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Abstract
We present a theory based on the conventional two-term (i.e. Lorentzian) approximation to the
exact solution of the Boltzmann equation in non-magnetized weakly ionized plasma to
efficiently obtain the electron rate and transport coefficients in a magnetized plasma for an
arbitrary magnitude and direction of applied electric field E⃗ and magnetic field B⃗. The proposed
transcendental method does not require the two-term solution of the Boltzmann equation in
magnetized plasma, based on which the transport parameters vary as a function of the reduced
electric field E/N, reduced electron cyclotron frequency ωce/N, and angle ∠E⃗, B⃗ between E⃗ and
B⃗ vectors, where N is the density of neutrals. Comparisons between the coefficients derived
from BOLSIG+’s solution (obtained via the two-term expansion when B⃗ ̸= 0) and coefficients
of the presented method are illustrated for air, a mixture of molecular hydrogen (H2) and helium
(He) representing the giant gas planets of the Solar System, and pure carbon dioxide (CO2). The
new approach may be used in the modeling of magnetized plasma encountered in the context of
transient luminous events, e.g. sprite streamers in the atmosphere of Earth and Jupiter, in
modeling the propagation of lightning’s electromagnetic pulses in Earth’s ionosphere, and in
various laboratory and industrial applications of nonthermal plasmas.

Supplementary material for this article is available online

Keywords: electron energy distribution function, electron transport and rate coefficients,
Hall parameter, magnetized plasma, nonthermal plasma, weakly ionized plasma, gas discharge

1. Introduction

Starikovskiy et al (2021) reported the first plasma fluid model
for magnetized streamer discharges. The authors studied
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streamer propagation parallel to a magnetic field in pure CO2.
The motivations for this study included the significant interest
in the energy generation cycle of magnetohydrodynamic gen-
erators, the possible utilization of CO2 in alternative renewable
energy sources, and the use of CO2 as an alternative to SF6 for
insulation in high-voltage transmission and distribution net-
works due to its lower environmental impact (e.g. Hernandez-
Avila et al 2002, Seeger et al 2016, Starikovskiy et al 2021).

Transient luminous events are a set of frequently
observed lightning-induced optical phenomena that were
serendipitously discovered by Franz et al (1990). In particular,
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a transient luminous event referred to as an elve (e.g. Fukunishi
et al 1996), which is the optical manifestation of the iono-
sphere interacting with a lightning electromagnetic pulse,
occurs at lower ionospheric altitudes, i.e. ∼100 km, in the
Earth’s atmosphere. The Earth’s geomagnetic field plays an
important role in the structure of elves. For instance, Nagano
et al (2003) attributed the asymmetry exhibited in the shape
of elves to the Earth’s geomagnetic field. A three-dimensional
finite difference time domain model that accounts for the
effects of electron heating on electron mobility and for the
asymmetry of elves due to the geomagnetic field was reported
in Marshall (2009), Marshall et al (2010). This asymmetry
was not observed in studies that excluded Earth’s magnetic
field (Barrington-Leigh et al 2001, Veronis et al 2001, Kuo
et al 2007, Liu et al 2017, Pérez-Invernón et al 2018).

Following the first observation of possible transient lumin-
ous events on Jupiter reported by Giles et al (2020),
Janalizadeh and Pasko (2023) developed a numerical model
for the modeling of magnetized streamers in the presence of
Jupiter’s strong magnetic field. Similar to Starikovskiy et al
(2021), streamer propagation was considered in a cylindrical
coordinate system, where the magnetic field was parallel to the
axis, and magnetized streamers were studied in the molecular
hydrogen and helium-dominated atmosphere of Jupiter.

Following Starikovskiy et al (2021), in Janalizadeh and
Pasko (2023), BOLSIG+ (Hagelaar and Pitchford 2005) was
used to calculate the electron transport and rate coefficients
as a function of the reduced electric field E/N, reduced elec-
tron cyclotron frequency ωce/N, and angle ∠E⃗, B⃗ between
the applied electric field E⃗ and magnetic field B⃗ vectors. In
Janalizadeh and Pasko (2023, and references therein) it is
demonstrated that in the presence of a magnetic field transport
parameters of a weakly ionized plasma vary as a function of
(E/N,ωce/N,∠E⃗, B⃗). As done in Starikovskiy et al (2021), one
may dramatically reduce the execution time of a fluid model
for magnetized plasma by fitting analytical functions to lookup
tables produced from the electron rate and transport coeffi-
cients calculated by BOLSIG+.

In an alternative approach, however, it is possible to use
the electron rate and transport coefficients corresponding to
an effective electric field Eeff in non-magnetized plasma (i.e.
B⃗= 0) to deduce plasma transport parameters for the magnet-
ized case (i.e. B⃗ ̸= 0). Compared to interpolating values from
3D lookup tables corresponding to (E/N,ωce/N,∠E⃗, B⃗), the
proposed method requires solving a transcendental equation
to obtain Eeff, and subsequently using pre-computed rate and
transport coefficient vectors to obtain values corresponding to
Eeff/N. Based on the authors’ experience, 3D interpolation in
a high-resolution plasma fluid model is more time-consuming
than solving a transcendental equation. The authors have not
compared the efficiency of the transcendental method with
calculations using analytical functions fitted to 3D lookup
tables (e.g. Starikovskiy et al 2021). Overall, we emphasize
that the calculations realized through the fitting functions, the
lookup tables, or the proposed transcendental method do not

represent the most computationally expensive parts of mod-
els (i.e. streamer models (Starikovskiy et al 2021, Janalizadeh
and Pasko 2023)). In non-magnetized cases, we do not create
lookup tables for different E and N values. Instead, we use the
E/N-dependent (i.e. reduced) representations. The physics-
based simplicity of the proposed formulation can be viewed
as more efficient from the same perspective.

The majority of the present work is dedicated to the
development of the theoretical background quantifying Eeff.
Nevertheless, to accommodate readers interested mainly in the
implementation aspect of the introduced method, in section 2
we describe the procedure to implement a simple and intu-
itive approximation to the general transcendental framework,
which in later sections will be presented in detail. We conclude
section 2 after demonstrating that the approximate method res-
ults in electron transport parameters in pure CO2 plasma, that
are in satisfactory agreement with BOLSIG+’s exact calcula-
tions for B⃗ ̸= 0.

Section 3 sets the theoretical foundation required for the
introduction of the effective electric field Eeff mentioned
above. Here it is demonstrated that Eeff, defined through the
minimization of a designed error function, is in the same
format of the electric field as an electron with energy ε (in
electronvolts (eV)) experiences in the presence of a magnetic
field (e.g. Starikovskiy et al 2021, equation (5)). Specifically,
for a given magnitude of applied magnetic field (i.e. for spe-
cified ωce/N) and for a given angle between the electric field E⃗
and magnetic field B⃗ applied to a weakly ionized plasma, the
influence of B⃗ on the ensemble of electrons may be interpreted
in terms of an effective Hall parameter βeff, which itself var-
ies as a function of Eeff/N. Hereafter, we distinguish between
the conventional energy-dependent Hall parameter βH(ε) =
ωce/νm(ε) (where ωce = qeB/me, qe is the fundamental charge
of an electron, me is the mass of an electron, and νm(ε) is the
effectivemomentum transfer collision frequency that is a func-
tion of ε) and βeff, with the subscript ‘H’ used only for the
former. Moreover, the dependence of quantities on the elec-
tron energy or velocity will be explicitly shown via a trail-
ing ‘(ε)’ or ‘(v)’, respectively. That is, the absence of ‘(ε)’ or
‘(v)’ in the symbol of any plasma rate and transport coefficient
implies that the corresponding coefficient has been averaged
over the electron energy distribution function (EEDF). We
note that the quantification of νm(ε) for collisions of electrons
with each species in a mixture requires an effective electron
impact cross-section, which as mentioned in the LXCat cross-
section file accompanying BOLSIG+ (Hagelaar and Pitchford
2005), equals the sum of the elastic momentum transfer cross-
section and total inelastic collision cross-section. This effect-
ive cross-section is not in any way connected to the concept of
Eeff mentioned above.

The mathematical derivations related to section 3 may
be found in appendix A, where the general transcendental
method is derived. Here, we also discuss the weight func-
tion w(v) (where v= γε

1
2 in which γ = (2qe/me)

1
2 ) that is

introduced in the definition of the error function mentioned
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above. Subsequently, in section 4.1 it is demonstrated that
three custom weight functions investigated as part of this ana-
lysis provide similar values for βeff, and consequently we focus
on one specific weight function, which results in the presen-
ted formulation lending itself to the electron rate and transport
coefficients of magnetized plasma defined in e.g. Hagelaar
(2016), and in some cases, directly outputted by BOLSIG+.
This transition is explained in appendix B. In appendix C, fur-
ther approximations justified in the case of nearly constant
momentum transfer collision frequency as a function of the
electron energy are introduced. This is where the simple and
intuitive approximation to the general transcendental method,
presented in section 2, is justified. In section 4.2 and through
the comparison of some electron transport and rate coeffi-
cients with BOLSIG+ calculations corresponding to B⃗ ̸= 0,
it is demonstrated that the proposed transcendental method,
in exact and approximate form, and the magnetized plasma
(i.e. B⃗ ̸= 0) calculations of BOLSIG+ give consistent results.
The limit of nearly constant νm(ε) is also discussed. The valid-
ity of the presented transcendental framework is demonstrated
through application to three gas mixtures, i.e. air, a mixture of
88% molecular hydrogen with 12% helium representing the
composition of giant gaseous planets in the Solar System, and
pure carbon dioxide.

2. Model outline

The electron transport and rate coefficients in various gas mix-
tures for the non-magnetized (i.e. B⃗= 0) case are commonly
represented as functions of the reduced applied fieldE/N using
lookup tables or various fits with analytical functions. These
are usually formulated using a combination of the solution of
kinetic equations, swarm experiments, and Monte Carlo sim-
ulations, and are readily available to modelers. An example of
these would be solutions corresponding to B⃗= 0 in CO2 gas
recently published in Starikovskiy et al (2021). The purpose of
this section is to demonstrate that these B⃗= 0 representations
can be directly used to obtain transport and rate coefficients for
an arbitrary magnitude and direction of the applied magnetic
field B⃗ ̸= 0. We note that ideas of self-consistently account-
ing for the electron momentum transfer collision frequency
varying as a function of the applied electric field in the eval-
uation of the electron conductivity tensor in weakly ionized
plasmas have appeared in previous publications (Pasko et al
1998, Marshall 2009, Marshall et al 2010, Kabirzadeh et al
2015, Salem et al 2016, Tonev and Velinov 2016). However,
these approaches have not been rigorously justified.

While a rigorous formulation and discussion of the valid-
ity of the proposed transcendental method follows in the sub-
sequent sections, here we focus on the implementation of an
approximation to the general transcendental method to illus-
trate and emphasize the accuracy and efficiency of the tran-
scendental method in its simplest form (see appendix C).
We note that in this case, the effective electric field Eeff in

the presence of a magnetic field is given by the proposed
method via

E2
eff = E2

∥ +
E2
⊥

1+β2
eff(Eeff)

= E2
∥ +

E2
⊥

1+(ωce/νm)
2 (1)

which resembles the expression of the electric field that
an electron with energy ε experiences due to the presence
of a magnetic field (e.g. Starikovskiy et al 2021, equation
(5)). Whereas the Hall parameter βH(ε) = ωce/νm(ε) (e.g.
Starikovskiy et al 2021, equation (5)), where νm(ε)/N is
the rate constant for momentum transfer due to an electron
with energy ε, in equation (1) βeff = ωce/νm, where νm/N=
km(Eeff/N) is the rate constant for momentum transfer (aver-
aged over the EEDF). This implies that, expressed explicitly,
βeff = βeff(Eeff/N,ωce/N). Nevertheless, in equation (1) the
dependence of βeff on ωce/N is suppressed, assuming that ana-
lysis is conducted for a constant applied magnetic field provid-
ing a constant value of ωce/N. Also, the dependence of βeff on
Eeff/N is denoted solely by Eeff to make a connection to the
fixed point x of a function ϕ(x) defined as x= ϕ(x), where in

equation (1) x= Eeff and thus, ϕ(x) =
[
E2
∥ +

E2
⊥

1+β2
eff(x)

] 1
2
. The

concept of a fixed point in addition to the fixed-point theorem
is invoked in appendix E and the supplementary file to discuss
the existence, uniqueness, and convergence of a solution Eeff

to non-linear equation (1).
For a given (E/N,ωce/N,∠E⃗, B⃗), such that E∥ =

Ecos(∠E⃗, B⃗) and E⊥ = Esin(∠E⃗, B⃗) are the components of
the applied electric field E⃗, respectively, parallel and perpen-
dicular to the magnetic field B⃗, the approximate transcendental
method only requires νm/N, which is related to the electron
mobility µe via νm/N= (γ2/2)/(µeN) (i.e. νm = qe/(meµe)
in the absence of Coulomb collisions) (Hagelaar 2016, p 17).
We emphasize that this formulation employs only νm/N (or
equivalently, βeff in equation (1)) as a function of the reduced
effective electric field Eeff/N, i.e. νm/N is a function of Eeff/N
only, and is calculated with no effect of the applied magnetic
field, i.e. B⃗= 0. In practice, µe can be interpreted as mobility
parallel to the magnetic field µ∥. Furthermore, βeff intro-
duced here is an approximation to the βeff quantity defined in
section 3.

There are a number of sources available that may be used
to calculate the electron mobility in various gas mixtures
for the B⃗= 0 case. For instance, in addition to the electron
mobility in air, Morrow and Lowke (1997) provide analytic
functions for electron impact collision rate constants, which
were used in previous modelings of streamers in air (e.g.
Bourdon et al 2007, Jánský and Pasko 2020). Additionally,
Moss et al (2006) provided aMATLAB function air1.m com-
piled from the results of ELENDIF (Morgan and Penetrante
1990), which returns electron mobility and mean energy in
addition to rate coefficients for various electron impact pro-
cesses in air. This function is freely available at http://pasko.
ee.psu.edu/air. There are similar MATLAB functions based on
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Figure 1. Electron mean energy as a function of the applied reduced electric field E/N calculated using (a) BOLSIG+, and (b) the
approximate transcendental method for various values of the magnetic field B in pure CO2 when E⃗⊥ B⃗. Panel (a) is an independent
reproduction of Starikovskiy et al (2021), figure 4(a), where N= 1.6447× 1024 m−3 corresponds to pressure p= 50 Torr and temperature
T = 293 K. Note that as mentioned in Starikovskiy et al (2021), E/N= 1Td= 10−17 V cm2 corresponds to E= 25 kV m−1 for p= 1 atm
and T = 293 K.

BOLSIG+ (Hagelaar and Pitchford 2005) for air (Janalizadeh
and Pasko 2020), Jupiter’s atmosphere (Janalizadeh and Pasko
2023), and CO2 (provided per request from the authors).

Equation (1) is a transcendental equation for Eeff and may
be solved for Eeff using electron mobility given by the func-
tions mentioned above to quantify βeff. Once the value of Eeff

that satisfies equation (1) is obtained, the kinetics of elec-
trons under the influence of (E/N,ωce/N,∠E⃗, B⃗) are conver-
ted to an equivalent problem with (Eeff/N, B⃗= 0). The elec-
tron rate and transport coefficients may then be calculated
using the functions above, which were developed for non-
magnetized plasma. In particular, the perpendicular and Hall
mobilities may be obtained via µ⊥ = µ∥/(1+β2

eff) and µH =
µ× = µ∥βeff/(1+β2

eff), respectively.
Figure 1(a) depicts the mean energy of electrons εm in

CO2 gas under the influence of external electric and magnetic
fields obtained using BOLSIG+ with accurate inclusion of an
external magnetic field, while figure 1(b) depicts the same res-
ults calculated using the proposed transcendental method (i.e.
equation (1)). It may be inferred that the approximate tran-
scendental method provides results in satisfactory agreement
with BOLSIG+’s exact calculations. We note that figure 1(a)
is a reproduction of Starikovskiy et al (2021), figure 4(a),
where the authors also use BOLSIG+ to calculate the electron
mean energy. Here, we do not present the results correspond-
ing to Starikovskiy et al (2021), figures 4(b)–(d), since in that
study the respective ionization frequency νi, electron mobility
parallel to the magnetic field vector µ∥, and electron mobility
perpendicular to the magnetic field vector µ⊥ are presented as
dimensionless quantities. Instead, in figure 2, we compare the
results of BOLSIG+ and the transcendental method for εm, νi,
µ∥, and µ⊥, as a function of ∠E⃗, B⃗. Here, the applied electric
fieldE= 1.5Ek, whereEk ≃ 80 Td (1Td= 10−17Vcm2) is the
breakdown electric field (Raizer 1991, p 137) in pure CO2

calculated via BOLSIG+. The values of the reduced electron
cyclotron frequency used for the calculations are (ωce/N)1 =
10−14, (ωce/N)2 = 10−13, and (ωce/N)3 = 10−12 rad m3 s−1.
As seen later in section 4.1, this interval of ωce/N cov-
ers the entire range between non-magnetized (β2

eff ≪ 1) and
highly magnetized (β2

eff ≫ 1) electrons, and consequently it
is demonstrated in figure 2 that the results from the two
methods are in satisfactory agreement in the entire range of
magnetized CO2 plasma. In particular, as demonstrated in
equation (A.15), the error of the transcendental method grows
approximately proportional to sin4(∠E⃗, B⃗). Thus, the max-
imum discrepancy between the exact and transcendental res-
ults occurs at ∠E⃗, B⃗= 90◦. Furthermore, for non-magnetized
(fully magnetized) plasma both the exact and transcendental
method trivially return Eeff = E (Eeff = E∥). This agreement
between the two methods does not necessarily hold for par-
tially magnetized plasma, where βeff ≳ 1.

Before ending this section, we reiterate the outline used
above for studies that require calculation of the electron rate
and transport coefficients in a magnetized plasma. As demon-
strated above, this approach reduces the problem of magnet-
ized plasma (i.e. B⃗ ̸= 0) in the presence of an applied electric
field E⃗ to an equivalent problem of non-magnetized plasma
(i.e. B⃗= 0) in the presence of an effective electric field Eeff

where one

1. Calculates Eeff for a given (E/N,ωce/N,∠E⃗, B⃗) satisfy-
ing the transcendental equation (1), and corresponding
βeff(Eeff/N).

2. Calculates electron transport and rate coefficients as if
B⃗= 0 using this newly obtained Eeff. For instance, elec-
tron mean energy εm(Eeff/N), reduced electron impact
ionization frequency νi

N (Eeff/N), reduced momentum

4
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Figure 2. (a) Electron mean energy, (b) reduced electron-impact ionization frequency νiN0/N, (c) reduced electron mobility parallel to
magnetic field µ∥N/N0, and (d) reduced electron mobility perpendicular to magnetic field µ⊥N/N0 as a function of the angle between the
electric field E= 1.5Ek (Ek = 80 Td) and the magnetic field calculated for (ωce/N)1 = 10−14 rad m3 s−1 (•), (ωce/N)2 = 10−13 rad m3 s−1

(+), and (ωce/N)3 = 10−12 rad m3 s−1 (×) in pure CO2 gas. Solid lines denote BOLSIG+ exact calculations and markers denote the
approximate transcendental method. The Loschmidt number N0 = 2.686× 1025 m−3. See figure 3(c) for numerical values of βeff
corresponding to (ωce/N)1−3 used here.

transfer collision frequency νm
N (Eeff/N), reduced elec-

tron mobility parallel to the magnetic field µ∥N=

(qe/me)/
(
νm
N (Eeff/N)

)
, and electron mobility perpendicu-

lar to the magnetic field µ⊥ = µ∥/
(
1+β2

eff(Eeff/N)
)
.

The solution of equation (1) can be simplified if, for a given
ωce/N, βeff = (ωce/N)/(νm/N) can be assumed to be con-
stant or weakly dependent on the reduced electric field Eeff/N.
However, we note that for typical electric fields used in applic-
ations, the βeff parameter in equation (1) can exhibit significant
variations as a function of Eeff/N. For example, for CO2 gas,
it changes by a factor of 5, and for air by a factor of 10. As
βeff enters equation (1) in a quadratic form, these variations
are important and one needs to find the solution Eeff of non-
linear equation (1) to accurately solve the problem. The solu-
tions can be simplified when β2

eff ≪ 1 due to the high collision
frequency νm(Eeff/N;N)≳ ωce in strong applied electric fields
(e.g. Liu et al 2017) or when the orientation of the electric
field with respect to the magnetic field has preferentially an
E∥ component (e.g. Pérez-Invernón et al 2018). In both cases,
the effect of an external magnetic field on the system behavior

can be ignored. We note that the solution flow described here
follows from the case labeled as w= w3 for β2

H(ε)≫ 1, where
w is a weight function that will be defined in the following
section.

3. Model formulation

Assuming a steady state and homogeneous space, in the pres-
ence of a constant electric and magnetic field, the isotropic
part of the electron velocity distribution function (EVDF) f0B
in the Lorentzian approximation (e.g. Holstein 1946) fB(⃗v) =
f0B(v)+ f⃗1B(v) · i⃗v, where i⃗v is the radial unit vector in velocity
space, is the solution to the differential equation (e.g. Golant
et al 1980, p 140)

1
3

( qe
me

)2 1
v2

∂

∂v

[
v2

νm(v)

(
E2⊥

1+β2
H(v)

+E2∥

)
∂f0B
∂v

]
+C( f0B) = 0

(2)

where the subscript B emphasizes that the EVDF is calculated
for magnetic field B⃗ ̸= 0. The anisotropic part f⃗1B is given in

5
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e.g. Loureiro and Amorim (2016, p 164) for B⃗ ∥ ẑ, where ẑ
is a unit vector in the direction of the z axis. In the above
equation and in a conventional cylindrical coordinate system,
we have E2⊥ = E2ρ +E2φ,E∥ = Ez, E2 = E2⊥ +E2∥, and βH(ε) =

ωceν
−1
m (ε). Also, ∠E⃗, B⃗ is the angle between E⃗ and B⃗ such that

tan(∠E⃗, B⃗) = E⊥
E∥

, and C( f0B) denotes the collision term (e.g.
Loureiro and Amorim 2016, pp 101–4, 110–5). The solution
of equation (2) as a function of v varies with any combination
of (E/N,ωce/N,∠E⃗, B⃗), i.e. f0B = f0B(v;E/N,ωce/N,∠E⃗, B⃗) (e.g.
Janalizadeh and Pasko 2023, appendix A2). For the remainder
of this work, symbols after a semicolon represent independent
external parameters on which an introduced quantity depends.

As a result of the Lorentzian, i.e. two-term expansion of the
EVDF, electron impact collision rates are determined exclus-
ively by f0B (

´∞
v=0 f0B(v)4π v

2dv= ne, where ne denotes electron
density). On the other hand, electron transport coefficients are
dependent on f⃗1B . As can be seen from sources cited above (e.g.
Janalizadeh and Pasko 2023, appendix A1), for a given set of
(E/N,ωce/N,∠E⃗, B⃗), the latter is solely dependent on the deriv-
ative of the isotropic term with respect to v. Thus, in an altern-
ative approach that does not require solving equation (2) for
magnetized electrons, here we substitute f0B with f 0 in search
of the isotropic part of an EVDF in the absence of a magnetic
field, i.e. B⃗= 0, that minimizes the residual

R(v) = R[f0(v)]

=
1
3

( qe
me

)2 1
v2

∂

∂v

[
v2

νm(v)

(
E2⊥

1+β2
H(v)

+E2∥

)
∂f0
∂v

]
+C( f0)

(3)

over the v ∈ [0,∞] interval. Before presenting the minimization
process, we note that, as demonstrated in equation (2), the residual
is zero for f0B . As such, R(v) may be interpreted as a measure
quantifying the difference between f0B and f0 = f0(v;Eeff/N) at a
given electron velocity v. We note that f0(v) is the solution to (e.g.
Raizer 1991, p 87)

1
3

( qe
me

)2 1
v2

∂

∂v

[
v2

νm(v)
E2eff

∂f0
∂v

]
+C( f0) = 0 (4)

where we have let βH(v) = 0 in equation (2) to obtain the above
equation for a given Eeff. Subsequently, we can replace the colli-
sion termC( f0) in equation (3) using the definition in equation (4)
to obtain

R(v) =
1
3

( qe
me

)2 1
v2

∂

∂v

[
v2

νm(v)

(
E2⊥

1+β2
H(v)

+E2∥ −E2eff

)
∂f0
∂v

]
.

(5)

Note that R(v) expressed in equation (5) resembles the signed dif-
ference between the increase per unit volume of velocity space
per unit time of electron density due to the presence of E⃗ and
B⃗ versus the presence of Eeff (when B⃗= 0) (e.g. Loureiro and
Amorim 2016, p 105).

The minimization of the defined residual over v ∈ [0,∞] may
be quantified by introducing a weight function w(v) and sub-
sequently defining an error function

E(Eeff/N;E/N,ωce/N,∠E⃗, B⃗) = ∥R∥2 = ⟨R,R⟩

=

ˆ ∞

v=0
R2(v)w(v)dv (6)

where we have used the definition of the inner product ⟨f,g⟩=´∞
v=0 f

∗(v)g(v)w(v)dv (e.g. Dudley 1994, p 53), in which ∗ rep-
resents the complex conjugate operator. Here, we wish to find the
value of Eeff that minimizes the error E . By definition, in that case
we should have ∂E/∂Eeff = 0. We emphasize that this minimiz-
ation should generally be performed for every set of three inde-
pendent external parameters used in the formulation of lookup
tables (e.g. Starikovskiy et al 2021), namely, E/N, ωce/N, and
∠E⃗, B⃗. Nevertheless, as demonstrated in appendix A, this analysis
results in the general transcendental expression

E2eff = E2∥ +
E2⊥

1+β2
eff

(7)

where
√
1+β2

eff is the factor by which the perpendicular com-

ponent of the applied electric field is reduced due to the presence
of a magnetic field. The quantity βeff varies only as a function
of Eeff/N for a given ωce/N and is given by βeff =

√
I1/I2 − 1,

where I1 and I2 are integrals defined in equations (A.6) and (A.7),
respectively. The dependence of βeff (through I2) on ωce/N is
only through βH(ε) since as already mentioned, f 0 corresponds
to a non-magnetized EVDF such that one does not need to solve
equation (2) for magnetized plasma.

Generally, Eeff will be located in the [Ecos(∠E⃗, B⃗),E] inter-
val where the upper (lower) limit of this search interval corres-
ponds to non-magnetized, β2

eff ≪ 1, (fully magnetized, β2
eff ≫ 1)

electrons, respectively. Therefore, once βeff is quantified, one can
employ a root-finding algorithm to solve equation (7) and obtain
Eeff/N for a given set of input parameters (E/N,ωce/N,∠E⃗, B⃗).
The question of the existence and uniqueness of a solution to
equation (7) is addressed in appendix E. Specifically, it is demon-
strated that a solution always exists, and conditions for the unique-
ness of a solution and convergence of the fixed-point iteration
method to findEeff are obtained such that for any given set of input
parameters (E/N,ωce/N,∠E⃗, B⃗) one can verify these conditions.
We note that the interested reader may accelerate the root-finding
process by creating a two-dimensional array of βeff values vary-
ing as a function of the (Eeff/N,ωce/N) pair to be subsequently
used in solving the transcendental equation (7).

To numerically quantify βeff we introduce three weight func-
tions denoted by w1(v),w2(v),w3(v) to demonstrate the perform-
ance of the presented transcendental method. The corresponding
weight function in energy space is defined via W(ε)dε≡ w(v)dv,
where, as mentioned above, ε denotes electron energy in units of
eV. The weight functions we use in this work are

6
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1. w1(v) = 1, i.e. constant weight function in velocity space.
Thus, W(ε) = γ

2 ε
− 1

2

2. w2(v) =
1
ne
f0(v)4π v

2 such that w2(v)dv=
1
ne

ne
2πγ3F0(ε)4πγ

2

ε γ
2 ε

− 1
2 dε= P0(ε)dε

3. w3(v) = v6
[

∂
∂v

(
v2

νm(v)
∂f0
∂v

)]−1
such that

w3(v)dv=

(
γ2ε

)3
2γ−1ε

1
2 ∂
∂ε

{
γ2ε

νm(ε)
2γ−1ε

1
2 ∂
∂ε

[
ne

2πγ3F0(ε)
]} γ

2
ε−

1
2

× dε=
πγ10

4ne
ε2dε

∂
∂ε

[
ε
3
2

νm(ε)
∂F0
∂ε

] (8)

where the EEDF in BOLSIG+ F0(ε) and the electron probabil-
ity distribution function (EPDF) P0(ε) are defined in appendix D.
Note that since βeff ∝ I1/I2, the absolute value of the electron
density or the constant γ present in the weight function do not
affect any results of this analysis as theweight function is included
in both I1 and I2.

We emphasize that the formulation presented here is valid
irrespective of the peculiarities of each weight function. As
such, in choosing w1 and w2 we prioritize the simplicity of
the weight function itself. However, this is not the case for w3.
Specifically, w3 has been chosen such that βeff will become
proportional to the electron transport and rate coefficients dir-
ectly outputted by BOLSIG+ (see appendices B and C). In
other words, calculating βeff when w= w1 or w= w2 requires
the EEDF calculated by BOLSIG+ for evaluation of the integ-
rals I1 and I2. However, when w= w3 these integrals reduce
to specific electron rate and transport coefficients that are
already calculated by BOLSIG+ in the non-magnetized case
(i.e. B⃗= 0).

Specifically, the transcendental method in the special case of
w= w3 reduces to (see appendix B)

E2eff = E2∥ +
E2⊥(
µ∥
µ0
⊥

) (9)

where expressions for mobilities parallel µ∥ and perpendicular
µ⊥ to the magnetic field are given in equations (B.5) and (B.9),
respectively (e.g. Hagelaar 2016, p 16). We note that whereas
µ0
⊥ is in the same format of µ⊥ defined in Hagelaar 2016, p

16, as opposed to µ⊥ it is not a direct output of BOLSIG+

since the calculation of µ⊥ by BOLSIG+ happens when B⃗ ̸= 0,
while µ0

⊥ is dependent on BOLSIG+ only through BOLSIG+’s
EEDF calculated for B⃗= 0. As such, we calculate µ0

⊥ manually
(in MATLAB) using the EEDF output of BOLSIG+ correspond-
ing to a defined range of Eeff/N values. A given reduced gyro-
frequency ωce/N quantifies βH(ε) = ωce/νm(ε) in the definition
of µ0

⊥ through νm(ε) = Nσm(ε)v= Nσm(ε)γε
1
2 . In the calcula-

tion of µ0
⊥ and more generally βeff, we quantified the momentum

transfer cross-section σm(ε) of each gas mixture using the LXCat
set of cross-sections, which accompanied BOLSIG+. For species
for which σm(ε) was not readily available in the accompanying
data, we calculated σm(ε) by summing the cross-section for all
inelastic processes in addition to the elastic momentum transfer

cross-section. The value of σm(ε) for a mixture was obtained by
weighted summation of σm(ε) of the constituent species accord-
ing to their fraction of composition.

4. Results and discussion

4.1. Calculation of βeff for w1(v),w2(v), and w3(v)

As inferred from section 3, whereas the determination of Eeff
through the transcendental equation is dependent on the applied
electric and magnetic fields in addition to the angle between the
two, the calculation of βeff for a given Eeff/N may proceed in a
standalone fashion. To quantify βeff for various weight functions,
here we use BOLSIG+ to calculate the EEDF (with B⃗= 0) in gas
mixtures considered for a wide range of Eeff/N values. As already
mentioned, the magnetic field enters our calculations of βeff only
through the Hall parameter included in the definition of I2. Three
gas mixtures are considered: (1) air, i.e. a mixture of 80%molecu-
lar nitrogen (N2) and 20% molecular oxygen (O2), (2) a mixture
of 88% molecular hydrogen (H2) and 12% helium (He), and (3)
pure carbon dioxide (CO2).

In figure 3 we illustrate the calculated values of βeff. We
note that the reduced breakdown electric fields (e.g. Raizer
1991, p 137) in mixtures (1)–(3) have been calculated via
BOLSIG+ and are respectively ∼120, 40, and 80 Td. In
air and pure CO2 we choose Eeff/N= 100 − 103 Td. Due to
the much lower breakdown threshold in mixture (2), results
are shown for a maximum of Eeff/N= 500 Td. The values
of the reduced gyrofrequency chosen for the calculations are
10−14,10−13, and 10−12 radm3 s−1, and are respectively denoted
by (ωce/N)1 ,(ωce/N)2, and (ωce/N)3. As seen in figure 3, this
interval of ωce/N covers the entire range between non-magnetized
(β2

eff ≪ 1) and highly magnetized (β2
eff ≫ 1) electrons. We note

that in Starikovskiy et al (2021), magnetized streamers were stud-
ied in the ωce/N= 0− 20× 10−13 rad m3 s−1 range. Janalizadeh
and Pasko (2023) modeled magnetized sprite streamers at 250 km
altitude in the atmosphere of Jupiter, where ωce/N≃ 1.4×
10−13 rad m3 s−1, and the reduced gyrofrequency at ∼100 km
altitude in the atmosphere of Earth (where a lightning-induced
transient luminous event referred to as an elve was observed (e.g.
Fukunishi et al 1996) and further modeled (e.g. Marshall et al
2010)) is ωce/N≃ 5.8× 10−13 rad m3 s−1.

Furthermore, it is inferred from figure 3 that the differ-
ence between βeff values corresponding to various weight func-
tions w(v) is practically insignificant. As already mentioned in
section 3, w= w3 results in the expression of βeff in terms of the
electron rate and transport coefficients, which are already cal-
culated by BOLSIG+ in the non-magnetized case (i.e. B⃗= 0).
Therefore, for the sake of simplicity and brevity, in the remainder
of this work we let w= w3.

4.2. Comparison of BOLSIG+ exact coefficients with present
study results

As demonstrated in appendix C, when w= w3, the presen-
ted transcendental method for considerably magnetized
electrons may be simplified even further. Specifically, if
⟨ε ∂

∂ε [σm(ε)ε
1
2 ]⟩ ≡

´∞
ε=0 ε

∂
∂ε [σm(ε)ε

1
2 ]P0(ε)dε is negligible, one
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Figure 3. Values of βeff = βeff (Eeff/N;ωce/N) in (a) air, (b) 88% H2, 12% He, and (c) pure CO2 as a function of given reduced effective
field Eeff/N for values of (ωce/N)1 = 10−14 rad m3 s−1, (ωce/N)2 = 10−13 rad m3 s−1, and (ωce/N)3 = 10−12 rad m3 s−1.

can use βeff = ωce/νm = (ωce/N)/km(Eeff/N), where km = νm/N
is the momentum transfer rate constant as a function of Eeff/N
exclusively. This is a standard rate coefficient calculated by
BOLSIG+ itself such that the implementation of the transcend-
ental method using the EEDFs calculated by BOLSIG+ may be
avoided. The average ⟨ε ∂

∂ε [σm(ε)ε
1
2 ]⟩ is a measure of the vari-

ation of momentum transfer collision frequency as a function of
the electron energy. That is, σm(ε)∝ ε−

1
2 for which the average is

identically zero corresponds to a constant momentum transfer col-
lision frequency since in that case νm(ε) = Nkm(ε) = Nσm(ε)v∝
ε−

1
2 (γε

1
2 ) = const (e.g. Starikovskiy et al 2021). Consequently,

in this section, we assume that this average is in fact negligible,
and compare results with the general transcendental method with
w= w3 and βeff. We will also include the exact (no assumptions
made) calculations of BOLSIG+, which have been compiled in
lookup tables and subsequently interpolated for cases considered
here.

Specifically, we consider two cases of ∠E⃗, B⃗: 45◦ and 90◦ in
addition to a large range of applied reduced fieldsE/N.We choose
ωce/N (or equivalently ωceN0/N, where N0 = 2.686× 1025 m−3)
such that βeff ≃ 1 for both ∠E⃗, B⃗ considered and in the major-
ity of the E/N range. The purpose of this choice of ωceN0/N
is to demonstrate the performance of the transcendental method
in the partially magnetized regime where, as opposed to β2

eff ≫
1 (β2

eff ≪ 1), the effective electric field is not trivially Eeff =
E∥ (Eeff = E). In what follows, ωce/N≃ 10−13 rad m3 s−1 (for all
gases), which is close to the (ωce/N)2 value in figure 3 and cor-
responds to partially magnetized electrons. The quantities used
for comparison are the mean energy of electrons εm, the electron

impact ionization frequency νi, the mobility parallel to the mag-
netic field µ∥, and the mobility perpendicular to the magnetic field
µ⊥. This choice of comparisons has been made to investigate
the performance of the proposed transcendental method as it per-
tains to both the f 0 and f⃗1 terms in the two-term expansion of the
EVDF.

Figures 4–6 respectively depict comparisons in gas mixtures
(1)–(3). All panels include βeff = (ωce/N)/km(Eeff/N) after find-
ing the solution to equation (1) to illustrate the degree of magnet-
ization of the electrons. It is inferred from these figures that the
transcendental method for w= w3 and the approximation to this
method agree to a satisfactory degree. In addition, both methods
agree with the exact calculations of BOLSIG+ for the majority
of the E/N range. Thus, the interested reader may initially imple-
ment the simpler approximate transcendental method presented
in section 2 to evaluate and explore the method’s performance for
an arbitrary gas mixture.

The observed deviation of νi results of BOLSIG+ from that of
both transcendental methods at ∠E⃗, B⃗= 90◦ (i.e. E∥ = 0) is gen-
erally considerable. On the other hand, the agreement between
εm calculated for the same scenario by all methods is satis-
factory. This observation emphasizes the difference in the high
energy tail of the exact EEDF calculated by BOLSIG+ for B⃗ ̸= 0
and the EEDFs (corresponding to B⃗= 0) used in the transcend-
ental methods. Specifically, both εm and νi depend on the iso-
tropic term of the EVDF. However, the latter involves, exclus-
ively, the high-energy electrons represented in the tail of the
EEDF (vs ε) since electron impact ionization is a collision with an
energy threshold.While the abundance of these ionizing electrons

8
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Figure 4. (a) Electron mean energy and (b) electron impact ionization frequency for ∠E⃗, B⃗= 45◦. (c) Electron mean energy and (d)
electron impact ionization frequency for ∠E⃗, B⃗= 90◦. Mobility of electrons (e) parallel and (f) perpendicular to B⃗ for ∠E⃗, B⃗= 45◦.
Mobility of electrons (g) parallel and (h) perpendicular to B⃗ for ∠E⃗, B⃗= 90◦. Results are for air.

controls the ionization rate constant, their exponentially lower
population compared to low-energy electrons results in a neg-
ligible impact on the εm values presented. We note that the
same analysis is true for rate constants of other electron impact
processes with an energy threshold. The disagreement is more
pronounced for electron impact collisions with a higher energy
threshold.

Values corresponding to E⃗ ∥ B⃗ are also included in all panels.
Specifically, the extremely low ionization levels when ∠E⃗, B⃗=

90◦ are demonstrated.While∠E⃗, B⃗= 90◦ corresponds to the low-
est agreement between νi results of BOLSIG+ and the transcend-
ental methods, the exact results of BOLSIG+ are still orders of
magnitude less than scenarios in which ∠E⃗, B⃗→ 0. We note that

this holds even for ∠E⃗, B⃗ as high as 45◦ (see panels (b) and (d) in
figures 4–6). As such, one may conclude that in a realistic scen-
ario where∠E⃗, B⃗may vary in the entire range of∠E⃗, B⃗= 0− 90◦,
even exact νi values corresponding to ∠E⃗, B⃗= 90◦ are so insig-
nificant that the disagreement between BOLSIG+ and the tran-
scendental methods has no practical significance in the framework
of plasma fluid models in which these coefficients are typically
employed (e.g. Starikovskiy et al 2021, Janalizadeh and Pasko
2023). In other words, unless in the entire simulation domain
∠E⃗, B⃗→ 90◦ and the process involves electric fields close to Ek
(as the threshold for significant ionization), the transcendental
method provides accurate results for the ionization frequency. A
similar argument may be made for the parallel mobility panel in
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Figure 5. (a) Electron mean energy and (b) electron impact ionization frequency for ∠E⃗, B⃗= 45◦. (c) Electron mean energy and (d)
electron impact ionization frequency for ∠E⃗, B⃗= 90◦. Mobility of electrons (e) parallel and (f) perpendicular to B⃗ for ∠E⃗, B⃗= 45◦.
Mobility of electrons (g) parallel and (h) perpendicular to B⃗ for ∠E⃗, B⃗= 90◦. Results are for a mixture of 88% H2 and 12% He.

figure 4, i.e. figure 4(g), where one observes a clear disagree-
ment between the BOLSIG+ exact results and both transcend-
ental methods in the low E/N region. Specifically, in this case,
E∥ = 0 such that the drift of electrons parallel to B⃗ is absent.
As for µ⊥ depicted in figure 4(h), one can clearly infer the bet-
ter performance of the exact transcendental method (i.e. w= w3)
compared to the approximate transcendental method described in
section 2.

The results succinctly depicted in figures 4–6 may be
presented in a different format. Specifically, they can be
presented as two-dimensional color plots that cover the entire
range of ∠E⃗, B⃗= 0− 90◦ and ωce/N ∈ [(ωce/N)1,(ωce/N)3] =
[10−14,10−12] rad m3 s−1 for a select few applied reduced fields
E/N. In that case, one may initiate the transcendental method and

BOLSIG+ calculations since (E/N,ωce/N,∠E⃗, B⃗) is now defined.
Subsequently, a quantitative error that provides the percentage
difference between BOLSIG+ and the transcendental method by
normalizing it to BOLSIG+ exact values may be introduced.
Due to the general satisfactory performance of the approximate
transcendental method and for the sake of brevity, such figures
are included in the supplementary file that accompanies this
paper.

At the end of this section, we emphasize that the presented
results target the regime of partially magnetized plasma. One
expects a better agreement between the transcendental method
and BOLSIG+ exact calculations in both cases of essentially non-
magnetized (β2

eff ≪ 1) and fully magnetized (β2
eff ≫ 1) plasma

since in those cases Eeff = E and Eeff = E∥, respectively (see
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Figure 6. (a) Electron mean energy and (b) electron impact ionization frequency for ∠E⃗, B⃗= 45◦. (c) Electron mean energy and
(d) electron impact ionization frequency for ∠E⃗, B⃗= 90◦. Mobility of electrons (e) parallel and (f) perpendicular to B⃗ for ∠E⃗, B⃗= 45◦.
Mobility of electrons (g) parallel and (h) perpendicular to B⃗ for ∠E⃗, B⃗= 90◦. Results are for pure CO2.

figure 2). An even more accurate transcendental method may be
obtained by extending the presented model formulation to solu-
tions of the Boltzmann equation that are more accurate than the
two-term approximation.

5. Conclusions

We introduce a new transcendental approach to the calculation of
electron transport and rate coefficients in a magnetized plasma
using the theory and results of non-magnetized plasma. The
obtained effective electric field results in plasma transport para-
meters that are in satisfactory agreement with BOLSIG+’s exact
calculations in air, a mixture of 88% molecular hydrogen with
12% helium, and pure carbon dioxide. Furthermore, the effective

electric field is in the same format as the electric field a single
electron experiences in the presence of a magnetic field. This
provides an intuitive picture, which accompanies the rigorous
mathematical derivations presented here. Subsequently, a special
case of the formulation is further explored to reduce calculations
and use the electron rate and transport coefficients outputted by
BOLSIG+. While as a result of the kinetic theory of weakly ion-
ized and magnetized plasma the electron transport and rate coeffi-
cients are defined through a distribution function that varies with
(E/N,ωce/N,∠E⃗, B⃗), the new method proceeds in two steps: (1)
the calculation of Eeff for a given (E/N,ωce/N,∠E⃗, B⃗) through a
simple transcendental equation, and (2) the calculation of electron
transport and rate coefficients in the absence of a magnetic field
using Eeff/N (since when B⃗= 0, the transport parameters become
functions of Eeff/N, exclusively).
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Appendix A. Theory of general transcendental
method and minimum error value

In this section we start with the definition of the error func-
tion introduced in equation (6). Using the residual R(v) given by
equation (5), we have

∂E
∂Eeff

=

ˆ ∞

v=0

1
9

( qe
me

)4 1
v4

(2)

×
{

∂

∂v

[(
E2⊥

1+β2
H(v)

+E2∥ −E2eff

)
v2

νm(v)
∂f0
∂v

]}
· ∂

∂Eeff

{
∂

∂v

[(
E2⊥

1+β2
H(v)

+E2∥ −E2eff

)
× v2

νm(v)
∂f0
∂v

]}
w(v)dv. (A.1)

Since ∂
∂Eeff

∂
∂v (·) =

∂
∂v

∂
∂Eeff

(·), we have

∂

∂Eeff

{
∂

∂v

[(
E2⊥

1+β2
H(v)

+E2∥ −E2eff

)
v2

νm(v)
∂f0
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]}
=−2Eeff

∂
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[
v2

νm(v)
∂f0
∂v

]
. (A.2)

We note that based on the definition of EVDF, f 0 here is only a
function of v and therefore, ∂f0

∂Eeff
= 0. Consequently,

0=
∂E
∂Eeff

=−4
9

( qe
me
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Eeff

ˆ ∞
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]
w(v)dv. (A.3)

Since the trivial solution Eeff = 0 is unacceptable, we should have

ˆ ∞

v=0
dv
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v4
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where we used the fact that
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Distributing the integral among the two terms above and defining
I1 and I2 as

I1 =
ˆ ∞

v=0

[
1
v2
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∂v

(
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νm(v)
∂f0
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)]2
w(v)dv (A.6)

and

I2 =
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∂f0
∂v

)]
w(v)dv (A.7)

respectively, we arrive at

E2⊥I2 =
(
E2eff −E2∥

)
I1. (A.8)

Thus,

E2eff = E2∥ +E2⊥
I2
I1

= E2∥ +
E2⊥
I1
I2

= E2∥ +
E2⊥

1+β2
eff

. (A.9)

Using the equation above, the residual corresponding to the
minimum error may be expressed as

Rmin(v) =
1
3

(
qeE
me

)2
sin2(∠E⃗, B⃗)

v2
∂

∂v

×
[(

1
1+β2

H(v)
− 1

1+β2
eff

)
v2

νm(v)
∂f0
∂v

]
(A.10)

where we have used E⊥ = Esin(∠E⃗, B⃗). Subsequently, we have

Emin =
1
9

(
qeE
me

)4

sin4(∠E⃗, B⃗)
ˆ ∞

v=0
dv
w(v)
v4

×
{

∂

∂v

[(
1

1+β2
H(v)

− 1
1+β2

eff

)
v2

νm(v)
∂f0
∂v

]}2

(A.11)

where

∂

∂v

[(
1

1+β2
H(v)

− 1
1+β2

eff

)
v2

νm(v)
∂f0
∂v

]
=

∂

∂v

[
1

1+β2
H(v)

v2

νm(v)
∂f0
∂v

− 1
1+β2

eff

v2

νm(v)
∂f0
∂v

]
=

∂

∂v

(
1

1+β2
H(v)

v2

νm(v)
∂f0
∂v

)
− 1

1+β2
eff

∂

∂v

(
v2

νm(v)
∂f0
∂v

)
.

(A.12)
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Since

[
∂

∂v

(
1

1+β2
H(v)

v2

νm(v)
∂f0
∂v

)
− 1

1+β2
eff

∂

∂v

(
v2

νm(v)
∂f0
∂v

)]2
=

[
∂

∂v

(
1

1+β2
H(v)

v2

νm(v)
∂f0
∂v

)]2
− 2

1+β2
eff

∂

∂v

×
(

1
1+β2

H(v)
v2

νm(v)
∂f0
∂v

)
∂

∂v

(
v2

νm(v)
∂f0
∂v

)
+

[
1

1+β2
eff

∂

∂v

(
v2

νm(v)
∂f0
∂v

)]2
(A.13)

defining I3 as

I3 =
ˆ ∞

v=0

[
1
v2

∂

∂v

(
1

1+β2
H(v)

v2

νm(v)
∂f0
∂v

)]2
w(v)dv (A.14)

results in

Emin =
1
9

(
qeE
me

)4

sin4(∠E⃗, B⃗)
[
I3 −

2
1+β2

eff

I2 +
1

(1+β2
eff)

2
I1

]
.

(A.15)

Equivalently,

Emin =
1
9

(
qeE
me

)4

sin4(∠E⃗, B⃗)I2
[
I3
I2

− I2
I1

]
(A.16)

where we have used 1+β2
eff = I1/I2. While Emin depends on

∠E⃗, B⃗ implicitly through determination of βeff for any set of input
parameters, one can also see the explicit dependence on ∠E⃗, B⃗
through the sin4(∠E⃗, B⃗) factor. Assuming the variation of the lat-
ter as a function of ∠E⃗, B⃗ is the dominant factor (see figures 4–
6 for illustrations of negligible βeff variation as a function of
∠E⃗, B⃗), one concludes that the error of the transcendental method
increases monotonically with ∠E⃗, B⃗ such that the maximum dis-
crepancy in comparison with the exact calculations occurs at
∠E⃗, B⃗= 90◦.

Appendix B. Simplified transcendental method
when w(v) = w3(v)

Using w3(v) as defined in equation (8) and applying integration
by parts to I1, we have

Iw3
1 =

ˆ ∞

v=0
v2
[
∂

∂v

(
v2

νm(v)
∂f0
∂v

)]
dv

=
v4

νm(v)
∂f0
∂v

∣∣∣∣∞
v=0

− 2
ˆ ∞

v=0

v3

νm(v)
∂f0
∂v

dv= Cw3
1

∣∣∣∣∞
v=0

− 2Iw3
1,1.

(B.1)

Before demonstrating that Iw3
1,1 is proportional to µ∥, i.e. elec-

tron mobility parallel to the magnetic field (when B ̸= 0), we
show that Cw3

1 (v=∞) = 0. Let’s assume there is at least a single
constant k> 0 for which one can find a constant v0 so that the

inequality 0⩽ vℓ ⩽ kf0(v)4π v
2 holds for v> v0. In other words,

vℓ ∈O[f0(v)4π v2]. Then,

ne =
ˆ ∞

v=0
f0(v)4π v

2dv=
ˆ v0

v=0
f0(v)4π v

2dv+
ˆ ∞

v=v0

f0(v)4π v
2dv

(B.2)

and based on the inequality introduced above,

ˆ v0

v=0
f0(v)4π v

2dv+
1
k

ˆ ∞

v=v0

vℓdv⩽ ne. (B.3)

Note that ne −
´ v0
v=0 f0(v)4π v

2dv is a bounded positive quant-

ity and therefore, the integral above including vℓ should be
convergent. Introducing the change of variable t= v/v0 we
have

´∞
t=1 t

ℓdt<∞, which occurs only if ℓ <−1. Consequently,

f0(v)⩾ 1
4π kv

ℓ−2, i.e. f0(v) falls off faster than v−3 as v→∞.

This implies that as v→∞, ∂f0
∂v falls off faster than v−4 such that

Cw3
1 (v→∞) falls off faster than v−1 since νm(ε) = Nσm(ε)v=

Nσm(ε)γε
1
2 . Thus, Cw3

1 (v=∞) = 0.
To be consistent with BOLSIG+’s definition of mobility

(Hagelaar 2016, p 16), we now switch from v to ε to obtain

Iw3
1,1 =

ˆ ∞

ε=0

(
γε

1
2

)3

νm(ε)
2γ−1ε

1
2
∂

∂ε

[
ne

2πγ3
F0(ε)

](
γ

2
ε−

1
2 dε

)
=

1
2πγ

ne
N

ˆ ∞

ε=0

ε

σm(ε)

∂F0
∂ε

dε. (B.4)

In Hagelaar (2016, p 16) we havemobility parallel to themagnetic
field defined as

µ∥N=−γ

3

ˆ ∞

ε=0

ε

σm(ε)

∂F0
∂ε

dε (B.5)

such that

Iw3
1,1 =− 3

2π
γ−2neµ∥ → Iw3

1 =
3
π
γ−2neµ∥. (B.6)

Similarly for Iw3
2 we have

Iw3
2 =

ˆ ∞

v=0
v2

∂

∂v

[
1

1+β2
H(v)

v2

νm(v)
∂f0
∂v

]
dv

=
1

1+β2
H(v)

v4

νm(v)
∂f0
∂v

∣∣∣∣∞
v=0

− 2

×
ˆ ∞

v=0

1
1+β2

H(v)
v3

νm(v)
∂f0
∂v

dv= Cw3
2

∣∣∣∣∞
v=0

− 2Iw3
2,1. (B.7)

The same arguments detailed above result inCw3
2 (v=∞) = 0 and

Iw3
2 =

3
π
γ−2neµ

0
⊥ (B.8)

where µ0
⊥ is in the same format of perpendicular mobility

µ⊥N=−γ

3

ˆ ∞

ε=0

1
1+β2

H(ε)

ε

σm(ε)

∂F0
∂ε

dε (B.9)
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defined in Hagelaar (2016, p 16). In conclusion, for w= w3, the
simpler transcendental expression

E2eff = E2∥ +
E2⊥(
µ∥
µ0
⊥

) (B.10)

is derived in which µ∥N is a function of Eeff/N exclusively,

whereas µ0
⊥N is dependent on both Eeff/N and ωce/N. Note that

µ∥N is provided by BOLSIG+ and µ0
⊥N is calculated with the

EEDF corresponding to B⃗= 0.

Appendix C. Simplified transcendental method
when w(v) = w3(v) and β2

H(v) ≫ 1

A special case of the current version of the transcendental method
is obtained when βH(ε)> 1 such that β2

H(ε)≫ 1. We start with

µ0
⊥N=−γ

3

ˆ ∞

ε=0

1
1+β2

H(ε)

ε

σm(ε)

∂F0
∂ε

dε

≃−γ

3

ˆ ∞

ε=0

1
β2
H(ε)

ε

σm(ε)

∂F0
∂ε

dε. (C.1)

Since βH(ε) =
ωce

νm(ε)
=

ωce/N
σm(ε)v

=
ωce/N

σm(ε)
(
γε

1
2
) , we have β−2

H (ε) =

γ2σ2
m(ε)ε

(ωce/N)2
and

µ0
⊥N≃−γ3

3

ˆ ∞

ε=0

γ2σ2
m(ε)ε

(ωce/N)
2

ε

σm(ε)

∂F0
∂ε

dε

=−γ3

3

(
ωce

N

)−2
ˆ ∞

ε=0
ε2σm(ε)

∂F0
∂ε

dε. (C.2)

Using σm(ε)v= σm(ε)γε
1
2 , we have

µ0
⊥N≃−γ3

3

(
ωce

N

)−2
ˆ ∞

ε=0

1
γ

(
γε

1
2 σm(ε)

) (
ε

3
2
∂F0
∂ε

)
dε.

(C.3)

Since P0(ε) = ε
1
2F0(ε), where

´∞
ε=0P0(ε)dε= 1 (see next

section) and ∂
∂ε

(
ε

3
2F0

)
= ∂ε

3
2

∂ε F0(ε)+ ε
3
2 ∂F0

∂ε → ∂
∂ε (εP0) =

3
2ε

1
2F0(ε)+ ε

3
2 ∂F0

∂ε = 3
2P0(ε)+ ε

3
2 ∂F0

∂ε , we have

µ0
⊥N≃−γ2

3

(
ωce

N

)−2
[
γ

ˆ ∞

ε=0
ε

1
2 σm(ε)

∂ (εP0)
∂ε

dε− 3
2
νm
N

]
(C.4)

where for the second integral we used the definition of momentum
transfer collision frequency νm ≡

´∞
ε=0 (Nσm(ε)v)P0(ε)dε. Using

integration by parts for the first integral in the brackets, we obtain

ˆ ∞

ε=0
σm(ε)ε

1
2
∂ (εP0)

∂ε
dε

=
(
σm(ε)ε

1
2

)
εP0

∣∣∣∣∣
∞

ε=0

−
ˆ ∞

ε=0
εP0(ε)

∂

∂ε

(
σm(ε)ε

1
2

)
dε

(C.5)

where the limit term vanishes due to arguments similar to those
made in the previous section and the integral term may be
expressed as

ˆ ∞

ε=0
ε
∂

∂ε

(
σm(ε)ε

1
2

)
P0(ε)dε≡

〈
ε
∂

∂ε

(
σm(ε)ε

1
2

)〉
. (C.6)

The average ⟨ε ∂
∂ε

(
σm(ε)ε

1
2

)
⟩ is a measure of the variation of

momentum transfer collision frequency as a function of electron
energy. That is, σm(ε)∝ ε−

1
2 for which the average is identically

zero corresponds to a constant momentum transfer collision fre-

quency since νm(ε) = Nσm(ε)v∝ ε−
1
2

(
γε

1
2

)
= const. Assuming

the average ⟨ε ∂
∂ε

(
σm(ε)ε

1
2

)
⟩ is negligible,

µ0
⊥N≃−γ2

3

(
ωce

N

)−2
(
−3
2

)
νm
N

=
γ2

2

(
ωce

N

)−2(νm
N

)
(C.7)

such that

µ∥

µ0
⊥

=
µ∥N

µ0
⊥N

=

(
γ2

2

)(
νm
N

)−1

γ2

2

(
ωce
N

)−2 (νm
N

) =

(
ωce
N

)2(
νm
N

)2
=
(
ωce

νm

)2
≃ 1+

(
ωce

νm

)2
(C.8)

where in the final equality we used the fact that β2
H(ε)≫ 1

implies νm(ε)< ωce such that νm =
´∞
ε=0 νm(ε)P0(ε)dε < ωce,

and therefore, β2
eff ≫ 1. Also, by definition, νm/N= qe

me(µ∥N)
=

(qe/me)/
(
µ∥N

)
= (γ2/2)/

(
µ∥N

)
, where νm/N is the rate con-

stant for momentum transfer when B⃗= 0, which varies only as a
function of Eeff/N. In conclusion,

E2eff = E2∥ +
E2⊥(
µ∥
µ0
⊥

) = E2∥ +
E2⊥

1+
(
ωce
νm

)2 = E2∥ +
E2⊥

1+β2
eff

. (C.9)

Appendix D. I1 and I2 integrals in terms of
BOLSIG+ (Hagelaar and Pitchford 2005) variables

In Hagelaar and Pitchford (2005) we have γ ≡
(
2qe
me

) 1
2
, such

that v2 = γ2ε where, as defined earlier, ε denotes the elec-
tron energy in eV. Consequently, v= γε

1
2 and dv= γ

2 ε
− 1

2 dε.

Thus, ∂
∂v (·) =

∂
∂ε (·)

∂ε
∂v = 2γ−1ε

1
2 ∂
∂ε (·) since ε= γ−2v2, ∂ε∂v =

2γ−2v= 2γ−2(γε
1
2 ) = 2γ−1ε

1
2 . The EEDF in BOLSIG+, i.e.

F0(ε) is related to f0(v) via f0(v) =
ne

2πγ3F0(ε), where ne denotes
electron density. The EPDF in the present work is defined as
P0(ε) = ε

1
2F0(ε) such that

´
ε
P0(ε)dε= 1. Defining W(ε) such

that W(ε)dε≡ w(v)dv, we have

W(ε)

w(v)
=

dv
dε

=
γ

2
ε−

1
2 (D.1)

and the results in terms of ε and BOLSIG+’s EEDF may be
expressed as
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I1 =
ˆ ∞

ε=0

[
1

γ2ε
2γ−1ε

1
2
∂

∂ε

{
γ2ε

νm(ε)
2γ−1ε

1
2
∂

∂ε

(
ne

2πγ3
F0(ε)

)}]2
×W(ε)dε=

(
2
π
γ−5ne

)2 ˆ ∞

ε=0

[
∂

∂ε

{
ε

3
2

νm(ε)

∂F0

∂ε

}]2

ε−1W(ε)dε

(D.2)

I2 =
ˆ ∞

ε=0

{
1

γ2ε
2γ−1ε

1
2
∂

∂ε

[
1

1+β2
H(ε)

γ2ε

νm(ε)
2γ−1ε

1
2

×
∂

∂ε

(
ne

2πγ3
F0(ε)

)]}
·
{

1
γ2ε

2γ−1ε
1
2
∂

∂ε

[
γ2ε

νm(ε)
2γ−1ε

1
2

×
∂

∂ε

(
ne

2πγ3
F0(ε)

)]}
W(ε)dε=

(
2
π
γ−5ne

)2

×
ˆ ∞

ε=0

{
∂

∂ε

[
1

1+β2
H(ε)

ε
3
2

νm(ε)

∂F0

∂ε

]}

×

{
∂

∂ε

[
ε

3
2

νm(ε)

∂F0

∂ε

]}
ε−1W(ε)dε. (D.3)

Note that since βeff ∝ I1
I2
, the absolute value of electron density or

the constant γ is irrelevant in this analysis.

Appendix E. Existence and uniqueness of a
convergent solution to equation (7)

In this section we answer the questions of existence and unique-
ness of a convergent solution x to equation (7), repeated here as

x= ϕ(x)≡
[
E2
∥ +

E2
⊥

1+β2(x)

] 1
2

(E.1)

where we have used the change of symbol Eeff → x and have
dropped the subscript ‘eff’ from βeff for the sake of brevity. By
definition, x is a fixed point of the function ϕ(x), since from
equation (E.1) we have x= ϕ(x). Since β(x) ∈ C[0,E], where C[a,b]
is the space of all continuous functions in the interval [a,b]

and a,b ∈ R, this implies ϕ(x) ∈ C[0,E] as well. It is clear from
equation (E.1) that ϕ(x) ∈ [0,E], since x⩽ E always. The previ-
ous two statements imply that the function ϕ(·) has a fixed point
in the [0,E] interval (Burden and Faires 2005, p 54, theorem
2.2a), and therefore, the question of the existence of a solution to
equation (E.1) is answered. In addition, if ϕ ′(x) = dϕ/dx in (0,E)

exists and so does a positive constant k< 1 such that∣∣ϕ ′(x)
∣∣⩽ k for all x ∈ (0,E) (E.2)

then the fixed point in [0,E] is unique (Burden and Faires 2005, p
54, theorem 2.2b).

The simple fixed-point iteration method can be used to solve
equation (E.1) for x. The method starts with an initial approxima-
tion x0 and then improves on this approximation using the recurs-
ive equation xn+1 = ϕ(xn) until convergence is achieved. If con-
dition (E.2) is satisfied, then it also ensures that for any initial
value x0, the sequence {xn} converges to the unique fixed point x
(Burden and Faires 2005, p 58–59, theorem 2.3). Although check-
ing condition (E.2) analytically might not be possible since β(x)

has a highly non-linear dependence on the electron energy distri-
bution for any x, in the supplement to this paper we use numerical

results to show that convergence is indeed achieved, provided the
judicious choice of the initial value x0 = E is made (i.e. the applied
electric field is used as the initial value for Eeff in the fixed-point
iteration method to solve equations (1) and (7) or equation (E.1)
here).
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1. Two-dimensional (2D) error plots for the approximate transcendental1

method2

Figure S1 shows 2D plots presenting the percentage error of the proposed approximate3

transcendental method compared to exact solution calculated by BOLSIG+ when B⃗ ̸= 04

for air and electron mean energy εm, electron impact ionization frequency νi, electron5

mobility parallel to magnetic field µ∥, and electron mobility perpendicular to magnetic6

field µ⊥, as functions of the angle ∠E⃗, B⃗ and reduced electron gyrofrequency ωce/N ,7

for selected values of reduced applied electric field E/N . Figures S2 and S3 show the8

corresponding plots for a a mixture of 88% H2 and 12% He, and pure CO2, respectively.9

The values selected for the reduced field E/N for each gas are 0.5Ek, Ek, and 1.5Ek,10

where Ek is the breakdown field for the gas, equal to∼ 120, 40, and 80 Td respectively for11

air, mixture of 88% H2 and 12% He, and pure CO2. The proposed method provides good12

results for all the electron rate and transport coefficients shown, except for the ionization13

frequency νi. We note that the error is quite low for εm, µ∥, and µ⊥ for all three gas14

mixtures throughout the considered range of input parameters (E/N, ωce/N,∠E⃗, B⃗),15

except for very small regions in the upper right quadrants, which is expected as one16

moves from the regime of non-magnetized (βeff ≪ 1) to highly magnetized (βeff ≫ 1)17

plasma, i.e, as ωce/N approaches 10−12 rad m3 s−1, and ∠E⃗, B⃗ approaches 90◦.18

Significantly larger errors are seen for the electron impact ionization frequency νi for19

all three gases, and the error becomes considerable as we move towards the upper20

right quadrants. However, as already addressed in the paper, in a realistic scenario21

where ωce/N and ∠E⃗, B⃗ may vary in the entire range shown, νi values corresponding22

to high ωce/N and large ∠E⃗, B⃗ are so insignificant that the large error has no practical23

significance in the framework of plasma fluid models in which these coefficients are24

typically employed. The white spaces in these panels correspond to regimes where the25

plasma is highly magnetized such that νi is identically zero. We further note that for26

the panel corresponding to νi in the 88% H2 and 12% He mixture at E/N = 20 Td, on27

account of the low electric field, νi is practically zero almost everywhere, and we used a28

much higher precision in our BOLSIG+ calculations than the default value to plot the29

νi panels shown.30
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Figure S1: Percentage error of proposed transcendental method in approximate form

for electron mean energy εm, electron impact ionization frequency νi, electron mobility

parallel to magnetic field µ∥, and electron mobility perpendicular to magnetic field µ⊥,

as a function of the angle ∠E⃗, B⃗ and reduced electron gyrofrequency ωce/N , for selected

values of applied reduced electric field E/N . Results are for air.
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Figure S2: Percentage error of proposed transcendental method in approximate form

for electron mean energy εm, electron impact ionization frequency νi, electron mobility

parallel to magnetic field µ∥, and electron mobility perpendicular to magnetic field µ⊥,

as a functions of the angle ∠E⃗, B⃗ and reduced electron gyrofrequency ωce/N , for selected

values of applied reduced electric field E/N . Results are for a mixture of 88% H2 and

12% He.
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Figure S3: Percentage error of proposed transcendental method in approximate form

for electron mean energy εm, electron impact ionization frequency νi, electron mobility

parallel to magnetic field µ∥, and electron mobility perpendicular to magnetic field µ⊥,

as a function of the angle ∠E⃗, B⃗ and reduced electron gyrofrequency ωce/N , for selected

values of applied reduced electric field E/N . Results are for pure CO2.
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2. Convergence of the proposed transcendental method1

Following Appendix E of the paper, where we already discussed the existence and

uniqueness of the solution to the proposed transcendental method, we show here that

the fixed point iteration method always converges to the solution for the gas mixtures

presented in this study, provided a judicious choice of the the initial value x0 is made

to start the iterations. We solve for x in the equation x = ϕ(x), where x = Eeff/N ,

and ϕ(x) = 1
N

[
E2

∥ +
E2

⊥
1+β2(x)

]1/2
. The condition for convergence is given by the Fixed

Point Theorem [Burden and Faires, 2005, p. 58-59, Theorem 2.3] which states that if

ϕ ∈ C[a, b] (where C[a, b] is the space of all continuous functions in the interval [a, b])

such that ϕ(x) ∈ [a, b], for all x in [a, b] and if, in addition, ϕ′ exists on (a, b) and a

positive constant k < 1 exists such that

|ϕ′(x)| ≤ k, for all x ∈ (a, b), (1)

then for any number x0 in [a, b], the sequence defined by

xn+1 = ϕ(xn), where n = 0, 1, 2, . . . (2)

converges to the unique fixed point x in [a, b]. Since the function ϕ is indeed continuous,2

and ϕ(x) ∈ [0, E/N ], for all x in [0, E/N ], where E =
√

E2
∥ + E2

⊥, we only need to check3

condition (1) for convergence.4

Consider the problem of calculating Eeff/N in pure CO2 gas. We assume the

worst-case scenario in terms of the performance of the transcendental method where

∠E⃗, B⃗ = 90◦, i.e., E∥ = 0 and E⊥ = E, since this is when the effect of the magnetic

field is strongest and results in the highest reduction of Eeff compared to E. Thus,

ϕ(x) =
E/N

[1 + β2(x)]1/2
. (3)

We consider solutions for three values of the magnetic field (or equivalently, the reduced5

electron cyclotron frequency ωce/N), where (ωce/N)1 = 10−14 rad m2 s−1 corresponds6

to weakly magnetized electrons (β ≪ 1), (ωce/N)2 = 10−13 rad m2 s−1 corresponds to7

partially magnetized electrons (β ∼ 1), and (ωce/N)3 = 10−12 rad m2 s−1 corresponds8

to highly magnetized electrons (β ≫ 1). In addition we consider three representative9

values of the applied field for each case, i.e., E/N = 10, 100, and 1000 Td.10

Figure S4 shows ϕ(x) and |dϕ/dx| as functions of x for all three values of E/N and11

for each value of ωce/N considered. A dashed line representing y = x is also shown.12

Graphically, we can determine the root as the intersection of ϕ(x) with y = x. We13

note that for the weakly magnetized case, i.e., (ωce/N)1, condition (1) is satisfied for all14

three values of E/N (Figure S4(b)), which ensures both the uniqueness of the solution,15

and convergence of the fixed-point iteration method to the unique fixed-point. For the16

partially magnetized case, i.e., (ωce/N)2, condition (1) is still satisfied for E/N = 10 Td,17

but it is not satisfied for E/N = 100 and 1000 Td (Figure S4(d)) in the entire range18

7



of [0, E/N ]. However, we note that for E/N = 100 Td, condition (1) is satisfied for1

x ∈ [≃ 20 Td, E/N ]. So we conclude that a unique root does exist in the range2

[≃ 20 Td, E/N ]. We further confirm graphically from Figure S4(c) that this root indeed3

exists, and is unique not only in [≃ 20 Td, E/N ], but in the entire range [0, E/N ]. We4

note that due to the log scale chosen for plotting, Figure S4(c) only shows x ∈ [1, 1000]5

Td. It is easy to check that the root is indeed unique in [0, E/N ]. Similarly, for6

E/N = 1000 Td, condition (1) is satisfied for x ∈ [∼ 120 Td, E/N ] and a unique root7

exists in this range. For the highly magnetized case, i.e., (ωce/N)3, condition (1) is8

satisfied for E/N = 10 and 100 Td, and hence a unique root exists. For E/N = 10009

Td, condition (1) is satisfied for x ∈ [≃ 60 Td, E/N ], and we conclude, following a10

similar discussion as for the partially magnetized case, that a unique root exists.11

We hence conclude that a unique solution to equation (E.1) exists for the wide12

range of values of magnetic field and applied electric field presented. We further note13

that |dϕ/dx| becomes smaller as x becomes larger, such that x0 should be chosen to14

lie towards the upper bound of the [0, E/N ] interval to ensure that condition (1) is15

satisfied (see Figures S4, S5, and S6). Further, it is recommended that x0 be chosen16

such that it is greater than the solution x. Although this x is not known initially, we17

know that x ≤ E/N , and hence, a simple choice that always satisfies this condition is18

x0 = E/N , and we note that this choice always led to convergence in tests conducted.19

Corresponding results for air, and the (88% H2, 12% He) mixture resembling Jupiter’s20

atmosphere are presented in Figures S5 and S6, respectively. An analysis similar to21

that of CO2 leads to the same conclusion, that is, the fixed-point iteration method22

converges to a unique solution for both air and the (88% H2, 12% He) mixture in all23

cases. These conditions for convergence can be similarly checked for an arbitrary gas24

mixture of interest.25

8
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Figure S4: ϕ(x) and |dϕ/dx| for weakly (ωce/N = 10−14 rad m3 s−1), partially

(ωce/N = 10−13 rad m3 s−1), and highly (ωce/N = 10−12 rad m3 s−1) magnetized plasma

in pure CO2. The dashed line represents the y = x line, and the intersection of ϕ(x)

with this line is the root of the equation x = ϕ(x).
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Figure S5: ϕ(x) and |dϕ/dx| for weakly (ωce/N = 10−14 rad m3 s−1), partially

(ωce/N = 10−13 rad m3 s−1), and highly (ωce/N = 10−12 rad m3 s−1) magnetized plasma

in air. The dashed line represents the y = x line, and the intersection of ϕ(x) with this

line is the root of the equation x = ϕ(x).
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Figure S6: ϕ(x) and |dϕ/dx| for weakly (ωce/N = 10−14 rad m3 s−1), partially

(ωce/N = 10−13 rad m3 s−1), and highly (ωce/N = 10−12 rad m3 s−1) magnetized plasma

in a mixture of 88% H2 and 12% He. The dashed line represents the y = x line, and the

intersection of ϕ(x) with this line is the root of the equation x = ϕ(x).
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