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Abstract

®

CrossMark

We present a theory based on the conventional two-term (i.e. Lorentzian) approximation to the
exact solution of the Boltzmann equation in non-magnetized weakly ionized plasma to
efficiently obtain the electron rate and transport coefficients in a magnetized plasma for an

arbitrary magnitude and direction of applied electric field E and magnetic field B. The proposed
transcendental method does not require the two-term solution of the Boltzmann equation in
magnetized plasma, based on which the transport parameters vary as a function of the reduced
electric field E/N, reduced electron cyclotron frequency we. /N, and angle AE",E between E and
B vectors, where N is the density of neutrals. Comparisons between the coefficients derived
from BOLSIG+’s solution (obtained via the two-term expansion when B # 0) and coefficients
of the presented method are illustrated for air, a mixture of molecular hydrogen (H;) and helium
(He) representing the giant gas planets of the Solar System, and pure carbon dioxide (CO;). The
new approach may be used in the modeling of magnetized plasma encountered in the context of

transient luminous events, e.g. sprite streamers in the atmosphere of Earth and Jupiter, in
modeling the propagation of lightning’s electromagnetic pulses in Earth’s ionosphere, and in
various laboratory and industrial applications of nonthermal plasmas.

Supplementary material for this article is available online

Keywords: electron energy distribution function, electron transport and rate coefficients,
Hall parameter, magnetized plasma, nonthermal plasma, weakly ionized plasma, gas discharge

1. Introduction

Starikovskiy et al (2021) reported the first plasma fluid model

for magnetized streamer discharges. The authors studied
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streamer propagation parallel to a magnetic field in pure CO5.
The motivations for this study included the significant interest
in the energy generation cycle of magnetohydrodynamic gen-
erators, the possible utilization of CO; in alternative renewable
energy sources, and the use of CO; as an alternative to SF¢ for
insulation in high-voltage transmission and distribution net-
works due to its lower environmental impact (e.g. Hernandez-
Avila et al 2002, Seeger et al 2016, Starikovskiy et al 2021).
Transient luminous events are a set of frequently
observed lightning-induced optical phenomena that were
serendipitously discovered by Franz et al (1990). In particular,

© 2023 The Author(s). Published by IOP Publishing Ltd
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atransient luminous event referred to as an elve (e.g. Fukunishi
et al 1996), which is the optical manifestation of the iono-
sphere interacting with a lightning electromagnetic pulse,
occurs at lower ionospheric altitudes, i.e. ~100 km, in the
Earth’s atmosphere. The Earth’s geomagnetic field plays an
important role in the structure of elves. For instance, Nagano
et al (2003) attributed the asymmetry exhibited in the shape
of elves to the Earth’s geomagnetic field. A three-dimensional
finite difference time domain model that accounts for the
effects of electron heating on electron mobility and for the
asymmetry of elves due to the geomagnetic field was reported
in Marshall (2009), Marshall er al (2010). This asymmetry
was not observed in studies that excluded Earth’s magnetic
field (Barrington-Leigh et al 2001, Veronis et al 2001, Kuo
et al 2007, Liu et al 2017, Pérez-Invernoén et al 2018).

Following the first observation of possible transient lumin-
ous events on Jupiter reported by Giles et al (2020),
Janalizadeh and Pasko (2023) developed a numerical model
for the modeling of magnetized streamers in the presence of
Jupiter’s strong magnetic field. Similar to Starikovskiy et al
(2021), streamer propagation was considered in a cylindrical
coordinate system, where the magnetic field was parallel to the
axis, and magnetized streamers were studied in the molecular
hydrogen and helium-dominated atmosphere of Jupiter.

Following Starikovskiy et al (2021), in Janalizadeh and
Pasko (2023), BOLSIG+ (Hagelaar and Pitchford 2005) was
used to calculate the electron transport and rate coefficients
as a function of the reduced electric field E/N, reduced elec-
tron cyclotron frequency we./N, and angle AE,E between
the applied electric field E and magnetic field B vectors. In
Janalizadeh and Pasko (2023, and references therein) it is
demonstrated that in the presence of a magnetic field transport
parameters of a weakly ionized plasma vary as a function of
(E/N,wee/N, ZE,B). As done in Starikovskiy ef al (2021), one
may dramatically reduce the execution time of a fluid model
for magnetized plasma by fitting analytical functions to lookup
tables produced from the electron rate and transport coeffi-
cients calculated by BOLSIG+.

In an alternative approach, however, it is possible to use
the electron rate and transport coefficients corresponding to
an effective electric field E.¢ in non-magnetized plasma (i.e.
B = 0) to deduce plasma transport parameters for the magnet-
ized case (i.e. B = 0). Compared to interpolating values from
3D lookup tables corresponding to (E/N,we./N, ZE,B), the
proposed method requires solving a transcendental equation
to obtain E.¢, and subsequently using pre-computed rate and
transport coefficient vectors to obtain values corresponding to
E.¢/N. Based on the authors’ experience, 3D interpolation in
a high-resolution plasma fluid model is more time-consuming
than solving a transcendental equation. The authors have not
compared the efficiency of the transcendental method with
calculations using analytical functions fitted to 3D lookup
tables (e.g. Starikovskiy et al 2021). Overall, we emphasize
that the calculations realized through the fitting functions, the
lookup tables, or the proposed transcendental method do not

represent the most computationally expensive parts of mod-
els (i.e. streamer models (Starikovskiy et al 2021, Janalizadeh
and Pasko 2023)). In non-magnetized cases, we do not create
lookup tables for different £ and N values. Instead, we use the
E/N-dependent (i.e. reduced) representations. The physics-
based simplicity of the proposed formulation can be viewed
as more efficient from the same perspective.

The majority of the present work is dedicated to the
development of the theoretical background quantifying E..
Nevertheless, to accommodate readers interested mainly in the
implementation aspect of the introduced method, in section 2
we describe the procedure to implement a simple and intu-
itive approximation to the general transcendental framework,
which in later sections will be presented in detail. We conclude
section 2 after demonstrating that the approximate method res-
ults in electron transport parameters in pure CO, plasma, that
are in satisfactory agreement with BOLSIG+’s exact calcula-
tions for B # 0.

Section 3 sets the theoretical foundation required for the
introduction of the effective electric field E. mentioned
above. Here it is demonstrated that E.¢, defined through the
minimization of a designed error function, is in the same
format of the electric field as an electron with energy € (in
electronvolts (eV)) experiences in the presence of a magnetic
field (e.g. Starikovskiy et al 2021, equation (5)). Specifically,
for a given magnitude of applied magnetic field (i.e. for spe-
cified wee /N) and for a given angle between the electric field E
and magnetic field B applied to a weakly ionized plasma, the
influence of B on the ensemble of electrons may be interpreted
in terms of an effective Hall parameter (¢, which itself var-
ies as a function of E.¢/N. Hereafter, we distinguish between
the conventional energy-dependent Hall parameter Sy(e) =
Wee/Vm(€) (Where wee = geB/me, ge is the fundamental charge
of an electron, m. is the mass of an electron, and vy, (¢) is the
effective momentum transfer collision frequency that is a func-
tion of €) and B, with the subscript ‘“H’ used only for the
former. Moreover, the dependence of quantities on the elec-
tron energy or velocity will be explicitly shown via a trail-
ing ‘(¢)’ or ‘(v)’, respectively. That is, the absence of ‘() or
‘(v)’ in the symbol of any plasma rate and transport coefficient
implies that the corresponding coefficient has been averaged
over the electron energy distribution function (EEDF). We
note that the quantification of v, (&) for collisions of electrons
with each species in a mixture requires an effective electron
impact cross-section, which as mentioned in the LXCat cross-
section file accompanying BOLSIG+- (Hagelaar and Pitchford
2005), equals the sum of the elastic momentum transfer cross-
section and total inelastic collision cross-section. This effect-
ive cross-section is not in any way connected to the concept of
E.sr mentioned above.

The mathematical derivations related to section 3 may
be found in appendix A, where the general transcendental
method is derived. Here, we also discuss the weight func-
tion w(v) (where v=r¢e? in which v = (2¢./m.)?) that is
introduced in the definition of the error function mentioned
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above. Subsequently, in section 4.1 it is demonstrated that
three custom weight functions investigated as part of this ana-
lysis provide similar values for S, and consequently we focus
on one specific weight function, which results in the presen-
ted formulation lending itself to the electron rate and transport
coefficients of magnetized plasma defined in e.g. Hagelaar
(2016), and in some cases, directly outputted by BOLSIG+.
This transition is explained in appendix B. In appendix C, fur-
ther approximations justified in the case of nearly constant
momentum transfer collision frequency as a function of the
electron energy are introduced. This is where the simple and
intuitive approximation to the general transcendental method,
presented in section 2, is justified. In section 4.2 and through
the comparison of some electron transport and rate coeffi-
cients with BOLSIG+ calculations corresponding to B #£0,
it is demonstrated that the proposed transcendental method,
in exact and approximate form, and the magnetized plasma
(i.e. B = 0) calculations of BOLSIG+ give consistent results.
The limit of nearly constant vy, (¢) is also discussed. The valid-
ity of the presented transcendental framework is demonstrated
through application to three gas mixtures, i.e. air, a mixture of
88% molecular hydrogen with 12% helium representing the
composition of giant gaseous planets in the Solar System, and
pure carbon dioxide.

2. Model outline

The electron transport and rate coefficients in various gas mix-
tures for the non-magnetized (i.e. B= 0) case are commonly
represented as functions of the reduced applied field E/N using
lookup tables or various fits with analytical functions. These
are usually formulated using a combination of the solution of
kinetic equations, swarm experiments, and Monte Carlo sim-
ulations, and are readily available to modelers. An example of
these would be solutions corresponding to B=0in CO, gas
recently published in Starikovskiy et al (2021). The purpose of
this section is to demonstrate that these B = 0 representations
can be directly used to obtain transport and rate coefficients for
an arbitrary magnitude and direction of the applied magnetic
field B # 0. We note that ideas of self-consistently account-
ing for the electron momentum transfer collision frequency
varying as a function of the applied electric field in the eval-
uation of the electron conductivity tensor in weakly ionized
plasmas have appeared in previous publications (Pasko et al
1998, Marshall 2009, Marshall et al 2010, Kabirzadeh et al
2015, Salem et al 2016, Tonev and Velinov 2016). However,
these approaches have not been rigorously justified.

While a rigorous formulation and discussion of the valid-
ity of the proposed transcendental method follows in the sub-
sequent sections, here we focus on the implementation of an
approximation to the general transcendental method to illus-
trate and emphasize the accuracy and efficiency of the tran-
scendental method in its simplest form (see appendix C).
We note that in this case, the effective electric field Eer in

the presence of a magnetic field is given by the proposed
method via

, ) o 2 El
Ex=Ej+ =B+ ———5 ()
T BB T T (weefom)?

which resembles the expression of the electric field that
an electron with energy ¢ experiences due to the presence
of a magnetic field (e.g. Starikovskiy et al 2021, equation
(5)). Whereas the Hall parameter Sy(e) = wee/vm(e) (e.g.
Starikovskiy er al 2021, equation (5)), where vy(e)/N is
the rate constant for momentum transfer due to an electron
with energy e, in equation (1) Seff = Wee/Vm», Where vy /N =
km(Eefr/N) is the rate constant for momentum transfer (aver-
aged over the EEDF). This implies that, expressed explicitly,
Bett = Bett(Eeft/N,wee /N). Nevertheless, in equation (1) the
dependence of S on wee /N is suppressed, assuming that ana-
lysis is conducted for a constant applied magnetic field provid-
ing a constant value of wc. /N. Also, the dependence of S on
Eer/N is denoted solely by E.f to make a connection to the
fixed point x of a function ¢(x) defined as x = ¢(x), where in
1
equation (1) x = Eer and thus, ¢(x) = [Eﬁ + T * The
concept of a fixed point in addition to the ﬁxed—pc;‘i‘nt theorem
is invoked in appendix E and the supplementary file to discuss
the existence, uniqueness, and convergence of a solution E.g
to non-linear equation (1).

For a given (E/N,we/N,ZE,B), such that E =
Ecos(Z/E,B) and E, = Esin(ZE,B) are the components of
the applied electric field E, respectively, parallel and perpen-
dicular to the magnetic field B, the approximate transcendental
method only requires vy, /N, which is related to the electron
mobility e via v /N = (7%/2)/ (eN) (€. v = e/ (Mepte)
in the absence of Coulomb collisions) (Hagelaar 2016, p 17).
We emphasize that this formulation employs only vy, /N (or
equivalently, Ber in equation (1)) as a function of the reduced
effective electric field Eefr/N, i.e. vy /N is a function of Eegr/N
only, and is calculated with no effect of the applied magnetic
field, i.e. B=0.In practice, u. can be interpreted as mobility
parallel to the magnetic field p. Furthermore, Bef intro-
duced here is an approximation to the S.g quantity defined in
section 3.

There are a number of sources available that may be used
to calculate the electron mobility in various gas mixtures
for the B =0 case. For instance, in addition to the electron
mobility in air, Morrow and Lowke (1997) provide analytic
functions for electron impact collision rate constants, which
were used in previous modelings of streamers in air (e.g.
Bourdon et al 2007, Jansky and Pasko 2020). Additionally,
Moss et al (2006) provided a MATLAB function airl.mcom-
piled from the results of ELENDIF (Morgan and Penetrante
1990), which returns electron mobility and mean energy in
addition to rate coefficients for various electron impact pro-
cesses in air. This function is freely available at http://pasko.
ee.psu.edu/air. There are similar MATLAB functions based on

2
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Figure 1. Electron mean energy as a function of the applied reduced electric field E/N calculated using (a) BOLSIG+, and (b) the
approximate transcendental method for various values of the magnetic field B in pure CO, when E 1 B. Panel (a) is an independent
reproduction of Starikovskiy er al (2021), figure 4(a), where N = 1.6447 x 10** m~ corresponds to pressure p = 50 Torr and temperature
T =293 K. Note that as mentioned in Starikovskiy ez al (2021), E/N = 1Td = 10~ V em? corresponds to E =25 kV m~! for p=1 atm

and T =293 K.

BOLSIG+ (Hagelaar and Pitchford 2005) for air (Janalizadeh
and Pasko 2020), Jupiter’s atmosphere (Janalizadeh and Pasko
2023), and CO; (provided per request from the authors).

Equation (1) is a transcendental equation for E.¢ and may
be solved for E.¢ using electron mobility given by the func-
tions mentioned above to quantify .. Once the value of Eeg
that satisfies equation (1) is obtained, the kinetics of elec-
trons under the influence of (E/N,wc /N, ZE,B) are conver-
ted to an equivalent problem with (E.i/N,B = 0). The elec-
tron rate and transport coefficients may then be calculated
using the functions above, which were developed for non-
magnetized plasma. In particular, the perpendicular and Hall
mobilities may be obtained via 11 = 1 /(14 %) and py =
s =ty Betr/ (1 + BZ%), respectively.

Figure 1(a) depicts the mean energy of electrons ey in
CO,; gas under the influence of external electric and magnetic
fields obtained using BOLSIG+- with accurate inclusion of an
external magnetic field, while figure 1(b) depicts the same res-
ults calculated using the proposed transcendental method (i.e.
equation (1)). It may be inferred that the approximate tran-
scendental method provides results in satisfactory agreement
with BOLSIG+’s exact calculations. We note that figure 1(a)
is a reproduction of Starikovskiy et al (2021), figure 4(a),
where the authors also use BOLSIG+- to calculate the electron
mean energy. Here, we do not present the results correspond-
ing to Starikovskiy et al (2021), figures 4(b)—(d), since in that
study the respective ionization frequency v;, electron mobility
parallel to the magnetic field vector p |, and electron mobility
perpendicular to the magnetic field vector 1) are presented as
dimensionless quantities. Instead, in figure 2, we compare the
results of BOLSIG+ and the transcendental method for e, v,
s and 4 , as a function of ZE, B. Here, the applied electric
field E = 1.5E;, where E; ~ 80 Td (1 Td = 10717 Vcm?) is the
breakdown electric field (Raizer 1991, p 137) in pure CO,

calculated via BOLSIG+. The values of the reduced electron
cyclotron frequency used for the calculations are (wee/N); =
1071, (Wee/N)2 = 10713, and (wee/N)3 = 10712 rad m?® s~ 1.
As seen later in section 4.1, this interval of we/N cov-
ers the entire range between non-magnetized (8%; < 1) and
highly magnetized (3%; > 1) electrons, and consequently it
is demonstrated in figure 2 that the results from the two
methods are in satisfactory agreement in the entire range of
magnetized CO, plasma. In particular, as demonstrated in
equation (A.15), the error of the transcendental method grows
approximately proportional to sin“(ZE"7 E). Thus, the max-
imum discrepancy between the exact and transcendental res-
ults occurs at ZE ,1§ = 90°. Furthermore, for non-magnetized
(fully magnetized) plasma both the exact and transcendental
method trivially return Eerr = E (Eerr = E)). This agreement
between the two methods does not necessarily hold for par-
tially magnetized plasma, where Segr 2> 1.

Before ending this section, we reiterate the outline used
above for studies that require calculation of the electron rate
and transport coefficients in a magnetized plasma. As demon-
strated above, this approach reduces the problem of magnet-
ized plasma (i.e. B # 0) in the presence of an applied electric
field E to an equivalent problem of non-magnetized plasma
(i.e. B= 0) in the presence of an effective electric field E.g
where one

1. Calculates E. for a given (E/N,wee/N, AE,E) satisfy-
ing the transcendental equation (1), and corresponding
Best(Eefr/N).

2. Calculates electron transport and rate coefficients as if
B=0 using this newly obtained E.¢. For instance, elec-
tron mean energy em(Eesr/N), reduced electron impact
ionization frequency % (Eex/N), reduced momentum
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Figure 2. (a) Electron mean energy, (b) reduced electron-impact ionization frequency 4Ny /N, (c) reduced electron mobility parallel to
magnetic field 11 N/Np, and (d) reduced electron mobility perpendicular to magnetic field p1 N/Nj as a function of the angle between the

electric field E = 1.5E; (E; = 80 Td) and the magnetic field calculated for (wee/N); = 107!* rad m® s=! (@), (wee/N)2 = 107" rad m* s~!
(+), and (wee/N)3 = 1072 rad m® s7! (x) in pure CO; gas. Solid lines denote BOLSIG+ exact calculations and markers denote the
approximate transcendental method. The Loschmidt number Ny = 2.686 x 10®° m™3. See figure 3(c) for numerical values of Se

corresponding to (wee/N)1—3 used here.

transfer collision frequency “(Ecy/N), reduced elec-
tron mobility parallel to the magnetic field N =
(ge/me)/ (42 (Eetr/N)), and electron mobility perpendicu-
lar to the magnetic field p11 = o)/ (14 B%(Eete/N)).

The solution of equation (1) can be simplified if, for a given
wWee/N, Bett = (Wee/N)/(Vm/N) can be assumed to be con-
stant or weakly dependent on the reduced electric field Eegt/N.
However, we note that for typical electric fields used in applic-
ations, the S.g parameter in equation (1) can exhibit significant
variations as a function of E.sr/N. For example, for CO; gas,
it changes by a factor of 5, and for air by a factor of 10. As
Betr enters equation (1) in a quadratic form, these variations
are important and one needs to find the solution E.¢ of non-
linear equation (1) to accurately solve the problem. The solu-
tions can be simplified when 3% < 1 due to the high collision
frequency v (Eer/N; N) 2 wee in strong applied electric fields
(e.g. Liu et al 2017) or when the orientation of the electric
field with respect to the magnetic field has preferentially an
E| component (e.g. Pérez-Invernén et al 2013). In both cases,
the effect of an external magnetic field on the system behavior

can be ignored. We note that the solution flow described here
follows from the case labeled as w = ws for 33(g) > 1, where
w is a weight function that will be defined in the following
section.

3. Model formulation

Assuming a steady state and homogeneous space, in the pres-
ence of a constant electric and magnetic field, the isotropic
part of the electron velocity distribution function (EVDF) f,
in the Lorentzian approximation (e.g. Holstein 1946) f3(V) =
fo, (V) +f1,(v) - 7,,, where 7, is the radial unit vector in velocity
space, is the solution to the differential equation (e.g. Golant

et al 1980, p 140)

1/ge\21 8 [ 12 EX 2\ o, _
3 (mie) V2 Qv |:Vm(V) <1+512{(v) +E”> v } +Clo,) =0

2

where the subscript B emphasizes that the EVDF is calculated
for magnetic field B # 0. The anisotropic part f;, is given in
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e.g. Loureiro and Amorim (2016, p 164) for B | 2, where 2
is a unit vector in the direction of the z axis. In the above
equation and in a conventional cylindrical coordinate system,
we have E] =E, +E} E| =E;, E*=E} +Eﬁ, and SBy(e) =
weevim | (¢). Also, ZE, B is the angle between E and B such that
tan(ZE, B) = %, and C(fp,) denotes the collision term (e.g.
Loureiro and Amorim 2016, pp 101-4, 110-5). The solution
of equation (2) as a function of v varies with any combination
of (E/N,wee/N,ZE,B), i.e. fo, = fo, (v; E/N,wee /N, ZE, B) (e.g.
Janalizadeh and Pasko 2023, appendix A2). For the remainder
of this work, symbols after a semicolon represent independent
external parameters on which an introduced quantity depends.

As aresult of the Lorentzian, i.e. two-term expansion of the
EVDF, electron impact collision rates are determined exclus-
ively by fo, ( fvozoo fop (V)47 v2dv = ne, where ne denotes electron
density). On the other hand, electron transport coefficients are
dependent on f; - As can be seen from sources cited above (e.g.
Janalizadeh and Pasko 2023, appendix Al), for a given set of
(E/N,wee /N, ZE, B), the latter is solely dependent on the deriv-
ative of the isotropic term with respect to v. Thus, in an altern-
ative approach that does not require solving equation (2) for
magnetized electrons, here we substitute fy, with f( in search
of the isotropic part of an EVDF in the absence of a magnetic
field, i.e. B = 0, that minimizes the residual

R(v) =Rl[fo(v)]

C1fgeN21 9 WV E? 2\ 9
=30n) v [Vm@) (71 TR0 *EH> E} +Clho)

3)

over the v € [0, 0] interval. Before presenting the minimization
process, we note that, as demonstrated in equation (2), the residual
is zero for fy,. As such, R(v) may be interpreted as a measure
quantifying the difference between fy, and fy = fo(v; Ect/N) at a
given electron velocity v. We note that f;(v) is the solution to (e.g.
Raizer 1991, p 87)

1/ge\21 0 [ v o df
(=) 5= Eg— = 4
3 <me) V2 oy |:I/m(V) eff v +C(f0) 0 ( )
where we have let Sy (v) = 0 in equation (2) to obtain the above
equation for a given Eq. Subsequently, we can replace the colli-
sion term C(f;) in equation (3) using the definition in equation (4)
to obtain

/g2 9 WV EX 2 2\ 9
R =3 () o Lm(w (il T h —Eeff) ﬂ '
5)

Note that R(v) expressed in equation (5) resembles the signed dif-
ference between the increase per unit volume of velocity space
per unit time of electron density due to the presence of E and
B versus the presence of E.p (when B= 0) (e.g. Loureiro and
Amorim 2016, p 105).

The minimization of the defined residual over v € [0, co] may
be quantified by introducing a weight function w(v) and sub-
sequently defining an error function

E(Eest/N;E/N,wee /N, ZE,B) = |R||* = (R,R)

= / - REmwmdv  (6)

=0

where we have used the definition of the inner product (f,g) =
j;ozof*(v)g(v)w(v)dv (e.g. Dudley 1994, p 53), in which * rep-
resents the complex conjugate operator. Here, we wish to find the
value of E. that minimizes the error £. By definition, in that case
we should have 9€ /OE. = 0. We emphasize that this minimiz-
ation should generally be performed for every set of three inde-
pendent external parameters used in the formulation of lookup
tables (e.g. Starikovskiy et al 2021), namely, E/N, wce/N, and
ZE,E. Nevertheless, as demonstrated in appendix A, this analysis
results in the general transcendental expression

(N

where 4/1+ Bgff is the factor by which the perpendicular com-
ponent of the applied electric field is reduced due to the presence
of a magnetic field. The quantity S. varies only as a function
of Eege/N for a given wee/N and is given by Ber = /11/I> — 1,
where /| and [, are integrals defined in equations (A.6) and (A.7),
respectively. The dependence of S (through 1) on wee/N is
only through By (e) since as already mentioned, f( corresponds
to a non-magnetized EVDF such that one does not need to solve
equation (2) for magnetized plasma.

Generally, E will be located in the [Ecos(ZE, B), E] inter-
val where the upper (lower) limit of this search interval corres-
ponds to non-magnetized, 8% < 1, (fully magnetized, 8% > 1)
electrons, respectively. Therefore, once S is quantified, one can
employ a root-finding algorithm to solve equation (7) and obtain
Eci/N for a given set of input parameters (E/N,wce/N, /E, E).
The question of the existence and uniqueness of a solution to
equation (7) is addressed in appendix E. Specifically, it is demon-
strated that a solution always exists, and conditions for the unique-
ness of a solution and convergence of the fixed-point iteration
method to find E.; are obtained such that for any given set of input
parameters (E/N,wce/N, ZE, B) one can verify these conditions.
We note that the interested reader may accelerate the root-finding
process by creating a two-dimensional array of Se¢ values vary-
ing as a function of the (Eqr/N,wee/N) pair to be subsequently
used in solving the transcendental equation (7).

To numerically quantify B¢ we introduce three weight func-
tions denoted by wy (v), wy(v),ws(v) to demonstrate the perform-
ance of the presented transcendental method. The corresponding
weight function in energy space is defined via W(e)de = w(v)dv,
where, as mentioned above, ¢ denotes electron energy in units of
eV. The weight functions we use in this work are
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1. wi(v) =1, i.e. constant weight function in velocity space.
Thus, W(e) = %67%

2. wy(v) = nlefo(v)éhrv2 such that wy(v)dv = n—le 27’:;3 Fo(e)4n~?
5%6_%@3‘ = Py(e)de
—1
3. wy(v) =0 [% (V‘:Ev) %)} such that
2 N3
(v’¢) v -
wi(v)dv = 1o v 110 ¢ 2
27 €29 { Um(€) 27 €2 5 |:27r?y3 FO(E):| }
10 2
cde— ™ e“de ®)

dne o | 3 ok,
O | Um(e) Oc¢

where the EEDF in BOLSIG+ Fj(¢) and the electron probabil-
ity distribution function (EPDF) Py (¢) are defined in appendix D.
Note that since Sesr o I/, the absolute value of the electron
density or the constant « present in the weight function do not
affect any results of this analysis as the weight function is included
in both /1 and /5.

We emphasize that the formulation presented here is valid
irrespective of the peculiarities of each weight function. As
such, in choosing w; and w, we prioritize the simplicity of
the weight function itself. However, this is not the case for ws.
Specifically, w3 has been chosen such that S will become
proportional to the electron transport and rate coefficients dir-
ectly outputted by BOLSIG+ (see appendices B and C). In
other words, calculating B¢ when w =w; or w =w, requires
the EEDF calculated by BOLSIG+ for evaluation of the integ-
rals I} and I,. However, when w = w3 these integrals reduce
to specific electron rate and transport coefficients that are
already calculated by BOLSIG+ in the non-magnetized case
(i.e. B=0).

Specifically, the transcendental method in the special case of
w = w3 reduces to (see appendix B)

2
gy = Ef + % )
(i)

where expressions for mobilities parallel 4 and perpendicular
1 to the magnetic field are given in equations (B.5) and (B.9),
respectively (e.g. Hagelaar 2016, p 16). We note that whereas
,u(l is in the same format of 4 defined in Hagelaar 2016, p
16, as opposed to p it is not a direct output of BOLSIG+
since the calculation of i, by BOLSIG+ happens when B # 0,
while u(l is dependent on BOLSIG+ only through BOLSIG+’s
EEDF calculated for B = 0. As such, we calculate /L(l manually
(in MATLAB) using the EEDF output of BOLSIG+ correspond-
ing to a defined range of E.¢/N values. A given reduced gyro-
frequency wee /N quantifies Sp(e) = wee/vm(e) in the definition
of u(j_ through vm(e) = Nom(e)v :Nam(s)vs%. In the calcula-
tion of p(j_ and more generally B¢, we quantified the momentum
transfer cross-section om () of each gas mixture using the LXCat
set of cross-sections, which accompanied BOLSIG+-. For species
for which om(g) was not readily available in the accompanying
data, we calculated om(g) by summing the cross-section for all
inelastic processes in addition to the elastic momentum transfer

cross-section. The value of om(e) for a mixture was obtained by
weighted summation of om(e) of the constituent species accord-
ing to their fraction of composition.

4. Results and discussion

4.1. Calculation of B for wi(v),wa(v), and ws(v)

As inferred from section 3, whereas the determination of E.gf
through the transcendental equation is dependent on the applied
electric and magnetic fields in addition to the angle between the
two, the calculation of S for a given Ec¢/N may proceed in a
standalone fashion. To quantify S.¢ for various weight functions,
here we use BOLSIG+ to calculate the EEDF (with B= 0) in gas
mixtures considered for a wide range of E.s/N values. As already
mentioned, the magnetic field enters our calculations of Se¢r only
through the Hall parameter included in the definition of /,. Three
gas mixtures are considered: (1) air, i.e. a mixture of 80% molecu-
lar nitrogen (N;) and 20% molecular oxygen (O;), (2) a mixture
of 88% molecular hydrogen (H;) and 12% helium (He), and (3)
pure carbon dioxide (CO,).

In figure 3 we illustrate the calculated values of [.p. We
note that the reduced breakdown electric fields (e.g. Raizer
1991, p 137) in mixtures (1)—(3) have been calculated via
BOLSIG+ and are respectively ~120, 40, and 80 Td. In
air and pure CO, we choose E.s/N = 10° — 10° Td. Due to
the much lower breakdown threshold in mixture (2), results
are shown for a maximum of E./N =500 Td. The values
of the reduced gyrofrequency chosen for the calculations are
10714, 10713, and 10~ 2 rad m? s’l, and are respectively denoted
by (wee/N);,(wee/N),, and (wce/N);. As seen in figure 3, this
interval of wee /N covers the entire range between non-magnetized
(B% < 1) and highly magnetized (3% > 1) electrons. We note
that in Starikovskiy et al (2021), magnetized streamers were stud-
ied in the wee /N = 0 — 20 x 10~ rad m® s~ range. Janalizadeh
and Pasko (2023) modeled magnetized sprite streamers at 250 km
altitude in the atmosphere of Jupiter, where wee/N >~ 1.4 %
10713 rad m? s~!, and the reduced gyrofrequency at ~100 km
altitude in the atmosphere of Earth (where a lightning-induced
transient luminous event referred to as an elve was observed (e.g.
Fukunishi et al 1996) and further modeled (e.g. Marshall et al
2010)) is wee /N~ 5.8 x 10713 rad m® s~ 1.

Furthermore, it is inferred from figure 3 that the differ-
ence between [ values corresponding to various weight func-
tions w(v) is practically insignificant. As already mentioned in
section 3, w = wj results in the expression of S in terms of the
electron rate and transport coefficients, which are already cal-
culated by BOLSIG+ in the non-magnetized case (i.e. B=0).
Therefore, for the sake of simplicity and brevity, in the remainder
of this work we let w = wj.

4.2. Comparison of BOLSIG+ exact coefficients with present
study results

As demonstrated in appendix C, when w =wj, the presen-
ted transcendental method for considerably magnetized
electrons may be simplified even further. Specifically, if
(5%[0111(5)6%]) = faozoors%[am(s)sé}Po(s)ds is negligible, one
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Figure 3. Values of Sett = Bett (Eefr/N; wee /N) in (a) air, (b) 88% Ha, 12% He, and (c) pure CO; as a function of given reduced effective
field Eetr/N for values of (wee/N), = 107" rad m® s 7!, (wee/N), = 107 rad m* s ™', and (wee/N); = 107 rad m* s~

can use fSeff = wee/Vm = (Wee/N) /km(Eer/N), Where km = vm /N
is the momentum transfer rate constant as a function of Ee/N
exclusively. This is a standard rate coefficient calculated by
BOLSIG+ itself such that the implementation of the transcend-
ental method using the EEDFs calculated by BOLSIG+ may be
avoided. The average (e %[am(s)s%}) is a measure of the vari-
ation of momentum transfer collision frequency as a function of
the electron energy. That is, om(g) ¢~ for which the average is
identically zero corresponds to a constant momentum transfer col-
lision frequency since in that case vm(g) = Nkm(e) = Nom(e)v «
em2 (’ys%) = const (e.g. Starikovskiy et al 2021). Consequently,
in this section, we assume that this average is in fact negligible,
and compare results with the general transcendental method with
w =ws and Seg. We will also include the exact (no assumptions
made) calculations of BOLSIG+-, which have been compiled in
lookup tables and subsequently interpolated for cases considered
here.

Specifically, we consider two cases of AE,E: 45° and 90° in
addition to a large range of applied reduced fields E/N. We choose
wee /N (or equivalently weeNo/N, where Ny = 2.686 x 10% m™3)
such that B ~ 1 for both AE,E considered and in the major-
ity of the E/N range. The purpose of this choice of weeNy/N
is to demonstrate the performance of the transcendental method
in the partially magnetized regime where, as opposed to ,Bgff >
1 (5esz < 1), the effective electric field is not trivially Eeg =
E| (Eetr = E). In what follows, wee /N =~ 1073 rad m? s~ (for all
gases), which is close to the (wce/N), value in figure 3 and cor-
responds to partially magnetized electrons. The quantities used
for comparison are the mean energy of electrons em, the electron

impact ionization frequency v;, the mobility parallel to the mag-
netic field 4|, and the mobility perpendicular to the magnetic field
w1 . This choice of comparisons has been made to investigate
the performance of the proposed transcendental method as it per-
tains to both the f andfl terms in the two-term expansion of the
EVDF.

Figures 4-6 respectively depict comparisons in gas mixtures
(1)—(3). All panels include Betf = (wee/N) /km(Ees/N) after find-
ing the solution to equation (1) to illustrate the degree of magnet-
ization of the electrons. It is inferred from these figures that the
transcendental method for w = w3 and the approximation to this
method agree to a satisfactory degree. In addition, both methods
agree with the exact calculations of BOLSIG+ for the majority
of the E/N range. Thus, the interested reader may initially imple-
ment the simpler approximate transcendental method presented
in section 2 to evaluate and explore the method’s performance for
an arbitrary gas mixture.

The observed deviation of v; results of BOLSIG+ from that of
both transcendental methods at /E ,E =90° (ie. E = 0) is gen-
erally considerable. On the other hand, the agreement between
em calculated for the same scenario by all methods is satis-
factory. This observation emphasizes the difference in the high
energy tail of the exact EEDF calculated by BOLSIG+ for B # 0
and the EEDFs (corresponding to B = 0) used in the transcend-
ental methods. Specifically, both em and v; depend on the iso-
tropic term of the EVDF. However, the latter involves, exclus-
ively, the high-energy electrons represented in the tail of the
EEDF (vs ¢) since electron impact ionization is a collision with an
energy threshold. While the abundance of these ionizing electrons
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Figure 4. (a) Electron mean energy and (b) electron impact ionization frequency for ZE,E =45°. (c¢) Electron mean energy and (d)
electron impact ionization frequency for ZE,E =90°. Mobility of electrons (e) parallel and (f) perpendicular to B for ZE,E =45°,
Mobility of electrons (g) parallel and (h) perpendicular to B for Z/E, B = 90°. Results are for air.

controls the ionization rate constant, their exponentially lower
population compared to low-energy electrons results in a neg-
ligible impact on the em values presented. We note that the
same analysis is true for rate constants of other electron impact
processes with an energy threshold. The disagreement is more
pronounced for electron impact collisions with a higher energy
threshold.

Values corresponding to E | B are also included in all panels.
Specifically, the extremely low ionization levels when AE,E =
90° are demonstrated. While ZE, B = 90° corresponds to the low-
est agreement between v; results of BOLSIG+ and the transcend-
ental methods, the exact results of BOLSIG+ are still orders of
magnitude less than scenarios in which ZE,E — 0. We note that

this holds even for AE,E as high as 45° (see panels (b) and (d) in
figures 4-6). As such, one may conclude that in a realistic scen-
ario where ZE, B may vary in the entire range of ZE, B = 0 — 90°,
even exact v; values corresponding to Z/E ,E =90° are so insig-
nificant that the disagreement between BOLSIG+ and the tran-
scendental methods has no practical significance in the framework
of plasma fluid models in which these coefficients are typically
employed (e.g. Starikovskiy et al 2021, Janalizadeh and Pasko
2023). In other words, unless in the entire simulation domain
ZE,E — 90° and the process involves electric fields close to Ej
(as the threshold for significant ionization), the transcendental
method provides accurate results for the ionization frequency. A
similar argument may be made for the parallel mobility panel in
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Figure 5. (a) Electron mean energy and (b) electron impact ionization frequency for ZE,E =45°. (c¢) Electron mean energy and (d)
electron impact ionization frequency for ZE,E =90°. Mobility of electrons (e) parallel and (f) perpendicular to B for ZE,E =45°,
Mobility of electrons (g) parallel and (h) perpendicular to B for Z/E, B = 90°. Results are for a mixture of 88% H, and 12% He.

figure 4, i.e. figure 4(g), where one observes a clear disagree-
ment between the BOLSIG+ exact results and both transcend-
ental methods in the low E/N region. Specifically, in this case,
E|; =0 such that the drift of electrons parallel to B is absent.
As for | depicted in figure 4(h), one can clearly infer the bet-
ter performance of the exact transcendental method (i.e. w = w3)
compared to the approximate transcendental method described in
section 2.

The results succinctly depicted in figures 4-6 may be
presented in a different format. Specifically, they can be
presented as two-dimensional color plots that cover the entire
range of ZE,B=0-90° and wee/N € [(wee/N)1, (wee/N)3] =
[1071%,107!?] rad m? s~ for a select few applied reduced fields
E/N. In that case, one may initiate the transcendental method and

BOLSIG+ calculations since (E/N, wee /N, ZE, B) is now defined.
Subsequently, a quantitative error that provides the percentage
difference between BOLSIG+ and the transcendental method by
normalizing it to BOLSIG+ exact values may be introduced.
Due to the general satisfactory performance of the approximate
transcendental method and for the sake of brevity, such figures
are included in the supplementary file that accompanies this
paper.

At the end of this section, we emphasize that the presented
results target the regime of partially magnetized plasma. One
expects a better agreement between the transcendental method
and BOLSIG+ exact calculations in both cases of essentially non-
magnetized (8% < 1) and fully magnetized (3% > 1) plasma
since in those cases E.;f = E and Er=E|, respectively (see
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Figure 6. (a) Electron mean energy and (b) electron impact ionization frequency for ZE,B = 45°_(c) Electron mean energy and
(d) electron impact ionization frequency for ZE,E = 90°. Mobility of electrons (e) parallel and (f) perpendicular to B for ZE,E =45°.
Mobility of electrons (g) parallel and (h) perpendicular to B for ZE, B = 90°. Results are for pure CO,.

figure 2). An even more accurate transcendental method may be
obtained by extending the presented model formulation to solu-
tions of the Boltzmann equation that are more accurate than the
two-term approximation.

5. Conclusions

We introduce a new transcendental approach to the calculation of
electron transport and rate coefficients in a magnetized plasma
using the theory and results of non-magnetized plasma. The
obtained effective electric field results in plasma transport para-
meters that are in satisfactory agreement with BOLSIG+’s exact
calculations in air, a mixture of 88% molecular hydrogen with
12% helium, and pure carbon dioxide. Furthermore, the effective

electric field is in the same format as the electric field a single
electron experiences in the presence of a magnetic field. This
provides an intuitive picture, which accompanies the rigorous
mathematical derivations presented here. Subsequently, a special
case of the formulation is further explored to reduce calculations
and use the electron rate and transport coefficients outputted by
BOLSIG+. While as a result of the kinetic theory of weakly ion-
ized and magnetized plasma the electron transport and rate coeffi-
cients are defined through a distribution function that varies with
(E/N,wee/N, AE,E), the new method proceeds in two steps: (1)
the calculation of Eg for a given (E/N,wce/N, AE,E) through a
simple transcendental equation, and (2) the calculation of electron
transport and rate coefficients in the absence of a magnetic field
using E.g/N (since when B =0, the transport parameters become
functions of E.¢/N, exclusively).
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Appendix A. Theory of general transcendental
method and minimum error value

In this section we start with the definition of the error func-
tion introduced in equation (6). Using the residual R(v) given by
equation (5), we have
de
A
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We note that based on the deﬁnition of EVDF, fj here is only a
function of v and therefore = 0. Consequently,
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Since the trivial solution Ee¢s = 0 is unacceptable, we should have
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where we used the fact that
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Distributing the integral among the two terms above and defining
I and I, as

oo 2 2
L= /V:o [é% (u,:(v)%)] w)dv  (A.6)
and
o [ [ i)
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2
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respectively, we arrive at
Bl = (Es— B} ) I (A.8)
Thus,
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Using the equation above, the residual corresponding to the
minimum error may be expressed as

1 2
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where we have used E | = Esin(ZE, B). Subsequently, we have
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Equivalently,
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where we have used 1+ ﬂgflel /L. While &.;, depends on
ZE, B implicitly through determination of S for any set of input
parameters, one can also see the explicit dependence on /E,B
through the sin*(ZE, B) factor. Assuming the variation of the lat-
ter as a function of ZE, B is the dominant factor (see figures 4—
6 for illustrations of negligible [B. variation as a function of
ZE, B), one concludes that the error of the transcendental method
increases monotonically with ZE, B such that the maximum dis-
crepancy in comparison with the exact calculations occurs at
ZE,B =90°.

Appendix B. Simplified transcendental method
when w(v) = w3(v)

Using w3 (v) as defined in equation (8) and applying integration
by parts to I;, we have
)} dv
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Before demonstrating that IY %, is proportional to - Le. elec-
tron mobility parallel to the magnetic field (when B #0), we
show that C}*(v = o0) = 0. Let’s assume there is at least a single
constant k > 0 for which one can find a constant vy so that the

inequality 0 < v¥ < kfy(v)47 v? holds for v > vg. In other words,
vf € O[fy(v)4m1?]. Then,

oo Vo 0o
ne = / Jo(v)dr Vdy = / Jo(v)dm Vv + / Jo(v)4r Vidy
v=0 v=0 V=Vo

(B.2)
and based on the inequality introduced above,
Vo 2 1 o0 ¢
/ Jow)dmvdv + 7/ vidy < ne. (B.3)
v=0 k V=g

Note that ne — [ fy(v)4mv>dv is a bounded positive quant-
ity and therefore, the integral above including v* should be
convergent. Introducing the change of variable r=v/vy we
have [t 1*dt < o, which occurs only if £ < —1. Consequently,
folv) > 47lrkvz 2, ie. fo(v) falls off faster than v=> as v — oc.
This implies that as v — oo, % falls off faster than v—* such that
C}* (v — oo) falls off faster than v~! since vm(e) = Nom(e)v =
Nom(e)ve?. Thus, CP(v=00)=0.

To be consistent with BOLSIG+’s definition of mobility
(Hagelaar 2016, p 16), we now switch from v to € to obtain

3
> (’st) 9T n |
I3 = -1_10 e g (1 1
o /szo V(€) e Oe {27’73 0(8)} 7€ dg)
_ L n € 8F0
T2y N Jecgom(e) 0= (B.4)

In Hagelaar (2016, p 16) we have mobility parallel to the magnetic
field defined as

(o)
vy e OF,
N=—~ - B.5
H 3 /620 om(e) O¢ (B.5)
such that
3 _ 3 _
Ivlv}l = E’y Zneu” _}Ivlm = ;’y 2l’le/.L”. (Bé)
Similarly for I} we have
I = - VZQ v » % dv
2 Sz OV 1+5() m(v) Ov
v=0 H
_ LA/ T
1+512{(v) vm(v) OV |, _,
o0 3 oo
x / L v g, _en —op. BI)
v=0 1+ Bi(v) vm(v) Ov o0 ,
The same arguments detailed above resultin Cy* (v = o0) = 0 and
ws 3 2 9
12 = ;'Y Nefl) (B.3)
where ,u(l is in the same format of perpendicular mobility
o)
~ 1 e 0Fy
M_N:—f/ — de (B.9)
3 e=0 1+ﬁ]%[(5) ( ) Oe
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defined in Hagelaar (2016, p 16). In conclusion, for w = w3, the
simpler transcendental expression

E2
Hi

=Ej+ 1o (B.10)

(i)

is derived in which w N is a function of E.¢/N exclusively,

whereas M(lN is dependent on both E.¢/N and wee /N. Note that
NV is provided by BOLSIG+ and u(iN is calculated with the

EEDF corresponding to B = 0.

Appendix C. Simplified transcendental method
when w(v) = w3(v) and B (v) > 1

A special case of the current version of the transcendental method
is obtained when Sy (¢) > 1 such that 87 (g) > 1. We start with

o 1 e OF
KN = _%/azo% SCR
oo
=3 e o ©h
Since By(e) = V:}Eef) = :’":e(él)vv = Um(:)ce(;\:%) , we have 5}72(5) =
7(;Ug’/(»;)f and
RO b TR
3 Je=o (wee/N)* om(e) Oe
- 7;(%)72 / :ezam(a)%da. (C2)
Using om(e)v = Um(s)’ya%, we have
PN~ 7%3 (%>_2/€:% (’76%0m(€)) (s% aaio) de.
(C.3)

Since Po(z-:):z-:%Fo(s), where fO:O Py(e)de =1 (see next
section) and g (E%Fo) = 8562 Fo(e )+z—:2 8F° - 52 9 (ePy) =

3e3Fo(e) +23 9 = 3po(e) + 27 95, we have

2

0N (w2 [T 0EP0) 4 3vm
piv= =4 () {7/52052"“‘(5) 5e 73N
(C.4)

where for the second integral we used the definition of momentum
transfer collision frequency vm = f;:oo (Nom(e)v) Po(e)de. Using
integration by parts for the first integral in the brackets, we obtain

o0
/ om
e=0

(om(2)et) <Py

(E)é‘% 8(250)

where the limit term vanishes due to arguments similar to those
made in the previous section and the integral term may be
expressed as

/:E% (Um(E)E ) Py(e)de = <e

1 . o L.
% (am(e)sf ) is a measure of the variation of

1
2

4 (om(e)e) > (C.6)

O

The average (e

momentum transfer collision frequency as a function of electron
. 1 . . .

energy. That is, om(e) ox €™ 2 for which the average is identically

zero corresponds to a constant momentum transfer collision fre-

quency since vm(g) = Nom(e)v e2 ('ys%) = const. Assuming

the average (e % (om(z—:)zs%)) is negligible,

0N 2 (wee\ 723\ vm _ 9 (wee\ T (¥m
‘”N*_s(N> (2>N_2<N) (N)(C‘7)
such that
2 Vi —1
m_ N _ (%) (%) _ (8
BTENT 607 ) ()

(C.8)

where in the final equality we used the fact that Si(e) > 1
implies vin(g) < wee such that vm = [ vm(e)Po(e )da < wee,
and therefore, 2 > 1. Also, by definition, vm/N = W =

(ge/me) / () N) = (+*/2)/ (11 N), where vin/N is the rate con-

stant for momentum transfer when B = 0, which varies only as a
function of E¢/N. In conclusion,

EY E? EY
Ey=E + -+ —L _ =E2+ . (C.9)
[ p [y s
('U’L ) + (K) eff

Appendix D. I and I, integrals in terms of
BOLSIG+ (Hagelaar and Pitchford 2005) variables

1
In Hagelaar and Pitchford (2005) we have v = (2%) , such

that 2 —7 ¢ where, as defined earlier, £ denotes the elec-

tron energy in eV. Consequently, v—'yaz and dv=Je ~2de.

Thus, %():%()av 2y~ 16288(-) since €="r 2\)2,%:
2y 2y =2y %(ye?) =2y~ 'c2. The EEDF in BOLSIG+, i..

Fy(e) is related to fy(v) via fo(v) = 27’;;3 Fy(e), where n. denotes

electron density. The EPDF in the present work is defined as
1

Py(e) = €2 Fy(e) such that | Py(e)de = 1. Defining W(e) such

that W(e)de = w(v)dv, we have
W) _dv_ vy -1
w(v)  de 2° ’ (D)

and the results in terms of ¢ and BOLSIG+’s EEDF may be
expressed as
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I R S O N I X
11_/5:0 [EZ’Y € 8E{Vm(€)2"f i <27"’Y3 o(s))H
3 2
— 2 -5 2 [eS] 1o} £2 aFO .
xW(a)da—<;’Y ne> _/;:0 {Ba{ym(a)aaH e~ 'W(e)de
(D.2)
_ [Ty, 18 1 Ve . i
Iz*/ﬁo{wzeh € 85[1""5%(6) n(e)
0 ne 1 1 %3 72 L
) &(ZW’WFO(E))}}.{%Z’Y e |:Vm(€) ‘
o Te - :
x &(ZW,Y3F0(E))}}W(E)ds: (;’Y 5ne)
X/OO 3 # s% %
e=0 | 0= | 1+5i(2) vm(e) O
o[ e om]l
g {85 Lm(s) Oe ] }E W(e)de. (D.3)

Note that since B o &, the absolute value of electron density or
the constant ~ is irrelevant in this analysis.

Appendix E. Existence and uniqueness of a
convergent solution to equation (7)

In this section we answer the questions of existence and unique-
ness of a convergent solution x to equation (7), repeated here as

|

where we have used the change of symbol E.; — x and have
dropped the subscript ‘eff’ from g for the sake of brevity. By
definition, x is a fixed point of the function ¢(x), since from
equation (E.1) we have x = ¢(x). Since g(x) € C[0, E], where Cla, b]
is the space of all continuous functions in the interval [a,b]
and a,b € R, this implies ¢(x) € C[0,E] as well. It is clear from
equation (E.1) that ¢(x) € [0,E], since x < E always. The previ-
ous two statements imply that the function ¢(-) has a fixed point
in the [0,E] interval (Burden and Faires 2005, p 54, theorem
2.2a), and therefore, the question of the existence of a solution to
equation (E.1) is answered. In addition, if ¢’(x) = d¢/dx in (0,E)
exists and so does a positive constant k < 1 such that

By

1+ 32(x) (E.I)

x=¢(x) = [Eﬁ +

|¢'(x)| <k forallx € (0,E) (E.2)

then the fixed point in [0, E] is unique (Burden and Faires 2005, p
54, theorem 2.2b).

The simple fixed-point iteration method can be used to solve
equation (E.1) for x. The method starts with an initial approxima-
tion x, and then improves on this approximation using the recurs-
ive equation x,; = ¢(x,) until convergence is achieved. If con-
dition (E.2) is satisfied, then it also ensures that for any initial
value x,, the sequence {x,} converges to the unique fixed point x
(Burden and Faires 2005, p 58-59, theorem 2.3). Although check-
ing condition (E.2) analytically might not be possible since 3(x)
has a highly non-linear dependence on the electron energy distri-
bution for any x, in the supplement to this paper we use numerical

results to show that convergence is indeed achieved, provided the
judicious choice of the initial value x, = E is made (i.e. the applied
electric field is used as the initial value for E. in the fixed-point
iteration method to solve equations (1) and (7) or equation (E.1)
here).

ORCID iDs

Reza Janalizadeh
Victor P Pasko

https://orcid.org/0000-0002-6014-2671
https://orcid.org/0000-0003-2675-6837

References

Barrington-Leigh C P, Inan U S and Stanley M 2001 Identification
of sprites and elves with intensified video and broadband array
photometry J. Geophys. Res.: Space Phys. 106 1741-50

Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P and Marode E
2007 Efficient models for photoionization produced by
non-thermal gas discharges in air based on radiative transfer
and the Helmholtz equations Plasma Sources Sci. Technol.

16 656-78

Burden R L and Faires J D 2005 Numerical Analysis 8th edn
(Belmont, CA: Thomson Brooks/Cole)

Dudley D G 1994 Mathematical Foundations for Electromagnetic
Theory (Piscatawy, NJ: Wiley-IEEE Press)

Franz R C, Nemzek R J and Winckler J R 1990 Television image of
a large upward electric discharge above a thunderstorm system
Science 249 48

Fukunishi H, Takahashi Y, Kubota M, Sakanoi K, Inan U S and
Lyons W A 1996 Elves: lightning-induced transient luminous
events in the lower ionosphere Geophys. Res. Lett. 23 2157-60

Giles R S et al 2020 Possible transient luminous events observed in
Jupiter’s upper atmosphere J. Geophys. Res.: Planets
125 e2020JE006659

Golant V E, Zhilinsky A P and Sakharov I E 1980 Fundamentals of
Plasma Physics (Hoboken, NJ: Wiley)

Hagelaar G J M 2016 Brief Documentation of BOLSIG+ Version
0372016 (Toulouse Cedex 9: Laboratoire Plasma et Conversion
d’Energie (LAPLACE), Université Paul Sabatier)

Hagelaar G J M and Pitchford L C 2005 Solving the Boltzmann
equation to obtain electron transport coefficients and rate
coefficients for fluid models Plasma Sources Sci. Technol.

14 722-33

Hernandez-Avila J, Basurto E and de Urquijo J 2002 Electron
transport and swarm parameters in CO; and its mixtures with
SF¢ J. Phys. D: Appl. Phys. 35 2264-9

Holstein T 1946 Energy distribution of electrons in high frequency
gas discharges Phys. Rev. 70 367-84

Janalizadeh R and Pasko V P 2020 A framework for efficient
calculation of photoionization and photodetachment rates with
application to the lower ionosphere J. Geophys. Res.: Space
Phys. 125 e2020JA027979

Janalizadeh R and Pasko V P 2023 Preliminary modeling of
magnetized sprite streamers on Jupiter following Juno’s
observations of possible transient luminous events J. Geophys.
Res.: Space Phys. 128 ¢2022JA031009

Jansky J and Pasko V P 2020 Modeling of streamer ignition and
propagation in the system of two approaching hydrometeors J.
Geophys. Res.: Atmos. 125 e2019JD031337

Kabirzadeh R, Lehtinen N G and Inan U S 2015 Latitudinal
dependence static mesospheric E fields above thunderstorms
Geophys. Res. Lett. 42 4208-15

Kuo C-L et al 2007 Modeling elves observed by FORMOSAT-2
satellite J. Geophys. Res.: Space Phys. 112 A11312


https://orcid.org/0000-0002-6014-2671
https://orcid.org/0000-0002-6014-2671
https://orcid.org/0000-0003-2675-6837
https://orcid.org/0000-0003-2675-6837
https://doi.org/10.1029/2000JA000073
https://doi.org/10.1029/2000JA000073
https://doi.org/10.1088/0963-0252/16/3/026
https://doi.org/10.1088/0963-0252/16/3/026
https://doi.org/10.1126/science.249.4964.48
https://doi.org/10.1126/science.249.4964.48
https://doi.org/10.1029/96GL01979
https://doi.org/10.1029/96GL01979
https://doi.org/10.1029/2020JE006659
https://doi.org/10.1029/2020JE006659
https://doi.org/10.1088/0963-0252/14/4/011
https://doi.org/10.1088/0963-0252/14/4/011
https://doi.org/10.1088/0022-3727/35/18/306
https://doi.org/10.1088/0022-3727/35/18/306
https://doi.org/10.1103/PhysRev.70.367
https://doi.org/10.1103/PhysRev.70.367
https://doi.org/10.1029/2020JA027979
https://doi.org/10.1029/2020JA027979
https://doi.org/10.1029/2022JA031009
https://doi.org/10.1029/2022JA031009
https://doi.org/10.1029/2019JD031337
https://doi.org/10.1029/2019JD031337
https://doi.org/10.1002/2015GL064042
https://doi.org/10.1002/2015GL064042
https://doi.org/10.1029/2007JA012407
https://doi.org/10.1029/2007JA012407

Plasma Sources Sci. Technol. 32 (2023) 075004

R Janalizadeh et a/

Liu N, Dwyer J R and Cummer S A 2017 Elves accompanying
terrestrial gamma ray flashes J. Geophys. Res.: Space Phys.
122 10563-76

Loureiro J and Amorim J 2016 Kinetics and Spectroscopy of Low
Temperature Plasmas (Berlin: Springer)

Marshall R A 2009 Very low frequency radio signatures of transient
luminous events above thunderstorms PhD Thesis Stanford
University

Marshall R A, Inan U S and Glukhov V S 2010 Elves and associated
electron density changes due to cloud-to-ground and in-cloud
lightning discharges J. Geophys. Res.: Space Phys.

115 AOOE17

Morgan W L and Penetrante B M 1990 ELENDIF: a
time-dependent Boltzmann solver for partially ionized
plasmas Comput. Phys. Commun. 58 127-52

Morrow R and Lowke J J 1997 Streamer propagation in air J. Phys.
D: Appl. Phys. 30 614-27

Moss G D, Pasko V P, Liu N Y and Veronis G 2006 Monte
Carlo model for analysis of thermal runaway electrons in
streamer tips in transient luminous events and streamer
zones of lightning leaders J. Geophys. Res.: Space Phys.

111 A02307

Nagano I, Yagitani S, Miyamura K and Makino S 2003 Full-wave
analysis of elves created by lightning-generated
electromagnetic pulses J. Atmos. Sol.-Terr. Phys. 65 615-25

Pasko V P, Inan U S and Bell T F 1998 Ionospheric effects due to
electrostatic thundercloud fields J. Atmos. Sol.-Terr. Phys.
60 863-70

Pérez-Invernén F J, Luque A and Gordillo-Vazquez F J 2018
Modeling the chemical impact and the optical emissions
produced by lightning-induced electromagnetic fields in the
upper atmosphere: the case of halos and elves triggered by
different lightning discharges J. Geophys. Res.: Atmos.
123 761541

Raizer Y P 1991 Gas Discharge Physics (New York: Springer)

Salem M A, Liu N and Rassoul H K 2016 Modification of the lower
ionospheric conductivity by thunderstorm electrostatic fields
Geophys. Res. Lett. 43 5-12

Seeger M, Avaheden J, Pancheshnyi S and Votteler T 2016 Streamer
parameters and breakdown in CO; J. Phys. D: Appl. Phys.
50 015207

Starikovskiy A Y, Aleksandrov N L and Shneider M N 2021
Streamer self-focusing in an external longitudinal magnetic
field Phys. Rev. E 103 063201

Tonev P and Velinov P 2016 Vertical coupling between troposphere
and lower ionosphere by electric currents and fields at
equatorial latitudes J. Atmos. Sol.-Terr. Phys. 141 39-47

Veronis G, Pasko V P and Inan U S 2001 Characteristics of
mesospheric optical emissions produced by lightning
discharges J. Geophys. Res.: Space Phys. 104 12645-56


https://doi.org/10.1002/2017JA024344
https://doi.org/10.1002/2017JA024344
https://doi.org/10.1029/2009JA014469
https://doi.org/10.1029/2009JA014469
https://doi.org/10.1016/0010-4655(90)90141-M
https://doi.org/10.1016/0010-4655(90)90141-M
https://doi.org/10.1088/0022-3727/30/4/017
https://doi.org/10.1088/0022-3727/30/4/017
https://doi.org/10.1029/2005JA011350
https://doi.org/10.1029/2005JA011350
https://doi.org/10.1016/S1364-6826(02)00324-3
https://doi.org/10.1016/S1364-6826(02)00324-3
https://doi.org/10.1016/S1364-6826(98)00022-4
https://doi.org/10.1016/S1364-6826(98)00022-4
https://doi.org/10.1029/2017JD028235
https://doi.org/10.1029/2017JD028235
https://doi.org/10.1002/2015GL066933
https://doi.org/10.1002/2015GL066933
https://doi.org/10.1088/1361-6463/50/1/015207
https://doi.org/10.1088/1361-6463/50/1/015207
https://doi.org/10.1103/PhysRevE.103.063201
https://doi.org/10.1103/PhysRevE.103.063201
https://doi.org/10.1016/j.jastp.2015.10.012
https://doi.org/10.1016/j.jastp.2015.10.012
https://doi.org/10.1029/1999JA900129
https://doi.org/10.1029/1999JA900129

[

4

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Plasma Sources Science and Technology
Supplementary file for

Efficient modeling of electron kinetics under

influence of externally applied electric field in

Communications and Space Sciences Laboratory, Department of Electrical Engineering, The
Pennsylvania State University, University Park, PA 16802, United States of America

magnetized weakly ionized plasma
Reza Janalizadeh, Zaid Pervez, and Victor P. Pasko

4 May 2023

Contents

1 Two-dimensional (2D) error plots for the approximate transcendental

method

2 Convergence of the proposed transcendental method

List of Figures

S1

S2

S3

Percentage error of proposed transcendental method in approximate form
for electron mean energy e, electron impact ionization frequency v,
electron mobility parallel to magnetic field py, and electron mobility
perpendicular to magnetic field p,, as a function of the angle AE,E
and reduced electron gyrofrequency we./N, for selected values of applied
reduced electric field E/N. Results are for air. . . . . . . ... ... ...
Percentage error of proposed transcendental method in approximate form
for electron mean energy ey, electron impact ionization frequency 4,
electron mobility parallel to magnetic field p, and electron mobility
perpendicular to magnetic field p,, as a functions of the angle LE, B
and reduced electron gyrofrequency we./N, for selected values of applied
reduced electric field £/N. Results are for a mixture of 88% Hy and 12%

Percentage error of proposed transcendental method in approximate form
for electron mean energy e, electron impact ionization frequency v;,
electron mobility parallel to magnetic field p, and electron mobility
perpendicular to magnetic field u,, as a function of the angle AE,E
and reduced electron gyrofrequency we./N, for selected values of applied
reduced electric field E/N. Results are for pure COa. . . . . . .. . ...

3

7



10

11

12

13

14

S4

SH

S6

d(x) and |dp/dx| for weakly (wee/N = 1071 rad m?® s71), partially
(Wee/N = 1071 rad m? s71), and highly (wee/N = 10712 rad m3 s7')
magnetized plasma in pure CO,. The dashed line represents the y = =
line, and the intersection of ¢(x) with this line is the root of the equation
T=0(T). o
¢(x) and |dp/dx| for weakly (wee/N = 107'* rad m® s7'), partially
(Wee/N = 1071 rad m® s71), and highly (wee/N = 107? rad m?® s71)
magnetized plasma in air. The dashed line represents the y = z line, and

the intersection of ¢(x) with this line is the root of the equation = = ¢(x).

o(x) and |dp/dx| for weakly (we/N = 107" rad m?® s71), partially
(Wee/N = 1071 rad m?® s71), and highly (we/N = 10712 rad m? s71)
magnetized plasma in a mixture of 8% Hy and 12% He. The dashed line
represents the y = x line, and the intersection of ¢(x) with this line is
the root of the equation x = ¢(x). . . . . . . .. ...

10



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1. Two-dimensional (2D) error plots for the approximate transcendental
method

Figure S1 shows 2D plots presenting the percentage error of the proposed approximate
transcendental method compared to exact solution calculated by BOLSIG+ when B #0
for air and electron mean energy e, electron impact ionization frequency v;, electron
mobility parallel to magnetic field ), and electron mobility perpendicular to magnetic
field p,, as functions of the angle ZE, B and reduced electron gyrofrequency wee/N,
for selected values of reduced applied electric field E/N. Figures S2 and S3 show the
corresponding plots for a a mixture of 88% Hy and 12% He, and pure CO,, respectively.
The values selected for the reduced field E/N for each gas are 0.5Ey, Fy, and 1.5F,
where E is the breakdown field for the gas, equal to ~ 120, 40, and 80 T'd respectively for
air, mixture of 88% H, and 12% He, and pure CO,. The proposed method provides good
results for all the electron rate and transport coefficients shown, except for the ionization
frequency 1;. We note that the error is quite low for ey, g, and g, for all three gas
mixtures throughout the considered range of input parameters (F/N,we/N, AE, E),
except for very small regions in the upper right quadrants, which is expected as one
moves from the regime of non-magnetized (S < 1) to highly magnetized (Beg > 1)
plasma, i.e, as we/N approaches 1072 rad m3 s~!, and ZE,B approaches 90°.
Significantly larger errors are seen for the electron impact ionization frequency v; for
all three gases, and the error becomes considerable as we move towards the upper
right quadrants. However, as already addressed in the paper, in a realistic scenario
where we./N and /E , B may vary in the entire range shown, v; values corresponding
to high we./N and large /E , B are so insignificant that the large error has no practical
significance in the framework of plasma fluid models in which these coefficients are
typically employed. The white spaces in these panels correspond to regimes where the
plasma is highly magnetized such that 1; is identically zero. We further note that for
the panel corresponding to v; in the 88% Hy and 12% He mixture at £/N = 20 Td, on
account of the low electric field, v; is practically zero almost everywhere, and we used a
much higher precision in our BOLSIG+ calculations than the default value to plot the
v; panels shown.
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Figure S1: Percentage error of proposed transcendental method in approximate form
for electron mean energy e, electron impact ionization frequency v, electron mobility
parallel to magnetic field j, and electron mobility perpendicular to magnetic field p ,
as a function of the angle /E , B and reduced electron gyrofrequency we./N, for selected
values of applied reduced electric field E/N. Results are for air.
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Figure S2: Percentage error of proposed transcendental method in approximate form
for electron mean energy ey, electron impact ionization frequency v, electron mobility
parallel to magnetic field y, and electron mobility perpendicular to magnetic field p .,
as a functions of the angle /E , B and reduced electron gyrofrequency wee /N, for selected
values of applied reduced electric field E/N. Results are for a mixture of 8% H, and
12% He.
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Figure S3: Percentage error of proposed transcendental method in approximate form
for electron mean energy ey, electron impact ionization frequency v, electron mobility
parallel to magnetic field y, and electron mobility perpendicular to magnetic field p .,
as a function of the angle /E , B and reduced electron gyrofrequency we./N, for selected
values of applied reduced electric field E/N. Results are for pure COs.
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2. Convergence of the proposed transcendental method

Following Appendix E of the paper, where we already discussed the existence and
uniqueness of the solution to the proposed transcendental method, we show here that
the fixed point iteration method always converges to the solution for the gas mixtures
presented in this study, provided a judicious choice of the the initial value z( is made

to start the iterations. We solve for z in the equation x = ¢(x), where x = Ez/N,
1/2

and ¢(z) = + [Eﬁ + %;(x)} . The condition for convergence is given by the Fixed

Point Theorem [Burden and Faires, 2005, p. 58-59, Theorem 2.3] which states that if

¢ € Cla,b] (where Cla,b] is the space of all continuous functions in the interval [a, b])

such that ¢(x) € [a,b], for all x in [a,b] and if, in addition, ¢ exists on (a,b) and a

positive constant k£ < 1 exists such that
|¢/(x)] <k, forall z € (a,b), (1)
then for any number z, in [a, b], the sequence defined by
Tpi1 = ¢(z,), wheren =0,1,2,... (2)

converges to the unique fixed point x in [a, b]. Since the function ¢ is indeed continuous,

and ¢(z) € [0, E/N], for all z in [0, E/N], where E = , /Eﬁ + E2, we only need to check

condition (1) for convergence.

Consider the problem of calculating Feg/N in pure CO, gas. We assume the
worst-case scenario in terms of the performance of the transcendental method where
AE,E = 90°, ie., £y = 0 and E, = FE, since this is when the effect of the magnetic
field is strongest and results in the highest reduction of E.¢ compared to £. Thus,

E/N

We consider solutions for three values of the magnetic field (or equivalently, the reduced

1

electron cyclotron frequency we./N), where (wee/N); = 107 rad m? s™! corresponds

to weakly magnetized electrons (3 < 1), (wee/N)2 = 10713 rad m? s™! corresponds to

I corresponds

partially magnetized electrons (8 ~ 1), and (we/N)3 = 107! rad m? s~
to highly magnetized electrons (5 > 1). In addition we consider three representative
values of the applied field for each case, i.e., E/N = 10, 100, and 1000 Td.

Figure S4 shows ¢(z) and |d¢/dzx| as functions of x for all three values of E/N and
for each value of w./N considered. A dashed line representing y = x is also shown.
Graphically, we can determine the root as the intersection of ¢(x) with y = x. We
note that for the weakly magnetized case, i.e., (wee/N)1, condition (1) is satisfied for all
three values of E/N (Figure S4(b)), which ensures both the uniqueness of the solution,
and convergence of the fixed-point iteration method to the unique fixed-point. For the
partially magnetized case, i.e., (wee/N )2, condition (1) is still satisfied for E/N = 10 Td,
but it is not satisfied for E/N = 100 and 1000 Td (Figure S4(d)) in the entire range
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of [0, E/N]. However, we note that for £/N = 100 Td, condition (1) is satisfied for
x € [~ 20 Td,E/N]. So we conclude that a unique root does exist in the range
[~ 20 Td, E/N]. We further confirm graphically from Figure S4(c) that this root indeed
exists, and is unique not only in [~ 20 Td, E/N], but in the entire range [0, E/N]. We
note that due to the log scale chosen for plotting, Figure S4(c) only shows z € [1,1000]
Td. It is easy to check that the root is indeed unique in [0, E/N]. Similarly, for
E/N = 1000 Td, condition (1) is satisfied for z € [~ 120 Td, E/N] and a unique root
exists in this range. For the highly magnetized case, i.e., (we/N)s, condition (1) is
satisfied for E/N = 10 and 100 Td, and hence a unique root exists. For E/N = 1000
Td, condition (1) is satisfied for z € [~ 60 Td, E/N], and we conclude, following a
similar discussion as for the partially magnetized case, that a unique root exists.

We hence conclude that a unique solution to equation (E.1) exists for the wide
range of values of magnetic field and applied electric field presented. We further note
that |d¢/dx| becomes smaller as x becomes larger, such that zy should be chosen to
lie towards the upper bound of the [0, E/N] interval to ensure that condition (1) is
satisfied (see Figures S4, S5, and S6). Further, it is recommended that zy be chosen
such that it is greater than the solution x. Although this = is not known initially, we
know that z < E/N, and hence, a simple choice that always satisfies this condition is
xg = E/N, and we note that this choice always led to convergence in tests conducted.
Corresponding results for air, and the (88% Hs, 12% He) mixture resembling Jupiter’s
atmosphere are presented in Figures S5 and S6, respectively. An analysis similar to
that of COy leads to the same conclusion, that is, the fixed-point iteration method
converges to a unique solution for both air and the (88% Hs, 12% He) mixture in all
cases. These conditions for convergence can be similarly checked for an arbitrary gas
mixture of interest.
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Figure S4: ¢(z) and |d¢/dz| for weakly (wee/N = 107 rad m? s71), partially
(wee/N = 107" rad m? s71), and highly (wee/N = 107! rad m?® s™') magnetized plasma
in pure CO. The dashed line represents the y = x line, and the intersection of ¢(z)
with this line is the root of the equation z = ¢(x).
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Figure S5: ¢(z) and |d¢/dz| for weakly (wee/N = 107 rad m® s7'), partially
(Wee/N =107 rad m?® s71), and highly (wee/N = 107'% rad m® s~!) magnetized plasma
in air. The dashed line represents the y = x line, and the intersection of ¢(x) with this
line is the root of the equation x = ¢(x).
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(wee/N = 1071 rad m? s71), and highly (wee/N = 1072 rad m? s7!) magnetized plasma
in a mixture of 88% Hy and 12% He. The dashed line represents the y = x line, and the
intersection of ¢(x) with this line is the root of the equation = = ¢(z).
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