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ABSTRACT 

The Optical Network Emulation (ONE) engine is a software tool that offers students the opportunity to learn how 

to control and operate open optical (wavelength division multiplexing) transport networks, such as those based on 

the Open ROADM MSA standards. This paper describes multiple modelling techniques that are implemented in 

the ONE engine to represent the signal power spectral density at any link/fiber section of the emulated transport 

network. These techniques make use of polynomial fitting and deconvolution computation methods. 
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1. INTRODUCTION 

The Optical Network Emulation (ONE) engine is designed to digitally recreate both data and control planes of 

optical transport networks. Among other advantages ONE enables (i) students to operate an emulated optical 

transport network without requiring access to expensive equipment and (ii) engineers to test the correct 

functionality of software defined networking (SDN) controllers and orchestrators [1]. In the ONE engine, the 

power spectral density (PSD) of a signal (e.g., generated by a transceiver) is modelled using different degrees of 

polynomial fitting. The advantages offered by using polynomial fitting to represent the signal PSD include the 

availability of a library of functions in the ONE engine that can handle most PSD shapes (e.g., Super Gaussian and 

erf) at any sampling resolution. By varying the polynomial degree one can also choose the desired level of accuracy 

while at the same time contain the dataset size (i.e., the number of coefficients) that is required to model the signal 

PSD. With an accurate representation of the signal PSD, it is possible to closely estimate the effects caused by 

specific devices that the signal goes through, e.g., wavelength selective switch (WSS). 

The contribution of this paper is twofold. We first assess the achievable accuracy when using polynomial fitting 

to represent a signal PSD that is modelled using Super Gaussian (SG) functions of various orders. We then present 

a procedure (named Noise-Tolerant Deconvolution or NTD for short) which aims to compute the polynomial 

fitting of a signal PSD (generated by a commercial-grade transceiver) from the experimental data collected through 

a low-resolution optical spectrum analyzer (OSA). The NTD procedure applies a conventional deconvolution 

combined with data noise reduction to compute the polynomial fitting of the signal spectrum with virtually infinite 

frequency resolution. Combined, the NTD procedure and polynomial fitting are shown to yield numerical estimates 

of the signal PSD at the output of a WSS device that closely match experimental data.  

2. TECHNICAL CONTRIBUTIONS 

Researchers make often use of Super Gaussian (SG) functions to model various optical signal PSDs, as they 

produce spectral shapes that match experimental data well [2]. The SG model depends on parameters relating to 

the signal PSD and can be express as 

 𝑆𝑠𝑔(𝑓) =
1
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2 )
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where 𝑛 is the order of the SG function, 𝑓 the frequency, and 𝜎𝑠𝑔 the signal bandwidth given by, 
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𝐵𝑊𝑚𝑑𝐵
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]
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where 𝐵𝑊𝑚𝑑𝐵 represents the 𝑚⁡𝑑𝐵 bandwidth of the signal spectrum. The SG functions are used as benchmark to 

assess the accuracy of polynomial fitting (Section 2.1) and for computing the deconvolved spectrum (Section 2.2). 

2.1 Polynomial Fitting 

Polynomial fitting of a function is the process of representing the function using polynomial coefficients. There 

are well established implemented procedures to compute the coefficients of polynomial fitting for either an 

analytical expression or a set of data points [3]. The remaining key questions are the definition of the objective 



function to be optimized and the trade-off that is achievable by varying the degree of the polynomial term. Let the 

cut-off power level define the domain over which the polynomial fitting is expected to operate. For a signal PSD 

the cut-off power can be conveniently defined by the 𝑚⁡𝑑𝐵 bandwidth of the signal. For example, a -50 dB cut-

off power represents the range of frequencies over which the signal PSD is at least -50 dB with respect to the peak 

power. Let the objective function be either the Least Squares Fitting (LSF)  ̶  which puts more emphasis on larger 

values of the data points   ̶ or a weighted version of LSF in which the data points are normalized to provide equal 

relevance across the entire set of values in the chosen domain using 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =
1

𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠
⁡,  (3) 

In this study we make use of weighted LSF to assess the accuracy of a polynomial fit while varying three key 

parameters: the SG order that must be represented, its cut-off power level, and the degree of polynomial (or number 

of coefficients). Polynomial fitting is expected to yield a good approximation of lower order SG signal PSD. A 

higher order SG signal PSD has steep slopes with abrupt transition points that are hard to fit by a polynomial term. 

In addition, according to Runge’s phenomenon, a lower degree of polynomial performs better than a higher degree 

due to low oscillations at the interval boundaries [4]. However, as the other two parameters along with the 

weighting factor come into consideration, a higher degree of polynomial may perform better as oscillations of a 

polynomial fitting with a lower number of coefficients tend to occur in the central part of the spectrum. Section 3 

provides numerical results that accurately quantify these expected trends. 

2.2 Noise-Tolerant Deconvolution (NTD) Procedure 

Deconvolution must be applied to compute the high-resolution PSD of a signal (|𝑋(𝑓)|2) from the data points 

measured using a low-resolution OSA (|𝑋𝑜𝑠𝑎(𝑓)|
2). However, noise in the measured data is known to introduce 

significant artifacts in the deconvolved signal, making this approach unpractical. This section describes a 

procedure that overcomes this drawback by removing the noise-induced artifacts through two techniques: (i) 

removing the “out of band” noise and (ii) applying a SG fit to the deconvolved PSD. The NTD procedure requires 

two input functions: (i) the signal PSD measured by the low-resolution OSA (|𝑋𝑜𝑠𝑎(𝑓)|
2), and (ii) the OSA transfer 

function |𝐻𝑜𝑠𝑎(𝑓)|
2⁡(an example is reported by the blue plots in Figure 1).  

 
Figure 1. Noise-Tolerant Deconvolution (NTD) procedure  

The first step is to ensure that the two input functions are compatible, that is, the two functions must use the same 

central frequency reference and the same number of data points (length). This means that some level of pre-

processing may be necessary. Since a polynomial fitting can capture detailed shapes, such as ripples at the top of 

the signal PSD, it can be used to model the signal PSD (Step 1a. in Figure 1) to increase the number of data points 

as necessary. The OSA transfer function |𝐻𝑜𝑠𝑎(𝑓)|
2,⁡on the other hand, can be approximated using a SG function 

(Step 2a. in Figure 1), which averages out various noise elements (thermal, shot, etc.) that show up in the 

experimental data used to characterize of the OSA transfer function.  

The fundamental principle used here is the multiplication and convolution property of Fourier transform (FT), 

which states that when two functions need to be convolved, applying a Fourier transform would permit the use of 

multiplication in place of convolution [4]. Note that in our study convolution is applied in the frequency domain, 

and multiplication applies to the FT of the frequency domain as shown in eq. (4). 

 |𝑋(𝑓)|2 ∗ |𝐻𝑜𝑠𝑎(𝑓)|
2
⁡⁡⁡𝐹𝑜𝑢𝑟𝑖𝑒𝑟⁡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚⁡⁡⁡
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2}⁡, (4) 

Representing deconvolution with  we then obtain 
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Before applying the division in eq. (5) noise masking is applied to 𝐹𝑇{|𝑋𝑜𝑠𝑎(𝑓)|
2} to remove the ripples that occur 

in the deconvolved signal (Step 1c. in in Figure 1). The noise mask window must be carefully set because a large 

window would cause too many ripples in the resulting signal, and a window too small would cause significant 

distortion. After applying the inverse Fourier transform (IFT) to the term on the right in eq. (5) (Step 3. in Figure 

1), some noise artifacts may remain, i.e., some ripples at the top and both ends of the PSD may still be present. To 

overcome this issue, a SG fitting technique is applied to obtain the final |𝑋(𝑓)|2 (Step 4. in Figure 1). The resulting 

|𝑋(𝑓)|2 can then be represented using a polynomial fit as described in Section 2.1. The resulting function is the 

final deconvolved signal PSD. 

3. RESULTS  

The accuracy of polynomial fitting is quntified numerically using the Root Mean Squared Relative Error (RMSRE) 

method [6] as follows 

  𝑅𝑀𝑆𝑅𝐸  =  √
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Polynomial fitting is tested using different combinations of the three parameters defined in Section 2.1. Figure 2(a) 

shows RMSRE of polynomial fitting for a 10th order SG signal PSD. Lower cut-off power levels correspond to 

wider frequency domains to fit, which make the problem harder as illustrated by the increasing RMSRE values 

reported. Better accuracy is achieved by increasing the degree of polynomial. On the other hand, for a fixed degree 

of polynomial (e.g., 50), the RMSRE trend is shown in Figure 2(b). Increasing the SG order tends to increase 

RMSRE, with more pronounced changes as the cut-off power level decreases. Similarly, Figure 2(c) reports an 

increase in RMSRE when increasing the SG order for a specific cut-off power level (-50dB). 

   
(a)RMSRE vs. Cut-off Power (dB) for 

varying Degrees of Polynomial  

(b)RMSRE vs. SG Order for varying 

Cut-off Power levels (dB) 

(c)RMSRE vs. SG Order for varying 

Degrees of Polynomial 

Figure 2. Modelling a super gaussian (SG) function using polynomial fit 

Additionally, for a predetermined pair of SG order and degree of polynomial, a decrease in the cut-off power 

increases the RMSRE (Figure 2(a) and 2(b)). Conversely, as shown in Figure 2(a) and 2(c), an increase in the 

degree of polynomial causes the RMSRE to drop across a variety of SG order values and cut-off power levels. 

Lastly, both Figure 2(b) and 2(c) confirm that polynomial fitting performs poorly while trying to fit a higher order 

SG function across a variety of degrees of polynomial and cut-off power levels. 

 
Figure 3. WSS system used to assess the NTD procedure accuracy 

The experimental data used to produce the signal PSD to be deconvolved is obtained using an OSA with 0.07nm 

resolution bandwidth. The OSA transfer function is computed by passing a tuneable narrow laser through the OSA 

using a light wave measurement system. A weighted polynomial fitting method is applied to increase the number 

of data points in the signal PSD (from 251pts. to 5001pts.). The WSS device setting in Figure 3 is used to assess 

the accuracy of the NTD procedure. A 100G signal having a baud rate of 31.6 Gbaud with DP-QPSK modulation 

is sent through the WSS and the output signal PSD is recorded by the OSA. Theoretically, 

 |𝑌(𝑓)|2 = |𝑋(𝑓)|2 • |𝐻(𝑓)|2⁡,  (7) 



where |𝑋(𝑓)|2 and |𝑌(𝑓)|2 represent the input and output signal PSDs, respectively, and 𝐻(𝑓) represents the 

estimated power transfer function of the WSS. However, due to the OSA 0.07nm low-resolution, the numerical 

computation and experimental data of |𝑌(𝑓)|2 have the mismatch reported in Figure 4(a).  

  
(a) Without NTD procedure (b) With NTD procedure 

Figure 4. |𝑌(𝑓)|2 computed through eq. (7) using (a) |𝑋𝑂𝑆𝐴(𝑓)|
2 and (b) |𝑋(𝑓)|2 as defined in Figure 1 

As illustrated in Figure 4(b), the NTD procedure significantly reduces this mismatch, where the computed data 

through eq. (7) using |𝑋(𝑓)|2 matches the experimental data of |𝑌(𝑓)|2 more accurately. The improved accuracy 

can also be quantified numerically by computing the root mean square error (RMSE) in dB, given by  

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1 ⁡⁡, (8)  

where, 𝑌̂𝑖 (in dB) is the computed output signal, 𝑌𝑖 (in dB) is the experimentally measured data, and 𝑛 is the length 

of the signal. The RMSE with and without NTD procedure is found to be 1.1 dB and 5.1 dB, respectively. 

4. SUMMARY 

The contribution of this paper is twofold. First, the use of polynomial fitting to model signal PSD is investigated 

while varying critical modelling parameters that are: the SG function order used to model the PSD, the degree of 

polynomial used to fit the SG function, and the cut-off power level which delimits the domain of the PSD that 

must be represented. Clear patterns emerge in the test results revealing that a higher degree of polynomial can cope 

with lower cut-off power levels. It is also evident from these tests that polynomial fitting works comparatively 

better for lower order SG functions. Second, the proposed Noise-Tolerant Deconvolution (NTD) procedure is 

shown to be effective in estimating the signal PSD (with virtually infinite resolution) from the measurements 

collected using a low-resolution OSA. When using the signal PSD estimated through the NTD procedure (as 

opposed to using the PSD as measured by a low-resolution OSA) it is possible to improve the accuracy of the 

computed signal PSD at the output of a WSS device, reducing the RMSE from 5.1 dB to 1.1 dB. Possible use cases 

for the proposed NTD procedure include: (i) integration in the ONE engine so that students are able to use signal 

PSDs recorded through a low-resolution OSA and have the option to improve their resolution before using them 

in their optical network emulation efforts; and (ii) integration with low-resolution OSA devices that are deployed 

in real networks to improve the resolution of the signal PSD that is monitored in real-time. There are scenarios in 

which the proposed NTD procedure may fail to correctly estimate the signal PSD. For example, when two signals’ 

PSDs are too close to each other spectrally to the point where the OSA transfer function cannot clearly separate 

their respective power spectral contributions, the proposed NTD procedure may not suffice to recover the two 

signals’ original PSDs. This and other special cases require further investigation.  
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