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Bio-FP: Biochip Fingerprints for Authentication
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Abstract—Microfluidic biochips are widely used in biological
computing, clinical diagnostics, and point-of-care tests. However,
the growing demand and the complex supply chain of biochips
expose them to intellectual property (IP) attacks such as coun-
terfeiting, overbuilding, and piracy. To address this issue, we
present a biochip-level fingerprinting (Bio-FP) scheme. We utilize
melt-electrospinning printing technique to print unique Bio-FPs
directly onto biochips. Then, a layer of polydimethylsiloxane
(PDMS) is applied through spin-coating to obscure the Bio-FPs.
If the Bio-FPs are doped with a fluorescent dye, they can be
detected by shining UV light. Authentication of dyed Bio-FPs
is achieved through spectral analysis by mapping the intensity-
wavelength response. To optimize the authentication scheme for
Bio-FPs, several pre-processing techniques were employed to
enhance their quality. Additionally, transfer learning and fine-
tuning were utilized with multiple deep learning models, yielding
a high Bio-FP classification accuracy of 95.8%.

Index Terms- biochip, fingerprints, melt electrospinning, deep
learning, intellectual property, counterfeiting.

I. INTRODUCTION

Microfluidics is an interdisciplinary field that focuses on

manipulating fluids at very small volumes, typically micro-

liters or nanoliters [1]. A microfluidic biochip, also known as

a lab-on-a-chip, combines various biochemical functionalities

into a single miniaturized device, mimicking the capabilities

of a laboratory [2]. Compared to traditional bench-top labo-

ratories, biochips excel in dispensing, mixing, splitting, and

transportation, thanks to the small sample sizes involved [2].

They have revolutionized biological computing in numerous

areas, including enzymatic, DNA, and proteomic analysis,

genetic and polymerase chain reaction (PCR) studies, surface

immunoassays, and toxicity monitoring [2].

By 2025, the global microfluidics market is projected to

grow from its estimated value of $15.7 billion in 2020

to a substantial size of $44 billion [3]. However, as with

most emerging technologies, innovation takes precedence and

security is a secondary consideration, only addressed after

vulnerabilities are identified. For example, a staggering 40

million worth of counterfeit or substandard COVID test kits

has been confiscated in 77 countries, with 407 individuals

arrested between December 2019 and June 2020 [4].

Biochip companies have been adopting horizontal supply-

chain models to achieve economies of scale and cost reduction
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[2], [5]. Untrusted third parties in the supply-chain pose risks

of intellectual property (IP) attacks including reverse engineer-

ing, counterfeiting, and overbuilding [2], [5]. We propose a

Bio-FP, a biochip fingerprint scheme to authenticate biochips.

Each biochip is marked with a unique fingerprint using a

melt-electrospinning printer. The fingerprints are concealed

with a layer of polydimethylsiloxane (PDMS). By doping the

ink with a fluorescent dye, the fingerprints can be identified

when exposed to UV light. Spectral analysis of the fingerprints

provides a unique intensity-wavelength response mapping. The

scheme offers two layers of authentication: hidden fingerprint

and unique spectral response. We used deep learning (DL)

to distinguish authentic and counterfeit fingerprints. We use

transfer learning with pre-trained DL models to ensure robust

and accurate authentication. Training on our Bio-FP dataset

yielded algorithms with high accuracy of 95.8%, offering a

reliable solution for authentication.

II. BACKGROUND

A. IP-based Threats on Biochips

The manufacturing process of biochips has several stages

and various entities, some of which may be untrustworthy.

This can result in IP theft through reverse engineering. An

attacker can access valuable information such as the biochip’s

architecture, materials, functions, and bio-protocol by reverse

engineering a biochip. Adversaries can use this information

to engage in IP piracy, counterfeiting, and over production of

biochips.

Fig. 1 illustrates the threat model. The cyber-physical

biochip has a physical biochip, an end user, and a biochip

company (or trusted third party, TTP). The biochip company

or TTP authenticates the biochip using a DL-based classifier,

with access to challenge-response pair database (CRPDB) for

each Bio-FP. Equipped with a camera, the company or TTP

can use the Bio-FP image for biochip authentication. The end

user transmits the Bio-FP image to an isolated TTP through

Fig. 1: IP-based threats on Biochips.
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alternate network interfaces. The Bio-FP is the authentication

key, enabling the company/TTP to verify provenance.

B. Prior Work on IP Protection of Biochips

Protecting biochips from IP-based attacks has focused on

watermarking [2], [6] and obfuscation [7]. Baban et al.

proposed a watermarking scheme for FMBs, by increasing

the height of micro reaction chambers or microchannels at

specific positions to create fluorescent watermarks that can

be measured using fluorescence microscopy A previous study

uses molecular bar codes at the protocol level to safeguard the

biochemical sample IP [8]. The scheme hierarchically embeds

secret signatures, using mixing ratio, incubation time, and

sensor calibration to protect the bio-samples. Thus far, no work

has been done to secure biochips against IP-based threats via

fingerprint authentication. This work provides a biochip-level

scheme that produces unclonable fingerprints.

III. BIOCHIP FINGERPRINTING (BIO-FP) SOLUTION

We embed unique fingerprints on biochips (Bio-FPs). Fig.

2(a) shows the melt-electrospinning setup (RegenHu 3D Dis-

covery bioprinter) to create a fingerprint. Polycaprolactone

(PCL) pellets with a molecular weight of 45,000 are used.

Print parameters include 85°C temperature, a distance of 6

mm between needle and substrate, 0.125 MPa pressure, and

8.0 kV voltage. These parameters form random spiral fibers in

the fingerprints. The print head is moved to a specified position

and discharged for 5 seconds [9].

A. Bio-FP process

Fig. 2(b) shows six fingerprints that were printed on

PDMS circular samples using the above mentioned process

parameters. Each fingerprint has subtle variations in structural

design. Fig. 2(c) shows "NYU" printed using a bioprinter,

concealed by spin coating a layer of PDMS (Fig. 2(d)). By

integrating a fluorescent perylene dye into the ink (PCL) of

the melt-electrospinning bioprinter, the fingerprints were made

fluorescent, rendering them visible solely under UV light. Fig.

2(e) shows a schematic with ten 1 mm circles on a 30 mm

diameter circular PDMS layer. When printed using the melt-

electrospinning bioprinter, the print showed a random pattern

(Fig. 2(f)). The mismatch between the ten circles and the

printed fingerprint reveals the randomness associated with the

process. It is unlikely for an attacker to reverse engineer the

input print commands from the printed fingerprint.

To obfuscate the fingerprint, a layer of PDMS is coated (Fig.

2(g)). Finally, the sample was exposed to a 365 nm UV light to

read the fingerprint (Fig. 2(h)). We implemented deep learning

(DL) classifiers to distinguish between authentic from fake

fingerprints. Our DL models were trained using 437 authentic

and 253 fake fingerprints, which were printed on glass slides

at equal intervals. The authentic fingerprints were printed in

a single session with specified process parameters. The fake

fingerprints were created by either using the same process

parameters but at a different time or by using a different

voltage setting other than the specified 8 kV.

Fig. 2: (a) Melt-electrospinning bioprinter shows Bio-FP. (b)

Six Bio-FPs use the same parameters. (c) "NYU" printed

before spin coating with PDMS. (d) After spin coating, "NYU"

is invisible. (e) Schematic shows ten 1 mm circles on a 30 mm

diameter PDMS layer, (f) before spincoating with PDMS layer.

(g) Printed circles are invisible after spin coating. (h) Printed

circles visible with 365 nm wavelength UV light.

B. Bio-FP Analysis

To study if Bio-FPs are random, we examined whether

their distribution adheres to a normal distribution. We obtained

unique single-point values from Bio-FP images using two tech-

niques. First, we obtained a single-point value representation

from an image using the VGG16 (vgg) [10] ML model by

applying global average pooling to the output feature maps.

These averaged values are concatenated to create a compact

feature vector that captures the essential image characteristics.

Second, we converted the images to grayscale (gray) yielding

a single-channel representation and computed the average

intensity by summing the intensities of all pixels and dividing

the sum by number of pixels.

Fig. 3: (a) Quantile-quantile (Q-Q) plot for n_vgg. (b)

Quantile-quantile (Q-Q) plot for n_gray values. (c) Two scatter

plot and regression analysis for n_vgg and n_gray. (d) Mean

and standard deviation bar graphs for n_vgg and n_gray values.

We normalized the values using minimum and maximum
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values among each class to bring them between 0 and 1. The

normalized vgg (n_vgg) and grayscale (n_gray) values were

used in quantile-quantile (Q-Q) plots to check whether the

values follow a normal distribution. Plots in Fig. 3(a) confirm

that n_vgg values (n = 393) follow a normal distribution as

the points fall along the straight line.
However, n_gray values (n = 393) do not follow a normal

distribution as seen in Fig. 3(b). The criterion was also tested

using skewness-kurtosis in STATA statistical package, yielding

consistent results. We attribute this to the complexity of

the data and the diverse characteristics of the computations.

Grayscale values, representing an image processing technique,

did not conform to a normal distribution despite the Bio-FPs

exhibiting normal distribution. This emphasizes the efficacy of

DL image analysis-based authentication.
We used a scatter plot and linear fit to estimate the cor-

relation, showing a 54% (R-square value) relationship (Fig.

3(c)) between n_vgg and n_gray values. To measure relative

variability of the dataset, we calculated coefficient of variation

(CV) for Bio-FPs. CVs for n_vgg and n_gray were 40% (mean

= 0.477, standard deviation = 0.186) and 59% (mean = 0.317,

standard deviation = 0.187), respectively (Fig. 3(d)). High CVs

in Bio-FPs confirm their stochastic nature.

IV. DEEP LEARNING-BASED DEFENSE USING BIO-FP

In this section, we present a DL-based approach for Bio-

FP classification. We begin with the data acquisition and

preprocessing techniques employed. Then we delve into the

classification methods used. The discussion includes the im-

plementation of transfer learning and experimental settings

employed to achieve optimal results. Finally, we showcase

results of the models and compare the DL models.

A. Data Preprocessing

This is an essential step due to the inadequate quality of the

original data, which is affected by noise. The noise originating

from various sources such as image acquisition or transmission

artifacts, distorts and creates inconsistencies in the images.

Thus it is difficult to extract meaningful features and patterns

for accurate classification. So we employ noise reduction. To

enhance quality of the images and ensure reliable analysis,

we also use binarization and thinning. Fig. 4(a) illustrates the

approach and includes data acquisition and preprocessing steps

(noise reduction, binarization, and thinning).
1) Noise Reduction: We remove the background of all

images enabling us to eliminate the noise in the background

due to differences in the microscope settings for the real

and counterfeit images, such as the direction of the light and

distance, affecting the thickness of the fingerprint curves and

backgrounds. After denoising, we are left with the fingerprints.
2) Binarization: We transformed our dataset into binary im-

ages with red and blue colors. This enabled us to augment the

initial dataset and simplify the data representation, allowing

analysis of the pattern and features in the images.
3) Thinning: We used thinning to increase our dataset and

enhance the features of the fingerprint. Thinning enhanced the

clarity of images by transforming the binary regions into lines

that look like the skeletons of those regions.

B. DL Classifiers

We consider five DL-based classifiers and assessed their

performance on the Bio-FP dataset. The evaluation process

helps to understand the advantages and constraints of each

model. 1. DenseNet121 is a convolutional network where each

layer is connected to every preceding layer, essentially receiv-

ing "collective knowledge". It shares its feature maps with

all subsequent layers via concatenation. 2. MobileNetV2 uses

depth-wise separable convolutions. This process comprises

a depth-wise convolution followed sequentially by a point-

wise convolution. 3. ResNet50 has 50 layers and uses residual

learning, with shortcuts that facilitate information exchange.

This mitigates performance degradation in deep networks and

allows the network to learn complex features and deeper

representations, enhancing image classification accuracy. 4.

EfficientNetV2B0 balances accuracy with computational effi-

ciency. It employs compound scaling, efficient block design,

and stochastic depth. 5. NASNetMobile is designed for image

classification on mobile devices with limited computational

resources. It uses neural architecture search to identify network

architectures for specific tasks and uses depth-wise separable

convolutions, repeated cells, and efficient model scaling.

C. Transfer Learning Improves DL-based Classifiers

Transfer Learning [11] allows us to capitalize on a related

classification task to improve performance of our DL models.

Using pre-trained models trained on the ImageNet [12], we can

reap three benefits. First, transfer learning reduces the time and

data needed for training, as we can start from a point where the

models have learned valuable features. Second, it generalizes

our models to new, unseen data, enabling them to perform well

even in scenarios with limited labeled data. Finally, pre-trained

models can tap into complex representations that they learn

from the ImageNet dataset. Using ImageNet for pre-training

our classifiers offers a basis for transfer learning. We capitalize

on the rich/diverse knowledge learned by the models.

As presented in Fig.4(b) we evaluated effectiveness of trans-

fer learning using pre-trained DL models trained on ImageNet.

All pre-trained layers were adjustable, with the output of the

final layer extracted and saved. For classification, we enhanced

the model for dropout regularization (dropout rate of 0.8) and

incorporated softmax layers as activation functions. Model

parameters were optimized to minimize classification error

using categorical cross-entropy loss as the objective during

training. We used the Adam optimizer to update the model’s

weights using a learning rate of 0.0001. Bio-FP dataset with

labeled fingerprint images was employed for training and

validation. To assess performance and generalizability of the

model, the dataset underwent an 80-20 split, where 80% of

the data was allocated for training and the remaining 20% for

validation. During training, a batch size of 50 was employed

for each iteration. Early stopping was incorporated to detect

the optimal stage during training where performance on the

validation set exhibits deterioration or plateaus, indicating

overfitting. Our criteria for early stopping were based on a

training accuracy reaching 98%, ensuring that the model does

not specialize on the training data.
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Fig. 4: DL Experiments: (a) DL pipeline includes image acquisition and pre-processing. (b) DL classifier using transfer learning

to classify authentic and fake Bio-FPs. (c) Results of DL without and with transfer learning.

D. Experimental Results on DL-based Bio-FP Classification

We evaluated the trained models using a distinct validation

dataset. We analyzed the results of transfer learning with pre-

trained models alongside baseline DL models. The results are

presented in Fig. 4(c), showcasing the performance of the DL

models on the validation dataset. Transfer learning improves

accuracy. EfficientNetV2B0 and NASNetMobile models had

the highest accuracy scores of 95.8% and 93% respectively.

Besides highlighting the effectiveness of transfer learning in

improving performance, the results showcase the potential for

more accuracy through pre-trained models.

DenseNet121, MobileNetV2, and ResNet50 did not yield

good results compared to the models with transfer learning.

DenseNet121 has 81% accuracy. MobileNetV2 and ResNet50

had lower accuracy. There could be many reasons behind this

decrease. It is likely pre-trained weights of the models were

ill-suited for our task or the target dataset had characteris-

tics that differed from ImageNet on which the models were

originally trained. Hence, the models struggled to adapt and

learn meaningful representations for our task. The compound

scaling ability of EfficientNetV2B0 allowed it to capture

intricate patterns and features present in the data, resulting

in its exceptional performance. Similarly, NASNetMobile,

designed with an architecture derived from reinforcement

learning, demonstrates its capacity to explore an extensive

search space yielding optimal outcomes. In contrast, while

DenseNet121, MobileNetV2, and ResNet50 are widely recog-

nized and widely employed models, they exhibit limitations in

terms of depth, network connectivity, or architectural design,

contributing to their relatively lower performance.

V. DISCUSSION AND CONCLUSION

Biochip-fingerprints (Bio-FP) support authentication that

operates at the biochip level. We used a melt-electrospinning

printer to print Bio-FPs and enhance security by applying an

invisible layer of PDMS. Bio-FPs can be detected using UV

light and undergo spectral analysis for authentication. Data

preprocessing, deep learning, and transfer learning increase

the authentication accuracy to 95.8%. Bio-FPs, therefore, offer

effective protection against IP-based attacks.

Some salient features of the Bio-FP scheme include the

use of physically unclonable fingerprints, spin coating-based

obscuration, and deep learning-based authentication. These

features collectively contribute to the scheme’s effectiveness

in preventing forgery and tampering in biochips.

The scheme employs a melt electrospinning printer to

generate physically unclonable fingerprints, making it chal-

lenging for attackers to forge them. The fingerprints’ inherent

unclonable nature prevents replication, even with knowledge

of the process parameters. Additionally, a combination of spin

coating-based obscuration and spectral analysis-based authen-

tication techniques further enhances security and reduces the

likelihood of successful forgery attempts.

In terms of tamper resistance, the scheme embeds the

fingerprints beneath the biochip’s surface using spin coating

with a layer of polydimethylsiloxane (PDMS). This not only

obscures the fingerprints but also physically secures them,

making them inaccessible to potential attackers.

Deep learning methods play a pivotal role in the Bio-

FP scheme’s authentication process. By training deep neural

networks, the scheme extracts compact and discriminative

representations from fingerprint images, enabling accurate

differentiation between genuine and forged fingerprints. Deep

learning analysis encompasses various features, including tex-

ture and ridge structures, ensuring the scheme’s reliability and

performance.

In summary, the Bio-FP scheme’s salient features, such as

physically unclonable fingerprints, spin coating-based obscu-

ration, and deep learning-based authentication, provide robust

protection against forgery and tampering in biochips.
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