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ABSTRACT

The Optical Network Emulation (ONE) engine is a software tool that offers students the opportunity to learn how
to control and operate open optical (wavelength division multiplexing) transport networks, such as those based on
the Open ROADM MSA standards. This paper describes multiple modelling techniques that are implemented in
the ONE engine to represent the signal power spectral density at any link/fiber section of the emulated transport
network. These techniques make use of polynomial fitting and deconvolution computation methods.

Keywords: Super Gaussian Modelling, Polynomial Fitting, Deconvolution, Fourier Transform, WSS

1. INTRODUCTION

The Optical Network Emulation (ONE) engine is designed to digitally recreate both data and control planes of
optical transport networks. Among other advantages ONE enables (i) students to operate an emulated optical
transport network without requiring access to expensive equipment and (ii) engineers to test the correct
functionality of software defined networking (SDN) controllers and orchestrators [1]. In the ONE engine, the
power spectral density (PSD) of a signal (e.g., generated by a transceiver) is modelled using different degrees of
polynomial fitting. The advantages offered by using polynomial fitting to represent the signal PSD include the
availability of a library of functions in the ONE engine that can handle most PSD shapes (e.g., Super Gaussian and
erf) at any sampling resolution. By varying the polynomial degree one can also choose the desired level of accuracy
while at the same time contain the dataset size (i.e., the number of coefficients) that is required to model the signal
PSD. With an accurate representation of the signal PSD, it is possible to closely estimate the effects caused by
specific devices that the signal goes through, e.g., wavelength selective switch (WSS).

The contribution of this paper is twofold. We first assess the achievable accuracy when using polynomial fitting
to represent a signal PSD that is modelled using Super Gaussian (SG) functions of various orders. We then present
a procedure (named Noise-Tolerant Deconvolution or NTD for short) which aims to compute the polynomial
fitting of a signal PSD (generated by a commercial-grade transceiver) from the experimental data collected through
a low-resolution optical spectrum analyzer (OSA). The NTD procedure applies a conventional deconvolution
combined with data noise reduction to compute the polynomial fitting of the signal spectrum with virtually infinite
frequency resolution. Combined, the NTD procedure and polynomial fitting are shown to yield numerical estimates
of the signal PSD at the output of a WSS device that closely match experimental data.

2. TECHNICAL CONTRIBUTIONS

Researchers make often use of Super Gaussian (SG) functions to model various optical signal PSDs, as they
produce spectral shapes that match experimental data well [2]. The SG model depends on parameters relating to
the signal PSD and can be express as

__ 1 292 \"
Ssg(f) - Usg\/ﬂexp [_(f /20'59) ] , (1)
where n is the order of the SG function, f the frequency, and o, the signal bandwidth given by,
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where BW,, ;5 represents the m dB bandwidth of the signal spectrum. The SG functions are used as benchmark to
assess the accuracy of polynomial fitting (Section 2.1) and for computing the deconvolved spectrum (Section 2.2).

2.1 Polynomial Fitting

Polynomial fitting of a function is the process of representing the function using polynomial coefficients. There
are well established implemented procedures to compute the coefficients of polynomial fitting for either an
analytical expression or a set of data points [3]. The remaining key questions are the definition of the objective



function to be optimized and the trade-off that is achievable by varying the degree of the polynomial term. Let the
cut-off power level define the domain over which the polynomial fitting is expected to operate. For a signal PSD
the cut-off power can be conveniently defined by the m dB bandwidth of the signal. For example, a -50 dB cut-
off power represents the range of frequencies over which the signal PSD is at least -50 dB with respect to the peak
power. Let the objective function be either the Least Squares Fitting (LSF) — which puts more emphasis on larger
values of the data points — or a weighted version of LSF in which the data points are normalized to provide equal
relevance across the entire set of values in the chosen domain using
1
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In this study we make use of weighted LSF to assess the accuracy of a polynomial fit while varying three key
parameters: the SG order that must be represented, its cut-off power level, and the degree of polynomial (or number
of coefficients). Polynomial fitting is expected to yield a good approximation of lower order SG signal PSD. A
higher order SG signal PSD has steep slopes with abrupt transition points that are hard to fit by a polynomial term.
In addition, according to Runge’s phenomenon, a lower degree of polynomial performs better than a higher degree
due to low oscillations at the interval boundaries [4]. However, as the other two parameters along with the
weighting factor come into consideration, a higher degree of polynomial may perform better as oscillations of a
polynomial fitting with a lower number of coefficients tend to occur in the central part of the spectrum. Section 3
provides numerical results that accurately quantify these expected trends.

2.2 Noise-Tolerant Deconvolution (NTD) Procedure

Deconvolution must be applied to compute the high-resolution PSD of a signal (|X(f)|?) from the data points
measured using a low-resolution OSA (| X4, (f)|?). However, noise in the measured data is known to introduce
significant artifacts in the deconvolved signal, making this approach unpractical. This section describes a
procedure that overcomes this drawback by removing the noise-induced artifacts through two techniques: (i)
removing the “out of band” noise and (ii) applying a SG fit to the deconvolved PSD. The NTD procedure requires
two input functions: (i) the signal PSD measured by the low-resolution OSA (|X,s,(f)|?), and (ii) the OSA transfer
function |H,e, (f)]? (an example is reported by the blue plots in Figure 1).
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Figure 1. Noise-Tolerant Deconvolution (NTD) procedure

The first step is to ensure that the two input functions are compatible, that is, the two functions must use the same
central frequency reference and the same number of data points (length). This means that some level of pre-
processing may be necessary. Since a polynomial fitting can capture detailed shapes, such as ripples at the top of
the signal PSD, it can be used to model the signal PSD (Step 1a. in Figure 1) to increase the number of data points
as necessary. The OSA transfer function |H,, (f)|?, on the other hand, can be approximated using a SG function
(Step 2a. in Figure 1), which averages out various noise elements (thermal, shot, etc.) that show up in the
experimental data used to characterize of the OSA transfer function.

The fundamental principle used here is the multiplication and convolution property of Fourier transform (FT),
which states that when two functions need to be convolved, applying a Fourier transform would permit the use of
multiplication in place of convolution [4]. Note that in our study convolution is applied in the frequency domain,
and multiplication applies to the FT of the frequency domain as shown in eq. (4).
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Before applying the division in eq. (5) noise masking is applied to FT{|X,s, (f)|?} to remove the ripples that occur
in the deconvolved signal (Step lc. in in Figure 1). The noise mask window must be carefully set because a large
window would cause too many ripples in the resulting signal, and a window too small would cause significant
distortion. After applying the inverse Fourier transform (IFT) to the term on the right in eq. (5) (Step 3. in Figure
1), some noise artifacts may remain, i.e., some ripples at the top and both ends of the PSD may still be present. To
overcome this issue, a SG fitting technique is applied to obtain the final | X (f)|? (Step 4. in Figure 1). The resulting
|X(f)|? can then be represented using a polynomial fit as described in Section 2.1. The resulting function is the
final deconvolved signal PSD.

3. RESULTS

The accuracy of polynomial fitting is quntified numerically using the Root Mean Squared Relative Error (RMSRE)
method [6] as follows
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Polynomial fitting is tested using different combinations of the three parameters defined in Section 2.1. Figure 2(a)
shows RMSRE of polynomial fitting for a 10" order SG signal PSD. Lower cut-off power levels correspond to
wider frequency domains to fit, which make the problem harder as illustrated by the increasing RMSRE values
reported. Better accuracy is achieved by increasing the degree of polynomial. On the other hand, for a fixed degree
of polynomial (e.g., 50), the RMSRE trend is shown in Figure 2(b). Increasing the SG order tends to increase
RMSRE, with more pronounced changes as the cut-off power level decreases. Similarly, Figure 2(c) reports an
increase in RMSRE when increasing the SG order for a specific cut-off power level (-50dB).

RMSRE vs. Cut-off Power (SG Order=10) RMSRE vs. SG Order (Degree of Polynomial=50) RMSRE vs. SG Order (Cut-off Power= -50dB)
—— degree of polynomial=30 —— .30dB V4 0.04 | — degree of polynomial=30 —
L0 degree of polynomial=50 2.5 -40 dB / degree of polynomial=50 ﬁ—/
—— degree of palynomial=75 —— .50dB / —— degree of polynomial=75
0.8 —— degree of polynomial=100 2.0{ — -60de / 0.03] —— degree of polynomial=100
—— degree of polynomial=150 —— -70dB —— degree of polynomial=150
2 0.6 215~ 60ds / &
e 0. = L.
a @ -90 dB / £0.02
E -] —— -100dB / z
0.4 Lo
— 0.01
0.2 0.5 B
— -
0.0 0.0 — 0.00
-100 -90 —80 —70 —60 —50 —40 —30 4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
Cut-off Power (dB) SG Order SG Order
(a)RMSRE vs. Cut-off Power (dB) for (b)RMSRE vs. SG Order for varying (¢)RMSRE vs. SG Order for varying
varying Degrees of Polynomial Cut-off Power levels (dB) Degrees of Polynomial

Figure 2. Modelling a super gaussian (SG) function using polynomial fit

Additionally, for a predetermined pair of SG order and degree of polynomial, a decrease in the cut-off power
increases the RMSRE (Figure 2(a) and 2(b)). Conversely, as shown in Figure 2(a) and 2(c), an increase in the
degree of polynomial causes the RMSRE to drop across a variety of SG order values and cut-off power levels.
Lastly, both Figure 2(b) and 2(c) confirm that polynomial fitting performs poorly while trying to fit a higher order
SG function across a variety of degrees of polynomial and cut-off power levels.
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Figure 3. WSS system used to assess the NTD procedure accuracy

The experimental data used to produce the signal PSD to be deconvolved is obtained using an OSA with 0.07nm
resolution bandwidth. The OSA transfer function is computed by passing a tuneable narrow laser through the OSA
using a light wave measurement system. A weighted polynomial fitting method is applied to increase the number
of data points in the signal PSD (from 251pts. to 5001pts.). The WSS device setting in Figure 3 is used to assess
the accuracy of the NTD procedure. A 100G signal having a baud rate of 31.6 Gbaud with DP-QPSK modulation
is sent through the WSS and the output signal PSD is recorded by the OSA. Theoretically,
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where |X(f)|? and |Y(f)|? represent the input and output signal PSDs, respectively, and H(f) represents the
estimated power transfer function of the WSS. However, due to the OSA 0.07nm low-resolution, the numerical
computation and experimental data of |Y (f)|? have the mismatch reported in Figure 4(a).
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Figure 4. |Y(f)|? computed through eq. (7) using (a) |Xos4(f)|? and (b) | X (f)|? as defined in Figure 1

As illustrated in Figure 4(b), the NTD procedure significantly reduces this mismatch, where the computed data
through eq. (7) using |X (f)|? matches the experimental data of |Y (f)|? more accurately. The improved accuracy
can also be quantified numerically by computing the root mean square error (RMSE) in dB, given by
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where, ¥; (in dB) is the computed output signal, Y; (in dB) is the experimentally measured data, and n is the length
of the signal. The RMSE with and without NTD procedure is found to be 1.1 dB and 5.1 dB, respectively.

4. SUMMARY

The contribution of this paper is twofold. First, the use of polynomial fitting to model signal PSD is investigated
while varying critical modelling parameters that are: the SG function order used to model the PSD, the degree of
polynomial used to fit the SG function, and the cut-off power level which delimits the domain of the PSD that
must be represented. Clear patterns emerge in the test results revealing that a higher degree of polynomial can cope
with lower cut-off power levels. It is also evident from these tests that polynomial fitting works comparatively
better for lower order SG functions. Second, the proposed Noise-Tolerant Deconvolution (NTD) procedure is
shown to be effective in estimating the signal PSD (with virtually infinite resolution) from the measurements
collected using a low-resolution OSA. When using the signal PSD estimated through the NTD procedure (as
opposed to using the PSD as measured by a low-resolution OSA) it is possible to improve the accuracy of the
computed signal PSD at the output of a WSS device, reducing the RMSE from 5.1 dB to 1.1 dB. Possible use cases
for the proposed NTD procedure include: (i) integration in the ONE engine so that students are able to use signal
PSDs recorded through a low-resolution OSA and have the option to improve their resolution before using them
in their optical network emulation efforts; and (ii) integration with low-resolution OSA devices that are deployed
in real networks to improve the resolution of the signal PSD that is monitored in real-time. There are scenarios in
which the proposed NTD procedure may fail to correctly estimate the signal PSD. For example, when two signals’
PSDs are too close to each other spectrally to the point where the OSA transfer function cannot clearly separate
their respective power spectral contributions, the proposed NTD procedure may not suffice to recover the two
signals’ original PSDs. This and other special cases require further investigation.
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