RESEARCH ARTICLE | JANUARY 30 2024
Liouvillian exceptional points of an open driven two-level
system @3

Nikhil Seshadri @ ; Anqgi Li @ ; Michael Galperin &

’ '.) Check for updates ‘

J. Chem. Phys. 160, 044116 (2024)
https://doi.org/10.1063/5.0177714

A CrossMark
X A

View Export
Online  Citation

Chemical Physics

T
o
4]
c
-
=)
O
ﬂ
Q
L
-

The Journal of Chemical Physics

2024 Emerging Investigators

Special Collection

AIP
AIP Submit Today ,/é_ Publishing

é/_‘_ Publishing

6G'8G:/1 ¥20g Aenuer og


https://pubs.aip.org/aip/jcp/article/160/4/044116/3222777/Liouvillian-exceptional-points-of-an-open-driven
https://pubs.aip.org/aip/jcp/article/160/4/044116/3222777/Liouvillian-exceptional-points-of-an-open-driven?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/160/4/044116/3222777/Liouvillian-exceptional-points-of-an-open-driven?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0002-5786-1595
javascript:;
https://orcid.org/0000-0003-1949-1383
javascript:;
https://orcid.org/0000-0002-1401-5970
javascript:;
https://doi.org/10.1063/5.0177714
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2310131&setID=592934&channelID=0&CID=848689&banID=521680252&PID=0&textadID=0&tc=1&scheduleID=2229767&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1706637535217143&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0177714%2F19209436%2F044116_1_5.0177714.pdf&hc=e4ab010243e4ad250fc5f78fe50a225b496a3459&location=

The Journal

of Chemical Physics

ARTICLE pubs.aip.org/aipl/jcp

Liouvillian exceptional points of an open

driven two-level system

Cite as: J. Chem. Phys. 160, 044116 (2024); doi: 10.1063/5.0177714 @ k| @
Submitted: 23 September 2023 « Accepted: 5 January 2024 - :

Published Online: 30 January 2024

Nikhil Seshadri,’' Angqi Li,

and Michael Galperin®®

AFFILIATIONS
T'Harvard University, Cambridge, Massachusetts 02138, USA

2Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA

2 Author to whom correspondence should be addressed: migalperin@ucsd.edu

ABSTRACT

We study the applicability of the Liouvillian exceptional points (LEPs) approach to nanoscale open quantum systems. A generic model of
the driven two-level system in a thermal environment is analyzed within the nonequilibrium Green’s function (NEGF) and Bloch quantum
master equation formulations. We derive the latter starting from the exact NEGF Dyson equations and highlight the qualitative limitations of
the LEP treatment by examining the approximations employed in its derivation. We find that the non-Markov character of evolution in open
quantum systems does not allow for the introduction of the concept of exceptional points for a description of their dynamics. Theoretical

analysis is illustrated with numerical simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0177714

I. INTRODUCTION

Non-Hermitian quantum mechanics' is an accepted way of
treating open quantum systems and is employed in many fields of
theoretical research, from optics, opto-mechanics, and polaritonics
to quantum field theory, molecular physics, and quantum trans-
port. The complex values of operator spectra in these considerations
reflect the non-stationary character of system states, with the bal-
ance between gain and loss accounted for by the imaginary parts
of eigenvalues. The most non-trivial physics (such as unidirectional
transport, anomalous lasing and absorption, and chiral modes) takes
place at and in the vicinity of the degeneracies of the complex
eigenvalues—exceptional points (EPs).

Experimentally, EP behavior has been observed mostly in
optics,” in the setting of a chaotic optical microcavity,” optical
coupled systems with a complex index potential,* and photonic
lattices.” EP systems were suggested as a platform for the devel-
opment of topological optoelectronics.”” Recently, observations of
EPs in single-spin systems (nitrogen-vacancy centers in diamonds)
were also reported.® The sensitivity of EP system responses to
parameter changes led to suggestions of employing EP systems as
optical”'’ and quantum'' sensors. The decoherence enhancement
observed in the vicinity of EPs'>"’ opens a way for the explo-
ration of EPs for quantum information processing. EP physics was

also observed in polaritonic systems (exciton-polaritons in semi-
conductor microcavities)'* and in thermal transport (chiral heat
transport).””

The majority of theoretical considerations use effective non-
Hermitian Hamiltonians as operators describing EP physics.'**
These operators are formed by adding complex absorbing potentials
(retarded and/or advanced projections of self-energies) to the Her-
mitian system Hamiltonians. Their degeneracies, the Hamiltonian
EPs (HEPs), are the focus of these studies.

Another non-Hermitian operator describing the evolution
of open quantum systems is the Liouvillian. Its degeneracies,
Liouvillian EPs (LEPs), were also discussed recently.” ** Ana-
lytical studies comparing HEPs and LEPs conclude that the
two types of EPs have essentially different properties and that
they become equivalent only in the semiclassical limit. Similar
to HEPs, Liouvillian-based analysis predicts non-trivial behavior
at or in the vicinity of LEPs. For example, LEPs were shown
to represent a threshold between diffusive and ballistic motion
in a 1d quantum Lorentz gas.”*”” Enhancement of decoherence
rate,” " the possibility of chiral state transfer,” and optimiza-
tion of steering toward a predesigned target state*’ are predicted
in the presence of LEPs. Finally, a recent experiment demonstrated
enhanced performance of the single-ion quantum heat engine from
the LEPs.*!
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Recently, we studied the applicability of the concept of HEPs
in nanoscale open quantum systems.*” Utilizing a model of two
vibrational modes in a cavity, we compared standard nonequilib-
rium Green’s function (NEGF) with HEP-based predictions. We
derived the latter from the former and discussed the approxi-
mations required to reduce the exact NEGF to an approximate
HEP description. In particular, we showed that HEP disregards
lesser and greater projections of self-energy due to intra-system
interactions while keeping its retarded projection, which makes
the HEP treatment inconsistent and may lead to qualitative fail-
ures. Another limiting factor of the HEP approach is its Markov
character.

Here, we present an analysis of LEP-based considerations,
starting with the exact NEGF treatment and exploring the approx-
imations necessary to reduce the latter to the approximate LEP
description. The two most basic and widely employed models for
LEP analysis are the driven two-level system (TLS) 3-%5 and the oscil-
lator®® in a generic environment. We use the TLS as a model for
comparison between the NEGF and LEP methods. Similar to our
findings in Ref. 42, LEP is also limited by its Markov character.
Nevertheless, contrary to the HEP, the Liouvillian-based treatment
disregards the retarded projection of the self-energies while keeping
their lesser and greater projections. Some limitations in the appli-
cability of LEP methods to nanoscale open quantum systems are
illustrated with simulations comparing the NEGF and Bloch quan-
tum master equation (QME) results for driven TLS in a thermal
environment.

In Sec. II, we introduce the model and present its NEGF treat-
ment. We then utilize NEGF as a starting point for the derivation
of the Bloch QME and its generalization, which accounts for dis-
sipation, and discuss the approximations necessary to reduce the
exact NEGF treatment to an approximate Redfield/Lindblad QME.
Section I1I compares the results of numerical simulations performed
within the NEGF formulation and within the two types of Bloch
QME formulations. Conclusions are drawn in Sec. I'V.

Il. DRIVEN TLS IN A THERMAL ENVIRONMENT
A. Model

We consider a two-level system that is driven by the external
classical field E(t) and dissipated by a thermal bath. The latter is

a continuum of Bose modes {a} (Fig. 1). The Hamiltonian of this
model is

H(t) =H5(t) + H? + V5, (1

where H%(t) and H® describe the decoupled system and bath,
respectively. V2 is the system-bath coupling. Explicit expressions
for each of the terms are given by

Hs(t) = Z sitfljd,- —‘uE(t)(dA]llez + d;&l),

i=1,2
I'AIB = Z waéj,;l;a, (2)
o

VB . Z (Vij,a[ajaj}Tl;a+Vu>ij El[djﬁ]})

ij=1,2
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FIG. 1. Sketch of a model for optically driven two-level system (S) in thermal
environment (B).

Here, dj (d;) and b}, (bs) create (annihilate) an electron in level i
and an excitation in mode a, respectively. y is the transition dipole
moment. The driving field is taken to be harmonic

E(t) = Ey cos (wot). (3)

In the following analysis, we assume ¢; < &, and consider coupling to
the thermal bath in the rotating-wave approximation (RWA); that is,
Vara = Va21 = 0. We note that the RWA is central to the derivation
of the Bloch QME.

B. NEGF formulation

Within the NEGF formulation, the central quantity of interest
is the single-particle Green’s function of the system defined on the
Keldysh contour

Gi(t1,12) = —i(T. di(n1) dfy(12)). (4)

Here, T. is the contour ordering operator, 71, are the contour vari-
ables, and the creation (annihilation) operator d;(rz) [di(11)] is
in the Heisenberg picture. Knowledge of Gjj(71,72) allows for the
calculation of the characteristics of the system and its responses
to external perturbations. In particular, in the single-electron sub-
space of the problem, the system density matrix is given by the lesser
projection of Green’s function (4) taken at equal times,

pii(t) = =i G;;(t,1). (5)

This relation is central to the comparison between the NEGF and
Bloch quantum master equation (QME) results.

The dynamics of the system is described by the Dyson equation
for Green’s function (4)

)
i Gi(11,12) = 8 8(t1,72) + > Hp(t1) Guj(11,72)
8T1 n=1,2

+ /dTZin(Tl,T) Grj(1,12), (6)

where t; is the physical time corresponding to contour variable 7;
and 2(71,7) is the self-energy due to the coupling of the system to
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the bath. While the exact expression for the latter is not accessible
due to the many-body character of the system-bath coupling V*2,
an appropriate level of theory for future comparison with the Bloch
QME can be achieved by a second-order diagrammatic expansion.
Within this (Hartree-Fock) approximation, the expression for the
self-energy is (see Appendix A for derivation)

Zi(11,12) = 8(11,12) ) dePmnz(f)[Hjimzm(Tl»T)

ny,ny

+ Mgy (1, 11) 1+ [Ty (71, 72)
ny,ny

+ Hjnz,inl(fb Tl)]Gnlnz(Tl: TZ)- (7)

Here,

J
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Hnlnz,rgm (TI» TZ) = Z annz,oc Fng) (Tb TZ) Va,n3n4) (8)
a

is the thermal bath-induced effective interaction between transitions
nin, and n3nyg and,

FO(11,1) = —i(Tc ba(11) f?i(fz)) )

Y
is Green’s function of free phonon mode « in the bath.

C. Bloch QME

The derivation of an approximate Redfield/Lindblad QME
starts from the exact equation-of-motion (EOM) for the density
matrix given by (5), which is derived within the NEGF formulation.
The EOM is (see Appendix B for derivation)

d . . t
Spi(t) = 1wipy ()~ B [pg(0) = py(0] + X [ at (Wi, (= ) G5 (€10) = i, (£~ ) G2, (1'0)

n,ny,h,

T, (=) GO (1) + Wiy (t— 1) G2

1y np,in

nyny,in

(t,6) + G5 (4, ) T i (= 1) = G2 (6,6 ) Iy s (F — 1)

ni,nyny ni,nyny

GO () T (=) + GO (1) I (¢ = )], (10)

jnnyny jn.niny

where i,j = 2(1) for i,j = 1(2), wji = & — & and,

G (1112 = (T [, d (e [l du] (), ()

is the two-particle Green’s function. Reducing the exact EOM (10)
to the Redfield/Lindblad QME requires approximating its right
side with a Markov dynamics. The Redfield/Lindblad QME can be
obtained from the Green’s function Dyson equation by employing a
Kadanoff-Baym-like ansatz,*’

Gftlzglz,z%m(tlr tZ) ~ e(tl - tz) eiinI(tlitZ) G;szlziuyu (tz, tz)
+0(t—ty) e T G2 (4,1),  (12)

where 0(: - -) is the Heaviside step function. Employing this ansatz
leads to the Bloch equations (see Appendix C for derivation)

pu(t))  [-iWaer Wi uE() -uE(r)
dlpn(®)| | iWaer =W —uE(1) HE(t)
at pua(t) WE(t)  -uE(t) @y -iWg 0
pa1(t) | —HE(t)  wE(t) 0 wy1 — iWy
pu(t)
P20 13)
pi2(t)
pa1(t)

(

Here,

Wit = Tiz12(w21) N(w21),

14
Wiz =Tiz12(wa1) [1+ N(wa1)], (14)

are the population transfer rates and,

_Wa + Wi . T11,11(0) + T2222(0)

W,
d 2 2

[1+2N(0)], (15)

is the dephasing rate. In Eqs. (14) and (15),

rﬂ1ﬂz,ﬂ3n4 ((U) = 27'[2 annz,ot Va,n;m, 8((4) - wa)> (16)
o

is the dissipation matrix.
Finally, by using (3) with wo — w21 = A < wp, going into the
rotating frame of the field

iw,

pra(t) = e pra(t), (17)

and introducing the spin operators

Sx(t) = pu (t) + pra(t),
(1) = ipar(t) - pr2(1)]; (18)
Sz(t) = p2a(t) = pur(2),

one can employ the rotating wave approximation (RWA) to express
the Bloch QME (13) as an EOM for the spin operator
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1
SF0) [Tt (so) [
1
—13 = -A —— uE ||$ +] 0 19
2| &® o Mlo Sy(1) p (19)
S(t _ _ = \S(¢ =
®) |0 wm -L\s0) \g
Here,
1 1
— = Wi+ Wi, — =W,
T T2 (20)
o Wi = Wi
S, = ——m«—.
Waer + Wi

D. Generalized Bloch QMEs

While deriving the Bloch QME (13) from the exact EOM
(10), one loses proper non-Markov evolution and disregards dis-
sipation. Note that while the former is common for Hamiltonian
and Liouvillian EP formulations,*” the latter is specific to Liouvil-
lian EPs. Indeed, the Hamiltonian EP formulation disregards the
lesser/greater projections of self-energy, while the ansatz (12) misses
the retarded projection; however, the generalized Kadanoff-Baym
ansatz (GKBA) in the NEGF literature”** does preserve informa-
tion about dissipation. To construct the Liouville space analog, we
follow the procedure originally introduced in Ref. 49. This leads to
(see Appendix D for derivation)

ef n3ny

Gl (11:82) % 1Y [ G (01 = 12) G2, (t2r12)
ef

~GD2 (1,1) Gl (- 1)] D)

niny.ef
where

Gy, (11, 12) = =i0(t1 — t2) ((mami| Ugy (11, 12) [nan3 ),

; Ny : (22)
Gmmmyn, (11 12) = +i0(t2 — 1) (nam| U (12, 11) [nans)),

are the retarded and advanced Green’s functions in Liouville space,
respectively, and

ty
ueﬁ(tl,tz) =T exp [—i/ dt ﬁeff(t)], (23)
t

J
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is the Liouville space effective evolution operator, where L (t)
defines time evolution in the system subspace of the problem.
We note that Eq. (21) is an approximation. The approximation
is introduced by employing the projection operator (D3) in exact
expressions (D1), which makes (21) a second-order contribution
in the infinite diagrammatic expansion of the coupled system-bath
evolution in strength of the system-bath coupling.

We employ parts of the Redfield/Lindblad Liouvillian matrix on
the right side of Eq. (13) as the system evolution generator. In par-
ticular, retaining only free evolution [i.e., disregarding driving pE(t)
and dissipation W1, Wi, and W] reduces (21) to (12).

Keeping the dissipation, using (21) in (10), and assuming
the Born-Markov approximation leads to a generalized version of
the Bloch QME, which retains the same form (13), although with
renormalized (W) dissipation rates

- . (dw 1
W1 =i /‘E H1<2,12(w) Im[*]»

J w—wy + in
- . w >

WFE—/—H I[

12 [ Py 12,12(60) m

_ [dw |:H1<1,11(w) + 11555 (w) _ 117,11 (@) + 5 (w)

w—w21+in ’

WdE

27 w+iWy w—iWy

-1 -1
L1l 715 (@) + Vi, [VR]LZZ 712 (w)

w—w21+i8

Vi [V
+
szm [VR];1 1'I1>2’12(w) + sz,z [VR]Z_;Z 1<2,12(“’):|

+ ;
w—wy +i(Waer + Wiez)

(24)

Here, V® is the right eigenvector of the Liouvillian matrix. Note that
while keeping driving terms in the effective evolution is possible, we
will not pursue this direction because the accepted approach regard-
ing the derivation of the standard Bloch QME requires one to dis-
regard the driving term when deriving dissipators of the Liouvillian.
Note also that using the Liouville space generalized Kadanoff-Baym
ansatz on the Keldysh anti-contour®’ would lead to the same form
of the generalized Bloch equation.

Finally, one can choose to solve the time-nonlocal (non-
Markov) version of the QME. Using (21) in (10) without the
Born-Markov assumption leads to

d £ iwy — —t
Spn(0) =B 2 mfpa(n]+ 2 1m [ dr (Mt =) pu(¢) = Msa(t = )1 = pu (1) 2 7H0C0),

d t
Eplz(t) =iwp12(t) —ip E(t)[2pn(t) - 1] - i/_ df,([nﬁ,u(t— ) + Mo (t— 1) + Ty (' = £) + o (t - t)]

. _ _ ! i _ ’ 71 —il. _ a 71
x lien=Wa (=0 > [Vﬁ,i e M=) [VR]I-,H Mt =)+ Vae (=) [VR]i,zz M(t - t)])Plz(t/)- (25)

i=1,2

Here, A; are the eigenvalues of the Liouvillian matrix. We note
that the non-Markov version of the Bloch QME, Eq. (25), accounts
for the broadening of system states induced by their hybridization

with the bath, which is completely missed by the standard Bloch
QME, Eq. (13). At the same time, this result is still an approxima-
tion (it is only second-order in infinite hybridization expansion).
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That is, while for moderate coupling strengths, Eq. (25) can pro-
duce relatively accurate results, for significant system-bath coupling
strengths, the approximation may fail.

Below, we use Bloch Eq. (13) and its generalizations (24) and
(25) to discuss the concept of exceptional points for a Liouville
operator. Following Ref. 43, we evaluate the time dependence of
the z-projection of the spin operator S;(t) and use it in eigenmode
analysis,

S:(t) = dye (26)
k

Degeneracies of the complex eigenmodes wy represent LEPs. As dis-
cussed in Ref. 51, the latter can be approximately found from the
points of divergence of the absolute values of the coefficients |dy/,
although extended analysis is needed for further characterization.
We will use the parameters found for LEPs in Ref. 43 as a starting
point for our consideration.

I1l. NUMERICAL RESULTS

We now evaluate S;(t) within different methodologies and
use the results of simulations to obtain exceptional points for the
Liouville operator.

Unless stated otherwise, the parameters of the simulations are
the following. The energy levels of the system are &; =0 and &, = 1,
the laser detuning A = wo — w21 = 0.001 02, and the coupling to the
driving field u E;, = 0.001. For simplicity, we take V11 = V22 = 0,
so that the dephasing rates are 1/T; = 2/T> = 0.1. The temperature
of the bath is assumed to be zero. Simulations were performed on a
time grid of 200 points with step 1. We confirmed that simulations
on a grid of 2000 points with step 0.1 yield similar results.

For non-Markov simulations, we employ the bath spectral

function
(2 bl ) e

and the bath dephasing rate is defined as

Ti212(w) =Tiz12(war) J(w) = J(w)/Th. (28)

The Fast Fourier transform is performed on a grid of 10001
points and utilizes the FFTW library.”> The NEGF simulations are
performed by employing the procedure first introduced in Ref. 53.

Figure 2 shows the time dependence of the z-projection of the
spin operator after employing the various approaches. Note that
the differences in shapes of the curves S;(t) reflect differences in
underlying eigenmode compositions. Note that the differences in
the long time value of the projection are due to the renormalization
of the dissipation parameters (24) and, therefore, are of secondary
importance. Comparing QME and NEGF results [panels (a) and (b),
respectively], we note the oscillating behavior of the NEGF station-
ary state and the difference in magnitude of the signal. The reasons
for the discrepancy are assumptions made when deriving the Bloch
QME and its generalizations: 1. the rotating wave approximation
in external driving; and 2. the neglecting effect of the driving term
on the dissipator super-operator (i.e., the dissipator is derived as if
there is no driving). Within the NEGF, the driving term is taken into
account exactly.

ARTICLE pubs.aip.org/aipljcp
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FIG. 2. Time dependence of the z-component of the spin operator, S,(t). Panel
(a) presents the results of simulations employing the standard Bloch QME,
Eq. (19) (dotted line, red); Bloch QME with dissipation included, Eq. (24) (dashed
line, black); and non-Markov Bloch QME with dissipation included, Eq. (25)
(dashed-dotted line, blue). Panel (b) shows the results of the NEGF Hartree—Fock
simulations, Egs. (5)—(7).

We now turn to the exceptional points analysis of the resulting
time series. Because we use the parameters in Ref. 43, we know that
our standard Bloch QME simulations are performed in the vicinity
of LEPs of second order. Therefore, the divergence of the coeffi-
cient |d| indicates the presence of an exceptional point. Instead of
the harmonic inversion analysis employed in Ref. 43 for eigenmode
decomposition, we use its filter diagonalization variant.”* For the
parameters of the simulations, the latter method appears to be more
stable.

Figure 3 presents the eigenmode analysis for the time series
S:(t) obtained within different Bloch QME schemes. The divergence
of the expansion coefficient |d;| and the disappearance of the eigen-
mode difference in the analysis of the standard Bloch QME results
presented in panel (a) indicate the presence of a second order LEP
at uE; ~ 0.025. Panel (b) shows a similar analysis for generalized
Bloch QME with included dissipation. Similar to the standard Bloch
QME, three eigenmodes are present in the region away from the
LEP. QME rate renormalization, Eq. (24), leads to a shift in the posi-
tion of the LEP, which now occurs at pE, ~ 0.015. The result of the
analysis for the non-Markov QME is shown in panel (c). We find
four different eigenmodes in this case. A careful comparison with
Markov’s consideration of panel (b) shows the absence of excep-
tional points; one can see that the difference in eigenmodes does not
disappear.
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FIG. 3. Eigenmode analysis for the z-component of spin operator S;(t), Eq. (26).
Shown are absolute values of the coefficient of expansion |d| (blue line, left axis)
and difference between eigenmodes |wy — wy| (red line, right axis) for results
of simulations performed within (a) standard Bloch QME, (b) generalized Bloch
QME with dissipation included, and (c) non-Markov generalized Bloch QME with
dissipation included.

Figure 4 shows two eigenmodes that become degenerate at
exceptional points. One sees that for the standard (panel a) and the
generalized (panel b), Markov QME weak coupling to the driving
field (below the LEP) corresponds to situations where real parts
of the eigenmodes coincide while imaginary parts are different.
Stronger couplings (above the LEP) correspond to zero differences
in imaginary parts and different real parts. Note that similar
behavior at LEP yields a transition between diffusive and ballistic
motion’*”” and an enhancement of the decoherence rate.”** The
behavior of eigenmodes for results obtained within non-Markov
QME (panel ¢) is more complicated. No degeneracy is observed
between the modes. Similarly, eigenmode analysis for the NEGF
results yields a large number of modes (~50) with no LEPs
present.
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FIG. 4. Eigenmodes w1 and w, vs coupling to the driving field u E;. Shown
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within (a) standard Bloch QME, (b) generalized Bloch QME with dissipation
included, and (c) non-Markov generalized Bloch QME with dissipation included.

The absence of exceptional points in the results of non-Markov
evolution is expected because the EOM for S;(#) is not generated
by the time-independent Liouvillian anymore. One can understand
the absence of the LEPs in this case from a purely mathematical
perspective. Indeed, even if one starts from a time-dependent char-
acteristic for a LEP [for example, for LEP2, one expects to have
p(t) ~ (dy + dat)e™), the first step of time evolution will annihi-
late the LEP time dependence due to the convolution of the density
operator with the time-dependent function, Eq. (25). Indeed, taking
the integral in Eq. (25) with the memory kernel, which depends on
time in a complicated way, does not preserve the original form of
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p(t). This can be easily seen by expanding the kernel in a Fourier
series and performing time integration.

Failure of the concept of the Liouvillian exceptional point for
non-Markov evolution is even more obvious when analyzing the
more rigorous NEGF formulation, Egs. (6)-(8). Indeed, on the right
side of the Dyson equation, one has the product of two Green’s
functions: one from Eq. (6) and the other from Eq. (7). In prin-
ciple, one could start from Egs. (6)-(8) and apply the generalized
Kadanoff-Baym ansatz to these expressions. This would yield an
analog of QME that differs from (but is more accurate than) the
Bloch QME. Such an equation would contain p? on its right side,
which obviously indicates that the form p(t) = (d, + dat)e™™ does
not survive in a non-Markov formulation.

We note that the central parameters for the accuracy of the
Markov approximation are the characteristic times of bath t* and
system 5 dynamics: the Markov approximation is accurate when
t; < tcs . For the model, tEB is defined by the bandwidth W3, temper-
ature T, and structure of the bath spectral function J(w): t? ~ /W,
h/ksT. The characteristic time of system dynamics is defined by
the intra-system energy parameters (inter-level separation w1, driv-
ing frequency wo, detuning A) and by the dissipation rate due to
coupling to the bath (e.g., T12,12): 5 ~ 27/ w21, 271/ wo, 271/ A, B/ T12,12.

IV. CONCLUSION

We discuss the concept of Liouvillian exceptional points (LEPs)
used in the description of the dynamics of open quantum systems.
The discussion is focused on a model of a driven two-level system
coupled to a thermal bath. Starting with an exact NEGF formula-
tion of the problem and implementing a set of approximations, we
derive the standard Bloch QME and its generalizations. The latter
includes dissipation (retarded self-energy contribution). One of the
generalizations is non-Markov.

We compare this approach with our recent publication,"
where a similar analysis for the Hamiltonian exceptional points
(HEPs) was carried out. We note that both HEP and LEP approx-
imations rely on the Markov description of the system’s evolution.
In terms of neglected self-energies, standard HEP and LEP con-
siderations are complementary: while HEP disregards lesser and
greater projections of self-energy, standard LEP misses its retarded
projection (dissipation).

By performing simulations for parameters previously shown
to provide exceptional points,*’ we find that the generalized Bloch
QME, which includes information about dissipation and treats evo-
lution as a Markov process, is capable of providing LEPs, although
for adjusted parameters. The non-Markov character of evolution
does not permit the introduction of the concept of LEPs. In particu-
lar, neither the non-Markov Bloch QME formulation nor the NEGF
formulation is capable of producing the LEPs. This inability to use
LEPs for the description of non-Markov evolution is quite general.
The concept of Liouvillian exceptional points can be introduced only
for Markovian dynamics.

We note that while the RWA should be used in the derivation
of the Bloch QME, within the NEGF treatment, the approximation
may be relaxed. Such a more general consideration will not affect
the conclusions. Indeed, the inability to introduce LEPs directly fol-
lows from the fact that the time-dependent characteristic expected
for a LEP does not survive the non-Markov time evolution of the

ARTICLE pubs.aip.org/aipl/jcp

system. The absence of the RWA will only change a form of time-
dependent function convolution, which will destroy the expected
LEP time dependence. Similarly, as long as system evolution is non-
Markov, the conclusions hold for any driving frequency or in the
absence of external driving.

Finally, we stress that our work does not challenge existing
experimental observations, some of which are mentioned in the
introduction. We discuss the theoretical treatments used for the
explanation of those experiments and indicate possible pitfalls of the
theory. For example, in many cases, theoretical treatments utilizing
Markov description and employing exceptional point analysis will
predict an abrupt ‘phase transition’ when crossing the exceptional
point. In reality (i.e., within a more accurate theoretical analysis),
the transition between two different regimes will be smooth. The
importance of the difference between the two (approximate and
more accurate) theoretical descriptions and whether the approxi-
mate (Markov) treatment may lead to qualitative failures depends
on the observables of interest.
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APPENDIX A: DERIVATION OF EQ. (7)

We start from the definition of the single-particle Green’s func-
tion, Eq. (4). Taking the derivative in the first contour variable
yields

.0
IiGij(Tl,Tz) = (Si,j 6(‘[1,‘[2) + Z H,-sn(i’l) an(Tl,Tz)
on n=12

i [Vaia (Te dun(r)ba() di(22))
(T bl (n)da(m1) di () Vain ] (AD)

The first-order expansion of the scattering operator in the rightmost
term of the expression leads to
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88 Gi(11,12) = 8 8(r1, 1) + 3 HS (1) Goi(11,72) Taking t; = t, = t and subtracting (B1) from (B2) yields
n=12
.d <
-y de iy (71,7) —zEij(t,t) = w;iGj(t,1) - uE(t) (G5 (t,1) - G5(1,1)]
i + 5 [Viia Ganj(8.8) + Gual(t:) Vi
% (T du(r1) db, (7)o (7) d}(22))0 + Thayn 2 (Vo Gy () % Grab) Ve
x (r,71) (Te du(mr) dl, (1) do, (1) i (2))o] = Vina Gain(t:1) = Gria (1) Van]. - (B3)
(A2) Here,
Here, I1 is defined in (8), and subscript 0 indicates evolution driven _ . ( - stoa 1t >
by the system Hamiltonian. Employing Wick’s theorem to decou- Gamm, (71, 72) = =i{ Te b (Tl)[dml d ] (®)). (B4)
ple multi-time correlation functions in the last term on the right _ [T i
side and dressing the result yields the Hartree-Fock approximation, Grmuma.a(T1, 72) 1<TC [dml dmz](n) h"‘(TZ))
Eq. (7). are the mixed system-bath Green’s functions that satisfy the Dyson
equations
APPENDIX B: DERIVATION OF EQ. (10)
0
Here, we derive the exact EOM for the density Gaymym, (T1,72) = f dr’ Fy ¢ )(TI: T )
matrix, Eq. (10), starting from the EOM for the Green’s i
function (4). X Van, G ,,1,,2 mlmz(r 72),
We start by writing the left and right EOMs for the lesser Grmpa(tm2) = 3 [ de anZI)mz woms (15,7
projection of Green’s function (4), oy 2 €
X Viyny,a Fa )(T ). (B5)

0]
iaTij(tbtz) = Einj(tl, ) - #E(tl)G;j(tb t)
1

) . . . Green’s functions F,Sf’) and G? are defined in Egs. (9) and (11),
+ lz [V”“"(d]; (£2)dn(t1)ba(t1)) respectively.
e . . . Taking lesser and greater projections of (B5), setting t; = t, = ¢,
+ Vain( d; (t2)du(t1)bL (11 ))], (B1)  and substituting the resulting expressions into (B3) leads to (10).
_ia%(;fj(th t)) = gjc;fj(tl, t) - #E(tz)Gg(th t) APPENDIX C: DERIVATION OF EQ. (13)
2
. A - . Here, we derive the Bloch equations, Eq. (13), starting from the
: i ) q q g
* l;‘ [V}”’“<b“(t2)d”(t2)d’(tl ) exact EOM for the density matrix, Eq. (10).

s at . Substituting the Kadanoff-Baym ansatz Eq. (12) into (10)
Ve () dh()d())] (B2 gives

D ps(t) = asps(t) ~ E(D)[p5(1) ~ py(1)]

-i Y /mdt My, (¢ = ) €0 ([ dud, d, | (£)) = i, (2= ) 00 ([, dydida (1)

NN,y
I, (¢ =) 0O ([ A did], d, [ () + T, (¢ = ) O ([ ], d, A1 ] (1)
T (¢ = £) 0 ([d], dy d i) (¢) = 05 (= 1) €0 ([dLdid], duy | (1)

1T, (¢~ €0 ([ dh | (€)) + T 0) 0 ([, d ()] e

where self-energy I is defined in Eq. (8).
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In the single electron subspace of the problem

(didid{di) = (d]drd}dr) = (d]dr) = pu,
(didid]dy) = (d}drddy) = (d}dy) = puo, ©2)
(diddldy) = (didrdldy) = (dida) = par,
(didrdidy) = (didvd]dy) = (d}da) = poa,

with all other averages zero.
Substituting (C2) in (C1) and employing a fast bath approxi-
mation

+iwy, (' —t)

pu(t) = pu(t), pra(t') ~p(t)e ’

o (C3)
pu(t) % pna(t),  pa(t) ~pu(t) e 0,

and neglecting bath-induced couplings between populations and
coherences leads to (13).

APPENDIX D: DERIVATION OF EQ. (21)

Within the single-electron subspace of the problem, there is a
simple one-to-one correspondence between the single-particle and
many-body states of the system. This correspondence allows one
to express the lesser and greater projections of the two-particle
GF (11) as

- Cras s 7t s
Gl (t1,12) = =il d], o | (12) [ ] d | (1))
= =ib(ty — t2)((m2m| U (11, 12) | ps(t2) nans))
—i0(t2 — 1) {(n3na| U(t2, 11) [ mnz pss(t1) ),
N T ar a7t
Githman, (0 12) = =i([d], du | (1) [ A, 0| (2))

= —if(t1 — ) (nom| U(t1, t2) | nans pss(£2)))

- ie(l’z - t1)«l13n4| u(l’z, t1) |PSB(t1) I’l]le»x
(D1)

where the rightmost sides of the expressions are written in the Liou-
ville space notation |n1n2)) = |n1)(na|, pss is the total (system and
bath) density operator and,

U(t1, 1) =T exp [fiftt] dt E(t)], (D2)

is the Liouville space evolution operator.
By decoupling the system and the bath dynamics with projec-
tion super-operator

P lf 51 ef (D3)

and introducing retarded and advanced Green’s functions in
Liouville space

Grimman, (11, 12) = =i0(t1 — t2) ((mamy I| U(11, 12) [nams pgl)),

a . gy (DD
Gmmomsn, (11, 12) = +i0(t2 = t1) ((n3na Ig| U (1, 12) [m1m2 pg' ),

one can rewrite the exact expressions (D1) in the form of a
generalized Kadanoff-Baym ansatz in the Liouville space, Eq. (21).

ARTICLE pubs.aip.org/aipl/jcp

Note that the expressions for the Green’s functions in the Liou-
ville space given by Eq. (22) are equivalent to their definition (D4)
via

Ugr(ti,12) = (Is| U(tr, 12) |p5)- (D5)
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