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Bio-FP: Biochip Fingerprints for Authentication
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Abstract—Microfluidic biochips are widely used in biological
computing, clinical diagnostics, and point-of-care tests. However,
the growing demand and the complex supply chain of biochips
expose them to intellectual property (IP) attacks such as coun-
terfeiting, overbuilding, and piracy. To address this issue, we
present a biochip-level fingerprinting (Bio-FP) scheme. We utilize
melt-electrospinning printing technique to print unique Bio-FPs
directly onto biochips. Then, a layer of polydimethylsiloxane
(PDMS) is applied through spin-coating to obscure the Bio-FPs.
If the Bio-FPs are doped with a fluorescent dye, they can be
detected by shining UV light. Authentication of dyed Bio-FPs
is achieved through spectral analysis by mapping the intensity-
wavelength response. To optimize the authentication scheme for
Bio-FPs, several pre-processing techniques were employed to
enhance their quality. Additionally, transfer learning and fine-
tuning were utilized with multiple deep learning models, yielding
a high Bio-FP classification accuracy of 95.8%.

Index Terms- biochip, fingerprints, melt electrospinning, deep
learning, intellectual property, counterfeiting.

I. INTRODUCTION

Microfluidics is an interdisciplinary field that focuses on
manipulating fluids at very small volumes, typically micro-
liters or nanoliters [1]. A microfluidic biochip, also known as
a lab-on-a-chip, combines various biochemical functionalities
into a single miniaturized device, mimicking the capabilities
of a laboratory [2]. Compared to traditional bench-top labo-
ratories, biochips excel in dispensing, mixing, splitting, and
transportation, thanks to the small sample sizes involved [2].
They have revolutionized biological computing in numerous
areas, including enzymatic, DNA, and proteomic analysis,
genetic and polymerase chain reaction (PCR) studies, surface
immunoassays, and toxicity monitoring [2].

By 2025, the global microfluidics market is projected to
grow from its estimated value of $15.7 billion in 2020
to a substantial size of $44 billion [3]. However, as with
most emerging technologies, innovation takes precedence and
security is a secondary consideration, only addressed after
vulnerabilities are identified. For example, a staggering 40
million worth of counterfeit or substandard COVID test kits
has been confiscated in 77 countries, with 407 individuals
arrested between December 2019 and June 2020 [4].

Biochip companies have been adopting horizontal supply-
chain models to achieve economies of scale and cost reduction

N.S. Baban, J. Zhou, S. Vijayavenkataraman, and Y. Song are with the
Department of Engineering, New York University Abu Dhabi, UAE.

S. Jancheska and R. Karri are with the Department of Electrical and
Computer Engineering, New York University, NY, USA.

S. Bhattacharjee is with the Department of Computer Science and Engi-
neering, Indian Institute of Technology Guwahati, India.

S. Saha is with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC, USA.

K. Chakrabarty is with the School of Electrical, Computer and Energy
Engineering, Arizona State University, Tempe, AZ, USA.

[2], [5]. Untrusted third parties in the supply-chain pose risks
of intellectual property (IP) attacks including reverse engineer-
ing, counterfeiting, and overbuilding [2], [5]. We propose a
Bio-FP, a biochip fingerprint scheme to authenticate biochips.
Each biochip is marked with a unique fingerprint using a
melt-electrospinning printer. The fingerprints are concealed
with a layer of polydimethylsiloxane (PDMS). By doping the
ink with a fluorescent dye, the fingerprints can be identified
when exposed to UV light. Spectral analysis of the fingerprints
provides a unique intensity-wavelength response mapping. The
scheme offers two layers of authentication: hidden fingerprint
and unique spectral response. We used deep learning (DL)
to distinguish authentic and counterfeit fingerprints. We use
transfer learning with pre-trained DL models to ensure robust
and accurate authentication. Training on our Bio-FP dataset
yielded algorithms with high accuracy of 95.8%, offering a
reliable solution for authentication.

II. BACKGROUND

A. IP-based Threats on Biochips

The manufacturing process of biochips has several stages
and various entities, some of which may be untrustworthy.
This can result in IP theft through reverse engineering. An
attacker can access valuable information such as the biochip’s
architecture, materials, functions, and bio-protocol by reverse
engineering a biochip. Adversaries can use this information
to engage in IP piracy, counterfeiting, and over production of
biochips.

Fig. 1 illustrates the threat model. The cyber-physical
biochip has a physical biochip, an end user, and a biochip
company (or trusted third party, TTP). The biochip company
or TTP authenticates the biochip using a DL-based classifier,
with access to challenge-response pair database (CRPDB) for
each Bio-FP. Equipped with a camera, the company or TTP
can use the Bio-FP image for biochip authentication. The end
user transmits the Bio-FP image to an isolated TTP through
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Fig. 1: IP-based threats on Biochips.
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alternate network interfaces. The Bio-FP is the authentication
key, enabling the company/TTP to verify provenance.

B. Prior Work on IP Protection of Biochips

Protecting biochips from IP-based attacks has focused on
watermarking [2], [6] and obfuscation [7]. Baban et al.
proposed a watermarking scheme for FMBs, by increasing
the height of micro reaction chambers or microchannels at
specific positions to create fluorescent watermarks that can
be measured using fluorescence microscopy A previous study
uses molecular bar codes at the protocol level to safeguard the
biochemical sample IP [8]. The scheme hierarchically embeds
secret signatures, using mixing ratio, incubation time, and
sensor calibration to protect the bio-samples. Thus far, no work
has been done to secure biochips against IP-based threats via
fingerprint authentication. This work provides a biochip-level
scheme that produces unclonable fingerprints.

III. B1oCHIP FINGERPRINTING (B10-FP) SOLUTION

We embed unique fingerprints on biochips (Bio-FPs). Fig.
2(a) shows the melt-electrospinning setup (RegenHu 3D Dis-
covery bioprinter) to create a fingerprint. Polycaprolactone
(PCL) pellets with a molecular weight of 45,000 are used.
Print parameters include 85°C temperature, a distance of 6
mm between needle and substrate, 0.125 MPa pressure, and
8.0 kV voltage. These parameters form random spiral fibers in
the fingerprints. The print head is moved to a specified position
and discharged for 5 seconds [9].

A. Bio-FP process

Fig. 2(b) shows six fingerprints that were printed on
PDMS circular samples using the above mentioned process
parameters. Each fingerprint has subtle variations in structural
design. Fig. 2(c) shows "NYU" printed using a bioprinter,
concealed by spin coating a layer of PDMS (Fig. 2(d)). By
integrating a fluorescent perylene dye into the ink (PCL) of
the melt-electrospinning bioprinter, the fingerprints were made
fluorescent, rendering them visible solely under UV light. Fig.
2(e) shows a schematic with ten 1 mm circles on a 30 mm
diameter circular PDMS layer. When printed using the melt-
electrospinning bioprinter, the print showed a random pattern
(Fig. 2(f)). The mismatch between the ten circles and the
printed fingerprint reveals the randomness associated with the
process. It is unlikely for an attacker to reverse engineer the
input print commands from the printed fingerprint.

To obfuscate the fingerprint, a layer of PDMS is coated (Fig.
2(g)). Finally, the sample was exposed to a 365 nm UV light to
read the fingerprint (Fig. 2(h)). We implemented deep learning
(DL) classifiers to distinguish between authentic from fake
fingerprints. Our DL models were trained using 437 authentic
and 253 fake fingerprints, which were printed on glass slides
at equal intervals. The authentic fingerprints were printed in
a single session with specified process parameters. The fake
fingerprints were created by either using the same process
parameters but at a different time or by using a different
voltage setting other than the specified 8 kV.
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Fig. 2: (a) Melt-electrospinning bioprinter shows Bio-FP. (b)
Six Bio-FPs use the same parameters. (c¢) "NYU" printed
before spin coating with PDMS. (d) After spin coating, "NYU"
is invisible. (¢) Schematic shows ten 1 mm circles on a 30 mm
diameter PDMS layer, (f) before spincoating with PDMS layer.
(g) Printed circles are invisible after spin coating. (h) Printed
circles visible with 365 nm wavelength UV light.

B. Bio-FP Analysis

To study if Bio-FPs are random, we examined whether
their distribution adheres to a normal distribution. We obtained
unique single-point values from Bio-FP images using two tech-
niques. First, we obtained a single-point value representation
from an image using the VGG16 (vgg) [10] ML model by
applying global average pooling to the output feature maps.
These averaged values are concatenated to create a compact
feature vector that captures the essential image characteristics.
Second, we converted the images to grayscale (gray) yielding
a single-channel representation and computed the average
intensity by summing the intensities of all pixels and dividing
the sum by number of pixels.
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Fig. 3: (a) Quantile-quantile (Q-Q) plot for n_vgg. (b)
Quantile-quantile (Q-Q) plot for n_gray values. (c) Two scatter
plot and regression analysis for n_vgg and n_gray. (d) Mean
and standard deviation bar graphs for n_vgg and n_gray values.

We normalized the values using minimum and maximum
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values among each class to bring them between 0 and 1. The
normalized vgg (n_vgg) and grayscale (n_gray) values were
used in quantile-quantile (Q-Q) plots to check whether the
values follow a normal distribution. Plots in Fig. 3(a) confirm
that n_vgg values (n = 393) follow a normal distribution as
the points fall along the straight line.

However, n_gray values (n = 393) do not follow a normal
distribution as seen in Fig. 3(b). The criterion was also tested
using skewness-kurtosis in STATA statistical package, yielding
consistent results. We attribute this to the complexity of
the data and the diverse characteristics of the computations.
Grayscale values, representing an image processing technique,
did not conform to a normal distribution despite the Bio-FPs
exhibiting normal distribution. This emphasizes the efficacy of
DL image analysis-based authentication.

We used a scatter plot and linear fit to estimate the cor-
relation, showing a 54% (R-square value) relationship (Fig.
3(c)) between n_vgg and n_gray values. To measure relative
variability of the dataset, we calculated coefficient of variation
(CV) for Bio-FPs. CVs for n_vgg and n_gray were 40% (mean
= 0.477, standard deviation = 0.186) and 59% (mean = 0.317,
standard deviation = 0.187), respectively (Fig. 3(d)). High CVs
in Bio-FPs confirm their stochastic nature.

IV. DEEP LEARNING-BASED DEFENSE USING BI10-FP

In this section, we present a DL-based approach for Bio-
FP classification. We begin with the data acquisition and
preprocessing techniques employed. Then we delve into the
classification methods used. The discussion includes the im-
plementation of transfer learning and experimental settings
employed to achieve optimal results. Finally, we showcase
results of the models and compare the DL models.

A. Data Preprocessing

This is an essential step due to the inadequate quality of the
original data, which is affected by noise. The noise originating
from various sources such as image acquisition or transmission
artifacts, distorts and creates inconsistencies in the images.
Thus it is difficult to extract meaningful features and patterns
for accurate classification. So we employ noise reduction. To
enhance quality of the images and ensure reliable analysis,
we also use binarization and thinning. Fig. 4(a) illustrates the
approach and includes data acquisition and preprocessing steps
(noise reduction, binarization, and thinning).

1) Noise Reduction: We remove the background of all
images enabling us to eliminate the noise in the background
due to differences in the microscope settings for the real
and counterfeit images, such as the direction of the light and
distance, affecting the thickness of the fingerprint curves and
backgrounds. After denoising, we are left with the fingerprints.

2) Binarization: We transformed our dataset into binary im-
ages with red and blue colors. This enabled us to augment the
initial dataset and simplify the data representation, allowing
analysis of the pattern and features in the images.

3) Thinning: We used thinning to increase our dataset and
enhance the features of the fingerprint. Thinning enhanced the
clarity of images by transforming the binary regions into lines
that look like the skeletons of those regions.

B. DL Classifiers

We consider five DL-based classifiers and assessed their
performance on the Bio-FP dataset. The evaluation process
helps to understand the advantages and constraints of each
model. /. DenseNetI2] is a convolutional network where each
layer is connected to every preceding layer, essentially receiv-
ing "collective knowledge". It shares its feature maps with
all subsequent layers via concatenation. 2. MobileNetV2 uses
depth-wise separable convolutions. This process comprises
a depth-wise convolution followed sequentially by a point-
wise convolution. 3. ResNet50 has 50 layers and uses residual
learning, with shortcuts that facilitate information exchange.
This mitigates performance degradation in deep networks and
allows the network to learn complex features and deeper
representations, enhancing image classification accuracy. 4.
EfficientNetV2BO0 balances accuracy with computational effi-
ciency. It employs compound scaling, efficient block design,
and stochastic depth. 5. NASNetMobile is designed for image
classification on mobile devices with limited computational
resources. It uses neural architecture search to identify network
architectures for specific tasks and uses depth-wise separable
convolutions, repeated cells, and efficient model scaling.

C. Transfer Learning Improves DL-based Classifiers

Transfer Learning [11] allows us to capitalize on a related
classification task to improve performance of our DL models.
Using pre-trained models trained on the ImageNet [12], we can
reap three benefits. First, transfer learning reduces the time and
data needed for training, as we can start from a point where the
models have learned valuable features. Second, it generalizes
our models to new, unseen data, enabling them to perform well
even in scenarios with limited labeled data. Finally, pre-trained
models can tap into complex representations that they learn
from the ImageNet dataset. Using ImageNet for pre-training
our classifiers offers a basis for transfer learning. We capitalize
on the rich/diverse knowledge learned by the models.

As presented in Fig.4(b) we evaluated effectiveness of trans-
fer learning using pre-trained DL models trained on ImageNet.
All pre-trained layers were adjustable, with the output of the
final layer extracted and saved. For classification, we enhanced
the model for dropout regularization (dropout rate of 0.8) and
incorporated softmax layers as activation functions. Model
parameters were optimized to minimize classification error
using categorical cross-entropy loss as the objective during
training. We used the Adam optimizer to update the model’s
weights using a learning rate of 0.0001. Bio-FP dataset with
labeled fingerprint images was employed for training and
validation. To assess performance and generalizability of the
model, the dataset underwent an 80-20 split, where 80% of
the data was allocated for training and the remaining 20% for
validation. During training, a batch size of 50 was employed
for each iteration. Early stopping was incorporated to detect
the optimal stage during training where performance on the
validation set exhibits deterioration or plateaus, indicating
overfitting. Our criteria for early stopping were based on a
training accuracy reaching 98%, ensuring that the model does
not specialize on the training data.
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Fig. 4: DL Experiments: (a) DL pipeline includes image acquisition and pre-processing. (b) DL classifier using transfer learning
to classify authentic and fake Bio-FPs. (c) Results of DL without and with transfer learning.

D. Experimental Results on DL-based Bio-FP Classification

We evaluated the trained models using a distinct validation
dataset. We analyzed the results of transfer learning with pre-
trained models alongside baseline DL models. The results are
presented in Fig. 4(c), showcasing the performance of the DL
models on the validation dataset. Transfer learning improves
accuracy. EfficientNetV2B0 and NASNetMobile models had
the highest accuracy scores of 95.8% and 93% respectively.
Besides highlighting the effectiveness of transfer learning in
improving performance, the results showcase the potential for
more accuracy through pre-trained models.

DenseNet121, MobileNetV2, and ResNet50 did not yield
good results compared to the models with transfer learning.
DenseNet121 has 81% accuracy. MobileNetV2 and ResNet50
had lower accuracy. There could be many reasons behind this
decrease. It is likely pre-trained weights of the models were
ill-suited for our task or the target dataset had characteris-
tics that differed from ImageNet on which the models were
originally trained. Hence, the models struggled to adapt and
learn meaningful representations for our task. The compound
scaling ability of EfficientNetV2B0 allowed it to capture
intricate patterns and features present in the data, resulting
in its exceptional performance. Similarly, NASNetMobile,
designed with an architecture derived from reinforcement
learning, demonstrates its capacity to explore an extensive
search space yielding optimal outcomes. In contrast, while
DenseNet121, MobileNetV2, and ResNet50 are widely recog-
nized and widely employed models, they exhibit limitations in
terms of depth, network connectivity, or architectural design,
contributing to their relatively lower performance.

V. DISCUSSION AND CONCLUSION

Biochip-fingerprints (Bio-FP) support authentication that
operates at the biochip level. We used a melt-electrospinning
printer to print Bio-FPs and enhance security by applying an

invisible layer of PDMS. Bio-FPs can be detected using UV
light and undergo spectral analysis for authentication. Data
preprocessing, deep learning, and transfer learning increase
the authentication accuracy to 95.8%. Bio-FPs, therefore, offer
effective protection against IP-based attacks.

Some salient features of the Bio-FP scheme include the
use of physically unclonable fingerprints, spin coating-based
obscuration, and deep learning-based authentication. These
features collectively contribute to the scheme’s effectiveness
in preventing forgery and tampering in biochips.

The scheme employs a melt electrospinning printer to
generate physically unclonable fingerprints, making it chal-
lenging for attackers to forge them. The fingerprints’ inherent
unclonable nature prevents replication, even with knowledge
of the process parameters. Additionally, a combination of spin
coating-based obscuration and spectral analysis-based authen-
tication techniques further enhances security and reduces the
likelihood of successful forgery attempts.

In terms of tamper resistance, the scheme embeds the
fingerprints beneath the biochip’s surface using spin coating
with a layer of polydimethylsiloxane (PDMS). This not only
obscures the fingerprints but also physically secures them,
making them inaccessible to potential attackers.

Deep learning methods play a pivotal role in the Bio-
FP scheme’s authentication process. By training deep neural
networks, the scheme extracts compact and discriminative
representations from fingerprint images, enabling accurate
differentiation between genuine and forged fingerprints. Deep
learning analysis encompasses various features, including tex-
ture and ridge structures, ensuring the scheme’s reliability and
performance.

In summary, the Bio-FP scheme’s salient features, such as
physically unclonable fingerprints, spin coating-based obscu-
ration, and deep learning-based authentication, provide robust
protection against forgery and tampering in biochips.
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