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FOCK-GONCHAROV DUAL CLUSTER VARIETIES AND
GROSS–SIEBERT MIRRORS

HÜLYA ARGÜZ AND PIERRICK BOUSSEAU

Abstract. Cluster varieties come in pairs: for any X cluster variety there is
an associated Fock–Goncharov dual A cluster variety. On the other hand, in
the context of mirror symmetry, associated with any log Calabi–Yau variety is
its mirror dual, which can be constructed using the enumerative geometry of
rational curves in the framework of the Gross–Siebert program. In this paper
we bridge the theory of cluster varieties with the algebro-geometric framework
of Gross–Siebert mirror symmetry. Particularly, we show that the mirror to
the X cluster variety is a degeneration of the Fock-Goncharov dual A cluster
variety and vice versa. To do this, we investigate how the cluster scatter-
ing diagram of Gross-Hacking-Keel-Kontsevich compares with the canonical
scattering diagram defined by Gross-Siebert to construct mirror duals in ar-
bitrary dimensions. Consequently, we derive an enumerative interpretation of
the cluster scattering diagram. Along the way, we prove the Frobenius struc-
ture conjecture for a class of log Calabi–Yau varieties obtained as blow-ups of
toric varieties.
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0. Introduction

0.1. Overview and context. Cluster varieties, introduced by Fock-Goncharov
[8, 9], are algebraic varieties constructed by gluing together algebraic tori via
distinguished birational maps referred to as cluster transformations [10]. The
theory of cluster varieties has deep connections with several areas of mathemat-
ics, particularly in algebraic geometry and representation theory: in algebraic
geometry they play a significant role in the study of the moduli space of local
systems on topological surfaces [8, 13], and in representation theory they are the
geometric counterparts of the cluster algebras introduced by Fomin–Zelevinsky
[10]. In this paper, we establish new relationships between cluster varieties and
mirror symmetry from an algebro-geometric point of view [21].
A remarkable feature of cluster varieties is that they come in pairs. There

are two distinct families of cluster transformations leading to two distinct cluster
varieties: the A cluster variety, called the cluster K2-variety, and the X cluster
variety, called the cluster Poisson variety. Fock and Goncharov conjectured that
A and X are dual cluster varieties in the sense that there exists a canonical basis
of regular functions onA parametrized by the integral points of the tropicalization
of X , and vice versa1.
Gross-Hacking-Keel [14] showed that the original Fock–Goncharov conjecture

for cluster varieties cannot hold without additional positivity assumptions. More-
over, without positivity assumptions, they conjectured a “formal version” of
the Fock-Goncharov conjecture, concerning formal families of dual cluster va-
rieties. In their seminal work Gross-Hacking-Keel-Kontsevich [16] proved the
formal Fock-Goncharov conjecture of [14], as well as the original Fock-Goncharov
conjecture with the necessary positivity assumptions. Their proof relies on combi-
natorial methods, and uses the concept of cluster scattering diagrams to construct
canonical bases for cluster algebras.
On the other hand, the concept of a scattering diagram had emerged in the

earlier works of Kontsevich-Soibelman [26], and Gross-Siebert [18] in a more gen-
eral context, aiming to understand mirror symmetry from an algebro-geometric
point of view. Mirror symmetry is a phenomenon emerging from string theory,
proposing that Calabi–Yau varieties arise in mirror dual pairs, exhibiting dual

1In this paper we focus attention on skew-symmetric cluster varieties as reviewed in §4.1.1,
and hence the duality simply exchanges A and X . For the more general situation where one
considers skew-symmetrizable cluster varieties see [16, Appendix A].
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properties in their complex and symplectic geometries. Given a Calabi–Yau va-
riety2 Gross and Siebert propose that its mirror dual, as a family of complex
varieties, can be constructed using logarithmic enumerative geometry [21]. More
precisely, their construction is based on specific curve counts called punctured
log Gromov–Witten invariants, defined by Abramovich–Chen–Gross–Siebert [2],
which are encoded in a canonical scattering diagram.
The cluster duality conjecture of Fock–Goncharov was placed in the framework

of mirror symmetry in [14, 16], where it is proposed that Fock–Goncharov dual
cluster varieties shall arise as mirror duals (see also [12]). In this paper we verify
this expectation, and bridge the theory of cluster varieties with the algebro-
geometric framework of mirror symmetry of Gross and Siebert [21]. To do this,
we compare the a priori two distinct constructions of scattering diagrams: the
combinatorially constructed cluster scattering diagram of Gross–Hacking–Keel–
Kontsevich and the canonical scattering diagram of Gross–Siebert defined using
the data of punctured log Gromov–Witten invariants. The comparison we obtain
allows us to establish a precise relationship between Fock–Goncharov duals and
mirror dual varieties in the sense of Gross–Siebert. Along the way, we deduce
combinatorial descriptions of punctured log Gromov–Witten invariants of cluster
varieties.
After a brief review of mirror symmetry in the framework of the Gross–Siebert

program in §0.2, we state our main results in §0.3.

0.2. Background. A log Calabi-Yau pair (X,D) is a smooth projective variety
X over an algebraically closed field k of characteristic zero together with a reduced
simple normal crossing divisor D in X with KX + D = 0 3. In particular, the
complement X \D is a Calabi-Yau variety. Gross and Siebert provide a general
construction for the mirror to such a pair (X,D) in any dimension [21]. The
mirror produced from this construction is a family

X̌ −→ Spf k!NE(X)" , (0.1)

where NE(X) stands for the monoid spanned by effective curve classes in the
group N1(X) of curve classes in X modulo numerical equivalence. The algebra
R(X,D) of functions on X̌ is shown to admit a canonical topological basis given by
so-called theta functions, and hence is referred to as the algebra of theta functions.
The main ingredient to construct the algebra of theta functions is a combi-

natorial gadget called the canonical scattering diagram associated to (X,D) and
denoted by D(X,D). We use the notation R(D(X,D)), or simply R(X,D), to denote
the algebra of theta functions defining the mirror family. We review in §1.1 how
to construct the algebra of theta functions R(D) defined by a scattering diagram
D.

2More precisely, the input of the construction of [20, 21] is either a maximal log Calabi-Yau
variety or a maximal log smooth degeneration of a Calabi-Yau variety.

3The definition of a log Calabi-Yau pair in [20, 21] only requires that KX+D =
∑

i
aiDi with

ai ≥ 0, where Di are the irreducible components of D. The stronger assumption KX +D = 0
will always be satisfied for the particular pairs considered in this paper, as in [4]
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As reviewed in §1.2, the canonical scattering diagram encodes the data of counts
of rational stable maps to (X,D) with a single marked point where the contact or-
der with D is fixed. The counts of these curves give rise to well defined invariants
of (X,D), giving certain punctured log Gromov–Witten invariants as defined by
Abramovich–Chen–Gross–Siebert [2]. While log Gromov–Witten invariants, in-
troduced by Abramovich–Chen [1] and Gross–Siebert [19], are counts of curves in
X with prescribed tangencies along D, punctured log Gromov–Witten invariants
are counts of more general curves which can admit particular types of marked
points with negative tangencies along D.
Computing these invariants is technically challenging in general and there are

only a handful of cases so far where we know how to describe concretely the
canonical scattering diagram and deduce from that an explicit description of
the mirror to a log Calabi–Yau (X,D) [3, 4]: these are situations when X is a
projective variety obtained by a blow-up

X −→ XΣ (0.2)

of a toric variety XΣ associated to a complete fan Σ in Rn, and D ⊂ X is given
by the strict transform of the toric boundary divisor DΣ of XΣ. We assume
that the center of the blow-up is a union of disjoint connected general smooth
hypersurfaces of DΣ,

H =
⋃

i∈I

Hi , (0.3)

indexed by a finite set I. Following [15], we refer to the data of a blow-up map
as in (0.2), or equivalently to the data of the pair (XΣ, H), as a toric model for
(X,D).
Mark Gross and the first author, in their paper The Higher Dimensional Trop-

ical Vertex (HDTV) [4], showed that for log Calabi–Yau pairs (X,D) obtained
from blow-ups of toric varieties as in (0.2)-(0.3), referred to as HDTV log Calabi–
Yau pairs in the present paper, there is an explicit algorithm computing the
canonical scattering diagram for (X,D). More precisely, they gave a combi-
natorial construction of a scattering diagram D(XΣ,H), referred to as the HDTV
scattering diagram and reviewed in §1.3, and they proved that the canonical scat-
tering diagram D(X,D), which encodes the enumerative geometric information of
punctured log Gromov–Witten invariants, can be reconstructed from D(XΣ,H) [4,
Theorem 1.2]. Using the HDTV scattering diagram, the first author provided the
first explicit equations for mirrors to higher dimensional log Calabi–Yau varieties
[3]. We investigate HDTV log Calabi–Yau pairs further in this paper.

0.3. Main results. We first show in §2 that the mirror to a HDTV log Calabi–
Yau pair extends to a larger base S(XΣ,H): the mirror family (0.1) constructed
over Spf k!NE(X)" as in [21] is recovered as a base change from the extended
family over S(XΣ,H). To define the extended base S(XΣ,H), we first introduce the
monoid

M := NE(X) ∩ (NE(XΣ)⊕ NI) ⊂ N1(X) , (0.4)
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where NE(XΣ) ⊕ NI is the submonoid N1(X) consisting of all curve classes of
the form β −

∑
i∈I aiEi, where β ∈ NE(XΣ), (ai)i∈I ∈ NI and the Ei’s are the

curve classes of the P1-fibers of the exceptional divisors over the Hi’s. Then,
we define S(XΣ,H) as the formal completion of Speck[M] along its subscheme
Speck[NE(XΣ)]. On the other hand, the inclusion of M in NE(X) induces a
morphism Spf k[[NE(X)]]→ S(XΣ,H). We prove in Theorems 2.2 and 2.3:

Theorem A. Let (X,D) be a HDTV log Calabi-Yau pair and (XΣ, H) a toric
model of (X,D). Then, there exists a canonical extension of the mirror family X̌

to a formal scheme X̌ext over S(XΣ,H) fitting into a fiber diagram

X̌ X̌ext

Spf k[[NE(X)]] S(XΣ,H) .

Moreover, the restriction of X̌ext to Speck[NE(XΣ)] ⊂ S(XΣ,H) is the mirror
family of the toric pair (XΣ, DΣ).

In Theorem A, the extension is “canonical” in the sense that the product struc-
ture on the algebra of functions for X̌ext is uniquely determined by the product
structure of the theta functions on X̌ – see Theorem 2.2 for details.
In §3 we investigate two significant applications of Theorem A: the first one is

the proof of the Frobenius structure conjecture for HDTV log Calabi–Yau pairs
[15, Conjecture 0.8, arxiv version 1]. This conjecture, roughly, says that there
exists a unique algebra structure on the topologically free k!NE(X)"-module
generated by a set {ϑm}m of elements indexed by integral points m in the tropi-
calization of (X,D), such that the ϑ0-components of products of ϑm’s are given
in terms of specific log Gromov–Witten invariants of (X,D) with ψ class inser-
tions – see Conjecture 3.1 for a precise statement. The existence part of this
conjecture follows from the recent work of Johnston [24, Theorem 1.4] showing
that the algebra of theta functions R(X,D) satisfies the conditions of the con-
jecture. In Theorem 3.2 we prove the uniqueness part for HDTV log Calabi-Yau
pairs, by showing that the product structure on the algebra of theta functions
is uniquely determined by the trace of products of two or three theta functions.
Consequently, in Theorem 3.3 we obtain:

Theorem B. The Frobenius structure conjecture holds for HDTV log Calabi–Yau
pairs.

As a second application of Theorem A, in §3.2 we define the HDTV mirror fam-
ily to a HDTV log Calabi–Yau pair (X,D) as the base change of the extended
family X̌ext → S(XΣ,H) along the morphism Spf k[[NI ]] → S(XΣ,H) obtained by re-
striction from Speck[NE(XΣ)] to the unit 1 of its big torus orbit Speck[N1(XΣ)]
– see Definition 3.4. Theorem 3.5 then proves the following.

Theorem C. Let (X,D) be a HDTV log Calabi-Yau pair and (XΣ, H) a toric
model of (X,D). Then, the algebra of functions on the HDTV mirror to (X,D)
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is isomorphic to the algebra of theta functions R(D(XΣ,H)) defined by the HDTV
scattering diagram D(XΣ,H).

In §4 after a brief review of cluster varieties, and their interpretation as blow-
ups of toric varieties following [14], we show how to compute the HDTV mirror
to log Calabi-Yau compactifications (X,D) of X and A cluster varieties, which
are examples of HDTV log Calabi-Yau pairs. To do this we provide a concrete
description of the HDTV scattering diagram D(XΣ,H) associated to such clus-
ter varieties in §4.2. We then provide a comparison of D(XΣ,H) with the cluster
scattering diagram associated to Aprin, the A cluster variety with principal coef-

ficients. Following the notation of [16] we denote by D
Aprin
s this cluster scattering

diagram.
The cluster scattering diagram constructed in [16] and reviewed in §5.1 does

not satisfy all the requirements of a scattering diagram in the sense of §1.1. In-
deed, a scattering diagram D as in §1.1 is defined over a monoid, and asked to
satisfy the finiteness condition in Definition 1.4, requiring thatD can be described
order-by-order by finitely many walls. This enables one to build the algebra of
theta functions R(D) from D order by order. However, for the cluster scatter-
ing diagram there is no data of a monoid, and one imposes different technical
assumptions to be able to construct the algebra of cluster theta functions – see
§5.1.1 for details.
To clarify the distinction between scattering diagrams arising in the context

of mirror symmetry [21] and scattering diagrams arising in the context of cluster
varieties [16], we use following [25] the terminology “C-scattering diagram” for
a “scattering diagram” in the sense of [16]. We review C-scattering diagrams,
and show that cluster scattering diagrams are particular types of C-scattering
diagrams in §5.1. We then investigate the cluster scattering diagram for the Aprin

cluster variety, denoted by D
Aprin
s , as a specific Cprin-scattering diagram – see

§5.1.3 for the definition of a Cprin scattering diagram. Theorem 5.16 enables us
to compare scattering diagrams appearing in the framework of mirror symmetry,
as in §1, with cluster scattering diagrams, and shows:

Theorem D. There is a well-defined map

Ψ : Cprin − Scatt −→ Scatt ,

from the set of Cprin-scattering diagrams to the set of scattering diagrams, which
maps the Aprin cluster scattering diagram to the HDTV scattering diagram for
the X cluster variety:

Ψ(D
Aprin
s ) = D(XΣ,H) .

Theorem D provides us with one of the main ingredients to prove an isomor-
phism between the mirror to the X (resp. A) cluster variety and a degeneration
of the Fock–Goncharov dual A (resp. X ) cluster variety:

Theorem E. Let (X,D) be a log Calabi-Yau compactification of the X (resp. A)
cluster variety. Then, the HDTV mirror family X̌HDTV of (X,D) is isomorphic
to a degeneration of the A (resp. X ) cluster variety.
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In Theorem E, the degenerations of the cluster varieties are defined as formal
completions of cluster varieties with principal coefficients Aprin and Xprin, studied
in [16] in the A case and defined by [6] in the X case– see Theorems 5.17 and 5.19
for details. We also prove a version of Theorem E for the symplectic leaves of the
X cluster variety and quotients of the A cluster variety– see Theorems 5.21 and
5.23. Theorem E shows how the mirror symmetry heuristic motivating the work
Gross-Hacking-Keel-Kontsevich [16] (see also [22] for a more expository presen-
tation) is concretely realized by the general Gross-Siebert mirror construction.
As an application, we obtain in Theorem 5.25 an enumerative interpretation for
the structure constants in the algebra of cluster theta functions defined by the
cluster scattering diagram:

Theorem F. The structure constants of the algebra of Aprin (resp. Xprin) cluster
theta function are expressed in terms of punctured log Gromov–Witten invariants
of log Calabi-Yau compactifications of the X (resp. A) cluster variety.

0.4. Related work. The Frobenius structure conjecture was proven previously
in two cases: for cluster varieties [28] by Mandel – see [28, Theorem 1.5] and
[27, Theorem 2.16], and for log Calabi-Yau pairs (X,D) with X \ D affine and
containing a torus by Keel–Yu [25] in the context of their non-archimedean mir-
ror construction, which is shown to be equivalent to the Gross–Siebert mirror
construction by Johnston [24, Corollary 1.2]. In the cluster case, under the as-
sumption that X \D is affine, a comparison between the non-archimedean con-
struction of [25] and the work of Gross–Hacking–Keel–Kontsevich [16] is given in
[25, Theorem 1.19]. Note that for HDTV log Calabi-Yau pairs, while the comple-
ment X \D always contains a torus, it is not affine in general. The relationship
between the HDTV scattering diagram of [4] and the cluster scattering diagram
of [16] is also discussed in the work of Mou [30, Lemma 6.18] in the context of
generalized cluster algebras, and by Bardwell-Evans–Cheung–Hong–Lin [5, §6.2]
in the special case of rank two cluster varieties. Different manifestations of mirror
symmetry from the symplectic point of view, such as homological mirror symme-
try, were also investigated in the context of cluster varieties by Gammage and Le
[11].

0.5. Acknowledgments. We thank Mark Gross and Tom Coates for many use-
ful discussions related to the extensions of Gross–Siebert mirror families. The re-
search of Hülya Argüz was partially supported by the NSF grant DMS-2302116.
The research of Pierrick Bousseau was partially supported by the NSF grant
DMS-2302117.

Conventions: Throughout the paper k denotes an algebraically closed field
of characteristic zero. All monoids we consider in this paper are commutative.
Given a monoid Q, we denote by Qgp the associated Grothendieck group and
Qgp

R = Qgp ⊗Z R.
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1. Scattering diagrams in mirror symmetry

1.1. Scattering diagrams and theta functions. The theory of scattering dia-
grams and theta functions is presented in great generality in [17]. In this section,
we briefly review the key notions that we will use, making simplifying assumptions
that will always hold in this paper.

1.1.1. Scattering diagrams.

Definition 1.1. A conical affine pseudomanifold (B,P) of dimension n consists
of:

(i) a set P of at most n-dimensional rational polyhedral cones such that
τ ∈P if σ ∈P and τ is a face of σ.

(ii) A topological manifoldB obtained by gluing together without self-intersection
the cones σ ∈ P along their faces by integral linear maps: B = ∪σ∈Pσ,
such that in B, every cone is contained in an n-dimensional cone, every
(n− 1)-dimensional cone is the common face of two n-dimensional cones,
and every point x in the interior of a at most (n− 2)-dimensional cone τ
admits a basis of open neighborhoods V such that V \(V ∩τ) is connected.

(iii) An integral affine structure on the complement B0 = B \∆ of the union ∆
of at most (n−2)-dimensional cones of P, which restricts to the standard
integral affine structure on each n-dimensional cone of P.

We call an n-dimensional cone of P a maximal cone of P, and a (n − 1)-
dimensional cone of P a codimension one cone of P.
In the examples considered in this paper, B will be always diffeomorphic to a

real vector space, and P will be either isomorphic or piecewise-linearly isomorphic
to a fan in a real vector space. From now on, we fix a conical affine pseudomanifold
(B,P) of dimension n. Let Q be a commutative monoid such that the associated
abelian group Qgp is free of finite rank, the natural map Q → Qgp is injective,
and Q is contained in a stricly convex cone in the real vector space Qgp ⊗ R. In
particular, there exists a linear form & : Qgp⊗R→ R which is positive on Q\{0}.
Then, for every k ∈ Z≥0, Ik := {β ∈ Q | &(β) ≥ k} is a monoid ideal such that
Q \ Ik is finite. Note that I1 = Q \ {0} is the maximal monoid ideal of Q. For
every ring R, we denote by R[[Q]] the R-algebra

R[[Q]] = lim←−
k

R[Q]/Ik .

Concretely elements of R[[Q]] are formal power series
∑

β∈Q cβtβ with cβ ∈ R. If
one uses a different linear form &′ with the same properties as &, defining ideals
I ′k, then for every k, we have I ′m ⊂ Ik and Im ⊂ I ′k for m large enough, and so
the algebra R[[Q]] is actually independent of the choice of &.4

4In [17, 20, 21], the monoid Q is assumed to be finitely generated, but it is in fact enough to
have an exhausting increasing sequence of monoid ideals Ik such that Q \ Ik is finite for every
k. In this paper, we will take Q equal to monoids of effective curves, which are not finitely
generated in general. One could instead as in [20, 21] choose a finitely generated monoid
containing the monoid of effective curves, but this would make our results less transparent.
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For every maximal cone σ ∈P, we denote by Λσ the rank n lattice of integral
tangent vectors to B0 at a given point x ∈ B0 ∩ σ. For every (n− 1)-dimensional
rational polyhedral cone d ⊂ B contained in an n or (n − 1)-dimensional cone
of P, we denote by Λd the rank (n − 1) lattice of integral tangent vectors to
d at a given point x ∈ B0 ∩ d. For every m ∈ Λσ or Λd, we denote by zm the
corresponding monomial in the monoid algebra k[Λσ] or k[Λd], and by k[zm] the
algebra of polynomials in the variable zm.
We also fix a multivalued piecewise-linear (MVPL) function ϕ on (B,P) as

in [17, Def. 1.8]. By definition, ϕ is the data, for every codimension one cone
ρ of P, of a Qgp

R -valued piecewise-linear (PL) function ϕρ on σ+ ∪ σ−, where
σ+ and σ− are the maximal cones of P having ρ as a common face. For every
ρ, the function ϕρ is determined, up to a linear function, by specifying its kink
κρ ∈ Qgp, defined as follows [17, Def. 1.6, Prop. 1.9].

Definition 1.2. Let ρ be a codimension one cone of P and let σ+, σ− be the
two maximal cones of P having ρ as a commom face, and let ϕρ be a piecewise
linear function on σ+ ∪ σ−. For every point x in ρ \ ∆, let Λx be the lattice of
integral tangent vectors to B0 at x, which is canonically identified by the integral
affine structure on σ+∪σ− to both Λσ+ and Λσ− . Let δ : Λx → Z be the quotient
by Λρ ⊂ Λx. We fix signs by requiring that δ is non-negative on tangent vectors
pointing from ρ into σ−. Let n+, n− ∈ Hom(Λx,Z)⊗Qgp be the slopes of ϕρ|σ+ ,
ϕρ|σ− , respectively. Then (n− − n+)(Λρ) = 0 and hence there exists κρ ∈ Qgp

with
n− − n+ = δ · κρ.

We refer to κρ as the kink of ϕρ along ρ.
In what follows, we assume that ϕ is Q-convex, that is, κρ ∈ Q \ {0} for all ρ.

Definition 1.3. A wall in (B,P) over (Q,ϕ) is a pair (d, fd), consisting of an
(n− 1)-dimensional rational polyhedral cone d ⊂ B contained in a maximal cone
of P, together with an attached function fd ∈ k[z−m0 ][[Q]] ⊂ k[Λd][[Q]] for some
nonzero primitive m0 ∈ Λd, and such that fd = 1 mod I1. Explicitly, fd is of the
form

fd =
∑

β∈Q
k∈N

cβ,kt
βz−km0

with cβ,m ∈ k, c0,0 = 1, and c0,k = 0 for all k ≥ 1. We say that a wall (d, fd) is
incoming if d = d − R≥0m0, and outgoing elsewise. We call m0 the direction of
the wall.

Definition 1.4. A scattering diagram D in (B,P) over (Q,ϕ) is a set of walls
(d, fd), such that the finiteness condition holds, that is: for every k ≥ 1, there
are only finitely many walls (d, fd) ∈ D with fd += 1 mod Ik.
The support of a scattering diagram D, denoted by Supp(D), is the union of

all cones d supporting a wall (d, fd) of D. The singular locus of D is given by

Sing(D) := ∆ ∪
⋃

d∈D

∂d ∪
⋃

d,d′∈D

(d ∩ d′),
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where the last union is over all pairs of walls d, d′ with d∩d′ codimension at least
two, and ∆ is as in Definition 1.1.
If x ∈ B \ Sing(D), we define

fx :=
∏

x∈d

fd , (1.1)

where the product is over all the walls (d, fd) of D containing x. We say that two
scattering diagram D, D′ are equivalent if fx = f ′

x for all

x ∈ B \ (Sing(D) ∪ Sing(D′)) .

1.1.2. Broken lines. In this section we overview how to write broken lines. Broken
lines are used in the following §1.1.3 to define the algebra of theta functions.

Definition 1.5. Let D be a scattering diagram in (B,P) over (Q,ϕ). A broken
line for D is the data of

(i) a proper continuous map

β : (−∞, 0] −→ B0 \ (B0 ∩ Sing(D))

along with a sequence −∞ = t0 < t1 < · · · < tr = 0 such that r ≥ 1 and,
for all 1 ≤ i ≤ r, β((ti−1, ti)) is contained in a maximal cone σi ∈P,

(ii) for all 1 ≤ i ≤ r, monomials

aiz
mi ∈ k[Λσi

][[Q]]

with ai ∈ k[[Q]] and mi ∈ Λσi
,

subject to the following conditions:

(i) for every 1 ≤ i ≤ r, β|(ti−1,ti) is a non-constant affine map with

β ′(t) = −mi

for all t ∈ (ti−1, ti). Moreover, the intersections of the image of β with
Supp(D) and with codimension one cones of P are transverse. Finally,
we have β(0) /∈ Supp(D), and for every 1 ≤ i ≤ r − 1, we have either
β(ti) ∈ Supp(D), or β(ti) is contained in a codimension one cone of P.

(ii) a1 = 1, and for every 1 ≤ i ≤ r−1, we have the following relations between
the monomials aizmi and ai+1zmi+1 . If β(ti) is not on a codimension one
cone of P, then σi = σi+1, β(ti) ∈ Supp(D), and one requires ai+1zmi+1

to be a monomial distinct from aizmi and contained in the expansion of

aiz
mif 〈n,mi〉

β(ti)
, (1.2)

where n ∈ Hom(Λσi
,Z) is the unique primitive normal vector to Supp(D)

such that 〈n,mi〉 > 0, and fβ(ti) is as in (1.1) with x = β(ti).
If β(ti) is on a codimension one cone ρ of P, then one requires ai+1zmi+1

to be a monomial contained in the expansion of

aiz
mi(tκρfβ(ti))

〈n,mi〉 , (1.3)

where n ∈ Hom(Λσi
,Z) is the unique primitive normal vector to ρ such

that 〈n,mi〉 > 0, and fβ(ti) is as in (1.1) with x = β(ti), κρ ∈ Q is the
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kink of ϕ across ρ, and we identify Λσi+1 with Λσi
by parallel transport

across ρ.

We call m1 the asymptotic monomial of β. We denote by aβzmβ := arzmr the
final monomial carried by β, and we call β(0) the endpoint of β.

Remark 1.6. Definition 1.5, roughly put, says that a broken line β starts its life
coming from infinity as a line with asymptotic direction m1 decorated with the
monomial zm1 . Each time β crosses a codimension one cone of P or a wall d, it
can either go straight without bending, or can bend in the direction of the wall,
until it finally reaches an endpoint point β(0) in B and stops (see Figure 1.1 for
an illustration of broken lines).

Definition 1.7. Let B(Z) be the set of integral points of B, defined as the union
of the sets of integral points of the cones σ ∈ P. For every m ∈ B(Z), we say
that a broken line β has asymptotic direction m if the cone σ1 ∈ P containing
the asymptotic part of β contains m, and if m = m1 after identification of the
integral points of σ1 with tangent directions.

1.1.3. Theta functions. Now we are ready to define theta functions from broken
lines following [17, § 3.3]. Broken lines can be used to define an algebra of theta
functions under the assumption that the scattering diagram D is consistent. As
we will not need the details of the definition in general, we refer to [17, Definition
3.9] for the notion of a consistent scattering diagram. We will describe and use a
special case of this notion later in §1.3.2. Given a consistent scattering diagram
D in (B,P) over (Q,ϕ), [17, Theorem 3.19] produces a k[[Q]]-algebra structure
on the k[[Q]]-module

R(D) := lim←−
k

⊕

m∈B(Z)

(
k[Q]/Ik

)
ϑm

where ϑm are basis elements indexed by the integral pointsm ∈ B(Z). We refer to
the basis elements ϑm as theta functions and to R(D) with this algebra structure
as the algebra of theta functions defined by D.
The k[[Q]]-algebra structure on R(D) is determined by a set of structure con-

stants

Cm
m1m2

∈ k[[Q]] ,

indexed by m1, m2, m ∈ B(Z), such that for all m1, m2 ∈ B(Z),

ϑm1ϑm2 =
∑

m∈B(Z)

Cm
m1m2

ϑm , (1.4)

and for all k ≥ 0 there are only finitely many m ∈ B(Z) such that Cm
m1m2

+= 0
mod Ik. For every m1, m2, m ∈ B(Z) and a general point p ∈ B sufficiently close
to m, it is shown in [17, Theorem 3.24] that

Cm
m1m2

=
∑

β1,β2

aβ1aβ2 (1.5)
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where the sum is over all pairs (β1, β2) of broken lines for D with asymptotic
directions m1, m2, end point p, and such that mβ1 +mβ2 = m where aβi

zmβi , for
i ∈ {1, 2}, are the final monomials carried by the broken lines βi’s, as in Definition
1.5.
Finally, we recall from [17, Theorem 3.19] that theta functions have natural

power series expansions. For every general point p ∈ B0, contained in a maximal
cone σ ∈P, there exists a morphism of k[[Q]]-algebras

R(D) −→ k[Λσ][[Q]]

ϑm 0−→ ϑm(p)

such that
ϑm(p) :=

∑

β

aβz
mβ ,

where the sum runs over all broken lines β with asymptotic direction m and
endpoint p, and where aβzmβ is the final monomial of β, as in Definition 1.5.

1.2. Canonical scattering diagram and Gross-Siebert mirror families.
Let (X,D) be a log Calabi-Yau pair, consisting of an n-dimensional smooth pro-
jective variety X and a reduced simple normal crossing anticanonical divisor D
in X5. Under the assumption that D contains a 0-dimensional stratum, Gross
and Siebert construct in [21] the canonical scattering diagram D(X,D) using the
enumerative geometry of rational curves in (X,D). In this situation, the algebra
of functions on the mirror family to (X,D) is proposed to be the algebra of theta
functions defined by D(X,D). In this section, we briefly review the definition of
the canonical scattering diagram and the construction of the mirror family.

1.2.1. The tropicalization (B,P) of (X,D). We first review how to define from
(X,D) a conical affine pseudomanifold (B,P) as in Definition 1.1 called the
tropicalization of (X,D).
Let D1, . . . , Dm be the irreducible components of D. We assume that for every

I ⊂ {1, · · · , m}, the stratum
⋂

i∈I Di is connected. Then, (B,P) is the dual in-
tersection complex of (X,D): for every I ⊂ {1, · · · , m} with

⋂
i∈I Di non-empty,

P contains an |I|-dimensional simplicial cone, where |I| is the cardinality of I,
and these cones are glued together to form B according to the intersection pat-
tern of the strata of D. Moreover, one can extend the integral affine structure
across codimension one cones using a recipe modeled on toric geometry: given
a codimension one cone ρ with generators m1, . . . , mn−1, contained in two max-
imal cones σ+ and σ− with additional generators m+

n and m−
n , an integral affine

structure is defined on σ+ ∪ σ− by embedding σ+ ∪ σ− in Rn in such a way that

m+
n +m−

n = −
n−1∑

i=1

(Dρ ·Dmi
)mi ,

5For a more general notion of log Calabi-Yau pair, which is not necessary in the context of
the current paper, see [21].
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where Dρ is the curve stratum corresponding to the codimension one cone ρ, and
Dmi

are the divisor strata corresponding to the rays R≥0mi. Assuming that D
contains a 0-dimensional stratum, it follows from [21, Propositions 1.3-1.6] that
(B,P) is an n-dimensional conical affine pseudomanifold as in Definition 1.1.
For the HDTV log Calabi-Yau pairs that we will consider later in §1.3, this will
be clear as (B,P) will be piecewise-linearly isomorphic to a fan in a vector space
in these cases (see (1.10)).

1.2.2. The canonical scattering diagram. We review below the definition of the
canonical scattering diagram of (X,D) constructed in [21]. It is a scattering
diagram in the sense of Definition 1.4, where:

(i) (B,P) is the tropicalization of (X,D) described in §1.2.1.
(ii) Q = NE(X) is the monoid spanned by effective curve classes in the

abelian group N1(X) of curves classes in X modulo numerical equivalence.
Note that NE(X) satisfies the conditions on Q listed in §1.1.1. Indeed,
NE(X) is contained in a strictly convex cone of N1(X) ⊗ R because X
is projective (if L is an ample divisor, then L · C > 0 for every C in the
closure of NE(X) by Kleiman’s criterion).

(iii) ϕ is a NE(X)-convex MVPL function on (B,ϕ) with kink

κρ = Dρ ∈ NE(X), (1.6)

across every codimension one cone ρ ∈ P, where Dρ is the class of the
curve stratum corresponding to ρ.

The definition of the canonical scattering diagram is based on the enumerative
geometry of maps f : (C, x)→ X from rational curves C to X with a prescribed
tangency condition along D at a given marked point x on C. Moduli spaces
of rational curves in X meeting D at a single point have expected dimension
n− 2 [21, Lemma 3.9]. The enumerative invariants entering the definition of the
canonical scattering diagram roughly count 0-dimensional families of maximally
degenerated configurations of such curves. The precise definition [21, §3.2] is
based on logarithmic geometry and the theory of punctured log Gromov–Witten
invariants [2].
These invariants, denoted Nτ,β, are indexed by an (n − 2)-dimensional family

τ of tropical curves in (B,P) called a wall type [21, Definition 3.6] and a class
β ∈ NE(X). The tropical curves in τ are dual intersection complexes of the curve
(C, x) mapping to the dual intersection complex (B,P) of (X,D). In particular,
they have a single unbounded edge corresponding to the marked point x ∈ C.
The (n− 2)-dimensional family of these unbounded edges traces out an (n− 1)-
dimensional cone dτ in B contained in an n or (n − 1)-dimensional cone of P.
The direction uτ ∈ Λdτ of these unbounded edges prescribes the contact order of
C with D at the marked point x ∈ C. Finally, a multiplicity kτ is attached to
τ , equal to the lattice index in Λdτ of the sublattice given by the image of the
integral tangent vectors to the (n−1)-dimensional cone formed by the unbounded
edges in the family of source tropical curves [21, (3.10)].
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0

(0, 1) (1, 1)

0

D(X,D)

fd′ = 1 + xtL−E

ϑ0,1 = xy

ϑ1,0 = x

ϑ1,0 = x−1y−1fdtL−E

Kink of ϕ: L

fd = 1 + x−1tE fd = 1 + x−1tE

Kink of ϕ: L

Kink of ϕ: L− E
Kink of ϕ: L− Edd′

Figure 1.1. On the left hand figure is the canonical scattering
diagram for the blow up or P2 at a non-toric point, and on the
right hand figure we illustrate the broken lines defining the theta
functions generating the coordinate ring of its mirror

Definition 1.8. The canonical scattering diagram associated to (X,D), denoted
by D(X,D), is the scattering diagram in the tropicalization (B,P) of (X,D) over
(NE(X),ϕ), given by the union of walls {(dτ , fτ,β)} with

fτ,β := exp(kτNτ,βt
βz−uτ ) ∈ k[Λdτ ]!NE(X)" ,

indexed by wall types τ and curve classes β ∈ NE(X), where Nτ,β is the punc-
tured log Gromov–Witten invariant counting rational curves in (X,D) of type τ
and class β.

1.2.3. The Gross-Siebert mirror family. According to [21, Theorem B], the canon-
ical scattering diagram of Definition 1.8 is consistent and so one can apply the
constructions reviewed in §1.1.3. In particular, we have the k[[NE(X)]]-algebra
R(D(X,D)) of theta functions defined by the canonical scattering diagram D(X,D).
We denote

R(X,D) := R(D(X,D)) ,

and the mirror family of (X,D) defined in [21] is

X̌ −→ Spf k[[NE(X)]] ,

where
X̌ := Spf R(X,D)

is the formal scheme defined as the formal spectrum of the ring of theta functions
R(X,D).

Example 1.9. Let X be the blow-up of XΣ = P2 at a non-toric point of the toric
boundary divisor DΣ ⊂ P2, and D be the strict transform of DΣ. In this situation
the complement X \D is a cluster variety, known as the A1 cluster variety with
principal coefficients. We illustrate the canonical scattering diagram associated
to (X,D) in Figure 1.1 – for details on how to obtain the tropicalization (B,P)
see for instance [3, Example 3.2]. The three theta functions generating the ring
of theta functions R(X,D) are given by

ϑ(1,0) = x, ϑ(0,1) = xy, and ϑ(−1,−1) = x−1y−1(1 + x−1tE)tL−E ,
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where L is the pullback of the class of a line in P2, and by E is the exceptional
divisor. Hence, in this case, the mirror to X \D is given by

Speck[NE(X)][ϑ(1,0),ϑ(0,1),ϑ(−1,−1)]/(ϑ(1,0)ϑ(0,1)ϑ(−1,−1) = tL + ϑ(1,0)t
L−E) .

(1.7)
The equation ϑ(1,0)ϑ(0,1)ϑ(−1,−1) = tL + ϑ(1,0)tL−E involves only the variables tL

and tL−E which span the monoid M ⊂ NE(X) discussed in §2.

1.3. HDTV log Calabi-Yau pairs and scattering diagrams.

1.3.1. HDTV log Calabi-Yau pairs. We first review the set-up of [4]. Let M 2 Zn

be a rank n lattice and let XΣ be an n-dimensional smooth projective toric variety
defined by a complete fan Σ in MR := M ⊗ R. Let

H =
⋃

i∈I

Hi

be a union of disjoint connected smooth projective hypersurfaces of the toric
boundary DΣ of XΣ indexed by a finite set I. We assume that for every i ∈ I,
there is a unique irreducible component Di of DΣ such that Hi ⊂ Di, that Hi

intersects transversally the toric boundary of Di, and that for every i += j, either
Di = Dj or Di ∩Dj = ∅.
Let X be the smooth projective variety obtained by blowing-up XΣ along H

and let D ⊂ X be the strict transform of DΣ. Then, (X,D) is a log Calabi-Yau
pair, that is, X is a smooth projective variety and D is an anticanonical reduced
simple normal crossings divisor on X . Because these log Calabi-Yau pairs are
exactly those studied in [4], we refer to such (X,D) as a HDTV log Calabi-Yau
pair and we call (XΣ, H) a toric model for (X,D).
The general construction of the mirror family based on the canonical scattering

diagram D(X,Σ) and reviewed in §1.2.3 can be applied in particular to HDTV log
Calabi-Yau pairs. We showed in [4, 3] how to recover the canonical scattering
D(X,Σ) of a log Calabi-Yau pair from a combinatorially defined scattering diagram
D(XΣ,H), that we call the HTDV scattering diagram. In the following sections,
we first review the notion of a scattering diagram in MR, then the definition of
D(XΣ,H) which is an example of scattering diagram in MR, and finally the main
result of [4] comparing D(X,D) and D(XΣ,H).

1.3.2. Scattering diagrams in MR. Scattering diagrams in MR are particular ex-
amples of general scattering diagrams as in Definition 1.4.

Definition 1.10. Let Q be a monoid as in §1.1.1. A scattering diagram in MR

over Q is by definition a scattering diagram in (B,P) over (Q,ϕ) as in Definition
1.4 where B = MR, P is the trivial conical decomposition of MR consisting of
the single cone MR, and ϕ = 0.
In other words, a scattering diagram in MR over Q is a set of walls (d, fd) in

MR, that is pairs (d, fd), consisting of a codimension one rational polyhedral cone
d ⊂ MR, together with an attached functions fd ∈ k[z−m0 ][[Q]] ⊂ k[M ][[Q]] for
some nonzero primitive vector m0 ∈ M tangent to d, and with fd = 1 mod I1.
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Moreover, for every k ≥ 1, there are only a finite number of walls (d, fd) ∈ D with
fd += 1 mod Ik. A wall is called incoming if −m0 ∈ d, and outgoing elsewise. We
call m0 the direction of the wall.
For the construction of the HDTV scattering diagram and the comparison with

cluster scattering diagram, the notion of a consistent scattering diagram in MR

is particularly important and so we review the definition, following [4, 21]. Given
a scattering diagram D in MR over Q and a path

γ : [0, 1] −→ MR \ Sing(D)

t 0−→ γ(t)

transversal to the walls ofD, the associated path ordered product θγ,D is the k[[Q]]-
algebra automorphism of k[M ][[Q]] obtained as the ordered product of the k[[Q]]-
algebra automorphisms θγ,di attached to the sequence of walls (di, fdi) crossed by
γ for t = ti, where

θγ,di : k[M ][[Q]] −→ k[M ][[Q]] (1.8)

zm 0−→ f
〈nd,γ ,m〉
di

zm ,

where nd,γ ∈ N := Hom(M,Z) is the primitive normal vector of d which is
negative on γ((t0− ε, t0)) for all small ε > 0. Finally, we call a scattering diagram
consistent if for any path γ with γ(0) = γ(1) the associated path ordered product
θγ,D is the identity automorphism.
According to [4, Theorem 5.6]6, one can construct consistent scattering dia-

grams in MR from the data of particular collections of initial walls called widgets
in [4] – for details see [4, §5.2.1]. We review below the notion of widget, which is
based on the notion of tropical hypersurface.

Definition 1.11. A tropical hypersurface in MR is a fan T in MR whose support
|T| is pure dimension dimMR − 1, along with a positive integer weight attached
to each cone of T of dimension dimMR−1, which satisfies the following balancing
condition. For every ω ∈ T of dimension dimMR − 2, let γ be a loop in MR \ ω
around an interior point of ω, intersecting top-dimensional cones σ1, . . . , σp of T
of weights w1, . . . , wp. Let ni ∈ N := Hom(M,Z) be the primitive normal vector
of σi which is negative on γ((t0 − ε, t0)) for all small ε > 0. Then

p∑

i=1

wini = 0 .

Definition 1.12. Let Σ be a complete toric fan in MR and v ∈ M \ {0} be
a primitive integral vector such that R≥0v is a ray of Σ. Denote by π : MR →
MR/Rv the quotient map and by Σ(v) := {π(σ) | σ ∈ Σ , v ∈ σ} the quotient
fan of Σ in MR/Rv. Let T be a tropical hypersurface in MR/Rv with support
contained in the union of the codimension one cones of Σ(v). Finally, let f ∈

6Similar reconstruction results of consistent scattering diagrams from initial walls were also
obtained in [18, 26].
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k[zv][[Q]] such that f = 1 mod I1. Then, the widget associated to T and f is the
scattering diagram in MR over Q given by

D := {(dσ, f
wσ) | σ is a maximal dimensional cone of T} .

Here, dσ is the unique codimension one cone of Σ containing R≥0v such that
π(dσ) = σ, and wσ is the weight of σ in T.

Remark 1.13. In Definition 1.12, the walls of the widget have directions −v and
are incoming.

Let Σ be a complete toric fan inMR, and (vi)i∈I be a finite collection of primitive
integral vectors in M \ {0}, indexed by a finite set I, such that R≥0vi is a ray
of Σ for all i ∈ I. For every i ∈ I, let Ti be a tropical hypersurface in MR/Rvi
with support contained in the union of codimension one cones of Σ(vi), and let
fi ∈ k[z−vi ][[Q]] such that fi = 1 mod I1. Finally, let Din =

⋃
i∈I Di be the initial

scattering diagram obtained by taking the union of the widgets Di associated
to Ti and fi as in Definition 1.12. According to [4, Theorem 5.6], there exists
a consistent scattering diagram S(Din) containing Din, such that all walls in
S(Din) \ Din are outgoing. Moreover, S(Din) is unique up to equivalence with
these properties and we refer to S(Din) as the consistent completion of Din.

1.3.3. The HDTV scattering diagram. In the remaining part of this subsection
we review the construction of the combinatorially constructed HDTV scattering
diagram D(XΣ,H) introduced in [4].
Let (X,D) be a HDTV log Calabi-Yau pair obtained as in §1.3.1 from a toric

model (XΣ, H), where H = ∪i∈IHi. The HDTV scattering diagram D(XΣ,H) is a
scattering diagram in MR, as in Definition 1.10, over the monoid NI containing
one copy of N for each hypersurface Hi.
In [4], the HDTV scattering diagram D(XΣ,H) is defined by first describing an

initial scattering diagram D(XΣ,H),in. The construction of D(XΣ,H),in is based on
the tropical hypersurfaces defined as follows.

Definition 1.14. For every i ∈ I, let vi ∈ M be the primitive generator of
the ray of Σ corresponding to the toric divisor Di containing Hi. The tropical
hypersurface associated to Hi is the tropical hypersurface Hi ⊆MR/Rvi which is
supported on the union of codimension one cones of the toric fan Σ(vi) in MR/Rvi
of the divisor Di, with the weight on a codimension one cone (σ+Rvi)/Rvi being

wσ = Dσ ·Hi , (1.9)

where the intersection number is calculated on Di. Here σ denotes a codimen-
sion one cone of Σ containing the ray R≥0vi and Dσ is the toric curve in Di

corresponding to σ.
We now define the initial HDTV scattering diagram.

Definition 1.15. The initial HDTV scattering diagram for (XΣ, H) is the scat-
tering diagram in MR over NI , as in Definition 1.10, whose set of walls is given
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by

D(XΣ,H),in :=
⋃

i∈I

Di ,

whereDi is the widget associated as in Definition 1.12 to the tropical hypersurface
Hi in MR/Rvi and to the function

fi := 1 + tiz
vi ∈ k[M ][[NI ]] ,

where ti is the variable in the monoid algebra k[NI ] corresponding to the generator
of the copy of N labeled by i ∈ I.
As reviewed at the end of §1.3.2, every initial scattering diagram Din defined

as a union of widgets has a consistent completion S(Din).

Definition 1.16. The HDTV scattering diagram for (XΣ, H)

D(XΣ,H) := S(D(XΣ,H),in) ,

is the scattering diagram in MR over NI obtained as the consistent completion of
D(XΣ,H),in.

1.3.4. Comparison of the HDTV and canonical scattering diagrams. Let (X,D)
be a HDTV log Calabi-Yau pair obtained as in §1.3.1 from a toric model (XΣ, H).
We review the main result of [4] comparing the canonical scattering diagram
D(X,D) and the HDTV scattering diagram D(XΣ,H).
We first introduce some notations. Denote BlH : X → XΣ the blow-up mor-

phism. For every i ∈ I, the exceptional divisor Ei in X over Hi is a P1-bundle
over Hi, and we denote by Ei the class in NE(X) of a P1-fiber. In particular, for
every i, j ∈ I, we have Ei · Ej = −1 if i = j, and Ei · Ej = 0 if i += j. The map

ι : N1(XΣ)⊕ ZI −→ N1(X)

(C, (ai)i∈I) 0−→ Bl∗HC −
∑

i∈I

aiEi ,

is an isomorphism of abelian groups, whose inverse is

N1(X) −→ N1(XΣ)⊕ ZI

C 0−→ (BlH,∗C, (C · Ei)i∈I) .

From now one, we implicitly use ι to identify N1(X) with N1(XΣ)⊕ ZI .
To compare the canonical scattering diagram D(X,D) with D(XΣ,H) first note

that it follows from the definition of the tropicalization of (X,D) reviewed in
§1.2.1 that there is a natural piecewise-linear isomorphism

Υ : (MR,Σ)→ (B,P) . (1.10)

In particular, Υ induces a bijection between M and the set B(Z) of integral
points as in Definition 1.7, and from now on we identify M and B(Z) using this
bijection. We use Υ to define from the HDTV scattering diagram D(XΣ,H) in
MR a new scattering diagram Υ∗(D(XΣ,H)) in (B,P). The construction treats
differently incoming and outgoing walls. Up to refining the walls, we may assume
that every wall (d, fd) of D(XΣ,H) is contained in some cone σ ∈ Σ.
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If the wall (d, fd) is incoming, then by construction of D(XΣ,H) (see Definitions
1.12 and 1.15) it is of the form

(d, (1 + tiz
vi)w)

for some positive integer w. As vi is tangent to the cone of Σ containing d and Υ
is piecewise linear with respect to Σ, Υ∗(vi) makes sense as a tangent vector to
B. We then define

Υ∗(d, (1 + tiz
vi)w) = (Υ(d), (1 + tEiz−Υ∗(vi))w) . (1.11)

If the wall (d, fd) is outgoing, with d ⊆ σ ∈ Σ, then fd is a sum of monomials of
the form

c
∏

i∈I

(tiz
vi)ai

with c ∈ k, and ai non-negative integers for all i ∈ I. The data of the list of
integers A = {ai}i∈I and σ determine a curve class β̄A,σ ∈ N1(XΣ) – see [4, §6] for
the precise description of this curve class. Under the inclusion N1(XΣ) ↪→ N1(X)
given by the above mentioned splitting, we may view β̄A,σ as a curve class in
N1(X), which we also denote by β̄A,σ. We then obtain a curve class

βA,σ = β̄A,σ −
∑

i∈I

aiEi . (1.12)

Further, as vout := −
∑

i∈I aivi is tangent to σ, as before Υ∗(vout) makes sense as
a tangent vector to B. We may thus define

Υ∗(c
∏

i∈I

(tiz
vi)ai) := c tβA,σz−Υ∗(vout) , (1.13)

then Υ∗(fd) by linearity, and finally the wall

Υ∗(d, fd) = (Υ(d),Υ∗(fd)) . (1.14)

We then define

Υ∗(D(XΣ,H)) := {Υ∗(d, fd) | (d, fd) ∈ D(XΣ,H)} .

The key theorem, [4, Thm 6.1], then states:

Theorem 1.17. Let (X,D) be a HDTV log Calabi-Yau pair obtained as in §1.3.1
from a toric model (XΣ, H). Then, the scattering diagram Υ∗(D(XΣ,H)) obtained
from the HDTV scattering diagram D(XΣ,H) by applying Υ∗ is equivalent to the
canonical scattering diagram D(X,D).

2. The extension of the Gross–Siebert mirror family

2.1. Construction of the extended mirror family. Let (X,D) be a HDTV
log Calabi-Yau pair obtained as in §1.3.1 from a toric model (XΣ, H). In this
section, we prove that the mirror family X̌→ Spf k[[NE(X)]] of (X,D) naturally
extends over a bigger base. The idea is to replace the monoid NE(X) by the
smaller monoid

M := NE(X) ∩ (NE(XΣ)⊕ NI) ⊂ N1(X) (2.1)
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L− E

L

E

L− E

L

E

M

M∨
NE(X)

Bog(X)Nef(X)

Figure 2.1. Cones of curves on the left and cones of divisors on
the right in Examples 2.1 and 2.5

of effective curve classes of the form Bl∗Hβ −
∑

i∈I aiEi, where BlH : X → XΣ is
the blow-up morphism, β ∈ NE(XΣ), and ai ∈ N for all i ∈ I.
The projection M ⊂ NE(XΣ)⊕ NI → NE(XΣ) induces a closed embedding

Speck[NE(XΣ)] ↪−→ Speck[M] ,

defined by the monoid ideal

J := {β ∈M| β /∈ NE(XΣ)} . (2.2)

Let S(XΣ,H) be the formal completion of Spec k[M] along Speck[NE(XΣ)], that
is,

S(XΣ,H) = Spf k̂[M]

where
k̂[M] := lim←−

k

k[M]/Jk .

The inclusion M ⊂ NE(X) induces a morphism

Spf k[[NE(X)]] −→ S(XΣ,H) .

Example 2.1. Let (X,D) be the log Calabi-Yau surface obtained by blowing-up
a point in P2, as in Example 1.9. Recall that we denote by L the pullback of the
class of a line in P2, and by E the exceptional divisor. Then, NE(XΣ) = NL and
NE(X) = NE ⊕N(L−E), and so M = NL⊕N(L−E), as illustrated in Figure
2.1.
Our first main result below shows that the mirror family X̌→ Spf k[[NE(X)]]

naturally extends over S(XΣ,H), and defines an extended mirror family

X̌ext −→ S(XΣ,H)

of (X,D) with respect to the toric model (XΣ, H).

Theorem 2.2. Let (X,D) be a HDTV log Calabi-Yau pair obtained as in §1.3.1
from a toric model (XΣ, H). Then, the product of theta functions defines a struc-

ture of topological k̂[M]-algebra on

R(X,D)ext := lim←−
k

⊕

m∈M

(k[M]/Jk)ϑm ,
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such that, denoting X̌ext := SpfR(X,D)ext, we have a fiber diagram

X̌ X̌ext

Spf k[[NE(X)]] S(XΣ,H) .

Proof. Recall from (1.4) that the algebra structure on the ring of theta func-
tions is determined by a set of structure constants Cm

m1m2
∈ k[[NE(X)]], for all

m1, m2, m ∈ B(Z), such that, for all k ≥ 0, there are only finitely manym ∈ B(Z)
such that Cm

m1m2
+= 0 mod Ik. By the definition of M in (2.1) and the definition

of S(XΣ,H) as the formal completion of Speck[M] along Speck[NE(XΣ)], to prove
Theorem 2.2, it is enough to show that for every m1, m2, m ∈ B(Z),

Cm
m1m2

∈ k[NE(XΣ)][[N
I ]] ,

and that for all k ≥ 0 and for all m1, m2 ∈ B(Z), there are only finitely many
m ∈ B(Z) such that Cm

m1m2
+= 0 mod mk

NI , where mNI := NI \{0} is the maximal
monoid ideal of NI .
To show Cm

m1m2
∈ k[NE(XΣ)][[NI ]], first recall that Cm

m1m2
can be expressed

by (1.5) in terms of final monomials carried by broken lines in the canonical
scattering diagram D(X,D). Hence, it suffices to show that all the coefficients
aβ appearing in (1.5) are in k[NE(XΣ)][[NI ]] and that for every k ≥ 0, only
finitely many of the coefficients aβ are nonzero modulo mk

NI . We start proving
the first claim by showing the stronger statement that for every broken line β as
in Definition 1.5, we have ai ∈ k[NE(XΣ)][[NI ]] for every monomial aizmi carried
by any line segment β((ti−1, ti)) of β.
We prove this by induction on i. By Definition 1.5, the initial monomial is

given by zm1 and so a1 = 1 ∈ k[NE(XΣ)][[NI ]]. Now assume we have a monomial
aizmi carried by a broken line such that ai ∈ k[NE(XΣ)][[NI ]]. Then, the next
monomial ai+1zmi+1 is a monomial in the expansion of (1.2) or (1.3).
If β(ti) does not belong to a codimension one cone of P, then ai+1zmi+1 is a

monomial in the expansion of (1.2). Moreover, by Theorem 1.17, all the walls
of D(X,D) contributing to the bending are of the form Υ∗((d, fd)), where (d, fd)
is an outgoing wall of D(XΣ,H). In such case, Υ∗((d, fd)) is defined by (1.13)-
(1.14), where the curve class βA,σ is defined by (1.12) and so is contained in
NE(XΣ) ⊕ NI . Hence, the function f in (1.2) belongs to k[Λσi

][NE(XΣ][[NI ]],
and so ai+1 ∈ k[NE(XΣ)][[NI ]].
If β(ti) does belong to a codimension one cone ρ of P, then ai+1zmi+1 is a

monomial in the expansion of (1.3):

aiz
mi(tκρf)〈n,mi〉

where 〈n,mi〉 > 0, and, by (1.6), κρ is the class of the curveDρ inX corresponding
to ρ.
If there are no i ∈ I such that vi ∈ ρ, then Dρ is simply the pullback of the class

of the toric curve Dρ in XΣ corresponding to ρ, that is Dρ ∈ NE(XΣ), and as
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〈n,mi〉 > 0, we have t〈n,mi〉κρ ∈ k[NE(XΣ)]. Moreover, all the walls contributing
to the bending are images by Υ∗ of outgoing walls of D(XΣ,H), and so

f 〈n,mi〉 ∈ k[Λσi
][NE(XΣ)][[N

I ]]

as before. Hence, we also have ai,i+1 ∈ k[NE(XΣ)][[NI ]].
If there exists i ∈ I such that vi ∈ ρ, then we can write f = f ′f ′′, where f ′′ is

the contribution of walls images by Υ∗ of outgoing walls of D(XΣ,H), and f ′ is the
image by Υ∗ of an incoming wall of D(XΣ,H) with attached function

(1 + tiz
vi)wρ ,

as in Definitions 1.12 and 1.15. As before, we have

(f ′′)〈n,mi〉 ∈ k[Λσi
][NE(XΣ)][[N

I ]] .

On the other hand, f ′ is given by (1.11), that is

f ′ = (1 + tEiz−Υ∗(vi))wρ ,

which does not belong to k[Λσi
][NE(XΣ)][[NI ]] in general. However, the combi-

nation tκρf ′ does belong to k[Λσi
][NE(XΣ)][[NI ]]. Indeed, κρ = Dρ is the class of

the strict transform of the toric curve Dρ in XΣ corresponding to ρ, so

Dρ = Dρ − (Dρ ·Hi)Ei ,

and, as Dρ ·Hi = wρ by (1.9), we have

tκρf ′ = tDρ−wρEi(1 + tEiz−Υ∗(vi))wρ ∈ k[Λσi
][NE(XΣ)][[N

I ]] .

As 〈n,mi〉 > 0, we also have (tκρf ′)〈n,mi〉 ∈ k[Λσi
][NE(XΣ)][[NI ]], and finally

ai,i+1 ∈ k[NE(XΣ)][[NI ]].
It remains to show that for every k ≥ 0, only finitely many of these monomi-

als are nonzero modulo mk
NI . By Theorem 1.17, it is enough to prove that the

scattering diagram D(XΣ,H) is finite modulo mk
NI . This holds because D(XΣ,H) is

a scattering diagram over k[[NI ]], see Definition 1.10 . Finally, the claim that for
given m1, m2 ∈ B(Z), there are only finitely manym ∈ B(Z) such that Cm

m1m2
+= 0

mod Ik, follows for the same reason. !

The extended mirror family has the nice property to interpolate between the
mirror family of the log Calabi-Yau pair (X,D) and the mirror family of the toric
model (XΣ, DΣ).

Theorem 2.3. Let (X,D) be a HDTV log Calabi-Yau pair obtained as in §1.3.1
from a toric model (XΣ, H). The restriction of the extended mirror family X̌ext →
S(XΣ,H) to Speck[NE(XΣ)] is the mirror family of the toric variety (XΣ, DΣ). In
particular, the restriction of X̌ext to the torus Speck[N1(XΣ)] is a family of tori
Speck[M ], and the theta functions {ϑm}m∈M restrict to the monomials {zm}m∈M

on the fiber Speck[M ] over 1 ∈ Speck[NE(XΣ)].

Proof. By setting t−Ei = 0 for all i ∈ I, the canonical scattering diagram of (X,D)
becomes the canonical scattering diagram of (XΣ, DΣ): all the walls become
trivial and the kinks reduce to the toric kinks. !
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T Speck[M]

tEi = 0

T0

T̂

Spf k!NE(X)" Spf k!NI"

t−Ei = 0

Speck[NE(XΣ)]

1

1 Spf k!NI"

S(XΣ,H)

p Speck[NE(XΣ)]

Figure 2.2. The map p : T → Speck[M] contracting T0 to the
torus fixed point.

Remark 2.4. Let (X,D) be a HDTV log Calabi-Yau pair such that the com-
plement X \ D is affine. Then, by [24, Corollary 1.2] (based on the compari-
son with [25]), the mirror family X̌ → Spf k[[NE(X)]] canonically extends over
Speck[NE(X)]. In this case, the extended mirror family X̌ext → S(XΣ,H) given
by Theorem 2.2 canonically extends further over Speck[M].

2.2. Motivation from mirror symmetry for the extension. In this section,
we explain how the construction of the extended mirror family X̌ext → S(XΣ,H)

constructed in §2 is motivated by mirror symmetry, which proposes that the
(complexified stringy) moduli space of symplectic deformations of a Calabi–Yau
variety should be isomorphic to the moduli space of complex deformations of its
mirror [29].
In the context of mirror symmetry for HDTV log Calabi–Yau pairs, obtained

by a blow-up (X,D)→ (XΣ, DΣ) from a toric variety, we obtain a natural family
of symplectic structures by varying the volume of the exceptional divisors, hence
a symplectic deformation space for (X,D). In what follows we show that the
complex deformation space of the extended mirror family corresponds to this
symplectic deformation space of (X,D). In a moment we describe a (formal)
scheme T̂ , which we show is birational to S(XΣ,H) and over which we have an

extension of the mirror family to (X,D), and for convenience we work with T̂ in
what follows.
First note that the cone of effective curves NE(X) ⊂ N1(X) is actually con-

tained in NE(XΣ)⊕ ZI because C ∈ NE(X) implies BlH,∗C ∈ NE(XΣ). More
obviously, we also have

NE(XΣ)⊕ NI ⊂ NE(XΣ)⊕ ZI .

Let T be the scheme obtained by gluing together the two affine schemes

Speck[NE(X)] and Speck[NE(XΣ)⊕ NI ]

along their common open subset Speck[NE(XΣ)⊕ZI ]. By construction, Speck[M]
is the affinization of T and we have a corresponding morphism

p : T −→ Speck[M] .

There are several interesting loci in T . First of all, the projections

NE(XΣ)⊕ NI → NE(XΣ)
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and

NE(XΣ)⊕ NI → NI

induces closed embeddings

Speck[NE(XΣ)] ↪−→ Speck[NE(XΣ)⊕ NI ] ↪−→ T

and

Speck[NI ] ↪−→ Speck[NE(XΣ)⊕ NI ] ↪−→ T . (2.3)

On the other hand, as the classes Ei are effective for all i ∈ I, we have the
inclusion

(−N)I 2
⊕

i∈I

NEi ⊂ NE(X) ,

and so a closed embedding

Speck[(−N)I ] ↪−→ Speck[NE(X)] ↪−→ T (2.4)

defined by the monoid ideal {β ∈ NE(X) | β /∈ (−N)I}. In T , the subschemes
Speck[NI ] and Spec k[(−N)I ] given by (2.3) and (2.4) are affine spaces with
coordinates (t−Ei)i∈I and (tEi)i∈I respectively, and are glued together along their
common open subset Speck[ZI ] via tEi 0→ t−Ei. The resulting subscheme T0 of T
is isomorphic to (P1)I and is the fiber of p over the torus fixed point of Speck[M],
defined by the monoid ideal M\ {0}. Finally, let T̂ be the formal completion of
T along T0∪Spec k[NE(XΣ)]. Then the restriction of p to T̂ defines a morphism

p̂ : T̂ −→ S(XΣ,H) ,

and one can consider the pullback X̌ext×S(XΣ,H)
T̂ of the mirror family to T̂ . From

this point of view, the original mirror family was only defined on the formal
neighborhood Spfk[[NE(X)]] of the point in T0 with equations tEi = 0 for all
i ∈ I, whereas the extended mirror family is defined on a formal neighborhood of
T0∪Speck[NE(XΣ)]. Moreover, by Theorem 2.3, the restriction of the extended
mirror family to Speck[NE(XΣ)] is the mirror family to the toric pair (XΣ, DΣ).
We illustrate in Figure 2.2 the map p and the geometry of T and Speck[M].
In the usual terminology of mirror symmetry, the point tEi=0 is the large com-

plex structure limit of the mirror family, corresponding to the large volume limit
of X . Indeed, the variable tEi on the base of the space of complex deformations
of the mirror should correspond by mirror symmetry to the function e−

∫
Ei

ω on
the space of classes of symplectic forms ω on X . In the large volume limit, we
have tEi → 0, that is

∫
Ei
ω → +∞, and the volume of the exceptional divisors

with respect to the symplectic form become indeed large.
The extension of the mirror family away from the large volume point tEi = 0,

until the point t−Ei = 0, correspond to moving away from the large volume
point of X in the space of symplectic forms, by decreasing the volume of the
exceptional divisors. Such deformation is naturally provided by the birational
map BlH : (X,D)→ (XΣ, DΣ): symplectically, we have a continuous deformation
from (X,D) to (XΣ, DΣ) obtained by continuously decreasing the volume of the
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exceptional divisors until they become of volume zero. While the classical sym-
plectic geometry stops there, the symplectic form is complexified by the B-field
in mirror symmetry, and the volume can be analytically continued until −∞,
that is, the point t−Ei = 0. To summarize, the extended mirror family gives a
deformation of the mirror of (X,D) to the mirror of (XΣ, DΣ) which is mirror to
the birational map BlH : (X,D)→ (XΣ, DΣ).

Example 2.5. Let (X,D) be the log Calabi-Yau surface obtained by blowing-up
a point in P2, as in Examples 1.9 and 2.1. Recall that we denote by L the pullback
of the class of a line in P2, by E the exceptional divisor, and that we have

NE(XΣ) = NL , NE(X) = NE ⊕ N(L−E) , M = NL⊕ N(L−E) .

As expected from Theorem 2.2, the equation for the mirror to (X,D) given in
(1.7) only involves tL and tL−E , and so defines the extended mirror family over
Speck[M]. The dual cone of NE(X) is the nef cone of X :

Nef(X) = NL⊕ N(L− E) ,

whereas the dual of NE(XΣ) ⊕ N is the “bogus cone” Bog(X) = NL ⊕ NE in
the terminology of [23]. The fan of T is the union of the nef cone and of the
bogus cone, and is in particular isomorphic to the blow-up of the affine plane at
the origin. Erasing from this fan the middle ray NL, we obtain NE ⊕N(L−E),
which is the cone M∨ dual to M, and so the fan of Spec k[M]. In particular,
Speck[M] is isomorphic to an affine plane and T → Speck[M] is the blowup of
the origin. The various cones of curves and divisors are illustrated in Figure 2.1.

3. Applications of the extended mirror family

3.1. The Frobenius structure conjecture. In this section, we use the ex-
tended mirror family to prove the Frobenius structure conjecture for HDTV log
Calabi-Yau pairs.
We first review the statement of the Frobenius structure conjecture, proposed

by Gross-Hacking-Keel as Conjecture 0.8 in the first arxiv version of [15]. Let
(X,D) be a log Calabi-Yau pair and (B,P) its tropicalization as in §1.2.1. Let
A(X,D) be the topologically free k[[NE(X)]]-module over a set {ϑm}m∈B(Z) in-
dexed by the integral points of B:

A(X,D) := lim←−
k

⊕

m∈B(Z)

(
k[NE(X)]/Ik

)
ϑm .

We define the trace map as being the projection on the coefficient of ϑ0:

Tr : A(X,D) −→ k!NE(X)" (3.1)
∑

m∈B(Z)

amϑm 0−→ a0

We can now state the Frobenius structure conjecture:
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Conjecture 3.1. Let (X,D) be a log Calabi-Yau pair. Then, there exists a unique
structure of k[[NE(X)]]-algebra on the k[[NE(X)]]-module A(X,D) such that, for
every s ≥ 2 and m1, . . . , ms ∈ B(Z),

Tr(ϑm1 · · ·ϑms) =
∑

β∈NE(X)

Nβ(m1, . . . , ms)t
β , (3.2)

where Nβ(m1, . . . , ms) is the log Gromov–Witten invariant of (X,D) counting
(s + 1)-pointed rational curves f : (C, x0, x1, . . . , xs) → X, with contact orders
(0, m1, · · · , ms) along D at the marked points (x0, x1, · · · , xs), and with insertion
of ψs−2

x0
, where ψx0 is the psi class attached to the marked point x0.

Recently, Johnston [24, Theorem 1.4] proved that the algebra of theta functions
R(X,D), whose underlying k[[NE(X)]]-module is A(X,D), satisfy (3.2). This
settles in particular the existence part of the conjecture (referred to as the weak
Frobenius structure conjecture in [24]). The uniqueness part of the Conjecture
3.1 has been proved by Keel-Yu [25] assuming that X \D is affine and contains
a torus. While the general case of the uniqueness part of the Conjecture 3.1 is
still open, we prove it below for HDTV log Calabi–Yau pairs (X,D).

Theorem 3.2. Let (X,D) be a HDTV log Calabi-Yau pair. Then, the product
structure of the algebra of theta functions R(X,D) is uniquely determined by the
values of the trace map (3.1) on products of two and three theta functions.

Proof. We first introduce some notations. For every s ∈ N, the s-point function
is the function

Trs : R(X,D)⊗s −→ k!NE(X)" (3.3)

x1 ⊗ · · ·⊗ xs 0−→ Tr(x1 · · ·xs) .

We similarly define the s-point function

Trsext : R(X,D)⊗s
ext −→ k̂[M]

on the algebra R(X,D)ext of functions on the extended mirror family given by
Theorem 2.2. The structure constants Cm

m1,m2
defining the product of theta func-

tions are the same in R(X,D) and in R(X,D)ext: the only point of Theorem 2.2
is that the curve classes appearing in Cm

m1,m2
, which are a priori in NE(X), are

actually contained in M. Therefore, for every m1, · · · , ms ∈M , we have

Trs(ϑm1 , · · · ,ϑms) = Trsext(ϑm1 , · · · ,ϑms) . (3.4)

In particular, it is enough to prove Theorem 3.2 for R(X,D)ext to deduce it
for R(X,D): we have to show that the product structure on R(X,D)ext can be
recovered from the 2-point and 3-point functions Tr2ext and Tr3ext.

We first prove that the trace pairing Tr2 : R(X,D)⊗2
ext −→ k̂[M] is non-

degenerate, that is, the map

R(X,D)ext −→ Hom(R(X,D)ext, k̂[M]) (3.5)

x 0−→ (y 0−→ Tr2ext(x, y))
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is injective.
By Theorem 2.3, the restriction of the extended mirror family to Speck[NE(XΣ)]

is the mirror family of the toric variety (XΣ, DΣ). It follows that for every m ∈M ,
there exists κm ∈ NE(XΣ) such that, for every n ∈ N ,

Tr2ext(ϑm,ϑn) = tκmδm+n,0 mod J ,

where J is the ideal defining Speck[NE(XΣ)] given by (2.2).
Now, to prove that the trace pairing is non-degenerate, it is enough to show that

for every nonzero x ∈ R(X,D)ext, there exists n ∈ M such that Tr2(x,ϑn) += 0.
Let

x =
∑

m∈M

amϑm ∈ R(X,D)ext \ {0} ,

with am ∈ k̂[M] for all m ∈ M . As x += 0, we can consider the smallest k ≥ 0
such that x += 0 mod Jk. Let m0 ∈M be such that am0 += 0 mod Jk. Then,

Tr2ext(x,ϑ−m0) = am0t
κm mod Jk ,

and so in particular Tr2ext(x,ϑ−m0) += 0. This ends the proof that the trace pairing
is non-degenerate.
We now conclude the proof of Theorem 3.2 for R(X,D)ext by showing that, for

every x1, x2 ∈ R(X,D)ext the product x1x2 can be determined from the 2-point
and 3-point functions. By the associativity of the ring of theta functions we can
write Tr2ext(x1x2, x3) as a 3-point function:

Tr2ext(x1x2, x3) = Tr3ext(x1, x2, x3) ,

Finally, by the non-degeneracy of the trace pairing onR(X,D)ext the product x1x2

is uniquely determined by the data of Tr2ext(x1 x2, x3) for all x3 ∈ R(X,D)ext. !

As a corollary we obtain a proof of the Frobenius structure conjecture for
HDTV log Calabi-Yau pairs:

Theorem 3.3. Let (X,D) be a HDTV log Calabi-Yau pair. Then, the Frobenius
structure conjecture (Conjecture 3.1) holds for (X,D). More precisely, the algebra
of theta functions R(X,D) is the unique algebra satisfying (3.2).

Proof. By [24, Theorem 1.4], the algebra of theta functions R(X,D) satisfies
(3.2). In particular, the right-hand side of (3.2) is given by the trace of products
of theta functions. By Theorem 3.2, R(X,D) is the unique algebra with the
left-hand side of (3.2) equal to the trace of products of theta functions. Hence,
it follows that R(X,D) is the unique algebra satisfying (3.2). !

3.2. The HDTV mirror family. We define in this section the HDTV mirror
family to a HDTV log Calabi-Yau pair as a specific base change of the extended
mirror family X̌ext → S(XΣ,H) – see Definition 3.4. We then prove in Theorem 3.5
that the algebra of functions on the HDTV mirror family is isomorphic to the
algebra of theta functions defined by the HDTV scattering diagram.
Let

ι0 : Spf k[[N
I ]] ↪−→ Spf k[NE(XΣ)][[N

I ]]
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be the morphism induced by restriction to the point

Speck ↪−→ Speck[NE(XΣ)]

defined by the equations tβ = 1 for all β ∈ NE(XΣ), i.e. the unit 1 of the big
torus orbit Speck[N1(XΣ)] in the toric variety Speck[NE(XΣ)]. On the other
hand, the inclusion

M ⊂ NE(XΣ)⊕ NI

induces a morphism

Spf k[NE(XΣ)][[N
I ]] −→ S(XΣ,H) .

Finally, we denote by
ι : Spf k[[NI ]] −→ S(XΣ,H)

the composition of this morphism with ι0.

Definition 3.4. The HDTV mirror family X̌HDTV of (X,D) with respect to the
toric model (XΣ, H) is defined by the fiber diagram

X̌HDTV X̌ext

Spf k[[NI ]] S(XΣ,H) .
ι

Restricting theta functions constructed from the canonical scattering diagram
D(X,D) to X̌HDTV we obtain a topological basis {ϑm}m∈M of the algebra of func-
tions on X̌HDTV as a k[[NI ]]-module. On the other hand, as reviewed in §1.1.3, one
can construct using broken lines in the HDTV scattering diagram D(XΣ,H) a topo-
logical k[[NI ]]-algebra R(D(XΣ,H)) with a basis of theta functions {ϑHDTV

m }m∈M .
In the following theorem, we compare the theta functions ϑm and ϑHDTV

m using
the main result of [4] comparing the canonical scattering diagram D(X,D) in B
and the HDTV canonical scattering diagram D(XΣ,H) in MR, along with a result
of [3] comparing the corresponding broken lines.

Theorem 3.5. Let (X,D) be a HDTV log Calabi-Yau pair obtained as in §1.3.1
from a toric model (XΣ, H). Then, the algebra of theta functions R(D(XΣ,H))
defined by the HDTV scattering diagram D(XΣ,H) is the algebra of functions of
the HDTV mirror family, that is, the map ϑHDTV

m 0→ ϑm for all m ∈ M induces
an isomorphism

X̌HDTV 2 Spf R(D(XΣ,H))

over Spf k[[NI ]].

Proof. It is shown in [3, Theorem 4.5] that the mirror family X̌ to (X,D) can
be computed from a scattering diagram in MR, called the heart of the canonical
scattering diagram7. Briefly, to obtain the heart of the canonical scattering dia-
gram, we first consider a degeneration to the normal cone of (X,D) as described

7More precisely, the heart of the canonical scattering diagram is not a scattering diagram
as in Definition 1.4, but is a scattering diagram in the more general sense of [17]. See [3] for
details.
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in [4, §3.1]. Considering the restriction of the canonical scattering diagram for
the total space (X̃, D̃) of this degeneration to the central fiber and then localizing
around the origin we obtain a new scattering diagram, denoted by T0D

1(X̃, D̃),
in [4, Eq.5.1]. The group of curve classes of the central fiber of this degeneration
is generated by the curve classes of XΣ, the exceptional curves and some fiber
classes of curves that arise as P1 bundles. Setting these fiber classes to zero in
T0D

1(X̃, D̃), we obtain the heart of the canonical scattering diagram – for details
see [3, §4].
Now, the main point is that, by [4, Theorem 6.2], the heart of the canoni-

cal scattering diagram can be reconstructed from the HDTV scattering diagram
D(XΣ,H) as follows. For every incoming wall

(d, (1 + tiz
vi)w) (3.6)

of D(XΣ,H) there is a corresponding wall

(d, (1 + t−Eizvi)w) (3.7)

of the heart. For every outgoing wall (d, fd), with d ⊂ σ ∈ Σ, and

fd =
∑

c
∏

i∈I

(tiz
vi)ai , (3.8)

there is a corresponding wall

(d,
∑

c tβA,σ

∏

i∈I

zaivi) , (3.9)

of the heart, with βA,σ given by (1.12) and so in particular of the form

βA,σ = β̄A,σ −
∑

i∈I

aiEi ,

with β̄A,σ ∈ NE(XΣ) and ai ≥ 0 for all i ∈ I. In addition, the heart of the
canonical scattering diagram is defined using the PL function on MR whose kink
across a codimension one cone ρ of Σ is given by the corresponding curve class
Dρ in NE(XΣ).
We can now finish the proof of Theorem 3.5. By [3, Theorem 4.5], the mirror

family X̌ to (X,D) is computed from the heart of the canonical scattering. Hence,
the HDTV mirror family of Definition 3.4 is obtained by setting to zero the curve
classes of the heart of the canonical scattering diagrams contained in NE(XΣ).
The kinks of the PL function become equal to zero, the incoming walls (3.7) do
not change, and the outgoing walls (3.9) become

(d,
∑

c
∏

i∈I

(t−Eizvi)ai) .

In other words, writing ti = t−Ei , we recover exactly the HDTV scattering dia-
gram D(XΣ,H) whose walls are given by (3.6)-(3.8), and this concludes the proof
that the HDTV mirror family is computed by the HDTV scattering diagram. !
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4. Cluster varieties and their HDTV mirrors

In this section we first briefly review some background on cluster varieties in
§4.1. We then study their HDTV mirrors in §4.2.

4.1. Cluster varieties.

4.1.1. A and X cluster varieties. Let s be a skew-symmetric seed, given by the
data of a rank n lattice N , an integral skew-symmetric bilinear form

{·, ·} : N ×N −→ Z,

an index set I of size n, a subset I ⊂ I, and a basis (ei)i∈I of N . Basis elements
ei are referred to as unfrozen if i ∈ I, and frozen if i ∈ I \ I. We denote by
M := Hom(N,Z) the dual lattice of N , and by

Nuf = ZI =
⊕

i∈I

Zei

the sublattice of N spanned by the unfrozen basis elements. We consider the map

p1 : Nuf −→M

n 0−→ {n, ·}

and for every i ∈ I we denote vi := p1(ei) = {ei,−} ∈ M . Finally, we assume
that vi += 0 for every i ∈ I.
From the data of a seed, there are two types of cluster varieties one can con-

struct: the X and A cluster varieties. The X (resp. A) cluster variety is defined
by gluing together copies of the torus Spec k[N ] (resp. Spec k[M ]), indexed by
mutations of s, using explicit birational maps referred to as cluster transforma-
tions, see [14, §2] for details. However, throughout this paper we will use the
interpretation of the X and A cluster varieties in terms of blow-ups of toric va-
rieties, as shown in [14]. We review this below8.
To construct the X cluster variety, we choose a smooth projective toric fan Σ

in MR := M ⊗ R whose set of rays contains R≥0vi for all i ∈ I, and such that
the hyperplanes e⊥i are union of codimension one cones of Σ. We also assume
that no cone of Σ contains two distinct rays of the form R≥0vi. Such fans always
exist and we denote by XΣ the corresponding toric variety. For each i ∈ I, let
Di be the toric boundary component corresponding to the ray R≥0vi of Σ and let
Hi ⊂ Di be the hypersurface defined as the closure of the locus in Di of equation

(1 + zei)|vi| = 0 ,

8In this paper we consider skew-symmetric seeds and cluster varieties constructed from such
seeds, that is, skew-symmetric cluster varieties. However, we expect the results of this paper to
hold in general for cluster varieties associated to skew-symmetrizable seeds. In that situation
the blow-up construction of such varieties typically produce orbifolds/Deligne-Mumford (DM)
stacks, rather than smooth algebraic varieties. Hence, treating such situations would require a
generalization of the Gross–Siebert mirror construction [4, 21] to DM stacks.
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where |vi| is the divisibility of vi in M . Note that Hi is connected because ei is
primitive in N . Let X be the blow-up of XΣ along

H :=
⋃

i∈I

Hi ,

and let D ⊂ X be the strict transform of the toric boundary divisor DΣ of
XΣ. Then, according to [14, Theorem 3.9], the complement UX := X \ D is
isomorphic to the X cluster variety outside codimension two. We call (X,D) a
log Calabi-Yau compactification of the X cluster variety. In order to apply the
mirror construction to (X,D), one needs to be ensure that X is smooth. This
can fail for two reasons. If |vi| > 1, then blowing-up Hi produces an (n − 2)-
dimensional family of A|vi|−1 surface quotient singularities. On the other hand,
if Di = Dj when i += j, then Hi and Hj intersect and blowing-up Hi ∪ Hj also
produces singularities. So, when applying the mirror construction to (X,D), we
will make the following X assumptions on the seed s:

(i) for every i ∈ I, vi is primitive in M , that is, |vi| = 1, and
(ii) for every i, j ∈ I, R≥0vi += R≥0vj if i += j.

Under these assumptions, (X,D) is a HDTV log Calab-Yau pair as in §1.3.1. We
expect that the mirror construction and the main results of [4] should generalize
to the orbifold case, thus removing assumption (i). We also expect the main
results of [4] to generalize to the case of intersecting hypersurfaces contained in a
common boundary divisors. Applying this generalization to successive blow-ups
of XΣ along the hypersurfaces Hi would allow us to remove assumption (ii).
Similarly, to construct the A cluster variety we choose a smooth projective

toric fan Σ′ in NR := N ⊗ R whose set of rays contains R≥0ei for i ∈ I, and
such that the hyperplanes v⊥i are union of codimension one cones of Σ′. We also
assume that no cone of Σ′ contains two distinct rays of the form R≥0ei. Such
fans always exist and we denote by XΣ′ the corresponding toric variety. For each
i ∈ I, let D′

i be the toric boundary component corresponding to the ray R≥0ei of
Σ′ and let H ′

i ⊂ D′
i be the hypersurface defined as the closure of the locus in D′

i

of equation

1 + zvi = 0 .

Note that H ′
i consists of |vi| connected components, where |vi| is the divisibility

of vi in M . Let X ′ be the blow-up of XΣ′ along

H ′ :=
⋃

i∈I

H ′
i

and let D′ ⊂ X ′ be the strict transform of the toric boundary divisor DΣ′ of XΣ′ .
By the assumptions on Σ, X ′ is smooth and so (X ′, D′) is a HDTV log Calabi-
Yau pair as in §1.3.1. According to [14, Theorem 3.9], assuming that the seed s is
totally coprime in the sense of [14, Definition 3.7], the complement UA := X ′ \D′

is isomorphic to the A cluster variety outside codimension two. We call (X ′, D′)
a log Calabi-Yau compactification of the A cluster variety.
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As reviewed in §1.2.3, mirror symmetry naturally involves families of varieties.
In particular, understanding mirror symmetry for cluster varieties requires work-
ing with families of cluster varieties. The relevant families are given by cluster
varieties with principal coefficients, which we review in the next section.

4.1.2. Cluster varieties with principal coefficients. The A and X cluster transfor-
mations are special cases of more general cluster transformations with principal
coefficients parametrized by the torus Speck[N ]. We refer to [14, 16] for the A
case, to [6] for the X case and to [30, §3-4] for a uniform exposition.
Gluing families of tori Speck[M ] parametrized by Speck[N ] using theA cluster

transformations with principal coefficients produces the A cluster variety with
principal coefficients

πA : Aprin −→ Speck[N ] .

The fiber over the unit in the torus Speck[N ] recovers the A cluster variety:
π−1
A (1) = A. Moreover, allowing the coefficients ti := tei to vanish defines a

partial compactification

πA : Aprin −→ Speck[N⊕] ,

where N⊕ =
⊕

i∈I Nei. The special fiber over 0 is the torus π−1
A (0) = Speck[M ].

In fact, we will only need to consider the restriction defined by setting ti = 1 for
all i ∈ I \ I:

πA,uf : Aprin,uf −→ Speck[N⊕
uf ] , (4.1)

where N⊕
uf =

⊕
i∈I Nei. The formal completion

π̂A,uf : Âprin,uf −→ Spf k[[N⊕
uf ]] (4.2)

of πA,uf along π
−1
A,uf(0) will play an essential role in our study of mirror symmetry

for cluster varieties. One of the main result of Gross-Hacking-Keel-Kontsevich,
[16, Proposition 6.4 (4)], is the construction of a topological basis {ϑCm}m∈M of

cluster theta functions for the algebra of functions on Âprin,uf as a k[[N⊕
uf ]]-module.

The cluster theta functions are the theta functions defined by a combinatorially
constructed cluster scattering diagram D

Aprin
s , reviewed in §5.1.2.

In [14, 16], Aprin is described as the A cluster variety associated to the seed
with principal coefficients s̃ defined as follows.

Definition 4.1. The seed with principal coefficients, denoted by s̃, is the data of
the lattice Ñ := N⊕M , endowed with the integral skew-symmetric bilinear form

{(n1, m1), (n2, m2)} := {n1, n2}+ 〈n1, m2〉 − 〈n2, m1〉 , (4.3)

where 〈−,−〉 is the duality pairing between M and N , and the basis elements
((ei, 0))i∈I and ((0, e)i ))i∈I , where (e

)
i )i∈I is the basis of M dual to (ei)i∈I . Finally,

the unfrozen basis elements are ((ei, 0))i∈I .
The cluster variety Aprin has a very natural description in terms of blow-ups

of toric varieties. Let XΣ′ be a toric variety as in the description of the A cluster
variety in §4.1.1, with the toric divisors D′

i. Then, Aprin is isomorphic outside
codimension two to the complement of the strict transform of D′ × Speck[N ]
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in the variety obtained from X ′ × Speck[N ] by blowing-up the hypersurfaces in
D′

i × Speck[N ] of equation

1 + tiz
vi = 0 .

From this point of view, it is clear that one can allow the ti’s to vanish and that
the fiber over the point {ti = 0}i is the torus Speck[M ]. This description is
compatible with viewing Aprin as A for the seed s̃ because the unfrozen basis
elements of s̃ are (ei, 0) for i ∈ I, and we have ṽi := {(ei, 0),−} = (vi, ei) and so
1 + zṽi = 1 + tizvi .
The X case is similar. Gluing families of tori Speck[N ] parametrized by

Speck[N ] using the X cluster transformations with principal coefficients defined
in [6] produces the X cluster variety with principal coefficients

πX : Xprin −→ Speck[N ] . (4.4)

The fiber over the unit in the torus Speck[N ] recovers the X cluster variety:
π−1
A (1) = X . Moreover, allowing the coefficients ti := tei to vanish defines a

partial compactification

πX : X prin −→ Speck[N⊕] ,

whose special fiber over 0 is the torus π−1
X (0) = Speck[N ]. We will mainly

consider the restriction defined by setting ti = 1 for all i ∈ I \ I:

πX ,uf : X prin,uf −→ Speck[N⊕
uf ] , (4.5)

and the formal completion

π̂X ,uf : X̂ prin,uf −→ Spf k[[N⊕
uf ]] (4.6)

of πX ,uf along π
−1
X ,uf(0). An important difference with the A case is that Xprin is

not the X cluster variety associated to s̃. Indeed, Xprin is obtained by gluing tori

Speck[N ]× Speck[N ] = Speck[N ⊕N ] ,

whereas the X cluster variety associated to s̃ is obtained by gluing tori

Speck[Ñ ] = Speck[N ⊕M ] .

In particular, Xprin in (4.4) is different from the variety denoted by Xprin in [16].
As stressed in [6], Xprin as in [16] is the cluster dual to Aprin as cluster varieties
over Spec k, but Xprin as in (4.4) is the cluster dual to Aprin as cluster varieties
with coefficients, that is, over Speck[N ].
Finally, Xprin has also a very natural description in terms of blow-ups of toric

varieties. Let XΣ be a toric variety as in the description of the X cluster variety
in §4.1.1, with the toric divisors Di. Then, by [30, Proposition 5.14], Xprin is
isomorphic outside codimension two to the complement of the strict transform
of D × Speck[N ] in the variety obtained from X × Speck[N ] by blowing-up the
hypersurfaces in Di × Speck[N ] of equation

(1 + tiz
ei)|vi| = 0 .
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By contrast, the blow-up description of the X cluster variety for s̃ would involve
a fan in M ⊕ N with rays R≥0ṽi = R≥0(vi, ei) and hypersurfaces of equation
(1 + z(ei,0)).

4.2. The HDTV mirror for cluster varieties. In this section, we describe the
HDTV scattering diagram of §1.3.3 for the HDTV log Calabi-Yau pairs obtained
as log Calabi-Yau compactifications of X and A cluster varieties. By Theorem
3.5, the algebra of functions of the HDTV mirror of such log Calabi-Yau pair is
given by the algebra of theta functions defined by this scattering diagram.

4.2.1. The HDTV mirror for X cluster varieties. Let s be a skew-symmetric seed
satisfying the X assumptions and let (X,D) be a log Calabi-Yau compactification
of the corresponding X cluster variety, with a toric model (XΣ, H), as in §4.1.1.
As reviewed in §4.1.1, (X,D) is an example of HDTV log Calabi-Yau pair in
the sense of §1.3.1. In this section, we describe the HDTV scattering diagram
D(XΣ,H) of §1.3.3 for (X,D).
Recall from §4.1.1 that for every i ∈ I, we have a ray R≥0vi of Σ, corresponding

to a toric divisor Di of XΣ, and the hypersurface Hi ⊂ Di defined as the closure
of the locus of equation 1+zei = 0 in Di. In §1.3.3, the HDTV scattering diagram
D(XΣ,H) is described as a scattering diagram in MR over R = k[[NI ]]. From now
on, we identify NI with N⊕

uf =
⊕

i∈I Nei, that is ti with tei , and we view D(XΣ,H)

as a scattering diagram in MR over R = k[[N⊕
uf ]].

We first defined the initial scattering diagram D(XΣ,H),in in §1.3.3 in terms of
tropical hypersurfaces Hi associated to the hypersurfaces Hi. The following result
describes these tropical hypersurfaces in the X cluster case.

Lemma 4.2. For every i ∈ I, let σ be a codimension one cone of Σ containing
the ray R≥0vi. Then the weight wσ of the tropical hypersurface Hi on the cone
(σ + Rvi)/Rvi is given by wσ = 1 if σ ⊂ e⊥i , and wσ = 0 otherwise.

Proof. The quotient map M → M/Zvi induces an injective map

Hom(M/Zvi,Z) −→ Hom(M,Z) , (4.7)

whose image consists of the linear forms on M which vanish on vi. Since,

〈ei, vi〉 = 〈ei, p1(ei)〉 = {ei, ei} = 0 ,

there is a unique element ei ∈ Hom(M/Zvi,Z), whose image under the map in
(4.7) is ei.
By definition, the tropicalization of the equation 1 + zei restricted to Di,

1 + zei |Di
= 1 + zei ,

corresponds to the PL function ϕi on MR/Rvi given by max{ei, 0}, which restricts
to linear functions on the complement of e⊥i and has kink 1 along e⊥i . By standard
toric geometry, analogously as in the proof of [3, Prop.6.2], for every codimension
one cone σ ⊂ Σ containing the ray R≥0vi, the intersection number wσ = Dσ ·Hi

from Definition 1.14 equals to the kink of ϕi along the cone (σ+Rvi)/Rvi. Hence,
wσ = 1 if (σ + Rvi)/Rvi ⊂ e⊥i , that is, σ ⊂ e⊥i ; and wσ = 0 otherwise. !
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We can now describe the widgets Di of Definition 1.15 defining the initial
scattering diagram D(XΣ,H),in.

Lemma 4.3. For every i ∈ I, the widget Di associated to the hypersurface Hi

is equivalent to the scattering diagram

DC
i := {(dσ, fi) | σ is a maximal dimensional cone in e⊥i },

where fi = 1 + tizvi.

Proof. The result follows from the Definition 1.12 of the widget Di and from
Lemma 4.2 computing the weights wσ. !

For the comparison with the Aprin cluster scattering diagram in §5.2, it is more
convenient to work with the consistent completion of the widgets.

Lemma 4.4. For every i ∈ I, the consistent completion of DC
i is equivalent to

S(DC
i ) = {(e⊥i , fi)}

where fi = 1 + tizvi.

Proof. The hyperplane e⊥i divides the real vector space MR into the two half-
spaces {ei > 0} and {ei < 0}. In the scattering diagram {(e⊥i , fi)}, the wall-
crossing transformation for crossing from {ei > 0} to {ei < 0} is the inverse of
the wall-crossing transformation for crossing from {ei < 0} to {ei > 0}. As a
general oriented loop in MR goes from {ei > 0} to {ei < 0} as many times that it
goes from {ei < 0} to {ei > 0}, it follows that the scattering diagram {(e⊥i , fi)}
is consistent.
Moreover, as DC

i consists of all codimension one cones of Σ contained in e⊥i and
containing vi, the scattering diagram {(e⊥i , fi)} is obtained from DC

i by adding
walls which are all outgoing. As the consistent completion of a scattering diagram
is unique up to equivalence, it follows that {(e⊥i , fi)} is equivalent to the consistent
completion of DC

i .
!

We arrive at the following description of the HDTV scattering diagram in the
X cluster case.

Theorem 4.5. Let s be a skew-symmetric seed satisfying the X assumptions and
let (X,D) be a log Calabi-Yau compactification of the corresponding X cluster
variety, with a toric model (XΣ, H), as in §4.1.1. Then, the HDTV scattering
diagram D(XΣ,H) is equivalent to the consistent completion of the set of initial
walls

{(e⊥i , fi)}i∈I ,

where fi = 1 + tizvi.

Proof. By Definition 1.16, D(XΣ,H) is the consistent completion of

D(XΣ,H)in =
⋃

i∈I

Di .
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By Lemma 4.3, Di is equivalent to DC
i , and so D(XΣ,H) is equivalent to the con-

sistent completion of ∪i∈IDC
i . Hence, by uniqueness of the consistent completion,

D(XΣ,H) is also equivalent to the consistent completion of ∪i∈IS(DC
i ). The result

then follows from the explicit description of S(DC
i ) in Lemma 4.4. !

4.2.2. The HDTV mirror for A cluster varieties. Let s be a skew-symmetric
seed and let (X ′, D′) be a log Calabi-Yau compactification of the corresponding
A cluster variety, with a toric model (XΣ′, H ′), as in §4.1.1. As reviewed in §4.1.1,
(X ′, D′) is an example of HDTV log Calabi-Yau pair in the sense of §1.3.1. In
this section, we describe the HDTV scattering diagram D(XΣ′ ,H′) of §1.3.3 for
(X ′, D′).
Recall from §4.1.1 that for every i ∈ I, we have a ray R≥0ei of Σ′, corresponding

to a toric divisor D′
i of XΣ, and the hypersurface H ′

i ⊂ Di defined as the closure
of the locus of equation 1 + zvi = 0 in D′

i. Unlike what happens in the X case,
H ′

i is not connected in general and consists of |vi| disjoint connected components
H ′

i,j with 1 ≤ j ≤ |vi|. Let

Ĩ := {(i, j) | i ∈ I , 1 ≤ j ≤ |vi|} . (4.8)

The HDTV scattering diagram D(XΣ′ ,H′) is then a scattering diagram in NR over

R = k[[NĨ ]]. We denote by tij the monomial corresponding to the (i, j) copy of N.
Using arguments similar to those use for the X case in §4.2.1, we obtain the

following description of the HDTV scattering diagram in the A cluster case.

Theorem 4.6. Let s be a skew-symmetric seed and let (X ′, D′) be a log Calabi-
Yau compactification of the corresponding A cluster variety, with a toric model
(XΣ′, H ′), as in §4.1.1. Then, the HDTV scattering diagram D(XΣ′ ,H′) is equiva-
lent to the consistent completion of the set of initial walls

{(v⊥i , fi)}i∈I ,

where

fi =
|vi|∏

j=1

(1 + tijz
ei) . (4.9)

5. Mirror symmetry and cluster dual varieties

In §5.1 we first review the description of the cluster scattering diagram of
[16], as a particular type of a C-scattering diagram. While the description of
a C-scattering diagram we provide is similar to the one of a scattering diagram
discussed in §1, there are some technical differences between the two notions. We
give a precise comparison in §5.2. Particularly, in (5.4), we construct a map from
a set of C-scattering diagrams to the set of scattering diagrams. Using this, we
compare in Theorem 5.16 the Aprin cluster scattering diagram with the HDTV
scattering diagram for cluster varieties described in §4.2. In Theorem 5.17 we
prove the main result of this section, showing that the HDTV mirror to the X
cluster variety is a deformation of the dualA cluster variety. Consequently, in §5.4
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we obtain enumerative interpretations of the structure constants in the algebra
of theta functions R(D

Aprin
s ) defined by the Aprin cluster scattering diagram.

5.1. Cluster scattering diagrams. In this section we first introduce the general
notion of a C-scattering diagram, then describe the cluster scattering diagram of
[16] as a particular type of a Cprin scattering diagram.

5.1.1. C-scattering diagrams. Let s be a skew-symmetric seed, as in §4.1.1. In
this section and in §5.1.2, we make the following injectivity assumption on s, as
in [16, pg 17]: we assume that the map

p1 : Nuf −→M

n 0−→ {n, ·}

is injective. Later, we will only apply this section and §5.1.2 to the case of the
seed s̃ with principal coefficients as in Definition 4.1, for which the injectivity
assumption is always satisfied.
In what follows we set

N⊕ :=
⊕

i∈I

Nei ,

and N+ := N⊕ \ {0}. We define the monoid

P := p1(N
⊕) = {p1(n) | n ∈ N⊕} ,

and denote by k[P ] the associated monoid algebra. By the injectivity assumption,
0 is the only invertible element of P , so mP := P \ {0} is a maximal monoid ideal
of P , and we denote by k[[P ]] := lim←−k

k[P ]/mk
P the completion of k[P ] with respect

to mP .

Definition 5.1. A C-wall in MR for N+ is a pair (d, fd), consisting of a codi-
mension one rational polyhedral cone d ⊂ n⊥

d ⊂MR for some primitive nd ∈ N+,
together with an attached function fd ∈ k[[P ]] of the form

fd = 1 +
∑

k≥1

ckz
kp1(nd) .

We say that a C-wall is incoming if p1(nd) ∈ d, and outgoing elsewise. We call
−p1(nd) the direction of the C-wall.

Definition 5.2. A C-scattering diagram in MR is a set of C-walls (d, fd), such
that for every k ≥ 1, there are only a finite number of (d, fd) ∈ D with fd += 1
mod mk

P .

Remark 5.3. It follows from [16, Lemma 1.3] that the notion of a C-scattering
diagram in Definition 5.2 is equivalent to the notion of a scattering diagram
introduced in [16, §1.1] in the context of cluster algebras. We introduce the
terminology of “C-scattering diagram” in order to reserve “scattering diagram”
for the more general notion appearing in the context of mirror symmetry as in
Definition 1.10.
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The support of a C-scattering diagram D, denoted by Supp(D), is the union
of all cones d ⊂ MR supporting a wall (d, fd) of D. We define the singular locus
of D

Sing(D) :=
⋃

d∈D

∂d ∪
⋃

d,d′∈D

(d ∩ d′),

where the last union is over all pairs of walls d, d′ with d∩d′ codimension at least
two.
In what follows we review the notion of a consistent C-scattering diagram

following [16, §1.1]. Every C-wall (d, fd) defines an automorphism pd of k[[P ]]
given by

pd : k[[P ]] −→ k[[P ]] (5.1)

zm 0−→ f 〈nd,m〉
d zm .

Given a C-scattering diagram D and a path

γ : [0, 1] −→ MR \ Sing(D)

t 0−→ γ(t)

transversal to the walls of D, the associated path ordered product pγ,D is the
automorphism of k[[P ]] obtained as the ordered product of the automorphisms
p
εγ,di
di

attached to the sequence of walls di crossed by γ for t = ti, where

εγ,di := − sgn(〈ndi , γ
′(ti)〉) ∈ {±1} . (5.2)

Two C-scattering diagrams are equivalent if they have the same path ordered
products. Finally, we call a scattering diagram consistent if for any path γ with
γ(0) = γ(1) the associated path ordered product is the identity automorphism.
According to [16, §1.2], for every C-scattering diagram Din consisting of in-

coming C-walls (d, fd) in the sense of Definition 5.1 such that d = n⊥
d , one can

always find a consistent C-scattering diagram S(Din) containing Din, such that
all C-walls in S(Din) \Din are outgoing. Moreover, S(Din) is unique up to equiv-
alence with these properties and we refer to S(Din) as the consistent completion
of Din.

Remark 5.4. From a consistent C-scattering diagram D, one can construct using
broken lines, analogously as in §1.1 – see [16, §3] for details– a k[[P ]]-algebra
structure on the k[[P ]]-module

R(D) := lim←−
k

⊕

m∈M

(
k[P ]/mk

P

)
ϑCm

with basis elements ϑCm indexed by m ∈ M . We call R(D) the algebra of theta
functions defined by the C-scattering diagram D, and we refer to the basis ele-
ments ϑCm as theta functions.
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5.1.2. The cluster scattering diagram as a C-scattering diagram. We review the
description of the cluster scattering diagram following [16, Theorem 1.12], as a
particular C- scattering diagram.

Definition 5.5. Let Din,s be the C-scattering diagram formed by the set of
incoming C-walls given by

(e⊥i , 1 + zvi) (5.3)

for i ∈ I. Then, the cluster scattering diagram, denoted by

Ds := S(Din,s) ,

is the C-scattering diagram in MR obtained as the consistent completion of Din,s.

Remark 5.6. Note that vi = p1(ei) ∈ e⊥i and so the C-walls (e⊥i , 1+zvi) are indeed
incoming.

We refer to the algebra of theta functions R(Ds) defined by the cluster scat-
tering diagram (see Remark 5.4) as the algebra of cluster theta functions, and to
the theta functions ϑCm as the cluster theta functions.

5.1.3. Cprin-scattering diagrams and the Aprin cluster scattering diagram. In this

section we introduce particular types of C-scattering diagrams in M̃R := MR ⊕
NR, which we call Cprin-scattering diagrams. Finally, we describe Aprin cluster
scattering diagrams, which are important examples of both Cprin and cluster
scattering diagrams. These are of particular interest as they can be used to
reconstruct Aprin cluster varieties [16].

Definition 5.7. Let D = {(d, fd)} be a C-scattering diagram in M̃R := MR⊕NR.

We say that D is a Cprin-scattering diagram in M̃R if

(i) every wall d of D is contained in a hyperplane of the form (n, 0)⊥, where

(n, 0) ∈ Ñ = N ⊕M ,

and is invariant under translation by NR, that is d+NR ⊂ d.
(ii) for every wall d of D, we have fd ∈ k[M ][[N⊕

uf ]].

We are now ready to define Aprin cluster scattering diagrams.

Definition 5.8. The Aprin cluster scattering diagram, denoted by

D
Aprin
s := Ds̃ ,

is the cluster scattering diagram in M̃R = MR ⊕ NR associated to the seed with
principal coefficients s̃, defined in Definition 4.1.

Lemma 5.9. The initial walls of the Aprin cluster scattering diagram D
Aprin
s are

given by

((ei, 0)
⊥, 1 + z(vi,ei))

for all i ∈ I.
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Proof. Using the definition (4.3) of the skew-symmetric form for s̃, we have

{(ei, 0),−} = {ei,−}+ 〈ei,−〉 = (vi, ei) ∈M ⊕N ,

and so the result follows from the description of the initial walls of the cluster
scattering diagram in (5.3). !

Lemma 5.10. The Aprin cluster scattering diagram D
Aprin
s is a Cprin-scattering

diagram in M̃R.

Proof. Condition (i) of Definition 5.7 holds for the initial scattering diagram

D
Aprin

in,s by Lemma 5.9. Since this is preserved by the consistent completion, the

condition holds for D
Aprin
s . On the other hand, the functions attached to the walls

of D
Aprin
s are power series in the variables z(vi,ei) for i ∈ I. Indeed, it is the case

for the initial walls by Lemma 5.9 and this property is preserved by the consistent
completion. It follows that condition (ii) of Definition 5.7 holds for D

Aprin

in,s . !

For every Cprin-scattering diagram D, one can consider the algebra of theta
functions R(D) defined by D as in Remark 5.4. As D is a scattering diagram in

M̃R = MR⊕NR, the theta functions ϑC(m,n) are indexed by (m,n) ∈ M̃ = M ⊕N .

Lemma 5.11. Let D be a consistent Cprin-scattering diagram and let

{ϑC(m,n)}(m,n)∈M⊕N

be the corresponding set of theta functions. Then, for every (m,n) ∈M ⊕N , we
have

ϑC(m,n) = z(0,n)ϑC(m,0) .

In particular, the topological span of the theta functions (see [7, §2.2.2]) of the
form ϑC(m,n) with n ∈ N⊕

uf has a natural structure of k[[N⊕
uf ]]-module, for which

{ϑC(m,0)}m∈M is a topological k[[N⊕
uf ]]-basis.

Moreover, the span of the theta functions of the form ϑC(m,n) with n ∈ N⊕
uf is

a subalgebra of the algebra of theta functions, and so has a natural structure of
k[[N⊕

uf ]]-algebra.

Proof. As the walls of D are of the form (n, 0)⊥ and invariant by translation by
N , a broken line of asymptotic direction (0, n) never intersects any wall, so never
bends. Hence, the first part of the lemma follows.
The second part follows from (ii) in Definition 5.7 of a Cprin-scattering diagram

and the formula (1.5) computing product of theta functions in terms of broken
lines. !

5.2. From cluster scattering diagrams to scattering diagrams. Let D =
{(d, fd)} be a Cprin-scattering diagram in M̃R = MR ⊕ NR, as in Definition 5.7.
By Definition 5.7(i), every wall d of D is invariant by translation by NR and so
one can consider the quotient

d/NR ⊂ M̃R/NR = MR .
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Lemma 5.12. Let D = {(d, fd)} be a Cprin-scattering diagram in M̃R. Then

Ψ(D) := {(d/NR, fd)}

is a scattering diagram in MR over R = k[[N⊕
uf ]].

Moreover, a C-wall (d, fd) of D is incoming if and only if the wall (d/NR, fd)
of Ψ(D) is incoming.

Proof. Let (d, fd) be a C-wall of D. By Definition 5.1, d is a codimension one

rational polyhedral cone in M̃R, contained in a hyperplane n⊥
d for some primitive

nd ∈ Ñ+, and fd is of the form

fd = 1 +
∑

k≥1

ckz
kp1(nd) .

By Definition 5.7, nd = (n, 0) with n ∈ N+, and d is invariant under translation by
NR. In particular, d/NR is a codimension one rational polyhedral cone contained
in n⊥ ⊂ MR. Using (4.3), we find

p1(nd) = p1((n, 0)) = {n,−}+ 〈n,−〉 = (p1(n), n) ∈M ⊕N

and so

fd = 1 +
∑

k≥1

ckt
knzkp1(n) .

As 〈p1(n), n〉 = {n, n} = 0, it follows that −p1(n) ∈ M is tangent to d ⊂ n⊥.
Finally, we have fd ∈ k[M ][[N⊕

uf ]] by Definition 5.7(ii), and so (d/NR, fd) is a wall
of direction positively proportional to −p1(n) as in Definition 1.10. Moreover, it
follows that (d, fd) is incoming if and only if (d/NR, fd) is incoming.
As D is a C-scattering diagram as in Definition 5.2, it contains finitely many

C-walls (d, fd) with fd += 1 mod mk
P . It follows from fd ∈ k[M ][[N⊕

uf ]] that Ψ(D)
also contains finitely many walls (d/NR, fd) with fd += 1 mod mk

R, where mR =
N⊕

uf \ {0}, and so Ψ(D) is a scattering diagram over R as in Definition 1.10. !

By Lemma 5.12, we have a well-defined map

Ψ : Cprin − Scatt −→ Scatt (5.4)

D 0−→ Ψ(D)

from the set Cprin − Scatt of Cprin-scattering diagrams in M̃R up to equivalence
to the set Scatt of scattering diagrams in MR over R = k[[N⊕

uf ]] up to equivalence.
This map Ψ is injective: indeed, if Ψ(D) = {(d, fd)}, then we necessarily have

D = {(π−1
M (d), fd)}, where πM is the projection M̃R = MR⊕NR → MR, since the

walls of a Cprin-scattering diagram are of the restricted form given in Definition
5.7.

Lemma 5.13. Let D be a Cprin-scattering diagram in M̃R. Then, D is consistent
if and only if Ψ(D) is consistent.
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Proof. As D is invariant by translation by N , it is enough to consider paths γ in
MR transversal to the walls of Ψ(D) to test the consistency of Ψ(D), and their

lifts (γ, 0) ∈ M̃R = MR ⊗NR to test the consistency of D. Let d be a wall of D.
Then nd = (n, 0) for some n ∈ N+ and nd/NR

= n. Comparing (5.1)-(5.2) with
(1.8), it is enough to show that

εγ,dn = nd/NR,γ .

This equality holds because by (5.2), εγ,d(n, 0) is a primitive normal vector to d
which is negative on (γ((t0 − ε, t0)), 0) for all small ε > 0, and so εγ,dn satisfies
the defining property of nd/NR,γ. !

Lemma 5.14. The map Ψ commutes with the operation of taking consistent
completions. That is, given a Cprin-scattering diagram Din in M̃R with support a
union of hyperplanes, we have

S(Ψ(Din)) = Ψ(S(Din)) .

Proof. This follows from Lemma 5.12 and Lemma 5.13. !

Finally, we describe how Ψ behaves with respect to theta functions.

Lemma 5.15. LetD be a consistent Cprin-scattering diagram. Let {ϑC(m,n)}(m,n)∈M⊕N

be the theta functions defined by D and {ϑm}m∈M the theta functions defined by
Ψ(D). Then, the map

ϑC(m,0) 0−→ ϑm

induces an isomorphism of k[[N⊕
uf ]]-algebras between the algebra of theta functions

of the form ϑC(m,n) with n ∈ N⊕
uf and the algebra of theta functions {ϑm}m∈M .

Proof. First note that we have indeed a structure of k[[N⊕
uf ]]-algebra on the algebra

of theta functions of the form ϑC(m,n) with n ∈ N⊕
uf by Lemma 5.11. It remains to

compare the theta functions ϑC(m,0) and ϑm form ∈M . As described in the proof of

Lemma 5.12, walls ofD are of the form d ⊂ (n, 0)⊥ and fd = 1+
∑

k≥1 z
k(p1(n),n) for

some n ∈ N , and so all monomials of a broken line for D of asymptotic direction
(m, 0) are of the form aiz(m+p1(ni),ni) for some ni ∈ N . Let β be a broken line
for D of asymptotic direction (m, 0) and ending at a point x ∈ MR ⊕ NR. Let
πM(β) be the image in MR of β by the projection πM : MR ⊕ NR → MR. For
every domain of linearity βi of β, with a monomial of the form aiz(m+p1(ni),ni) for
some ni ∈ N , we attach the monomial aitnizm+p1(ni) to the domain of linearity
πM(βi) of πM (β). Then, it follows from the descriptions of walls of Ψ(D) given
in the proof of Lemma 5.12 that πM (β) is a broken line for Ψ(D) of asymptotic
direction m and endpoint πM(x). Moreover, the map β 0→ πM(β) is a bijection
between broken lines for D of asymptotic direction (m, 0) and ending at x, and
broken lines for Ψ(D) of asymptotic direction m and ending at πM(x), and so
Lemma 5.15 follows. !

5.3. Fock–Goncharov duals and HDTV mirrors to cluster varieties.
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5.3.1. Mirrors to X cluster varieties. Let s be a skew-symmetric seed satisfying
the X assumptions and let (X,D) be a log Calabi-Yau compactification of the
corresponding X cluster variety, with a toric model (XΣ, H), as in §4.1.1. We
first use the map Ψ defined in §5.2 to compare the HDTV scattering diagram
D(XΣ,H) described in §4.2.1 with the Aprin cluster scattering diagram reviewed in
§5.1.3.

Theorem 5.16. Let s be a skew-symmetric seed satisfying the X assumptions
and let (X,D) be a log Calabi-Yau compactification of the corresponding X cluster
variety, with a toric model (XΣ, H), as in §4.1.1. Then, the HDTV scattering
diagram D(XΣ,H) is the image of the Aprin cluster scattering diagram by the map
Ψ:

Ψ(D
Aprin
s ) = D(XΣ,H) .

Proof. By Lemma 5.9, the initial walls of DAprin are ((ei, 0)⊥, 1+z(vi,ei)) for i ∈ I.
On the other hand, from Theorem 4.5, we know that D(XΣ,H) is the consistent
completion of the walls (e⊥i , 1+tizvi) for i ∈ I. Using the identifications NI = N⊕

uf ,
and ti = tei, this can be rewritten as (e⊥i , 1 + z(vi,ei)). As (ei, 0)⊥/NR = e⊥i , we
have

Ψ({((ei, 0)
⊥, 1 + z(vi,ei))}i∈I) = {(e⊥i , 1 + z(vi,ei))}i∈I ,

and then Ψ(D
Aprin
s ) = D(XΣ,H) follows by Lemma 5.14. !

As described in Definition 3.4, (X,D) has a HDTV mirror, which is a family

X̌HDTV −→ Spf k[[NI ]] = Spf k[[N⊕
uf ]] .

The main result of this section below shows that the HDTV mirror family to
(X,D) is a degeneration of the dual A cluster variety.

Theorem 5.17. Let s be a skew-symmetric seed satisfying the X assumptions and
let (X,D) be a log Calabi-Yau compactification of the corresponding X cluster
variety as in §4.1.1. Then, there exists a unique isomorphism over Spf k[[N⊕

uf ]]
between the HDTV mirror family

X̌HDTV −→ Spf k[[N⊕
uf ]]

of (X,D) and the formal partially compactified A cluster variety with principal
coefficients as in (4.2),

π̂uf : Âprin,uf −→ Spf k[[N⊕
uf ]] ,

matching the basis of theta functions {ϑm}m∈M on X̌HDTV with the basis of cluster

theta functions {ϑC(m,0)}m∈M on Âprin,uf.

Proof. To compare the cluster variety Âprin,uf with the HDTV mirror family
X̌HDTV to (X,D), first note that by Theorem 3.5 the algebra of functions of
HDTV mirror X̌HDTV is the algebra of theta functions defined by the scattering
diagram D(XΣ,H). On the other hand, by [16, Proposition 6.4 (4)], the algebra

of functions of the cluster variety Âprin,uf is the algebra of theta functions of the
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form ϑC(m,n) with n ∈ N⊕
uf constructed from the Aprin cluster scattering diagram

D
Aprin
s defined in Definition 5.8. The result then follows immediately from Lemma

5.15 and Theorem 5.16. !

Remark 5.18. Let (X,D) be a log Calabi-Yau compactification of a X cluster
variety as in Theorem 5.17. By Remark 2.4, when the complement X \ D is
affine, the mirror family canonically extends over Speck[NE(X)] and the ex-
tended mirror family extends further over Spec k[M]. In this case, the HDTV
mirror family extends over Spec k[N⊕

uf ] and it follows from the proof of Theo-
rem 5.17 that the resulting family is isomorphic to the partially compactified
Aprin cluster variety πA,uf : Aprin,uf −→ Speck[N⊕

uf ] as in (4.1). In particular, the
fiber over 1 ∈ Speck[Nuf ] of the HDTV mirror family extended over Speck[N⊕

uf ],
and so the fiber over 1 ∈ Speck[N1(X)] of the mirror family extended over
Speck[NE(X)], are then isomorphic to the A cluster variety. Moreover, the re-
striction of the theta functions to this fiber are the cluster theta functions for the
A cluster varieties defined in [16]. In the context of the non-archimedean mirror
construction of [25], this result is essentially [25, Theorem 1.19]. By contrast,
Theorem 5.17, stated in terms of formal families, holds in complete generality
without the assumption that X \D is affine.

5.3.2. Mirrors to A cluster varieties. Let s be a skew-symmetric seed and let
(X ′, D′) be a log Calabi-Yau compactification of the corresponding A cluster
variety, with a toric model (XΣ′ , H ′), as in §4.1.1. As described in Definition 3.4,
(X ′, D′) has a HDTV mirror, which is a family

X̌′
HDTV −→ Spf k[[NĨ ]]

where Ĩ is given by (4.8). We will consider the restriction

X̌′
HDTV,I −→ Spf k[[NI ]] = Spf k[[N⊕

uf ]] (5.5)

defined by setting tij = ti for all (i, j) ∈ Ĩ.
The main result of this section, Theorem 5.19 below, shows that the HDTV

mirror family to (X ′, D′), restricted as in (5.5), is a degeneration of the dual X
cluster variety. The corresponding statement of Theorem 5.17 for the mirror to X
cluster varieties involves a comparison with the cluster theta functions defined by
[16] on Aprin. For the mirror to A cluster varieties, one would like a comparison
with cluster theta functions on Xprin. However, Xprin was not studied in [16] and
so no cluster theta functions were constructed. Therefore, we have to explain
how to adapt the techniques of [16] to construct cluster theta functions on Xprin.
We first review how the X cluster variety is studied in [16, §7]. The map of

lattices

p̃ : N ⊕M −→ M

(n,m) 0−→ m− p∗1(n)

induces a map
p̃ : Aprin −→ X (5.6)
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which realizes X as the quotient of Aprin by the torus Speck[M ]. By duality, p̃
induces an inclusion

ι : NR ↪−→ M̃R = MR ⊕NR (5.7)

n 0−→ (p∗1(n), n)

As all monomials in the functions attached to the walls of D
Aprin
s are of the

form z(p
∗
1n,n), it makes sense to intersect D

Aprin
s with NR to obtain a C-scattering

diagramDX
s inNR [16, Construction 7.11]. By Lemma 5.9, D

Aprin
s is the consistent

completion of the initial walls ((ei, 0)⊥, 1+z(vi,ei)) for i ∈ I. As p̃((ei, 0)) = −vi, it
follows that DX

s is the consistent completion of the initial walls (v⊥i , (1+ zei)|vi|)9

for i ∈ I. Cluster theta functions for X are then defined using the C-scattering
diagram DX

s , or equivalently as Speck[M ]-invariant cluster theta functions for
Aprin.
To study Xprin, we consider an analogue of (5.6) with coefficients. Let Aprin,c

be the cluster variety over Speck[N ] obtained from Aprin, viewed as a cluster
variety over Speck, by adding coefficients for the basis elements (ei, 0), i ∈ I, of
the seed s̃. Then, p̃ extends to a map

Aprin,c −→ Xprin

which realizes Xprin as a quotient of Aprin,c by Speck[M ]. Let D
Aprin,c
s be the

scattering diagram in M̃R over k[[N⊕
uf ]] obtained as the consistent completion of

the initial walls ((ei, 0)⊥, 1 + tiz(vi,ei)) for i ∈ I. As D
Aprin,c
s has the same support

as D
Aprin
s , the arguments of [16], based on the existence of the cluster complex in

the complement of the walls of D
Aprin
s , generalize to D

Aprin,c
s and imply that the

cluster theta functions {ϑC(m,n)}(m,n)∈M⊕N defined by D
Aprin,c
s form a topological

basis of the k[[N⊕]]-algebra of functions on the formal completion

π̂A,c : Âprin,c −→ Spf k[[N⊕]] .

The intersection of D
Aprin,c
s with NR embedded in M̃R as in (5.7) is the scattering

diagram D
Xprin
s in NR over k[[N⊕

uf ]] obtained as the consistent completion of the
initial walls (v⊥i , (1 + tizei)|vi|) for i ∈ I. We conclude that the cluster theta

functions {ϑCn }n∈N defined by D
Xprin
s form a topological basis of the k[[Nuf⊕]]-

algebra of functions on the formal completion

π̂X ,uf : X̂ prin,uf −→ Spf k[[N⊕
uf ]] ,

as in (4.6).

Theorem 5.19. Let s be a skew-symmetric seed and let (X ′, D′) be a log Calabi-
Yau compactification of the corresponding A cluster variety as in §4.1.1. Then,

9Whereas (ei, 0) is the primitive normal vector to (ei, 0)⊥, the primitive normal vector to v⊥i
is vi/|vi|, and so one has to include a power of |vi| in the attached function for the wall-crossing
automorphism to stay the same.
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there exists a unique isomorphism over Spf k[[N⊕
uf ]] between the HDTV mirror

family of (X ′, D′), restricted as in (5.5),

X̌′
HDTV,I −→ Spf k[[N⊕

uf ]] ,

and the formal partially compactified X cluster variety with principal coefficients
as in (4.6),

π̂X ,uf : X̂ prin,uf −→ Spf k[[N⊕
uf ]] ,

matching the basis of theta functions {ϑn}n∈N on X̌′
HDTV with the basis of cluster

theta functions {ϑCn }n∈N on X̂ prin,uf .

Proof. By Theorem 3.5 the algebra of functions of the HDTV mirror X̌′
HDTV is

the algebra of theta functions defined by the HDTV scattering diagram D(XΣ′ ,H′),
which is given for A cluster varieties by Theorem 4.6. Setting tij = ti in Theorem

4.6, we obtain the scattering diagram D
Xprin
s producing the cluster theta functions

on X̂ prin,uf and this concludes the proof of the theorem. !

Remark 5.20. Let (X ′, D′) be a log Calabi-Yau compactification of a A cluster
variety as in Theorem 5.19. As in Remark 5.18, when the complement X ′ \D′ is
affine, the HDTV mirror family extends over Spec k[N⊕

uf ] and the resulting family
is isomorphic to the partially compactified Xprin cluster variety πX ,uf : X prin,uf −→
Speck[N⊕

uf ] as in (4.5). In particular, the fiber over 1 ∈ Speck[Nuf ] of the HDTV
mirror family is isomorphic to the X cluster variety. Moreover, the restriction of
the theta functions to this fiber are the cluster theta functions for the X cluster
varieties defined in [16].

5.3.3. Mirrors to X symplectic fibers and A torus quotients. Let s be a skew-
symmetric seed. We consider the map

p : N −→ M

n 0−→ {n,−}

and we denote by K ⊂ N the kernel of p. The inclusion K ⊂ N induces a map
of tori

ν : Speck[N ] −→ Speck[K] ,

and then a map

λ : X −→ Speck[K] .

The skew-symmetric form {−,−} on N defines a Poisson structure on X and
the fibers of λ are the corresponding symplectic leaves. Dually, denoting K∨ :=
Hom(K,Z), the projectionM → K∨ induces maps of tori Speck[K∨]→ Speck[M ],
and then an action of the torus Speck[K∨] on A. To state a version of our results
for the X symplectic fibers λ−1(t) and the quotient A/ Speck[K∨], we remark

that the map λ extends to a map λ̂prin,uf : X̂ prin,uf → Speck[K], and that the

action of Speck[K∨] on A extends to an action on Âprin,uf .
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Theorem 5.21. Let s be a skew-symmetric seed satisfying the X assumptions
and let (X,D) be a log Calabi-Yau compactification of a general X symplectic
fiber λ−1(t). Then the HDTV mirror family

X̌HDTV −→ Spf k[[N⊕
uf ]]

of (X,D) is isomorphic to the family of quotients

Âprin,uf/ Speck[K
∨] −→ Spf k[[N⊕

uf ]] .

Proof. Let µ : MR → K∨
R be the projection dual to the inclusion K ⊂ N . By

Theorem 4.5, the HDTV scattering diagram of a log Calabi-Yau compactifica-
tion of the X cluster variety is the consistent scattering diagram in MR with
initial walls (e⊥i , 1 + tizvi)i∈I . By Theorem 5.17, the corresponding theta func-

tions {ϑm}m∈M are the cluster theta functions for Âprin,uf . Since {ei, K} = 0, it
follows that µ(vi) = 0 for all i ∈ I, and so µ(v) = 0 for every direction v of a
wall. Hence, the intersection of this scattering diagram with µ−1(0) is naturally
a scattering diagram in µ−1(0), which is in fact the HDTV scattering diagram
D(XΣ,H) of a log Calabi-Yau compactification (X,D) of a X symplectic fiber
λ−1(t) for t ∈ Speck[K]. Indeed, the toric model (XΣ, H) of (X,D) has the fol-
lowing description. The toric variety XΣ is a toric compactification of the torus
ν−1(t) 2 Speck[N/K] fiber of ν : Spec k[N ] → Speck[K], with fan in µ−1(0)
containing the rays R≥0vi. Moreover, the hypersurfaces Hi have equations given
by the restriction to the divisors Di of the rational function on XΣ obtained by
restricting 1 + zei from Spec k[N ] to ν−1(t).
Therefore, the theta functions for the mirror of (X,D) are {ϑm}m∈M,µ(m)=0.

The result follows because for everym ∈M , µ(m) ∈ K∨ is the weight of the action

of Speck[K∨] on ϑm, and theta functions on the quotient Âprin,uf/ Speck[K∨] are
exactly the weight zero theta functions. !

Remark 5.22. The conclusion of Theorem 5.21 is still valid if one does not as-
sume part (ii) of the X assumptions of §4.1.1. Indeed, for general t, the fibers
over t of the various hypersurfaces Hi do not intersect, and so a log Calabi-Yau
compactification of the X symplectic fiber λ−1(t) is automatically an HDTV log
Calabi-Yau pair.

Theorem 5.23. Let s be a skew-symmetric seed and let (X,D) be a log Calabi-
Yau compactification of the quotient A/ Speck[K∨]. Then the restricted HDTV
mirror family

X̌HDTV,I −→ Spf k[[N⊕
uf ]]

of (X,D) is isomorphic to the family of X symplectic fibers

λ̂
−1

prin,uf(1) −→ Spf k[[N⊕
uf ]] .

Proof. By Theorem 4.6, the HDTV scattering diagram of a log Calabi-Yau com-
pactification of the A cluster variety after setting tij = ti is the consistent
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scattering diagram in NR with initial walls (v⊥i , (1 + tizei))|vi|)i∈I . By Theo-
rem 5.19, the corresponding theta functions {ϑn}n∈N are the cluster theta func-

tions for X̂ prin,uf . As {ei, K} = 0, all the walls are invariant under the ac-
tion of KR by translation on NR. Hence, this scattering diagram naturally de-
fines a scattering diagram in the quotient (N/K)R, which is in fact the HDTV
scattering diagram D(XΣ,H) of a log Calabi-Yau compactification (X,D) of the
quotient A/ Speck[K∨]. Indeed, the toric model (XΣ, H) of (X,D) has the
following description. The toric variety XΣ is a toric compactification of the
torus Speck[M/K∨] = (Speck[M ])/(Speck[K∨]), with fan in (N/K)R contain-
ing the images of the rays R≥0ei by the projection N → N/K. Moreover, as
vi(K) = {ei, K} = 0, the functions 1 + zvi on Speck[M/K] are invariant under
the action of Speck[K∨], so induce functions on the quotient

Speck[M/K∨] = (Speck[M ])/(Speck[K∨]) ,

whose restrictions to the divisors Di are the equations of the hypersurfaces Hi.
Therefore, the theta functions for the mirror of (X,D) are obtained by setting

ϑn = 1 for every n ∈ K, and so the mirror is the family of X symplectic fibers

λ̂
−1

prin,uf(1). !

Remark 5.24. The map p : N → M induces first a map A → X , and then a
generically finite map A/ Speck[K∨] → λ−1(1), which is an isomorphism when
the skew-symmetric form induced by {−,−} on N/K is unimodular. In this
case, Theorems 5.21 and 5.23 imply that the holomorphic symplectic variety
A/ Speck[K∨] 2 λ−1(1) is essentially self-mirror.

5.4. Enumerative geometry of cluster varieties. Let s be a skew-symmetric
seed satisfying the X assumptions and let (X,D) be a log Calabi-Yau compact-
ification of the corresponding X cluster variety as in §4.1.1. We consider the
algebra of theta functions R(D

Aprin
s ) obtained from the Aprin cluster scattering

diagram D
Aprin
s . A basis of this algebra is given the cluster theta functions of the

form ϑC(m,0), as discussed in §5.1.2. By Lemma 5.11, they naturally span a k[[N⊕
uf ]]-

algebra, and so for every m1, m2, m, we have structure constants Cm
m1m2

∈ k[[N⊕
uf ]]

such that
ϑC(m1,0)ϑ

C
(m2,0) =

∑

m∈B(Z)

Cm
m1m2

ϑC(m,0) .

The structure constants are power series

Cm
m1m2

=
∑

A=(ai)i∈I∈NI

Cm
m1m2,A

∏

i∈I

z(0,aiei) ,

with coefficients Cm
m1m2,A ∈ k. Actually, it follows from [16, Theorem 1.13] that

Cm
m1m2,A ∈ N

for every m1, m2, m ∈M and A ∈ NI .
On the other hand, for every m1, m2, m ∈ M and β ∈ NE(XΣ), Gross and

Siebert define in [20] counts of curves Nm
m1m2,β ∈ Q in (X,D). Let σ1, σ2, σ be
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the smallest cones of Σ containing respectively m1, m2, m, and let Dσ1 , Dσ2 ,
Dσ3 be the corresponding strata of (X,D). Then, roughly, Nm

m1m2,β is a count of
3-pointed degree β rational curves

f : (C, x1, x2, x3) −→ X

such that

f(x1) ∈ Dσ1 , f(x2) ∈ Dσ2 , f(x3) ∈ Dσ3 ,

with prescribed tangency conditions determined by m1, m2,−m, and such that
f(x3) coincides with a fixed given point on Dσ. The precise definition of Nm

m1m2,β,
given in [20, Definition 3.21] uses logarithmic geometry and Nm

m1m2,β is in general
an example of punctured log Gromov–Witten invariant10.

Theorem 5.25. Let s be a skew-symmetric seed satisfying the X assumptions
and let (X,D) be a log Calabi-Yau compactification of the corresponding X clus-
ter variety as in §4.1.1. Then, the structure constants of the algebra of theta
functions defined by the cluster scattering diagram D

Aprin
s are expressed in terms

of the punctured log Gromov–Witten invariants of (X,D) as follows: for every
m1, m2, m ∈M and A = (ai)i∈I ∈ NI, we have

Cm
m1m2,A =

∑

β∈NE(XΣ)

Nm
m1m2,(β−

∑
i∈I aiEi)

.

Proof. Combining Theorem 5.17 and Theorem 3.5, the structure constants com-
puted from the Aprin scattering diagram are obtained by setting to zero the curves
classes coming from NE(XΣ) with respect to the decomposition NE(XΣ)⊕NI in
the structure constants computed from the canonical scattering diagram D(X,D).
On the other hand, by [21, Theorem C] the structure constants computed from
the canonical scattering diagram are the punctured log Gromov-Witten invariants
Nm

m1m2,β introduced in [20]. !

Remark 5.26. Using [21, Theorem 4.5], one can similarly give an enumerative in-
terpretation of the coefficients of the monomial expansions ϑC(m,0)(p) of the cluster
theta functions as in (1.6) in terms of the counts of log broken lines defined in
[21, Definition 3.21].

Remark 5.27. One can also exchange the roles of A and X : given a skew-
symmetric seed s and (X ′, D′) a log Calabi-Yau compactification of the corre-
sponding A cluster variety as in §4.1.1, we obtain an enumerative interpretation
of the structure constants of the algebra of theta functions defined by the cluster
scattering diagram D

Xprin
s in terms of the punctured log Gromov–Witten invari-

ants of (X ′, D′).

10If m += 0, then −m /∈ σ, and so the tangency condition −m involves negative contact
orders.
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