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ABSTRACT. Cluster varieties come in pairs: for any X cluster variety there is
an associated Fock—Goncharov dual A cluster variety. On the other hand, in
the context of mirror symmetry, associated with any log Calabi-Yau variety is
its mirror dual, which can be constructed using the enumerative geometry of
rational curves in the framework of the Gross—Siebert program. In this paper
we bridge the theory of cluster varieties with the algebro-geometric framework
of Gross—Siebert mirror symmetry. Particularly, we show that the mirror to
the X cluster variety is a degeneration of the Fock-Goncharov dual A cluster
variety and vice versa. To do this, we investigate how the cluster scatter-
ing diagram of Gross-Hacking-Keel-Kontsevich compares with the canonical
scattering diagram defined by Gross-Siebert to construct mirror duals in ar-
bitrary dimensions. Consequently, we derive an enumerative interpretation of
the cluster scattering diagram. Along the way, we prove the Frobenius struc-
ture conjecture for a class of log Calabi—Yau varieties obtained as blow-ups of
toric varieties.
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0. INTRODUCTION

0.1. Overview and context. Cluster varieties, introduced by Fock-Goncharov
[8, 9], are algebraic varieties constructed by gluing together algebraic tori via
distinguished birational maps referred to as cluster transformations [10]. The
theory of cluster varieties has deep connections with several areas of mathemat-
ics, particularly in algebraic geometry and representation theory: in algebraic
geometry they play a significant role in the study of the moduli space of local
systems on topological surfaces [8, 13], and in representation theory they are the
geometric counterparts of the cluster algebras introduced by Fomin—Zelevinsky
[10]. In this paper, we establish new relationships between cluster varieties and
mirror symmetry from an algebro-geometric point of view [21].

A remarkable feature of cluster varieties is that they come in pairs. There
are two distinct families of cluster transformations leading to two distinct cluster
varieties: the A cluster variety, called the cluster Ks-variety, and the X cluster
variety, called the cluster Poisson variety. Fock and Goncharov conjectured that
A and X are dual cluster varieties in the sense that there exists a canonical basis
of regular functions on A parametrized by the integral points of the tropicalization
of X, and vice versal.

Gross-Hacking-Keel [14] showed that the original Fock-Goncharov conjecture
for cluster varieties cannot hold without additional positivity assumptions. More-
over, without positivity assumptions, they conjectured a “formal version” of
the Fock-Goncharov conjecture, concerning formal families of dual cluster va-
rieties. In their seminal work Gross-Hacking-Keel-Kontsevich [16] proved the
formal Fock-Goncharov conjecture of [14], as well as the original Fock-Goncharov
conjecture with the necessary positivity assumptions. Their proof relies on combi-
natorial methods, and uses the concept of cluster scattering diagrams to construct
canonical bases for cluster algebras.

On the other hand, the concept of a scattering diagram had emerged in the
earlier works of Kontsevich-Soibelman [26], and Gross-Siebert [18] in a more gen-
eral context, aiming to understand mirror symmetry from an algebro-geometric
point of view. Mirror symmetry is a phenomenon emerging from string theory,
proposing that Calabi—Yau varieties arise in mirror dual pairs, exhibiting dual

n this paper we focus attention on skew-symmetric cluster varieties as reviewed in §4.1.1,
and hence the duality simply exchanges A and X. For the more general situation where one
considers skew-symmetrizable cluster varieties see [16, Appendix A].
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properties in their complex and symplectic geometries. Given a Calabi—Yau va-
riety? Gross and Siebert propose that its mirror dual, as a family of complex
varieties, can be constructed using logarithmic enumerative geometry [21]. More
precisely, their construction is based on specific curve counts called punctured
log Gromov—Witten invariants, defined by Abramovich—Chen—Gross—Siebert [2],
which are encoded in a canonical scattering diagram.

The cluster duality conjecture of Fock—Goncharov was placed in the framework
of mirror symmetry in [14, 16], where it is proposed that Fock—Goncharov dual
cluster varieties shall arise as mirror duals (see also [12]). In this paper we verify
this expectation, and bridge the theory of cluster varieties with the algebro-
geometric framework of mirror symmetry of Gross and Siebert [21]. To do this,
we compare the a priori two distinct constructions of scattering diagrams: the
combinatorially constructed cluster scattering diagram of Gross—Hacking—Keel—-
Kontsevich and the canonical scattering diagram of Gross—Siebert defined using
the data of punctured log Gromov—Witten invariants. The comparison we obtain
allows us to establish a precise relationship between Fock—Goncharov duals and
mirror dual varieties in the sense of Gross—Siebert. Along the way, we deduce
combinatorial descriptions of punctured log Gromov—Witten invariants of cluster
varieties.

After a brief review of mirror symmetry in the framework of the Gross—Siebert
program in §0.2, we state our main results in §0.3.

0.2. Background. A log Calabi-Yau pair (X, D) is a smooth projective variety
X over an algebraically closed field k of characteristic zero together with a reduced
simple normal crossing divisor D in X with Ky + D = 0 3. In particular, the
complement X \ D is a Calabi-Yau variety. Gross and Siebert provide a general
construction for the mirror to such a pair (X, D) in any dimension [21]. The
mirror produced from this construction is a family

X — Spfk[NE(X)], (0.1)

where NE(X) stands for the monoid spanned by effective curve classes in the
group N;(X) of curve classes in X modulo numerical equivalence. The algebra
R(X, D) of functions on X is shown to admit a canonical topological basis given by
so-called theta functions, and hence is referred to as the algebra of theta functions.

The main ingredient to construct the algebra of theta functions is a combi-
natorial gadget called the canonical scattering diagram associated to (X, D) and
denoted by D x,p). We use the notation R(Dx,p)), or simply R(X, D), to denote
the algebra of theta functions defining the mirror family. We review in §1.1 how
to construct the algebra of theta functions R(D) defined by a scattering diagram
D.

ZMore precisely, the input of the construction of [20, 21] is either a maximal log Calabi-Yau
variety or a maximal log smooth degeneration of a Calabi-Yau variety.

3The definition of a log Calabi-Yau pair in [20, 21] only requires that K x +D = >, aiD; with
a; > 0, where D; are the irreducible components of D. The stronger assumption Kx + D =0
will always be satisfied for the particular pairs considered in this paper, as in [4]
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Asreviewed in §1.2, the canonical scattering diagram encodes the data of counts
of rational stable maps to (X, D) with a single marked point where the contact or-
der with D is fixed. The counts of these curves give rise to well defined invariants
of (X, D), giving certain punctured log Gromov—Witten invariants as defined by
Abramovich—-Chen—Gross—Siebert [2]. While log Gromov-Witten invariants, in-
troduced by Abramovich—Chen [1] and Gross—Siebert [19], are counts of curves in
X with prescribed tangencies along D, punctured log Gromov—Witten invariants
are counts of more general curves which can admit particular types of marked
points with negative tangencies along D.

Computing these invariants is technically challenging in general and there are
only a handful of cases so far where we know how to describe concretely the
canonical scattering diagram and deduce from that an explicit description of
the mirror to a log Calabi-Yau (X, D) [3, 4]: these are situations when X is a
projective variety obtained by a blow-up

of a toric variety Xy associated to a complete fan ¥ in R", and D C X is given
by the strict transform of the toric boundary divisor Dy, of Xy. We assume
that the center of the blow-up is a union of disjoint connected general smooth
hypersurfaces of Dy,

H=|JH,, (0.3)
i€l
indexed by a finite set I. Following [15], we refer to the data of a blow-up map
as in (0.2), or equivalently to the data of the pair (Xy, H), as a toric model for
(X, D).

Mark Gross and the first author, in their paper The Higher Dimensional Trop-
ical Vertex (HDTV) [4], showed that for log Calabi—Yau pairs (X, D) obtained
from blow-ups of toric varieties as in (0.2)-(0.3), referred to as HDTV log Calabi—
Yau pairs in the present paper, there is an explicit algorithm computing the
canonical scattering diagram for (X, D). More precisely, they gave a combi-
natorial construction of a scattering diagram ® x,, ), referred to as the HDTV
scattering diagram and reviewed in §1.3, and they proved that the canonical scat-
tering diagram ® x py, which encodes the enumerative geometric information of
punctured log Gromov-Witten invariants, can be reconstructed from ®(x,, m) [4,
Theorem 1.2]. Using the HDTV scattering diagram, the first author provided the
first explicit equations for mirrors to higher dimensional log Calabi—Yau varieties
[3]. We investigate HDTV log Calabi—Yau pairs further in this paper.

0.3. Main results. We first show in §2 that the mirror to a HDTV log Calabi-
Yau pair extends to a larger base Sixy ): the mirror family (0.1) constructed
over Spfk[NE(X)] as in [21] is recovered as a base change from the extended
family over S(xy,m). To define the extended base S(x, m), we first introduce the
monoid

M :=NE(X)Nn(NE(Xsg) ®N) c N (X), (0.4)
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where NE(Xyx) & N’ is the submonoid N;(X) consisting of all curve classes of
the form 8 — > ier @i E;, where B € NE(Xy), (a;)ic;r € N' and the E;’s are the
curve classes of the P!-fibers of the exceptional divisors over the H;'s. Then,
we define S(x,, ) as the formal completion of Speck|[M] along its subscheme
Speck[NE(Xy)]. On the other hand, the inclusion of M in NE(X) induces a
morphism Spf k[NE(X)] = S(xy,n). We prove in Theorems 2.2 and 2.3:

Theorem A. Let (X,D) be a HDTV log Calabi-Yau pair and (Xx, H) a toric
model of (X, D). Thgn, there exists a canonical extension of the mirror family X
to a formal scheme Xey over S(xy, m) fitting into a fiber diagram

i I ” iext

! |

Moreover, the restriction of e to Speck|[NE(Xy)] C S(xs,H) 5 the mirror
family of the toric pair (Xx, Ds).

In Theorem A, the extension is “canonical” in the sense that the product struc-
ture on the algebra of functions for Xy is uniquely determined by the product
structure of the theta functions on X — see Theorem 2.2 for details.

In §3 we investigate two significant applications of Theorem A: the first one is
the proof of the Frobenius structure conjecture for HDTV log Calabi—Yau pairs
[15, Conjecture 0.8, arxiv version 1]. This conjecture, roughly, says that there
exists a unique algebra structure on the topologically free k[N E(X)]-module
generated by a set {¥,,},, of elements indexed by integral points m in the tropi-
calization of (X, D), such that the ¥p-components of products of ¥,,’s are given
in terms of specific log Gromov-Witten invariants of (X, D) with ¢ class inser-
tions — see Conjecture 3.1 for a precise statement. The existence part of this
conjecture follows from the recent work of Johnston [24, Theorem 1.4] showing
that the algebra of theta functions R(X, D) satisfies the conditions of the con-
jecture. In Theorem 3.2 we prove the uniqueness part for HDTV log Calabi-Yau
pairs, by showing that the product structure on the algebra of theta functions
is uniquely determined by the trace of products of two or three theta functions.
Consequently, in Theorem 3.3 we obtain:

Theorem B. The Frobenius structure conjecture holds for HDTV log Calabi—Yau
Pairs.

As a second application of Theorem A, in §3.2 we define the HDTV mirror fam-
ily to a HDTV log Calabi—Yau pair (X, D) as the base change of the extended
family Xex — S(xs,m) along the morphism Spf k[N'] — S(x,, i) obtained by re-
striction from Spec k[N E(Xy)] to the unit 1 of its big torus orbit Spec k[N (Xy)]

see Definition 3.4. Theorem 3.5 then proves the following.

Theorem C. Let (X, D) be a HDTV log Calabi-Yau pair and (Xs, H) a toric
model of (X, D). Then, the algebra of functions on the HDTV mirror to (X, D)
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is isomorphic to the algebra of theta functions R(D (x, m)) defined by the HDTV
scattering diagram D (x, m)-

In §4 after a brief review of cluster varieties, and their interpretation as blow-
ups of toric varieties following [14], we show how to compute the HDTV mirror
to log Calabi-Yau compactifications (X, D) of X and A cluster varieties, which
are examples of HDTV log Calabi-Yau pairs. To do this we provide a concrete
description of the HDTV scattering diagram ®(x,, gy associated to such clus-
ter varieties in §4.2. We then provide a comparison of ® x,, ) with the cluster
scattering diagram associated to Ay, the A cluster variety with principal coef-
ficients. Following the notation of [16] we denote by ’}3;4"““ this cluster scattering
diagram.

The cluster scattering diagram constructed in [16] and reviewed in §5.1 does
not satisfy all the requirements of a scattering diagram in the sense of §1.1. In-
deed, a scattering diagram ® as in §1.1 is defined over a monoid, and asked to
satisfy the finiteness condition in Definition 1.4, requiring that © can be described
order-by-order by finitely many walls. This enables one to build the algebra of
theta functions R(®) from ® order by order. However, for the cluster scatter-
ing diagram there is no data of a monoid, and one imposes different technical
assumptions to be able to construct the algebra of cluster theta functions — see
§5.1.1 for details.

To clarify the distinction between scattering diagrams arising in the context
of mirror symmetry [21] and scattering diagrams arising in the context of cluster
varieties [16], we use following [25] the terminology “C-scattering diagram” for
a “scattering diagram” in the sense of [16]. We review C-scattering diagrams,
and show that cluster scattering diagrams are particular types of C-scattering
diagrams in §5.1. We then investigate the cluster scattering diagram for the Ap,i,
cluster variety, denoted by ’}3;4”“", as a specific Cpin-scattering diagram — see
§5.1.3 for the definition of a Cl, scattering diagram. Theorem 5.16 enables us
to compare scattering diagrams appearing in the framework of mirror symmetry,
as in §1, with cluster scattering diagrams, and shows:

Theorem D. There is a well-defined map
W Cprin — Scatt — Scatt ,

from the set of Cyin-scattering diagrams to the set of scattering diagrams, which
maps the Auin cluster scattering diagram to the HDTYV scattering diagram for
the X cluster variety:

YD) = D)

Theorem D provides us with one of the main ingredients to prove an isomor-
phism between the mirror to the X' (resp. A) cluster variety and a degeneration
of the Fock-Goncharov dual A (resp. X)) cluster variety:

Theorem E. Let (X, D) be a log Calabi-Yau compactification of the X (resp. A)
cluster variety. Then, the HDTV mirror family Xupry of (X, D) is isomorphic
to a degeneration of the A (resp. X ) cluster variety.
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In Theorem E, the degenerations of the cluster varieties are defined as formal
completions of cluster varieties with principal coefficients Ay, and X, studied
in [16] in the A case and defined by [6] in the X’ case— see Theorems 5.17 and 5.19
for details. We also prove a version of Theorem E for the symplectic leaves of the
X cluster variety and quotients of the A cluster variety— see Theorems 5.21 and
5.23. Theorem E shows how the mirror symmetry heuristic motivating the work
Gross-Hacking-Keel-Kontsevich [16] (see also [22] for a more expository presen-
tation) is concretely realized by the general Gross-Siebert mirror construction.
As an application, we obtain in Theorem 5.25 an enumerative interpretation for
the structure constants in the algebra of cluster theta functions defined by the
cluster scattering diagram:

Theorem F. The structure constants of the algebra of Apin (resp. Xorin) cluster
theta function are expressed in terms of punctured log Gromov—Witten invariants
of log Calabi-Yau compactifications of the X (resp. A) cluster variety.

0.4. Related work. The Frobenius structure conjecture was proven previously
in two cases: for cluster varieties [28] by Mandel — see [28, Theorem 1.5] and
[27, Theorem 2.16], and for log Calabi-Yau pairs (X, D) with X \ D affine and
containing a torus by Keel-Yu [25] in the context of their non-archimedean mir-
ror construction, which is shown to be equivalent to the Gross—Siebert mirror
construction by Johnston [24, Corollary 1.2]. In the cluster case, under the as-
sumption that X \ D is affine, a comparison between the non-archimedean con-
struction of [25] and the work of Gross—Hacking—Keel-Kontsevich [16] is given in
[25, Theorem 1.19]. Note that for HDTV log Calabi-Yau pairs, while the comple-
ment X \ D always contains a torus, it is not affine in general. The relationship
between the HDTV scattering diagram of [4] and the cluster scattering diagram
of [16] is also discussed in the work of Mou [30, Lemma 6.18] in the context of
generalized cluster algebras, and by Bardwell-Evans—-Cheung—Hong—Lin [5, §6.2]
in the special case of rank two cluster varieties. Different manifestations of mirror
symmetry from the symplectic point of view, such as homological mirror symme-
try, were also investigated in the context of cluster varieties by Gammage and Le
[11].

0.5. Acknowledgments. We thank Mark Gross and Tom Coates for many use-
ful discussions related to the extensions of Gross—Siebert mirror families. The re-
search of Hiilya Argiiz was partially supported by the NSF grant DMS-2302116.
The research of Pierrick Bousseau was partially supported by the NSF grant
DMS-2302117.

Conventions: Throughout the paper k denotes an algebraically closed field
of characteristic zero. All monoids we consider in this paper are commutative.
Given a monoid ), we denote by (P the associated Grothendieck group and

QF = Q® oz R.
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1. SCATTERING DIAGRAMS IN MIRROR SYMMETRY

1.1. Scattering diagrams and theta functions. The theory of scattering dia-
grams and theta functions is presented in great generality in [17]. In this section,
we briefly review the key notions that we will use, making simplifying assumptions
that will always hold in this paper.

1.1.1. Scattering diagrams.

Definition 1.1. A conical affine pseudomanifold (B, &) of dimension n consists
of:

(i) a set & of at most n-dimensional rational polyhedral cones such that
TePifoe P and 7 is a face of 0.

(ii) A topological manifold B obtained by gluing together without self-intersection
the cones o0 € & along their faces by integral linear maps: B = Uyex0,
such that in B, every cone is contained in an n-dimensional cone, every
(n — 1)-dimensional cone is the common face of two n-dimensional cones,
and every point z in the interior of a at most (n — 2)-dimensional cone T
admits a basis of open neighborhoods V' such that V'\ (V' N7) is connected.

(iii) An integral affine structure on the complement By = B\ A of the union A
of at most (n—2)-dimensional cones of &2, which restricts to the standard
integral affine structure on each n-dimensional cone of £2.

We call an n-dimensional cone of &2 a mazimal cone of &, and a (n — 1)-
dimensional cone of & a codimension one cone of 2.

In the examples considered in this paper, B will be always diffeomorphic to a
real vector space, and & will be either isomorphic or piecewise-linearly isomorphic
to a fan in a real vector space. From now on, we fix a conical affine pseudomanifold
(B, &) of dimension n. Let () be a commutative monoid such that the associated
abelian group (%P is free of finite rank, the natural map Q) — Q%P is injective,
and () is contained in a stricly convex cone in the real vector space Q% ® R. In
particular, there exists a linear form ¢ : Q®? ® R — R which is positive on @\ {0}.
Then, for every k € Zso, Iy :== {f € Q|¢(f) > k} is a monoid ideal such that
Q \ I is finite. Note that I; = @ \ {0} is the maximal monoid ideal of Q. For
every ring R, we denote by R[Q] the R-algebra

RIQ] = lim RIQ)/I;

Concretely elements of R[Q] are formal power series ) 50 cgt’ with cs € R. 1f
one uses a different linear form ¢ with the same properties as ¢, defining ideals
I;., then for every k, we have I, C I and I,,, C I} for m large enough, and so
the algebra R[Q] is actually independent of the choice of £.4

In [17, 20, 21], the monoid @ is assumed to be finitely generated, but it is in fact enough to
have an exhausting increasing sequence of monoid ideals Ij such that @ \ Ij is finite for every
k. In this paper, we will take @ equal to monoids of effective curves, which are not finitely
generated in general. One could instead as in [20, 21] choose a finitely generated monoid
containing the monoid of effective curves, but this would make our results less transparent.
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For every maximal cone o € &, we denote by A, the rank n lattice of integral
tangent vectors to By at a given point 2 € ByNo. For every (n — 1)-dimensional
rational polyhedral cone @ C B contained in an n or (n — 1)-dimensional cone
of Z, we denote by A, the rank (n — 1) lattice of integral tangent vectors to
0 at a given point x € By N 0. For every m € A, or A,, we denote by z™ the
corresponding monomial in the monoid algebra k[A,] or k[A,], and by k[z™] the
algebra of polynomials in the variable z™.

We also fix a multivalued piecewise-linear (MVPL) function ¢ on (B, &) as
n [17, Def. 1.8]. By definition, ¢ is the data, for every codimension one cone
p of Z, of a QF-valued piecewise-linear (PL) function ¢, on o™ U o™, where
o and o~ are the maximal cones of & having p as a common face. For every
p, the function ¢, is determined, up to a linear function, by specifying its kink
K, € Q®, defined as follows [17, Def. 1.6, Prop. 1.9].

Definition 1.2. Let p be a codimension one cone of &2 and let 0,0~ be the
two maximal cones of & having p as a commom face, and let ¢, be a piecewise
linear function on o™ Uo~. For every point = in p \ A, let A, be the lattice of
integral tangent vectors to By at x, which is canonically identified by the integral
affine structure on o Uo ™ to both A+ and A,—. Let 6 : A, — Z be the quotient
by A, C A;. We fix signs by requiring that ¢ is non-negative on tangent vectors
pointing from p into o~. Let n*,n~ € Hom(A,, Z) ® Q® be the slopes of ¢,|,+,
©,|o-, respectively. Then (n~ —n*)(A,) = 0 and hence there exists k, € Q®
with
n~—nt =4k,

We refer to x, as the kink of ¢, along p.

In what follows, we assume that ¢ is Q-convez, that is, k, € @ \ {0} for all p.

Definition 1.3. A wall in (B, &) over (Q, ) is a pair (9, f;), consisting of an
(n — 1)-dimensional rational polyhedral cone @ C B contained in a maximal cone
of P, together with an attached function f, € k[z70][Q] C k[A,][Q] for some
nonzero primitive mg € Ay, and such that f, =1 mod I;. Explicitly, f; is of the

form
fo=Y caut’zFm

BeQ
keN

with ¢, € k, cop = 1, and ¢p; = 0 for all £ > 1. We say that a wall (9, f,) is
incoming if 9 = 0 — Ryomy, and outgoing elsewise. We call my the direction of
the wall.

Definition 1.4. A scattering diagram © in (B, £) over (Q, ) is a set of walls
(0, f»), such that the finiteness condition holds, that is: for every k& > 1, there
are only finitely many walls (9, f;) € © with f; # 1 mod I.

The support of a scattering diagram D, denoted by Supp(D), is the union of
all cones d supporting a wall (0, f5) of ©. The singular locus of D is given by

Sing(®) =AU | Joou (] (@2n?),

€D 2,0/€D
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where the last union is over all pairs of walls 0,0 with 9 N0’ codimension at least
two, and A is as in Definition 1.1.
If x € B\ Sing(®), we define

for=]15. (1.1)
TED
where the product is over all the walls (9, f5) of ® containing . We say that two
scattering diagram ®, ®' are equivalent if f, = f. for all

x € B\ (Sing(?D) U Sing(D")) .

1.1.2. Broken lines. In this section we overview how to write broken lines. Broken
lines are used in the following §1.1.3 to define the algebra of theta functions.

Definition 1.5. Let © be a scattering diagram in (B, &) over (Q, ). A broken
line for ® is the data of

(i) a proper continuous map
B: (—00,0] — By \ (By N Sing(D))

along with a sequence —oo =ty < t; < --- < t, = 0 such that r > 1 and,
for all 1 <14 <, B((ti—1,t;)) is contained in a maximal cone o; € &,
(ii) for all 1 <4 < r, monomials

@ € KA G]
with a; € k[Q] and m; € A,
subject to the following conditions:
(i) for every 1 <4 <r, 8|,,_, ) is a non-constant affine map with
B(t) = —m;
for all ¢ € (t;_1,t;). Moreover, the intersections of the image of 5 with
Supp(®) and with codimension one cones of &2 are transverse. Finally,
we have $(0) ¢ Supp(®), and for every 1 < i < r — 1, we have either
B(t;) € Supp(®), or B(t;) is contained in a codimension one cone of &2.
(ii) a; = 1, and for every 1 < i < r—1, we have the following relations between
the monomials a;2™ and a;, 12"+, If 5(¢;) is not on a codimension one
cone of &, then o; = 0;.1, 5(t;) € Supp(®D), and one requires a;4q2™+!
to be a monomial distinct from a;z™ and contained in the expansion of
aizmifg(::yﬁ , (1.2)
where n € Hom(A,,, Z) is the unique primitive normal vector to Supp(®)
such that (n,m;) >0, and fg,) is as in (1.1) with = 3(t;).
If 5(¢;) is on a codimension one cone p of &2, then one requires a; 2™+
to be a monomial contained in the expansion of

a; 2™ (1 fa) "™ (1.3)
where n € Hom(A,,,Z) is the unique primitive normal vector to p such
that (n,m;) > 0, and fpe,) is as in (1.1) with oz = 3(t;), K, € Q is the



FOCK-GONCHAROV DUAL CLUSTER VARIETIES AND GROSS-SIEBERT MIRRORS 11

kink of ¢ across p, and we identify A
across p.

ois1 With A, by parallel transport
We call m; the asymptotic monomial of 3. We denote by agz™# := a,2™" the
final monomial carried by 3, and we call 3(0) the endpoint of /3.

Remark 1.6. Definition 1.5, roughly put, says that a broken line g starts its life
coming from infinity as a line with asymptotic direction m; decorated with the
monomial z™ . Each time [ crosses a codimension one cone of & or a wall 0, it
can either go straight without bending, or can bend in the direction of the wall,
until it finally reaches an endpoint point (0) in B and stops (see Figure 1.1 for
an illustration of broken lines).

Definition 1.7. Let B(Z) be the set of integral points of B, defined as the union
of the sets of integral points of the cones o € &. For every m € B(Z), we say
that a broken line 8 has asymptotic direction m if the cone o1 € & containing
the asymptotic part of 5 contains m, and if m = m, after identification of the
integral points of o; with tangent directions.

1.1.3. Theta functions. Now we are ready to define theta functions from broken
lines following [17, § 3.3]. Broken lines can be used to define an algebra of theta
functions under the assumption that the scattering diagram ® is consistent. As
we will not need the details of the definition in general, we refer to [17, Definition
3.9] for the notion of a consistent scattering diagram. We will describe and use a
special case of this notion later in §1.3.2. Given a consistent scattering diagram
D in (B, Z) over (Q,¢), [17, Theorem 3.19] produces a k[Q]-algebra structure
on the k[@Q]-module

=lm D (KQ)/7)Y

meB(Z)

where 9, are basis elements indexed by the integral points m € B(Z). We refer to
the basis elements ¥, as theta functions and to R(®) with this algebra structure
as the algebra of theta functions defined by ©.

The k[Q]-algebra structure on R(®) is determined by a set of structure con-
stants

ey € KQ],

mims2

indexed by my, my, m € B(Z), such that for all my,my € B(Z),

7‘97711197772 - Z mlmg (14)

meB(Z)

and for all £ > 0 there are only finitely many m € B(Z) such that C), ~# 0

mod Ij. For every my, mg, m € B(Z) and a general point p € B sufficiently close
to m, it is shown in [17, Theorem 3.24] that

C’I’rnnlmz = Z aﬁlaBQ <]‘5)
B1,62
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where the sum is over all pairs (0, 32) of broken lines for © with asymptotic
directions ms, mg, end point p, and such that mg, +mg, = m where ag,z™?%, for
i € {1,2}, are the final monomials carried by the broken lines ;’s, as in Definition
1.5.

Finally, we recall from [17, Theorem 3.19] that theta functions have natural
power series expansions. For every general point p € By, contained in a maximal
cone o € &, there exists a morphism of k[@Q]-algebras

R(D) — k[A][Q]
D —> (D)
such that

Um(p) = Zaﬁzmﬂ )
B
where the sum runs over all broken lines § with asymptotic direction m and
endpoint p, and where agz™# is the final monomial of 3, as in Definition 1.5.

1.2. Canonical scattering diagram and Gross-Siebert mirror families.
Let (X, D) be a log Calabi-Yau pair, consisting of an n-dimensional smooth pro-
jective variety X and a reduced simple normal crossing anticanonical divisor D
in X% Under the assumption that D contains a 0-dimensional stratum, Gross
and Siebert construct in [21] the canonical scattering diagram D x py using the
enumerative geometry of rational curves in (X, D). In this situation, the algebra
of functions on the mirror family to (X, D) is proposed to be the algebra of theta
functions defined by ©(x p). In this section, we briefly review the definition of
the canonical scattering diagram and the construction of the mirror family.

1.2.1. The tropicalization (B, 2?) of (X, D). We first review how to define from
(X, D) a conical affine pseudomanifold (B, &) as in Definition 1.1 called the
tropicalization of (X, D).

Let Dy, ..., D,, be the irreducible components of D. We assume that for every
I c{1,---,m}, the stratum (,.; D; is connected. Then, (B, &) is the dual in-
tersection complex of (X, D): for every I C {1,---,m} with (,.; D; non-empty,
& contains an |I|-dimensional simplicial cone, where |I| is the cardinality of I,
and these cones are glued together to form B according to the intersection pat-
tern of the strata of D. Moreover, one can extend the integral affine structure
across codimension one cones using a recipe modeled on toric geometry: given
a codimension one cone p with generators myq, ..., m,_1, contained in two max-
imal cones 0" and o~ with additional generators m; and m., an integral affine
structure is defined on o U o~ by embedding ot U o~ in R" in such a way that

n—1

m: +m, = _Z(Dp : Dmi>m’i7
=1

SFor a more general notion of log Calabi-Yau pair, which is not necessary in the context of
the current paper, see [21].
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where D, is the curve stratum corresponding to the codimension one cone p, and
D,,,, are the divisor strata corresponding to the rays R>om,. Assuming that D
contains a 0-dimensional stratum, it follows from [21, Propositions 1.3-1.6] that
(B, Z) is an n-dimensional conical affine pseudomanifold as in Definition 1.1.
For the HDTV log Calabi-Yau pairs that we will consider later in §1.3, this will
be clear as (B, &2) will be piecewise-linearly isomorphic to a fan in a vector space
in these cases (see (1.10)).

1.2.2. The canonical scattering diagram. We review below the definition of the
canonical scattering diagram of (X, D) constructed in [21]. It is a scattering
diagram in the sense of Definition 1.4, where:

(i) (B, ) is the tropicalization of (X, D) described in §1.2.1.

(ii) @ = NE(X) is the monoid spanned by effective curve classes in the
abelian group N;(X) of curves classes in X modulo numerical equivalence.
Note that NE(X) satisfies the conditions on @ listed in §1.1.1. Indeed,
NE(X) is contained in a strictly convex cone of N;(X) ® R because X
is projective (if L is an ample divisor, then L - C' > 0 for every C' in the
closure of NE(X) by Kleiman’s criterion).

(iii) ¢ is a NE(X)-convex MVPL function on (B, ¢) with kink

k, =D, € NE(X), (1.6)

across every codimension one cone p € &, where D, is the class of the
curve stratum corresponding to p.

The definition of the canonical scattering diagram is based on the enumerative
geometry of maps f: (C,z) — X from rational curves C to X with a prescribed
tangency condition along D at a given marked point z on C. Moduli spaces
of rational curves in X meeting D at a single point have expected dimension
n — 2 [21, Lemma 3.9]. The enumerative invariants entering the definition of the
canonical scattering diagram roughly count 0-dimensional families of maximally
degenerated configurations of such curves. The precise definition [21, §3.2] is
based on logarithmic geometry and the theory of punctured log Gromov—Witten
invariants [2].

These invariants, denoted N, g, are indexed by an (n — 2)-dimensional family
7 of tropical curves in (B, Z) called a wall type [21, Definition 3.6] and a class
B € NE(X). The tropical curves in 7 are dual intersection complexes of the curve
(C, z) mapping to the dual intersection complex (B, &) of (X, D). In particular,
they have a single unbounded edge corresponding to the marked point z € C.
The (n — 2)-dimensional family of these unbounded edges traces out an (n — 1)-
dimensional cone 0, in B contained in an n or (n — 1)-dimensional cone of Z.
The direction u, € Ay, of these unbounded edges prescribes the contact order of
C with D at the marked point z € C'. Finally, a multiplicity &, is attached to
7, equal to the lattice index in A,, of the sublattice given by the image of the
integral tangent vectors to the (n—1)-dimensional cone formed by the unbounded
edges in the family of source tropical curves [21, (3.10)].
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Kink of ¢: L

Dix.n)

fo=1+a"1F

fo =1+ athF fi=1+a1tF

) Kink of ¢: L— E
o 0 ° o Kink of : L— E

Kink of : L U vty Lttt

FIGURE 1.1. On the left hand figure is the canonical scattering
diagram for the blow up or P? at a non-toric point, and on the
right hand figure we illustrate the broken lines defining the theta
functions generating the coordinate ring of its mirror

Definition 1.8. The canonical scattering diagram associated to (X, D), denoted
by D (x,p), is the scattering diagram in the tropicalization (B, &) of (X, D) over
(NE(X), ), given by the union of walls {(0,, f,5)} with

frp = exp(k,N,gtP27"7) € k[A, J[NE(X)],

indexed by wall types 7 and curve classes f € NE(X), where N; g is the punc-
tured log Gromov—Witten invariant counting rational curves in (X, D) of type 7
and class f3.

1.2.3. The Gross-Siebert mirror family. According to [21, Theorem B, the canon-
ical scattering diagram of Definition 1.8 is consistent and so one can apply the
constructions reviewed in §1.1.3. In particular, we have the k[N E(X)]-algebra
R(D(x,p)) of theta functions defined by the canonical scattering diagram Dy, p).
We denote

R(X,D) := R(Dx.n))
and the mirror family of (X, D) defined in [21] is

X — Spfk[NE(X)],

where

X :=Spf R(X, D)

is the formal scheme defined as the formal spectrum of the ring of theta functions
R(X, D).

Example 1.9. Let X be the blow-up of X5, = P? at a non-toric point of the toric
boundary divisor Dy, C P2, and D be the strict transform of Dy,. In this situation
the complement X \ D is a cluster variety, known as the A; cluster variety with
principal coefficients. We illustrate the canonical scattering diagram associated
to (X, D) in Figure 1.1 — for details on how to obtain the tropicalization (B, &)
see for instance [3, Example 3.2]. The three theta functions generating the ring
of theta functions R(X, D) are given by

19(170) =, ’19(0’1) =Ty, and ’19(,1’,1) = x71y71(1 + .’L'iltE)tLiE s
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where L is the pullback of the class of a line in P2, and by F is the exceptional
divisor. Hence, in this case, the mirror to X \ D is given by

Spec K[NE(X)][¥(1.,0), Y01 =1,-1))/ (P .00 0.0)0 —1,-1) = t* + Da,0t" ).
(1.7)
The equation 91,00 0,1)0(-1,-1) = th + ﬁ(l,o)tL’E involves only the variables t*
and t£=F which span the monoid M C NE(X) discussed in §2.

1.3. HDTYV log Calabi-Yau pairs and scattering diagrams.

1.3.1. HDTV log Calabi- Yau pairs. We first review the set-up of [4]. Let M ~ Z"
be a rank n lattice and let Xy be an n-dimensional smooth projective toric variety
defined by a complete fan ¥ in Mr := M ® R. Let

H=|JH,
iel
be a union of disjoint connected smooth projective hypersurfaces of the toric
boundary Dy of Xy indexed by a finite set 1. We assume that for every ¢ € I,
there is a unique irreducible component D; of Dy, such that H; C D;, that H;
intersects transversally the toric boundary of D;, and that for every i # j, either
Di:Dj OI’DiﬁDj:@.

Let X be the smooth projective variety obtained by blowing-up Xy along H
and let D C X be the strict transform of Dy. Then, (X, D) is a log Calabi-Yau
pair, that is, X is a smooth projective variety and D is an anticanonical reduced
simple normal crossings divisor on X. Because these log Calabi-Yau pairs are
exactly those studied in [4], we refer to such (X, D) as a HDTV log Calabi-Yau
pair and we call (Xx, H) a toric model for (X, D).

The general construction of the mirror family based on the canonical scattering
diagram ®(x y) and reviewed in §1.2.3 can be applied in particular to HDTV log
Calabi-Yau pairs. We showed in [4, 3] how to recover the canonical scattering
D (x,x) of alog Calabi-Yau pair from a combinatorially defined scattering diagram
D (xy,m), that we call the HTDV scattering diagram. In the following sections,
we first review the notion of a scattering diagram in Mg, then the definition of
D (xy,m) Which is an example of scattering diagram in Mg, and finally the main
result of [4] comparing ® (x py and D (x, m)-

1.3.2. Scattering diagrams in Mg. Scattering diagrams in Mg are particular ex-
amples of general scattering diagrams as in Definition 1.4.

Definition 1.10. Let (Q be a monoid as in §1.1.1. A scattering diagram in My
over () is by definition a scattering diagram in (B, &) over (Q, ¢) as in Definition
1.4 where B = Mg, &2 is the trivial conical decomposition of Mg consisting of
the single cone Mg, and ¢ = 0.

In other words, a scattering diagram in Mg over @ is a set of walls (9, f;) in
Mg, that is pairs (0, f,), consisting of a codimension one rational polyhedral cone
0 C Mg, together with an attached functions f, € k[z7™][Q] C k[M][Q] for
some nonzero primitive vector my € M tangent to 9, and with f, =1 mod I;.
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Moreover, for every k > 1, there are only a finite number of walls (9, f;) € © with
fo #1 mod I.. A wallis called incoming if —mg € 0, and outgoing elsewise. We
call mg the direction of the wall.

For the construction of the HDTV scattering diagram and the comparison with
cluster scattering diagram, the notion of a consistent scattering diagram in Mg
is particularly important and so we review the definition, following [4, 21]. Given
a scattering diagram ® in Mg over () and a path

v :[0,1] — Mg \ Sing(D)
t — ~(t)

transversal to the walls of ©, the associated path ordered product 6, 5 is the k[Q]-
algebra automorphism of k[M][Q)] obtained as the ordered product of the k[Q]-
algebra automorphisms 6., attached to the sequence of walls (9;, f5,) crossed by
~ for t = t;, where

Oy0.: KIM][Q] — K[M][Q] (1.8)

no,'y»m>zm

2" — féi

)

where ny, € N := Hom(M,Z) is the primitive normal vector of d which is
negative on y((tg — ¢, to)) for all small € > 0. Finally, we call a scattering diagram
consistent if for any path -y with 7(0) = ~(1) the associated path ordered product
0,9 is the identity automorphism.

According to [4, Theorem 5.6]°, one can construct consistent scattering dia-
grams in Mg from the data of particular collections of initial walls called widgets
in [4] — for details see [4, §5.2.1]. We review below the notion of widget, which is
based on the notion of tropical hypersurface.

Definition 1.11. A tropical hypersurface in Mg is a fan ¥ in Mg whose support
|Z| is pure dimension dim Mg — 1, along with a positive integer weight attached
to each cone of ¥ of dimension dim Mg — 1, which satisfies the following balancing
condition. For every w € T of dimension dim Mg — 2, let v be a loop in Mg \ w
around an interior point of w, intersecting top-dimensional cones o4,...,0, of ¥
of weights wy, ..., w,. Let n;, € N := Hom(M, Z) be the primitive normal vector
of o; which is negative on v((tg — €,to)) for all small € > 0. Then

p
E w;n; = 0.
i=1

Definition 1.12. Let ¥ be a complete toric fan in Mg and v € M \ {0} be
a primitive integral vector such that Rsgv is a ray of ¥. Denote by n: Mr —
Mg /Ro the quotient map and by X(v) := {n(0)|o € ¥, v € o} the quotient
fan of ¥ in Mg/Rv. Let ¥ be a tropical hypersurface in Mg/Rv with support
contained in the union of the codimension one cones of ¥(v). Finally, let f €

6Similar reconstruction results of consistent scattering diagrams from initial walls were also
obtained in [18, 26].
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k[2"][Q] such that f =1 mod I;. Then, the widget associated to T and f is the
scattering diagram in Mg over () given by

D :={(0,, f*) ]| o is a maximal dimensional cone of T} .

Here, 0, is the unique codimension one cone of ¥ containing Rsgv such that
7(0,) = 0, and w, is the weight of ¢ in T.

Remark 1.13. In Definition 1.12, the walls of the widget have directions —v and
are incoming.

Let ¥ be a complete toric fan in Mg, and (v;);c; be a finite collection of primitive
integral vectors in M \ {0}, indexed by a finite set I, such that Rsqv; is a ray
of ¥ for all i € I. For every i € I, let ¥; be a tropical hypersurface in Mg /Ru;
with support contained in the union of codimension one cones of 3(v;), and let
fi € k[z7"][Q] such that f; =1 mod I;. Finally, let ®;, = [J,c; ©; be the initial
scattering diagram obtained by taking the union of the widgets ®; associated
to T; and f; as in Definition 1.12. According to [4, Theorem 5.6], there exists
a consistent scattering diagram S(Dj,) containing D;,, such that all walls in
S(Din) \ Din are outgoing. Moreover, S(Dj,) is unique up to equivalence with
these properties and we refer to S(9;,) as the consistent completion of Diy.

1.3.3. The HDTYV scattering diagram. In the remaining part of this subsection
we review the construction of the combinatorially constructed HDTV scattering
diagram Dy, gy introduced in [4].

Let (X, D) be a HDTV log Calabi-Yau pair obtained as in §1.3.1 from a toric
model (Xy, H), where H = U;c;H;. The HDTV scattering diagram @ (x,, g is a
scattering diagram in Mg, as in Definition 1.10, over the monoid N’ containing
one copy of N for each hypersurface H;.

In [4], the HDTV scattering diagram ®x,, ) is defined by first describing an
initial scattering diagram ®(x, g in- The construction of D x, m)m is based on
the tropical hypersurfaces defined as follows.

Definition 1.14. For every ¢ € I, let v; € M be the primitive generator of
the ray of X corresponding to the toric divisor D; containing H;. The tropical
hypersurface associated to H; is the tropical hypersurface .7 C Mg /Ruv; which is
supported on the union of codimension one cones of the toric fan X(v;) in Mg /Ru;
of the divisor D;, with the weight on a codimension one cone (o + Rv;)/Ruv; being

wy = D, - Hj, (1.9)

where the intersection number is calculated on D;. Here o denotes a codimen-
sion one cone of ¥ containing the ray Rsov; and D, is the toric curve in D;
corresponding to o.

We now define the initial HDTV scattering diagram.

Definition 1.15. The initial HDT'V scattering diagram for (Xx, H) is the scat-
tering diagram in Mg over N’ as in Definition 1.10, whose set of walls is given
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by
©(XE,H),in = U@i,
iel
where ©; is the widget associated as in Definition 1.12 to the tropical hypersurface
;. in Mg /Ru; and to the function

fi=1+1t;2" € kK[M][N'],
where ¢; is the variable in the monoid algebra k[N’] corresponding to the generator
of the copy of N labeled by ¢ € I.

As reviewed at the end of §1.3.2, every initial scattering diagram ®;, defined
as a union of widgets has a consistent completion S(Dj,).

Definition 1.16. The HDTV scattering diagram for (Xx, H)
D (xs,1) = (D (xz,H),in) »

is the scattering diagram in Mg over N/ obtained as the consistent completion of
D (X, ) in-

1.3.4. Comparison of the HDTV and canonical scattering diagrams. Let (X, D)
be a HDTV log Calabi-Yau pair obtained as in §1.3.1 from a toric model (Xs, H).
We review the main result of [4] comparing the canonical scattering diagram
D(x,p) and the HDTV scattering diagram D x,, m).

We first introduce some notations. Denote Blg: X — Xy the blow-up mor-
phism. For every i € I, the exceptional divisor & in X over H; is a P!-bundle
over H;, and we denote by E; the class in NE(X) of a P!-fiber. In particular, for
every i,j € I, we have & - E; = —1ifi=j,and & - £; = 0if  # j. The map

LN (X))@ Zh — Ni(X)
(C, (ai)ier) — Bl C — Z a; Iy,

iel
is an isomorphism of abelian groups, whose inverse is
NM(X) — Ni(Xz)a Z'
Cr— (BlHy*C, (C . 5@')1’6[) .

From now one, we implicitly use ¢ to identify N;(X) with N;(Xy) @ Z~.

To compare the canonical scattering diagram D (x py with D x, g first note
that it follows from the definition of the tropicalization of (X, D) reviewed in
§1.2.1 that there is a natural piecewise-linear isomorphism

T:(Mg,%) = (B, 2). (1.10)

In particular, T induces a bijection between M and the set B(Z) of integral
points as in Definition 1.7, and from now on we identify M and B(Z) using this
bijection. We use T to define from the HDTV scattering diagram D (x,, x) in
Mg a new scattering diagram Y.(D(x, m)) in (B, Z). The construction treats
differently incoming and outgoing walls. Up to refining the walls, we may assume
that every wall (9, f) of D (xy, m) is contained in some cone o € ¥.
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If the wall (0, f;) is incoming, then by construction of D x, ) (see Definitions
1.12 and 1.15) it is of the form

(@, (1 + £:2%))

for some positive integer w. As v; is tangent to the cone of ¥ containing 0 and Y
is piecewise linear with respect to X, T,(v;) makes sense as a tangent vector to
B. We then define

T.(0, (1 +:2°)%) = (TQ), (1 4 tFzT-Cywy (1.11)
If the wall (0, f;) is outgoing, with @ C ¢ € 3, then f, is a sum of monomials of

the form
c H(tizvl )ai
iel

with ¢ € k, and a; non-negative integers for all ¢ € I. The data of the list of
integers A = {a; };e; and o determine a curve class BA,(, € Ni(X5) —see [4, §6] for
the precise description of this curve class. Under the inclusion N;(Xy) < Ni(X)
given by the above mentioned splitting, we may view BAJ as a curve class in
N1(X), which we also denote by a,. We then obtain a curve class

Bao = Pac— Y @il (1.12)
iel
Further, as vy := — Ziel a;v; is tangent to o, as before T, (vou) makes sense as
a tangent vector to B. We may thus define
T.(c H(tiz“")ai) = ctPAo =T (vout) , (1.13)
iel
then Y.(f;) by linearity, and finally the wall
T.(0, fo) = (Y(0), Tu(fo))- (1.14)

We then define

YD (xp,my) = {10, /o) | (0, /o) € Dixpmy} -
The key theorem, [4, Thm 6.1], then states:

Theorem 1.17. Let (X, D) be a HDTV log Calabi- Yau pair obtained as in §1.5.1
from a toric model (Xs,, H). Then, the scattering diagram Y.(® (x, ) obtained
from the HDTV scattering diagram D x, my by applying Y, is equivalent to the
canonical scattering diagram D x p).

2. THE EXTENSION OF THE (GROSS—SIEBERT MIRROR FAMILY

2.1. Construction of the extended mirror family. Let (X, D) be a HDTV
log Calabi-Yau pair obtained as in §1.3.1 from a toric model (Xy, H). In this
section, we prove that the mirror family X — Spf k[NE(X)] of (X, D) naturally
extends over a bigger base. The idea is to replace the monoid NE(X) by the
smaller monoid

M :=NE(X)N(NE(Xs) ®N) c N;(X) (2.1)
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E E

FIGURE 2.1. Cones of curves on the left and cones of divisors on
the right in Examples 2.1 and 2.5

of effective curve classes of the form Bl}; 3 — > ier @i, where Bly : X — Xy is
the blow-up morphism, § € NE(Xy), and a; € N for all i € I.
The projection M C NE(Xz) & N/ — NE(Xy) induces a closed embedding
Speck[NE(Xy)] — Speck[M],

defined by the monoid ideal

J={feM|B ¢ NE(Xs)}. (2.2)
Let S(xy,m) be the formal completion of Spec k| M] along Speck[N E(Xy)], that
is

)
—

Sixs,m = Spt k[M]
where

K[M] = limk[M]/J".

The inclusion M C NE(X) induces a morphism

Example 2.1. Let (X, D) be the log Calabi-Yau surface obtained by blowing-up
a point in P2, as in Example 1.9. Recall that we denote by L the pullback of the
class of a line in P?, and by F the exceptional divisor. Then, NE(Xs) = NL and
NE(X)=NE®N(L—-F), and so M = NL®N(L — E), as illustrated in Figure
2.1.

Our first main result below shows that the mirror family X — Spfk[NE(X)]
naturally extends over S(xy ), and defines an eztended mirror family

Xext — S(XE,H)
of (X, D) with respect to the toric model (X, H).

Theorem 2.2. Let (X, D) be a HDTV log Calabi- Yau pair obtained as in §1.5.1
from a toric model (Xx, H). Then, the product of theta functions defines a struc-

——

ture of topological k| M]-algebra on

R(X’ D)ext = @ @ (k[M]/‘]k) ﬁm )

© meM
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such that, denoting Xeg = SpfR(X, D)exs, we have a fiber diagram

i I > iext

! J

Proof. Recall from (1.4) that the algebra structure on the ring of theta func-
tions is determined by a set of structure constants C)7 € k[NE(X)], for all
ma, mg, m € B(Z), such that, for all k > 0, there are only finitely many m € B(Z)
such that C77 . # 0 mod I;. By the definition of M in (2.1) and the definition
of Sixy, i) as the formal completion of Spec k| M] along Spec k[N F(Xy)], to prove
Theorem 2.2, it is enough to show that for every my, ms, m € B(Z),

cm o € k[NE(Xx)|[N],

mims2

and that for all £ > 0 and for all my,ms € B(Z), there are only finitely many
m € B(Z) such that C . # 0 mod mf,, where my: := N’\ {0} is the maximal
monoid ideal of N,

To show C € k[NE(Xy)|[N], first recall that CJ .~ can be expressed
by (1.5) in terms of final monomials carried by broken lines in the canonical
scattering diagram ®(x p). Hence, it suffices to show that all the coefficients
ag appearing in (1.5) are in k[NE(Xy)][N’] and that for every & > 0, only
finitely many of the coefficients ag are nonzero modulo m'gﬂ. We start, proving
the first claim by showing the stronger statement that for every broken line 5 as
in Definition 1.5, we have a; € k[N F(Xx)][N’] for every monomial a;z™ carried
by any line segment 5((t;_1,%;)) of .

We prove this by induction on . By Definition 1.5, the initial monomial is
given by 2™ and so a; = 1 € k[NE(Xy)][N’]. Now assume we have a monomial
a;z™ carried by a broken line such that a; € k|NE(Xx)][N’]. Then, the next
monomial a;412"*! is a monomial in the expansion of (1.2) or (1.3).

If B(t;) does not belong to a codimension one cone of &2, then a; 12"+ is a
monomial in the expansion of (1.2). Moreover, by Theorem 1.17, all the walls
of ©(x,py contributing to the bending are of the form Y,((9, f;)), where (0, f;)
is an outgoing wall of ®(x, ). In such case, T.((9, f;)) is defined by (1.13)-
(1.14), where the curve class fa, is defined by (1.12) and so is contained in
NE(Xs) @ NI, Hence, the function f in (1.2) belongs to k[A,,][NE(Xx][N],
and so a;41 € k[NE(Xy)][N].

If B(t;) does belong to a codimension one cone p of &, then a;, 2™+ is a
monomial in the expansion of (1.3):

aizmi (t“f’f)(n’mi>
where (n,m;) > 0, and, by (1.6), r, is the class of the curve D, in X corresponding
to p.
If there are no ¢ € I such that v; € p, then D, is simply the pullback of the class
of the toric curve Ep in Xy, corresponding to p, that is D, € NE(Xy), and as
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(n,m;) > 0, we have ™% ¢ k[N E(Xs)]. Moreover, all the walls contributing
to the bending are images by T, of outgoing walls of D (x,, z), and so

Frm) e k(A [N E(Xs)][N']

as before. Hence, we also have a;;1 € k[NE(Xz)][N'].

If there exists i € I such that v; € p, then we can write f = f'f”, where f” is
the contribution of walls images by T, of outgoing walls of ® (x,, ry, and f’ is the
image by T, of an incoming wall of ®x, ) with attached function

(14 t;2%)%
as in Definitions 1.12 and 1.15. As before, we have
(f")mm € (A, ][NE(Xx)][N] .
On the other hand, f’ is given by (1.11), that is
£ = (4 P
which does not belong to k[A,,][NE(Xx)][N'] in general. However, the combi-

nation t* f’ does belong to k[A,, ][N E(Xx)][N/]. Indeed, k, = D, is the class of
the strict transform of the toric curve Ep in Xy, corresponding to p, so

D,=D,— (D, H)E;,
and, as D, - H; = w, by (1.9), we have
{0 f7 = Do (] 4 ¢ Y00) € KA, JINE(Xs)][N']
As (n,m;) > 0, we also have (t* f')"m) ¢ k[A,,][NE(Xx)][N'], and finally
Qiit1 € k[NE(Xz)H[NI]]

It remains to show that for every k > 0, only finitely many of these monomi-
als are nonzero modulo mk By Theorem 1.17, it is enough to prove that the
scattering diagram D (x,, z) is finite modulo mf,. This holds because D (x, ) is
a scattering diagram over k[N’], see Definition 1.10 . Finally, the claim that for

given my, mg € B(Z), there are only finitely many m € B(Z) such that C} ., # 0
mod I, follows for the same reason.

The extended mirror family has the nice property to interpolate between the
mirror family of the log Calabi-Yau pair (X, D) and the mirror family of the toric
model (Xy, Dy).

Theorem 2.3. Let (X, D) be a HDTV log Calabi- Yau pair obtained as in §1.5.1
from a toric model (Xx, H). The restriction of the extended mirror family Xoxs —
S(xs,m) to Speck[NE(Xy)] is the mirror family of the toric variety (Xx, Dy). In
particular, the restriction of Xeq to the torus Speck[Ny(Xyx)] is a family of tori

Speck[M], and the theta functions {0 }men restrict to the monomials {z™ } mem
on the fiber Speck[M] over 1 € Speck[NE(Xy)].

Proof. By setting t ¥ = 0 for all i € I, the canonical scattering diagram of (X, D)
becomes the canonical scattering diagram of (Xyx, Dy): all the walls become
trivial and the kinks reduce to the toric kinks. ¢
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= o0 “ tE =0 > S, 1)

Spfk[NE(X)] T Spfk[N']

=\ Spfk[N']

Spec k[N E(Xy)] % P Speck[NE(Xs)) )

T Spec k[M]

FIGURE 2.2. The map p : T — Speck[M] contracting Ty to the
torus fixed point.

Remark 2.4. Let (X, D) be a HDTV log Calabi-Yau pair such that the com-
plement X \ D is affine. Then, by [24, Corollary 1.2] (based on the compari-
son with [25]), the mirror family X — Spfk[NE(X)] canonically extends over
Speck[NE(X)]. In this case, the extended mirror family Xoxt — S(xs,H) given
by Theorem 2.2 canonically extends further over Spec k| M].

2.2. Motivation from mirror symmetry for the extension. In this section,
we explain how the construction of the extended mirror family Kot — S(xs,H)
constructed in §2 is motivated by mirror symmetry, which proposes that the
(complexified stringy) moduli space of symplectic deformations of a Calabi—Yau
variety should be isomorphic to the moduli space of complex deformations of its
mirror [29].

In the context of mirror symmetry for HDTV log Calabi—Yau pairs, obtained
by a blow-up (X, D) — (Xx, Dx) from a toric variety, we obtain a natural family
of symplectic structures by varying the volume of the exceptional divisors, hence
a symplectic deformation space for (X, D). In what follows we show that the
complex deformation space of the extended mirror family corresponds to this
symplectic deformation space of (X, D). In a moment we describe a (formal)
scheme T', which we show is birational to S(xy,m) and over which we have an
extension of the mirror family to (X, D), and for convenience we work with T in
what follows.

First note that the cone of effective curves NE(X) C N;(X) is actually con-
tained in NE(Xx) & Z' because C' € NE(X) implies Bly .C € NE(Xx). More
obviously, we also have

NE(Xy)oN Cc NE(Xy) 0 Z'.
Let T be the scheme obtained by gluing together the two affine schemes
Speck[NE(X)] and Speck[NE(Xs) @ N']

along their common open subset Spec k| N E(Xx)®Z!]. By construction, Spec k| M]
is the affinization of T" and we have a corresponding morphism

p: T — Speck[M].
There are several interesting loci in 7. First of all, the projections
NE(Xs) &N — NE(Xx)
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and
NE(Xs) ® N — N/
induces closed embeddings

Speck[NE(Xx)] = Speck[NE(Xs) @ N/| — T

and

Spec k[N'] «— Speck[NE(Xs) ® N'] — T'. (2.3)
On the other hand, as the classes E; are effective for all ¢ € I, we have the
inclusion

(-N)' ~ @HNE; ¢ NE(X),
i€l
and so a closed embedding
Speck[(—N)!] — Speck[NE(X)] — T (2.4)

defined by the monoid ideal {3 € NE(X)|S ¢ (—=N)!}. In T, the subschemes
Speck|[N’] and Speck[(—N)] given by (2.3) and (2.4) are affine spaces with
coordinates (t7F¢);c; and (t£);cr respectively, and are glued together along their
common open subset Spec k[Z!] via t¥ + ¢t=Fi. The resulting subscheme Ty of T
is isomorphic to (P')? and is the fiber of p over the torus fixed point of Spec k[ M],
defined by the monoid ideal M \ {0}. Finally, let 7' be the formal completion of
T along Ty USpec k[N E(Xy)]. Then the restriction of p to 7' defines a morphism

]32 T — S(XE,H) N

and one can consider the pullback Xoxt XS (xg ) T of the mirror family to 7. From
this point of view, the original mirror family was only defined on the formal
neighborhood Spfk[NFE(X)] of the point in 7 with equations t¥ = 0 for all
1 € I, whereas the extended mirror family is defined on a formal neighborhood of
Ty USpec k[NE(Xy)]. Moreover, by Theorem 2.3, the restriction of the extended
mirror family to Spec k| NE(Xy)] is the mirror family to the toric pair (Xs, Dy).
We illustrate in Figure 2.2 the map p and the geometry of T and Spec k[ M].

In the usual terminology of mirror symmetry, the point t¥i=0 is the large com-
plex structure limit of the mirror family, corresponding to the large volume limit
of X. Indeed, the variable ¥ on the base of the space of complex deformations
of the mirror should correspond by mirror symmetry to the function e JE: on
the space of classes of symplectic forms w on X. In the large volume limit, we
have t¥ — 0, that is f g, W — F00, and the volume of the exceptional divisors
with respect to the symplectic form become indeed large.

The extension of the mirror family away from the large volume point t¥ = 0,
until the point t~%" = 0, correspond to moving away from the large volume
point of X in the space of symplectic forms, by decreasing the volume of the
exceptional divisors. Such deformation is naturally provided by the birational
map Bly: (X, D) — (X5, Dx): symplectically, we have a continuous deformation
from (X, D) to (Xg, Dx) obtained by continuously decreasing the volume of the
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exceptional divisors until they become of volume zero. While the classical sym-
plectic geometry stops there, the symplectic form is complexified by the B-field
in mirror symmetry, and the volume can be analytically continued until —oo,
that is, the point t~% = 0. To summarize, the extended mirror family gives a
deformation of the mirror of (X, D) to the mirror of (X, Dy) which is mirror to
the birational map Bly: (X, D) — (X5, Dy).

Example 2.5. Let (X, D) be the log Calabi-Yau surface obtained by blowing-up
a point in P?, as in Examples 1.9 and 2.1. Recall that we denote by L the pullback
of the class of a line in P2, by E the exceptional divisor, and that we have

NE(Xy)=NL, NE(X)=NE&N(L—-E), M=NL&N(L - E).

As expected from Theorem 2.2, the equation for the mirror to (X, D) given in
(1.7) only involves t* and t*~# and so defines the extended mirror family over
Speck[M]. The dual cone of NE(X) is the nef cone of X:

Nef(X) = NL @ N(L — E),

whereas the dual of NE(Xy) @ N is the “bogus cone” Bog(X) = NL @ NE in
the terminology of [23]. The fan of T is the union of the nef cone and of the
bogus cone, and is in particular isomorphic to the blow-up of the affine plane at
the origin. Erasing from this fan the middle ray NL, we obtain NE @ N(L — F),
which is the cone M"Y dual to M, and so the fan of Speck[M]. In particular,
Spec k[ M] is isomorphic to an affine plane and T' — Spec k[M] is the blowup of
the origin. The various cones of curves and divisors are illustrated in Figure 2.1.

3. APPLICATIONS OF THE EXTENDED MIRROR FAMILY

3.1. The Frobenius structure conjecture. In this section, we use the ex-
tended mirror family to prove the Frobenius structure conjecture for HDTV log
Calabi-Yau pairs.

We first review the statement of the Frobenius structure conjecture, proposed
by Gross-Hacking-Keel as Conjecture 0.8 in the first arxiv version of [15]. Let
(X, D) be a log Calabi-Yau pair and (B, &) its tropicalization as in §1.2.1. Let
A(X, D) be the topologically free k[N E(X)]-module over a set {0, }mepz) in-
dexed by the integral points of B:

AX,D):=lim @ (K[NE(X))/I) V-
k meB(z)
We define the trace map as being the projection on the coefficient of 9y:
Tr: A(X,D) — k[NE(X)] (3.1)
Z amPm — ag

meB(Z)

We can now state the Frobenius structure conjecture:
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Conjecture 3.1. Let (X, D) be a log Calabi- Yau pair. Then, there exists a unique
structure of KN E(X)]-algebra on the k[N E(X)]-module A(X, D) such that, for
every s > 2 and my,...,ms € B(Z),

T (O - Om,) = Y Nalma,...,m)t", (3.2)
BENE(X)

where Ng(myq,...,ms) is the log Gromov-Witten invariant of (X, D) counting
(s + 1)-pointed rational curves f : (C,xg,z1,...,25) — X, with contact orders
(0,mq, -+ ,ms) along D at the marked points (xo, z1,- -+, Ts), and with insertion

of ;0_2, where 1, is the psi class attached to the marked point x.

Recently, Johnston [24, Theorem 1.4] proved that the algebra of theta functions
R(X, D), whose underlying k[N E(X)]-module is A(X, D), satisfy (3.2). This
settles in particular the existence part of the conjecture (referred to as the weak
Frobenius structure conjecture in [24]). The uniqueness part of the Conjecture
3.1 has been proved by Keel-Yu [25] assuming that X \ D is affine and contains
a torus. While the general case of the uniqueness part of the Conjecture 3.1 is
still open, we prove it below for HDTV log Calabi—Yau pairs (X, D).

Theorem 3.2. Let (X, D) be a HDTV log Calabi-Yau pair. Then, the product
structure of the algebra of theta functions R(X, D) is uniquely determined by the
values of the trace map (3.1) on products of two and three theta functions.

Proof. We first introduce some notations. For every s € N, the s-point function
is the function

T : R(X, D)® — k[NE(X)] (3.3)
T Q- Q@ug — Tr(zy - xs) .

We similarly define the s-point function

Tre, : R(X, D)25 — k[M]

ext ext

on the algebra R(X, D)cx of functions on the extended mirror family given by
Theorem 2.2. The structure constants C}, = defining the product of theta func-

tions are the same in R(X, D) and in R(X, D)ey: the only point of Theorem 2.2
is that the curve classes appearing in C" which are a priori in NE(X), are

mi1,m2’
actually contained in M. Therefore, for every my,--- ,ms € M, we have
Trs(ﬁmla T 7197713) = Tert(ﬂmlv T ’ﬁms) : (34)

In particular, it is enough to prove Theorem 3.2 for R(X, D)ex to deduce it
for R(X, D): we have to show that the product structure on R(X, D)ex can be
recovered from the 2-point and 3-point functions Tr2, and Tr? ,.

We first prove that the trace pairing Tr® : R(X,D)22 — m is non-
degenerate, that is, the map
R(X7 D)Cxt — Hom(R(X, D)cxt7 m) (35)
T — (y — Trgxt(xvy))
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is injective.

By Theorem 2.3, the restriction of the extended mirror family to Spec k[N F(Xy)]
is the mirror family of the toric variety (X, Dx). It follows that for every m € M,
there exists k,, € NE(Xy) such that, for every n € N,

T (Imy V) = 1" Gppyno mod J

where J is the ideal defining Spec k[N E(Xy)] given by (2.2).

Now, to prove that the trace pairing is non-degenerate, it is enough to show that
for every nonzero x € R(X, D), there exists n € M such that Tr?(z,9,,) # 0.
Let

2= aplm € R(X,D)eq \ {0},

meM

with a,, € m for all m € M. As x # 0, we can consider the smallest k£ > 0
such that = # 0 mod J*. Let mo € M be such that a,,, # 0 mod J*. Then,

T2 (2,9 ) = Aot™™  mod J*,

and so in particular Tr? (2,9 _,,,) # 0. This ends the proof that the trace pairing
is non-degenerate.

We now conclude the proof of Theorem 3.2 for R(X, D)y by showing that, for
every o1, s € R(X, D)ext the product z;z2 can be determined from the 2-point
and 3-point functions. By the associativity of the ring of theta functions we can

write Tr2 (2129, 73) as a 3-point function:

Trgxt(ffll’% I3) = Trzxt<xl’ T2,73),

Finally, by the non-degeneracy of the trace pairing on R(X, D)ey the product 125
is uniquely determined by the data of Tr2 (21 @2, x3) for all 23 € R(X, D)exi. ¢

ext

As a corollary we obtain a proof of the Frobenius structure conjecture for
HDTYV log Calabi-Yau pairs:

Theorem 3.3. Let (X, D) be a HDTV log Calabi-Yau pair. Then, the Frobenius
structure congecture (Congjecture 3.1) holds for (X, D). More precisely, the algebra
of theta functions R(X, D) is the unique algebra satisfying (3.2).

Proof. By [24, Theorem 1.4], the algebra of theta functions R(X, D) satisfies
(3.2). In particular, the right-hand side of (3.2) is given by the trace of products
of theta functions. By Theorem 3.2, R(X, D) is the unique algebra with the
left-hand side of (3.2) equal to the trace of products of theta functions. Hence,
it follows that R(X, D) is the unique algebra satisfying (3.2). ¢

3.2. The HDTV mirror family. We define in this section the HDTV mirror
family to a HDTV log Calabi-Yau pair as a specific base change of the extended
mirror family Xoxt — S(xy,m) — see Definition 3.4. We then prove in Theorem 3.5
that the algebra of functions on the HDTV mirror family is isomorphic to the
algebra of theta functions defined by the HDTV scattering diagram.
Let
to: Spf k[N'] — Spf k[N E(Xx)][N]
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be the morphism induced by restriction to the point
Speck «— Speck[NE(Xy)]

defined by the equations t# = 1 for all 3 € NE(Xy), i.e. the unit 1 of the big
torus orbit Speck[N;(Xx)] in the toric variety Speck[NE(Xy)]. On the other
hand, the inclusion

M C NE(Xs) ® N/
induces a morphism

Spfk[NE(X)]IN'] — S(xe.m) -

Finally, we denote by
v: SpEKIN'] — S(xg.m)
the composition of this morphism with ¢.

Definition 3.4. The HDTV mirror family Xpprv of (X, D) with respect to the
toric model (Xy, H) is defined by the fiber diagram

Xuprv — Xext

| !

Spfk[N'] —— S(xy.m) -

Restricting theta functions constructed from the canonical scattering diagram
D(x,p) to Xuprv we obtain a topological basis {1, }menr of the algebra of func-
tions on Xpprv as a k[N/]-module. On the other hand, as reviewed in §1.1.3, one
can construct using broken lines in the HDTV scattering diagram ® (x,, ) a topo-
logical k[N']-algebra R(D(x ) with a basis of theta functions {9ZPTV},,cpr.
In the following theorem, we compare the theta functions ¥, and 9ZPTV using
the main result of [4] comparing the canonical scattering diagram ®(x py in B
and the HDTV canonical scattering diagram ®x,, m) in Mg, along with a result
of [3] comparing the corresponding broken lines.

Theorem 3.5. Let (X, D) be a HDTV log Calabi- Yau pair obtained as in §1.5.1
from a toric model (X5, H). Then, the algebra of theta functions R(D xy m))
defined by the HDTYV scattering diagram D x, m) is the algebra of functions of
the HDTV mirror family, that is, the map V2PV s 9, for all m € M induces
an isomorphism .

Xuprv =~ Spf R(D (x4, 1))
over Spf k[N].

Proof. Tt is shown in [3, Theorem 4.5] that the mirror family X to (X, D) can
be computed from a scattering diagram in My, called the heart of the canonical
scattering diagram’. Briefly, to obtain the heart of the canonical scattering dia-
gram, we first consider a degeneration to the normal cone of (X, D) as described

"More precisely, the heart of the canonical scattering diagram is not a scattering diagram
as in Definition 1.4, but is a scattering diagram in the more general sense of [17]. See [3] for
details.
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in [4, §3.1]. Considering the restriction of the canonical scattering diagram for
the total space (X' , [?) of this degeneration to the central fiber and then localizing
around the origin we obtain a new scattering diagram, denoted by T o’Dl(X , D),
in [4, Eq.5.1]. The group of curve classes of the central fiber of this degeneration
is generated by the curve classes of Xy, the exceptional curves and some fiber
classes of curves that arise as P! bundles. Setting these fiber classes to zero in
To®'(X, D), we obtain the heart of the canonical scattering diagram — for details
see [3, §4].

Now, the main point is that, by [4, Theorem 6.2], the heart of the canoni-
cal scattering diagram can be reconstructed from the HDTV scattering diagram
D (xy,m) as follows. For every incoming wall

(0, (14 t;2")") (3.6)
of D (xy,m there is a corresponding wall
(0, (14175 )") (3.7)

of the heart. For every outgoing wall (9, f;), with 09 C 0 € X, and

fr=Y e[tz (3.8)

el

there is a corresponding wall

(D,thﬁAv“ Hz‘“”’i), (3.9)

el

of the heart, with S, given by (1.12) and so in particular of the form
5A,o = BA,O’ - Z a;

icl
with 8o, € NE(Xx) and a; > 0 for all i € I. In addition, the heart of the
canonical scattering diagram is defined using the PL function on My whose kink
across a codimension one cone p of ¥ is given by the corresponding curve class
D, in NE(Xy).

We can now finish the proof of Theorem 3.5. By [3, Theorem 4.5], the mirror
family X to (X, D) is computed from the heart of the canonical scattering. Hence,
the HDTV mirror family of Definition 3.4 is obtained by setting to zero the curve
classes of the heart of the canonical scattering diagrams contained in NFE(Xy).
The kinks of the PL function become equal to zero, the incoming walls (3.7) do
not change, and the outgoing walls (3.9) become

@) e[ 2.
i€l
In other words, writing ¢; = t~Fi, we recover exactly the HDTV scattering dia-

gram ® (x,, i) whose walls are given by (3.6)-(3.8), and this concludes the proof
that the HDTV mirror family is computed by the HDTV scattering diagram. 4
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4. CLUSTER VARIETIES AND THEIR HDTV MIRRORS

In this section we first briefly review some background on cluster varieties in
§4.1. We then study their HDTV mirrors in §4.2.

4.1. Cluster varieties.

4.1.1. A and X cluster varieties. Let s be a skew-symmetric seed, given by the
data of a rank n lattice N, an integral skew-symmetric bilinear form

{}:NxN-—Z,

an index set I of size n, a subset I C I, and a basis (e;),.; of N. Basis elements

e; are referred to as unfrozen if i € I, and frozen if i € T\ I. We denote by
M := Hom(N,Z) the dual lattice of N, and by

Ny =7 = @ Ze;

iel
the sublattice of N spanned by the unfrozen basis elements. We consider the map

4 Nuf — M
n+— {n,-}

and for every i € I we denote v; := pi(e;) = {e;, —} € M. Finally, we assume
that v; # 0 for every i € I.

From the data of a seed, there are two types of cluster varieties one can con-
struct: the X and A cluster varieties. The X (resp. A) cluster variety is defined
by gluing together copies of the torus Speck[N] (resp. Speck[M]), indexed by
mutations of s, using explicit birational maps referred to as cluster transforma-
tions, see [14, §2] for details. However, throughout this paper we will use the
interpretation of the X and A cluster varieties in terms of blow-ups of toric va-
rieties, as shown in [14]. We review this below®.

To construct the X cluster variety, we choose a smooth projective toric fan X
in Mg := M ® R whose set of rays contains R>qv; for all ¢ € I, and such that
the hyperplanes e are union of codimension one cones of Y. We also assume
that no cone of ¥ contains two distinct rays of the form R>¢v;. Such fans always
exist and we denote by Xy the corresponding toric variety. For each ¢ € I, let
D; be the toric boundary component corresponding to the ray Rxgv; of ¥ and let
H; C D; be the hypersurface defined as the closure of the locus in D; of equation

(142 =0,

8In this paper we consider skew-symmetric seeds and cluster varieties constructed from such
seeds, that is, skew-symmetric cluster varieties. However, we expect the results of this paper to
hold in general for cluster varieties associated to skew-symmetrizable seeds. In that situation
the blow-up construction of such varieties typically produce orbifolds/Deligne-Mumford (DM)
stacks, rather than smooth algebraic varieties. Hence, treating such situations would require a
generalization of the Gross—Siebert mirror construction [4, 21] to DM stacks.
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where |v;] is the divisibility of v; in M. Note that H; is connected because e; is
primitive in N. Let X be the blow-up of Xy along

H:=|JH,,
i€l

and let D C X be the strict transform of the toric boundary divisor Dy of
Xs. Then, according to [14, Theorem 3.9], the complement Uy := X \ D is
isomorphic to the & cluster variety outside codimension two. We call (X, D) a
log Calabi-Yau compactification of the X cluster variety. In order to apply the
mirror construction to (X, D), one needs to be ensure that X is smooth. This
can fail for two reasons. If |v;| > 1, then blowing-up H; produces an (n — 2)-
dimensional family of A}, _; surface quotient singularities. On the other hand,
it D; = D; when ¢ # j, then H; and H; intersect and blowing-up H; U H; also
produces singularities. So, when applying the mirror construction to (X, D), we
will make the following X assumptions on the seed s:

(i) for every i € I, v; is primitive in M, that is, |v;| = 1, and
(11) for every Z,] S I, Rzo’l)i 7é RZOUJ if ¢ 7é j

Under these assumptions, (X, D) is a HDTV log Calab-Yau pair as in §1.3.1. We
expect that the mirror construction and the main results of [4] should generalize
to the orbifold case, thus removing assumption (i). We also expect the main
results of [4] to generalize to the case of intersecting hypersurfaces contained in a
common boundary divisors. Applying this generalization to successive blow-ups
of X along the hypersurfaces H; would allow us to remove assumption (ii).

Similarly, to construct the A cluster variety we choose a smooth projective
toric fan ¥’ in Ng := N ® R whose set of rays contains Rsge; for ¢ € I, and
such that the hyperplanes v;- are union of codimension one cones of ¥'. We also
assume that no cone of ¥’ contains two distinct rays of the form Rsge;. Such
fans always exist and we denote by Xy the corresponding toric variety. For each
i € I, let D} be the toric boundary component corresponding to the ray Rxge; of
Y and let H] C Dj be the hypersurface defined as the closure of the locus in Dj
of equation

1+2%=0.

Note that H] consists of |v;| connected components, where |v;| is the divisibility
of v; in M. Let X’ be the blow-up of Xy along

H :=|JH]
iel
and let D’ € X’ be the strict transform of the toric boundary divisor Dy of Xyv.
By the assumptions on ¥, X’ is smooth and so (X', D’) is a HDTV log Calabi-
Yau pair as in §1.3.1. According to [14, Theorem 3.9], assuming that the seed s is
totally coprime in the sense of [14, Definition 3.7], the complement U, := X'\ D’
is isomorphic to the A cluster variety outside codimension two. We call (X', D)
a log Calabi- Yau compactification of the A cluster variety.
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As reviewed in §1.2.3, mirror symmetry naturally involves families of varieties.
In particular, understanding mirror symmetry for cluster varieties requires work-
ing with families of cluster varieties. The relevant families are given by cluster
varieties with principal coefficients, which we review in the next section.

4.1.2. Cluster varieties with principal coefficients. The A and X’ cluster transfor-
mations are special cases of more general cluster transformations with principal
coefficients parametrized by the torus Spec k[N]. We refer to [14, 16] for the A
case, to [6] for the X case and to [30, §3-4] for a uniform exposition.

Gluing families of tori Spec k[M|] parametrized by Spec k[N] using the A cluster
transformations with principal coefficients produces the A cluster variety with
principal coefficients

T4+ Aprin —> Speck[N].
The fiber over the unit in the torus Speck[N] recovers the A cluster variety:
71'(1) = A. Moreover, allowing the coefficients #; := % to vanish defines a
partial compactification

7a: Apin — Spec k[N,

where N® = @), 7 Ne;. The special fiber over 0 is the torus 7' (0) = Spec k[M].
In fact, we will only need to consider the restriction defined by setting ¢; = 1 for
alli e T\ I:

ﬁ.A,uf: jprin,uf — Spec k[NS?C] ) (41)

where N = @,.; Ne;. The formal completion

i€l

~

;T_\A,uf: ~'Tlprin,uf — SpkaINfE]] (42)

of T 4w along ﬁ;}uf(O) will play an essential role in our study of mirror symmetry
for cluster varieties. One of the main result of Gross-Hacking-Keel-Kontsevich,
[16, Proposition 6.4 (4)], is the construction of a topological basis {9 },enr of

cluster theta functions for the algebra of functions on zprin’uf as a k[[Nfﬂ]—module.
The cluster theta functions are the theta functions defined by a combinatorially
constructed cluster scattering diagram 33;4 , reviewed in §5.1.2.

In [14, 16], Aprin is described as the A cluster variety associated to the seed
with principal coefficients § defined as follows.

prin

Definition 4.1. The seed with principal coefficients, denoted by s, is the data of
the lattice N := N @& M, endowed with the integral skew-symmetric bilinear form

{(n1,m1), (n2,m2)} := {n1, na} + (n1,ma) — (n2,m1), (4.3)
where (—, —) is the duality pairing between M and N, and the basis elements
((e4,0));c7 and ((0, €))7, where (€}),.7 is the basis of M dual to (e;),.7. Finally,
the unfrozen basis elements are ((e;,0));er.

The cluster variety A, has a very natural description in terms of blow-ups
of toric varieties. Let Xy be a toric variety as in the description of the A cluster
variety in §4.1.1, with the toric divisors D). Then, Ap, is isomorphic outside
codimension two to the complement of the strict transform of D’ x Speck[N]



FOCK-GONCHAROV DUAL CLUSTER VARIETIES AND GROSS-SIEBERT MIRRORS 33

in the variety obtained from X’ x Spec k[N] by blowing-up the hypersurfaces in
D} x Speck[N] of equation
1 + tiZUi = O .

From this point of view, it is clear that one can allow the t;’s to vanish and that
the fiber over the point {t; = 0}; is the torus Speck[M]. This description is
compatible with viewing A, as A for the seed § because the unfrozen basis
elements of § are (e;,0) for i € I, and we have v; := {(e;,0), —} = (v;, ¢;) and so
1420 =14 ;2.

The X case is similar. Gluing families of tori Speck[N] parametrized by
Speck[N] using the X" cluster transformations with principal coefficients defined
in [6] produces the X cluster variety with principal coefficients

Tx © Xprin —> Speck[N] . (4.4)

The fiber over the unit in the torus Speck[N] recovers the X cluster variety:
7,'(1) = X. Moreover, allowing the coefficients ¢; := % to vanish defines a
partial compactification

Tt Xprin — Spec k[N,

whose special fiber over 0 is the torus 73'(0) = Speck[N]. We will mainly
consider the restriction defined by setting ¢; = 1 for all i € I\ I:

ﬁX,uf: yprin,uf — SpeCk[NE?] ) (45)

and the formal completion

~

%X,uf: Iprin,uf — Spfk[[NfE“]] (46)

of Ty uf along Ty ((0). An important difference with the A case is that Xy is
not the X" cluster variety associated to 5. Indeed, X, is obtained by gluing tori

Spec k[N] x Speck[N] = Speck[N & NJ,
whereas the X’ cluster variety associated to s is obtained by gluing tori
Speck[N] = Spec k[N & M] .

In particular, Xy, in (4.4) is different from the variety denoted by X, in [16].
As stressed in [6], Xpin as in [16] is the cluster dual to Ay, as cluster varieties
over Speck, but X, as in (4.4) is the cluster dual to Ay, as cluster varieties
with coefficients, that is, over Spec k[N].

Finally, X, has also a very natural description in terms of blow-ups of toric
varieties. Let Xy be a toric variety as in the description of the X cluster variety
in §4.1.1, with the toric divisors D;. Then, by [30, Proposition 5.14], Xy, is
isomorphic outside codimension two to the complement of the strict transform
of D x Speck[N] in the variety obtained from X x Speck[N] by blowing-up the
hypersurfaces in D; x Speck[N] of equation

(14 tze)l = 0.
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By contrast, the blow-up description of the X cluster variety for s would involve
a fan in M & N with rays Rso0; = Rso(v;,e;) and hypersurfaces of equation
(1 + 2(¢9)),

4.2. The HDTYV mirror for cluster varieties. In this section, we describe the
HDTYV scattering diagram of §1.3.3 for the HDTV log Calabi-Yau pairs obtained
as log Calabi-Yau compactifications of X and A cluster varieties. By Theorem
3.5, the algebra of functions of the HDTV mirror of such log Calabi-Yau pair is
given by the algebra of theta functions defined by this scattering diagram.

4.2.1. The HDTV mirror for X cluster varieties. Let s be a skew-symmetric seed
satisfying the X assumptions and let (X, D) be a log Calabi-Yau compactification
of the corresponding X cluster variety, with a toric model (Xy, H), as in §4.1.1.
As reviewed in §4.1.1, (X, D) is an example of HDTV log Calabi-Yau pair in
the sense of §1.3.1. In this section, we describe the HDTV scattering diagram
Q(XZ,H) of §133 for (X, D)

Recall from §4.1.1 that for every i € I, we have a ray R>qv; of ¥, corresponding
to a toric divisor D; of Xy, and the hypersurface H; C D; defined as the closure
of the locus of equation 1+2% = 0 in D;. In §1.3.3, the HDTV scattering diagram
D (xy,m) is described as a scattering diagram in Mg over R = k[N']. From now
on, we identify N with Ny = @D,; Ne;, that is t; with t*, and we view D (x,, u)
as a scattering diagram in Mg over R = k[NZ].

We first defined the initial scattering diagram ®x, gy in in §1.3.3 in terms of
tropical hypersurfaces 77 associated to the hypersurfaces H;. The following result
describes these tropical hypersurfaces in the X’ cluster case.

Lemma 4.2. For everyi € I, let o be a codimension one cone of ¥ containing
the ray R>ov;. Then the weight w, of the tropical hypersurface F; on the cone
(0 + Ru;) /Ruy; is given by w, = 1 if 0 C e, and w, = 0 otherwise.

Proof. The quotient map M — M/Zv; induces an injective map
Hom(M /Zv;,Z) — Hom(M,Z) , (4.7)
whose image consists of the linear forms on M which vanish on v;. Since,

(e, vi) = (ei, pa(er)) = {ei, e} =0,
there is a unique element €; € Hom(M/Zv;,Z), whose image under the map in
(4.7) is e;.
By definition, the tropicalization of the equation 1 4 2% restricted to D;,

14 2%|p, =14 2%,

corresponds to the PL function ¢; on Mg /Ru; given by max{€;, 0}, which restricts
to linear functions on the complement of &;- and has kink 1 along ;. By standard
toric geometry, analogously as in the proof of [3, Prop.6.2], for every codimension
one cone o C ¥ containing the ray Rsv;, the intersection number w, = D, - H;
from Definition 1.14 equals to the kink of ¢; along the cone (o +Ruv;)/Rv;. Hence,
w, = 1if (o + Ru;)/Ru; C &, that is, 0 C ef; and w, = 0 otherwise. ¢

i
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We can now describe the widgets ®©; of Definition 1.15 defining the initial
scattering diagram D (x; m)in-

Lemma 4.3. For every i € I, the widget ®; associated to the hypersurface H;
is equivalent to the scattering diagram

D¢ .= {(0,, f;) | o is a maximal dimensional cone in e; },

where f; =1+ t;2".

Proof. The result follows from the Definition 1.12 of the widget ©; and from
Lemma 4.2 computing the weights w,. ¢

For the comparison with the A, cluster scattering diagram in §5.2, it is more
convenient to work with the consistent completion of the widgets.

Lemma 4.4. For every i € I, the consistent completion of D is equivalent to

S®F) = {(er. fi)}
where f; =1+ t;2".

Proof. The hyperplane e divides the real vector space Mg into the two half-
spaces {e; > 0} and {e; < 0}. In the scattering diagram {(ej, fi)}, the wall-
crossing transformation for crossing from {e; > 0} to {e; < 0} is the inverse of
the wall-crossing transformation for crossing from {e; < 0} to {e; > 0}. As a
general oriented loop in Mg goes from {e; > 0} to {e; < 0} as many times that it
goes from {e; < 0} to {e; > 0}, it follows that the scattering diagram {(e;", f;)}
is consistent.

Moreover, as D¢ consists of all codimension one cones of ¥ contained in ¢;- and
containing v;, the scattering diagram {(ei, f;)} is obtained from D by adding
walls which are all outgoing. As the consistent completion of a scattering diagram
is unique up to equivalence, it follows that {(ei-, fi)} is equivalent to the consistent
completion of DY.

¢

We arrive at the following description of the HDTV scattering diagram in the
X cluster case.

Theorem 4.5. Let s be a skew-symmetric seed satisfying the X assumptions and
let (X, D) be a log Calabi-Yau compactification of the corresponding X cluster
variety, with a toric model (Xx, H), as in §4.1.1. Then, the HDTYV scattering
diagram D (xy m) 15 equivalent to the consistent completion of the set of initial

walls
{(eﬁfi)}ief,
where f; =14 t;2".

Proof. By Definition 1.16, ® (x,, g is the consistent completion of
D (Xg,H)in = U@i :

icl
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By Lemma 4.3, ®; is equivalent to ©¢, and so D (xy,m) 18 equivalent to the con-

7
sistent completion of U;c;D¢. Hence, by uniqueness of the consistent completion,
D (xs,m) 18 also equivalent to the consistent completion of U;e;S(DY). The result

then follows from the explicit description of S(DY) in Lemma 4.4. ¢

4.2.2. The HDTV mirror for A cluster varieties. Let s be a skew-symmetric
seed and let (X', D') be a log Calabi-Yau compactification of the corresponding
A cluster variety, with a toric model (Xyv, H'), as in §4.1.1. As reviewed in §4.1.1,
(X', D) is an example of HDTV log Calabi-Yau pair in the sense of §1.3.1. In
this section, we describe the HDTV scattering diagram ®x,, gy of §1.3.3 for
(X', D).

Recall from §4.1.1 that for every i € I, we have a ray R>pe; of ¥/, corresponding
to a toric divisor D] of X, and the hypersurface H, C D; defined as the closure
of the locus of equation 1+ 2% = 0 in D.. Unlike what happens in the X case,
H! is not connected in general and consists of |v;| disjoint connected components
Hi; with 1 < j < [v]. Let

T={@,j)]iel, 1<j<|uv|}. (4.8)

The HDTV scattering diagram ®(x., ) is then a scattering diagram in Ng over

R = k[N]. We denote by ¢;; the monomial corresponding to the (4, 5) copy of N.
Using arguments similar to those use for the X case in §4.2.1, we obtain the
following description of the HDTV scattering diagram in the A cluster case.

Theorem 4.6. Let s be a skew-symmetric seed and let (X', D') be a log Calabi-
Yau compactification of the corresponding A cluster variety, with a toric model
(Xsy, H'), as in §4.1.1. Then, the HDTV scattering diagram ® x,, m) is equiva-
lent to the consistent completion of the set of initial walls

{(’UiL7 fi) Yier

where

|vi

fi= T +t52). (4.9)

=1

5. MIRROR SYMMETRY AND CLUSTER DUAL VARIETIES

In §5.1 we first review the description of the cluster scattering diagram of
[16], as a particular type of a C-scattering diagram. While the description of
a C-scattering diagram we provide is similar to the one of a scattering diagram
discussed in §1, there are some technical differences between the two notions. We
give a precise comparison in §5.2. Particularly, in (5.4), we construct a map from
a set of C-scattering diagrams to the set of scattering diagrams. Using this, we
compare in Theorem 5.16 the A, cluster scattering diagram with the HDTV
scattering diagram for cluster varieties described in §4.2. In Theorem 5.17 we
prove the main result of this section, showing that the HDTV mirror to the X
cluster variety is a deformation of the dual A cluster variety. Consequently, in §5.4
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we obtain enumerative interpretations of the structure constants in the algebra
of theta functions R(@fp““) defined by the A, cluster scattering diagram.

5.1. Cluster scattering diagrams. In this section we first introduce the general
notion of a C-scattering diagram, then describe the cluster scattering diagram of
[16] as a particular type of a Cpyp scattering diagram.

5.1.1. C-scattering diagrams. Let s be a skew-symmetric seed, as in §4.1.1. In
this section and in §5.1.2, we make the following injectivity assumption on s, as
in [16, pg 17]: we assume that the map

pr: Ny — M
n+— {n,-}

is injective. Later, we will only apply this section and §5.1.2 to the case of the
seed § with principal coefficients as in Definition 4.1, for which the injectivity
assumption is always satisfied.
In what follows we set
]V69 = @ Nei 5
i€l

and Nt := N®\ {0}. We define the monoid
P :=pi(N?) = {pi(n) | n € N},

and denote by k[P] the associated monoid algebra. By the injectivity assumption,

0 is the only invertible element of P, so mp := P\ {0} is a maximal monoid ideal

;)f P, and we denote by k[P] := lim, k[P]/ mk the completion of k[P] with respect
o mp.

Definition 5.1. A C-wall in Mg for NT is a pair (9, f), consisting of a codi-
mension one rational polyhedral cone d C ni C Mg for some primitive n, € N*,
together with an attached function f, € k[P] of the form

fﬁ = 1 + Z Ckzkpl(na) .

k>1

We say that a C-wall is incoming if pi(ny,) € 0, and outgoing elsewise. We call
—p1(ny) the direction of the C-wall.

Definition 5.2. A C-scattering diagram in Mg is a set of C-walls (9, f5), such
that for every k > 1, there are only a finite number of (9, f;) € © with f, # 1
mod mk,.

Remark 5.3. Tt follows from [16, Lemma 1.3] that the notion of a C-scattering
diagram in Definition 5.2 is equivalent to the notion of a scattering diagram
introduced in [16, §1.1] in the context of cluster algebras. We introduce the
terminology of “C-scattering diagram” in order to reserve “scattering diagram”
for the more general notion appearing in the context of mirror symmetry as in
Definition 1.10.
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The support of a C-scattering diagram ®, denoted by Supp(®), is the union
of all cones ® C Mg supporting a wall (9, f,) of ©. We define the singular locus
of ®

Sing(®) = (Joou |J (@),

€D 2,0€®

where the last union is over all pairs of walls 0,0" with 9 N9’ codimension at least
two.

In what follows we review the notion of a consistent C-scattering diagram
following [16, §1.1]. Every C-wall (9, f;) defines an automorphism p, of k[P]
given by

po: kK[P] — Kk[P] (5.1)
2Ty fimemm
Given a C-scattering diagram ® and a path

v :10,1] — Mg \ Sing(D)
t— (¢)

transversal to the walls of ©, the associated path ordered product p, 5 is the
automorphism of k[P] obtained as the ordered product of the automorphisms
pgj’°"’ attached to the sequence of walls 0; crossed by v for t = t;, where

€y, = —sgn({no,, Y (t;))) € {£1}. (5.2)

Two C-scattering diagrams are equivalent if they have the same path ordered
products. Finally, we call a scattering diagram consistent if for any path v with
~v(0) = (1) the associated path ordered product is the identity automorphism.
According to [16, §1.2], for every C-scattering diagram ®;, consisting of in-
coming C-walls (9, f;) in the sense of Definition 5.1 such that @ = ng, one can
always find a consistent C-scattering diagram S(®j,) containing ®;,, such that
all C-walls in S(Dj,) \ Din are outgoing. Moreover, S(D;,) is unique up to equiv-
alence with these properties and we refer to S(®y,) as the consistent completion

Of @in.

Remark 5.4. From a consistent C-scattering diagram ©, one can construct using
broken lines, analogously as in §1.1 — see [16, §3] for details— a k[P]-algebra
structure on the k[P]-module

R(®) = lim ) (k[P]/m}) 0,

k meM

with basis elements ¥¢ indexed by m € M. We call R(D) the algebra of theta
functions defined by the C-scattering diagram ®, and we refer to the basis ele-
ments < as theta functions.
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5.1.2. The cluster scattering diagram as a C-scattering diagram. We review the
description of the cluster scattering diagram following [16, Theorem 1.12], as a
particular C- scattering diagram.

Definition 5.5. Let ®;,s be the C-scattering diagram formed by the set of
incoming C-walls given by
(e, 14 2") (5.3)
for ¢ € I. Then, the cluster scattering diagram, denoted by
©s = S(gin,s) ;

is the C-scattering diagram in Mg obtained as the consistent completion of Dy s.

Remark 5.6. Note that v; = p;(e;) € ei and so the C-walls (e, 1+2") are indeed
incoming.

We refer to the algebra of theta functions R(Ds) defined by the cluster scat-
tering diagram (see Remark 5.4) as the algebra of cluster theta functions, and to
the theta functions 9 as the cluster theta functions.

5.1.3. Cprin-scattering diagrams and the Ay, cluster scattering diagram. In this
section we introduce particular types of C-scattering diagrams in Mg := Mg @
Ng, which we call Cpy-scattering diagrams. Finally, we describe A, cluster
scattering diagrams, which are important examples of both Cl, and cluster
scattering diagrams. These are of particular interest as they can be used to
reconstruct A, cluster varieties [16].

Definition 5.7. Let ® = {(2, f,)} be a C-scattering diagram in My := My ® Np.
We say that © is a Cpun-scattering diagram in MR if

(i) every wall ? of D is contained in a hyperplane of the form (n,0)*, where
(n,0)e N=NoM,

and is invariant under translation by N, that is 0 + Ng C 0.
(ii) for every wall d of D, we have f, € k[M]|[NZ].

We are now ready to define A, cluster scattering diagrams.

Definition 5.8. The A, cluster scattering diagram, denoted by

D?prin = @g ,
is the cluster scattering diagram in MR = Mg ® Nr associated to the seed with
principal coefficients 8, defined in Definition 4.1.
Lemma 5.9. The initial walls of the Apin cluster scattering diagram @;4”‘"
given by

are

((e5,0), 1 + 2vied)
foralliel.
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Proof. Using the definition (4.3) of the skew-symmetric form for §, we have
{(eivo)a _} = {eia _} + <€i7 _> = (vi7ei) S M @ N7

and so the result follows from the description of the initial walls of the cluster
scattering diagram in (5.3). ¢

prin

Lemma 5.10. The A, cluster scattering diagram @;4 is a Chyin-scatlering

diagram in MR.

Proof. Condition (i) of Definition 5.7 holds for the initial scattering diagram
’Dﬁf’:” by Lemma 5.9. Since this is preserved by the consistent completion, the
condition holds for ’)3;4"““. On the other hand, the functions attached to the walls
of @;4"““ are power series in the variables z(V»¢) for i € I. Indeed, it is the case
for the initial walls by Lemma 5.9 and this property is preserved by the consistent

completion. It follows that condition (ii) of Definition 5.7 holds for Dprrin, ¢

in,s

For every Cpyiy-scattering diagram ®, one can consider the algebra of theta
functions R(®) defined by @ as in Remark 5.4. As D is a scattering diagram in

Mg = Mg @ Ng, the theta functions 19871,”) are indexed by (m,n) € M=MGaN.
Lemma 5.11. Let ® be a consistent Cpin-scattering diagram and let

{19(C7'n,n) }(ma”)EMéBN

be the corresponding set of theta functions. Then, for every (m,n) € M ® N, we
have
C _ .(0,n) qC
19(771,”) —_— Z 19(777,70) .
In particular, the topological span of the theta functions (see [7, §2.2.2]) of the

form ﬁgmn) with n € N5 has a natural structure of K[N5]-module, for which
{960y ymen is a topological K[N]-basis.

Moreover, the span of the theta functions of the form 19(ij”) with n € NS s
a subalgebra of the algebra of theta functions, and so has a natural structure of
k[N&]-algebra.

Proof. As the walls of ® are of the form (n,0)* and invariant by translation by
N, a broken line of asymptotic direction (0, n) never intersects any wall, so never
bends. Hence, the first part of the lemma follows.

The second part follows from (ii) in Definition 5.7 of a Cpi,-scattering diagram
and the formula (1.5) computing product of theta functions in terms of broken
lines. ¢

5.2. From cluster scattering diagrams to scattering diagrams. Let © =
{(0, fo)} be a Cpn-scattering diagram in Mg = Mg & Ng, as in Definition 5.7.
By Definition 5.7(i), every wall ? of ® is invariant by translation by Ng and so
one can consider the quotient

D/NR C MR/N]R = Mp.
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Lemma 5.12. Let © = {(0, f)} be a Cyun-scattering diagram in MR. Then
V(D) == {(0/Nr, /)}

is a scattering diagram in Mg over R = k[NZ].
Moreover, a C-wall (9, fy) of ® is incoming if and only if the wall (3/Ng, f>)
of (D) is incoming.

Proof. Let (9, fy) be a C-wall of ©. By Definition 5.1, 9 is a codimension one
rational polyhedral cone in Mg, contained in a hyperplane n3 for some primitive
ny € NT, and f; is of the form

fom 1Y gt

k>1

By Definition 5.7, n, = (n,0) withn € Nt and 0 is invariant under translation by
Ng. In particular, /Ny is a codimension one rational polyhedral cone contained
in nt C Mg. Using (4.3), we find

pl(na) = pl((n’())) = {nv _} + <n’ _> = (pl(n)vn) EM®N
and so
=1+ Z )

E>1

As {pi(n),n) = {n,n} = 0, it follows that —p;(n) € M is tangent to 0 C nt.
Finally, we have f, € k[M][NZ] by Definition 5.7(ii), and so (3/Ng, f,) is a wall
of direction positively proportional to —p;(n) as in Definition 1.10. Moreover, it
follows that (9, f;) is incoming if and only if (9/Ng, f;) is incoming.

As © is a C-scattering diagram as in Definition 5.2, it contains finitely many
C-walls (9, f,) with f, #1 mod m%. It follows from f, € k[M][NZ] that ¥ (D)
also contains finitely many walls (0/Ng, f,) with f, # 1 mod m¥, where mp =
NE\ {0}, and so ¥(D) is a scattering diagram over R as in Definition 1.10. 4

By Lemma 5.12, we have a well-defined map

U Cprin — Scatt — Scatt (5.4)
D — qf(@)

from the set Cpyin — Scatt of Cpyip-scattering diagrams in MR up to equivalence
to the set Scatt of scattering diagrams in Mg over R = k[NZ] up to equivalence.
This map U is injective: indeed, if ¥(®) = {(9, f5)}, then we necessarily have
D= {(n;j(a), f»)}, where 7y, is the projection MR = Mr ® Nr — My, since the
walls of a Cpp-scattering diagram are of the restricted form given in Definition
5.7.

Lemma 5.13. Let ® be a Cpin-scattering diagram in MR. Then, 3 s consistent
if and only if U(D) is consistent.
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Proof. As ® is invariant by translation by N, it is enough to consider paths v in
My transversal to the walls of ¥(®) to test the consistency of ¥(®), and their
lifts (v,0) € MR = Mr ® Ng to test the consistency of ©. Let 9 be a wall of ©.
Then ny, = (n,0) for some n € N* and ny/n, = n. Comparing (5.1)-(5.2) with
(1.8), it is enough to show that

€y,0" = T /Ny v -

This equality holds because by (5.2), €,4(n,0) is a primitive normal vector to d
which is negative on (y((to — €, t)),0) for all small € > 0, and so €, ,n satisfies
the defining property of ny/n, - ¢

Lemma 5.14. The map ¥ commutes with the operation of taking consistent
completions. That is, given a Cpyin-scattering diagram Di, in Mg with support a
union of hyperplanes, we have

S(¥(Din)) = W(S(Din)) -
Proof. This follows from Lemma 5.12 and Lemma 5.13. ¢
Finally, we describe how ¥ behaves with respect to theta functions.

Lemma 5.15. Let® be a consistent Cyyin-scattering diagram. Let {0(,, }mmnyeman

be the theta functions defined by © and {9, }men the theta functions defined by
V(D). Then, the map

C
Vo) = VU

induces an isomorphism of K[N&]-algebras between the algebra of theta functions
of the form 19(0 ) withn € NE& and the algebra of theta functions {0, Y men -

m,n

Proof. First note that we have indeed a structure of k[ N{]-algebra on the algebra
of theta functions of the form 19511,77,) with n € N by Lemma 5.11. It remains to

compare the theta functions 198” 0) and ¥,, form € M. Asdescribed in the proof of

Lemma 5.12, walls of ® are of the form @ C (n,0)* and f, = 1+, ., 2P0 for
some n € N, and so all monomials of a broken line for ® of asymptotic direction
(m,0) are of the form a;z(*P1("):7) for some n; € N. Let 8 be a broken line
for © of asymptotic direction (m,0) and ending at a point & € Mg @ Ng. Let
7w (B) be the image in Mg of 8 by the projection 7y : Mg & Ng — Mg. For
every domain of linearity f3; of 3, with a monomial of the form a; 271 ("):m) for
some n; € N, we attach the monomial a;t"z™+P1(") to the domain of linearity
7w (Bi) of mar(B). Then, it follows from the descriptions of walls of U(D) given
in the proof of Lemma 5.12 that my,(3) is a broken line for ¥(D) of asymptotic
direction m and endpoint my(x). Moreover, the map 5 +— my(8) is a bijection
between broken lines for @ of asymptotic direction (m,0) and ending at x, and
broken lines for ¥(®) of asymptotic direction m and ending at my/(z), and so
Lemma 5.15 follows. ¢

5.3. Fock—Goncharov duals and HDTV mirrors to cluster varieties.
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5.3.1. Mirrors to X cluster varieties. Let s be a skew-symmetric seed satisfying
the X assumptions and let (X, D) be a log Calabi-Yau compactification of the
corresponding X cluster variety, with a toric model (Xy, H), as in §4.1.1. We
first use the map U defined in §5.2 to compare the HDTV scattering diagram
D (xy,m) described in §4.2.1 with the A, cluster scattering diagram reviewed in
§5.1.3.

Theorem 5.16. Let s be a skew-symmetric seed satisfying the X assumptions
and let (X, D) be a log Calabi- Yau compactification of the corresponding X cluster
variety, with a toric model (Xs, H), as in §4.1.1. Then, the HDTV scattering
diagram D xy, my 1s the image of the Ay cluster scattering diagram by the map
v

T(DL"") = D xy .t -

Proof. By Lemma 5.9, the initial walls of @ are ((e;,0)*, 14 2)) for i € I.
On the other hand, from Theorem 4.5, we know that ®(x,, ) is the consistent
completion of the walls (e;-, 14,2 for i € I. Using the identifications N = N,
and t; = t, this can be rewritten as (ej-, 1+ (%)), As (e;,0)*/Ng = e, we
have
V({((er, 00 14 20N ier) = {(e7, 1+ 2" ey
and then \11(33;4"““) = D (xy,n) follows by Lemma 5.14. ¢
As described in Definition 3.4, (X, D) has a HDTV mirror, which is a family
iHDTV — Spf k[[NIﬂ = Spfk[[NE?]] .

The main result of this section below shows that the HDTV mirror family to
(X, D) is a degeneration of the dual A cluster variety.

Theorem 5.17. Lets be a skew-symmetric seed satisfying the X assumptions and
let (X, D) be a log Calabi-Yau compactification of the corresponding X cluster
variety as in §4.1.1. Then, there exists a unique isomorphism over Spf k[NZ]
between the HDTV mirror family

iHDTV — Spfk[[NEﬂ]
of (X, D) and the formal partially compactified A cluster variety with principal
coefficients as in (4.2),
%uf: Zprin,uf — Spf kIINE?C]] )
matching the basis of theta functions {0, }men on Xuprv with the basis of cluster

theta functions {ﬁ&,o)}meM on Aprin uf -

Proof. To compare the cluster variety ./_4prin7uf with the HDTV mirror family
Xupry to (X, D), first note that by Theorem 3.5 the algebra of functions of
HDTV mirror Xypry is the algebra of theta functions defined by the scattering
diagram ®(x,, ). On the other hand, by [16, Proposition 6.4 (4)], the algebra

of functions of the cluster variety Apyin o is the algebra of theta functions of the
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form 19(Cm n) with n € Nf? constructed from the A, cluster scattering diagram

D% defined in Definition 5.8. The result then follows immediately from Lemma
5.15 and Theorem 5.16. ¢

Remark 5.18. Let (X, D) be a log Calabi-Yau compactification of a X’ cluster
variety as in Theorem 5.17. By Remark 2.4, when the complement X \ D is
affine, the mirror family canonically extends over Speck[NE(X)] and the ex-
tended mirror family extends further over Speck[M]. In this case, the HDTV
mirror family extends over Spec k|[Ng] and it follows from the proof of Theo-
rem 5.17 that the resulting family is isomorphic to the partially compactified
Aprin cluster variety 74 u¢: ./Tlprin,uf — Speck[N{] as in (4.1). In particular, the
fiber over 1 € Spec k[Ny] of the HDTV mirror family extended over Spec k[N,
and so the fiber over 1 € Speck[N;(X)] of the mirror family extended over
Speck[NE(X)], are then isomorphic to the A cluster variety. Moreover, the re-
striction of the theta functions to this fiber are the cluster theta functions for the
A cluster varieties defined in [16]. In the context of the non-archimedean mirror
construction of [25], this result is essentially [25, Theorem 1.19]. By contrast,
Theorem 5.17, stated in terms of formal families, holds in complete generality
without the assumption that X \ D is affine.

5.3.2. Mirrors to A cluster varieties. Let s be a skew-symmetric seed and let
(X', D’) be a log Calabi-Yau compactification of the corresponding A cluster
variety, with a toric model (X, H'), as in §4.1.1. As described in Definition 3.4,
(X', D) has a HDTV mirror, which is a family

Xipry — Spfk[N]
where I is given by (4.8). We will consider the restriction
'%%IDTV,I — Spfk[[NI]] = Spfk[[NE'i]] (5.5)

defined by setting ¢;; = t; for all (4, j) € I.

The main result of this section, Theorem 5.19 below, shows that the HDTV
mirror family to (X', D'), restricted as in (5.5), is a degeneration of the dual X
cluster variety. The corresponding statement of Theorem 5.17 for the mirror to X
cluster varieties involves a comparison with the cluster theta functions defined by
[16] on Apin. For the mirror to A cluster varieties, one would like a comparison
with cluster theta functions on X,i,. However, &}, was not studied in [16] and
so no cluster theta functions were constructed. Therefore, we have to explain
how to adapt the techniques of [16] to construct cluster theta functions on Xpyy.

We first review how the X cluster variety is studied in [16, §7]. The map of
lattices

p:NeM—M
(n,m) — m —pi(n)

induces a map
D Apin — X (5.6)
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which realizes X" as the quotient of A, by the torus Speck[M]. By duality, p
induces an inclusion

L Ng — Mg = Mg ® Ng (5.7)
n+— (pi(n),n)

prin

As all monomials in the functions attached to the walls of @;4 are of the
form 2®i™™ it makes sense to intersect D" with Ng to obtain a C-scattering
diagram ©2 in Ng [16, Construction 7.11]. By Lemma 5.9, D3*™ is the consistent
completion of the initial walls ((e;, 0)*, 14 2(o)) for i € I. As p((e;,0)) = —vy, it
follows that DX is the consistent completion of the initial walls (v;-, (14 2% )vl)?
for ¢ € I. Cluster theta functions for X are then defined using the C-scattering
diagram D2 | or equivalently as Speck[M]-invariant cluster theta functions for
A rin-

pTo study Xin, we consider an analogue of (5.6) with coefficients. Let Apyin ¢
be the cluster variety over Speck|[N] obtained from A,,, viewed as a cluster
variety over Speck, by adding coefficients for the basis elements (e;, 0), i € I, of
the seed 5. Then, p extends to a map

Aprin,c ? Xprin

which realizes X, as a quotient of Apun. by Speck[M]. Let DL he the
scattering diagram in MR over k[N&] obtained as the consistent completion of
the initial walls ((e;, 0)*, 1+ ¢;2(0¢)) for i € I. As DZ¥ ¢ has the same support
as ’D:lp““, the arguments of [16], based on the existence of the cluster complex in
the complement of the walls of @;4"““, generalize to @fpri"’c and imply that the
cluster theta functions {19(Cm7n)}(m,n)e meon defined by D2 form a topological

basis of the k[N®]-algebra of functions on the formal completion

~

Tae: Apine —> SPFK[N®].

The intersection of 33;4"“"'° with Ng embedded in MR as in (5.7) is the scattering
diagram D" in Ny over k[N&] obtained as the consistent completion of the
initial walls (vi", (1 + ¢;2¢)"l) for i € I. We conclude that the cluster theta
functions {9¢},eny defined by D27 form a topological basis of the k[Nye]-
algebra of functions on the formal completion

~
~

Txuf ?prin,uf — Spfk[[NE? ’

)

as in (4.6).

Theorem 5.19. Let's be a skew-symmetric seed and let (X', D) be a log Calabi-
Yau compactification of the corresponding A cluster variety as in §4.1.1. Then,

YWhereas (e;, 0) is the primitive normal vector to (e;, 0)*, the primitive normal vector to vt
is v;/|v;], and so one has to include a power of |v;| in the attached function for the wall-crossing
automorphism to stay the same.
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there exists a unique isomorphism over Spf k[NZ] between the HDTV mirror
family of (X', D"), restricted as in (5.5),

:Vf/HDTV,I — Spfk[[NS?]] ;

and the formal partially compactified X cluster variety with principal coefficients
as in (4.6),

%X,uf: ?prin,uf — Spfk[[NE% R
matching the basis of theta functions {0, tnen on '%i{DTV with the basis of cluster

theta functions {9} nen on X prinu-

Proof. By Theorem 3.5 the algebra of functions of the HDTV mirror Xjppy is
the algebra of theta functions defined by the HDTV scattering diagram D x,, ),
which is given for A cluster varieties by Theorem 4.6. Setting t;; = t; in Theorem
4.6, we obtain the scattering diagram CO;Y‘"“‘ producing the cluster theta functions

on fprimuf and this concludes the proof of the theorem. ¢

Remark 5.20. Let (X', D’) be a log Calabi-Yau compactification of a A cluster
variety as in Theorem 5.19. As in Remark 5.18, when the complement X'\ D’ is
affine, the HDTV mirror family extends over Spec k[N] and the resulting family
is isomorphic to the partially compactified X, cluster variety T ur: yprin’uf —
Speck[N&] as in (4.5). In particular, the fiber over 1 € Spec k[Ny] of the HDTV
mirror family is isomorphic to the X" cluster variety. Moreover, the restriction of
the theta functions to this fiber are the cluster theta functions for the X cluster
varieties defined in [16].

5.3.3. Mirrors to X symplectic fibers and A torus quotients. Let s be a skew-
symmetric seed. We consider the map
p:N—M
n— {TL, 7}

and we denote by K C N the kernel of p. The inclusion K C N induces a map
of tori

v : Speck[N] — Speck[K],
and then a map
A: X — Speck[K].

The skew-symmetric form {—,—} on N defines a Poisson structure on X and
the fibers of A\ are the corresponding symplectic leaves. Dually, denoting KV :=
Hom(K,Z), the projection M — K" induces maps of tori Spec k[K"] — Spec k[M],
and then an action of the torus Spec k[K"] on A. To state a version of our results
for the X symplectic fibers A~!(¢) and the quotient A/ Speck[K"], we remark

that the map A extends to a map Xprin7uf : Yprin}uf — Speck[K], and that the

action of Speck[KV] on A extends to an action on Xprin_yuf.
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Theorem 5.21. Let s be a skew-symmetric seed satisfying the X assumptions
and let (X, D) be a log Calabi-Yau compactification of a general X symplectic
fiber \=X(t). Then the HDTV mirror family

iHDTV — Spf k[[NEﬂ]

of (X, D) is isomorphic to the family of quotients

~

-/Ttprin,uf/ SpeCk[Kv] — SpkaINE?]] .

Proof. Let u: Mg — K§ be the projection dual to the inclusion K C N. By
Theorem 4.5, the HDTV scattering diagram of a log Calabi-Yau compactifica-
tion of the X cluster variety is the consistent scattering diagram in Mg with
initial walls (eif, 1 + ;2% );c;. By Theorem 5.17, the corresponding theta func-

tions {U,, bmear are the cluster theta functions for A, ur. Since {e;, K} = 0, it
follows that p(v;) = 0 for all ¢ € I, and so u(v) = 0 for every direction v of a
wall. Hence, the intersection of this scattering diagram with x~1(0) is naturally
a scattering diagram in p~'(0), which is in fact the HDTV scattering diagram
D (xs,m) of a log Calabi-Yau compactification (X, D) of a X symplectic fiber
A7(¢) for t € Speck[K]. Indeed, the toric model (Xx, H) of (X, D) has the fol-
lowing description. The toric variety Xy is a toric compactification of the torus
v=1(t) ~ Speck[N/K] fiber of v : Speck[N] — Speck[K], with fan in x~'(0)
containing the rays R>qv;. Moreover, the hypersurfaces H; have equations given
by the restriction to the divisors D; of the rational function on Xy, obtained by
restricting 1 + 2% from Speck[N] to v (¢).

Therefore, the theta functions for the mirror of (X, D) are {U:, }menm pum)=o-
The result follows because for every m € M, u(m) € K" is the weight of the action

of Spec k[ K] on ,,, and theta functions on the quotient A, ot/ Speck[K "] are
exactly the weight zero theta functions.

Remark 5.22. The conclusion of Theorem 5.21 is still valid if one does not as-
sume part (ii) of the X assumptions of §4.1.1. Indeed, for general ¢, the fibers
over t of the various hypersurfaces H; do not intersect, and so a log Calabi-Yau
compactification of the X symplectic fiber A7 (¢) is automatically an HDTV log
Calabi-Yau pair.

Theorem 5.23. Let s be a skew-symmetric seed and let (X, D) be a log Calabi-
Yau compactification of the quotient A/ Speck[K"]. Then the restricted HDTV
marror family

-/%HDTV,I — Spfk[[Ni.?]]
of (X, D) is isomorphic to the family of X symplectic fibers

~—1

A (1) — SpEK[NVE].

prin,uf

Proof. By Theorem 4.6, the HDTV scattering diagram of a log Calabi-Yau com-
pactification of the A cluster variety after setting t;; = ¢; is the consistent
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scattering diagram in Ng with initial walls (v, (1 + #;2%))),c;. By Theo-
rem 5.19, the corresponding theta functions {¥, }n,en are the cluster theta func-

tions for jprinvuf. As {e;, K} = 0, all the walls are invariant under the ac-
tion of Kg by translation on Ng. Hence, this scattering diagram naturally de-
fines a scattering diagram in the quotient (N/K)g, which is in fact the HDTV
scattering diagram Dy, m) of a log Calabi-Yau compactification (X, D) of the
quotient A/ Speck[KV]. Indeed, the toric model (Xyx, H) of (X, D) has the
following description. The toric variety Xy is a toric compactification of the
torus Speck[M/K"] = (Speck[M])/(Speck[K"]), with fan in (N/K)r contain-
ing the images of the rays Rsoe; by the projection N — N/K. Moreover, as
v;(K) = {e;, K} = 0, the functions 1 + z% on Speck[M/K] are invariant under
the action of Spec k[K"], so induce functions on the quotient

Spec k[M/K"] = (Spec K[M])/(Spec K[K"]),
whose restrictions to the divisors D; are the equations of the hypersurfaces H;.

Therefore, the theta functions for the mirror of (X, D) are obtained by setting
¥, = 1 for every n € K, and so the mirror is the family of X symplectic fibers

~—1

)‘prin,uf ( 1) . ’
Remark 5.24. The map p: N — M induces first a map A — X, and then a
generically finite map A/ Speck[KY] — A~1(1), which is an isomorphism when
the skew-symmetric form induced by {—,—} on N/K is unimodular. In this
case, Theorems 5.21 and 5.23 imply that the holomorphic symplectic variety
A/ Speck[KV] ~ A71(1) is essentially self-mirror.

5.4. Enumerative geometry of cluster varieties. Let s be a skew-symmetric
seed satisfying the X assumptions and let (X, D) be a log Calabi-Yau compact-
ification of the corresponding &’ cluster variety as in §4.1.1. We consider the
algebra of theta functions R(’}Df”“") obtained from the Ay, cluster scattering
diagram D27 A basis of this algebra is given the cluster theta functions of the
form 19(6;”’0), as discussed in §5.1.2. By Lemma 5.11, they naturally span a k[N%]-
algebra, and so for every my, ms, m, we have structure constants C7" & k[[NE%]]

mimsa
such that
C
ﬁ(ml 0) mg 0) Z mlmg mO) .
meB(Z)

The structure constants are power series

m _ m (0,ai€;)
e = > Cmaa |29,

A=(a;)iereN! iel
with coefficients C7 s € k. Actually, it follows from [16, Theorem 1.13] that
Coimaa €N

for every my, ms,m € M and A € N,
On the other hand, for every my,ms,m € M and § € NE(Xyx), Gross and
Siebert define in [20] counts of curves N7 5 € Q in (X, D). Let 01, 02, 0 be
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the smallest cones of ¥ containing respectively my, mg, m, and let D, , D,,,
D,, be the corresponding strata of (X, D). Then, roughly, N5 18 @ count of
3-pointed degree (8 rational curves

f:(Cixy,xe,23) — X
such that
f(xl) S D(rl ) f(.’L’g) S DU’Q ) f(xL%) € Dag )

with prescribed tangency conditions determined by my, mq, —m, and such that
f(z3) coincides with a fixed given point on D,. The precise definition of NJ* 5,
given in [20, Definition 3.21] uses logarithmic geometry and Ny ims.p 18 in general

an example of punctured log Gromov-Witten invariant®’.

Theorem 5.25. Let s be a skew-symmetric seed satisfying the X assumptions
and let (X, D) be a log Calabi-Yau compactification of the corresponding X clus-
ter variety as in §4.1.1. Then, the structure constants of the algebra of theta
functions defined by the cluster scattering diagram @;4"”“ are expressed in terms
of the punctured log Gromov-Witten invariants of (X, D) as follows: for every
my,mo,m € M and A = (a;);e; € NI, we have

m _ m
lem%A - Z lem%(E*EieI a; E;)°

BENE(Xx)

Proof. Combining Theorem 5.17 and Theorem 3.5, the structure constants com-
puted from the Ay, scattering diagram are obtained by setting to zero the curves
classes coming from N E(Xy) with respect to the decomposition NE(Xx)®N! in
the structure constants computed from the canonical scattering diagram ® x p).
On the other hand, by [21, Theorem C] the structure constants computed from
the canonical scattering diagram are the punctured log Gromov-Witten invariants
N .5 introduced in [20]. ¢
Remark 5.26. Using [21, Theorem 4.5], one can similarly give an enumerative in-
terpretation of the coefficients of the monomial expansions 19(Cm,o) (p) of the cluster
theta functions as in (1.6) in terms of the counts of log broken lines defined in
[21, Definition 3.21].

Remark 5.27. One can also exchange the roles of A and X: given a skew-
symmetric seed s and (X', D’) a log Calabi-Yau compactification of the corre-
sponding A cluster variety as in §4.1.1, we obtain an enumerative interpretation
of the structure constants of the algebra of theta functions defined by the cluster
scattering diagram @SX P in terms of the punctured log Gromov—Witten invari-
ants of (X', D’).

107f 1 £ 0, then —m ¢ o, and so the tangency condition —m involves negative contact
orders.
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