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Flow-based microfluidic biochips (FMBs) have been rapidly commercialized and deployed in recent years

for biological computing, clinical diagnostics, and point-of-care-tests (POCTs). However, outsourcing FMBs

makes them susceptible to material-level attacks by malicious actors for illegitimate monetary gain. The

attacks involve deliberate material degradation of an FMB's polydimethylsiloxane (PDMS) components by

either doping with reactive solvents or altering the PDMS curing ratio during fabrication. Such attacks are

stealthy enough to evade detection and deteriorate the FMB's function. Furthermore, material-level attacks

can become prevalent in attacks based on intellectual property (IP) theft, such as counterfeiting,

overbuilding, etc., which involve unscrupulous third-party manufacturers. To address this problem, we

present a dynamic material-level watermarking scheme for PDMS-based FMBs with microvalves using a

perylene-labeled fluorescent dye. The dyed microvalves show a unique excimer intensity peak under 405

nm laser excitation. Moreover, when pneumatically actuated, the peak shows a predetermined downward

shift in intensity as a function of mechanical strain. We validated this protection scheme experimentally

using fluorescence microscopy, which showed a high correlation (R2 = 0.971) between the normalized

excimer intensity change and the maximum principal strain of the actuated microvalves. To detect curing

ratio-based attacks, we adapted machine learning (ML) models, which were trained on the force-

displacement data obtained from a mechanical punch test method. Our ML models achieved more than

99% accuracy in detecting curing ratio anomalies. These countermeasures can be used to proactively

safeguard FMBs against material-level attacks in the era of global pandemics and diagnostics based on

POCTs.

Introduction

Microfluidics is the interdisciplinary study of fluid

manipulation at microliter or nanoliter volumes. A

microfluidic biochip (also known as a lab-on-a-chip)

encapsulates the capabilities of a laboratory by integrating

different biochemical functionalities into a single

miniaturized device.1,2 Biochip components typically consist

of microchannels, microvalves, micropumps, micromixers,

microseparators, and reaction chambers. Biochips are ultra-

fast in their intended operations, i.e., dispensing, mixing,

splitting, transportation, etc., because of a very small amount

of samples compared to traditional test tube-based

laboratories.3 They have been a game-changer in biological

computing such as enzymatic, deoxyribonucleic acid (DNA)

and proteomic analysis, genetic and polymerase chain

reaction (PCR) studies, molecular biology procedures, surface

immunoassays, medical diagnostics, cell culture,

environmental sampling and toxicity monitoring, etc.3,4

Microfluidic biochips offer various advantages over

conventional test-tube-based laboratory techniques, which

include reduced sample volume, faster biochemical reactions,

higher system throughput, automation, and ultra-sensitive

detection.5 They attain miniaturization without the need for

extra equipment and thus are revolutionizing biomedical
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applications such as point-of-care tests (POCTs),6

amplification platforms,7 biomolecular recognition,8 antigen

detection,8 and personalized cancer treatment.9 Thus, they

can potentially advance global healthcare by meeting urgent

needs for diagnostic tests in places with limited laboratory

facilities.

To date, 47% of the global population has little or no

access to diagnostics.10 Further, the need for the increased

availability of diagnostic tests for public health has never

become more evident than in the global response to the

recent coronavirus disease 2019 (COVID-19) pandemic.11 The

pandemic highlighted years of under-investment and neglect

that led to a gross inequity in access to diagnostics.10

Fortunately, the pandemic has also expedited the

development of new technologies and solutions for

microfluidic biochips that can reduce the global diagnostic

gap.10 Millions of biochips for COVID-19 detection are used

globally every day in hospitals, primary healthcare facilities,

workplaces, and people's homes.12 A recent World Health

Organization (WHO) report estimated that more than 140

million test kits were shipped through the United Nations

(UN) portal alone during the COVID-19 pandemic.13

Following the COVID-19 response, the benefits of these

biochips have been viewed as an opportunity to stimulate

diagnostic innovation for improving access to a broader

range of tests in resource-limited settings. We draw attention

to the following market projections: the molecular

diagnostics market is projected to be worth 31.8 billion

United States dollars (USD) by 2026, up from 17.8 billion

USD in 2021, a 79% increase.14 Further, the global

microfluidics market is projected to be worth 58.8 billion

USD, growing at a compound annual growth rate (CAGR) of

23.2%.15 The biochip (lab-on-a-chip and microarrays) market

is projected to register a CAGR of 13.9% during the forecast

period of 2022–2027.16 Moreover, the global POCT market is

projected to be worth 72 billion USD by 2024 from 43.3

billion USD in 2022, with a CAGR of 10%.17 Thus, there is a

strong case for investment in the mass deployment of

microfluidic biochips in health systems and communities

across the globe.

As biochips are becoming increasingly popular, there are

growing opportunities for commercialization and

deployment, as evident from the sales, investment, and

acquisitions reported by microfluidic companies.3,18 With the

growing likelihood of commercial adoption, there is a higher

possibility that the biochips will be attacked by unscrupulous

adversaries with malicious motivations for personal and

illegal gains. To ensure economy of scale and cost reduction,

biochip companies have been using outsourcing and

horizontal supply-chain models for their goods and services,

which involve untrusted third-party partners.19–21 Due to

third-party involvement, the associated material-level threat

landscape increases considerably, posing the risk of

malicious and intellectual property (IP)-theft attacks.20–23

Attacks on microfluidic biochips have emerged as a critical

rising threat. The severity of such attacks lies in the potential

to harm patients, compromise healthcare, lose trust among

health practitioners and clinicians, waste resources, and have

negative economic consequences. This scenario calls for

immediate attention and countermeasures to maintain the

reliability, confidentiality, and trustworthiness of biochips.

The manufacturing and use of microfluidic biochips

include component materials such as silicon, glass, polymers,

reagents, and ancillary instruments such as sensors, pumps,

and networked computers.19 From the material point of view,

an industry survey based on a sample of selected microfluidic

companies showed that 59% of all commercially available

devices are made of polymers (mainly thermoplastics).12

Published data indicates that, in academic research

laboratories, 55% of the fabricated devices are made of

polydimethylsiloxane (PDMS), a transparent thermosetting

polymer.12 In contrast to other polymers, PDMS has the

following attractive properties: excellent replicability from

micro-molds, easy to pattern by soft lithography, flexibility

(unbreakable compared to glass), optical transparency,

affinity to permanently bond with glass via the plasma

bonding technique, biocompatibility, gas permeability, and

non-toxicity.1,3,4,12,19,24–28 Thus, the microfluidics community

has embraced PDMS to build microfluidic devices. Therefore,

this work focuses on material-level attacks on PDMS-based

microfluidic biochips.

The fabrication of PDMS-based microfluidic biochips

includes replicating the liquid PDMS (mixed with the curing

agent) from a master-mold after the mixture gets fully cured

by heating. As PDMS fabrication involves liquid-to-solid

conversion via thermal treatment, any deliberate tampering

with PDMS while it is in a liquid state would show its

deteriorating effect after curing, i.e., in the solid state. This

makes biochips vulnerable to material-level attacks that can

compromise or fail the biochip altogether, leading to the

repetition of experiments, which is undesirable due to high

reagent costs and limited availability of samples.8 Thus, the

above vulnerabilities and associated repercussions can

motivate attackers to cause material-level attacks. It is,

therefore, essential to safeguard biochips against such

attacks.

Microfluidic biochips can be mainly categorized into two

types based on the underlying technologies used for their

operation: digital microfluidic biochips (DMFBs) and flow-

based microfluidic biochips (FMBs). DMFBs use discrete

droplets on an electrode array leveraging the principle of

electrowetting-on-dielectric, while FMBs manipulate fluid

flow in microchannels using pumps and valves.1,8,20,29 In this

work, we specifically target PDMS-based FMBs due to the

presence of PDMS microfluidic valves in such systems, unlike

DMFBs that don't use microfluidic valves for their

operation.8

Microfluidic valves are made out of thin PDMS

membranes; these valves are crucial for controlling the fluid

flow in a network of microchannels.8,19,20,30 Microscale fluid

flow can be automatically controlled by adjusting the

pressure of the microvalves for fluidic operations such as
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mixing, incubating, filtering, and washing.1,8,20,30

Microfluidic valves, along with recent advances in

microfabrication techniques, have enabled large-scale

integrated microfluidic circuitry that allows massively-parallel

biochemical processing and immediate POCTs.8,20 Thus, any

attack on a microfluidic valve would greatly affect the FMBs'

performance, leading to low quality and even faulty

diagnostics.

In this work, we experimentally studied material-level

vulnerabilities of PDMS-based FMBs, where an attacker can

carry out the attack by adding reactive solvents or altering

material parameters such as the PDMS curing ratio during

fabrication. Through benchtop techniques, we demonstrated

two scenarios of material-level attacks on FMBs. The first is a

material adulteration attack, where the attacker (present in

the fabrication unit) can add undesirable chemicals to the

FMB's microvalves during manufacturing. The deliberately

added chemicals preserve the original optical transparency of

PDMS and, thus, are unlikely to be detected via microscopy-

based quality control. However, during actual use by the end-

user, the attacked valve would cause problems such as block,

leak, and microvalve degradation,8 leading to tampered

results or denial of service.1,3,8 The second attack involving

material adulteration is a curing-ratio-based attack where an

attacker (present in the fabrication unit) alters the ratio of

the PDMS precursor–curing agent mixture, making the

material viscoelastic-sticky.31,32 This would induce problems

such as microvalve sticking,31,32 microvalve degradation,8

and microchannel biofouling in the FMBs.33,34

Another scenario where material-based attacks can

become prevalent is related to intellectual property (IP) theft

using reverse engineering, which can provide an attacker

with information about the FMB's materials and their

associated use.20,22 After having the information about the

materials and their properties via reverse engineering, the

attacker can intentionally alter the material property (through

material adulteration) of the reverse-engineered FMB's

material components to fail the FMB and defame the

legitimate FMB manufacturer.

Furthermore, reverse engineering attacks involve stealing

the biochip architectural layout, material information,

component-level netlist, and information about the bio-

protocol without incurring development costs.20,22 Using the

stolen information, adversaries can then carry out piracy of

IP and test protocols, counterfeiting, and overbuilding of

biochips for illegal monetary gain.

To circumvent such material-level attacks, we present

countermeasures in the form of watermarking and machine-

learning (ML)-based schemes. We categorize the attacks into

two categories: (1) IP-theft attacks, which include reverse-

engineering, counterfeiting, piracy, and overbuilding attacks,

and (2) malicious material-level attacks.

For IP-theft attacks, we present the first material-level

watermarking scheme for FMBs. The scheme utilizes a

perylene-labeled fluorescent dye,35–41 synthesized in our

laboratory, to embed spectral watermarks in the microvalves

of FMBs. The proposed scheme incorporates the addition of

a perylene-labeled fluorescent dye at certain microvalve

locations, which are undetectable within the visible range

(wavelength of 400–700 nm). The locations themselves act as

a watermark, which can only be detected and quantified

using the intensity–wavelength response recorded by a

relevant spectrometer or confocal microscope with an excited

wavelength of 405 nm.

Moreover, the watermark can show a dynamic shift in the

excimer peaks under mechanical strain, like the one found in

an actuated PDMS microvalve giving the watermarking

scheme two-factor authentication capabilities. Using the

watermarks, the pirated or counterfeited FMBs could be

identified and discarded by the end-user or the FMB

company that received the fabricated FMB from a third-party

manufacturer. We experimentally verified this

countermeasure using laboratory-made PDMS valves ranging

in size from the macro to micro-level and provided a

calibration curve to design the watermarks.

We provide a security analysis for the material-level

attacks based on randomized checkpointing and full

independent Bernoulli trial-based checking schemes, which

FMB manufacturers can use for their quality control to

safeguard the manufactured FMBs. With respect to the

watermarking scheme, we present a Boolean quantity called

quality assessment using the involved parameters and sensor

values, which a watermark designer or verifier can use to

design or verify the watermarks.

As a countermeasure against curing ratio attacks, we

present a novel machine-learning (ML) method that can

detect maliciously altered curing ratios with an accuracy of

99%. This countermeasure is based on a mechanical punch

test42 that locally deforms the material to provide force-

displacement data, which we use to train our ML models.

We explored three ML models (random forest, Naive

Bayes, and decision tree) and three feature selection methods

(Pearson correlation, recursive feature elimination, and

backward elimination) for curing ratio anomaly detection.

We trained our ML models by splitting the data into the

training set (70%) and the test set (30%). The models were

trained on the complete dataset (9056 data points), which

was derived from feature selection methods such as the filter

method (Pearson correlation) and wrapper methods

(recursive feature elimination and backward elimination).43,44

All of our ML models achieved more than 99% accuracy in

detecting the curing ratio anomalies. The following section

presents the adversarial model and related prior studies

before we discuss our results.

Adversarial model

The manufacturing of an FMB involves many steps and

requires multiple third-party entities, some of which might

be untrusted. Adversaries may hire attackers to jeopardize

FMBs from a competitor FMB firm out of malicious

motivation.42 The attacker can introduce material-level
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variation in the FMBs' embedded components to produce

incorrect or cause a denial of service. The aim of such an

attacker is to jeopardize trust in the healthcare industry,

create false or misleading test results to degrade the integrity

of related diagnostics research, and make health

practitioners lose trust in and discontinue using biochips.

The adversaries' economic interests will then be satisfied as

the customers would switch to other biochip companies in

the marketplace. With the advent of manufacturing-as-a-

service,45 FMBs have become more vulnerable to material-

level attacks.20,45

Fig. 1 illustrates the adversarial model and highlights the

vulnerable points corresponding to a material-level

attack.20,45–47 The model has five parties: the customer, the

FMB company, the designer, the manufacturer, and the

quality control unit. The process flow of a typical FMB service

is shown in Fig. 1. A typical service starts with a customer

submitting a request for an FMB (route 1). After the service

request is generated, it is sent to the design unit (route 2).

The design unit sends the design files to the manufacturing

unit (either in-house or outsourced, route 3). An attacker in

the manufacturing unit alters the material properties of the

FMB's PDMS either by adding harmful chemicals or changing

the curing ratio to perform the material-level attack. The

attacked biochip reaches the quality control team (route 4)

and evades fault detection owing to the stealthy nature of the

attack. Finally, the attacked FMB is delivered to the customer

(route 5).

Biochip manufacturing units within the process can be

classified as either in-house or outsourced.20,23,47 In-house

manufacturing units refer to internal facilities within an

organization that handle the production and manufacturing

of goods or components, providing greater control and

flexibility over the manufacturing process.1,20 On the other

hand, outsourced manufacturing units refer to external

facilities or suppliers that are contracted by organizations to

produce goods or components on their behalf, allowing for

cost savings, access to specialized expertise, and

scalability.23,47

Biochip companies often favor outsourced manufacturing

units over in-house manufacturing units for several reasons:

outsourcing provides companies with the opportunity to

leverage cost savings, tap into specialized expertise offered by

external facilities or suppliers, and achieve scalability. In

contrast, in-house manufacturing offers greater control and

flexibility but may come with higher costs and resource

requirements.48–53

Regardless of the manufacturing approach chosen, it is

important to acknowledge the potential presence of attackers

in the manufacturing unit who may engage in material-level

attacks. Both external attackers hired by adversaries and

insiders with malicious intentions can compromise the

security of the biochip production process. When comparing

the threat landscape in outsourced and in-house units,

attacks in the outsourced setting may be easier to execute

due to the higher level of trust involved. However, in-house

attackers can exploit this trust and perform attacks,

assuming that the compromised products will pass light

quality control trials.

To mitigate these risks, it is crucial to implement

stringent and state-of-the-art quality control trial techniques.

These techniques should be versatile enough to detect

attacked biochips in both the outsourced and in-house

manufacturing scenarios, ensuring the integrity and

reliability of the biochip products.

Related prior work

Previous studies investigating the cyber-physical security of

FMBs have encompassed various aspects of attacks and

defenses such as hardware-level secure-by-design and

vulnerability analysis1,8,19,20,54 as well as associated security

metrics and trade-offs.3,21,22,55,56

Specifically, Tang et al. presented a high-level overview of

attacks and defenses concerning FMBs.19 To test FMBs, Hu

et al. presented a method for automated testing of FMBs

based on a behavioral abstraction of physical defects in

microchannels and microfluidic valves.8 They modeled flow

and control paths in the FMB as a logic circuit composed of

Boolean gates, which were mapped to fluidic operations

involving pumps and pressure meters in the FMB. They

compared feedback from pressure meters with expected

responses based on their logic circuit model to identify the

defects.

Recent work by Baban et al. reported structure-level

attacks and defenses for FMBs that explored malicious

structural modification of FMB micro-reaction chambers to

produce false-negative coronavirus disease of 2019 (COVID-

19) results.20 They adopted deep learning (DL)-based anomaly

Fig. 1 Adversarial model for a material-level attack. A customer places

an FMB order received by the FMB company (route 1). The FMB

company sends the order to the design unit (route 2). The design team

sends the design files to the manufacturing unit (either in-house or

outsourced, route 3). However, an attacker in the manufacturing unit

carries out the material-level attack. The attacked biochip reaches the

quality control unit (route 4) and escapes detection. Finally, the

compromised biochip is delivered to the customer (route 5).
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detection algorithms to circumvent such attacks. Their DL-

based countermeasure recorded a 96% validation accuracy in

recognizing such deliberately induced microstructural

anomalies.

Furthermore, Baban et al. presented a novel structure-level

watermarking scheme for FMBs by increasing the height of

the micro reaction chambers or microchannels at specific

locations to obtain fluorescent watermarks that can be

detected and quantified using fluorescence microscopy.20

However, no material-level watermarking schemes have been

proposed for FMBs where the watermark is embedded

inherently in the material of the FMB.

Le et al. introduced a smartphone-based sample-level

watermarking solution for impedance flow cytometry based

POCTs, offering cytocoded authentication services.57,58 Each

authentication password consists of a specific count of

synthetic micro-beads with distinct dielectric characteristics.

These beads, combined with the blood sample, are used to

authenticate the user to the cloud server based on statistical

analysis and bead characteristics. Additionally, they

introduced a barcoding scheme at the sample level to

generate a unique authentication string.59 This string is

based on the sizes of synthetic micro-beads, which serve as

identifiers for individual test results on the remote storage

device.

Chen et al. proposed a systematic framework for inserting

and detecting hardware Trojans in FMBs.60 Shayan et al.

presented a microfluidic valve-based Trojan design based on

a thicker microvalve membrane that would require more

pressure than usual to function, leading to anomalous valve

response.23 Such a valve response can be used to launch

attacks such as contamination, denial of service, and

parameter tampering causing FMBs to malfunction.

Material-level Trojan attacks have been proposed for 3D

printed objects, which can result in catastrophic operational

failures. Le et al. introduced a class of Trojan stealthy attacks

called physical logic bombs on 3D printed objects.61 These

embedded logic bombs utilize smart materials, residual

stress, and shape memory effects to modify the structural

design of the printed product, leading to potential

catastrophic failures. To counter these attacks, they proposed

mitigation strategies that involve the use of dielectric sensing

and computed tomography (CT) techniques for real-time and

post-production monitoring of the printing processes. They

achieved an average accuracy of 94.6% in identifying these

attacks within a single printing layer.

IP-theft attacks have also received attention; Chen et al.

demonstrated a layout-level reverse-engineering attack using

image analysis.22 To thwart reverse-engineering of the bio-

protocol, recent work by Shayan et al. presented a design

obfuscation scheme by carefully inserting dummy valves in

the FMB.1,30

With respect to watermarking solutions for FMBs, a

previous study demonstrated a watermarking technique by

hierarchically embedding secret signatures using the mixing

ratio, incubation time, and sensor calibration to protect the

bio-protocols (bio-protocol level watermarking) in DMFBs.29

The same bio-protocol level watermarking scheme can be

used for FMBs.

In regard to watermarking solutions for 3D-printed

objects, Bayens et al. investigated a material-level side-

channel approach as the verification scheme. They embedded

micromarkers within the 3D-printed objects during

manufacturing, using gold nanorods (GNRs) and 3,3′-

diethylthiatricarbocyanine iodide (DTTCI). To authenticate

the embedded micromarkers on a material basis, they

utilized surface-enhanced Raman spectroscopy (SERS).46

In order to prevent the sale of compromised biochips, ML-

based anomaly detection has been used to mitigate structure-

level attacks on FMBs.20 In previous studies, we have seen

that different anomaly/outlier detection techniques62–65 have

been used to separate anomalous data instances that deviate

quantifiably from truth values. Recently, we have seen an

increase in the usage of ML-based techniques for anomaly

detection. For example, fuzzy logic,66 Bayesian approach,67,68

genetic algorithm,69,70 neural network,71,72 and traditional

ML73,74 methods have proved to provide prominent results

for anomaly detection. To date, there has been no utilization

of machine learning techniques incorporating material

characterization data for securing FMBs against material-

level attacks.

In summary, no material-level attacks and defenses have

thus far been explored for FMBs. In this work, we focus on

providing cyber-physical security solutions against malicious

material-level and IP-theft attacks.

Methods
Reverse engineering analysis on a commercial FMB

A reverse engineering analysis was conducted on a

commercial FMB using the nanoindentation technique, as

well as bright-field and scanning electron microscopy. The

purpose of this analysis was to infer information about the

Young's modulus of the PDMS material and gain insights

into the structural characteristics of the microreaction

chambers, microfluidic lines, and valves. The FMB was cut

both longitudinally (L, along the major length) and

transversely (T, perpendicular to the major length) to obtain

a cut chip portion. The cut portion was then subjected to

nanoindentation characterization to determine the Young's

modulus of the PDMS material used in the commercial FMB

(Text S1†). Additionally, bright-field and scanning electron

microscopy techniques were employed to examine the

structural layout of the cut chip portion.

Attack characterization

With regard to material degradation attack using reactive

chemicals, we conducted a comparison of three cases to

characterize material-level attacks: PDMS control, PDMS +

t-butyl alcohol, and PDMS + hexadecane. Hexadecane and

t-butyl alcohol were specifically chosen as reactive chemicals

due to their capability to slow down the formation of PDMS
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crosslinking networks, leading to degradation of material

properties, while preserving the optical transparency of the

original PDMS.75–77 We employed an Instron® universal

testing machine to subject both the control and doped

samples to uniaxial deformation in order to assess the degree

of material degradation. The ASTM D412 C standard dog-

bone shaped (33 mm long × 6 mm wide × 1 mm thick)

samples were subjected to uniaxial deformation at a

displacement rate of 5 mm s−1, and the resulting force values

were recorded using a 50 N load cell for post analysis.

Adhesion peel tests are effective in characterizing the

adhesive behavior of PDMS and providing information about

the PDMS curing ratio.78 We conducted adhesion peel tests

for curing ratios ranging from 10 : 1 to 50 : 1 to assess the

susceptibility to curing ratio attacks. We utilized a 50 μm

thick plain PDMS film (top layer) bonded to a glass coverslip

(170 μm thick, 24 mm long, and 24 mm wide) through

plasma bonding. The composite glass coverslip was then

pressure-sensitively bonded to a 3 mm thick PDMS layer

(bottom layer) with varying curing ratios. The peeling test

was performed using an Instron® universal testing machine

with a 50 N load cell, where the glass coverslip was peeled

from the hanging end (5 mm overhang) at a displacement

rate of 5 μm s−1 under controlled displacement conditions.

Uniaxial spectral analysis

To spectrally analyze the ASTM D412 C dog bone-shaped

samples during uniaxial deformation, we utilized 0.3 wt% of

perylene silane to dope with PDMS, which provided the most

favorable mechanoresponsive outcomes compared to other

weight percentage samples due to the dye's concentration-

based chemical compatibility with PDMS.37–39 The doped

samples were subjected to uniaxial deformation at a

displacement rate of 0.1 mm s−1, and the resulting force

values were recorded using a 50 N load cell. The intensity–

wavelength response for various strains was recorded using a

spectrometer with a laser excitation wavelength of 405 nm.37

Biaxial spectral analysis

Circular PDMS microvalves ranging from 4 mm to 350 μm

were fabricated and dyed with 0.3 wt% perylene silane to

measure the excimer intensity change during biaxial

deformation. The valves were subjected to a known suction

pressure of 1000 mbar for actuation, and their response was

analyzed using spectral scans conducted with a confocal

microscope. A laser beam with a wavelength of 405 nm was

directed from the bottom of the microscope stage through a

dry 20× objective lens with a numerical aperture (NA) of 0.75.

Finite element method (FEM) models were employed to

estimate the maximum principal strains of the deformed

valves, considering the correlation between the response of

the dye and uniaxial tensile strain. The maximum principal

strain, which provides an accurate measure of the extent of

maximum tensile deformation under a biaxial stress state,78

was selected as the key parameter of interest. Experimental

data points, derived from both FEM models and confocal

spectral scanning, were utilized to construct a linear

regression model that correlates excimer intensity change

with the maximum principal strain.

Results
Material-level attacks on FMBs

Fig. 2 shows the attack demonstration results obtained

experimentally on PDMS. Fig. 2A shows a commercial FMB

that uses PDMS for its structural components. Fig. 2B shows

the top-view bright-field microscopy image of the FMB

locating the repeating unit of the integrated fluidic circuit

(IFC)20 with the microvalves. The IFC's repeating unit

consists of a reaction chamber connected by sample and

reagent lines, which are mediated by a microfluidic valve

pneumatically controlled by a control line.20 Fig. 2C shows

the cross-sectional (T) view obtained by scanning electron

microscopy (SEM), which reveals structural information

about the reaction chamber, reagent line channel, and

microvalve junction. The microvalve junction consists of flow

and control channels separated by a microvalve membrane.

The membrane can block the fluid flow when pneumatically

actuated.

Fig. 2D shows stress–strain plots, illustrating the degraded

material properties of PDMS + t-butyl alcohol and PDMS +

hexadecane compared to PDMS-only controls. Quantitatively,

the PDMS + t-butyl alcohol samples failed at significantly low

strain values: 60% and 67% low strain values compared to

the PDMS-only controls. Fig. 2E shows a significant 82%

reduction in strain energy per unit volume for PDMS + t-butyl

alcohol samples. For PDMS + hexadecane samples, a

significant 86% reduction in strain energy per unit volume

(signifying fracture toughness) was recorded compared to

PDMS-only controls. Furthermore, Fig. 2F shows a significant

67% and 64% reduction in peak stress (signifying fracture

strength) for PDMS + t-butyl alcohol and PDMS + hexadecane

samples, respectively, compared to PDMS-only controls.

Hence, the results highlight a substantial degradation in

PDMS samples' fracture and toughness properties when

doped with hexadecane and t-butyl alcohol.

To demonstrate the material adulteration attack at the

valve-level, we made a hexadecane-doped PDMS circular

macrovalve (4 mm diameter) and compared its response

under 1000 mbar pressure with the pure PDMS counterpart

using a digital image correlation (DIC) setup (Text S2†). As a

result, the doped PDMS membrane ruptured while the pure

PDMS membrane remained intact under the same 1000 mbar

pressure, corroborating the results obtained in Fig. 2D–F.

The observed results in material degradation attacks can

be explained as follows. When hexadecane and t-butyl alcohol

are added to the PDMS, they act as solvents for the PDMS

oligomers. The solubility parameter of hexadecane and

t-butyl alcohol are 8.0 cal1/2 cm−3/2 and 10.6 cal1/2 cm−3/2,

respectively.76,77 The values are close to the solubility

parameter of PDMS (7.3 cal1/2 cm−3/2), meaning hexadecane
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and t-butyl alcohol are good compatible solvents for PDMS.

This can lead to a dilution of the PDMS oligomer

concentration, reducing the degree of cross-linking and

causing the loosened polymeric network, which can decrease

the toughness of the PDMS. In addition, hexadecane and

t-butyl alcohol-doped PDMS are transparent, so the

composition change of chemical levels driven by the stealthy

attack is hardly detectable. However, such an invisible

inhomogeneity can lead to the formation of voids or defects

within the polymer network, which can further contribute to

the decrease in toughness and fracture.75

Regarding the curing ratio attack, Fig. 2G displays the

results of the peel test conducted using a mechanical peel

test setup on PDMS layers with varying curing ratios.78 The

results record a significant improvement in the adhesion

energies for the samples whose curing ratio was more than

10 : 1. Fig. 2H shows the adhesion energies of curing ratios

20 : 1 to 50 : 1 compared to the 10 : 1 ratio. A significant 6-fold

increase in the adhesion energy was recorded for 30 : 1

compared to the 10 : 1 curing ratio. Notably, a 30-fold

increase in adhesion was recorded for 50 : 1 compared to the

10 : 1 curing ratio.

Similarly, Fig. 2I shows the peak adhesion force of curing

ratios 20 : 1 to 50 : 1 compared to the 10 : 1 ratio. A significant

2.8-fold increase in the peak adhesion force was recorded for

30 : 1 compared to the 10 : 1 curing ratio, and a 3.4-fold

increase in the peak adhesion force was recorded for 50 : 1

compared to the 10 : 1 curing ratio. Thus, the peel test results

highlighted the significantly increased adhesion strength and

toughness for the higher curing ratio PDMS samples

Fig. 2 Material-level attack demonstration. A) A longitudinally (L) and transversely (T) cut PDMS-based commercial FMB. The scale bar is 3 cm. B)

The top view shows microvalves and the L and T cuts given for the scanning electron microscopy (SEM) image of the related cross-sectional view.

The scale bar is 125 μm. C) The SEM cross-sectional view (T) shows the microvalve junction containing the flow and control channels separated by

the microvalve membrane. The scale bar is 100 μm. D) The stress–strain responses recorded from uniaxial tensile tests (ASTM D412 C) of PDMS

samples (1 mm thick) show significant material property degradation. E) Strain energy per unit volume comparison recorded significantly reduced

energies for PDMS + t-butyl alcohol (82% reduction) and PDMS + hexadecane (86% reduction). F) Peak stress comparison recorded a significantly

reduced stress for PDMS + t-butyl alcohol (67% reduction) and PDMS + hexadecane (86% reduction). G) Force-displacement responses for curing

ratios ranging from 10 : 1 to 50 : 1. H) Adhesion energy comparisons show a 6-fold increase and 30-fold increase in the energy for the 30 : 1 and

50 : 1 curing ratios, respectively, compared to the 10 : 1 curing ratio. I) Peak adhesion force comparisons show a 2.8-fold increase and 3.4-fold

increase in the force for the 30 : 1 and 50 : 1 curing ratios, respectively, compared to the 10 : 1 curing ratio. The number of samples (n) was equal to

5, and the error bar represents the standard deviation (sd) for the results presented in Fig. 2D–I.
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compared to the standard 10 : 1 ratio sample. An attacker can

leverage curing ratio-guided adhesion response to carry out

attacks such as microvalve sticking,31,32 microvalve

degradation,8 and microchannel biofouling33,34 in FMBs.

Moreover, by using a higher curing ratio compared to the

standard 10 : 1 curing ratio, adversaries can reduce

manufacturing costs, especially for those involved in

counterfeiting, overbuilding, and piracy. For example,

suppose an attacker (hired by the adversary organization)

chooses a 20 : 1 curing ratio instead of the standard 10 : 1

curing ratio. In that case, they need to add 50% less curing

agent than the original. Thus, 50% less material will be used

for the fabrication, helping the adversary to save 50% in

terms of manufacturing cost. However, altering curing ratios

to save manufacturing costs would inadvertently affect the

FMB's performance owing to problems associated with curing

ratio attacks. Thus, checking and ensuring the correct curing

ratio of the manufactured FMBs before sending them to end-

users is essential.

Material-based attacks are likely to be more prevalent in

IP-theft-scenarios on FMBs; thus, it is necessary to watermark

FMBs at the material level to validate the authentic

provenance of materials used in fabrication. Therefore, we

present below the first material-level spectral watermarking

scheme to secure FMBs against IP-theft-based attacks.

Material-level watermarking for FMBs

We developed a dynamic spectral material-level

countermeasure to protect FMBs against IP-theft-based

attacks. The countermeasure involves dynamic material-level

watermarking for PDMS-based FMBs (with microvalves) using

a perylene-labeled fluorescent dye. We synthesized the

fluorescent dye in our laboratory, which we added into PDMS

to make it a mechanoresponsive material.38,40 Fig. 3A shows

the characterization results obtained from uniaxially

deforming the PDMS–perylene silane (0.3 weight percentage,

wt%) samples as per ASTM D412 C78 standard. The deformed

samples recorded substantial shifts in the monomer, and

excimer peaks, seen in the intensity–wavelength curves. The

results regarding the uniform distribution of the dye in

PDMS, replicability of excimer intensity peaks, and the effect

of the concentration of the dye on the excimer intensity

peaks can be found in Text S3.†

The results in Fig. 3A show a distinct downward shift in

the excimer intensity with progressing strain. Comparatively,

Fig. 3 Spectrometric countermeasure against IP-theft-based attacks. A) ASTM D412 C tensile test setup to characterize the intensity–wavelength

response of PDMS–perylene silane (0.3 wt%) samples. The scale bar is 10 mm. The intensity–wavelength relationship of PDMS–perylene silane (0.3

weight percentage, wt%) shows a shift in monomer and excimer intensity peaks for uniaxial strains. B) Uniaxial response: normalized excimer

intensity changes in good correlation with uniaxial strains. The linear regression fit records the slope as 0.414 and the R-squared value as 0.938.

The n was equal to 5, and the error bar represents the standard deviation. C) Confocal microscopy setup showing the circular valve samples and

the tube for pneumatic actuation. The scale bar is 8 mm. The finite element modeling (FEM) results from a 3 mm circular PDMS valve actuated

under 1000 mbar pressure via a 350 μm hole to obtain maximum principal strain contour plots. D) Biaxial response: normalized excimer intensity

changes in good correlation with maximum principal strains. The linear regression fit records the slope as 0.392 and the R-squared fit as 0.971.

The n was equal to 5, and the error bar represents the standard deviation.
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the monomer peak shows a slight upward shift with

progressing strain. Due to the large shifts recorded for the

excimer intensity with mechanical strains, we chose the

excimer shifts only to be our watermark basis ensuring

effective strain sensing. Fig. 3B shows a linear regression

model between normalized (with respect to 0% strain

intensity) excimer intensity change and uniaxial strain, λ − 1,

where λ is the extension ratio (final sample's length/original

sample's length). The model shows a good correlation

between the parameters with the R-squared value of 0.938.

The slope of the uniaxial regression model was recorded to

be 0.414. The strain state in the ASTM D412 C samples was

uniaxial; however, there exists a biaxial strain state when a

microvalve is actuated due to the biaxial deformation of the

associated microvalve membrane. Therefore, we made

circular PDMS microvalves ranging from 4 mm to 350 μm to

obtain excimer intensity change readings corresponding to

associated biaxial deformations. The readings of the dyed

valves were obtained via spectral scans done using a confocal

microscope, as seen in Fig. 3C.

Furthermore, we developed finite element method (FEM)

models to estimate the maximum principal strains of the

deformed valves (Text S4†). Out of different strains that could

have been used to estimate the valve's biaxial strain, we

chose the maximum principal strain to take into account the

obtained dye's response that showed a good correlation with

uniaxial tensile strain, as seen in Fig. 3B.26–78 The

experimental data points were plotted using maximum

principal strains (obtained from the FEM models) and

normalized excimer peaks' intensity change (obtained from

the confocal spectral scanning) to obtain a linear regression

model, seen in Fig. 3D. The model shows a good correlation

between the parameters with the R-squared value of 0.971.

The slope of the biaxial regression model was recorded to be

0.392, which is also in close agreement with the slope of the

uniaxial regression model, i.e., 0.414. As strains are

dimensionless parameters, therefore, even though the valves

were circular in geometry, the linear model can be used to

predict and design microvalves with rectangular geometry, as

seen in the commercial FMB. Hence, Fig. 3D can be used as

Fig. 4 Security and performance metrics for material-level attacks and watermarking scheme. A) Randomized checkpointing scheme using a

bright-field microscope. The view shows 12 reaction chambers of our lab-made FMB replicated using the dimensions of the reference commercial

FMB. The scale bar is 250 μm. B) A bright-field microscopy view showing sample and reagent lines along with the control lines needed to actuate

two microvalves. The scale bar is 125 μm. C) Security metric results for the randomized checkpointing scheme. D) The rejection versus detection

probability results for different sensitivity and specificity of the detecting microscopes. E) A schematic showing 12 microvalves, out of which 1 is

watermarked. F) FEM simulation of the reference FMB's microvalve actuation with the maximum principal strain contour plot.
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a calibration curve to design the mechanoresponsive

behavior of the dyed-watermarked microvalves under

pneumatic actuation.

Security analysis for the attack and the watermarking scheme

For PDMS-based FMBs, microvalves are the most critical

components attackers can target (at the material level)

because the associated ultra-thin membrane mechanically

deforms under pneumatic actuation. Further, attackers can

design their attacks targeted at microvalves as per the quality

control checking scheme opted by the FMB company. For

example, in resource-constrained settings, randomized

checkpointing strategies are beneficial.79,80 Here, the

checking is done randomly to detect faults in the fabricated

FMBs.20

Fig. 4A shows the randomized checkpointing scheme

where a bright-field microscope is used to detect any visible

anomalies or defects on an FMB. The commercial FMB,

chosen as a reference for this work, had 2304 micro-reaction

chambers. Using a suitable zoom, we could optimally fit 12

micro-reaction chambers with associated microfluidic lines

and microvalves. With this view, the FMB's micro-

components can be seen clearly to detect any visible

anomalies or defects. Thus, keeping in view 2304 micro-

reaction chambers and 12 (4 rows and 3 columns) micro-

reaction chambers in the microscopy trial, we divided the top

view of the whole FMB into 12 rows and 16 columns. This

led to 192 (12 rows × 16 columns) microscopy trials needed

to scan the whole FMB, where each trial can accommodate

12 micro-reaction chambers with the associated 24

microvalves (schematically shown), seen in Fig. 4A. Each

reaction chamber is connected to two microfluidic valves, as

shown in Fig. 4B. We assume that if at least 1 out of 192

microscopy trials shows anomalies with the microvalves, then

that FMB would be discarded during the quality control trial.

We developed a security metric for the randomized

checkpointing scheme, as shown in eqn (1). Note that M is

the total number of microscopy views (each showing 24

microvalves to be checked) to scan the whole FMB, and m is

the number of abnormal views where attacked microvalves

are spotted. Note that n is the number of random trials to

detect abnormal views, and Pev is the evasion probability

during the quality control trial with a bright-field

microscope.

We assume that the quality control checker utilizes a

known method to detect abnormal microvalves via a bright-

field microscope, such as spotting inconsistencies with the

microvalve's shape, optical texture, membrane warpage, etc.

Further, we assume that the microscope is 100% sensitive

and specific in detecting abnormal microvalves. Notably, the

detection method using bright-field microscopy is effective

even with a microscope that is less than 100% sensitive or

specific. However, the detection probability gets significantly

decreased with microscopes that have sensitivity or specificity

less than 90%.20

An attacker aims to increase m as much as possible to

make the attack lethal. However, increasing m decreases Pev.

To quantify this, we present a security analysis by plotting Pev
vs. n for different m. Fig. 4C shows the results of the

randomized checkpointing security analysis. For m = 1, Pev
decreases linearly as n increases. For m > 1, the response

showed an exponential decrease in Pev with the increase in n.

A 39% decrease in Pev was recorded when m = 10 compared

to m = 1 for n = 10. For n = 30 and m = 10, Pev reduced to

80%, and for n = 50 and m = 10, it reduced to 94%. Thus, we

found that there is a trade-off in the randomized

checkpointing scheme, wherein an attacker has to optimally

choose m based on n to maximize Pev. The information about

n is based on the quality control team's checking regime,

which an attacker would like to know to determine on m

while maximizing Pev. Thus, it is essential to keep knowledge

about n hidden from potential attackers.

Pev ¼ 1 −
m

M

� �

1 −
m

M − 1

� �

1 −
m

M − 2

� �

… … 1 −
m

M − n − 1ð Þ

� �

(1)

Next, we evaluate the effect of sensitivity (Sn) and specificity

(Sp) of the detecting instruments in detecting defects during

quality control inspections. We define Sn to be the

conditional probability of detecting the attacked microvalves

when the valves are actually attacked. Further, we define Sp
to be the conditional probability of not detecting the attacked

microvalves when the valves are not attacked. In other words,

Sn is the true positive rate and Sp is the true negative rate for

detection.

In contrast to the randomized checkpointing scheme, we

assume that the quality control checker does not opt for a

randomized checkpointing scheme but scans the whole FMB

by doing 192 trials and optically checking 24 microvalves in

each trial. Here, we focus our attention on a particular

microscopy trial showing 24 microvalves (Fig. 4A). Thus, the

checker has to check 24 times to cover all the 24 microvalves

leading to 24 trials for a particular microscopy view.

PD = (Sn)
a·(Sp)

24−a (2)

To devise a security metric for the above case, we used

independent Bernoulli trials20 to determine the detection

probability (PD) of the faulty or compromised microvalves

as a function of Sn and Sp. We consider a view showing

24 microvalves, out of which a microvalves are attacked.

Eqn (2) gives the relationship dependence of PD on Sn, Sp,

and a.20

For a = 1, the probability of rejecting the FMB (PR) under

an event of detecting at least one attacked microvalve is given

by eqn (3) and (4), where k denotes the number of anomaly

detection events out of 24 trials.20 A fabricated FMB is

rejected if at least one of the checking trials identifies an

attacked microvalve. Assuming that the checker knows the
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anomaly detection scheme to detect attacked microvalves, PR
for at least one out of 24 trials is given by eqn (5).

PR = P(k ≥ 1) = 1 − P(k = 0) (3)

P(k = 0) = C(24, 0)(PD)
0(1 − PD)

24−0 (4)

PR = 1 − (1 − PD)
24 (5)

Fig. 4D shows PR for different values of PD, which is guided

by the Sn and Sp values of the detecting microscopes. We

recorded a 14% decrease in PR for Sn and Sp both equal to

0.9 compared with Sn = Sp = 0.95. For Sn = Sp = 0.8, we

recorded a significant (88%) decrease in PR compared to the

case of Sn = Sp = 0.9. Thus, in the scenario of a full checking

scheme as opposed to a randomized checkpointing scheme,

attackers can exploit the limitations associated with the

detecting instruments' sensitivity and specificity to carry out

their attacks while successfully evading quality control

trials.20

Next, we present a security analysis for the material-level

watermarking scheme. Fig. 4E shows a schematic consisting

of 12 microvalves associated with 12 micro-reaction

chambers. Out of the 12 microvalves, only one microvalve is

watermarked. Our material-level watermarking scheme

consists of a two-step parameter authentication process. The

first step includes recognizing the correct location of

embedded watermarked microvalves via fluorescence

spectroscopy methods. The second step comprises validating

the shift in the excimer peak under microvalve actuation as

designed by the FMB company.

Let pi and ci be the ith parameter value and ith parameter

resolution, respectively, for designing the watermark. Let pi

∈ [vimin, v
i
max] be the acceptable range determined by vimin and

vimax, which are the minimum and maximum acceptable

values of pi, respectively. Therefore, the number of possible

discrete values (N i
val) that p

i can take is given by eqn (6).29

Ni
val ¼

vimin − v
i
max

ci
(6)

We consider the locations of the watermarks to be our first

parameter, which the end-users are aware of, but this

information is not available to attackers. Therefore, p1

belongs to the chosen watermark locations on the

microvalves. To identify locations on the FMB, we map the

coordinates of the microvalve locations to integers starting

from 1, as shown in Fig. 4E. The microvalve locations are

mapped starting from 1 to 12, with the 12th location

corresponding to the watermarked microvalve. Let L be the

set of all microvalve locations that could be used for

embedding watermarks and l be the subset of L denoting the

set of chosen watermark locations.

Considering the case presented in Fig. 4E, only one

microvalve has been chosen for the watermark. We have

v1min = |l| where |l| (cardinality of set l) is equal to 1, i.e.,

v1min = |l| = 1. Similarly, v1max = |L| = 12 (maximum possible

locations), and c1 (location resolution) is equal to 1. After

applying eqn (6), we get N1
val = 11, implying that p1 can take

11 possible discrete real values for the location-wise design

of the watermarks. However, in the reference FMB shown in

this paper, there are 4608 microvalves making N1
val = 4607.

This greatly enhances watermark location options to include

randomness in the watermarking design (either individual

FMB-wise or lot-wise), where the designer has many location

options to embed watermarks—ensuring better security

against the identification of the embedded watermarks by

attackers.

Next, for the second step of our watermarking design,

we use the decrease in the excimer intensity under

microvalve actuation to be the value of p2. As per the

results shown in Fig. 3B and D, we consider c2 = 0.1 (or

10%) due to the minimum 10% strain required to capture

a measurable difference in excimer intensity change.37–39

Thus, in this scenario, v2min = 0.1 and v2max = 1, considering

100% strain to be the maximum limit. After applying eqn

(6), we get N2
val = 9 illustrating 9 discrete states for strain

sensing as a function of applied pneumatic pressure.

However, due to the micro-level clearance space given for

actuation, as seen in Fig. 2C, maximum principal strains

near 10% are realized, see Fig. 4F. This limits the possible

number of actuation states to only one, which is the

minimum strain needed to record the measurable

difference in the excimer intensity change and as per the

pre-set c2 = 0.1 (or 10%).

Thus, for p2, as per the commercial FMB's microvalve

design having c2 = 0.1 (or 10%), there can be only two states:

non-actuated and actuated. The non-actuated state shows no

change in the excimer intensity peak. In comparison, the

actuated state shows a decrease in the intensity peak

corresponding to set c2 = 0.1 (or 10%).

Next, we present a Boolean quantity called quality

assessment (QAi) for the ith parameter based on the

associated sensor output (si).29 In this work, si is the excimer

intensity coming from the fluorescent dye added to PDMS

microvalves under suitable excitation. If the sensor reading si

is in the specified range (within the error limits, E i
min and

E i
max) designed by the FMB manufacturer, then QAi is

deemed to be acceptable (“good”), else QAi is unacceptable

(“bad”), formalized below in eqn (7).

For the first parameter p1, which is a watermark

location; the fluorescence response (when excited by a

laser, 405 nm) should show excimer and monomer peaks

as s1, under allowed error limits, E i
min and E i

max, similar to

the response shown in Fig. 3A, then, QA1 is acceptable. If

the location shows no sensor outputs or outputs out of

error limits, then QA1 is unacceptable. Similarly, for the

second parameter, which is the normalized excimer

intensity change (p2) under actuation, the fluorescence

response should show a predetermined excimer intensity

change (s2) based on calibration curves similar to

Fig. 3B and D within allowed error limits. In such a case,

QA2 is acceptable.
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QAi ¼
good if E i

min � si � E i
max

bad otherwise

(

(7)

Machine learning-based countermeasure against material-

level attacks

To develop a countermeasure against material-level attacks

carried out either for malicious or counterfeiting reasons, we

used a simple mechanical punch test setup with a 50 N load

cell. For proof of concept of this countermeasure, we selected

the curing-ratio-alteration attack model and generated curing

ratio-dependent force-displacement data using the setup. We

then used the data to train our ML models for curing ratio

anomaly detection. Fig. 5A shows a commercial FMB where

sample and reagent fluids mix in the PCR area, mainly made

up of PDMS consisting of microchannels, micro reaction

chambers, and microvalves. The enlarged view shows the

PCR area made out of PDMS. As the PDMS area is crucial for

the functionality of the FMB, it is essential to ensure that the

curing ratio of the PCR area's PDMS is the standard one,

which is 10 : 1.42,81

Fig. 5B shows PDMS samples made out of curing ratios

ranging from 5 : 1 to 50 : 1. Optically, no change in

transparency was observed for the samples having curing

ratios other than 10 : 1. As there is no change in the optical

transparency, it is unlikely to detect an altered PDMS curing

ratio unless the PDMS samples are mechanically deformed

and sensed. Thus, we developed a simple mechanical punch

test setup to punch the PDMS samples in a displacement-

controlled way and record the force-displacement data.

Fig. 5B shows the force-displacement data for the PDMS

sample with a 40 : 1 curing ratio. The data points were

linearly fitted to obtain a straight line whose slope was used

to estimate the modulus of the PDMS samples.42 Fig. 5C

shows the mechanical punch test done on the samples with

10 : 1 and 40 : 1 curing ratios. Furthermore, Fig. 5C shows the

modulus values obtained from samples with 5 : 1 to 50 : 1

curing ratios. The response recorded an exponential decrease

in the modulus with the increase in the curing ratio

indicating the deteriorated material properties of PDMS due

to the altered curing ratios.

To train our ML models, we used data from the punch test

for detecting curing ratio anomalies in FMBs. We created a

multi-step pipeline that takes raw input data for different

curing ratios of the punch test, generates more relevant

feature data, and filters the resulting set for informative

features. If the user's data points exactly match the data

points available in our dataset, then we are able to detect an

anomaly and decipher the corresponding curing ratio.

Otherwise, we utilize our machine learning models both on

the set of informative features and on the set of all features

available. Our model can predict the anomaly's class if there

is an anomaly. If our model reports that the user's values fall

within the curing 10 : 1, which is the standard, then we go

back to acquire more data and move forward with our

pipeline. Fig. 6 shows the steps in our multi-step pipeline.

In order to detect anomalies from the punch test, we used

three supervised ML algorithms: decision tree, naïve Bayes,

and ensemble methods such as random forest regressors.

The details of these models can be found in Text S5.† These

three supervised ML algorithms were suitable for our labeled

dataset and have successfully predicted curing ratio-based

anomalies. We applied these classifiers to the input data

before and after performing feature selection. Our goal was

to generate different experimental settings and see which

combination of features and classifiers yielded the highest

prediction performance.

Fig. 5 Mechanical punch test results for PDMS with different curing

ratios. A) A commercial FMB used for genotyping. The PCR area is

made out of PDMS. The scale bar is 1.5 cm. B) PDMS samples with

different curing ratios ranging from 5 : 1 to 50 : 1. The punch test

response of the 40 : 1 sample. The scale bar is 1 cm. C) Punch test on

the samples having 10 : 1 and 40 : 1 curing ratios. The scale bars each

are 2 mm. The bar graph shows modulus vs. curing ratio results

obtained by the punch test method. The n was equal to 5, and the

error bar represents the standard deviation. Fig. 6 Multi-step pipeline for our ML models.
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The raw input data received from the punch test consists

of two data features: displacement and force. We had these

two features for each of the ten curing ratios 5 : 1, 10 : 1, 15 :

1, 20 : 1, 25 : 1, 30 : 1, 35 : 1, 40 : 1, 45 : 1, and 50 : 1. Since these

two features did not provide us with sufficient insights to

distinguish between the curing ratios, we generated

additional data features from the displacement and force

data. For this task, we used the lingress function from the

Python library. More specifically, we passed the

displacement data on the x-axis and the force data on the

y-axis of the lingress function. As an output of the lingress

function, we got the following newly generated data

features: the slope of the regression line (slope), the

intercept of the regression line (intercept), correlation

coefficient (r value), P-value for a hypothesis test whose null

hypothesis is that the slope is zero (p-value), standard error

of the estimated gradient (stderr), standard error of the

intercept (intercept_stderr), and coefficient of determination

(R-squared).

We explore different feature selection methods to improve

our ML models' performance for curing ratio anomaly

detection. For classification and regression tasks, it is often

useful to remove features that do not help model

accuracy.82,83 The removal of extraneous variables tends to

lower variance in the predicted values and reduces the

likelihood of overfitting. Moreover, determining which

features are helpful in prediction can help point toward

underlying mechanisms of the given problem, from which

domain experts can work to develop new hypotheses. Text

S5† discusses our approaches for selecting useful features for

our anomaly detection ML models.

In order to train our ML models, we split the data into

two sets – the training set (70%) and the test set (30%). The

models were trained on the complete dataset as well as the

reduced dataset developed from the feature selection

methods, which were based on the mechanical punch test

data. After training the three different ML models without

feature selection, we were able to achieve an accuracy of 88%.

However, with the inclusion of our feature selection/

extraction methods and testing over an ensemble of different

models, we got more than 99% accuracy on our test dataset,

as shown in Table 1. The results indicate that the inclusion

of the most significant features can appreciably improve the

ML models' performance. Furthermore, Table 1 gives six

performance evaluation measures of the proposed methods,

consisting of mean absolute error (MAE), mean squared error

(MSE), root mean squared error (RMSE), mean absolute

percentage error (MAPE), explained variance score, and mean

squared log error.

Discussion

FMBs have seen rapid commercialization and deployment for

clinical diagnostic and laboratory research in recent years.

However, the horizontal supply-chain and outsourced

manufacturability of FMBs introduce vulnerabilities to

malicious and IP-theft-based attacks. There is a need to

generate design files and execute the design files in a foundry

(ideally either by a third-party or in-house manufacturing

unit) to fabricate the final product. These design and

manufacturing stages are susceptible to material-level

attacks, where an attacker can introduce material property

variation in the FMBs' embedded components, leading to

low-quality diagnostics.

PDMS is usually used to make the FMBs' reaction

chambers, microfluidic lines, and microvalves. The

fabrication steps of PDMS-based FMBs involve replicating the

liquid PDMS (mixed with the curing agent) from a master-

mold after the mixture gets fully cured by heating. After

heating, the PDMS becomes an elastomeric solid. To attack

FMBs at the material level, an attacker could mix or pour

reactive chemicals during fabrication. The attack would

degrade the component material's functionality during the

FMB's service time. For example, chemicals such as t-butanol

and hexadecane can alter the chemical structure of PDMS by

inhibiting the related curing kinetics, which can degrade its

mechanical properties such as modulus, toughness, fracture

strength, etc.75–77 Notably, the addition of these deteriorating

chemicals does not alter the optical transparency of the

original PDMS. Thus, it is unlikely to detect using light

microscopes whether the PDMS material is doped with

harmful chemicals. Hence, an attacker can exploit this

vulnerability to carry out a material-level attack, which would

likely go undetected during microscopy-based quality control

checking.

In this work, we specifically focused on microvalves. This

choice was driven by the critical role these valves play in

enabling the independent operation of reaction chambers

within the IFC, ultimately allowing for the achievement of

digital PCR.5,20,84 In digital PCR, microfluidic valves play a

crucial role in partitioning the reaction mixture into

individual micro-reaction chambers, each containing a single

DNA molecule or target of interest.84–86 Through precise

control of valve opening and closing, the sample can be

Table 1 ML models and their performance scores

ML model
Accuracy
score

Mean absolute
error (MAE)

Mean squared
error (MSE)

Root mean squared
error (RMSE)

Mean absolute
percentage error
(MAPE)

Explained
variance score

Mean squared log
error (MSLE)

Decision tree classifier 0.9996 0.00364 0.0182 0.135 0.000364 1 0.000267
Random forest regressor 0.9997 0.00283 0.0115 0.107 0.000279 1 0.000159
Naïve Bayes 0.9992 0.00364 0.0182 0.135 0.000303 1 0.000161
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divided and distributed into these individual chambers,

facilitating the amplification and analysis of individual DNA

molecules.5,20,22,84,87

Companies have leveraged microfluidic valves to develop

revolutionary biochips in various fields, such as medical

diagnostics, pharmaceutical research, biotechnology,

environmental monitoring, and industrial

automation.5,8,20,24,84,88–90 However, attacks on microfluidic

valves can have an impact on the flow control due to the

associated pressure-driven flow mechanics.8,24,90 As one of

the most critical components with a chip-wide impact,

attacks on microfluidic valves can significantly compromise

the flow functionality of the biochip. The valve material,

being soft and elastomeric, is inherently susceptible to

chemical attacks, while channel and chamber materials,

made of injection-molded hard plastic, are resistant to such

attacks. Consequently, the valves, serving as vital flow-control

elements, are the most vulnerable components in the

microfluidic chip when it comes to material-based attacks. In

contrast, attacks on other components, such as microfluidic

channels and reaction chambers, do not directly impact the

flow control.20

Furthermore, microfluidic valves are susceptible to Trojan

attacks due to their inherent flexibility. In such attacks, an

attacker can introduce deteriorating or reactive chemicals

specifically targeted at the valve area during the

manufacturing process. The introduction of these chemicals,

which degrade the valve material, can result in characteristics

that make the valve prone to fractures. If an attacker applies

high-frequency cyclic deformations of the valve membrane, it

has the potential to cause catastrophic failure by initiating

and propagating cracks. These Trojan attacks are particularly

stealthy because during quality control trials, the valve may

not undergo the intended cyclic deformations as designed,

but only a limited number of deformations to meet

production time constraints. Thus, the manifestation of an

attack would not occur during the quality control trial but

rather after it has been triggered by an attacker, following the

successful passing of the trial. Moreover, the defender would

not know which valves have been targeted for the Trojan

attacks, and it is highly unlikely that all valves can be tested

for a large number of high-frequency actuations.

With respect to the curing ratio attacks, adjusting the

curing ratio of the valve can result in viscoelastic behavior,

meaning it exhibits time and temperature-dependent

elasticity. This characteristic makes the valve vulnerable to

stealthy attacks that may not be detected during quality

control trials. The reason for this is that these trials are

typically conducted soon after valve manufacturing and at

the intended normal temperature. However, over time, if an

attacker maliciously alters the temperature or strains after

the biochip has passed the quality trial, the effects of the

attack can manifest during the actual use of the biochip by

the end user.

Using a commercial FMB as a reference, we investigated

material-based attacks. Through benchtop experiments, we

demonstrated how FMBs could be attacked via material

property alteration of PDMS used to make the PCR region

containing micro reaction chambers, valves, and channels.

First, in an attempt to reverse engineer the FMB, we

investigated the structural layout of the FMB using light and

electron microscopy techniques. Second, we verified that the

material used in the chosen reference commercial FMB is

PDMS (10 : 1 curing ratio) via nanoindentation tests. Then,

we altered the PDMS material properties by adding solvents

(t-butyl alcohol and hexadecane) as well as the curing ratio

during fabrication. Note that both attacks were optically

invisible to detect as the chosen chemicals and the curing

ratio alteration effectively preserved the optical transparency

of the PDMS. Thus, the attacks were stealthy enough to evade

microscopy-based quality control trials.

For PDMS doped with t-butanol and hexadecane, the

fracture strength significantly decreased (by 70%) compared

to the pristine PDMS-only samples. In addition, the doped

PDMS samples failed with much less strain (61% for t-butyl

alcohol and 69% for hexadecane), indicating that the

mechanical properties got greatly degraded by adding the

extra chemicals. Moreover, the attack showed an 82% and

86% decrease in strain energy per unit volume when t-butyl

alcohol and hexadecane were added to pure PDMS,

respectively. Strain energy per unit volume is the area under

the stress–strain curve till fracture. It signifies the energy

stored in the material during deformation, irrespective of the

sample dimensions, and thus is a material property. Hence,

the added reactive chemicals significantly decreased the

strain-energy-absorbing capacity (or toughness), making the

resulting PDMS prone to fracture under considerably less

deformation than the original. Similarly, we recorded a

significant 67% and 64% decrease in peak stress (signifying

the material's strength) for t-butyl alcohol and hexadecane-

doped PDMS, respectively.

In summary, we experimentally demonstrated that adding

stealthy and harmful chemicals such as t-butyl alcohol and

hexadecane can significantly degrade the mechanical

properties of PDMS. Attackers in the manufacturing unit can

use such chemicals to target specific microvalves during

fabrication to cause material-level attacks.

The second attack we demonstrated was a curing ratio

alteration attack where an attacker alters the PDMS curing

ratio, making the material sticky and viscoelastic. We

performed adhesion experiments to demonstrate the curing

ratio alteration attack to compare the compromised sample's

adhesion properties with the standard 10 : 1 curing ratio

samples. We recorded a 6-fold and 30-fold increase in

adhesion energy for the 30 : 1 and 50 : 1 curing ratios,

respectively, compared to the 10 : 1 curing ratio. Similarly,

regarding adhesion strength, we recorded a 2.8-fold and 3.4-

fold increase for the 30 : 1 and 50 : 1 curing ratios,

respectively, compared to the 10 : 1 curing ratio. Thus,

changing the PDMS curing ratio during fabrication can

greatly affect the adhesion and viscoelastic properties of

PDMS. An attacker in the manufacturing entity can exploit
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this vulnerability to deliberately induce problems such as

microvalve sticking,31,32 microvalve degradation,8 and

microchannel biofouling33,34 in FMBs.

It is unlikely to optically distinguish among PDMS

samples having different curing ratios, especially when PDMS

structures are made at the micro level making the attack

highly stealthy. However, the PDMS becomes softer and

stickier with less curing agent (or higher curing ratio). For

curing ratios above 30 : 1, the PDMS becomes highly

viscoelastic with a mushy or jelly-like consistency, which can

likely be detected when subjected to mechanical stress

through vicinal structures. This can make the 30 : 1 and

above curing ratios detectable under mechanical stress,

limiting its stealthiness during quality control trials. Thus,

there is a trade-off in a curing ratio attack, where the attacker

would tend not to go beyond the 30 : 1 curing ratio out of the

fear of getting detected but would likely choose a curing ratio

less than 30 : 1 to keep his attack optimally stealthy.

Another scenario where material-based attacks can

become prevalent is related to IP theft using reverse

engineering, which can provide an attacker with information

about the FMB's materials and their associated use.20,22 After

having the information about the materials and their

properties via reverse engineering, the attacker can

intentionally alter (through material-based attacks) the

material property of the reverse-engineered FMB's material

components to fail the FMB and defame the original FMB

company.

Furthermore, given the high cost associated with the

development of molecular diagnostic tools, IP theft using

reverse engineering can result in counterfeiting, overbuilding,

IP, and test protocol piracy attacks for illegal monetary gain

or material alterations (e.g., cheaper materials) to save the

cost. Thus, to prevent such attacks, it is imperative to secure

FMBs using hidden watermarks that cannot be seen or

copied by attackers.20 These watermarks can be used to

validate the authentic provenance of the biochip and claim

ownership in the event of suspicion.

This work presents the first material-level watermarking

scheme as a countermeasure against IP-theft-based attacks

for FMBs. The proposed countermeasure incorporates the

addition of PDMS-compatible fluorescent dye at specific

microvalve locations during the fabrication of the FMB. The

locations can act as a watermark, which can only be detected

by a spectrophotometer to be quantified and checked against

the predesigned intensity–wavelength response. Further, the

fluorescent watermark can show a dynamic shift in its

excimer intensity peaks under mechanical deformation. We

leveraged this mechanoresponsive aspect of the fluorescent

dye to impart a two-factor authentication-like feature to the

watermark, where the first authentication belongs to finding

embedded watermark locations, while the second belongs to

matching with the designed spectral shift of the excimer

intensity under pneumatic actuation. We characterized the

intensity–wavelength response of the fluorescent dye as a

function of uniaxial strains using ASTM D412 C samples. The

linear regression model between normalized excimer

intensity change and uniaxial strain recorded a good

correlation with an R-squared value of 0.938.

Furthermore, to account for biaxial strains found in the

microvalves under actuation, we fabricated circular PDMS

microvalves with different dimensions ranging from 4 mm to

350 μm and added the fluorescent dye to them. After

scanning the valve region with laser light (405 nm), we

recorded a unique spectral (intensity–wavelength) response

with smooth monomer and excimer peaks using a confocal

microscope. No such peaks were recorded for the reference

PDMS samples. Thus, the watermarks' fluorescence response

remained specific and sensitive to the dyed locations on the

PDMS layer. Moreover, under actuation, the response showed

a reduction in the excimer intensity peak, which remained

specific to the maximum principal strain of the actuated

valve membrane under pressure.

To rationally design the watermarks, we presented a

regression model obtained from the biaxial test done on the

dyed PDMS valve samples. The model (normalized excimer

intensity change vs. maximum principal strain) showed a

good correlation with an R-squared value of 0.971. The slope

of the linearly fitted line (slope = 0.392) can be used to

predict the excimer intensity change based on the maximum

principal strain of the PDMS microvalves within acceptable

error limits. Thus, using the presented characterization

techniques, a material-level watermark designer can

rationally design the watermarks based on the microvalve's

dimensions and the strain it undergoes when pneumatically

actuated.

We have presented a security analysis for the material-

level attack and the watermarking scheme. For the

randomized checkpointing scheme, we found that there is an

attack trade-off where an attacker has to optimally choose m

based on n to maximize Pev. The information about n is based

on the quality control team's checking regime, which an

attacker needs to know to decide on m while maximizing Pev.

Thus, it is essential to keep knowledge about n hidden from

potential attackers. Furthermore, in the scenario of a full

checking scheme as opposed to a randomized checkpointing

scheme, we showed using a security metric that attackers can

exploit limitations associated with the detecting instruments'

sensitivity (Sn) and specificity (Sp) to carry out their attacks

while successfully evading quality control trials.

Given the disposable nature of these biochips, conducting

quality control tests on the entire batch using liquid DNA

samples is not feasible. Instead, a random sampling

approach is employed, where a liquid test DNA sample is

loaded into a randomly selected chip, and the results are

evaluated afterward. However, this sampling approach

creates an opportunity for attackers to selectively introduce

their attacks on randomly chosen biochips from the batch,

rather than targeting the entire batch. In such a scenario, the

likelihood of the attack evading detection during the quality

control session increases exponentially as the number of

random attack detection trials decreases,20 similar to the
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trends we presented in the randomized checkpointing results

shown in Fig. 4C.

Regular systematic tests conducted by biochip companies,

such as leakage, blockage, shorts (short circuits in the IFC)

and opens (open circuits in the IFC), which are mainly

electrical and pneumatic tests8,90 are unable to detect stealthy

material-level attacks that require microscopic observation

for detection using microscopes. Assuming a high-quality

microscope with 100% sensitivity and specificity, we have

provided security metrics based on randomized

checkpointing scenarios in which valves undergo random

inspections for defects. However, the random nature of this

inspection scheme enables successful evasion, with evasion

likelihood increasing exponentially as the number of random

trials decreases, as depicted in Fig. 4C.

Moreover, even if the inspection scheme involves scanning

the entire fabricated microfluidic biochip (FMB) to detect

defects or areas of attack, there are still possibilities for

successful evasion, as depicted in Fig. 4D, due to the limited

sensitivity or specificity of the detecting microscope. Therefore,

despite the implementation of regular systematic tests and

microscopic observation, potential loopholes exist that

attackers can exploit to evade quality control checks. Thus,

defenders need to be aware of these security assessment

metrics and trade-offs and consider additional robust and

resilient countermeasures to enhance biochip security.

While biochip companies may develop special tests in the

future to detect material-level attacks or defects, currently

there is a lack of knowledge regarding the design,

vulnerabilities, and impact of such tests. This study

emphasizes the need to understand the challenges associated

with developing effective tests and the potential security

trade-offs involved in order to strengthen biochip security.

The findings highlight the importance of adopting a

comprehensive approach that goes beyond routine pneumatic

and electrical tests. The study encourages the exploration of

alternative strategies, such as the ones proposed in this

paper, to ensure the resilience and reliability of biochips in

the face of stealthy attacks.

Our material-level watermarking scheme consisted of a

two-step authentication process with associated parameters

( pi). The first step includes recognizing the correct location

of embedded watermarked microvalves ( p1) via fluorescence

spectroscopy methods. The second step comprises validating

the shift in the excimer peak under microvalve actuation ( p2)

as designed by the FMB company. Using a metric based on

the resolution (ci) and the acceptable range ( pi ∈ [vimin, v
i
max]),

we provided the number of possible discrete values (N i
val) that

pi can take for designing the watermark. For example, for the

commercial FMB used as the reference for this work, we

found N1
val = 4607, which greatly enhanced watermark

location options to include randomness in the watermarking

design to watermark FMBs either lot-wise or individual-

wise.20 However, N2
val = 1 because of only 10% maximum

principal strain associated with microvalve actuation

concerning the reference FMB.

For the material-level watermarking scheme, we presented

a Boolean quantity called quality assessment (QAi) of ith

parameter (pi) based on the associated sensor output (si). In

this work, si is the excimer intensity peak recorded from the

dyed PDMS microvalves via a spectrometer with a suitable

excitation wavelength. If the sensor reading si is in the

specified range (within the error limits, Eimin and Eimax)

designed by the FMB company, then QAi is good, else QAi is

bad. A watermark designer can use such metrics to rationally

design the material-level watermarks for FMBs.

We developed a novel ML-based defense against curing-

ratio-alteration attacks (done for malicious or counterfeiting

reasons). We used a simple mechanical punch test setup to

generate curing ratio-dependent force-displacement data. We

then used the data to train our ML models for curing ratio

anomaly detection. In order to train our ML models, we split

the data into two sets – the training set (70%) and the test set

(30%). The models were trained on the complete dataset as

well as the reduced dataset developed from the feature

selection methods. After training the three different ML

models without feature selection, we were able to achieve an

accuracy of 88%. However, with the inclusion of our feature

selection/extraction methods and testing over an ensemble of

different models, we got more than ∼99% accuracy on our

test dataset. The obtained results showed that including the

most significant features can appreciably improve the ML

models' performance.

As shown in Table 1, our three ML models (decision tree

classifier, random forest regressor, and Naive Bayes) have

similar accuracy scores. This means that they can predict the

curing ratio of the punch test with utmost accuracy. However,

the random forest regressor performs the best among the

three ML models with an accuracy score of 99.97%. The

reason being it uses multiple decision trees for training

purposes and gathers prediction data from each tree to

improve the accuracy score. In addition, the performance

metrics in Table 1 support our claim that random forest

regressor gives the best results. Mainly, the MAE, MSE,

RMSE, and MSLE values are the lowest for our random forest

regressor, indicating that the least error value is observed

when random forest regressor is used for predicting the

curing ratio.

Conclusions

Flow-based microfluidic biochips (FMBs) have seen rapid

commercialization and deployment in recent years for

biological computing, POCTs, biomolecular recognition, and

clinical diagnostics. Following the COVID-19 response, their

business opportunities and commercialized deployment have

grown exponentially. However, the outsourcing of FMB

manufacturing makes them susceptible to material-level

malicious and intellectual property (IP)-theft-based attacks.

Material-level attacks on FMBs target key materials by doping

harmful chemicals to the material components, which will

compromise the component's functionality during the service
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period. The repercussions of such attacks can be severe, with

the potential to harm patients, cause resource wastage, and

lead to economic consequences. Thus, looking ahead and

proactively safeguarding diagnostic-related FMBs against

material-level attacks launched by adversaries is essential.

This work demonstrates the first material-level attacks on

representative polydimethylsiloxane (PDMS)-based FMBs. The

attacks involve adding harmful chemicals or altering the

curing ratio to PDMS in its liquid state. The attack shows a

deteriorating effect on the material and adhesion properties

of the PDMS after curing while preserving the original optical

transparency, thus making it unlikely to be detected via

microscopes during quality control trials. We demonstrated

the attack experimentally by adding hexadecane and t-butyl

alcohol to the pristine PDMS. The attack greatly degraded the

mechanical and adhesion properties of the doped PDMS, as

recorded by the respective ASTM D412 C tensile and

adhesion tests. Attacks of such sorts can become prevalent in

IP-theft-based attacks such as counterfeiting, overbuilding,

reverse engineering, etc. Thus, we developed a contactless

spectrometric material-level countermeasure to protect FMBs

against IP-theft-based attacks.

The countermeasure involves dynamic material-level

watermarking for PDMS-based FMBs (with microvalves)

using a perylene-labeled fluorescent dye. When added to a

microvalve, the dyed microvalve shows a unique excimer

intensity peak under 405 nm laser excitation. Further,

when the microvalve is pneumatically actuated, the

excimer peak exhibits a mechanoresponsive behavior by

offering a predetermined downward shift in its intensity

as a function of mechanical strain. Through benchtop

experiments, we validated the scheme using fluorescence

microscopy, which showed a high correlation (R2 = 0.971)

between the normalized excimer intensity change and the

maximum principal strain of the actuated microvalves.

Furthermore, we presented security metrics for randomized

and non-randomized checkpointing schemes, as well as

quality assessment parameters for effective design and

verification of the watermarks. The models and metrics

can be used to rationally design the material-level

watermarks to check the authentic provenance of the

materials used in FMBs.

Moreover, we adapted machine learning (ML) models to

detect material-level anomalies in FMBs. The ML models

were trained on the force-displacement data obtained from a

mechanical punch test method. In total, we explored three

ML models (random forest, Naive Bayes, and decision tree)

for curing ratio anomaly detection. We have achieved around

99% accuracy in detecting anomalies to quote the best results

among the adapted ML models. The ML-based

countermeasure can be used against general material-based

attacks, such as adding reactive solvents or altering the

curing ratio. In this work, we demonstrated the proof of

concept for the curing-ratio-alteration attack.

In summary, the material-level countermeasures we

present can be used to proactively safeguard FMBs against

material-level attacks in the era of global pandemics and

point-of-care diagnostics.
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