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Explainable AI via learning 
to optimize
Howard Heaton 1* & Samy Wu Fung 2*

Indecipherable black boxes are common in machine learning (ML), but applications increasingly 
require explainable artificial intelligence (XAI). The core of XAI is to establish transparent and 
interpretable data-driven algorithms. This work provides concrete tools for XAI in situations where 
prior knowledge must be encoded and untrustworthy inferences flagged. We use the “learn to 
optimize” (L2O) methodology wherein each inference solves a data-driven optimization problem. Our 
L2O models are straightforward to implement, directly encode prior knowledge, and yield theoretical 
guarantees (e.g. satisfaction of constraints). We also propose use of interpretable certificates to verify 
whether model inferences are trustworthy. Numerical examples are provided in the applications 
of dictionary-based signal recovery, CT imaging, and arbitrage trading of cryptoassets. Code and 
additional documentation can be found at https://​xai-​l2o.​resea​rch.​typal.​acade​my.

A paradigm shift in machine learning is to construct explainable and transparent models, often called explain-
able AI (XAI)1. This is crucial for sensitive applications like medical imaging and finance (e.g. see recent work 
on the role of explainability2–5). Yet, many commonplace models (e.g. fully connected feed forward) offer limited 
interpretability. Prior XAI works give explanations via tools like sensitivity analysis5 and layer-wise propagation6,7, 
but these neither quantify trustworthiness nor necessarily shed light on how to correct “bad” behaviours. Our 
work shows how learning to optimize (L2O) can be used to directly embed explainability into models.

The scope of this work is machine learning (ML) applications where domain experts can create approximate 
models by hand. In our setting, the inference N�(d) of a model N� with input d solves an optimization problem. 
That is, we use

where f� is a function and C�(d) ⊆ R
n is a constraint set (e.g. encoding prior information like physical quanti-

ties), and each (possibly) includes dependencies on weights � . Note the model N� is implicit since its output is 
defined by an optimality condition rather than an explicit computation. To clarify the scope of the word explain-
able in this work, we adopt the following conventions. We say a model is explainable provided a domain expert 
can identify the core design elements of a model and how they translate to expected inference properties. We 
say a particular inference is explainable provided its properties can be linked to the model’s design and intended 
use. Explainable models and inferences are achieved via L2O with our proposed certificates.

A standard practice in software engineering is to code post-conditions after function calls return. Post-
conditions are criteria used to validate what the user expects from the code and ensure code is not executed 
under the wrong assumptions8. We propose use of these for ML model inferences (see Fig. 1 and Supplementary 
Fig. A1). These conditions enable use of certificates with labels—pass, warning or fail—to describe each model 
inference. We define an inference to be trustworthy provided it satisfies all provided post-conditions.

Two ideas, optimization and certificates, form a concrete notion of XAI. Prior and data-driven knowledge can 
be encoded via optimization, and this encoding can be verified via certificates. To illustrate, consider inquiring 
why a model generated a “bad” inference (e.g. an inference disagrees with observed measurements). The first 
diagnostic step is to check certificates. If no fails occurred, the model was not designed to handle the instance 
encountered. In this case, the model in (1) can be redesigned to encode prior knowledge of the situation. Alter-
natively, each failed certificate shows a type of error and often corresponds to portions of the model (see Figs. 1 
and 2). The L2O model allows debugging of algorithmic implementations and assumptions to correct errors. In 
a sense, this setup enables one to manually backpropagate errors to fix models (similar to training).

Contributions.  This work brings new explainability and guarantees to deep learning applications using 
prior knowledge. We propose novel implicit L2O models with intuitive design, memory efficient training, infer-

(1)N�(d) � argmin
x∈C�(d)

f�(x; d),
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ences that satisfy optimality/constraint conditions, and certificates that either indicate trustworthiness or flag 
inconsistent inference features.

Related works.  Closely related to our work is deep unrolling, a subset of L2O wherein models consist of a 
fixed number of iterations of a data-driven optimization algorithm. Deep unrolling has garnered great success 
and provides intuitive model design. We refer readers to recent surveys9–12 for further L2O background. Down-
sides of unrolling are growing memory requirements with unrolling depth and a lack of guarantees.

Implicit models circumvent these two shortcomings by defining models using an equation (e.g. as in (1)) 
rather than prescribe a fixed number of computations as in deep unrolling. This enables inferences to be com-
puted by iterating until convergence, thereby enabling theoretical guarantees. Memory-efficient training tech-
niques were also developed for this class of models, which have been applied successfully in games13, music 
source separation14, language modeling15, segmentation16, and inverse problems17,18. The recent work18 most 
closely aligns with our L2O methodology.

Related XAI works use labels/cards. Model Cards19 document intended and appropriate uses of models. Care 
labels20,21 are similar, testing properties like expressivity, runtime, and memory usage. FactSheets22 are modeled 
after supplier declarations of conformity and aim to identify models’ intended use, performance, safety, and 
security. These works provide statistics at the distribution level, complementing our work for trustworthiness 
of individual inferences.

Explainability via optimization
Model design.  The design of L2O models is naturally decomposed into two steps: optimization formulation 
and algorithm choice. The first step is to identify a tentative objective to encode prior knowledge via regulariza-
tion (e.g. sparsity) or constraints (e.g. unit simplex for classification). We may also add terms that are entirely 
data-driven. Informally, this step identifies a special case of (1) of the form

where the constraints are encoded in the objective using indicator functions, equaling 0 when constraint is 
satisfied and ∞ otherwise. The second design step is to choose an algorithm for solving the chosen optimization 
problem (e.g. proximal-gradient or ADMM23). We use iterative algorithms, and the update formula for each 
iteration is given by a model operator T�(x; d) . Updates are typically composed in terms of gradient and proxi-
mal operations. Some parameters (e.g. step sizes) may be included in the weights � to be tuned during training. 
Given data d, computation of the inference N�(d) is completed by generating a sequence {xkd} via the relation

(2)
N�(d) � argmin

x
(prior knowledge)

+ (data-driven terms) ,

Figure 1.   The L2O model is composed of parts (shown as colored blocks)  based on prior knowledge or data. 
L2O inferences solve the optimization problem for given model inputs. Certificates label if each inference is 
consistent with training. If so, it is trustworthy; otherwise, the faulty model part errs.

Figure 2.   Left shows learning to optimize (L2O) model. Colored blocks denote prior knowledge and data-
driven terms. Middle shows an iterative algorithm formed from the blocks (e.g. via proximal/gradient operators) 
to solve optimization problem. Right shows a trained model’s inference N�⋆(d) and its certificates. Certificates 
identify if properties of inferences are consistent with training data. Each label is associated with properties of 
specific blocks (indicated by labels next to blocks in right schematic). Labels take value pass  , warning  , or 
fail  , and values identify if inference features for model parts are trustworthy.
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By design, {xkd} converges to a solution of (1), and we set

In our context, each model inference N�(d) is defined to be an optimizer as in (1). Hence properties of 
inferences can be explained via the optimization model (1); note this is unlike blackbox models where one has 
no way of explaining why a particular inference is made. The iterative algorithm is applied successively until 
stopping criteria are met (i.e. in practice we choose an iterate K, possibly dependent on d, so that N�(d) ≈ xKd  ). 
Because {xkd} converges, we may adjust stopping criteria to approximate the limit to arbitrary precision, which 
implies we may provide guarantees on model inferences (e.g. satisfying a linear system of equations to a desired 
precision13,17,18). The properties of the implicit L2O model (1) are summarized by Table 1.

Example of model design.  To make the model design procedure concrete, we illustrate this process on a 
classic problem: sparse recovery from linear measurements. These problems appear in many applications such 
as radar imaging24 and speech recognition25. Here the task is to estimate a signal x⋆d via access to linear measure-
ments d satisfying d = Ax⋆d for a known matrix A.

Step 1: Choose model Since true signals are known to be sparse, we include ℓ1 regularization. To comply with 
measurements, we add a fidelity term. Lastly, to capture hidden features of the data distribution, we also add a 
data-driven regularization. Putting these together gives the problem

where τ > 0 and W1 and W2 are two tunable matrices. This model encodes a balance of three terms—sparsity, 
fidelity, data-driven regularization—each quantifiable via (5).

Step 2: Choose Algorithm The proximal-gradient scheme generates a sequence {zk} converging to a limit which 
solves (5). By simplifying and combining terms, the proximal-gradient method can be written via the iteration

where � > 0 is a step-size, W is a matrix defined in terms of W1 , W2 , and A⊤ , and ηθ is the shrink operator given by

From the update on the right hand side of (6), we see the step size � can be “absorbed” into the tunable matrix 
W and the shrink function parameter can be set to θ > 0 . That is, this example model has weights � = (W , θ , τ) 
with model operator

which resembles the updates of previous L2O works26–28. Inferences are computed via a sequence {xkd} with 
updates

The model inference is the limit x∞d  of this sequence {xkd}.

Convergence.  Evaluation of the model N�(d) is well-defined and tractable under a simple assumption. 
By a classic result29, it suffices to ensure, for all d, T�(·; d) is averaged, i.e. there is α ∈ (0, 1) and Q such that 
T�(x; d) = (1− α)x + αQ(x; d) , where Q is 1-Lipschitz. When this property holds, the sequence {xkd} in (3) 
converges to a solution x⋆d . This may appear to be a strong assumption; however, common operations in convex 
optimization algorithms (e.g. proximals and gradient descent updates) are averaged. For entirely data-driven 
portions of T� , several activation functions are 1-Lipschitz30,31 (e.g. ReLU and softmax), and libraries like 

(3)xk+1
d = T�(x

k
d; d), for all k ∈ N.

(4)N�(d) = lim
k→∞

xkd .

(5)
min
x∈Rn

τ�x�1
︸ ︷︷ ︸

sparsity

+�Ax − d�22
︸ ︷︷ ︸

fidelity

+�W1Ax�
2 + �x,W2d�

︸ ︷︷ ︸

data-driven regularizer

,

(6)zk+1 = ητ�
(
zk − �W(Azk − d)

)
, for all k ∈ N,

(7)ηθ (x) � sign (x)max(|x| − θ , 0).

(8)T�(x; d) � ηθ
(
x −W(Ax − d)

)
,

(9)xk+1
d = T�(x

k
d; d), for all k ∈ N.

Table 1.   Summary of design features and corresponding model properties. Design features yield additive 
properties, as indicated by “+ (above).” Proposed implicit L2O models with certificates have intuitive 
design, memory efficient training, inferences that satisfy optimality/constraint conditions, certificates of 
trustworthiness, and explainable errors.

L2O Implicit Flags Obtainable model property

� Intuitive design

� Memory efficient

� � Satisfy constraints + (above)

� Trustworthy inferences

� � � Explainable errors + (above)
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PyTorch32 include functionality to force affine mappings to be 1-Lipschitz (e.g. spectral normalization). Further-
more, by making T�(·; d) a contraction, a unique fixed point is obtained. We emphasize, even without forcing T� 
to be averaged, {xk} is often observed to converge in practice15,17,18 upon tuning the weights �.

Trustworthiness certificates.  Explainable models justify whether each inference is trustworthy. We pro-
pose providing justification in the form of certificates, which verify various properties of the inference are con-
sistent with those of the model inferences on training data and/or prior knowledge. Each certificate is a tuple 
of the form ( name , label) with a property name and a corresponding label which has one of three values: pass, 
warning, or fail (see Fig. 3). Each certificate label is generated by two steps. The first is to apply a function that 
maps inferences (or intermediate states) to a nonnegative scalar value α quantifying a property of interest. The 
second step is to map this scalar to a label. Labels are generated via the flow:

Property value functions.  Several quantities may be used to generate certificates. In the model design 
example above, a sparsity property can be quantified by counting the number of nonzero entries in a signal, 
and a fidelity property can use the relative error �Ax − d�/�d� (see Fig. 3). To be most effective, property values 
are chosen to coincide with the optimization problem used to design the L2O model, i.e. to quantify structure 
of prior and data-driven knowledge. This enables each certificate to clearly validate a portion of the model (see 
Fig. 2). Since various concepts are useful for different types of modeling, we provide a brief (and non-compre-
hensive) list of concepts and possible corresponding property values in Table 2.

One property concept deserves particular attention: data-driven regularization. This regularization is impor-
tant for discriminating between inference features that are qualitatively intuitive but difficult to quantify by hand. 
Rather than approximate a function, implicit L2O models directly approximate gradients/proximals. These 
provide a way to measure regularization indirectly via gradient norms/residual norms of proximals. Moreover, 
these norms (e.g. see last row of Table 2) are easy to compute and equal zero only at local minima of regularizers. 
To our knowledge, this is the first work to quantify trustworthiness using the quality of inferences with respect 
to data-driven regularization.

(10)Inference → Property Value → Certificate Label.

Figure 3.   Example inferences for test data d. The sparsified version Kx of each inference x is shown (c.f. Fig. 5) 
along with certificates. Ground truth was taken from test dataset of implicit dictionary experiment. The second 
from left is sparse and inconsistent with measurement data. The second from right complies with measurements 
but is not sparse. The rightmost is generated using our proposed model (IDM), which approximates the ground 
truth well and is trustworthy.

Table 2.   Certificate examples. Each certificate is tied to a high-level concept, and then quantified in a formula. 
For classifier confidence, we assume x is in the unit simplex. The proximal is a data-driven update for f� with 
weights �.

Concept Quantity Formula

Sparsity Nonzeros ‖x‖0

Measurements Relative error �Ax − d�/�d�

Constraints Distance to set C dC(x)

Smooth images Total variation �∇x�1

Classifier Confi-
dence

Probability 
short of one-hot 
label

1−maxi xi

Convergence Iterate residual �xk − x
k−1�

Regularization Proximal residual �x − prox
f�
(x)�
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Certificate labels.  Typical certificate labels should follow a trend where inferences often obtain a pass label 
to indicate trustworthiness while warnings occur occasionally and failures are obtained in extreme situations. 
Let the samples of model inference property values α ∈ [0,∞) come from distribution PA . We pick property 
value functions for which small α values are desirable and the distribution tail consists of larger α . Intuitively, 
smaller property values of α resemble property values of inferences from training and/or test data. Thus, labels 
are assigned according to the probability of observing a value less than or equal to α , i.e. we evaluate the cumula-
tive distribution function (CDF) defined for probability measure PA by

Labels are chosen according to the task at hand. Let pp , pw , and pf = 1− pp − pw be the probabilities for 
pass, warning, and fail labels, respectively. Labels are made for α via

The remaining task is to estimate the CDF value for a given α . Recall we assume access is given to property 
values {αi}Ni=1 from ground truths or inferences on training data, where N is the number of data points. To this 
end, given an α value, we estimate its CDF value via the empirical CDF: 

 where | · | denotes set cardinality. Figure 4 shows how these certificates can be combined with the L2O 
methodology.

Certificate implementation.  As noted in the introduction, trustworthiness certificates are evidence an 
inference satisfies post-conditions (i.e. passes various tests). Thus, they are to be used in code in the same man-
ner as standard software engineering practice. Consider the snippet of code in Supplementary Fig. A1. As usual, 
an inference is generated by calling the model. However, alongside the inference SPSVERBc1, certificates SPS-
VERBc2 are returned that label whether the inference SPSVERBc1 passes tests that identify consistency with 
training data and prior knowledge.

Experiments
Each numerical experiment shows an application of novel implicit L2O models, which were designed directly 
from prior knowledge. Associated certificates of trustworthiness are used to emphasize the explainability of each 
model and illustrate use-cases of certificates. Experiments were coded using Python with the PyTorch library32, 
the Adam optimizer33, and, for ease of re-use, were run via Google Colab. We emphasize these experiments 
are for illustration of intuitive and novel model design and trustworthiness and are not benchmarked against 
state-of-the-art models. The datasets generated and/or analysed during the current study are available in the 
following repository: github.​com/​typal-​resea​rch/​xai-​l2o. All methods were performed in accordance with the 
relevant guidelines and regulations.

Algorithms.  To illustrate evaluation of L2O model used herein, we begin with an example L2O model and 
algorithm. Specifically, models used for the first two experiments take the form

(11)CDF(α) =

∫ α

0
dPA,

(12)Label (α) =

{
pass if CDF(α) < pp

warning if CDF (α) ∈ [pp, 1− pf)

fail otherwise .

(13a)CDF(α) ≈
|{αi : αi ≤ α, 1 ≤ i ≤ N}|

N

(13b)=
# of αi ’s ≤ α

N
,

Figure 4.   This diagram illustrates relationships between certificates, models, training data, and prior 
knowledge. Prior knowledge is embedded directly into model design via the L2O methodology. This also gives 
rise to quantities to measure for certificate design. The designed model is tuned using training data to obtain the 
“optimal” L2O model (shown by arrows touching top middle + sign). The certificates are tuned to match the test 
samples and/or model inferences on training data (shown by arrows with bottom middle + sign). Together the 
model and certificates yield inferences with certificates of trustworthiness.

https://github.com/typal-research/xai-l2o
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where K and M are linear operators, δ ≥ 0 is a noise tolerance, and f and g are proximable functions. Introduc-
ing auxiliary variables w and p and dual variable ν = (ν1, ν2) , linearized ADMM34 (L-ADMM) can be used to 
iteratively update the tuple (p,w, ν, x) of variables via 

 where projB(d,δ) is the Euclidean projection onto the Euclidean ball of radius δ centered at d, proxf  is the proximal 
operator for a function f, and the scalars α,β , � > 0 are appropriate step sizes. Further details, definitions, and 
explanations are available in the appendices. We note the updates are ordered so that xk+1 is the final step to 
make it easy to backprop through the final xk update.

Implicit model training.  Standard backpropagation cannot be used for implicit models as it requires mem-
ory capacities beyond existing computing devices. Indeed, storing gradient data for each iteration in the forward 
propagation (see (3)) scales the memory during training linearly with respect to the number of iterations. Since 
the limit x∞ solves a fixed point equation, implicit models can be trained by differentiating implicitly through 
the fixed point to obtain a gradient. This implicit differentiation requires further computations and coding. 
Instead of using gradients, we utilize Jacobian-Free Backpropagation (JFB)35 to train models. JFB further simpli-
fies training by only backpropagating through the final iteration, which was proven to yield preconditioned gra-
dients. JFB trains using fixed memory (with respect to the K steps used to estimate N�(d) ) and avoids numeri-
cal issues arising from computing exact gradients36, making JFB and its variations37,38 apt for training implicit 
models.

Implicit dictionary learning.  Setup.  In practice, high dimensional signals often approximately admit 
low dimensional representations39–44. For illustration, we consider a linear inverse problem where true data 
admit sparse representations. Here each signal x⋆d ∈ R

250 admits a representation s⋆d ∈ R
50 via a transformation 

M (i.e. x⋆d = Ms⋆d ). A matrix A ∈ R
100×250 is applied to each signal x⋆d to provide linear measurements d = Ax⋆d . 

Our task is to recover x⋆d given knowledge of A and d without the matrix M. Since the linear system is quite 
under-determined, schemes solely minimizing measurement error (e.g. least squares approaches) fail to recover 
true signals; additional knowledge is essential.

Model design.  All convex regularization approaches are known lead to biased estimators whose expectation 
does not equal the true signal46. However, the seminal work47 of Candes and Tao shows ℓ1 minimization (rather 
than additive regularization) enables exact recovery under suitable assumptions. Thus, we minimize a sparsified 
signal subject to linear constraints via the implicit dictionary model (IDM)

The square matrix K is used to leverage the fact x has a low-dimensional representation by transforming x 
into a sparse vector. Linearized ADMM34 (L-ADMM) is used to create a sequence {xkd} as in (3). The model N� 
has weights � = K . If it exists, the matrix K−1 is known as a dictionary and KN�(d) is the corresponding sparse 
code; hence the name IDM for (16). To this end, we emphasize K is learned during training and is different from 
M, but these matrices are related since we aim for the product Kx⋆d = KMs⋆d to be sparse. Note we use L-ADMM 
to provably solve (16), and N� is easy to train. More details are in Appendix C.

Discussion.  IDM combines intuition from dictionary learning with a reconstruction algorithm. Two proper-
ties are used to identify trustworthy inferences: sparsity and measurement compliance (i.e. fidelity). Sparsity and 
fidelity are quantified via the ℓ1 norm of the sparsified inference (i.e. KN�(d) ) and relative measurement error. 
Figure 5 shows the training the model yields a sparsifying transformation K. Figure 3 shows the proposed cer-
tificates identify “bad” inferences that might, at first glance, appear to be “good” due to their compatibility with 

(14)min
x∈Rn

f (Kx)+ h(x) s.t. �Mx − d� ≤ δ,

(15a)pk+1 = prox
�f

(

pk + �(νk1 + α(Kxk − pk))
)

(15b)wk+1 = projB(d,δ)

(

wk + �(νk2 + α(Mxk − wk))

)

(15c)νk+1
1 = νk1 + α(Kxk − pk+1)

(15d)νk+1
2 = νk2 + α(Mxk − wk+1)

(15e)rk = K⊤
(

2νk+1
1 − νk1

)

+M⊤
(

2νk+1
2 − νk2

)

(15f)xk+1 = proxβh

(

xk − βrk
)

,

(16)N�(d) � argmin
x∈R250

�Kx�1 s.t. Ax = d.
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constraints. Lastly, observe the utility of learning K, rather than approximating M, is K makes it is easy to check 
if an inference admits a sparse representation. Using M to check for sparsity is nontrivial.

CT image reconstruction.  Setup.  Comparisons are provided for low-dose CT examples derived from 
the Low-Dose Parallel Beam dataset (LoDoPab) dataset48, which has publically available phantoms derived from 
actual human chest CT scans. CT measurements are simulated with a parallel beam geometry and a sparse-
angle setup of only 30 angles and 183 projection beams, giving 5490 equations and 16,384 unknowns. We add 
1.5% Gaussian noise to each individual beam measurement. Images have resolution 128× 128 . To make errors 
easier to contrast between methods, the linear systems here are under-determined and have more noise than 
those in some similar works. Image quality is determined using the Peak Signal-To-Noise Ratio (PSNR) and 
structural similarity index measure (SSIM). The training loss was mean squared error. Training/test datasets 
have 20,000/2000 samples.

Model design.  The model for the CT experiment extends the IDM. In practice, it has been helpful to utilize a 
sparsifying transform49,50. We accomplish this via a linear operator K, which is applied and then this product is 
fed into a data-driven regularizer f� with parameters � . We additionally ensure compliance with measurements 
from the Radon transform matrix A, up to a tolerance δ . In our setting, all pixel values are also known to be in 
the interval [0, 1]. Combining our prior knowledge yields the implicit L2O model

Here N� has weights � = (�,K ,α,β , �) with α , β and � step-sizes in L-ADMM. More details are in Appendix 
D.

Discussion.  Comparisons of our method (Implicit L2O) with U-Net45, F-FPNs17, and total variation (TV) Min-
imization are given in Fig. 6 and Table 3. Table 3 shows the average PSNR and SSIM reconstructions. Our model 

(17)N�(d) � argmin
x∈[0,1]n

f�(Kx) s.t. �Ax − d� ≤ δ.

Figure 5.   Training IDM yields sparse representation of inferences. Diagram shows a sample true data x (left) 
from test dataset and its sparsified representation Kx (right).

Figure 6.   Reconstructions on test data computed via U-Net45, TV minimization, F-FPNs17, and Implicit 
L2O (left to right). Bottom row shows expansion of region indicated by red box. Pixel values outside [0, 1] are 
flagged. Fidelity is flagged when images do not comply with measurements, and regularization is flagged when 
texture features of images are sufficiently inconsistent with true data (e.g. grainy images). Labels are provided 
beneath each image (n.b. fail is assigned to images that are worse than 95% of L2O inferences on training data). 
Shown comparison methods fail while the Implicit L2O image passes all tests.
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obtains the highest average PSNR and SSIM values on the test data while using 11% and 62% as many weights 
as U-Net and F-FFPN, indicating greater efficiency of the implicit L2O framework. Moreover, the L2O model 
is designed with three features: compliance with measurements (i.e. fidelity), valid pixel values, and data-driven 
regularization. Table 3 also shows the percentage of “fail” labels for these property values. Here, an inference 
fails if its property value is larger than 95% of the property values from the training/true data, i.e. we choose 
pp = 0.95 , pw = 0 , and pf = 0.05 in (12). For the fidelity, our model never fails (due to incorporating the con-
straint into the network design). Our network fails 5.7% of the time for the data-driven regularization property. 
Overall, the L2O model generates the most trustworthy inferences. This is intuitive as this model outperforms 
the others and was specifically designed to embed all of our knowledge, unlike the others. To provide better 
intuition of the certificates, we also show the certificate labels for an image from the test dataset in Fig. 6. The 
only image to pass all provided tests is the proposed implicit L2O model. This knowledge can help identify trust-
worthy inferences. Interestingly, the data-driven regularization enabled certificates to detect and flag “bad” TV 
Minimization features (e.g. visible staircasing effects51,52), which shows novelty of certificates as these features are 
intuitive, yet prior methods to quantify this were, to our knowledge, unknown.

Optimal cryptoasset trading.  Setup.  Ethereum is a blockchain technology anyone can use to deploy 
permanent and immutable decentralized applications. This technology enables creation of decentralized finance 
(DeFi) primitives, which can give censorship-resistant participation in digital markets and expand the use of 
stable assets53,54 and exchanges55–57 beyond the realm of traditional finance. Popularity of cryptoasset trading 
(e.g. GRT and Ether) is exploding with the DeFi movement58,59.

Decentralized exchanges (DEXs) are a popular entity for exchanging cryptoassets (subject to a small trans-
action fee), where trades are conducted without the need for a trusted intermediary to facilitate the exchange. 
Popular examples of DEXs are constant function market makers (CFMMs)60, which use mathematical formulas 
to govern trades. To ensure CFMMs maintain sufficient net assets, trades within CFMMs maintain constant total 
reserves (as defined by a function φ ). A transaction in a CFMM tendering x assets in return for y assets with 
reserves assets r is accepted provided

with γ ∈ (0, 1] a trade fee parameter. Here r, x, y ∈ R
n with each vector nonnegative and i-th entry giving an 

amount for the i-th cryptoasset type (e.g. Ether, GRT). Typical choices61 of φ are weighted sums and products, i.e.

where w ∈ R
n has positive entries. Figure 7 shows an example of a CFMM network.

This experiment aims to maximize arbitrage. Arbitrage is the simultaneous purchase and sale of equivalent 
assets in multiple markets to exploit price discrepancies between the markets. This can be a lucrative endeavor 
with cryptoassets62. For a given snapshot in time, our arbitrage goal is to identify a collection of trades that 
maximize the cryptoassets obtainable by trading between different exchanges, i.e. solve the (informal) optimi-
zation problem

The set of valid trades is all trades satisfying the transaction rules for CFMMs given by (18) with nonnegative 
values for tokens tendered and received (i.e. x, y ≥ 0 ). Prior works61,63 deal with an idealistic noiseless setting 
while recognizing executing trades is not without risk (e.g. noisy information, front running64, and trade delays). 
To show implications of trade risk, we incorporate noise in our trade simulations by adding noise ε ∈ R

n to 
CFMM asset observations, which yields noisy observed data d = (1+ ε)⊙ r . Also, we consider trades with 
CFMMs where several assets can be traded simultaneously rather than restricting to pairwise swaps.

Model design.  The aim is to create a model that infers a trade (x, y) maximizing utility. For a nonnegative vec-
tor p ∈ R

n of reference price valuations, this utility U is the net change in asset values provided by the trade, i.e.

(18)φ(r + γ x − y) ≥ φ(r),

(19)φ(r) =

n∑

i=1

wiri and φ(r) =

n∏

i=1

rwi
i ,

(20)max
trade

Assets(trade) s.t. trade ∈ {valid trades}.

Table 3.   Average PSNR/SSIM for CT reconstructions on the 2000 image LoDoPab testing dataset. † Reported 
from original work17. U-Net was trained with filtered backprojection as in prior work45. Three properties are 
used to check trustworthiness: box constraints, compliance with measurements (i.e. fidelity), and data-driven 
regularization (via the proximal residual in Table 2). Failed sample percentages are numerically estimated 
via (). Sample property values “fail” if they perform worse than 95% of the inferences on the training data, i.e. , 
its CDF value exceeds 0.95. Implicit L2O yields the most passes on test data.

Method Avg. PSNR Avg. SSIM Box constraint fail Fidelity fail Data Reg. fail # Params

U-Net 27.32 dB 0.761 5.75 % 96.95% 3.20% 533,593

TV Min 28.52 dB 0.765 0.00 % 0.00% 25.40% 4

F-FPN† 30.46 dB 0.832 47.15% 0.40% 5.05% 96,307

Implicit L2O 31.73 dB 0.858 0.00% 0.00% 5.70% 59,697
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where Aj is a matrix mapping global coordinates of asset vector to the coordinates of the j-th CFMM (see Appen-
dix E for details). For noisy data d, trade predictions can include a “cost of risk.” This is quantified by regularizing 
the trade utility, i.e. introducing a penalty term. For matrices Wj , we model risk by a simple quadratic penalty via

The implicit L2O model infers optimal trades via U� , i.e.

where C�(d) encodes constraints for valid transactions. The essence of N� is to output solutions to (20) that 
account for transaction risks. A formulation of Davis-Yin operator splitting65 is used for model evaluation. 
Further details of the optimization scheme are in Appendix E.

Discussion.  The L2O model contains three core features: profit, risk, and trade constraints. The model is 
designed to output trades that satisfy provided constraints, but note these are noisy and thus cannot be used 
to a priori determine whether a trade will be executed. For this reason, fail flags identify conditions to warn a 
trader when a trade should be aborted (due to an “invalid trade”). This can avoid wasting transaction fees (i.e. 
gas costs). Figure 8 shows an example of two trades, where we note the analytic method proposes a large trade 
that is not executed since it violates the trade constraints (due to noisy observations). The L2O method proposes 
a small trade that yielded arbitrage profits (i.e. U > 0 ) and has pass certificates. Comparisons are provided in 
Table 4 between the analytic and L2O models. Although the analytic method has “ideal” structure, it performs 
much worse than the L2O scheme. In particular, no trades are executable by the analytic scheme since the present 
noise always makes the proposed transactions fail to satisfy the actual CFMM constraints. Consistent with this, 
every proposed trade by the analytic trade is flagged as risky in Table 4. The noise is on the order of 0.2% Gauss-
ian noise of the asset totals.

Conclusions
Explainable ML models can be concretely developed by fusing certificates with the L2O methodology. The 
implicit L2O methodology enables prior and data-driven knowledge to be directly embedded into models, 
thereby providing clear and intuitive design. This approach is theoretically sound and compatible with state-
of-the-art ML tools. The L2O model also enables construction of our certificate framework with easy-to-read 
labels, certifying if each inference is trustworthy. In particular, our certificates provide a principled scheme for 
the detection of inferences with “bad” features via data-driven regularization. Thanks to this optimization-based 
model design (where inferences can be defined by fixed point conditions), failed certificates can be used to discard 
untrustworthy inferences and may help debugging the architecture. This reveals the interwoven nature of pairing 
implicit L2O with certificates. Our experiments illustrate these ideas in three different settings, presenting novel 
model designs and interpretable results. Future work will study extensions to physics-based applications where 
PDE-based physics can be integrated into the model66–68.

(21)
U(x, y) �

m∑

j=1

〈
Ajp,Aj(yj − xj)

〉

︸ ︷︷ ︸

net asset value change

,

(22)
U�(x, y) � U(x, y)−

1

2
·

m∑

j=1

�AjWj(x − y)�2.

︸ ︷︷ ︸

risk model

(23)N�(d) � (xd , yd) = argmax
(x,y)∈C�(d)

U�(x, y),

Figure 7.   Network with 5 CFMMs and 3 tokens; structure replicates an experiment in recent work63. Black lines 
show available tokens for trade in each CFMM.
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Data availability
The datasets generated and/or analysed during the current study are available in the following repository: github.​
com/​typal-​resea​rch/​xai-​l2o.
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