )(ﬁz )(53 ).

Proof. If h is sampled from P then h := ho log has law Py, and Gs(z, w) = G (e, e?). Thus

Bs

B+ (8 - 20)logh1, + 56,0+ Do

= expe,(h() - Q- HIRe | + 2G5,

CBMEOE) o 2Q-E)Res; B )

2rz

Combining this with gives the first assertion.

For r >0 let f,(z) := , which is the conformal map such that f,.(0) =0, f,(1) =

(r+1)z+r-1

2
1, f-(=1) = r. By Proposition 2.7 and using the r — oo asymptotics |f}(—1)| = (1 + or(l))%,
|f7(0)] =2+ 0,(1) and | f}(1)| = % + 0,(1), we have

}’ZA:@I LF](gl ),(B2,0),(83,1) — (1 + Or(l))zAﬁl _Aﬁz +Alg3 (fr)*LFggls_l)’(ﬁbo)a(ﬁs,l)

as r — oco. The r — oo limit of the left hand side is LFl(Ifl’oo)’(ﬁ 20)(Bs.1) by Lemma 2.9. Similarly,
since f, — f in the topology of uniform convergence of an analytic function and its derivative on

dny) suonipuo) pue sud |, 3y 39 *[+707/S0/S0] uo Areiqry aurjuQ LI “erurA[Asuuad JO Ansioarun £q 0817z edd/z001 01/10p/wod Ka[im Kreiqijaur[uoy/:sdny woij papeojumod ‘S “+20g ‘T1£0L601

Kot

1 10y K1e1qr] SUIUQ Ad[IAL UO

ASURDI SuOWWOY) dANEAI) d[qeorjdde oyy £q pauraA0F are sa[oNIE () 95N JO saf
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compact sets, we have lim,_,( fr)*LF](gl’_D’(ﬁ 20 B D) f*Lngl’_l)’(ﬁ 208D i the vague

topology. This gives the second assertion. O
‘We conclude with an observation that is useful in Section 2.4.

Lemma 2.12. Let Ey denote the expectation over the probability measure P for X € {H, S}. Let
Eg[v,(du)] be the measure on R given by A — FEg[v,(A)]. We similarly define lEy;[vy,(du)]. Then

v
c;ﬁ’i"")’(’”“)du = 2@ PIReUDR 1) (du)],
09 = ¢-r018 1 s oy ).

Proof. We present the argument for the first identity; the other uses an identical argument. For
any smooth compactly supported function g : R — R, by [9, Theorem 1.1] we have

Y
/ ¢S CQ@PIRUD oy L ()]
R

Y Y
= lim/ eE(_(Q_ﬁ)lReul)g(u)IEs[572/4e5h5(u)]du. 2.4)
R

e—=0

Y
Now, since Var(h.(u)) = —2loge +2|Reu| +o0.(1), we have Eg [ayz/“ezhz(u)

2
y—|Reu|
e 4

I=0+o0.(1)
, Where the error terms are uniformly small for u in the support of g. Therefore the limit

Yi—(o- ﬁ )
in (2.4) equals /Rez( Q-F )lReul)g(u)e v IReul gy = f]R g(u)C\(f’ir ) du, as desired. O

2.3 | LCFT description of two-pointed quantum disks
The main result of this section is the following theorem.

2
Theorem 2.13. Fix W > y? Let ¢ be as in Definition 2.1 so that (S, ¢, +00, —00) is an embedding

of a sample from M‘ZiiSk(W). Let T € R be sampled from the Lebesgue measure dt independently of
T — T o Y (B,x0) _ v_w
¢. Let p(z) = ¢(z + T). Then the law of ¢ is given by 2057 LF¢ where 8 = Q + il
By Definition 2.10, the proof of Theorem 2.13 reduces to the following proposition on Brownian
motion. See Figure 2.1.

Proposition 2.14. Fix a > 0. Then {X,(t)};er and {X,(t)};cr defined below agree in distribution.

e Let (ﬁt)tzo be standard Brownian motion conditioned on B; — at < 0 forall t > 0. Let (Et)tzo be
an independent copy Of(ﬁt)zzo- Let

Bi—at ift>0
Yl’= -

B_;+at ift<o0

Sample (¢, T) € R? from e=2% dc dt independent of Y. Set X1(t) = Y;_r + c fort € R.
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Xu(t) X,(t) A

C’WMN M
|t ff/v\lcﬂ -M |t

FIGURE 2.1 Illustration of the processes from Proposition 2.14 and Lemma 2.15. Left: The maximal value

Xi(t) =Y r+c Xo(t)=B;—alt|+c

of X,(t) is c. It is achieved at time T whose law is the Lebesgue measure on R. Middle: On both [0, o) and
(—00, 0], the process X,(¢) is a drifted Brownian motion starting from ¢’. Right: The process {4)},, is a drifted
Brownian motion conditioned on staying below —M, and {AM},., is a drifted Brownian motion starting from —M.

* Let (By);er be standard two-sided Brownian motion with By, = 0. Sample ¢’ from 2Lze‘zacdc
a
independent of B. Set X,(t) = B; — a|t| + ¢’ fort € R.

The starting point of the proof of Proposition 2.14 is the following lemma.

Lemma 2.15. Let (Wz)tzo be a standard Brownian motion conditioned on W, — at < 0 forallt > 0.
Let (W,);»0 be a standard Brownian motion independent of (W,),. For M € TR, let

" W,—at—M ift>0
A=<
W_+at—M ift<0

and x be the a.s. unique time such that AY = max,cp AIIVI . Then (Y, + c),cRr conditioned on {c >
—M} agrees in distribution with (Af\ix),eR, where Y, and c are as defined in Proposition 2.14.

Proof. Consider the excursion measure A away from zero of the Bessel process with dimension
(2 — 2a). Let Ay be the probability measure corresponding to A conditioning on the event that the
maxima of the excursion is bigger than e™. Then Lemma 2.15 follows from comparing two ways
of representing Ay, in terms of drifted Brownian motion. As explained in Proposition 3.4 and
Remark 3.7 in [21], given a sample e from A, if we reparameterize log e by its quadratic variation
then it becomes a process on R, which is well defined modulo horizontal translations. If we fix the
process by requiring that 0 is the smallest time when it hits —M, then we get a process whose law
is the same as AM. If we fix the process by requiring that it achieves the maximal value at t = 0,
then we get a process whose law is the same as the conditional law of (Y; + ¢);c conditioned on
{c > —M}. This gives Lemma 2.15. O

Lemma 2.16. The law of X;(0) in Proposition 2.14 is 2LZe‘zacdc.
a

Proof. We write M; for the measure on the sample space that generates X;. We must show

that M, [X,(0) > —M] = /0;,1 zi —2acde = ﬁezaM for any M € R. By Lemma 2.15 and with the
- a

notations AM and x defined there, we have

a2e

M, [X;(0) > -M | ¢ > —M] = / PlAY, > —M]dt = / P[AM > —M] dt,
R R

dny) suonipuo) pue sud |, 3y 39 *[+707/S0/S0] uo Areiqry aurjuQ LI “erurA[Asuuad JO Ansioarun £q 0817z edd/z001 01/10p/wod Ka[im Kreiqijaur[uoy/:sdny woij papeojumod ‘S “+20g ‘T1£0L601

Kot

ASURDIT suowwo)) 2anea1) A[qearjdde oy £q pawsanos are SIRIIE YO 18N JO SI[NI 10j AIRIQI duI[uQ) AR[IA UO



INTEGRABILITY OF SLE VIA CONFORMAL WELDING | 2667

where the last equality follows from Fubini’s Theorem and the translation invariance of Lebesgue
measure. For each t > 0 we have ]P[A{VI > —-M]=P[W,>at]|=P[Z > a\/Z] where {W : s > 0}
is standard Brownian motion and Z ~ N(0, 1), and for t < 0 we a.s. have Ai"l < —M. Therefore

M Y R G x2 1 e 1
P[A > -M]dt = —— e /4dxdt = ———=e X dx=—2.
R o Javi\2rm 0o @\ 2r¢ 2a

. 1
Since M;[¢ > —-M] = [ D;/I e 2 de = z—ezaM , we conclude
- a

M, [X,(0) > —=M] = M, [X,(0) > =M | ¢ > —=M]M[c > —M] = ﬁeﬂm.

. (|
Using Lemmas 2.15 and 2.16 we show that the laws of X; and X, agree.

Proof of Proposition 2.14. In the setting of Lemma 2.15, given AM, let 7 be sampled from Lebesgue
measure on R. Then by Lemma 2.15, the conditional law of {X;(¢) : t € R} given ¢ > —M is the
same as the law of {At " - t € R} Consequently, the conditional law of {X;(¢) : ¢ € R} given
X1(0) > —M is the same as the conditional law of {At " - t € R}given AITW > —M. By definition,
on the event that AY > —M, we must have T > 0. By the Markov property of Brownian motion,
conditioning on the event that AM —M and the value of AM the processes {A[ 't AM Tt >0}
and {At e — AM : t < 0} are conditionally independent. Moreover, the conditional law of {A[ e~
AM : t > 0} equals the law of (B, — at);>o where B, is a standard Brownian motion. Varying M,
we see that conditioning on X;(0), the conditional law of {X;(t) — X;(0) : t > 0} and {X;(¢) —
X,(0) : t <0} are conditionally independent. Moreover, the conditional law of {X;(¢t) — X;(0) :
t > 0} equals the law of (B, — at);>o.

On the other hand, by the symmetry built into the definition of X;, we see that {X,(—¢) : t € R}
has the same law as {X;(¢) : t € R}. Therefore conditioning on X;(0), the conditional law of
{X1(—=t) = X1(0) : t > 0} is also given by (B; — at);»o. Since by Lemma 2.16 the law of X;(0) is
the same as X,(0), by the definition of X, we see that the law of X; is the same as that of

X,. O

Proof of Theorem 2.13. Consider Proposition 2.14 where we have replaced e~2% dcdt with
Ee_zac dc dt in the definition of X;, and replaced 2—12e_2ac dc with SLze—Zac dc in the definition of
a a

X,. The proposition still holds since we are merely scaling both laws by g. Choose a = %(Q )
and let X; and X, be defined as in this modified setting.

Recall k', h%, ¢ from Definition 2.1 so that ¢ = h' + h% + c. By definition, the law of {h'(z +
T) + c},cs equals that of {X; (2 Re z)},cs; the prefactor g in Ze‘zac dc dt matches the product of

g (from Definition 2.1) and % (reparametrized Lebesgue measure in definition of X;). Since the
law of hé is translation invariant, the law of {p(z) = ¢(z + T) : z € S} agrees with {X;(2Re z) +
h%(z) : z € S}, where h is independently sampled from X;.
On the other hand, by Definition 2.10, suppose X,(¢) is independent of h2 then the law of

X,(2Re z) + h? 2(z) 1 z € C}i is L Y LF(ﬁ £9) Since 8V2 = 2(016)2 , and the laws of X; and X, agree

LF(ﬁ +%) 45 desired. O

by P ition 2.14, the 1 f
y Proposition elaw o ¢1s (Q e
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2.4 | Adding a third point to a two-pointed quantum disk

(B—00) (B0,
FS

In this section we show that L 0 describes a two-pointed quantum disk with an

additional marked point defined as follows.

2
Definition 2.17. Fix W > y; Let (D, a, b) be a simply-connected domain with two boundary

points and let (D, ¢, a,b) be an embedding of a sample from MgiSk(W) and vy be the quan-
tum length measure. Let L be the vg-length of the right boundary of (D, a,b), namely the
counterclockwise arc from a to b. Now suppose (D, ¢, a,b) is from the reweighted measure
LMgiSk(W). Given ¢, sample z from the probability measure proportional to the restriction
of vy to the right boundary. We write Mgf_sk(W) as the law of the marked quantum surface

(D,¢,a,b,2)/~,.

2 —0o0 &)
Proposition 2.18. For W > y? let ¢ be sampled from mLFf )(B+00).(r:0) |y oo B=y+
2_ Y Then (S,¢,—00,+00,0)/~, is a sample from M‘zlifk(W).
v ’

Remark 2.19. Our Mg‘ffk(z) equals QD , restricted to the event E that the three boundary
points are in the clockwise order. Setting o = y in Proposition 2.18 and using the change of
coordinate from Proposition 2.7 and Lemma 2.11 gives the following. Suppose (H, ¢, s1, S5, 83) is
an embedding of QD ;|g, Where sy, 5,53 are three fixed distinct clockwise-oriented points on

OH. Then the law of ¢ is CLF%’SO’(V’SZ)’(%%) with C = 2(Qy 7 The main result of [11] is equiv-
-y
alent to this statement without identifying C. We can also recover the result of [6] on QS;, see

Proposition 2.26.

To prove Proposition 2.18, we start with an infinite-measure variant of the rooted measure in
LQG. The argument via Girsanov’s theorem is standard we give the full detail as variants of it will
be used repeatedly. In the statement we recall Remark 2.3 that P is understood as a measure on
H~Y(S). Moreover, we write IE¢ as the expectation over Pg.

Lemma 2.20. Let Q(dh, du) = v;,(du)Ps(dh) for (h,u) € H~1(S) X R. Namely, Q is the (infinite)
measure on H~1(S) x R such that for non-negative measurable functions f on H"'(S) and gon R
we have

/ F(Wg(u) Q(dh, du) = / fh) ( / g(u)vh(du)> Ps(dh).
R
Let p be such that p(u)du = Eg[v,(du)] with the latter measure defined in Lemma 2.12. Then

/ f(W)gw) Q(dh, du) = / Es [f(h+ gcs(-,m)]g(u)p(u)du.

R

Proof. 1t suffices to assume that g is a compactly supported continuous function on R and

[
f is a bounded and continuous function on H~!(S). For ¢ > 0, let Vp(dx) = g’ /4e2" Mgy

Since lin(l) [ 8w vpe(du) = [, gu)vy(du) in L' with respect to P (see e.g. [9, Theorem 1.1]),
E—

dny) SUOmIpUOY) pue SWIS, 41 938 *[KZ0Z/S0/S0] U0 AIIqrT AuuQ A3[1A “BUBAIASUSG JO ANSIAIUN £Q 08122 /200101 /10p/wo K3 Kxeaqrjaurfuoy/:sdny wosj papeofumoq S “bZ0T “TIE0L601

1 10§ AIRIQET QUIUQ AS[IA UO

25URD] SUOWIIOD) AANERI) AqEaIddE U G PAWIAAOT AIE SAINIE YO 5957 JO S



INTEGRABILITY OF SLE VIA CONFORMAL WELDING 2669

we have

li h -(d Po(dh) = h d P<o(dh
Eg%/f( )(/ngm,( u)) <(dh) /f( )(/Rg(u)vh( u)) <(dh)

= / f(h)gw) Q(dh, du). (2.5)

Let Gs ((z,u) = Eg[h(z)h®(u)], where the latter is understood via the e-circle average of G¢(z,).
By Girsanov’s theorem, the left side of (2.5) equals

/]RES [f(h + gGS,s('yu))]g(u)ES [672/4e§h5(u)] du.

Y
Since p(u)du = ling Eg[e’’/*e2""du and lim,_, Gs (-,u) = Gs(-,u) in H™X(S), we get the
=
desired result. ]

The following lemma is a variant of Lemma 2.20 for Liouville fields. For notational convenience

we use the notion M[f(¢)] = [ f($IM(d$).

Lemma 2.21. Let LFf’im)’(ﬁj A1 be as in Definition 2.10. Let f and g be non-negative measurable
functions as in Lemma 2.20. Then

LEf =) [f(qs) / gy, <du>] = / LES =00 () g(w) du. (2.6)
R R

Proof. By Definition 2.10 the left side of (2.6) can be written as

Y(_0-
// f(h=@Q=P)IRe| + c)( / gluye>T(@PIREUO vh(dm)
R
Ps(dh)e®-Q¢ dc.
By Lemma 2.20, the integration over P with a fixed c is given by
Y(_(0-
[ (4 o5t - @ priRe-t 4 ¢)gtane s~
o(u) - e¥=Qcp(dh)du (2.7)
where p(u) is as in Lemma 2.20. Recall Cff’im)’(y’”) in the definition of LFf’im)’(y’”). By
Lemma 2.12 we have
Y
C;ﬁ,ioo)-(}’au)du — ez(‘(Q‘ﬁNRequ(u)du.
Therefore the integral in (2.7) becomes
Y 14 - ,£00),(¥,
[ 7= @-iRe 1+ LosC) + e’ - e-x . (a0
Pg(dh)du.

Further integrating over ¢ we get f]R LFf’im)’(y’")[ f(P)]g(u) du as desired. O
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Proof of Proposition 2.18. Our proof is based on Theorem 2.13 and (2.6). For u € R, let M¥ be such
that (S, ¢, —co + co0,u)/~, is a sample from M%lSk if ¢ is a sample from M*. We must show that
MO = 1 pBxeo)(r0)

To2e-pr S

Let M, be the law of ¢ in Definition 2.1 where (S, ¢, +00, —0)/~, is a sample from MgiSk(W).
Let Qy be the measure on {(¢,z) : ¢ is a distribution on S, z € R} such that for non-negative
measurable functions f and g we have

/ F@)g(2) Qold,dz) = / f(¢)< / g(z)V¢<dz)> Mo(dg).
R

Then the Qy-law of (S, ¢, —c0, +00,2)/~, is M‘thk(W). Let (¢, z) and T be sampled from Q, X dt,
where dt is the Lebesgue measure on R. Setu =z — T and 5(-) = ¢(- + T). Let M be the law of
(¢,u). Then by definition

M[f(Pgw)] = / M[f($)]g(w) du. (28)
R

On the other hand, note that the v¢(]R)‘1Q0-1aw of ¢ is M. Therefore, by Theorem 2.13, the law

of $ under v$(lR)_1M is 2(Qi,f3)2 LFEf’ioo). Moreover, conditioning on 5, the conditional law of u is
the probability measure proportional to v$|R. Therefore,

MIf(@gw)] = ﬁLFfi%) [f(&E) / g(w) v&;(du)].
R

By Lemma 2.21, we have

MIf(@)gw)] = m /R LESE0] £(8)]g(w) du. 2.9)

Combining (2.8) and (2.9) we get M* [f(P)] = @LF?’J—W)’(V’“)U(&S‘)], since g can be arbitrary.
Setting u = 0 and varying f we conclude the proof. O

2.5 | Uniform embedding of the quantum sphere and quantum disk

With notation as in Section 1.2, Theorem 2.13 says that the uniform embedding of MgiSk(W) in

(S, —o0, +0) is given by a constant multiple of LFf’im). More precisely

i 14 * 14
mS,—oo,+oo X MCZhSk(W) = mLpf +°°), 5 = Q + 5 -

w

v

It is in fact a general phenomenon that uniform embedding of random surfaces appearing in the
framework of [21] are given by a Liouville field. In this section we demonstrate this point by prov-
ing Theorem 1.2, which concerns the uniform embedding of the quantum sphere and disk. Unlike
the rest of the paper, which focuses on LQG surfaces with disk topology, in this subsection we treat
the sphere and disk in parallel.
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‘We first give a precise definition of the notation X that represents uniform embedding. Let G be
alocally compact Lie group. Suppose Q is a Polish space with a continuous G-action (g, x) — g - x.
Namely, g; - (g, - x) = (g; - &) - x for all g;,g, € G and x € Q; moreover, (g,x) — g- x is con-
tinuous. Let Q/G be such that y € Q/G if and only if y = {gx : g € G} for some x € Q. We
let 7 : Q — Q/G be the quotient map and endow Q/G with the quotient topology. We endow
the Borel o-algebra on G,Q and Q/G. Suppose m is a right invariant Haar measure. That is,
fG f(gh)m(dg) = fG f(g)m(dg) for each non-negative measurable function f on G and each
heaG.

Definition 2.22. For each y € Q/G, choose x € 7~ (y). We write m X y for the pushforward
measure of m under G g+~ g-x € Q, that is for each Borel E C Q we have m X y(E) =
fQ 1g.xep m(dg). For a o-finite measure ¥ on Q/G, we write the measure fQ/G [m X y]¥(dy) as

m X V. Namely, m X ¥(E) = fQ/G [m X y](E) ¥(dy) for each Borel set E C Q.

Lemma 2.23. For each o-finite measure v on Q, let v be the pushforward of v by 7. Then the
pushforward of m X v under (g,x) — g - x equals m X 7,v.

Proof. For each non-negative continuous function f on Q, let I(x) = /G f(g - x)m(dg). Since m
is right invariant, I¢(x) only depends on 7(x). Equivalently, there exists a non-negative continu-
ous function Tf on Q/G such that I = Tfo7r. For each o-finite measure v on (Q, F), by Fubini’s
Theorem,

/ f(g - x)m(dg)v(dx) = / 1,G0) v(dx) = / T,() m.v(dy). (2.10)
GxQ Q Q/G

The last integral in (2.10) is precisely /Q /G( [ f(x")ym X y(dx")) 7, v(dy). This concludes the
proof. O

The proof of Theorem 1.2 relies on the LCFT description of the three-pointed quantum disk
QD ; and sphere QS;. The description of QD ; was obtained in [11] which we recovered and
refined in Proposition 2.18 and Remark 2.19. In Appendix B, following the same proof we recover
and refine the LCFT description of QS; obtained in [6]. In particular, we prove a more general
result (Proposition B.7) in analogy to Proposition 2.18. The original definition of QS, is recalled
in Appendix B but the LCFT description in Proposition 2.26 is what we need for the rest of this
section. The unpointed quantum sphere QS in Theorem 1.2 can be obtained by deweighting the
cubic power of the total quantum area of a sample from QS; and forgetting the three marked
points; see Definition B.2.

We first recall the basic setup of LCFT on C following [14, 37, 63], and then state the LCFT
description of QS; as Proposition 2.26 (see Appendix B for the proof). Let P be the law of the
GFF on C normalized to have average zero on the unit circle, which has covariance kernel (see [37,
(2.1), Remark 2.1])

Gp(z,w) = —log|z — w| + log|z|, + log|w]|,.

Definition 2.24. Let (h,c) be sampled from P x [e72?°dc] and set ¢ = h(z) — 2Qlog |z, + c.
We write LF as the law of ¢ and call a sample from LF a Liouville field on C.
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Definition 2.25. Let («;,z;) € RX C fori =1,...,m, where m > 1 and the z; are distinct. Let
(h, ¢) be sampled from C((g"’z")iP@ x [e(Zi %=2Q)¢ 4] where

m
(ai.zi)i _ —0;(2Q-a) YT oi;G(zi,2)
C@lll—H|Zi|+l 1) o &j=it1 MY 7))

i=1

Let ¢(z) = h(z) — 2Qlog|z|, + Zlnil a;Ge(z, z;) + ¢. We write LF%"’Z")“ for the law of ¢ and call

a sample from Lng" “)i the Liouville field on € with insertions (¢;, Z;)1<j<pm-

Proposition 2.26. Suppose (C, ¢, uy, u,, u3) isan embedding of QS,, where uy, u,, us are three fixed
distinct points on C. Then the law of ¢ is

y (7u1),(yu2),(v,u3)
——LF .
2Q—-y2  ©

To make sense of mg X QS, consider the function space H ~1(C) defined as H™'(H)
in Remark 2.3 with C in place of H. The conformal coordinate change f ¢, ¢ = ¢of 14
Qlog|(f~')'| defines a continuous group action of conf (@) on H~1(C), where conf (@) is con-
formal automorphism group on C. By the definition of quantum surface, we can view QS as
a measure on H~!(C)/ conf(@). Since conf(@) is a locally compact Lie group, it has a unique
right invariant Haar measure modulo a multiplicative constant, and moreover, the measure is left
invariant as well since conf(C) is unimodular; (see e.g. [23, Corollary 5.5.5]). From Definition 2.22,
we get the precise meaning of mg X QS. The uniform embedding my; X QD of QD is defined in
the same way.

The starting point of the proof of Theorem 1.2 is the LCFT description of the uniform embedding
of QS; and QD) ; instead of QS and QD. To make sense of mg X QS;, we view QS; as a measure on
the quotient space of Q¢ x €3 under the conf(©)-action (h, a, b,c) — (f +y h, f(a), f(b), f(c)).
Then mg X QS, is a measure on Q¢ X C*. We similarly define mg X QS;. The following lemma
gives a concrete realization of my; X QD ; and mg X QS;.

Lemma 2.27. Let (C,¢,a,b,c) be an embedding of a sample from QS;. Let | be a sample
from a Haar measure mg on conf(®) that is independent of (¢,a,b,c). Then the law of (f »,
¢, i(a), f(b), f(c)) is mg X QSs. In particular, it does not depend on the law of (¢, a, b, ¢). Similarly,
let (H, ¢, a, b, c) be an embedding of a sample from QD,, 5, and g an independent sample from a
Haar measure my on conf(H). Then the law of (g «, ¢, ¢(a), ¢(b), g(c)) is my X QD ;.

Proof. This immediately follows from Lemma 2.23. O
‘We now give an explicit description of mg and my;.

Lemma 2.28. Let | be sampled from a Haar measure mg, of conf (T). Then there exists a constant
C € (0, ) such that the law of (f(0), f(1), f(=1)) is C|(p — q)(q — r)(r — p)| > d*p d*q d*r.

Similarly, let ¢ be sampled from a Haar measure my; of conf(IH). Then there exists a constant
C € (0, ) such that the law of (g(0), g(1), g(=1)) is C|(p — q)(q — r)(r — p)|~* dp dq dr restricted
to the set of triples (p, q,r) € R? that are counterclockwise aligned on 0TH.
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Proof. We prove the first assertion; the second follows from the same arguments. By the unique-
ness of Haar measure, it suffices to show that if (p,q,r) is sampled from |(p — q)(q —r)(r —
p)|~2d?p d?>q d?r and f is the unique Mobius transformation mapping (0, 1, —1) to (p, q,r), then
the law of { is a Haar measure on conf(T). Namely for each g € conf(C), gof agrees in law
with f. This is equivalent to the statement that (g(p), g(q), g(r)) agrees in law with (p, q, r). This
is straightforward to check when g is a translation, dilation, or inversion. Since these generate
conf(@), we are done. O

We will give the LCFT description of mg X QS; and my X QD) ; in Proposition 2.30 below. In
its proof we need Proposition 2.7 and its sphere counterpart, which we recall now.

Proposition 2.29 [14, Theorem 3.5]. For a € R, set A, := %(Q — %). Let f e conf(®) and
(a;, z;) € R x C be such that f(z;) # oo forall 1 <i < m. Recall the notation f,, in Proposition 2.7.
Then

m
LFy = f,LFe and LFa O =TT 11" (20172 £, LRS-,
i=1

Proposition 2.30. Suppose the Haar measures mg,, my; are such that the constant C in Lemma 2.28
is equal to 1. Then for non-negative measurable functions f and g on H='(C) and C3, respectively,

mg X QS;[f(¢$)g(p,q,7)]

Ty p),(r,.@),(v.r) 2092 92
=>—~—— [ LF [f($)lg(p,q,r)d*pdqd-r, 1)
Z(Q_J/)z/qﬁ C f(@lglp.q pasq

and for non-negative measurable functions f and g on H-'(IH) and R3, respectively,

my X QD[ f(¢)g(p,q,7)]

14

- s | PO @lg(p. g dp g . @12)
R3

Proof. We prove (2.11); the proof of (2.12) is similar. In Lemma 2.27, we choose (a,b,c) =

(0,1, —1). By Proposition B.7, the law of ¢ is (Qzl)z . LF%’O)’("’D’(V’_D . Given three distinct points
-y
p,q,r in C3. Suppose f € conf(C) maps (0,1, —1) to (p, g, r). Then we can explicit get f(z) =
(pg—2gr+rp)z+p(g—r)
and
(2p—q—r)z+q-r

2(p—q)g—r)r—p) 2(p—q@)g—r)r—p)

11(0) = T , ()= o7 ,
2(p — q)(q = )(r — p) e
P ==

Recall notations from Proposition 2.29. Since A, = 1, we have

f*LFg,O),(V,l),(V,—l) — |f/(0)f/(1)fl(_1)|2LF%’,p),(y,q),(y,r)

= CI(p — 9)(g — )(r — p)PLELP TP,
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2674 | ANG ET AL.

Since the law of (f(0),(1),f(-1)) is |(p —q)(q —r)(r — p)|">d*pd*qd’r, and mg X QS;
describes the law of (f «, ¢, f(0), (1), f(—1)), we obtain (2.11). O

To pass from the uniform embedding of QD,; and QS; to that of QD and QS, we need
Lemma 2.21 and its sphere counterpart, which we state below and prove in Appendix B.

Lemma 2.31. We have
L) [f(qb) / g ﬂ¢(du)] = / LEC 1 £(9)]g(w) d?u
C C
for non-negative measurable functions f and g.

Proposition 2.32. Suppose the Haar measures mg, my; are such that the constant C in Lemma 2.28
is equal to 1, then

_r
2(Q —y)?

14

LFs and my X QD =
Proof. Repeatedly applying Lemma 2.31, we get
LF¢ [f (¢ / g(p, q,r)pg(dp)ug(dq)us(dr)
3

_ / LEZD DI (4)1e(p, q,r) d?p d2q dPr. (2.14)
C3

Setting g=1 in Proposition 230 and (2.14), we have mg X QS;[f(¢)]=
LFc[f (¢),u¢(®)3] By the definition of mg X QS; in Lemma 2.27 the marginal law

2(Q—y)?
of the field under m@ X QS5 is ﬂ¢(@)3m@ X QS. Therefore mg X QS = 2(Q LF@ The proof
of my X QD = >LFp is identical. O

Z(Q 7)?

Proof of Theorem 1.2. This follows from Proposition 2.32 by the uniqueness of Haar measure
modulo multiplication by a constant. O

Our proof of Theorem 1.2 demonstrates how to go from QS; = CLFg’O)’(y’D’(y’_D tomg X QS =
CLF through Proposition 2.30 and de-weighting. Similar arguments can also give results such
asmg X QS, = CLF%’O), where mg , is a Haar measure on the subgroup of conf (@) fixing 0.
We do not need these statements so we omit the details.

3 | QUANTUM SURFACE AND LIOUVILLE CORRELATION
FUNCTION

In this section we consider disks with two or three marked boundary points and we derive the
law of boundary lengths of these surfaces. More specifically, we consider surfaces sampled from
MdlSk(W) and Md‘Sk(W a), both thick and thin variants. The proofs are based on the integrability
of boundary LCFT from [49]. Interestingly, we will see in Propositions 3.6 and 3.12 below that the
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING | 2675

same formulas apply for thick and thin variants of the same disk, which provides a probabilistic
interpretation of identities satisfied by the reflection coefficient of boundary LCFT.
3.1 | Reflection coefficient and thick quantum disk

We recall the double gamma function I'(z) which is prevalent in LCFT. See for example [61] for
more detail. For b > 0, I';(z) is the meromorphic function in C such that for Rez > 0,

1
0 1 e_zt _ e—<b+£)l/2
InTy(z) = -
0 t

(1 —ebt) <1 —e_%[>
(L(p+3)-2)  z-i(b+})

- > et + ; dt 3.1

and it satisfies the shift equations

1

Fb(Z) _ 1 —bZ+l Fb(z) _ 1 < 1 > < 1 >—;Z+%
T —lnb =, =—I( 2z )% . (32
Tp(z +b) — z o <Z+ %> —= =2 )( 3

These shift equations allow us to meromorphically extend I';,(z) from {Re z > 0} to C, where it has
simple poles at —nb — m% for nonnegative integers m, n. We also define the double sine function

Sb(Z) =

We will only work with I'y, except in the proof of Lemma 5.12, where I': also appears.
2 ¥
Inspecting (3.1), we see that ' =T'y.
y 2
We can now recall the boundary Liouville reflection coefficient from [49]. For uy, u, > 0, let

i7ry(cr_,-—g

oj € Cbesuchthatu; =e z)andReajzgforj:LZ.Let

2

1
(2 @ 2) 2QH3

4

R(B, 1, 4a) = 208
Q-pr(1-)

r ( 8- g) ¢i7(01+9,-Q)(Q—p)

4
2

(3.3)

'Fg(Q—ﬁ)Sg (g +62—01>S§ (g + 0 —02>'
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2676 | ANG ET AL.

For u > 0, let

2 1
2Q-B)-3 2 L@-p)-3 v
2 2(= F _ =
e S

R(B, 11,0) = R(B,0, ) = pu7 : (3.4)
2 2-p) T'r(Q-p)
Q-pPra - y;)y 2

For u;, 4, > 0 not both zero, the meromorphic function 8 — R(B, iy, 4,) is positive and finite
in (%, Q+ g), has a pole at g and a zero at Q + g (along with other poles and zeros). In particular,

although the term Q%ﬁ suggests that there should be a pole at § = Q, this cancels with a zero
1

F%(Q—ﬁ)

coefficient. The unnormalized version is defined by

coming from to give R(Q, 4, 4,) = 1. The function R is called the normalized reflection

2 —
R(B, 1, o) = —F<1 - }—,(Q - ﬁ))R(ﬁaﬂl’#z)- (3.5)
The following solvability result was proved in [49]; see Theorem 1.7 and Section 1.3 there.

Proposition 3.1 [49]. Let § € (g, Q) and W =y(y + }% — B), and let u;, i, > 0 not both be zero.
Recall the field h from the definition of MgiSk(W) in Definition 2.1. We have

E|(u1v;(R) + ppvi(R + i) = R(B, i1, ).

Remark 3.2. Proposition 3.1 is only stated in [49] for § € (}2—/, Q). However, it extends to the case
2 —
B =Q,whereW = y? In this case, it simply says that a zeroth moment is equal to 1 = R(Q, 1, i2)-
When § < g the expectation is infinite, since 2(Q -pB)> iz and the moment of the Gaussian
14 4

multiplicative chaos of order at least iz is infinite [50, Section 2].
Y

2
Lemma 3.3. For W € [y?, yQ)and S =y + }% - % writing Ly, L, for the left and right boundary
lengths of a quantum disk from Mgigk(W), the law of i Ly + u,L, is

_ 2y
1,50R(B; y, )t v dE.

Proof. To simplify notation we explain the proof for u; = 1 and u, = 0 — the general case follows
identically. For 0 < ¢ < ¢’ we have

[Se]
diskp. N — Y o8-
¢, =E|[ 1 d
MG V5 (R) € (¢,61)] [/ o meemat
¢’ 2
/g

Q-p 2B-0 _
=E vi(R)r~ Tyr -y 1dy], (3.6)
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14
where we have used the change of variables y = eECV}Al(]R) (so dc = zy‘ldy). Interchanging

integral and expectation and applying Proposition 3.1 and Remark 3.2, we obtain the result. []

For W > ﬁ, the integral MgiSk(W)[e‘“lLl_“ZLﬂ is infinite. The below proposition shows
that we can obtain a finite integral by subtracting an appropriate polynomial which makes the
integrand sufficiently small for small boundary lengths. Furthermore, the integral can be
expressed in terms of the reflection coefficient R. We will see in Proposition 3.6 below that the
formula also extends to the case of thin disks, in which case it is not necessary to subtract a
polynomial.

2
Proposition 3.4. For W € (%,yz) and B =y + ; - %, and writing Ly, L, for the left and right
boundary lengths of a quantum disk from MgiSk(W), we have

Mgisk(W)[e—ylLl—yZLz _ 1] = #—@R(‘B;#l’ #2)- (37)

2
More generally, suppose WE(%,)/Q) and there is a positive integer n such that W €

2 2 _ k
(ny?, (n+ 1)%). Let P,(x) = ZZ=(1) % be the n-term Taylor polynomial of e*. Then

MgiSk(W)[e_'ulLl_'usz — P, (=L — w,Ly)] = #—ﬁ)R(ﬁ’ M5 M2)-

Proof. Write o = 2}/—2/ € (1,2). Using integration by parts, we have

/ (1—e")-¢- "‘df——/ e e~ Dde = F(z “).

Thus, by Lemma 3.3, we have

MISK)[1 - eila—t2la] = R(B, ., ) / (1—ef)- ¢~ de
0

F(2 oc)

o R(B, 15 42)-

The more general version similarly follows from the following identity for n a positive integer and
pEeEmn+1)

/ oo(e-f — P, (£))¢~P d¢ =T(1 - p).
0

Indeed, repeatedly integrating by parts gives

[t —penerac = [t —peneea =
0 0

et
szl(k_P)

and since the last integral equals I'(n + 1 — p), repeatedly using I'(x + 1) = xI'(x) yields the
result. O
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2678 ANG ET AL.

M)
MGE(W) MW @) MGH(y? = W:a)

M)

FIGURE 3.1 Suppose0 < W < g Left: In Definition 3.5, we define the weight W thin quantum disk with
weight W via concatenation of an ordered Poissonian collection of weight (y?> — W) thick quantum disks. Right:
In Definition 3.11 we define the measure Mgffk(W; a) on quantum surfaces obtained by sampling three quantum
surfaces from (1 — VZ—ZW)ZM;“SI‘(W) X Mgffk(yz —W;a)x MgiSk(W) (depicted in grey, pink, grey) and
concatenating them. Both: The length of the left boundary (depicted in blue) is given by the sum of the left
boundary lengths of the constituent components, and the analogous statement is true for the length of the right
boundary (depicted in red).

3.2 | Thin quantum disks and thick/thin duality

The reflection coefficient R satisfies the following reflection identity; see [49, Eq (3.28)].

R(B; uz1, u2)R(2Q — B; py, p) = 1. (3.9)

In Section 3.1, we saw that for g € (g, Q) the function R describes quantum lengths for the thick
quantum disk. In this section, we give an analogous interpretation for R in the regime § € (Q,Q +
g) via the thin quantum disk defined in [3]. See Figure 3.1.

2
Definition 3.5 (Thin quantum disk). For W € (0, y?), we can define the infinite measure
MgiSk(W) on two-pointed beaded surfaces as follows. Sample T from (1 — %W)‘ZLebR+, then
¥

sample a Poisson point process {(u, D,,)} from the measure 1,¢(o r)dt X ./\/lgis‘k(y2 — W), and con-
catenate the D,,’s according to the ordering induced by u. We call a sample from MgiSk(W) athin
quantum disk with weight W. We call the total sum of the left (resp., right) boundary lengths of
all the D,’s the left (resp., right) boundary length of the thin quantum disk.

The choice of the constant (1 — }%W)_2 above is justified by the following proposition, which

states that the quantum disk boundary length distribution extends analytically from thick to thin
quantum disks, hence giving a probabilistic meaning to R and R for § € (Q,Q + g).

2
Proposition 3.6. For W € (0, %) and =y + }z/ - % €(Q,Q+ g), let L, and L, be the left and

right boundary lengths of a thin quantum disk from MgiSk(W). For constants i, u, > 0 not both
zero, the law of Ly + u,L, is

2

= -=W
1f>0R(;8a M1, /"2)6 r? dfa
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING 2679

and

Mtziisk(W)[e—le—#sz] = R(B; p1s 42).

_r
2Q-48)

Proof. Note that MgiSk(W) is defined using Poisson point processes. Our proposition will be
an immediate consequence of Campbell’s formula for the Laplace functional for Poisson point
processes (see e.g. [36, Section 3.2]): For any measure space (S,m) and measurable function
f S — (0,00) such that fS min(f(x),1) m(dx) < oo, we have for a Poisson point process IT on

(S, m) that
E lexp(— Z f(X))] = exp</(e‘f(x) -1 m(dx)).
Xell S

For fixed T > 0 we can set S; = [0, T] x S where S is the space of two-pointed quantum disks, and
mr = Lebjo 1) X Mngk(]/z — W). Letting I1 be a Poisson point process on (St, my) and f(D) =
u1tq + uf, where ¢, ¢, are the quantum lengths of the boundary arcs of D, we have

Elexp(— D f(D)>] = exp(—TMIHK (@2 —W)[1 — e /D)]).

([,D)GHT
. . 2 e
Integrating against 17.(1 — };W) 2dT, we get

1

Mgisk(W)[e—le—usz] - . )
(1= ZWPRMIH (2 = W)L - e /(2]

Proposition 3.4 gives .A/l‘zﬁSk(y2 —W)[1 — e /@] = —L_R(2Q — B; 41, 1), and combining with

2(Q-p)
the reflection identity (3.8) and 1 — ¥ = X9 yields the second claim.

The first assertion then follows from the fact that p;L; + p,L, has a power law with exponent
——2W [3, Lemma 2.17], and a similar computation as in Proposition 3.4 to derive the coefficient

of the power law. O

3.3 | Quantum disk with a third marked boundary point

We consider the following variant of R and R which has an additional parameter a.
2 1
;(Q-ﬁ-;“)

—(B.8,2) 27
01,00 =

Gsra-5)
P (GaTr Q=B+ 50T (B+ ja— 1)

rg(f)rgaz ~BPry(@)

BB _ 2 2(1 —(B.B.a)
H(O,l,O) = ;F<}7<§o‘ +B8-Q | JH10) -
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—(B.8.2)
The notations H 1 o) and H((g lﬁ ;)O;) are inherited from [49] where more general more parameters

are considered. The following proposition is proved in [48].

Proposition 3.7. Suppose o > 0,% + B> %, and B <Q. Let % =h+ (a—2Q) log|- |4+
gG]H(-, 0) + gG]H(-, 1), with h sampled from Pyy. Then

2 1
2(Q—B--a) —(B.B.2)
E|vz((0,1))7 271 =Hga) -

Proof. The restriction of P10 (0,1) agrees with that of h — S log| - | — Blog| - —1], so Vg(dx)|[o,1] =

Y Y
x_Eﬁ(l —x)_iﬁ,uh(dx)“(),l]. Thus the moment we consider agrees with M(y, p,a,b) of [48]
with a =b = —g,@ and p = g(Q -p- %oc), and [48, Theorem 1.1] shows this quantity equals

—(B.8.a)
Ho,1,0) - O

. . 2
Recall M‘zhf‘k(W) from Definition 2.17. We now extend Mglf'k(W) when W > % to have a third
marked point with general « insertion.

2 .
Definition 3.8. For W > L and a € R, let Mglfk(W; a) be the law on quantum surfaces
(S, ¢, —0, +00,0) with ¢ sampled from

2(Q- By LG w0,

We call the boundary arc between the two 8 singularities which contains (resp. does not contain)
the « singularity the marked (resp. unmarked) boundary arc.

By Proposition 2.18 we have M;“fk(W; y) = Mgifk(W). The next proposition describes the law
of the unmarked boundary arc of Mgif‘k(W; a) for some range of a, (3.

Proposition 3.9. Supposea > 0, % + B> %, and 8 < Q areas in Proposition 3.7. When a quantum
disk is sampled from M‘Zﬁfk(W; a), the law of its unmarked boundary length is

—(B.B.a) g(ﬁ+§c¢—Q)—1

1050(Q — B)*Ho10) €7 de. (3.9)

Proof. By Lemma 2.11 we have LFg’m)’(ﬁ Ol _ exp, LFf’im)’(“’O), and by Lemma 2.11 and

Proposition 2.7 we have Ll’*‘g"’o)’(’6 D@D _ g *LF(Hf’w)’(ﬁ D@l where f € Conf(IH) is the confor-
mal map with f(0) =1, f(1) = oo, f(c0) = 0. Therefore, the law of v4(R + 7i) with ¢ sampled

from LFf’im)’(a’O) agrees with the law of v,((0,1)) with % sampled from LF%’W)’(ﬁ OB,

Proposition 3.7 and the argument of Lemma 3.3 show that v;((0,1)) has law given by

2—=BL) 2(B+ia—Q)-1 . 4 o . disk
15>0;H 010 t7 2 dt,sorecalling the factor E(Q — )77 in the definition of M55 (W; ),

we obtain the stated result. O
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING | 2681

We note that if a > Q, then the quantum length of the marked boundary arc is a.s.
infinite because the field blows up sufficiently quickly near the marked point. Nev-
ertheless, the unmarked boundary arc a.s. has finite quantum length as shown in
Proposition 3.9.

The functions R and H are closely related as shown in [49, Lemma 3.4]. As a corollary of that
relation we have

B 2Q—-,2Q—p,
H((fj’ﬁo";’ - R(5,1,0)2HEO§’0§3 QP9 foralla,f € R. (3.10)

We now give probabilistic meaning to (3.10) for some range of o and .
We first recall a fact from [3] which will help us define a variant of the thin quantum disk with
an additional a-insertion.

2
Lemma 3.10 [3, Proposition 4.4]. For W € (0, y?) we have

2
MIEW) = <1 - %W) MEKW) X MGEE(y? = W) X MKW,

where the right hand side is the infinite measure on ordered collection of quantum surfaces obtained
by concatenating samples from the three measures.

2
Definition 3.11. Suppose W € (0, y?) and o € R. Given a sample (S;, S,, S3) from

2
<1 _ %W) MgiSk(W) X Mgi?k(yZ -W; O() % Mgisk(W)’
y s

let S be their concatenation in the sense of Lemma 3.10 with « in place of y. We define the infinite
measure M‘thk(W; a) to be the law of S. Let L be the sum of the left boundary lengths of S; and
S3, and the unmarked boundary length of S,. We call L the unmarked boundary length of S.

See Figure 3.1 for an illustration of Definition 3.11. The measure Mgi.sk(W; a) does not naturally
arise in either the quantum surface or the LCFT perspective, but is quite natural in our context.

—(B.8.2)
The next proposition says that H (ﬁf :) describes the law of its unmarked boundary length and
gives a probabilistic realization of (3.10).

2
Proposition 3.12. For W € (0, %), letB=y+ }E] - % €(Q,Q+ %). Suppose o > 2(f3 — Q). Then
the law of the unmarked boundary length L of a sample from Mgifk(W; a)is

—(B.B.a) 3(ﬁ+%cc—Q)—1

1p50(Q —B)*Hg 1) €7 de. (3.11)

Moreover, for u > 0, we have

2 1
MEEW;cle ] = L - pr2m e P (1)
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Proof. By Proposition 3.9 the law of the unmarked boundary length L’ of a sample from M;“fk(yz -

—(2Q—-B,2Q-B,2)
W;a)is }E,H(o,l,o) ¢ ¢b-1d¢ with b = 3(%0: + Q — ) > 0. Therefore for u > 0 we have

M2 — W )]
=200 (2 (1 2lar-p)
=(Q—=p)"*H,10) r(;(z“‘*‘Q—ﬁ))/«” 2

2 1
_7 —24,(20-8,20-B.a) ~(B—Q—3a)
=2Q-BHg, ) K 2

Now by Definition 3.11, for u > 0 we have

2
MW a)[e#E] = <1 - %W) MSEW)[e=HE2]

X MUk — Wi e ] x MEBE W) [e 021,

where L, in MgiSk(W)[e_/‘LZ] means the right boundary length of a sample from MgiSk(W). By
Proposition 3.6, we have

Mdisk W)[e HL2] = 4 R(B:0,
SOMleHh] = 2 S R(E: 0. K)
Y 2@-p)
= —R(;0,1 .
20-5) (B;0, Dur
Using (3.10) we get (3.12), which further implies (3.11). O

4 | SLE OBSERVABLES VIA CONFORMAL WELDING

In this section, we prove Proposition 4.5, which is a conformal welding result. Although the
measures involved are infinite, a constant of proportionality that arises is finite and encodes the
information of the SLE observable in Theorem 1.1.

4.1 | Conformal welding of quantum disks

In this section we recall the main result from our companion paper [3], saying that SLE, (o_; o)
arise as the interface between two quantum disks conformally welded together.

We start by extending the definition of a quantum surface to the case where the surface is dec-
orated by a curve. Recall from Section 2.1 that a y-LQG surface with n marked points is defined
to be an equivalence class of tuples (D, h, z4, ..., z,,) where D C C is a domain, h is a distribution
onD,and z i € oD uD for j =1,...,n. A curve-decorated quantum surface with n marked points
is similarly defined to be an equivalence class of tuples (D, h, z1, ..., z,,1) where 7 : [0,£,] — D is
a parametrized curve on D. More precisely, we say t}iat (D, h, 21,5 2051) ~y (D, h, 21y s 2y 1)
if there is a conformal map f : D — D such that h = f o h, Ej = f(zj) for j=1,..,n, and
) = f(n(0).
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING | 2683

For W > 0, let M‘ziiSk(W; ¢,r) be the measure on weight W quantum disks restricting to the
event that the left and right boundary arcs have lengths ¢ and r, respectively. More precisely,

Mk = // MKW ¢,r)de dr. (4.1)
0

In particular, |M§“Sk(W; ¢,r)|d¢ dr is the law of the left and right boundary lengths, and the nor-
malized probability measure MgiSk(W; t,r)*is M‘ZliSk(W) conditioned on the boundary lengths
being ¢,r. The identity (4.1) a priori only specifies MgiSk(W; ¢,r) for almost every ¢,r. But a
canonical version of {M‘ZliSk(W; t,r) : £,r > 0} can be chosen such that it is continuous in ¢, r
in a proper topology. See [3, Section 2.6] for details.

For fixed ¢,r, x, a pair of quantum disks from M‘ZliSk(Wl; t,x) X MgiSk(Wz;x, r) can a.s. be
conformally welded along their length x boundary arcs according to quantum length, yielding a
quantum surface with two boundary marked points joined by an interface. This follows from the
local absolute continuity of weight W quantum disks with respect to weight W quantum wedges,
and the conformal welding theorem for quantum wedges [21, Theorem 1.2]. See for example [21,
56, Section 3.5], or [29, Section 4.1] for more information on conformal welding in the setting of
LQG surfaces.

For W1,W, > 0, we now define an infinite measure MgiSk(Wl +W,;¢,r) ® SLE (W7 —
2; W, — 2) on curve-decorated quantum surfaces. When W; + W, > g we first sample ¢ such
that the law of the (S, ¢, —c0, +0) viewed as a quantum surface is MgiSk(Wl + Wy ¢,r) and
then independently sampling an independent SLE,.(W; —2; W, —2) curve 7 in (S, —0c0, +00)
and parametrize 7 by its quantum length. We denote the law of the curve-decorated surface
(S,¢,n,—00,+00) by MgiSk(Wl + W, €,r) ® SLE,(W; — 2; W, —2). When W, + W, < é, we
first sample a quantum surface with the topology of a chain of beads from MgiSk(Wl + W, €,r),
then decorate each bead by an independent SLE, (W, — 2; W, — 2) between the two marked points
of the bead. We denote the law of this chain of curve-decorated surfaces MgiSk(Wl +Wyt,r)®
SLE, (W, — 2; W, — 2).

The next result shows that the conformal welding of two quantum disks gives the type of curve-
decorated surface defined above. For W_,W, > 0and ¢, x,r > 0, we write

Weld(MISKW_; ¢, x), MIK(W ,; x, 7))
for the measure on curve-decorated quantum surfaces obtained by first sampling (D_,D,)
from M‘ZhSk(W_;f,x)XMSIISk(WJr;x, r) and then conformally welding D_, D, along their

length x boundary arcs. This conformal welding is a.e. well defined; see [3, Theorem 2.2] for
details.

Proposition 4.1 [3, Theorem 2.2]. Suppose W_, W > 0. There exists a constant cyy_y, € (0, 00)
such that for all €,r > 0 the following identity holds as measures on the space of curve-decorated
quantum surfaces:

MIK(W_ + W, €,r) @ SLE,(W_ — 2, W, —2)

=cW_,W+/ Weld(MgiSk(W_;€,x),M§iSk(W+;x,r)) dx.
0
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2684 | ANG ET AL.

4.2 | Conformal welding of M%** and MJ**

2 . . .
For W > Owith W # %, let Mngk(W; t) = fooo M‘ZhSk(W; ¢,r)dr. Then {Mngk(W; )} is the
disintegration of M‘ZiiSk(W) over its left boundary length. Namely samples from MgiSk(W; )
have left boundary length ¢ and MgiSk(W) = fooo MgiSk(W; ¢)d¢. Recall Mgif‘k(W; a) from Def-
initions 3.8 and 3.11, where we insert a third boundary marked point. We now give a concrete
description of its disintegration over the unmarked boundary arc length. We start from the thick

2
disk case W > y?

2
Lemma 4.2. For W > y— ,f=Q+ g - % and a > max(0,y — 2p), sample h from Pg (the GFF

on S). Let h=h—-(Q- 5)| Re-| + ZGS( 0) and L = vi(R + 7i). For ¢ >0, let LF(ﬁ r00),(.0)
be the I R+ 2log & under th ichted 2_57(B+7_Q) ' dh disk (7. - ¢
e the law of +; og T un er the reweighted measure 7(5 o Pg(dh). Let M W;a;t)

be the law of the marked quantum surface (S, ¢, —co, +oo,0) where ¢ is sampled from g(Q -
ﬁ)_ZLFEf’;w)’(a’O). Then samples from Mgifk(W; a; ¢) have unmarked boundary arc length ¢ and

MKW ) = / M Wiaié)df  and
0 (4.2)

. —(B.B.) (ﬁ+ Q)-1
IMIKW e 0)] = (Q — B Higho €7 2

Proof. The first assertion is clear since v

2 logl (]R + i) = —vh(]R + 7ri) = €. We now prove that
}’

Brroo)@0) _ [+ nBrtoo)(@0)
LFY = /0 LF de. (4.3)

For any nonnegative measurable function F on H~!(S) we have

B+5-Q)-1

2

/ / <h+ 2 og )”y — P(an)dt = / / F(i + 0)e®* 379 de po(dh)
-(ﬁ R

using Fubini’s theorem and the change of variables ¢ = ;%log g. Therefore (4.3) holds. By Def-

inition 3.8 of Md‘Sk(W «), we have MdlSk(W a) = f “ Mgifk(W;cx; £)d¢. The second identify
in (4.2) then dlrectly follows from Proposmon 3.9. O

2
Ifwe (0,%), =0+ }2—/ - %, a > 0 and %cx > B — Q, then for each ¢ > 0 we can similarly

define the corresponding measure Mgifk(W; a; ¢) on quantum surfaces with unmarked boundary
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Q) =

W+ W,

FIGURE 4.1 Proposition 4.5when W, > § Left: Illustration of (4.6). Right: Definition of ¢,.

arc length ¢ via

. 2 . .
M) == 2wy [ [ g x Mo - wiaiy)
’ 14 o Jo ’
X MgiSk(W; £ —x—y)dydx (4.4)
where the integrand is understood as concatenation of surfaces in the sense of Lemma 3.10.

2 .
Lemma 4.3. For W € (0, L), (4.2) still holds with the MYSX(W'; a; €) defined above.
2 2.

Proof. The first claim is immediate from Definition 3.11, and the second then follows from
Proposition 3.12. O

Recall that the special case of Mgifk(W; a) with a =y is Mgifk(W) from Definition 2.17. We

now give a variant of Proposition 4.1 for Mgifk(W; 7). The Weld notation in our next two results
is used analogously as in Proposition 4.1.

2
Lemmad4.4. ForW_,W_ > 0withW,_ ,W_+W_ # y? there is a constant cy,_yy, € (0, o) such
that foreach ¢ > 0

MIKW_+ W57;6) @ SLE(W_ -2, W, —2)
= [ Weld(MIHOV_3 £, MW7) ax “
0

Proof. In Proposition 4.1, sample a marked point from quantum length measure on the boundary
arc of length r (thus weighting by r). The result then follows from Proposition 2.18 or Lemma 3.10,
depending on whether the quantum disks are thick or thin. O

We now extend Lemma 4.4 to Md‘Sk(W a); see Figure 4.1 for an illustration. We first introduce
an o variant of SLE, (W_ — 2, W, — 2) Given a curve s on S from —oo to oo, let D be the connected
component of $\7 containing 0 on its boundary, and let,, : D — S be the conformal map fixing
0 and sending the first (resp. last) point on 0D hit by 7 to —oo (resp. +o0). For a € R, let A(a) =
2Q-%). For w_, W, > 0, we define the measure m(W_, W_, a) on curves on S such that its
Radon-Nikodym derivative with respect to SLE,(W_ — 2; W, — 2) is:

dm(W_,W,,a)
dSLE.(W_-2,W, —2)

() = 9404

dny) suonipuo) pue sud |, 3y 39 *[+707/S0/S0] uo Areiqry aurjuQ LI “erurA[Asuuad JO Ansioarun £q 0817z edd/z001 01/10p/wod Ka[im Kreiqijaur[uoy/:sdny woij papeojumod ‘S “+20g ‘T1£0L601

Kot

1 10y K1e1qr] SUIUQ Ad[IAL UO

ASURDI SuOWWOY) dANEAI) d[qeorjdde oyy £q pauraA0F are sa[oNIE () 95N JO saf



2686 | ANG ET AL.

2 .
When W_+ W, > y? we define Mglfk(W_ + Wi, €)@ m(W_,W,,a) in the exact same
way as Mgifk(W_ +W,;7:€) ® SLE (W_ — 2; W+ - 2) in Lemma 4.4 with m(W_,W,,a) in
place of SLE (W_ —2; W, —2). When W_ + W, < —, we still define Md‘Sk(W +Woo0)®

m(W_,W,,a) as a chain of curve-decorated quantum surfaces as Mglfk(W_ +Wior0)Q
SLE (W_ —2;W, —2), except that for the quantum surface containing the additional
boundary marked point, we use m(W_, W, «) instead of SLE,.(W_ — 2; W, — 2) to decorate that
surface.

2 2
Proposition 4.5. For W_ > 77 and W, >0with W, # y?, there is a constant cw_w, € (0, )
such that foralla € Rand ¢ > 0

MIEW_+ W a6) @ m(W_, W, a)
=, [ Weld(MESEOV 0, MKW i) d 0
0

In the next section we will use Proposition 4.5 to compute |m(W_, W,,a)|, which equals
E[¢/(0)!~2(®)] by definition. The key to the proof of Proposition 4.5 is the following lemma based
on Girsanov theorem.

Lemma 4.6. Let a;,a,, 8 € R and ¢ > 0. Then we have the weak convergence of measures

l(or az) (ap— “1)

$(0)y (B0l (e1.0) 4 1 _ 1 p(Bito0).(@2.0)
LFy (d) = LF,; , (4.7)

1, 2 2y (xp-a1)
=(a5—a
and moreover |£4( 27%)

0.(1) converge to 0 uniformly in €.

90 LFﬁfoo)’(a"o)(d@l / |LF2’;°°)’(“2’O)| = 1+ o.(1) where the error

Proof. When ¢ is sampled from (LF(ﬁ oo).(a, 0))#, the law of ¢ + glogf is (LF(f’g‘roo)’(a’O))#.
Moreover, by Lemma 4.2

(0(2 0(1)
Ly o). (B, +oo) (@1,0)
LF d (B,£00),(ct2,0)
¢ ( ¢)‘ _ |LF5,£ ’ | 2+ 2-Q-1
(ap—ay) - (B,%£00),(a3,0)
. ¢5(0)LFf,lioo>,(al,o>(d¢)‘ |LF5’1 2

Therefore, it suffices to prove (4.7) for ¢ = 1. To this end, for ¢ > 0, let G5 .(z,0) := E[h(2)h.(0)].
For a distribution &, let i/ 1= h—(Q — B)|Re-| + %Gs(-,o) for j = 1,2, and let k¢ :=h! +

—aZ;al Gs.. Let f be a bounded and continuous functional on H~'(S) (see Remark 2.3). Then

12 2y @) 710y_2 |00y~ i ~ 2
/2:4(0(2 e O Ogvhl(]R+7fl))f<h1 _ ;10gvﬁl(1&+ﬂi)>

a

2
E+3-0p_(dh)

%Vﬁl (R + 7i) 7
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING 2687

—-a _1 ar—a —_~
- / 1+ 0.(1)E [e_zz 1’15(‘”] ez he©® f<h1 - ilongl(JR + m))

a2
;vhl(]R £y 185V (an)
—2(B+2-Q)
/(1 +o0.(1)f (h“ — = logvp.(R + m)) —Vip.R+mi) v 2 TPg(dh)
e-0 = 2p+2-Q)
— [ flho—== logvhz(IR+ i) ;vhz(]R+ i) v Ps(dh)

/ FOLES =0 )

In the first equality, we are using that the average of —(Q — 8)| Re | + %G s(-,0) on 6B, (0)N S
Lo} — L, —ar)?

is —o loge + 0.(1), and E[e 2 hf(o)] =1+ 0.(1))e +@27%)° The second equality uses Gir-
sanov’s theorem, and the final limit uses the dominated convergence theorem and v;;z(lR + i) =
(1 + 0. ())vj2 (R + 7i) with error o,(1) uniform in h (indeed sup,, , ., 1Gs(2,0) — G5 ((z,0)| =
0:(1)). Since f can be arbitrary we obtain (4.7) for ¢ = 1. O

Proof of Proposition 4.5. We will weight (4.5) to obtain the proposition. We explain first the case
2 2
W, > y?, then the modifications needed for WJr < y—

2
Consider W, > y— and let B, =Q+ Z - ,8 Q+ £ — —. Sample (Y,n) from y(Q—

B)~ ZLF(ﬁ £e1r0) o SLEK(W -2,W, - 2) SO the surface (S Y —00, +00,0)/~, has law given
by the left hand side of (4.5). Let £, be the map from the connected component of S\7 containing
the boundary arc Rzi to S such that &, fixes +oco and 7i. Set

X = Yoy, ! +Qlog|; |,

Z=Yot, + Qlog|(§,;1)’|. (4.8)

. 2
By Lemma 4.4, the conditional law of (S, Z, +c0)/~, given X is Mg‘Sk(%; t,vx(R + mi))*, and
the marginal law of X is

o0 o0 2
w_w, / / R(B1:1,00x 7" S@Q- B)‘ZLFf;’_”)’(ﬁ # )00 gy (4.9)
0 0

V(Q _ B)—ZLFFer’_oo)y(5+v+°°)y(y,0)

Here, the expression > comes from Proposition 2.18, and the

2
prefactor arises from the weighting induced by welding since |MgiSk(W_; €)| = R(By;1,0)¢ 7 V- .

a-y
By Lemma 4.6, if we weight the law of (X, Z) by 54(“ - ) = %0

X converges to

,as € — 0 the marginal law of

0 2
Cw_w, / R(B1;1,0)x ?W*E(Q—5)—2LFEﬁ;"W)'(m'*"")'(“’O’ dx, (4.10)
0
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2688 | ANG ET AL.

and moreover the conditional law of (S, Z, £00)/~, given X is still MgiSk(YZ—Z; t,vx(R + mi))* in
the limit.

For ¢ € (0,1) let 6, denote the uniform probability measure on dB.(0) N S such that we have
h,(0) = (h,8,). Let 6] = (¥, ").6; denote the pushforward of 6 under ;. By Schwarz reflec-
tion we can extend ¥, 1. S$ — S to a holomorphic map f from R x (=7, 7) to itself. Since f” is
holomorphic, log | f’| is harmonic and hence (log | f'|, 6;) = log | f/(0)| by the mean value property
of harmonic functions. Thus, by (4.8)

X(0) = (Yo' + Qlog|(;")'1,60) = (Y, 67) + Qlog |(3;, ") (0)], (4.11)
Log2_y2y &1
and so weighting X by g3 @ )3 X0 corresponds to weighting (Y, ) by
. 1@y N
1o 2 2y a7V ny_ ’ a-y Ul 1 2 @
54(a Y )e P ((Y’es) Q10g|¢n(0)|) — ,E e 2 (Y’es) . |'(,b7’7(0)|4a 20¢+1' (412)
¥(0)

Now we note that for any fixed curve 7, in S U 05 from —oo to +oo that does not hit 0, we have a
distortion estimate |(,1)'(2) — () (0)| /1(%;,') (0)| = 0,(1) for |z| < &, with 0,(1) not depend-
ing on 7. This follows for example from [39, Theorem 3.21], which gives the analogous bound for

interior points and can be applied to 1/),;)1 after extension by Schwarz reflection. Thus, when h is
a-y ) _(ﬂ 2
sampled from P we have E[e 2 (kO )] =(1+ o.(1))( 7 E(O)) 2~ where 0.(1) does not depend
10

on 7. Using this fact and the argument of Lemma 4.6, we obtain Lemma 4.6 with ¢ replaced
by ¢ /ngo (0) and ¢, replaced by (¢, 8.°), where the o.(1) errors do not depend on 7,. Therefore,
for any bounded measurable function g on the space of curves in S from —oo to +oc0 equipped
with the Hausdorff topology and any bounded continuous function F : (H~!(S))* —» R we

have
1@=r?)
a—y vl
lim / / £ ez Y9pxY,2)
e—0 zpn(())

L@ - p2LF 00y )symW_, W, a)dn)

N

- [([ P& 725 pr o 0w ) gimow W o),

where X, Z (resp. X, Z) are the functions of (Y,7) (resp. (Y, 7)) given by (4.8). Thatis,ase€ - 0
the weighted law of (X, Y, Z,7) converges to the law of ()? Y. Z ,7). Thus, when (7, 7)) is sam-
pled from g(Q - ﬁ)‘ZLFff‘”)’(“’O) x m(W_,W,,a), the law of X is (4.10), and the conditional

~ ~ . 2
law of (S, Z, +00) given X is Mg‘Sk(%;f ,vx(R + 7ri))*. This concludes the proof in the case
}’2
W, > L.

2
For the case W, < y? the quantum surface to the right of the curve is no longer simply
connected. By Lemma 3.10, this quantum surface can be described as the concatenation of
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING 2689

(D4, D., D,) sampled from

2 2
R(B1:1LOL 7~ <1 - %W+> MKW ) x MP(r? = W) x MGSKW ), (413)

where L is the sum of the left boundary lengths of (D,,D.,D,). Parametrizing D, as
(8,X,—00,+00,0), and arguing exactly as before, we obtain the proposition. N

5 | THE SHIFT RELATIONS AND PROOF OF THEOREM 1.1

In this section we use the welding equation from Proposition 4.5 and the integrability for quan-
tum disks from LCFT and mating-of-trees to prove Theorem 1.1 as outlined in Section 1.3. In
Section 5.1, we recall the mating-of-trees theorem for the quantum disk which gives the joint
law of the boundary lengths in M‘ziiSk(z). Using this theorem we further derive the analogous

. 2
result for Mg“k(%). In Section 5.2 we obtain Theorem 1.1 in the cases where 5_ corresponds

to W_ e{ ﬁ, 2} and B, to generic W . This is based on exact results on the length distribution
of quantum disks from Section 5.1 for the two special weights, and the ones from Section 3 via
LCFT for generic weight. Finally, we derive shift relations in Section 5.3 and complete the proof of
Theorem 1.1.

5.1 | Integrability of weights 2 and y?/2 quantum disk via mating
of trees

Although Lemma 3.3 and Proposition 3.4 and their thin quantum disk counterparts uniquely
characterize the total mass of Mg‘Sk(W; ¢,r) in terms of the reflection coefficient R, it is quite
complicated in general. For W € {2,y?/2}, we have a much simpler description from [3].

Proposition 5.1 [3, Propositions 7.7 and 7.8]. For ¢,r > 0 we have

4

2 4/y*—1
disk /. _ -1 disk [ V. _ (r)
M52 €, 1) =C (¢ +r) ¥ and ‘Mz ( > ,f,r)‘ = CZ—(€4/y2 pyaes

The following proposition gives the values of C; and C,; we do not need it for the rest of the
paper but include it for completeness.

Proposition 5.2. For¢,r > 0 we have

4
2 4
@r)r ¢+ "7 1’

1-ora-or

2_
Mcziisk y_z;f’r = iw
2 V2 (47 4772

| M35 6,7)| =
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2690 | ANG ET AL.

Proof. By Lemma 3.3 with W = 2, the law of the quantum length of the left boundary arc of
4
MgiSk(Z) is 1,50R(y,1,0)¢ 7> with R(y,1,0) as in (3.4). By Proposition 5.1, we have

C17’2
4 ’

_ 00 4
R(y,1,0) :/ Ci(1+r) ¥ dr=
0

and applying the shift equations (3.2) to (3.4), we have

1 2

emP ) TF @ )
14 2 2 2 Y

R(y,1,0) = _ 2
(1-Lra-Lye" nQ@r -1

4

Y2 Qm)7?

7

4 2 2 =
_r — Y2
(1 -Lyra- Ly

2
This gives C;. Similarly, by Lemma 3.3 with W = y?, the law of the quantum length of the left

. 2
boundary arc of Mg“k(y?) is 1,5¢¢~'d¢. By Proposition 5.1 and using the change of variables

(o] 4/)/2—1 C 2 (&) C 2
1 =/ C, ! ——dr = 2r / 1 _ Lo .
o (@+r¥ry 4 Jy A+ 4 O

5.2 | Special cases of Theorem 1.1

2
t = r*7" we have

. . 2
In this section, we leverage exact formulas for |M§‘Sk(2;€,r)| and |M§1Sk(y7;6’ ,r)| to show

Proposition 5.6, which is Theorem 1.1 in the cases where x € (0,4) and p_ € {0, g}.
We will use the parameters from LQG and conformal welding to express the moment in
Theorem 1.1. More precisely, for y € (0,2),A € Rand f_,3, < Q + % we set

my(B-,B4) := E[p'(1)}] (5.
where E[¢/(1)*] is the moment in Theorem 1.1 with
k=y"€(0,4), p_=y*—yp->-2, and p =y’ -yB, > -2 (5.2)
We first make some basic observations on m}’}([a’_, By).

Lemma 53. If mf,‘(ﬁ_,,8+)<oo and 1< then m}’}(ﬁ_,ﬁ+)<m}’,1’(ﬁ_,ﬁ+). Moreover,
m(B-B.) = 1.
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING | 2691

Proof. From the definition of 1, we see that 1’(1) > 1 a.s., giving the monotonicity property. The
second observation is trivial. O

Since we can conformally map from (H,0, 00,1) to (S, —o0,+00,0), from the definition of
m(W_, W, a) above Proposition 4.5, we see that

Im(W_,W,,a)| = m}’}(ﬁ_,ﬁJr) with W, = y(y + ; - ,Gi>. (5.3)

Now we can compute m;}(ﬁ_, B+) by computing |[m(W_, W, a)| via Proposition 4.5. Based on this
idea, the following lemma computes m)’}(y, B4) for B, # Q and a certain range of 1, modulo a 3 -
dependent multiplicative constant. The range of A below does not contain 0. Later we will remove
this restriction so that the constant can be recovered from m;‘)(ﬁ_, By =1

Lemma 5.4. For any 8, € (—0,Q)U(Q,Q + g) and o € 2|f4 —Ql,4Q —2B,), set A=1—
%(Q — %). Then there is a constant C = C,(B,) € (0, oo) not depending on a such that

1(7 5+)—C(5+)F< <Q Bi+ > “>>F(§<2Q—ﬁ+_%“>>- (5.4)

Proof. Set W_=2and W, =y(y + Z_ B+) and consider Proposition 4.5 with these parame-
14

ters. Set 8 =B, — }2—/ so that W_+W,_=y(y + }% — f). By Proposition 3.9 and (5.3), since a >
0V 2(Q — B,), the unmarked boundary arc’s length of a sample from Mgifk(W_ +Wo00)Q

2 1
m(W_, W, a) has the power law distribution 1x>06x7(5+2a_®_1dx where
—(B.B.a) —(B.B.t)
C=(Q-p)2Hr0) IMW_,W,,a)| =(Q—p)” 2H(010) my(}’ B4 (5.5)

We now evaluate € via the right hand side of (4.6). By Proposition 3.9 if 5, < Q or Proposi-
tion 3.12 if B, € (Q,Q + }—2,), the right hand side of (4.6) gives, with C= 5y(ﬁ+) a constant not
depending on a,

— (B Brt) (B, +ia—0)-1
6 =cy . / IMIEE1,6)] - (Q — o) 2Ty v Pt
0

e T (25 ) (2 (r0m5 - 2a)).

4
The second equality follows from |MdiSk(2 1,0)| « (1 +t )_ Za. (Proposition 5.1) and the beta

L)) _ poo 2 B o
TGety) A (1+€)x+y d¢ for x = (5+ + 06 Q) >0and y= (2Q By —

%a) > 0. Here, we absorb the constant cy,_y, into Cy(ﬁ+). Note that the hypotheses of Propo-
sition 3.9 (if B, < Q) or Proposition 3.12 (if B, € (Q,Q + }2—/)) and the inequalities x,y > 0 all hold
because of our conditions on «a, 3.

d¢

function integral
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Comparing (5.5) and (5.6), we get

(. B1) = G, (B (@ — ﬁ)2r(§ (5+ +la- Q>>

—(:6+ )ﬁ+ ’“)
2 1 H,1,0)
(a2

(0,1,0)

. . . —BsBrc) —(B.p.a)
Using the shift relation (3.2) forT'y and 8, = 8 + 2 we can express H (03,0; /H,1,0) as
2 14

" I @-B? T1@Q By + i) Ty (B, + a -

27 2

(%)ém_é) Fg(Q—ﬁ+)2 rg(Q—6+§a) Fg(f>’+§fx—§)

LC@Q =By + 50

= C,(62)
TICE + - Q)

14

T/(0- By +2) 26—
PN 27 3 y 2\7
where C,(8,) = > — <—> .
2 4
Setting C, () = 57(,6+)€7,(ﬁ+)(Q — B)? we conclude the proof. O

The following lemma is the counterpart of Lemma 5.4 with 5_ = Q instead of 3_ = y. The proof

. 2 .
follows the exact same steps as that of Lemma 5.4, with Mg”k(%) in place of Mg“k(z).

Lemma 5.5. Let 3, € (—,Q)U(Q,Q + %). Letax € 2|B4 —0Q],4Q —2B,)and A =1— %(Q —
%). Then there is a constant C = C,(8.) € (0, o) not depending on a such that

m?;(Q’ﬁ+) = Cy(ﬁ+)r<g<Q _ﬁ+ + %O())F(g(zQ _ﬁ+ - %O())

Proof. This proof is essentially the same as Lemma 5.4. We consider the density of the unmarked
boundary arc length of a sample from M‘zhfk(W_ + W a;0) @ m(W_,W,,a), which is given by

2(B+3a-Q-1

1,50Cx7 dx with

—(Bp0)

€ =(Q—-p)*H0) Mmy(Q,B;), wheref =g, — g

We now use Propositions 4.5 and 5.1 to compute the € from the right side of (4.6). By Propo-
sition 3.9 if 5, < Q or Proposition 3.12if B, € (Q,Q + g), the right hand side of (4.6) gives, with
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INTEGRABILITY OF SLE VIA CONFORMAL WELDING 2693

C= 57,([3+) a constant not depending on a,

°° : 2 —(BrBer®) 2(By+ia—Q)-1
S =cw_w, / |M3“k<%;1,f>|-(Q—/3+>—2H<03,0§ ey de
0

~ —(B4B4,) 1 1
=Cy(B+)H(o,1,0) F<% <5+ +t5a- Y>>F<g <2Q — By - zoc)),

4

2 z
where the second equality follows from |M§‘Sk(%; 1,0)| < i — (Proposition 5.1) and the

a+¢77 )2
4
_ -1 —Zx—l
beta function integral fore—x _ Ooo t—z t= iz fooo N—4 dt with the change of variables
I 1+1) 4 (472

t = ¢47" and with x = %(,BJr + %oc —7) € (0,2). Note that the hypotheses of Proposition 3.9 (if

B+ < Q) or Proposition 3.12 (if 8, € (Q,Q + %)) and the bound x € (0, 2) all hold because of our
conditions on «, 3, .
The rest of the argument is identical to the proof of Lemma 5.4 except this time

—(B1B10) _ ry2
ore ot F2Q—f++3)
T (@Q—ps)

(Z > %(2.3+_V_Q)
—(B.) el 2 2
Ho,1,0 (%) “T(1 - y;)

rEQ -8y +3a)

T+ la—7)

since 5, — 8 = % instead of 2. We omit the rest of the details. O
14
The following is equivalent to Theorem 1.1 for ¥ < 4 and p_ € {0, g -2}

Proposition 5.6. Let 3, <Q+ % and let Ay = %(p+ +2)(oy +4-— g) where x = y? and p, =
y? —yB4. For A < A, let a be either solution to 1 — %(Q - %) = A. Then

C@Q~ By + ;0NTCQQ =By — )
2 y 2 2
FCQ= B4+ IICQ— By +2))

m;//l(y7 ;8+) =

r@Q - B, + 3ertQ - B, — 50)
r¢@-g, + rd@-g.+2)
14

mf/'(Q! ;8+) =

Proof. We prove the m}’,1 (v, B+) identity using Lemma 5.4; the proof of the m}/}(Q, B.)identity using
Lemma 5.5 is the same.
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First fix any 8, # Q. By Proposition A.1 m;,l(y, B4) < oo forall 1 < Ay, so we can apply Morera’s
theorem and Fubini’s theorem to see that A — m}% (¥, B+) isholomorphicon{l € C : Rel < Ay}
By Lemma 5.4, this function agrees with the right hand side of (5.4) for some interval in R, so by
the uniqueness of holomorphic extensions (5.4) is true for all 1 € R with 1 < 4. Setting 4 =0
and o = y, we deduce that C(8,) in Lemma 5.4 equals F(%(Q — B+ }2—/))_11“(}%(Q — B+ }—2/))_1,
completing the proof for 5, # Q.

When 5, = Qand A < 0we obtain the result from the 3, # Q case by taking the approximating
sequence (x", p", ) = (c,y* —yB_,y* —yB}) with ;. :=Q — % in Lemma A.3. Then the same
holomorphic extension argument as above allows us to address all 1 < A,. [

Remark 5.7. The expressions in Proposition 5.6 can be written as hypergeometric functions:

m} (v, B) =2F1(§(% - g);(% - §>’§<Q_ﬁ++ %>;1>’

@) =n(5(5-5)5(3-3) He-s+5))

It would be interesting to derive these hypergeometric functions from differential equations,
similarly to some other SLE formulas, see for example [39].

5.3 | Proof of Theorem 1.1 via shift equations

In this section we complete the proof of Theorem 1.1. We first state a composition relation for mf,‘,
2

then derive shift relations, and finally show that these relations determine m;.

Lemma 5.8 (Composition relation). For 3,5_,5, < Q + g and A < 0, we have

4 14
mi(B+B--Q-L.8.) =m}(B.p_ +B8, — Q- L )mi(s_.B,).
Proof. Letp =y* —yB, p, = y*> — yB,. Independently sample an SLE, (po; o_ + p, + 2) curve 7,
and an SLE,(p_;p,) curve 7, in H from 0 to oo, let D; be the connected component of H\7;
containing 1 on its boundary for j = 1,2, and let ; : D; — H be the conformal map such that
$;(1) = 1 and the first (resp. last) point on dD; traced by 7; is mapped to O (resp. c0). Let 7 :=

zpl_l(nz) and ¥ := ,01;. The theory of imaginary geometry [41, Proposition 7.4] tells us that the
law of 7 is SLE,(p + p_ + 2; o). Thus, since 3'(1) = zp;(l)zp;(l) and ¥, ¥, are independent,

mi(B+6-— Q- L8, ) = By (1] = By, ) B[]
= m(8.8-+ B —Q— L )mi(B. ).
Here the assumption 4 < 0 ensures the finiteness of the two sides. |

We immediately deduce the following shift relations.
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Lemma 5.9 (Shift relations for mf,‘). Forf_,By <Q+ %, A < 0andaasolutiontol — %(Q — %) =
A’

my (8-~ >, B.)
m;/}(ﬁ—u3+)
(a0 -3 o) (0 -5 o)
r(2eQ+r-p-—80)r(36Q-p--5.))

b

my(- — . B4)

m;/}(ﬁ—u8+)
iGort -5 g e e (0 5o )
) r(@Q+7 -6~ B0)r(LGe B~ 8)) |

Proof. For the first identity, set § = y in Lemma 5.8, then use Proposition 5.6 to eliminate the term
mf,‘(y, B_+pB.—Q— %). For the second identity, set 8 = Q in Lemma 5.8, then use Proposition 5.6

to eliminate the term m}(Q, 8_ + B — Q — %), 0
We now use the shift relations to prove Theorem 1.1 in some regime.

Proposition 5.10. Theorem 1.1 holds when x € (0,4)\Q and A < 0. Namely, using the identifi-
cation of parameters from (5.2), for y> = x € (0,4\Q, f_,B, <Q + %, A < 0and a a solution to

1-— %(Q - %) = A, we have

F§(2Q +y—-B-— ﬁ+)rg(3Q —B-—B4)

Fr2Q+5 = fo = fi+ 5001 (3Q+ 5 —fo— 4 = )

my(B—,Bs) =

T7(Q =By + ;007 (2Q = By = 50)

> > (5.7
1_‘g(Q - ﬁ+ + E)FLZ’(Q - 5+ + ;)
Proof. We first show that there is a function ¢(3,., @) such that
m;/}(ﬁ—’ ;8+)
ry2Q+y—B-—BIrr(3Q—p-—B4)
= c(Bs ) 2 : 58)

rQQ+L—p —f.+10rr(Q+L-p -, - 1)
2 2 2 2 2 2

Let ﬁ}’} (B_, B,) denote the right hand side of (5.8) divided by c(B., ). Using the shift relations of
I'y (3.2) it is easy to check that the equations of Lemma 5.9 still hold when m}% is replaced by ﬁi}’}
2
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Consequently, forall 5,,6_ < Q + g we have

M- =18 mip_p)  miB-—L.p.)

B = 2.6 BB B - L8

Keep B, fixed. Since y? ¢ @, starting from S_ = 0 and making upward jumps f_ +— f_ + }E/ and
downward jumps f_ — f_ — g, we conclude that for 8_ in a dense subset of (—o0, Q + g) we have
mA(B_, B)/ (B, B+) = mH(0, B,)/m} (0, B1) =: c(B, ), that is (5.8) holds for a dense set of
p-€(-0,Q+1%).

Since 4 < 0, by Lemmas 5.3 and 5.8 we have m}’}(ﬁ_ —(Q+ g —-B)By) = m)’,l(ﬁ, B_+pB.—0Q-—

g)mf,‘(ﬁ_,&r) < mf,‘(ﬁ_,[3+) forall < Q+ g, S0 m}’}(ﬁ_,ﬁJr) is monotone in B_. The right hand
side of (5.8) is continuous in 5_, so by monotonicity we can extend (5.8) from a dense set to the
full range B_ € (—00,Q + g). Thus we have shown (5.8).

Now, both Proposition 5.6 and Equation (5.8) give expressions for m;}(Q, B.), in the latter case,
in terms of c(8, , ). Comparing these yields

rg(Q +v7 - ,8+)1"%(2Q - B+)

PrQ+5 = fi+ 50T (Q +5 = By = Sa)

c(By,a)

_TEQ= s + 3IGQ —B, — S)
P

FEQ =By + IIMGQ - By +2))

We may simplify this using the shift relations for I'y to get
2

I2(Q =By + 3002 (2Q - By — 5)
e(By o) = = 2 ;
F%(Q - B+ + E)F§(Q - B+ + }‘,)

k]

and eliminating c(S.., ) from (5.8) gives (5.7). O

We now extend Proposition 5.10 to all rational x € (0,4] by continuity, to all 4 < 4, by
holomorphicity, and to all x > 4 by SLE duality, thus proving Theorem 1.1.

Lemma 5.11. Theorem 1.1 holds for x € (0,4] and p_, p, > —2.
Proof. We first prove the result for 1 < 0. Extend the definition of m}’} in (5.1) to y = 2; this is the
only place in the paper where we consider y = 2 (corresponding to ¥ = 4 and Q = 2). As before,

for each y € (0, 2] it suffices to prove (5.7) forall B_, 3, < Q + g
We first show that

(5.7) holds for x € (0,4],4 < 0,{B_,B;+ < Q}uU {B_ =7,B <Q+ g} (5.9)
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Forx = y? € (0,4],4 < 0,and B, < Q, (5.7) follows from Proposition 5.10 and Lemma A.3 applied
to the sequence (x", ", o) = (x", p_, p,), where (x"),>; is an increasing sequence of irrational
numbers with limit x, and p!} = p, = 72— vB. Likewise, when x € (0,4], 1 <0, and p_ =
0,0, € (0, g — 2),(5.7) follows from Proposition 5.10 and Lemma A.6. Thus we have verified (5.9).

Now consider any f_,8, < Q + g and 4 < 0. Using Lemma 5.8 yields m}’}(y, B_+B.—Q—
g)m}’}(ﬁ_, By)= m;}(ﬁ_ — 3 B+) and, for any sufficiently negative § < 0,

m¢<5,5+ - §>m¢<y,ﬁ+> = m (/3 - §ﬁ>

2 2
= m}’,l<y+ y +B—B_.B-+B+ —2Q>mf}<5— - }—/,:8+>-
Eliminating m}’}(ﬁ_ - )2/ B) yields

m(B, By — 2)m(y, By)
my (B, ) = 5 : : (5.10)
mi(y + SHB—B B +B - 2Qmy (. f-+ B+ —Q 1)

For 8 negative enough, each of the four factors on the right side of (5.10) can be evaluated by (5.9),
which gives meromorphic functions in f_ and 8, on a complex neighborhood of (—c0, Q + }—2').

This means that m}’}(ﬁ_,,&r) is meromorphic in f_ and S, on a complex neighborhood of
(—0,Q + g). This shows that (5.7) holds for all B_, 8, < Q + g and 1 < 0.

Now, we extend from A < 0 to the full result. Indeed as in the proof of Proposition 5.6, by holo-
morphic extension in 4 (5.7) holds for all 1 < 1y = —(,oJr +2)(oy +4— —) For A > A, and € > 0,

by Lemma 5.3 we have m’l(ﬁ ,By) = m’10 ‘(B ,6’+) Slnce Ao is achieved when a=2(B; —Q),by

the explicit formula in (5.7), we have lim,_, o, my “¥(B_,B,4) = oo hence m;}(ﬁ_, BL) = . O
The following lemma treats the case x > 4 using SLE duality.
Lemma 5.12. Theorem 1.1 holds for x € (4, ), p_ > —2 and p, > g —4.

Proof. By SLE duality (see [65, Theorem 5.1] and [41, Theorem 1 4]) the rlght boundary of an
SLE,(po_ ,o+) has the law of an SLEz(p_;p,) curve, where ¥ = — S < 4, p_ = 5 -2+ 4,o_ and

pr =K+ Zp+ — 4. Hence when 1 < 1, = %(,o+ +2)(oy +4— 5), by Lemma 5.11 we have

E[y/' (1)} = M,
F(VK,%,0_,04+)

where & solves
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Once can easily verify that 1, = 4,, and
(5.11)

The last identity above means we can take o = @. Comparing F(a,x, p_, 0,) and F(&, %, p_, Py ),

using (5.11) we can pair up their terms so their arguments agree. Since I’ N ke r N 4 =

=l

we get termwise equality. Thus F(«, x, p_, p4) = F(&, %, p_, ), and similarly F( \/1;, K, P_,Py) =
F( \/'—f X, P_,P4)- We conclude that

F(a’;{’ﬁ—’ﬁ-}-) _ F(a’K’p—’p+)

E[y' (1)} = = :
F(\/%,f,ﬁ_u5+) F(\/E’K9P—’P+)

hence Theorem 1.1 holds for ¥ € (4, ), p_ > =2, 0, > g —4and 1 < A,.

It remains to check that E[¢/(1)*] = oo for all 1 > . As before, we have 3’(1) > 1 a.s., so the
function x —~ E[¢’(1)*] is increasing on IR, and from the explicit formula we have just shown, we
see that E[¢/(1)*] > lim,_ ¢+ E[¢'(1)%~¢] = . O

Proof of Theorem 1.1. The heart of the argument is Proposition 5.10, and Lemmas 5.11 and 5.12 tie
up the remaining details. O
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APPENDIX A: BACKGROUNDS ON SCHRAMM-LOEWNER EVOLUTIONS
In this section we provide further background on SLE, (o_; p.) that is relevant to Theorem 1.1.

Al | The Loewner evolution definition of SLE, (o_;p,)
Let H be the upper half-plane. For a continuous function (W, ), that we call the driving function
consider the solution g,(z) of the Loewner differential equation

t
2
(Z)=/—ds, (z)=2z,zeH.
& 0 gs(z) - Ws £

For each z € H let 7, denote the supremum of times ¢ > 0 such that g,(z) is well-defined. For
certain choices of W one can show that there exists a unique continuous curve 7 in H from 0 to
oo such that if K, C H denotes the set of points in H which are disconnected from oo by #([0, t])
thenK, ={z € H : 7, < t}. We say that W is the Loewner driving function of 7. By setting W, =
\/EBt for a standard Brownian motion (B,),»o and x > 0 we get the curve 7 which is known as a
Schramm-Loewner evolution with parameter x (SLE,.). See for example [39, 51] for more details.
SLE,(p_;p,) is the natural generalization of SLE, when we keep track of two additional
marked points on the domain boundary. Let p_, o, > —2. Given a standard Brownian motion

(By)¢>o consider the solutions W, V* of the following stochastic differential equations

t t t
P- P+ + 2
W, =1/xB +/ —_ds+/ ———ds, V—=/—ds (A1)
= VB, 0o Ws—V; o Wy—Vi L)y vE—w

with initial condition (W, V', VO+ ) = (0,0, 0). The uniqueness in law of the solution was proved
in [41, Theorem 2.2].

Moreover, one can show that there is a unique curve 7 from 0 to oo in H which has Loewner
driving function given by W. We call  an SLE,.(o_; o). See [17, 38, 41] for further details.

A2 | Finiteness of moments
In this section we prove the following finiteness of moment statement.

Proposition A.1. Forx € (0,4) and p_,p, > —2, samplen ~ SLE,(o_; p,) in H from 0 to co. Let
Ao = i(,o+ +2)(oy +4— g). Let D be the connected component of H\n containing 1 on its boundary,

and let P be the conformal map from D to H with (1) = 1 and mapping the first (resp. last) point
on AD traced by 1) to 0 (resp. o). Then E[()'(1)*] < oo when A < A,

Lemma A.2. Proposition A.1 holds when p_ = 0.
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Proof. By [44, Theorem 1.8], we have P[¢/(1) > y] = y %+ a5 y - o0. Since E[¢'(1)*] =
2! fooo y*1P[y'(1) > y] dy, we conclude. O

Proof of Proposition A.1. We first inductively show that Proposition A.1 holds for p_ = 2n for

nonnegative integers n. The case n = 0 is shown in Lemma A.2, and if we have proved the state-

ment for some n, then we obtain it for n + 1 by using Lemma 5.8 with § =y,5_ =y — 2n and
14

Br=vy-— £+ Here we use that flx) = l(x +2)(x+4-— g) is increasing on [g —2,00).
Y X
Now, we extend the proof to arbitrary p_ > —2. Pick n € N with 2n > p_+2, and
apply Lemma 5.8 with =y + 222 and Bo=y—Ztoget M B+p_—y— E;,3+) =
14 - 14 14

mtB, B+ —y— s)ml(ﬁ_, B+). By our inductive argument, the left hand side is finite for

A < Ay, and hence so is m’l(ﬁ_, B.). This translates to the desired finiteness. O

A3 | Continuity of moments in SLE parameters
Now, we prove continuity results (Lemmas A.3 and A.6) used in the proof of Theorem 1.1. We start
from the case when the curve does not touch the domain boundary.

Lemma A.3. Consider a sequence (x",p", 0" )1 such that x"* € (0,4], 02, 0"t > % —2, and
which converges componentwise to (x, p_, p..). Let n be sampled from SLE,(o_;p.) and let i be
the mapping out function of the domain to the right of 7 fixing 0,1, co. Define 1,, and ,, simi-
larly for the parameters ", p, p". Then there is a coupling of 1,7, such that P (1) > P'(1) in
probability.

To prove Lemma A.3, we recall [3, Lemma A.5], whose proof builds on [35]. It gives continuity
of the mapping out function g, in the Loewner driving function W'.

Lemma A.4 Lemma A.5 in [3]. Let n and 7] be curves in H from 0 to co with Loewner driving
function (W,);>o and (Wz)rzo’ respectively, and let (g;);>o and (8;);>o denote the Loewner maps. For
anye € (0,1) thereisa § € (0,1) such that if

A={(tz)€[0,T]xH : inf |g(z) —W,| >¢} and sup |W,—W,| <8.
s€[0,¢] tel0,T]

thensup, ., 18:(2) — §i(2)| < &.

Lemma A.5. Consider a sequence (x", p", p'} ),>1 such thatx™ € (0,4], o2, o't > % — 2, and which
converges componentwise to (x, p_, p4). Asn — oo, the driving function of SLEx (0" ; p'} ) converges
in law to that of SLE,(p_; p,.) in the uniform topology on compact sets.

Proof. Let (B);>( be a standard Brownian motion and let (W,,V, V;r ) be the solution to (A.1)
as defined and constructed in [41, Definition 2.1, Theorem 2.2]. Similarly let (B}');( be standard
Brownian motion and (W", Vt” o, V[” ) the corresponding stochastic process for SLE,(0; o'} ).
We claim that there exists a coupling of these processes such that for fixed T > 0 we have
Sup, oy IWe — W}'| = 0in probabilityasn — oco. This claim immediately yields the lemma. This
claim would follow from easy stochastic calculus arguments if we consider SLE, (o~; p1) with
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force points away from zero. The adaptation from non-zero force points to the 0% case is also con-
sidered in the proof of the uniqueness in law of the solution to the SDE system ([41, Theorem 2.2]).
A minor modification of that argument gives the result so we omit the details. O

Proof of Lemma A.3. Consider a coupling such that the convergence in Lemma A.5 in almost sure.
By the argument of [3, Lemma A.4], for any compact K C (H\n) U R, we have 3,, — ¢ uniformly
on K in probability. By Schwarz reflection, 1 (resp. 1,,) can be extended to a conformal map g (resp.
¥,,) from the right connected component of C \ ( U %) (resp. C \ (17, U 1n,)) to C \ R_. Cauchy’s
integral formula then gives convergence of /,(1) to 3’(1) in probability. O

The following lemma gives the counterpart of Lemma A.3 in the boundary touching case. In this
case, we only consider curves with a single force point at 0%, namely SLE,(o,) := SLE,(0; o).
This simplifies the analysis of the driving function in Lemma A.7 and also suffices for our
application.

Lemma A.6. Suppose ¥ < 4 and p, € (-2, g —2), and let n be sampled from SLE,(p,). Let D
be the connected component of component of H\#n with 1 on its boundary, and let 1 : D — H be
the conformal map fixing 1 and mapping the first (resp. last) boundary point traced by  to 0 (resp.
o). Letting ("), be a sequence tending to x and sampling n,, ~ SLE,»(p,.) with force point at 0*,
we likewise define domains D,, and maps ,, : D,, — H. Then there is a coupling of 1, n,, such that

¥, (1) — ¢/(1) in probability.

Lemma A.7. In the setting of Lemma A.6 we can couple (W", V") and (W, V') such that for
any T, Sup,(o 7| (Wi —W,|+ |Vt+’" — V| converges a.s. to 0 and the zero set of (W' — V:-’n)te[O,T]
converges a.s. to the zero set of (W, — Vr+ )iejo,r) Jor the Hausdorff topology.

Proof. Since p_ = 0 the law of V:r — W, is given by a multiple of a Bessel process. Using this and
the continuity property of Bessel processes in its dimension we get the lemma. O

Proof of Lemma A.6. Consider a coupling such that the convergence in Lemma A.7isa.s. Let 7, T
(resp. 0,,, o) be such that

oD = n([z,o]) U [n(1), n(o)], 0D, = 0,([t4, 7, 1) U [9,(71,), nn ()]

Lemma A.7 implies that 7, - 7 and g, = o a.s. Let ¢ : g.(D) — H be such that ¢ = Yog, and
define 1, similarly. Then the chain rule for differentiation gives the following

YR = (g2 ) - Prgr (1), P'(1) = gh(1) - P'(g1)). (A2)
Extending [39, equation (4.5)] to points on R we get

g /(1)

&=~ —wy

and the analogous equation for gi'. By using this, 7, — 7, (W}') — (W,), and the fact that the
denominator on the right side in the last display is bounded away from 0 during [0, ], we get that
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a.s.,
(g8 Y(@) — gr(D).

Combining this with (A.2), in order to conclude the proof of the lemma it is sufficient to show
that (g2 (1)) - #/(g.(1)) ass.

Let # : [t,00) > H U {0} be defined by 7(t) = g,(n(t)), and define 7%, : [7,, ) - H U {0}
by 7,(t) = g;’n(nn(t)). We will now argue that 7,([7,,0,]) converges in Hausdorff topology to
7([z,o]), which is sufficient to conclude the proof of the lemma since it implies {l;;,(g?n(l)) -
J/(gf(l)) a.s. Let hy,, = sup{Im(7(¢)) : t € [t,0]}. For € € (0,1) pick 35(¢),s(e) > 0 such that
N[t + 8(¢), 0, — s(e)]) is an excursion above the line {z : Im(z) = ehp,,} Which attains the
value h,,,. Notice that this a.s. uniquely specifies 5(¢), s(¢).

Since 7([7,0 — s(¢)]) is a simple curve, Lemma A.4 implies that for any neighborhood A of
[z, 0 — s(¢)]) we will have 7,,([7,,, 0,, — s(€)]) C A for all sufficiently large n. Since the half-plane
capacity of 7,,([7,,, 0, — s(€)]) converges to the half-plane capacity of #([r, o — s(¢)]), this implies
that #,,([7,, o, — s(€)]) converges to 7([7, o0 — s(¢)]) for the Hausdorff distance, and that #,(c,, —
s(e)) converges to 7j(c — s(¢)). To conclude that #,([7,,, 0,,]) converges to ([ 7, o]) for the Hausdorff
distance it thus suffices to prove

lir% sup diam(#%,,([o,, — s(€),0,])) = 0. (A3)

=0 peN

Let L;, be a simple curve of diameter o.(1) which connects 7,,(c,, — s(€)) to R and is disjoint from
([T, 0, — 8(€)]) except at its end-points. The curve L}, U #,,([7,, o, — s(€)]) is simple and divides
H into a bounded and an unbounded set; let DZ denote the bounded set. To prove (A.3) it is
sufficient to argue

(i) lim sup diam(7,([o,, — s(¢),0,]) N D) — 0 and
=0 peN

(A4)
(ii) lim sup diam(#,([o,, — s(¢),0,,]) \ DZ) —= 0.
=0 peN

We see that (ii) holds since otherwise there would be a (random) constant ¢ > 0 independent of ¢
such that for arbitrarily large n and all y > 1 sufficiently large, y times the harmonic measure of
N[0, — s(e),0,]) seenfromiyin H \ #,([7,, 0, ]) would be at least c; this contradicts the assumed
convergence of (W", V»1),

To prove that (i) holds we can first proceed similarly as in the proof of (ii) and use harmonic
measure considerations and convergence of (W", V') to conclude that

lim sup diam(#,([7,, 7, + 5(¢)])) = O. (A5)

e—0 neN

By Lemma A.4 the map gr converges uniformly to g, away from the hull of 7, |- Com-
bining this with (A.5) we get that for any § > 0 we can find a sufficiently small € > 0, such
that 7,([7,, 7, + 5(¢)]) is contained in the §-neighborhood of the hull of 7, [, By reversibil-
ity of SLE, (p,.) the same property holds for 7,,([o,, — s(¢), 0,]) and the hull created by 7,5, o)-
Applying the map gz this gives (i). O
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APPENDIX B: THE LCFT DESCRIPTION OF QS;

In this section we prove Proposition 2.26 and Lemma 2.31. Our proofs closely follow those of
Proposition 2.18 and Lemma 2.21, respectively, which are the corresponding statements for the
disk case.

It will be convenient to work on the cylinder rather than C. Define the cylinder C by C :=
([0,27] x R)/~ where (x,0) ~ (x,27x) for all x € R, and let P, be the law of the GFF h, on C
normalized to have average zero on (0, 27). This way, h ~ P and h are related by the expo-
nential map between C and C. We can then deduce the covariance kernel of . from that of hg:
Gce(z,w) = —log |e® — e¥| + max(Re z,0) + max(Re w, 0).

As in the horizontal strip case, we have a radial-lateral decomposition of h.. We write H;(C) C
H(C) (resp. H,(C) c H(C)) for the subspace of functions which are constant (resp. have mean
zero) on {t} X [0,27] for each t € R. We have the orthogonal decomposition H(C) = H;(C) &
H,(C). In this case the projection of ho onto H;(C) has the distribution of {B;};cR.

Now, we introduce the weight-W quantum sphere of [21].

Definition B.1. For W >0anda =Q — ZK <Q,let
Y

t =

B,—(Q-a) ift>0
B,+Q-a) ift <0

where (B;)s> is a standard Brownian motion conditioned on By — (Q — a)s < 0 for all s > 0, and
(By)ss0 is an independent copy of (B )sso. Let h'(z) = Yy, foreach z € C. Let hg be independent
of h! and have the law of the projection of h. onto H,(C). Let h = h! + h%. Let c be a real number
sampled from gez(“_Q)Cdc independent of h and ¢ = h+c. Let M;ph(W) be the infinite mea-

sure describing the law of (C, ¢, —c0, +00)/~,. We call a sample from M;ph(W) a (two-pointed)
quantum sphere of weight W.

The case where W = 4 — y? is special since conditioned on the quantum surface, the two
marked points are independently distributed according to the quantum area measure, motivating
the following definition.

Definition B.2. Let (C, ¢, +00,—00)/~, be a sample from M;ph(4 —7?). Let QS be the law of
(C,$)/~, under the reweighted measure ,u¢(C)_2MSPh(4 —y2). For m > 0, let (C, ) be a sample
from uy(C)™QS, and then independently sample z,, ..., z,, according to ,uz. Let QS,, be the law
of (C,¢,21, .., Zm)/~y,. We call a sample from QS,, a quantum sphere with m marked points.

We have M;ph(4 —¥%) = QS, [21, Proposition A.11].
Recall the Liouville field on the plane defined in Definition 2.10. When a; = a, we often prefer
to put the field on the cylinder.

Definition B.3. Let (h,c) be sampled from Céa’im)’(“3’23)PC x [e(2a+a3=2Q)kdc] where a € R,
(C{3,Z3) e R x C, and

C(Ca,ioox(as,zg) — (@S +aan)Rezs|
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Let ¢(z) = h(z) — (Q — a)| Re z| + a3G¢(z, z3) + ¢. We write LFéa’iw)’(““m as the law of ¢. When

a; = 0, we write it as LF(Ca,iOO)-

Our next lemma relates the fields of Definitions 2.25 and B.3 under change of coordinates for
one choice of conformal map. The proof is identical to that of Lemma 2.11.

Lemma B.4. Let a € R and (a3,23) € RXC. Let f : C - C be the unique conformal map
satisfying f(—o0) =0, f(+00) = —1 and f(z3) = 1. Then

(@ ~Dy(@0)(a3,1) _ —24, (@, £00),(@3,23)
LES ™ O < 9728 f P HEOMEE),

We give an LCFT description of the quantum sphere.

Theorem B.5. Fix W > 0 and let ¢ be as in Definition B.1 so that (C, ¢, +00, —o0) is an embedding

of a sample from M;ph(W). Let T € R be sampled from the Le(besgu)e measure dt indg)endently of
TN .. 14 a, 00 _n_w
¢. Let ¢(z) = ¢(z + T). Then the law of ¢ is given by o LF, where ot = Q >

Proof. We follow the proof of Theorem 2.13, except that we set a = (Q — &), and no factor of % is
incurred since the projection of h ~ P, to H;(C) is standard Brownian motion with no factor of 2

in its time parametrization. So the prefactor is instead —— = ——. [
402 HQ-a)?

Now, we give an LCFT description of a weight W quantum sphere with a marked point added.

Definition B.6. Fix W > 0. Let (D, ¢, a, b) be an embedding of a sample from M;ph(W) and pg
be the quantum are measure. Let A be the total ug-area of D. Now consider (D, ¢, a, b) from the

reweighted measure AM;ph(W). Given ¢, sample z from the probability measure proportional to
ug. We write M;p-h(W) as the law of the marked quantum surface (D, ¢, a, b,z)/~, .

Proposition B.7. For W > 0, let ¢ be sampled from 2(@”7 5 LF(Ca’im)’(y’o) wherea = Q — 22 Then
a »

(C,¢,—00,+00,0)/~, is a sample from M;?.h(W).

Proof. The argument is identical to that of Proposition 2.18, except that we use the following in
place of Lemma 2.21.

LE() [f(¢) / g(u)u¢(du)] = / LES =001 £(4)]g(u) Lebe(duw). (BL)
C C

4 Ty
. . .o, . . . Z(Q_ﬁ)z . Z(Q._a)z
in this proposition instead differs from that of Theorem B.5 by a factor of 27z, because C is defined
from R X [0, 277] hence Leb, in (B.1) contributes a factor of 27. O

agrees with that of Theorem 2.13. The prefactor

In Proposition 2.18, the prefactor

Finally, we prove Proposition 2.26 and Lemma 2.31.
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Proofof Proposition 2.26. By definition, M;p. (4 — ) = QS;. Thus the result follows by setting o« =

y in Proposition B.7 and using the change of coordinate from Proposition 2.29 and Lemma B.4. []

Proof of Lemma 2.31. We focus on proving

LF¢ [f(qs) /@ g(u)uqb(du)] - /@ LY ($)]g(w) du. (B2)

Once this is done, we can add insertions («;, z;); to both sides of (B.2) using the sphere analog of
Lemma 2.6 and its proof. This gives the general case.

The proof of (B.2) is almost identical to that of Lemma 2.21 so we only point out the
modifications. First, as in Lemma 2.20, by the Girsanov theorem we have

/ f(h)< / g(u)uh(du)> Po(dh) = / Eolf(h + G u)]g(up() du.
C C

where E is the expectation over Py and p(u) is defined by p(u)du = Eg[uy(du)]. On the
other hand, the sphere analog of Lemma 2.12 gives Cg’u)du = e~ 2Qloglzl+ p(y)du. Now the same
argument as in the proof of Lemma 2.21 gives (B.2). O
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