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ARTICLE INFO ABSTRACT

Keywords: Our understanding of the role of volcanoes in the global sulfur cycle and how volcanic gas emissions can be used

Sulfur to monitor volcanoes is limited by the complex interactions between hydrothermal systems and volcanic sulfur

Whakaari emissions. Hydrothermal systems influence the amount and speciation of volcanogenic sulfur, which is ulti-
Etna mately released to the surface and atmosphere via a range of physicochemical processes. To understand the effect
Hydrothermal systems s . .

Degassing of the hydrothermal system on surface emissions, we model the magmatic-hydrothermal systems at Whakaari/

White Island, Aotearoa New Zealand, and Etna, Italy. We quantify the magmatic sulfur inputs using mass balance
and MELTS modeling (thermodynamic model of crystallization); model the effects of degassing using Sulfur_X
(an empirical model of melt-gas equilibria); and model the influence of the hydrothermal system using CHIM-
XPT and EQ3/6 (thermodynamic and kinetic models of gas+watertrock reactions), which we compare to
measured plume and fumarole compositions. We find that the sulfur inputs can broadly equal sulfur outputs over
long timescales. However, the hydrothermal system can modulate the total mass of sulfur released and its HyS/
SO, ratio on shorter timescales, especially as the system evolves from water- to gas-dominated through the
development of dry, gas-dominated pathways.

1. Introduction important to constrain (e.g., Symonds et al., 2001; Fischer et al., 2015;

Christenson et al., 2017; de Moor et al., 2019). Following Symonds et al.

Volcanoes are a critical component of the global sulfur cycle;
therefore, a robust understanding of the journey of sulfur through vol-
canic systems is needed (e.g., Kagoshima et al., 2015). However, the
behavior of sulfur within magmatic systems from source (parent
magma) to surface (outgassing) is difficult to constrain due to the wide
range of potential oxidation states, species, and phases sulfur can be
present in (e.g., Baker and Moretti, 2011; Cicconi et al., 2020; Moretti
and Stefansson, 2020). In particular, the role of hydrothermal “scrub-
bing” in modulating the eventual output of sulfur at the surface is

(2001), we use a broad definition for “scrubbing”, which refers to the
removal of sulfur from volcanic gas through reactions with water+rock
in the hydrothermal system (i.e., both hydrolysis of SO, to HyS and
precipitation of sulfur-bearing minerals).

Changes in the flux and composition of gases emitted at volcanoes
are an integral part of volcano monitoring efforts as they are an indicator
of magmatic input and can suggest increased likelihood of eruption
(recent examples from: Werner et al., 2011; Patane et al., 2013; de Moor
et al., 2016a; Aiuppa et al., 2017). The combination of absolute S and
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CO fluxes with C/S ratios is particularly useful for interpreting the
magmatic system because CO, and S fractionate during degassing and
hydrothermal interactions. CO; is less soluble than S in silicate melts,
causing CO; to exsolve into a gas phase at higher pressures (P) than S
(e.g., Shinohara et al., 2008; Lesne et al., 2011; Lopez et al., 2018). CO»
is also less soluble than S in hydrothermal waters; hence, CO2 does not
react with hydrothermal waters, unlike S (e.g., Symonds et al., 2001; de
Moor et al., 2016b). SO, is easily measured using ground- and space-
based techniques due to its low background abundance in the atmo-
sphere (e.g., Carn et al., 2017). The CO» flux can then be estimated using
the measured sulfur flux and C/S ratio of the gas (e.g., Allard et al., 1991;
Williams et al., 1992; Fischer et al., 2019).

Here we constrain sulfur inputs, outputs, and extent of hydrothermal
scrubbing (including the effects of shallow water scrubbing through the
presence of a crater lake) for two volcanoes with active hydrothermal
systems using quantitative models. We choose Whakaari/White Island,
Aotearoa New Zealand (referred to as Whakaari throughout), and Etna,
Italy, as case studies. Importantly, both have abundant published and/or
freely accessible monitoring data on the flux and composition of the melt
and gas within the volcanic systems. Comparing these volcanic systems
allows us to understand the effectiveness of our modeling approach for
systems with different compositions and sub-surface architectures. We
use these case studies to: (1) evaluate whether the sulfur flux at the
surface can be balanced by the sulfur flux derived from the parent
magma into the system, and (2) quantify how the presence of a hydro-
thermal system affects the sulfur emission at the surface.

Magmatic sulfur inputs were determined using a combination of
whole rock and melt inclusion data; edifice volumes and ages; crystal-
lization modeling using MELTS (Asimow and Ghiorso, 1998; Ghiorso
et al., 2002); and using a range of intrusive to extrusive magma volume
estimates. The process of degassing on melt and gas chemical compo-
sition was modeled using Sulfur X (Ding et al., 2023). To model the
effects of the hydrothermal system, we use EQ3/6 (Wolery, 1992;
Wolery and Daveler, 1992) and CHIM-XPT (Reed et al., 2016) to
constrain the effects of scrubbing through hydrothermal systems of
varying maturity, temperatures (T), and water chemistries. Sulfur out-
puts were compared to high- and low-T fumarole and plume composi-
tions to evaluate the relative importance of different volcanic processes.

2. Geological setting
2.1. Whakaari
Whakaari is Aotearoa New Zealand’s most active volcano (see

review by Kilgour et al., 2021a), located ~50 km offshore of Te Ika-a-
Maui North Island in the Bay of Plenty (Fig. 1a). It is at the north end
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of the Taupo Volcanic Zone, which is a rifted arc caused by oblique,
westward subduction of the Pacific plate under the Australian plate
(Cole, 1990; Wallace et al., 2004). The volcano sits on continental
crust and is mostly composed of andesitic to dacitic magmas, with
occasional high-Mg andesites (e.g., Cole et al., 2000). The magmas are
relatively HyO-poor, with <1.5 wt% H0 recorded in melt inclusions
and from plagioclase hygrometry (Wardell et al., 2001; Rapien et al.,
2003; Esposito et al., 2014; Mandon et al., 2021; Kilgour et al., 2021a,
2021b). Degassing is primarily passive (i.e., non-eruptive) and occurs
through vents within the main crater, distributed fumaroles on the
broader crater floor, and diffuse degassing (e.g., Wardell et al., 2001).
There is an active hydrothermal system consisting of mixtures of
seawater, brine, and/or meteoric water and the main crater periodi-
cally infills with a lake (e.g., Giggenbach et al., 2003; Christenson
et al., 2017; Kilgour et al., 2021a, 2021b). Hydrothermal fluids may
circulate to a depth of ~1 km, whereas a two-phase (gas + fluid)
system occurs at shallower levels (Jolly et al., 2017). Permeabilities
throughout the hydrothermal system vary widely depending on
localized fracturing, dissolution, or mineral precipitation (Heap et al.,
2017). Between 2005 and 2015, 127 + 71 t/d S was emitted during
passive degassing using a combination of space-based and ground-
based measurements (Fischer et al., 2019). The GeoNet program
regularly monitors the volcano which, prior to the 2019 eruption,
included on-the-ground measurements of fumarole T and composi-
tions; crater lake height and T; and ground deformation. Since 2019,
on-the-ground monitoring has not been undertaken and real-time
seismo-acoustic monitoring has degraded gradually. At the time of
writing, (as of October 2023) all on-the-ground monitoring is no
longer operational. Airborne measurements of SO, H,S, and CO; flux
from the plume, plus observation flights, are continuing. All moni-
toring data for Whakaari are freely available from the GeoNet website
(https://www.geonet.org.nz/).

2.2. Etna

Etna is one of the most active basaltic volcanoes in the world and is
located on the island of Sicily, Italy (Fig. 1b). It occurs at the intersection
between the Aeolian arc (related to the collision of the African and
European plates) and the Malta escarpment (e.g., Barberi et al., 1974).
The magma composition is intermediate between ocean island and is-
land arc basalts (e.g., Schiano et al., 2001). The eruption style at Etna is
highly varied (effusive lava flows to explosive Plinian eruptions), and
erupted magmas are often volatile-rich (e.g., Coltelli et al., 1998;
Meétrich et al., 2004; Burton et al., 2005). The volcano is persistently
degassing from multiple summit vents through many fumaroles and
extensive diffuse flank degassing (e.g., Aiuppa et al., 2006; Allard et al.,

50 km B

European plate

African plate

Aeolian islands

Malta escrpment

Fig. 1. Location and simplified tectonic setting of the two volcanoes chosen for this study: (a) Whakaari/White Island (WI), Aotearoa New Zealand, and (b) Etna,

Italy. Modified from Cole et al. (2000) and Kahl et al. (2015), respectively.
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2006; Hernandez et al., 2015). Etna emitted 1052 + 532 t/d S both
passively (using data between 2005 and 2015) and during eruptions
(using data between 2005 and 2017) using space- and ground-based
measurements (Fischer et al., 2019). The extent of the hydrothermal
system present at Etna is smaller than that at Whakaari and is charac-
terized by small-scale, shallow pockets of mostly meteoric hydrothermal
fluids near active vents, as well as the likely presence of deeper hydro-
thermal brines (Brusca et al., 2001; Behncke et al., 2008). Based on
thermochemical modeling, Liotta et al. (2010) report that the conver-
sion of SO5 into H»S happens rapidly as exsolved magmatic gas cools
from 1150 to 400 °C, resulting in molar SO2/H,S between 1 and 5.
Partial dissolution of SOz and HyS occurs as gases intersect unsealed
fractures filled with near boiling water of an uncertain, but likely
meteoric, origin at high-P (>50 bars) and high-T (>260 °C). At shal-
lower P, the interactions between hydrothermal fluids and ascending
gases occur too rapidly for efficient scrubbing of SO (i.e., dissolution
into HyO: Giammanco et al., 1998; Liotta et al., 2010).

3. Methods

We model the flux and composition of volatile components from
when they are dissolved in the initial melt to emission at the surface
including the effects of crystallization, degassing, and water-gas-rock
reactions (Fig. 2). By comparing the modeled and measured volatile
flux and composition at different stages within the volcanic system, we
can evaluate which processes are occurring and their relative impor-
tance. Compositional input data to the various models, as well as
measured gas flux and fumarole and plume compositions for Whakaari
and Etna, are given in the Supplementary Material.

3.1. Magmatic input and crystallization
To quantify the sulfur inputs into the volcanic-hydrothermal systems

at Whakaari and Etna, we assume that the only sulfur input is mantle-
derived sulfur from the primary magma (i.e., there is no addition of

VOLCANIC GAS OUTPUT

plumes, fumaroles

HYDROTHERMAL
INTERACTIONS
EQ3/6, CHIM-XPT

magmatic gas

HT-fumaroles

DEGASSING
Sulfur_ X

CRYSTALLIZATION
MELTS

MAGMATIC INPUT
melt inclusions,
whole rock
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crustal material). Crustal contamination is thought to be limited in both
systems, and the true composition of any assimilant would be very
difficult to determine (Cole et al., 2000; Corsaro and Pompilio, 2004;
Heyworth et al., 2007). To calculate the sulfur input we require an es-
timate of: (1) the initial concentration of sulfur in primary magmas, and
(2) the primary magma flux from the mantle.

The sulfur content of the mantle-derived parent melt is a function of
the sulfur concentration in subduction-modified mantle, oxygen
fugacity (fo2) of the mantle source, and the extent of mantle melting
(e.g., Ding and Dasgupta, 2018; Chowdhury and Dasgupta, 2019; Muth
and Wallace, 2022). At low degrees of partial melting, if there is a re-
sidual sulfate and/or sulfide phase in the mantle after partial melting,
then the sulfur content of the mantle-derived melt would be governed by
the sulfur content at anhydrite or sulfide saturation. At higher degrees of
partial melting, when sulfide and sulfate phases would likely have been
exhausted, the sulfur content of the melt is governed by the amount of
sulfide and/or sulfate phases initially present, and the sulfur concen-
tration in the melt would become diluted as more melt is generated. As
both volcanoes are in subduction zone settings, our estimate of initial
sulfur content of the mantle is affected by uncertainty in the contribu-
tion from the subducting slab and the degree of partial melting. There-
fore, our best estimate of the initial sulfur concentration of the primary
magma is the highest measured sulfur concentration from primitive melt
inclusions. We compiled melt inclusion data from Whakaari (Wardell
et al., 2001; Rapien et al., 2003; Esposito et al., 2014; Mandon et al.,
2021; Kilgour et al., 2021a, 2021b) and Etna eruptions between 2001
and 2016 (Métrich et al., 2004; Spilliaert et al., 2006; Collins et al.,
2009; Schiavi et al., 2015; Edwards and Pioli, 2019; Gennaro et al.,
2019; Potter et al., 2019). Measured sulfur concentrations are as much
as 2430 and 4630 ppm in Whakaari and Etna, respectively, and we use
these values as the starting values for petrogenetic modeling (full dataset
available in the Supplementary Material).

We constrain the parental magma flux into the system using esti-
mates of the time period over which a certain volume of primary magma
entered the system. Both time and volume are challenging to constrain.

WHAKAARI ETNA
VOLCANIC GAS OUTPUT (measurements)

S flux (t/d) 127+ 71 1052 + 532
CO, (t/d) 1470 + 605 9083
C/s 4.0 6.7
HYDROTHERMAL INTERACTIONS (EQ3/6 and CHIM-XPT)
pressure (bars) 1-40 5-100
temperature (°C) 58-400 90-300
initial CO¥SO, 1-5 1-12
DEGASSING (Sulfur X) basalt/dacite

pressure (bars) <5600/<3600 <3800
temperature (°C) 1200/1000 1150
initial H,O (Wt%) 1.5/1.5 3.6
initial CO, (ppm) 3508/1618 4074
initial S (ppm) 2430/1442 4630
CRYSTALLIZATION (VELTS)

pressure (bars) 1500-2000 500-2000
oxygen fugacity (ANNO) 0 0.5
vapor-saturated? yes yes
crystallisation (%) 25 67
MAGMATIC INPUT

intrusive:extrusive (volume) 1:3-10:1 2:1-10:1
initial CO2 (ppm) 3508 4075
initial S (ppm) 2430 4630

S flux (t/d) 92-762 75-9370

inputs (italic), outputs/measurements (normal)

Fig. 2. (left) Schematic illustration showing our approach to modeling sulfur in the magmatic-hydrothermal systems (in purple and blue, respectively) of both
Whakaari and Etna (illustration: Whakaari). Reservoirs of sulfur are shown in black outlined boxes, with observables of these reservoirs shown in gray italics.
Processes affecting sulfur as it moves between reservoirs are shown in boxes outlined in gray, where the program used to model this process is shown in gray italics.
(right) Table indicating the processes considered in our approach (black bold) including: programs used for modeling (gray italics), inputs used for the models
(italics), outputs and best-fit solutions (normal), and measurements made at the volcanoes (normal) for Whakaari (left, blue) and Etna (right, red).
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Estimating the volume of magma which enters the system requires
knowledge of both the intruded and extruded magma volumes, where
LE is the ratio of intrusive to extrusive magma volumes.

The extruded magma volume (and flux) can be estimated from
observed volumes of erupted magma over a known time interval. For
Whakaari, we used the edifice volume as the extruded magma volume
(78 km?: Duncan and Vucetich, 1970; Cole et al., 2000) and the total
edifice age (10-21 kyrs: Rapien et al., 2003; Shane et al., 2006). We note
that the edifice volume used here is likely a minimum considering syn/
post-eruptive surface processes (e.g., deposition of material into the sea,
edifice collapse and destruction) have likely removed an unknown vol-
ume of material from the current edifice over time. For Etna we used two
different approaches: (1) total estimated eruptive volume during the
lifetime of the volcano (350 km® over ~500 kyrs: Tanguy et al., 1997);
and (2) directly calculated eruptive volumes during observed eruptions
between 1970 and 2010 (Harris et al., 2011).

The intruded magma volume is more difficult to constrain due to lack
of direct observations. A minimum estimate comes from the amount of
crystallization of the primary magma required to produce the compo-
sition of erupted material calculated using MELTS modeling (Ghiorso
and Sack, 1995; Asimow and Ghiorso, 1998). We assumed that the most
primitive lavas were representative of the ‘primary’ magma composi-
tions in both volcanic systems. A grid-search through a range of pa-
rameters (T = 1300-700 °C, relative fop (ANNO, where ANNO is
logfoz[melt] — logfo2[Ni-NiO buffer]) of —3 to +3, P = 0-10 kbar, and 0
wt% to HpO-saturated conditions) during fractional crystallization was
used to find a liquid line of descent that would best match measured
whole rock compositions. The best match was evaluated using least-
squares residuals to measured MgO, CaO, Al;0O3, and SiO; in bulk rock
samples, as these oxides are most sensitive to variations in crystalliza-
tion conditions. MELTS continuously tracks the mass of residual melt
during fractional crystallization, allowing us to correct for the mass of
crystals removed from each system due to fractional crystallization, and
by extension, to estimate the mass of parent (least evolved) magma
contributing to the total sulfur budget for each system. Combining the
observed extruded magma volume with the calculated L:E from MELTS
modeling yields an estimate for the total volume of parental magma and
the inferred volume of cumulate material left in the crust.

However, some magma intruded in the crust may not have contrib-
uted to erupted magma at the surface. Therefore, the maximum estimate
of the primary magma flux (and therefore S flux) depends on the
maximum I:E assumed. Excess SO, flux measurements at volcanoes (i.e.,
more SO2 emitted than could be derived from the erupted magma) can
be used to constrain L'E (e.g., Steffke et al., 2011). However, using
empirically-constrained L.E at Whakaari or Etna to estimate the S flux
would lead to circular arguments. We therefore conducted a series of
calculations for both systems using I:E up to 10:1 (these are reasonable
ratios proposed for other systems; Steffke et al., 2011) to better quantify
the effect of residual unerupted magma on estimated S flux.

As an alternative, we estimate SO flux using the measured CO3 flux
and an estimate of the initial C/S ratio of the magma. This calculation
assumes that the magma completely degasses CO, and that all CO,
released from the magma reaches the surface. For CO; flux, we use the
average of GeoNet data (GNS Science, 1954) for Whakaari (1470 + 605
t/d) and the value from Aiuppa et al. (2019) for Etna (9083 t/d). For the
initial C/S ratio, we use the ratio of the highest measured S and CO,
concentrations from our melt inclusion compilation from each volcano:
3508 ppm CO; and 2430 ppm S for Whakaari, and 4075 ppm CO, and
4630 ppm S for Etna (discussed in Section 3.3).

3.2. Degassing: Sulfur X

We used Sulfur X (Ding et al., 2023) to simulate degassing of typical
Whakaari and Etna magmas as they ascend through the crust. We
compare the observed gas compositions measured at fumaroles and
plumes to the calculated compositions during the degassing paths. This
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approach provides insight on the pressure at which the gas may have
separated from the magma; and whether the observed gas compositions
emitted at the surface can be generated by degassing alone or if they
require the influence of the hydrothermal system.

Sulfur_X predicts the equilibrium melt and vapor compositions for
multi-volatile systems (CO», H20, SO2, and H,S) under closed-system
degassing conditions. The solubility of CO2 and H3O in the melt is
related to the fugacity of these species in the gas phase. Sulfur is
modeled using two empirically-calibrated partition coefficients for
mafic magmas between H,S in the vapor and $2~ in the melt and SO in
the vapor and S®* in the melt. For all our modeling, we turn crystal-
lization off (i.e., there is a single melt composition during decom-
pression) and we allow fgpy to vary during degassing. For the sulfur
speciation in the melt we used the model of Muth and Wallace (2022),
whilst for C-O-H solubility we used the model from VolatileCalc
(Newman and Lowenstern, 2002) for the Whakaari basalt and Iacono-
Marziano et al. (2012) for Whakaari dacite and Etna basalt. Due to the
uncertainties in the sulfur partition coefficients in Sulfur_X, we typi-
cally do not consider outputs from P < 20-30 bars (Ding et al., 2023).
We note that the compositional calibration for Sulfur_X does not extend
to dacitic compositions, and therefore we interpret the results of the
dacite models with caution.

For modeling Whakaari, we investigated two compositions (basalt
and dacite) to simulate potential degassing scenarios from what are
likely complexly configured magma storage zones beneath the volcano.
Our initial conditions are based primarily on our melt inclusion data
compilation. The model melt composition was the lowest SiO, melt
composition (basalt) or average of melt inclusions with SiO; > 60 wt%
(andesite-dacite). Temperature was based on thermometry from Kilgour
et al. (2021b): 1200 °C (basalt) and 1000 °C (dacite). We assumed
1.5 wt% H3O for both the basalt and dacite based on hygrometry from
Kilgour et al. (2021b). Initial CO5 used the highest (3508 ppm) and
second highest (1618 ppm) values from melt inclusions for the basalt
and dacite, respectively (Esposito et al., 2014). The sulfur content used
the highest concentration from basaltic (2430 ppm) and andesite-dacite
(SiOy > 60 wt%, 1442 ppm) melt inclusions. The foy is poorly con-
strained: we use ANNO=Q0 as stated in Kilgour et al. (2021b) for basalt
and dacite, which is consistent with our MELTS modeling presented in
Section 4.2.

For modeling Etna, the melt composition chosen was the most
primitive melt inclusion (lowest SiO3) from the 2001-2003 eruptions at
Etna (Gennaro et al., 2019) at 1150 °C and ANNO+0.5 (Gaborieau et al.,
2020; consistent with MELTS modeling in Section 4.2). The initial vol-
atile content is the highest from our melt inclusion data compilation: 3.6
wt% H20, 4075 ppm COq, and 4630 ppm S. Full details of the inputs for
these simulations are given in the Supplementary Material.

3.3. Hydrothermal interactions: EQ3/6 and CHIM-XPT

We use the EQ3/6 geochemical modeling software to investigate
the effects of varying hydrothermal parameters (water chemistry, T,
P) on surface emissions of CO,, SO,, and HyS at Whakaari and Etna.
We compare modeled and measured surface CO;, SOz, and HsS
emissions at each volcano to characterize whether magmatic gas
titrated through hydrothermal fluids under different conditions can
recreate the compositions of measured surface emissions. Our
approach follows the work of Di Napoli et al. (2016) using the EQ3/6
geochemical modeling software within the Enabling Knowledge
Integration (ENKI) (http://enki-portal.org/) server through the
Jupyter Notebooks open-source web application. We use the jus.R60
thermodynamic database with a maximum T of 350 °C and P of 165.2
bars. An initial packet of bulk magmatic gas (compositions taken from
high-T fumaroles) is titrated into, and allowed to equilibrate at
different T and P, with a system consisting of bulk bedrock and
various water compositions set to represent a hydrothermal system.
The output composition of gas phase components is recorded after
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titration and equilibration with the water-rock system at the indicated
P and T regime. All models were run in the ‘relative rates’ mode using
the transition state theory rate law to model irreversible reactions
between the minerals and waters (Wolery, 1992; Wolery and Daveler,
1992). Inputs into EQ3/6 are given in the Supplementary Material.
Note that the EQ3/6 input did not allow for definition of HyO (gas) as
a titrant: therefore, our input magmatic gases are defined solely based
on CO, and SO, molar ratios.

At Whakaari, we performed four to nine total runs for each water
composition-P-T regime based on whether there was large variance
between subsequent runs. To reflect changing hydrothermal conditions
due to interaction with hydrothermal gases, each step within a run used
the water output from the previous step and the same initial magmatic
gas composition. The bulk rock composition used was the Whakaari
central cone dacite from Cole et al. (2000). The initial magmatic gas
packet was assumed to be the composition of high-T fumaroles with
CO9/SO, = 5 (Giggenbach, 1975) and was titrated through four
different water compositions: brine (Christenson et al., 2017), seawater
(McCollom, 2007), meteoric water (Berner and Berner, 2012; Hao et al.,
2017), and lake water (Christenson et al., 2017).

For Etna, we performed five total model runs for each water
composition-P-T regime, with each step using the water output from
the previous step and the same initial magmatic gas composition. For
the T and P of the Etna hydrothermal system, we used values from
Giammanco et al. (1998). We define a magmatic gas input of CO2/SO5
= 12 based on a multigas measurement by Aiuppa et al. (2008), taken
when CO; flux was highest during the pre-eruptive period (COy =
19,062 t/d, SOy = 1631 t/d, H2O = 13,257 t/d). The bulk rock
composition used was K-trachybasalt (Giuffrida and Viccaro, 2017).
Finally, we used an initial deep brine composition from sample 19 of
Brusca et al. (2001) and a meteoric water composition from Berner and
Berner (2012).

To characterize the effect water has on sulfur flux through hydro-
thermal systems, we used the program CHIM-XPT (formerly known as
CHILLER; Reed et al., 2016). CHIM-XPT has the capability to compute
reaction processes in water-rock-gas systems. Reaction processes can be
calculated under changing composition, P, and T. CHIM-XPT modeling
isrestricted to P < 5000 bar and T < 600 °C. For our purpose, we titrated
gas of a specific composition through water to see the output gas
composition. This was done to test the effect of scrubbing on gases
titrated through the hydrothermal system at Whakaari. Rock composi-
tion was not considered.

Input gas compositions came from high-T fumaroles (Giggenbach,
1987), which were used as a proxy for gases sourced from the under-
lying magma. We chose specific water geochemistry of samples
collected from hot springs located in the crater (Giggenbach, 1987) as a
best representative for the composition of the hydrothermal system.
The models were run at 250 °C and 40 bars based on previous char-
acterizations of Whakaari’s hydrothermal system (e.g., Giggenbach,
1987; Giggenbach et al., 2003). CHIM-XPT bases its calculations on 1
kg of water and outputs a water/gas ratio (w/g) based on the amount
and type of gas that is input into the model. This output ratio can be
scaled to larger volumes. We tested the evolution of a hydrothermal
system by titrating increasing amounts of gas into the system and
tracking changes in output gas composition. These observations can
also be used to make predictions about gas composition and transfer
related to the maturity of hydrothermal systems. High w/g imply
efficient gas scrubbing, typically associated with immature systems,
which predictably alters gas compositions by removing most of the
SO,. Low w/g represents a mature system that is no longer able to
efficiently scrub SO,. In this context, a mature system with a low w/g
implies the hydrothermal system is saturated with volatiles allowing
SO; to pass through the hydrothermal system relatively unaffected,
thus no longer causing a scrubbing effect. Inputs to CHIM-XPT are
given in the Supplementary Material.
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4. Results
4.1. Calculated magmatic input vs. surface emissions

At Whakaari, the best fit to whole-rock data using MELTS modeling is
found under isobaric (1500-2000 bars) fractional crystallization at
water-saturated conditions and a relative fo, of ANNO=0 (Fig. 3a and
b). The most evolved compositions were reproduced by MELTS after
~25% crystallization of the parent magma (I:E = 1:3). At Etna, the best
fits are found with isobaric fractional crystallization under water-
saturated conditions at ~500 and 2000 bar and slightly more oxidised
conditions (ANNO+-0.5; Fig. 3c and d). The most evolved compositions
require more extensive crystallization (~67%) of the parent magma (I:E
= 2:1). In both cases, these conditions closely match inferred conditions
from other petrologic and geophysical methods (e.g., Whakaari: Cole
et al., 2000, Etna: Cannata et al., 2018; Cashman and Edmonds, 2019).

For Whakaari, our estimate for surface gas emissions is 92-762 t/d S
(LE =1:3to 10:1) and up to 1020 + 420 t/d S (based on COs flux), and
the measured flux between 1983 and 2019 varies by two orders of
magnitude (~3-900 t/d S; GNS Science, 1954; Christenson et al., 2017),
with an average of 127 £+ 71 t/d S between 2005 and 2015 (Fischer
et al., 2019) (Fig. 4a). The wide range of estimated sulfur flux is due to
uncertainty in the primary magma flux into the system (e.g., edifice age
and volume, LE). The minimum estimated flux based on intruded
magma volume calculated using MELTS modeling is on the low end of
measured flux values, but within error of the average flux between 2005
and 2015. The flux using an L:E = 1:1 is greater than the upper bound of
2005-2015 average.

For Etna, our estimate is 75-9370 t/d S using I:E = 2:1 to 10:1 and
extruded volumes based on edifice volume to observed rates, and up to
10,320 t/d S using CO5 flux (Fig. 4b; note the values obtained from
edifice volume for I:E of 2:1 and 5:1 are not shown for clarity on the
figure). The measured values range from 200 to 13,300 t/d S (Allard
et al., 1991; Caltabiano et al., 1994; Edner et al., 1994; Bruno et al.,
1999; Aiuppa et al., 2006, 2007, 2008; Pugnaghi et al., 2006; Salerno
et al., 2009; La Spina et al., 2010), with an average between 2005 and
2015 of 1052 + 532 t/d S (Fischer et al., 2019) (Fig. 4b). Our minimum
estimate (75 t/d S), derived from a long term erupted volume of ~350
km?, edifice age of ~500 kyrs (Tanguy et al., 1997), and LE = 2:1, is
approximately an order of magnitude lower than the average measured
flux. The maximum estimate (10,320 t/d S) uses measured CO; flux and
initial C/S ratio of the magma and is an order of magnitude larger than
the recent average measured flux. The constraints on eruptive volume
are more robust for the recent period (1970-2010) because of improved
observations and monitoring of recent eruptions (Harris et al., 2011).
Our modeling indicates that it is possible to balance the observed sulfur
output at Etna if I.E < 2:1 for flux measurements since ~2003 and closer
to 2:1 to 5:1 for older measurements.

4.2. Magmatic gas compositions

Fig. 5 compares the outputs of Sulfur X, EQ3/6, and CHIM-XPT
(Whakaari only) with measured fumarole and plume compositions. At
Whakaari, fumarole compositions are generally HyO-rich, with higher T
fumaroles being broadly richer in total sulfur (St) (Fig. 5a). Both SO5
and HjS occur in the fumaroles (there is no systematic difference be-
tween high- and low-T fumaroles) but only SO, is present in the plume:
molar SOy/H,S ratios range from 0 to 27 for fumaroles (Fig. 5b). At Etna,
fumarole compositions are poor in HoO compared to Whakaari (Fig. 5¢).
The SO,/HsS ratios for fumarole and plume compositions at Etna are
highly variable, with SO2/HaS between 0.4 and 215 (Fig. 5d).

4.3. Degassing: Sulfur X

Results from Sulfur X are shown using solid (basalt) and dashed
(dacite) curves in Fig. 5. All initial conditions predict decreasing CO4
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mole fraction in the vapor with decreasing P (curves start at the star in
Fig. 5a and ¢ and move toward the HyO-St edge with decreasing P). The
degassing paths for basaltic compositions suggest the gas is SOp-rich
relative to HyS, whereas the dacitic composition at Whakaari is more
HaS-rich (Fig. 5b and d). Given the initial fog is uncertain for Whakaari
magmas, we also modeled the dacitic melt composition using a slightly
more oxidised foz (ANNO+0.5 vs. 0), shown as the dotted blue curves.
This highlights that at the lower T of the dacite, the SO/H,S ratio is
highly dependent on modeled fo (e.g., Fig. 2a in Ding et al., 2023).

For Whakaari, most of the fumarole data are more HyO-rich than the
gas compositions predicted by Sulfur_X (Fig. 5a). Some of the plume and
fumarole data have higher CO2/SO, than the deepest results predicted
by Sulfur X, which may suggest a higher C/S ratio of the initial magma
than used in our calculations. The plume data are notable in having SO,
> H,S. Some of the fumarole data have higher HyoS/SO, ratio than the
basaltic and more oxidised dacitic degassing curves, but lower than the
more reduced dacitic degassing curve (Fig. 5b). Geologic evidence
suggests that dacitic magma likely contributes to magmatic degassing at
Whakaari. The more oxidised dacitic degassing path provides a better
match to SO2/H3S > 1 values seen in high-T fumaroles, though we stress
that initial foy is poorly constrained and Sulfur X is not calibrated for
dacitic compositions. Many lower-T fumarolic gases, however, cannot
be explained by the magmatic degassing curves, indicating that
magmatic degassing is not solely controlling the composition of volcanic
gases at Whakaari, consistent with previous interpretations (e.g., Gig-
genbach, 1987).

For Etna the plume and fumarole gas compositions are broadly
matched by the degassing curves, although some are more enriched in
CO2, H30, and H,S than our degassing calculations (Fig. 5¢ and d).

4.4. Hydrothermal interactions: EQ3/6

The EQ3/6 gas data in Fig. 5 are the compositions of the magmatic
gas outputs after titrating through, and equilibrating with, hydrothermal
waters of various compositions at a range of T and P. The results plotted
in Fig. 5 across each T, P, and water chemistry regime represent the
initial gas output, intermediate outputs, and the gas output of the final
run (hence multiple occurrences of the same symbols in Fig. 5) as the
water chemistry evolves. At Whakaari, nearly all of the modeled gas
outputs have compositions with low total sulfur (Fig. 5a) and very high
H,S relative to SO5 (Fig. 5b) compared to the observed fumarole gas
compositions. In an attempt to increase the SO,/H5S ratio of modeled
surface gas emissions, we increased the amount of SO, in our initial
magmatic gas compositions to CO2/SO2 = 1 and titrated it through brine
at 350 °C and 40 bars (red outlined circles). This magmatic gas input
with a higher concentration of SO5 is the only modeled gas that plots
closer to the region of measured gas compositions in Fig. 5b but still has
too low of an SOy concentration than most fumarole and plume
measurements.

None of the modeled gas outputs from EQ3/6 intersect compositions
of measured gas from Etna, as they are too S-poor (Fig. 5c and d). We
increased the amount of SO in our initial magmatic gas compositions to
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Fig. 4. Sulfur flux (t/d S) for (a) Whakaari and (b) Etna. Circles are measured
values (GNS Science (1954) and Christenson et al. (2017) for Whakaari; Aiuppa
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CO2/S0Oy = 5 (red circles with +) and CO5/SO5 = 1 (x symbols) to test
the effects of more SO,-rich magmatic gas compositions entering the
hydrothermal system (Fig. 5¢ and d). Only the models with CO3/SO2 =1
have closer to the Sy of measured compositions (Fig. 5c). Similar to
Whakaari (Fig. 5b), all EQ3/6 modeled output gases are too rich in HyS
relative to SO (Fig. 5d) when initial gas inputs are forced to equilibrate
through hydrothermal water. The interactions modeled by EQ3/6 where
magmatic gas equilibrates with hydrothermal water does not reproduce
the observed plume or fumarolic gas compositions at either Whakaari or
Etna.

4.5. Hydrothermal interactions: CHIM-XPT

CHIM-XPT produces output gas compositions that have experienced
water-gas interactions that can ultimately be a reflection of hydrother-
mal system maturity. We only applied CHIM-XPT to Whakaari because
of its well documented mature hydrothermal system (Giggenbach,
1987). We progressively input gas into Whakaari’s hydrothermal system
to test changes in output gas chemistry as the w/g ratio decreases
(i.e., increasing amounts of gas input through a fixed mass of water).
CHIM-XPT outputs the following gases and species for Whakaari: H2Og),
COx(g), Hag), HaS(g), SO2(g), HF (g), HCl(g), HSO4, SO2(aq), H2S(aq), CO2(aq)s
SO%~, and Cl~. Possible minerals precipitated are diaspore, anhydrite,
pyrite, and native sulfur. Anhydrite and pyrite precipitate in minor
proportions in an immature system, but sulfur was not precipitated in
our models. Initially, output gas shows an increase in HyS/SO; followed
by a drastic decrease (Fig. 6). An increase in HpS/SO is the direct result
of hydrous interactions. SO is consumed by hydrolysis reactions and
produces HjS (one form of scrubbing), thus initially increasing the HyS/
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SO, ratio according to the following reactions (Giggenbach, 1987;
Symonds et al., 2001):

4SOz(g) + 4H20(aq) = HzS(aq) + 3stO4(aq), 0
and,
3SOz(g) + 2H20(aq) = S(;_l) + 2H2504(aq). (2)

As more gas is titrated through the system, the SO, consumption
decreases and scrubbing becomes less effective, causing the HyS/SO5
ratio of gas emissions to decrease (Fig. 6). This decrease reflects matu-
ration of a hydrothermal system that is no longer able to effectively
scrub magmatic gases (Symonds et al., 2001).

Our model results show a comparison between these stages, repre-
senting the progression and evolution of a hydrothermal system as it
experiences continual gas input and transitions from an immature (high
w/g) to mature (low w/g) hydrothermal system with established gas
pathways. We observe a significant change in HyS/SO for the initial
stage where only a small amount of gas is titrated through the system.
However, as more gas is incorporated into the system, the output HyS/
SO, ratio decreases because scrubbing becomes less effective as the
system evolves, and more gas is able to pass through without the effect of
scrubbing.

On the ternaries in Fig. 5a and b, the gas compositions related to the
immature stage are shown by the blue arrow, and compositions related
to the mature stage are shown by the gray arrow. Significant sulfur
scrubbing occurs at the start of the immature stage, such that the CO,/St
of the first gas produced is much higher than the initial gas added to the
system. During the immature stage, CO2/HjS ratio decreases as shown
by the blue arrow in Fig. 5b because scrubbing becomes less efficient but
is still significantly less S-rich than the initial gas input. The modeled gas
outputs for this immature, high w/g system (blue arrow) do not overlap
with any of the measured fumarole or plume data. For the mature stage
(gray arrow in Fig. 5b) we see the effects of scrubbing further decrease as
the concentration of SO; in the gas output increases. The modeled gas
outputs with the highest SO, concentrations result in the only overlap
with measured fumarole and plume compositions. Similar to the EQ3/6
modeled outputs, most of the measured compositions are not recreated
by the CHIM-XPT models (Fig. 5a and b).

5. Discussion
5.1. The effect of the hydrothermal system on surface gas emissions

To understand the effect of the hydrothermal system on the surface
sulfur flux, we compare the gas compositions from our modeling results
of magmatic degassing and water-gas-rock reactions to observed fuma-
role and plume compositions (Fig. 5). These represent two end-member
scenarios: magmatic degassing models (Sulfur_X) calculate changing gas
composition from depth with no interaction with hydrothermal fluids,
whereas water-gas+rock reactions (EQ3/6 and CHIM-XPT) force all of
the emitted magmatic gas to interact with hydrothermal fluid. We also
compare the pressure derived from the magmatic degassing models that
match observed fumarole/plume compositions to the crystallization
models using MELTS.

At Whakaari, the fumarole compositions mostly lie in-between the
results from magmatic degassing and hydrothermal interactions (Fig. 5a
and b). This suggests fumarole gases represent mixing of magmatic and
hydrothermal gases or intermediate amounts of hydrothermal modifi-
cation of magmatic gases. Mixing between magmatic gases and hydro-
thermal gases is well-known at Whakaari based on the variation in
fumarole compositions (e.g., Giggenbach, 1987) and consistent with
recent electrical resistivity studies at Whakaari that suggest the presence
of a two-phase zone, likely comprised of gases in equilibrium with the
hydrothermal system and higher-T gases in equilibrium with the magma
(Miller et al., 2020). The magmatic gas composition at the pressure of



E.C. Hughes et al.

_Measured data
M fumarole data’ < 400°C [ plume data®
@ fumarole data’ > 400°C
1Giggenbach (1975); Miller et al. (2020)
“Christenson et al. (2017); Miller et al. (2020)
CHIM-XPT model results
# immature system
(high w/g)
mature system
(low w/g)
arrows indicate geochemical trend

A

Whakaari/
White Island

Sulfur_X model results
Basalt
------ Dacite (A NNO =0)
.......... Dacite (A NNO =0.5)
¥ indicates model start
D pressures of

HZO MELTS best fit
10 5S.
B CO EQ3/6 model results
Whakaari/ 1 @ brine, 40 bars, 350°C

seawater, 40 bars, 350°C
@ brine, 40 bars, 250°C
seawater, 40 bars, 250°C
@ brine, 20 bars, 150°C
O brine, 5 bars, 100°C
<> seawater, 5 bars, 100°C
[ meteoric, 5 bars, 100°C
A lake, 1 bar, 58°C
O brine, 40 bars, 350°C,
€0,/S0, =1

White Island

Journal of Volcanology and Geothermal Research 446 (2024) 107939

Measured Data
M fumarole data' < 300°C
@ fumarole data' > 300°C
O plume data’

'Liotta et al. (2010)

2Aiuppa et al. (2008)

ETNA

Sulfur_X model results

Basalt
W indicates model start

] pressures of

MELTS best fit
H,O
10 oSy
D co

EQ3/6 model results

@ brine, 100 bars, 300°C

@ brine, 100 bars, 250°C

@ brine, 50 bars, 300°C

@ brine, 50 bars, 300°C,
€0,/S0,=5

X brine, 50 bars, 300°C,
€0,/S0, =1

@ brine, 50 bars, 150°C

[ brine, 5 bars, 90°C

<> meteoric, 100 bars, 300°C

<> meteoric, 100 bars, 250°C

O meteoric, 50 bars, 150°C

meteoric, 5 bars, 90°C

SO H,S

2 2

Fig. 5. Gas composition for (a—b) Whakaari and (c-d) Etna plotted on ternary diagrams for (a,c) CO5-H,0-St and (b,d) CO,-H5S-SO,. Model results are from Sulfur_X
(Whakaari = blue and Etna = red curves; basalt = solid, dacite = dashed/dotted), EQ3/6 output gas emissions (colored symbols: initial magmatic CO,/SO, = 5 for
Whakaari and 12 for Etna unless otherwise noted), and CHIM-XPT (blue and gray arrows for Whakaari only). For comparison, plume (white squares) and fumaroles
(black squares = high-T and gray diamonds = low-T) data are shown (Whakaari: Giggenbach, 1975; Christenson et al., 2017; Miller et al., 2020. Etna: Aiuppa et al.,
2008; Liotta et al., 2010). High-T is >400 °C for Whakaari or > 300 °C for Etna based on Giggenbach (1975) and Liotta et al. (2010), respectively. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

12
' @ high w/g
low w/g
101 ; initial stages /
efficient scrubbing
8 —
3
Q%
I
4k late stage /
inefficient scrubbing
2
O 1 1 1 1 L 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

gas added (wt%)

decreasing water/gas ratio
maturation of a system

Fig. 6. Results from CHIM-XPT modeling of Whakaari: changes in H,S/SO, as
gas is continually fed into the system. Initially there is a strong scrubbing effect
that eventually diminishes as the water/gas ratio decreases.

MELTs crystallization does not appear to be important. However, this
uses a simplistic assumption that the gas separates from the melt at a
single P. In reality degassing will occur throughout the magmatic system
and gases will mix as they ascend (e.g., Iacovino, 2015). Additionally we
only considered closed-system degassing because Sulfur X is limited to
modeling closed systems: open-system or a mixture of both open- and
closed-system degassing are likely in magmatic systems.

CHIM-XPT model results also show a trend toward measured fuma-
role and plume compositions as the system evolves to lower w/g ratios

(gray arrow in Fig. 5b). This suggests that high-T fumaroles at Whakaari
represent a mature hydrothermal system with a low w/g ratio and we
refer to this magmatic gas pathway with a low water-gas interaction as a
“dry gas pathway”. The formation of dry gas pathways is more likely to
occur in volcanic systems like Whakaari that have prolonged periods of
elevated activity (Symonds et al., 2001). This interpretation is consistent
with Christenson et al. (2017), who proposed that large-scale deposition
of hydrothermal minerals at Whakaari, such as elemental sulfur and
anhydrite, can form a seal which creates a zone where a vapor-
dominated phase can exist with low gas-water interaction. Our CHIM-
XPT results did not precipitate elemental sulfur, which highlights that
there are conditions in the hydrothermal system at Whakaari that are
not well-reproduced by our modeling. A limitation of our EQ3/6
modeling is that the model did not reach the level of hydrothermal
system maturity reached by the CHIM-XPT modeling due to using a
higher w/g ratio. This is illustrated in Fig. 5b, where our EQ3/6 gas
outputs overlap the results from the “immature” stage of the hydro-
thermal system as indicated by CHIM-XPT modeling but do not follow a
similar trend of decreasing HyS/SO5 characterizing the mature system.
In contrast, the plume compositions (only shown in Fig. 5b) at
Whakaari do not lie between magmatic degassing and hydrothermal
interaction compositions. They have a slightly higher SO2/H»S ratio
than the magmatic degassing model results, away from hydrothermal
gases. This suggests the plume gases do not react with, or mix with gases
from, the hydrothermal system as much, though we note that reactions
in the atmosphere can also increase the SO3/H,S ratio (although the
kinetics of oxidation are thought to be sluggish; Aiuppa et al., 2005).
At Etna, observed melt compositions can be reproduced by fractional
crystallization at 500 to 2000 bars (Fig. 3c and d). The magmatic gas
composition at these depths is less COy-rich than the plume and
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fumarole compositions (Fig. 5c and d). However, deeper-derived
magmatic gases are more COz-rich and hence deeper gases (and gases
from magmas with high initial C/S ratio) may be an important contri-
bution to surface emissions (additionally, there are similar caveats about
open- vs. closed-system degassing and mixing as discussed for Wha-
kaari). The magmatic plumbing system at Etna is known to be complex,
with multiple magma reservoirs present (e.g., Cashman and Edmonds,
2019). Therefore, gases from multiple depths are likely mixed to pro-
duce the gas composition at the surface.

Our EQ3/6 models produce gas outputs (after interaction with the
hydrothermal system) with SO5/H,S values that are too low, whereas
Sulfur_X models have SO3/H,S within the range of observed emissions
(Fig. 5d). Overall, gases modeled without hydrothermal interaction
(through Sulfur_X) recreated the compositions of measured gases better
than models from EQ3/6, although fumarolic gases do tend to contain
more H0. Increasing the SO concentration of our initial magmatic gas
to CO2/S0; = 1 still results in output gas emissions in EQ3/6 models that
are too HyS-rich (SO2/H2S = 0.2-0.4) when compared to measured
fumarole emissions (SO2/H2S = 1.5-3.7). Therefore, our results suggest
that shallow scrubbing processes are not occurring on a large-scale at
Etna (Fig. 5d), but our high w/g ratios may not be appropriate for this
system. This supports Liotta et al. (2010), who found that water-gas
interactions at Etna likely occur at P between 50 and 200 bars and T
between 270 and 370 °C based on thermochemical modeling (using the
software HSC Chemistry) of cooling and condensing magmatic gases
under a variety of T and P from depth to surface at Etna. At lower T and
P, the interaction between fluids and ascending magmatic gases is too
fast to allow for significant scrubbing of SO, at Etna (Giammanco et al.,
1998; Liotta et al., 2010). Unfortunately, modeling of our data beyond
300 °C was not possible using EQ3/6, limiting our ability to model gas-
water interactions at higher T. However, Sulfur X could not model the
full range of measured SO,/H5S values and HoO-enrichment of fumarole
and plume gases emitted at Etna, suggesting that some extent of hy-
drothermal interaction must exist to produce lower SO5/H,S ratios than
what results from magma degassing alone.

5.2. Sulfur inputs and outputs over long time-scales

Our modeling of Whaakari and Etna suggest that over long time-
scales (at least 10s of years), sulfur inputs from mantle-derived primary
magma can balance sulfur outputs as gaseous emissions to the atmo-
sphere with I:E 1:3 to 1:1 for Whakaari or 2:1 to 5:1 for Etna (Fig. 4). If
LE is <1:3 for Whakaari (which is less than the minimum required to
produce the composition of material erupted at the surface), additional
sources of sulfur apart from the mantle-derived primary magma would
be required (e.g., shallow crustal assimilation). For I:E > 1:1 for Wha-
kaari or 5:1 for Etna, the sulfur output to the atmosphere is less than
what is delivered by the long-term average mantle-derived primary
magma input, which requires sulfur sequestration. We note that the I.E
of 1:3 to 1:1 for Whakaari are relatively high given the low erupted
volumes in recent history. Although gas interaction with hydrothermal
watertrock does affect fumarolic gas compositions at Whakaari (and
possibly to a small degree at Etna; see Section 5.1 for full discussion), the
amount of sulfur sequestered by the hydrothermal systems of these
volcanoes must be relatively small or relatively constant over geologic
timescales, given the long-term emission data., However, the presence/
absence and size of a hydrothermal system can significantly affect the
release of sulfur to the atmosphere over short (years to decades) time-
scales (Giggenbach, 1987). However, there are other processes that can
sequester sulfur that we did not model, the most significant of which are
discussed below.

Magmatic sulfide-saturation is thought to occur in the magmatic sys-
tems of both Whakaari and Etna (e.g., Spilliaert et al., 2006; Moretti et al.,
2018; Mandon et al., 2020, 2021) but magmatic anhydrite has not been
observed at either system. For Whakaari, ~2-20 t/d S may be sequestered
as sulfides (Mandon et al., 2021). However, this S flux is smaller than the
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error in the average S flux between 2005 and 2015 (71 t/d) and hence is not
an important flux to consider. At Etna, sulfide saturation is only thought to
change melt sulfur concentrations temporarily (i.e., sulfides are often
resorbed prior to eruption) and at a local spatial scale and therefore does
not remove large amounts of sulfur from the system (e.g., Gennaro et al.,
2020; Spilliaert et al., 2006). Hence, in both cases, removal of sulfur by
magmatic sulfides is not likely to be important in overall sulfur fluxes.

High-T gas-solid reactions can also sequester sulfur in the sub-
surface. Henley and Fischer (2021) found the potential for substantial
sequestration of SO through reactions with plagioclase and other Ca-
bearing minerals, which produces anhydrite and reduced sulfur. Their
modeling work showed that in andesitic systems with abundant Ca-
bearing minerals this process could remove up to half of the mantle-
derived sulfur from the high-T gas phase before it reaches the surface
and thus increase fumarole C/S ratios (Henley and Fischer, 2021). If this
process is important at Whakaari and/or Etna, it would suggest .'E > 5
for these systems. However, it is unclear for how long the sulfur is
removed and how easily it would be remobilised.

At the surface, incomplete degassing of sulfur could also decrease the
proportion of mantle-derived sulfur that is degassed at the surface
during eruption. However, comparison of sulfur concentrations in whole
rock data to initial melt inclusions suggest 92% of sulfur is degassed at
Whakaari during eruption (Mandon et al., 2020).

In summary, mantle-derived sulfur can explain the sulfur emissions
from Whakaari if I:E = 1:3 to 1:1 and from Etna if I.E 2:1 to 5:1. If LE is
less than the lower bound, additional sulfur is required, which is
inconsistent with additional constraints on these systems. If :E is greater
than the upper bound, sulfur must be sequestered prior to surface
emission. Magmatic sulfide formation and incomplete degassing are
unlikely to be important processes for this, but high-T gas-solid reactions
at both volcanoes and hydrothermal scrubbing at Whakaari could be.

5.3. Limitations

Our modeling of the volcanic systems at Whakaari and Etna are
only as good as the data and models available. Ample bulk rock data
are available for both systems, and the MELTS model is calibrated over
a wide compositional range, hence the petrological modeling is likely
robust. Although the sulfur content of the mantle feeding both volcanic
systems is an important factor, the large uncertainties in the amount of
sulfur being released from the slab at either system makes this difficult
to constrain. Etna has abundant, Mg-rich olivine-hosted, basaltic melt
inclusions, whereas Whakaari erupts predominantly more evolved
material, which contains sparse olivine-hosted melt inclusions (e.g.,
Kilgour et al., 2021b; Mandon et al., 2020), implying the initial sulfur
content of Etna is more reliable than for Whakaari. However, the high S
contents recorded in some olivine-hosted melt inclusions at Whakaari
provides us with a minimum estimate for the initial S content of the
primary magma.

A major limitation in our current approach is the suitability of
available models for andesite-dacite degassing. Firstly, CO5 solubility is
highly melt composition dependent and its partitioning between melt
and gas is important for general degassing trends (Brooker et al., 2001;
Wallace, 2005; Papale et al., 2006; Moore, 2008). The uncertainty in
CO4 solubility is especially problematic for Whakaari, which has a
predominantly andesitic-dacitic composition, as there is limited exper-
imental data available for similar compositions (e.g., review by Wieser
et al., 2022) resulting in a lack of dacite solubility constants. Similarly,
the empirical models for S partition coefficients in Sulfur X are based on
experiments for mafic compositions and may not be appropriate for
andesitic-dacitic melts.

Both volcanic systems had sufficient observational data to enable
hydrothermal modeling using CHIM-XPT and EQ3/6. However, the
current T range of these models does limit their applicability to certain
systems. This is especially true in the case of Etna where high-T water-
gas interactions may play a larger role than we were able to model
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(Liotta et al., 2010). Extending the hydrothermal modeling approach to
include high-T gas-rock interactions (although the longevity of this
interaction is unknown; e.g., Henley and Fischer, 2021) would be a
further improvement and constraint on these two volcanic systems.
Unfortunately, it would be difficult to extend this modeling attempt to
most volcanoes due to insufficient data. However, testing our modeling
approach at other well characterized systems (e.g., Ruapehu, Aotearoa
New Zealand; Stromboli, Italy; Masaya, Nicaragua; Kilauea, Hawai’i;
Yellowstone, USA; and Campi Flegrei, Italy) would help to evaluate the
robustness of our generalizations.

6. Conclusions

Overall, we find that long-term inputs of sulfur into the volcanic
systems at Whakaari and Etna can be broadly balanced by sulfur outputs
over geologic timescales. We used observational constraints on the
magmatic systems as inputs in crystallization, degassing, and hydro-
thermal models and compared the results to measured gas compositions.
Low LE would require additional sulfur sources to the mantle, which is
inconsistent with other data on these volcanoes. High I:E would require
that substantial sulfur is sequestered rather than being degassed to the
atmosphere, such as during high-T gas-solid reactions (magmatic sulfide
formation and incomplete degassing are unlikely to be important).
However, the hydrothermal system modulates the compositions of
fumarolic gases at Whakaari. The extent of scrubbing is dependent on
the chemistry and maturity of the hydrothermal system, where there is a
strong relationship between scrubbing and the w/g ratio of the hydro-
thermal system.

At Whakaari, emitted gases appear to be mixtures of magmatic and
hydrothermal gases or variably hydrothermally-modified magmatic
gases and some portion of magmatic gas is being emitted without
interaction with hydrothermal water at high-T fumaroles. Similarly, two
end-member scenarios were tested at Etna: forcing all of the magmatic
gas to interact with hydrothermal water or having no interaction be-
tween gas and water. Measured fumarole and plume data show gases
emitted from Etna mostly comprise deeply derived magmatic gas but the
higher H50, suggests the need for some hydrothermal interaction to
fully describe the range of measured gas compositions.
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