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Abstract. This paper focuses on the three-dimensional (3D) incompressible
anisotropic Boussinesq system with horizontal dissipation. The goal here is to
assess the stability property and pinpoint the precise large-time behavior of pertur-
bations near the hydrostatic balance. Important tools such as Schonbek’s Fourier
splitting method have been developed to understand the large-time behavior of
PDE systems with full dissipation, but these tools may not apply directly when
the systems are only partially dissipated. This paper solves the stability prob-
lem and designs an effective approach to obtain the optimal decay rates for the
anisotropic Boussinesq system concerned here. The tool developed in this paper
may be useful for many other partially dissipated systems.

1. Introduction

This paper intends to understand the stability of the hydrostatic balance or hy-
drostatic equilibrium and provide optimal estimates on the large-time behavior of
perturbations near the hydrostatic balance. There are two distinct motivations
for this study. The first is physical. Hydrostatic balance is an important equilib-
rium of many geophysical fluids. In fact, our atmosphere is mainly in hydrostatic
balance, between the upward-directed pressure gradient force and the downward-
directed force of gravity. Understanding the stability of perturbations near the hy-
drostatic equilibrium may help gain insight into certain severe weather phenomena
(see, e.g., [17, 24]). The second is mathematical. The partial differential equation
(PDE) system concerned here models anisotropic fluids and involve only partial
dissipation. Although significant progress has been made on the large-time behav-
ior of fully dissipated PDE systems (see, e.g., [25–27]), but the large-time behavior
of anisotropic PDE systems is generally not well-understood and is a very active
research topic. This paper offers new ideas and presents a successful story on a
partially dissipated Boussinesq system.

The most frequently employed PDE model for geophysical fluids is the Boussinesq
system for buoyancy-driven fluids (see, e.g., [8,11,20,24,34]). The Boussinesq system
studied here is for anisotropic fluids and involves only horizontal dissipation, ∂tu+ u · ∇u = −∇P + ν ∆hu+ Θe3, x ∈ R3, t > 0,

∂tΘ + u · ∇Θ = η∆hΘ, x ∈ R3, t > 0,
∇ · u = 0, x ∈ R3, t > 0,

(1.1)
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where u = (u1, u2, u3) denotes the velocity field, P the pressure, Θ the temperature,
e3 = (0, 0, 1), and ν > 0 and η > 0 are the viscosity and the thermal diffusivity,
respectively. Here ∆h = ∂x1x1 + ∂x2x2 stands for the horizontal Laplacian. For
notational convenience, we shall write ∂i for ∂xi for i = 1, 2, 3, and ∇h = (∂1, ∂2).
(1.1) arises naturally in the modeling of anisotropic fluids such as the rotating fluids
in Ekman layers. A standard reference is Chapter 4 of Pedlosky’s book [24].

The hydrostatic balance given by

u(0) ≡ (0, 0, 0), Θ(0) = x3, P (0) =
1

2
x2

3 (1.2)

is a very special steady-state solution of (1.1) with great geophysical and astrophysi-
cal importance (see, e.g., [17,23,24,33]). To understand the stability and large-time
behavior of perturbations near the hydrostatic balance in (1.2), we consider the
equations governing the perturbation (u, θ, p) with θ = Θ− x3, p = P − P (0),

∂tu+ u · ∇u = −∇p+ ν ∆hu+ θe3, x ∈ R3, t > 0,
∂tθ + u · ∇θ + u3 = η∆hθ, x ∈ R3, t > 0,
∇ · u = 0, x ∈ R3, t > 0,
u(x, 0) = u0(x), θ(x, 0) = θ0(x), x ∈ R3.

(1.3)

We remark that here buoyancy acts in the direction of gravity e3 and that the
gravitational constant is rescaled to 1. Our goal here is to understand the stability
problem and give a precise account of the large time behavior of the solutions to
(1.3). The large-time behavior problem is not trivial. Due to the presence of the
buoyancy forcing term θe3 in the velocity equation, Sobolev norms and even the
L2-norm of the velocity in (1.1) can grow in time. Brandolese and Schonbek have
shown in [6] that the L2-norm of the velocity to the Boussinesq system with full
viscous dissipation and thermal diffusion can grow in time even for very nice initial
data (say, data that are smooth, fast spatial decaying and small in some strong
norm). Therefore the original system (1.1) is not even stable due to the explicit
examples of Brandolese and Schonbek [6]. Perturbing near the hydrostatic balance
generates the new term u3 in (1.3), which helps balance the buoyancy force. In
fact, the buoyancy term is canceled by the new term u3 in the process of estimating
‖u‖2

L2 + ‖θ‖2
L2 or Sobolev norms. We caution that, if we take Θ(0) = −x3, then we

may have instability [12]. However, due to the lack of the vertical dissipation, the
system (1.3) is degenerate. Indeed, the wave equations in (1.7) converted from this
system are degenerate wave equations. A quick inspection on the spectra of the
linearized system of (1.3) would shed light on the nature of this degeneracy.

To separate the linear parts in (1.3) from the nonlinear parts, we apply the
Helmholtz-Leray projection P = I − ∇∆−1∇· to the velocity equation in (1.3) to
obtain

∂tu = ν∆hu+ P(θe3)− P(u · ∇u). (1.4)
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By the definition of P,

P(θe3) = θe3 −∇∆−1∇ · (θe3) =

 −∂1∂3∆−1θ
−∂2∂3∆−1θ
θ − ∂2

3∆−1θ

 . (1.5)

Alternatively we can write θ − ∂2
3∆−1θ = ∆h∆

−1θ. Inserting (1.5) in (1.4) yields
∂tu = ν∆hu+

 −∂1∂3∆−1θ

−∂2∂3∆−1θ

∆h∆
−1θ

− P(u · ∇u),

∂tθ = η∆hθ − u3 − u · ∇θ,

(1.6)

which separates the linear parts from the nonlinear parts. Furthermore, by differen-
tiating (1.6) in time and making suitable substitutions, we discover that (1.6) can
be converted into a system of anisotropic and degenerate wave equations

∂ttu1 − (ν + η)∆h∂tu1 + νη∆2
hu1 + ∂2

1∆−1u1 + ∂1∂2∆−1u2 = N1,

∂ttu2 − (ν + η)∆h∂tu2 + νη∆2
hu2 + ∂1∂2∆−1u1 + ∂2

2∆−1u2 = N2,

∂ttu3 − (ν + η)∆h∂tu3 + νη∆2
hu3 + ∆h∆

−1u3 = N3,

∂ttθ − (ν + η)∆h∂tθ + νη∆2
hθ + ∆h∆

−1θ = N4,

(1.7)

where

N1 = (−∂t + η∆h) (P(u · ∇u))1 + ∂1∂3∆−1(u · ∇θ),
N2 = (−∂t + η∆h) (P(u · ∇u))2 + ∂2∂3∆−1(u · ∇θ),
N3 = (−∂t + η∆h) (P(u · ∇u))3 −∆h∆

−1(u · ∇θ),
N4 = (−∂t + ν∆h)(u · ∇θ) + (P(u · ∇u))3 .

Clearly, u3 and θ satisfy the same linear wave equation with different nonlinear
parts. The equations for u1 and u2 are slightly different. The precise formula of
the spectra can be obtained from (1.6) or (1.7). To avoid nonessential notation
complications, we set ν = η = 1. Taking the Fourier transform of the linear portion
of (1.6), we have

∂t

[
û

θ̂

]
= A

[
û

θ̂

]
, (1.8)

where A denotes the matrix of multipliers associated with the linear operators,

A =



−|ξh|2 0 0 −ξ1ξ3

|ξ|2

0 −|ξh|2 0 −ξ2ξ3

|ξ|2

0 0 −|ξh|2
|ξh|2

|ξ|2
0 0 −1 −|ξh|2


with ξh = (ξ1, ξ2). The corresponding characteristic polynomial is given by

(λ+ |ξh|2)2

(
λ2 + 2|ξh|2λ+ |ξh|4 +

|ξh|2

|ξ|2

)
= 0,
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which yields the spectra,

λ1 = λ2 = −|ξh|2, λ3 = −|ξh|2 −
|ξh|
|ξ|

i, λ4 = −|ξh|2 +
|ξh|
|ξ|

i.

The spectra reveal that the dissipation in the linearized system is essentially hori-
zontal. More precisely, The real part of all eigenvalues λj with j = 1, 2, 3, 4 is −|ξh|2
and thus

|eλjt| = e−|ξh|
2t,

which is the symbol of the heat operator associated with the horizontal Laplacian.
Therefore, as far as the large-time behavior is concerned, this linearized system
is essentially controlled by the horizontal Laplacian. Classical tools for large-time
behavior such that Schonbek’s Fourier splitting method no longer directly apply to
the system studied here. This paper develops a new approach to obtain the optimal
decay rates for this partially dissipated system. We expect this approach to work
for many other partially dissipated PDE sytems.

To gain insight on our problem, we briefly examine the 3D anisotropic heat
equation with horizontal dissipation{

∂tu = ν∆hu, x ∈ R3, t > 0,

u(x, 0) = u0(x), x ∈ R3.
(1.9)

In order to obtain an explicit decay rate of the solution to (1.9), the energy method
is no longer sufficient and the explicit representation of the solution is necessary,

u(t) = eν∆htu0.

To extract the sharp decay rates for the solution u of (1.9), it is generally necessary
to assume either u0 in a suitable Lebesgue space

u0 ∈ Lq(R3) with 1 ≤ q < 2,

or in a Sobolev space with negative index. Since the dissipation in (1.9) is only
horizontal, the negative derivatives should also be horizontal,

Λ−σh u0 ∈ L2,

where Λ−σh u0 is defined in terms of the Fourier transform

Λ̂−σh u0(ξ) = |ξh|−σû0(ξ).

We can easily check that the solution u of (1.9) and its first-order derivatives obeys
the following optimal decay rates, for any t > 0,

‖u(t)‖L2 ≤ C (νt)−
σ
2 ‖Λ−σh u0‖L2 , (1.10)

‖∂3u(t)‖L2 ≤ C (νt)−
σ
2 ‖∂3Λ−σh u0‖L2 , (1.11)

‖∇hu(t)‖L2 ≤ C (νt)−
σ+1
2 ‖Λ−σh u0‖L2 . (1.12)

The estimates above follow from the solution formula û(ξ, t) = e−ν|ξh|
2tû0(ξ). The

power decay in t is due to arbitrarily small frequencies.
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With these helpful hints from the heat equation, our approach starts with solving
the linearized system (1.8) and representing the nonlinear system (1.6) in an integral
form via the Duhamel principle[

û(t)

θ̂(t)

]
= eAt

[
û0

θ̂0

]
+

∫ t

0

eA(t−τ)

[
M̂1(τ)

M̂2(τ)

]
dτ,

where M1 and M2 are the two nonlinear terms in (1.6),

M1 = −P(u · ∇u), M2 = −u · ∇θ.
To avoid possible notational confusion, we remark that M1 ∈ R3 and M2 ∈ R are not
components. In order to obtain an explicit formula for the fundamental matrix eAt,
we diagonalize A via its eigenvalues and eigenvectors, and break eAt down to explicit
kernel functions. The detailed derivation and the precise integral representation of
(1.6) are given in Section 2. Alternatively we could have also achieved the same
formula by solving the wave equations in (1.7).

As a preparation for the optimal decay rates on the nonlinear system, we first
examine the linearized system of (1.6), namely

∂tu = ν∆hu+

 −∂1∂3∆−1θ

−∂2∂3∆−1θ

∆h∆
−1θ

 ,
∂tθ = η∆hθ − u3.

The analysis is performed on its corresponding explicit solution representation,

ûh = eλ1tû0h +

(
ξhξ3

|ξh|2
eλ1t +

ξhξ3

|ξh|2
G2 + ξhξ3G1

)
û03 −

ξhξ3

|ξ|2
G1θ̂0 (1.13)

û3 =
(
−G2 − |ξh|2G1

)
û03 +

|ξh|2

|ξ|2
G1θ̂0 (1.14)

θ̂ = −G1û03 + (G3 + |ξh|2G1)θ̂0, (1.15)

where G1, G2 and G3 are given by (see (2.4) below)

G1 =
eλ4t − eλ3t

λ4 − λ3

= e−|ξh|
2t

(
|ξh|
|ξ|

)−1

sin
|ξh|
|ξ|

t,

G2 =
λ3e

λ4t − λ4e
λ3t

λ4 − λ3

= λ3G1 − eλ3t,

G3 =
λ4e

λ4t − λ3e
λ3t

λ4 − λ3

= λ3G1 + eλ4t.

We are able to obtain the stability and optimal decay rates stated in the following
proposition. The results in this proposition and their proofs are part of our program
for optimal decay rates on the nonlinear system (1.6), and will be used in the proof
of our main result, Theorem 1.3 below.

Proposition 1.1. Let s be non-negative and σ > 0. Assume the initial velocity field
u0 = (u01, u02, u03) satisfies ∇ · u0 = 0.
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(1) If (u0, θ0) satisfies

u0, θ0, Λ−σh u0, Λ−σh θ0 ∈ Ḣs,

then the solution (u, θ) given by (1.13), (1.14) and (1.15) satisfies

‖u(t)‖Ḣs , ‖θ(t)‖Ḣs ≤ C
(
‖(u0, θ0)‖Ḣs + ‖(Λ−σh u0,Λ

−σ
h θ0)‖Ḣs

)
(1 + t)−

σ
2 . (1.16)

(2) If (u0, θ0) satisfies

∂3u0, ∂3θ0, Λ−σh ∂3u0, Λ−σh ∂3θ0 ∈ Ḣs,

then

‖∂3u(t)‖Ḣs , ‖∂3θ(t)‖Ḣs

≤ C
(
‖(∂3u0, ∂3θ0)‖Ḣs + ‖(Λ−σh ∂3u0,Λ

−σ
h ∂3θ0)‖Ḣs

)
(1 + t)−

σ
2 . (1.17)

(3) If (u0, θ0) satisfies

Λ−σh u0, Λ−σh θ0 ∈ Ḣs,

then, for any t > 0,

‖∇hu(t)‖Ḣs , ‖∇hθ(t)‖Ḣs ≤ C ‖(Λ−σh u0,Λ
−σ
h θ0)‖Ḣs t−

σ+1
2 . (1.18)

If, in addition, (u0, θ0) satisfies

Λ−σh ∇hu0, Λ−σh ∇hθ0 ∈ Ḣs,

then

‖∇hu(t)‖Ḣs , ‖∇hθ(t)‖Ḣs

≤ C
(
‖(Λ−σh ∇hu0,Λ

−σ
h ∇hθ0)‖Ḣs + ‖(Λ−σh u0,Λ

−σ
h θ0)‖Ḣs

)
(1 + t)−

σ+1
2 . (1.19)

The bounds for the linearized problem are explicit and thus easily seen to be
optimal. It is also clear that the vertical derivatives have the same decay rate as
that for the solution itself, but the horizontal derivatives increase the decay rate by
−1/2. We also remark that (1.18) is suitable for large t > 0. For t > 0 close to 0,
(1.18) is an over-estimate and should be replaced by (1.19).

The second preparation is a small data global well-posedness and stability result
on the nonlinear system (1.6).

Proposition 1.2. Consider the nonlinear system in (1.3) with ν > 0 and η > 0.
Assume (u0, θ0) ∈ Hm(R3) with m ≥ 2 satisfies ∇ · u0 = 0. Then there exists
ε = ε(ν, η) > 0 such that, if

‖u0‖Hm + ‖θ0‖Hm ≤ ε,

then (1.3) has a unique global solution (u, θ) ∈ L∞(0,∞;Hm) satisfying, for a con-
stant C > 0 and for all t ≥ 0,

‖u(t)‖2
Hm + ‖θ(t)‖2

Hm + ν

∫ t

0

‖∇hu‖2
Hm dτ + η

∫ t

0

‖∇hθ‖2
Hm dτ ≤ C ε2.
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We are now ready to state our main results presenting the stability and optimal
decay rates for perturbations near the hydrostatic balance.

Theorem 1.3. Consider the nonlinear system in (1.3) with ν > 0 and η > 0. Let
3

4
≤ σ < 1. Assume (u0, θ0) ∈ H4(R3) satisfies ∇ · u0 = 0,

‖u0‖H4 + ‖θ0‖H4 ≤ ε, (1.20)

‖Λ−σh u0‖L2 + ‖Λ−σh θ0‖L2 ≤ ε, (1.21)

‖∂3Λ−σh u0‖L2 + ‖∂3Λ−σh θ0‖L2 ≤ ε (1.22)

for some sufficiently small ε > 0. Then (1.3) has a unique global solution (u, θ)
satisfying, for a constant C > 0 and for all t ≥ 0,

‖u(t)‖H4 + ‖θ(t)‖H4 ≤ C ε,

‖Λ−σh u(t)‖L2 + ‖Λ−σh θ(t)‖L2 ≤ C ε,

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C ε(1 + t)−
σ
2 ,

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C ε(1 + t)−
σ
2
− 1

2 .

The regularity requirement (u0, θ0) ∈ H4 and the condition σ ≥ 3

4
are needed in

order to handle the most challenging term ∂33u when we estimate ‖∂3u‖L2 . More
technical details are provided on pages 28-29 in the proof of Theorem 1.3. The decay
rates for the solution are the same as those in (1.10), (1.11) and (1.12), and are thus
optimal. The sharp decay result presented here appears to be the first such result on
the 3D anisotropic Boussinesq equations. It is hoped that this result together with
its proof helps chart a new path to the stability and large-time behavior problems
involving anisotropic fluids.

We thank the referee and the editor for bringing to our attention the work of
Shang and Xu [28]. Shang and Xu [28] examined the stability of two Boussinesq
systems with dissipation and thermal diffusion in two directions as well as the decay
of the corresponding linearized systems. Their decay results, stated in their The-
orems 1.3 and 1.6, are for the linearized systems (1.10) and (1.17) in [28], which
involve no nonlinear terms. Their paper doesn’t provide any decay result for the
nonlinear systems.

The main goal of our paper is to obtain the optimal decay rates of the nonlin-
ear Boussinesq system involving only horizontal dissipation. It is generally much
more difficult to obtain the large-time behavior of nonlinear PDE systems. The
anisotropic dissipation here makes the optimal decay problem even more challeng-
ing. Since only dissipation in the horizontal directions is available, the nonlinear
effects require much more delicate analysis. In particular, we need to exploit cancel-
lations and other properties such as the incompressibility in order to control terms
involving vertical derivatives.

Since the energy method and other classical tools such as the Fourier-splitting
scheme [25] no longer work for the nonlinear Boussinesq system considered here,
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this paper proposes and implements an innovative approach. We derive and make
use of the integral representation of the nonlinear Boussinesq system. Our approach
consists of three main steps. The first is to solve the linearized system explicitly and
use this explicit solution formula to derive decay rates for the solution itself as well
as its derivatives. The main result of this step is presented in Proposition 1.1. In
comparison with the decay results for the linearized systems in [28], Proposition 1.1
contains much more information. Besides the decay rate for the Hs-norm, Propo-
sition 1.1 also features decay rates for the horizontal and the vertical derivatives,
which are optimal and reveal a faster decay rate for the horizontal derivative. The
second main step is to establish the small data global well-posedness and stability
for the nonlinear system. The result of this step is stated in Proposition 1.2. In
particular, Proposition 1.2 guarantees that the solution of the nonlinear system is
global and it is legitimate to study its precise large-time behavior. The third step,
the main thrust of our work, is to establish the optimal decay rates for the the non-
linear Boussinesq system, as stated in Theorem 1.3. By the explicit solution formula
of the linearized system and Duhamel’s principle, we convert the nonlinear Boussi-
nesq system into an integral representation. Then the bootstrapping argument is
applied to this integral form. Due to the lack of dissipation in the vertical direction,
the analysis on the nonlinear effects is very difficult and involved. In particular, we
need to exploit cancellations and other properties such as the incompressibility in
order to control terms involving vertical derivatives.

The framework of the proof is to apply the bootstrapping argument to the integral
representation of the nonlinear system given by (2.1), (2.2) and (2.3). A very useful
abstract version of the bootstrap principle can be found in [31, p.21]. We assume the
initial datum (u0, θ0) satisfies the assumptions (1.20), (1.21) and (1.22), and make
the ansatz that the solution (u, θ) satisfies, for a suitably selected constant C0 > 0,

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C0 ε,

‖Λ−σh u(t)‖L2 , ‖Λ−σh θ(t)‖L2 ≤ C0 ε,

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 ,

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C0 ε(1 + t)−
σ
2
− 1

2 ,

for t ∈ [0, T ] with T > 0. The initial time T > 0 exists by local well-posedness.
By imposing the smallness conditions on (u0, θ0) as in (1.20), (1.21) and (1.22),
we then show via (2.1), (2.2) and (2.3) that (u, θ) actually satisfies the following
improved inequalities,

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C0

2
ε, (1.23)

‖Λ−σh u(t)‖L2 , ‖Λ−σh θ(t)‖L2 ≤ C0

2
ε, (1.24)

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 , (1.25)

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2
− 1

2 . (1.26)
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The bootstrapping argument then implies that the maximal time T with this prop-
erty is given by T =∞. Thus, the four inequalities above indeed hold for all t <∞.
In particular, they yield the global in time bounds and decay rates.

Our main efforts are devoted to proving (1.23), (1.24), (1.25) and (1.26). The
initial time T > 0 exists by local well-posedness. Proving these improved inequalities
is very hard due to the lack of full dissipation. As aforementioned, some of the
nonlinear terms such as ∂33u in the expression of ∂3u require extremely careful
analysis. Various cancellations and other properties are exploited. This is a long
and nontrivial process. Various anisotropic inequalities are invoked to fully make
use of the anisotropic dissipation in the system. In order to obtain suitable upper
bounds for some of the terms, we have to exploit the structure of the kernel function
together with the corresponding term it acts on. To explain this point, we take two
terms from the representation of uh in (2.1) as an example,(

ξhξ3

|ξh|2
eλ1t +

ξhξ3

|ξh|2
G2 + ξhξ3G1

)
û03 (1.27)

and∫ t

0

(
ξhξ3

|ξh|2
eλ1(t−τ) +

ξhξ3

|ξh|2
G2(t− τ) + ξhξ3G1(t− τ)

)
( ̂P(u · ∇u))3(τ) dτ. (1.28)

The kernel function in (1.27) has a factor
1

|ξh|
, which has to be canceled in order

to obtain a bound of the form e−|ξh|
2t. The idea here is to combine ξ3 with û03

and use the divergence-free condition ξ3û03 = −ξh · û0h to generate a factor ξh.
To deal with the nonlinear term (1.28), we have also managed to generate factor

ξh in ( ̂P(u · ∇u))3. By applying the definition of the projection operator and the
divergence-free condition∇·u = 0, and invoking some cancellations via combination,
we find the identity

( ̂P(u · ∇u))3 = ̂∇h · (uhu3)− ̂∇h · ∂3∆−1∇ · (u⊗ uh)

− ̂∇h ·∆−1∂33(uhu3) + ̂∆−1∆h∂3(u3u3)

and the Fourier transform of the right-hand side involves ξh, which allows us to

cancel the factor
1

|ξh|
in the kernel. More technical details can be found in the

proofs of the two propositions and Theorem 1.3.

Finally, we mention some of the closely related work. Due to their practical
applications and mathematical significance, the stability and large-time properties
of perturbations near the hydrostatic balance have recently attracted considerable
mathematical interests. The work of Doering, Wu, Zhao and Zheng [12] investigated
the stability of the hydrostatic equilibrium to the 2D Boussinesq system with only
kinematic dissipation (without thermal diffusion) and rigorously proved the global
asymptotic stability of any perturbation near the hydrostatic equilibrium [12]. In
addition, extensive numerical simulations are performed in [12] to corroborate the
analytical results and predict some phenomena that are not proven. The work of
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Tao, Wu, Zhao and Zheng [30] resolves several important issues left open in [12]. In
particular, [30] provides a precise description of the final buoyancy distribution in
case of general initial conditions and the explicit decay rate of the velocity field or
the total mechanical energy. The paper of Castro, Córdoba and Lear successfully es-
tablished the stability and large time behavior on the 2D Boussinesq equations with
velocity damping instead of dissipation [9]. The stabilizing effect of the temperature
on the buoyancy-driven fluids and the stability of the hydrostatic equilibrium were
discovered for several partially dissipated 2D Boussinesq systems [2, 15, 16]. There
are very significant recent developments on the stability of shear flow to the fluid
equations with various partial dissipation [3–5,10,13,14,18,22,29,32,37,39–41].

The rest of this paper is divided into four sections. Section 2 details how we con-
vert the nonlinear Boussinesq system (1.6) into an integral form stated in Proposition
2.1. Section 3 presents the linear stability theory and the optimal decay rates for
the linearized system. In particular, we prove Proposition 1.1. Section 4 proves the
nonlinear stability result stated in Proposition 1.2. The optimal decay rates, our
main result stated in Theorem 1.3, are established in Section 5. For the sake of
clarity, Section 5 is further divided into four subsections.

2. Spectra and integral representation

This section separates the linear and the nonlinear parts in (1.3), solves the lin-
earized system and represents the nonlinear system in an integral form via Duhamel’s
principle. More precisely, we prove the following proposition.

Proposition 2.1. The system in (1.3) can be converted into the following integral
form

ûh = eλ1tû0h +

(
ξhξ3

|ξh|2
eλ1t +

ξhξ3

|ξh|2
G2 + ξhξ3G1

)
û03 −

ξhξ3

|ξ|2
G1θ̂0

−
∫ t

0

eλ1(t−τ)( ̂P(u · ∇u))h(τ) dτ

−
∫ t

0

(
ξhξ3

|ξh|2
eλ1(t−τ) +

ξhξ3

|ξh|2
G2 + ξhξ3G1

)
( ̂P(u · ∇u))3(τ) dτ

+

∫ t

0

ξhξ3

|ξ|2
G1(t− τ) ̂(u · ∇θ)(τ) dτ (2.1)

û3 =
(
−G2 − |ξh|2G1

)
û03 +

|ξh|2

|ξ|2
G1θ̂0

+

∫ t

0

(G2 + |ξh|2G1)(t− τ) ̂P(u · ∇u)3(τ) dτ

−
∫ t

0

|ξh|2

|ξ|2
G1(t− τ) ̂(u · ∇θ)(τ) dτ (2.2)

θ̂ = −G1û03 + (G3 + |ξh|2G1)θ̂0 +

∫ t

0

G1(t− τ) ̂P(u · ∇u)3(τ) dτ
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−
∫ t

0

(G3(t− τ) + |ξh|2G1(t− τ)) ̂(u · ∇θ)(τ) dτ (2.3)

where

G1 =
eλ4t − eλ3t

λ4 − λ3

= e−|ξh|
2t

(
|ξh|
|ξ|

)−1

sin
|ξh|
|ξ|

t,

G2 =
λ3e

λ4t − λ4e
λ3t

λ4 − λ3

= λ3G1 − eλ3t,

G3 =
λ4e

λ4t − λ3e
λ3t

λ4 − λ3

= λ3G1 + eλ4t.

(2.4)

with λ1, λ2, λ3 and λ4 given by

λ1 = λ2 = −|ξh|2, λ3 = −|ξh|2 −
|ξh|
|ξ|

i, λ4 = −|ξh|2 +
|ξh|
|ξ|

i. (2.5)

Proof of Proposition 2.1. We have separated the linear parts from the nonlinear ones
in (1.3) and obtained (1.6). Taking the Fourier transform of (1.6), we find

∂t

[
û(t)

θ̂(t)

]
= A

[
û(t)

θ̂(t)

]
+

[
M̂1

M̂2

]
,

where A represents the multiplier matrix of the linear operators, and M1 and M2

are the nonlinear terms,

A =



−|ξh|2 0 0 −ξ1ξ3

|ξ|2

0 −|ξh|2 0 −ξ2ξ3

|ξ|2

0 0 −|ξh|2
|ξh|2

|ξ|2
0 0 −1 −|ξh|2


M1 = −P(u · ∇u), M2 = −u · ∇θ.

By the Duhamel principle,[
û(t)

θ̂(t)

]
= eAt

[
û0

θ̂0

]
+

∫ t

0

eA(t−τ)

[
M̂1(τ)

M̂2(τ)

]
dτ. (2.6)

We compute the fundamental matrix eAt explicitly. The characteristic polynomial
associated with A is given by

(λ+ |ξh|2)2

(
λ2 + 2|ξh|2λ+ |ξh|4 +

|ξh|2

|ξ|2

)
= 0

and thus the spectra of A are

λ1 = λ2 = −|ξh|2, λ3 = −|ξh|2 −
|ξh|
|ξ|

i, λ4 = −|ξh|2 +
|ξh|
|ξ|

i.
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The two eigenvectors corresponding to λ1 = λ2 are

−→
V 1 =


1
0
0
0

 , −→
V 2 =


0
1
0
0

 .
The eigenvectors

−→
V m associated with the eigenvalues λm(m = 3, 4) satisfy

(λmI − A)
−→
V m

=



λm + |ξh|2 0 0
ξ1ξ3

|ξ|2

0 λm + |ξh|2 0
ξ2ξ3

|ξ|2

0 0 λm + |ξh|2 −|ξh|
2

|ξ|2
0 0 1 λm + |ξh|2



Vm1

Vm2

Vm3

Vm4

 = 0

and thus

−→
V 3 =


−ξ1ξ3

−ξ2ξ3

−(λ3 + |ξh|2)2 |ξ|2
(λ3 + |ξh|2)|ξ|2

 , −→
V 4 =


−ξ1ξ3

−ξ2ξ3

−(λ4 + |ξh|2)2 |ξ|2
(λ4 + |ξh|2)|ξ|2

 .
Thus the eigen-matrix is given by

V =


1 0 −ξ1ξ3 −ξ1ξ3

0 1 −ξ2ξ3 −ξ2ξ3

0 0 −(λ3 + |ξh|2)2|ξ|2 −(λ4 + |ξh|2)2|ξ|2
0 0 (λ3 + |ξh|2)|ξ|2 (λ4 + |ξh|2)|ξ|2


and

V −1 =



1 0
ξ1ξ3

|ξh|2
0

0 1
ξ2ξ3

|ξh|2
0

0 0
λ4 + |ξh|2

|ξh|2(λ4 − λ3)

(λ4 + |ξh|2)2

|ξh|2(λ4 − λ3)

0 0 − λ3 + |ξh|2

|ξh|2(λ4 − λ3)
− (λ3 + |ξh|2)2

|ξh|2(λ4 − λ3)


.

As a consequence, the fundamental matrix is given by

eAt = V


eλ1t 0 0 0
0 eλ1t 0 0
0 0 eλ3t 0
0 0 0 eλ4t

V −1
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=



eλ1t 0
ξ1ξ3

|ξh|2
eλ1t +

ξ1ξ3

|ξh|2
G2 + ξ1ξ3G1 −ξ1ξ3

|ξ|2
G1

0 eλ2t
ξ2ξ3

|ξh|2
eλ2t +

ξ2ξ3

|ξh|2
G2 + ξ2ξ3G1 −ξ2ξ3

|ξ|2
G1

0 0 −G2 − |ξh|2G1
|ξh|2

|ξ|2
G1

0 0 −G1 G3 + |ξh|2G1


,

where we have written

G1 =
eλ4t − eλ3t

λ4 − λ3

= e−|ξh|
2t

sin |ξh||ξ| t

|ξh|
|ξ|

,

G2 =
λ3e

λ4t − λ4e
λ3t

λ4 − λ3

= λ3G1 − eλ3t,

G3 =
λ4e

λ4t − λ3e
λ3t

λ4 − λ3

= λ3G1 + eλ4t.

Inserting eAt in (2.6) yields the desired representations (2.1), (2.2) and (2.3). This
completes the proof of Proposition 2.1. �

3. Linear stability and optimal decay

This section focuses on the stability of the linearized system of (1.3) and the
optimal decay rates. This result serves as the first step for the nonlinear stability
and optimal decay rates presented in the next two sections. Recall that, by (1.6),
the linearized portion of (1.3) can be written as

∂tu = ν∆hu+

 −∂1∂3∆−1θ

−∂2∂3∆−1θ

∆h∆
−1θ

 ,
∂tθ = η∆hθ − u3.

(3.1)

According to Proposition 2.1, (3.1) can be solved explicitly as (1.3) can be repre-
sented as

ûh = eλ1tû0h +

(
ξhξ3

|ξh|2
eλ1t +

ξhξ3

|ξh|2
G2 + ξhξ3G1

)
û03 −

ξhξ3

|ξ|2
G1θ̂0 (3.2)

û3 =
(
−G2 − |ξh|2G1

)
û03 +

|ξh|2

|ξ|2
G1θ̂0 (3.3)

θ̂ = −G1û03 + (G3 + |ξh|2G1)θ̂0, (3.4)

where G1, G2, G3 and λ1 through λ4 are given in (2.4) and (2.5), respectively. Our
goal here is to prove Proposition 1.1 given in the introduction.

In order to prove Proposition 1.1, we first state a lemma that provides upper
bounds for G1, G2 and G3 defined in (2.4).
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Lemma 3.1. There are two constants C > 0 and c0 > 0 such that, for any ξ ∈ R3

and t ≥ 0,

|G1| ≤ t e−|ξh|
2t, |ξh|2|G1| ≤ C e−c0|ξh|

2t,

|G2| ≤ C e−c0|ξh|
2t, |G3| ≤ C e−c0|ξh|

2t.

Proof of Lemma 3.1. The upper bounds for G1 follow directly from the definition of
G1 and the simple fact that | sin y| ≤ |y| for any real number y. To bound G2, we
notice that

G2 = λ3G1 − eλ3t = −|ξh|2G1 − i
|ξh|
|ξ|

G1 − eλ3t

and thus
|G2| ≤ |ξh|2t e−|ξh|

2t + 2e−|ξh|
2t ≤ C e−c0 |ξh|

2t,

where we have used the fact that ya e−y ≤ e−c0y for any a ≥ 0 and y ≥ 0. G3 can
be bounded similarly. �

Proof of Proposition 1.1. Due to the frequency decoupling in the solution represen-
tation in (3.2), (3.3) and (3.4), it suffices to set s = 0 and consider the L2-norm.
We start with the estimate of uh. The first term in (3.2) is easily bounded. For any
0 ≤ t < 1,

‖eλ1tû0h‖L2 ≤ ‖û0h‖L2 = ‖u0h‖L2 . (3.5)

For t ≥ 1,

‖eλ1tû0h‖L2 = ‖|ξh|σ e−|ξh|
2t|ξh|−σû0h‖L2 ≤ C t−

σ
2 ‖Λ−σh u0h‖L2 . (3.6)

Here we have used the following inequality

sup
ξh

|ξh|σ e−|ξh|
2t = t−

σ
2 sup

ξh

(|ξh|2t)
σ
2 e−|ξh|

2t = C t−
σ
2 ,

where C = sup
b≥0

b
σ
2 e−b <∞. Combining (3.5) and (3.6) yields

‖eλ1tû0h‖L2 ≤ C
(
‖u0h‖L2 + ‖Λ−σh u0h‖L2

)
(1 + t)−

σ
2 .

Since the bound for 0 ≤ t < 1 is quite simple, we shall only present the estimates for
t ≥ 1 in the rest of the proof. We consider the second term in (3.2). For notational
convenience, we write

I =

(
ξhξ3

|ξh|2
eλ1t +

ξhξ3

|ξh|2
G2 + ξhξ3G1

)
û03.

By ∇ · u0 = 0 or ξ1û01 + ξ2û02 + ξ3û03 = 0 and Lemma 3.1,

‖I‖L2 =

∥∥∥∥ξh( eλ1t

|ξh|2
+

G2

|ξh|2
+G1

)
ξ3û03

∥∥∥∥
L2

=

∥∥∥∥ξh( eλ1t

|ξh|2
+

G2

|ξh|2
+G1

)
(−ξh · û0h)

∥∥∥∥
L2

= ‖(eλ1t +G2 + |ξh|2G1)û0h‖L2

≤ ‖e−|ξh|2t û0h‖L2 .



THE 3D BOUSSINESQ EQUATIONS 15

Therefore,
‖I‖L2 ≤ C

(
‖u0h‖L2 + ‖Λ−σh u0h‖L2

)
(1 + t)−

σ
2 .

We now turn to the last term in (3.2). Since∣∣∣∣ξhξ3

|ξ|2
G1

∣∣∣∣ =

∣∣∣∣∣ξhξ3

|ξ|2
e−|ξh|

2t
sin |ξh||ξ| t

|ξh|
|ξ|

∣∣∣∣∣ ≤ e−|ξh|
2t.

Therefore,∥∥∥∥ξhξ3

|ξ|2
G1θ̂0

∥∥∥∥
L2

≤ ‖e−|ξh|2tθ̂0‖L2 ≤ C
(
‖θ0‖L2 + ‖Λ−σh θ0‖L2

)
(1 + t)−

σ
2 .

Combining the estimates for the three terms above yields

‖u(t)‖L2 ≤ C
(
‖(u0h, θ0)‖L2 + ‖(Λ−σh u0h,Λ

−σ
h θ0)‖L2

)
(1 + t)−

σ
2 .

Using Lemma 3.1 and noticing that∣∣∣∣ |ξh|2|ξ|2 G1

∣∣∣∣ =

∣∣∣∣∣ |ξh|2|ξ|2 e−|ξh|
2t

sin |ξh||ξ| t

|ξh|
|ξ|

∣∣∣∣∣ ≤ e−|ξh|
2t,

we have from (3.3) that

‖u3‖L2 ≤ C ‖e−|ξh|2tû03‖L2 + ‖e−|ξh|2tθ̂0‖L2

≤ C
(
‖(u03, θ0)‖L2 + ‖(Λ−σh u03,Λ

−σ
h θ0)‖L2

)
(1 + t)−

σ
2 .

The estimate of the first term in (3.4) needs some attention. By ∇ · u0 = 0 or
ξh · û0h + ξ3û03 = 0,

‖G1û03‖L2 =
∥∥∥e−|ξh|2t sin |ξh||ξ| t|ξh|

|ξ|

û03

∥∥∥
L2
≤
∥∥∥e−|ξh|2t |ξ||ξh| û03

∥∥∥
L2

≤
∥∥∥e−|ξh|2t |ξh|+ |ξ3|

|ξh|
û03

∥∥∥
L2

≤ ‖e−|ξh|2tû03‖L2 +

∥∥∥∥e−|ξh|2t |ξh · û0h|
|ξh|

∥∥∥∥
L2

≤ C
(
‖u0‖L2 + ‖Λ−σh u0‖L2

)
(1 + t)−

σ
2 .

The second term is easily bounded,

‖(G3 + |ξh|2G1)θ̂0‖L2 ≤ C
(
‖θ0‖L2 + ‖Λ−σh θ0‖L2

)
(1 + t)−

σ
2 .

Therefore,

‖θ‖L2 ≤ C
(
‖(u0, θ0)‖L2 + ‖(Λ−σh u0,Λ

−σ
h θ0)‖L2

)
(1 + t)−

σ
2 .

Therefore (1.16) is proven. The proof of (1.17) is similarly to that for (1.16). In fact,
(1.17) can be shown by repeating the process for (1.16) with ∂3u and ∂3θ replacing
u and θ, respectively. We now turn to (1.18). Noticing that the upper bound for

each term in (3.2), (3.3) and (3.4) contains the factor e−|ξh|
2t, we can easily obtain

the extra decay factor via the inequality, for any t > 0,

‖|ξh|e−|ξh|
2tf‖L2 ≤ C t−

σ+1
2 ‖Λ−σh f‖L2 .
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This explains (1.18). Combining (1.18) with t ≥ 1 and the basic inequality with
0 ≤ t < 1,

‖|ξh|e−|ξh|
2tf‖L2 ≤ C ‖|ξh|f‖L2

leads to (1.19). This completes the proof of Proposition 1.1. �

4. Nonlinear stability

This section is devoted to proving Proposition 1.2, which establishes the nonlinear
stability. This proposition serves as a preparation for our main result on the optimal
decay proven in the next section.

The proof uses the following lemma that provides anisotropic upper bounds for
the integral of a triple product. It is a very powerful tool in dealing with anisotropic
equations.

Lemma 4.1. The following estimates hold when the right-hand sides are all bounded.∫
R3

|fgh|dx ≤ C ‖f‖
1
2

L2‖∂1f‖
1
2

L2‖g‖
1
2

L2‖∂2g‖
1
2

L2‖h‖
1
2

L2‖∂3h‖
1
2

L2 ,∫
R3

|fgh|dx ≤ C ‖f‖
1
4

L2‖∂1f‖
1
4

L2‖∂2f‖
1
4

L2‖∂1∂2f‖
1
4

L2‖g‖
1
2

L2‖∂3g‖
1
2

L2‖h‖L2 .

A simple proof of this lemma can be found in [36]. The 2D version of such
anisotropic upper bounds can be found in [7]. We will not reproduce a proof of
Lemma 4.1 here, but instead begin with the proof of Proposition 1.2.

Proof of Proposition 1.2. Since the local (in time) well-posedness of (1.3) can be
established via a standard approach (see [21]), our attention is focused on the global
bound of (u, θ). The framework of the proof is the bootstrapping argument. Define
the energy functional E(t) by

E(t) = sup
0≤τ≤t

‖(u, θ)(τ)‖2
Hm + ν

∫ t

0

‖∇hu‖2
Hm dτ + η

∫ t

0

‖∇hθ‖2
Hmdτ.

Our main efforts are devoted to showing that, for a constant C > 0 and for t > 0,

E(t) ≤ E(0) + C E(t)
3
2 . (4.1)

Once (4.1) is shown, then a direct application of the bootstrapping argument implies
that, if

E(0) = ‖(u0, θ0)‖2
Hm ≤

1

16C2
or ‖(u0, θ0)‖Hm ≤ ε :=

1

4C
, (4.2)

then,

E(t) ≤ 1

8C2
for all t > 0. (4.3)

In fact, if we make the ansatz that

E(t) ≤ 1

4C2
. (4.4)
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Inserting (4.4) in (4.1) and invoking (4.2) yields

E(t) ≤ E(0) +
1

2
E(t) or E(t) ≤ 2E(0) ≤ 1

8C2
,

which is only half of the bound in the ansatz in (4.4). The bootstrapping argument
then implies (4.3). It remains to prove (4.1). Due to the norm equivalence

‖f‖2
Hm ∼ ‖f‖2

L2 +
3∑
i=1

‖∂mi f‖2
L2 ,

it suffices to bound ‖(u, θ)‖L2 and
3∑
i=1

‖(∂mi u, ∂mi θ)‖L2 . First of all, we have the

global L2-bound. Dotting the equations in (1.3) by (u, θ) and integrating by parts,
we find

‖(u, θ)(t)‖2
L2 + 2ν

∫ t

0

‖∇hu‖2
L2 dτ + 2η

∫ t

0

‖∇hθ‖2
L2dτ = ‖(u0, θ0)‖2

L2 . (4.5)

Applying the differential operator ∂mi to the equations in (1.3), dotting the resulting
equations by (∂mi u, ∂

m
i θ), and integrating by parts, we have

d

dt

3∑
i=1

(
‖∂mi u‖2

L2 + ‖∂mi θ‖2
L2

)
+ 2ν

3∑
i=1

‖∇h∂
m
i u‖2

L2 + 2η
3∑
i=1

‖∇h∂
m
i θ‖mL2

= J1 + J2, (4.6)

where J1 and J2 are given by

J1 = −
3∑
i=1

∫
∂mi (u · ∇u) · ∂mi u dx,

J2 = −
3∑
i=1

∫
∂mi (u · ∇θ) · ∂mi θ dx.

Here we have used the fact that∫
(∂mi θe3 · ∂mi u− ∂mi u3∂

m
i θ) dx = 0.

We decompose J1 as

J1 =−
2∑
i=1

∫
∂mi (u · ∇u) · ∂mi u dx−

2∑
k=1

∫
∂m3 (uk · ∂ku) · ∂m3 u dx

−
∫
∂m3 (u3 · ∂3u) · ∂m3 u dx

:=J11 + J12 + J13.

J11 is easy to deal with. Due to ∇ · u = 0,

J11 =
2∑
i=1

∫
∂mi (u⊗ u) · ∇∂mi u dx
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≤ C ‖u‖L∞ ‖∇hu‖2
Hm ≤ C ‖u‖Hm ‖∇hu‖2

Hm .

Here we have used the calculus inequality for a product. For any nonnegative integer
m, there exists C > 0 such that, for any u, v ∈ L∞ ∩Hm,

‖Dm(uv)‖L2 ≤ C (‖u‖L∞‖Dmv||L2 + ‖Dmu‖L2‖v‖L∞) .

This inequality can be found in [21, p.98]. By the Leibniz Formula and∫
(u · ∇∂mi u) · ∂mi u dx = 0, i = 1, 2, 3,

we have

J12 = −
2∑

k=1

m∑
l=1

Clm
∫
∂l3uk · ∂m−l3 ∂ku · ∂m3 u dx,

where Clm denotes the combinatorial number,

Clm =
m!

l!(m− l)!
.

By Lemma 4.1,

|J12| ≤ C
2∑

k=1

m∑
l=1

‖∂l3uk‖
1
2

L2 ‖∂1∂
l
3uk‖

1
2

L2 ‖∂m−l3 ∂ku‖
1
2

L2 ‖∂3∂
m−l
3 ∂ku‖

1
2

L2

× ‖∂m3 u‖
1
2

L2 ‖∂2∂
m
3 u‖

1
2

L2

≤ C ‖u‖Hm ‖∇hu‖2
Hm .

By ∇ · u = 0 or ∂3u3 = −∇h · uh and Lemma 4.1,

J13 = −
m∑
l=1

Clm
∫
∂l3u3 · ∂m−l3 ∂3u · ∂m3 u dx

=
m∑
l=1

Clm
∫
∂l−1

3 ∇h · uh · ∂m−l3 ∂3u · ∂m3 u dx

≤ C

m∑
l=1

‖∂l−1
3 ∇h · uh‖

1
2

L2 ‖∂3∂
l−1
3 ∇h · uh‖

1
2

L2 ‖∂m−l3 ∂3u‖
1
2

L2 ‖∂1∂
m−l
3 ∂3u‖

1
2

L2

× ‖∂m3 u‖
1
2

L2 ‖∂2∂
m
3 u‖

1
2

L2

≤ C ‖u‖Hm ‖∇hu‖2
Hm .

Therefore,
|J1| ≤ C ‖u‖Hm ‖∇hu‖2

Hm . (4.7)

Using ∇ · u = 0, we decompose J2 as

J2 = −
2∑
i=1

∫
∂mi ∇ · (uθ) · ∂mi θ dx

−
2∑

k=1

∫
∂m3 (uk · ∂kθ) · ∂m3 θ dx−

∫
∂m3 (u3∂3θ) · ∂m3 θ dx
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:= J21 + J22 + J23.

By integration by parts and Sobolev’s inequality, for m ≥ 2,

J21 =
2∑
i=1

∫
∂mi (uθ) · ∇∂mi θ dx

≤ C
2∑
i=1

(‖∂mi u‖L2‖θ‖L∞ + ‖u‖L∞‖∂mi θ‖L2) ‖∇∂mi θ‖L2

≤ C (‖u‖Hm + ‖θ‖Hm)
(
‖∇hu‖2

Hm + ‖∇hθ‖2
Hm

)
.

By the Leibniz Formula and∫
(u · ∇∂mi θ) · ∂mi θ dx = 0, i = 1, 2, 3,

we have

J22 + J23 = −
2∑

k=1

m∑
l=1

Clm
∫
∂l3uk · ∂m−l3 ∂kθ · ∂m3 θ dx

−
m∑
l=1

Clm
∫
∂l3u3 · ∂m−l3 ∂3θ · ∂m3 θ dx.

By ∇ · u = 0 or ∂3u3 = −∇h · uh and Lemma 4.1,

|J22|+ |J23| ≤ C
2∑

k=1

m∑
l=1

‖∂l3uk‖
1
2

L2 ‖∂1∂
l
3uk‖

1
2

L2 ‖∂m−l3 ∂kθ‖
1
2

L2

× ‖∂3∂
m−l
3 ∂kθ‖

1
2

L2‖∂m3 θ‖
1
2

L2 ‖∂2∂
m
3 θ‖

1
2

L2

+ C
m∑
l=1

‖∂l−1∇h · uh‖
1
2

L2 ‖∂3∂
l−1∇h · uh‖

1
2

L2 ‖∂m−l3 ∂3θ‖
1
2

L2

× ‖∂1∂
m−l
3 ∂3θ‖

1
2

L2‖∂m3 θ‖
1
2

L2 ‖∂2∂
m
3 θ‖

1
2

L2

≤ C (‖u‖Hm + ‖θ‖Hm)
(
‖∇hu‖2

Hm + ‖∇hθ‖2
Hm

)
.

Collecting the bounds for J2, we obtain

|J2| ≤ C (‖u‖Hm + ‖θ‖Hm)
(
‖∇hu‖2

Hm + ‖∇hθ‖2
Hm

)
. (4.8)

Inserting (4.7) and (4.8) in (4.6), integrating in time over [0, t] and adding to (4.5),
we deduce

E(t) ≤ E(0) + C

∫ t

0

(
‖u‖Hm ‖∇hu‖2

Hm

+ (‖u‖Hm + ‖θ‖Hm)
(
‖∇hu‖2

Hm + ‖∇hθ‖2
Hm

) )
dτ

≤ E(0) + C E(t)
3
2 ,

which is the desired inequality (4.1). This completes the proof of Proposition 1.2. �
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5. Optimal decays for the nonlinear system

This section proves our main result, Theorem 1.3. We need several tools, which
are stated in the following lemmas. The first lemma provides an upper bound for
the Lp-norm of a one-dimensional function, which serves as a basic ingredient for
anisotropic upper bounds. A proof can be found in [38].

Lemma 5.1. Let 2 ≤ p ≤ ∞. Let s >
1

2
− 1

p
. Then, there exists a constant

C = C(p, s) such that, for any 1D function f ∈ Hs(R),

‖f‖Lp(R) ≤ C ‖f‖
1− 1

s(
1
2
− 1
p)

L2(R) ‖Λsf‖
1
s(

1
2
− 1
p)

L2(R) .

In particular, if p =∞ and s = 1, then f = f(x3),

‖f‖L∞ ≤ C ‖f‖
1
2

L2(R) ‖∂3f‖
1
2

L2(R).

The second lemma states Minkowski’s inequality. It is an elementary tool that
allows us to estimate the Lebesgue norm with larger index first followed by the
Lebesgue norm with a smaller index. The following version is taken from [1, p.4]
and a more general statement can be found in [19, p.47].

Lemma 5.2. For a nonnegative measurable function f over Rm × Rn and for 1 ≤
p ≤ q ≤ ∞, ∥∥‖f‖Lp(Rm)

∥∥
Lq(Rn)

≤
∥∥‖f‖Lq(Rn)

∥∥
Lp(Rm)

.

For convenience, we introduce the notation

Lqh(R
3) := Lqx1,x2(R

3), ‖f‖LphLqx3 :=
∥∥∥‖f‖Lqx3∥∥∥Lph ,

which is frequently used in the context.

The next lemma provides an exact Lp − Lq decay estimate for the generalized
heat operator associated with a fractional Laplacian (see, e.g, [35]).

Lemma 5.3. Let β ≥ 0, α > 0, ν > 0, 1 ≤ p ≤ q ≤ ∞. Then

‖Λβ e−ν(−∆)αtf‖Lq(Rd) ≤ C t−
β
2α
− d

2α( 1
p
− 1
q )‖f‖Lp(Rd).

Proof of Theorem 1.3. The bootstrapping argument is suitable for our purpose. We
assume the initial datum (u0, θ0) satisfies (1.20), (1.21) and (1.22) for sufficiently
small ε > 0. The bootstrapping argument starts with the ansatz that, for a suitably
selected C0 > 0,

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C0 ε, (5.1)

‖Λ−σh u(t)‖L2 , ‖Λ−σh θ(t)‖L2 ≤ C0 ε, (5.2)

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 , (5.3)

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C0 ε(1 + t)−
σ
2
− 1

2 . (5.4)
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for t ∈ [0, T ] with some T > 0. These inequalities hold on the initial time interval
[0, T ] guaranteed by local well-posedness. We then show that (5.1), (5.2), (5.3) and
(5.4) remain true with C0 replaced by C0/2, namely

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C0

2
ε, (5.5)

‖Λ−σh u(t)‖L2 , ‖Λ−σh θ(t)‖L2 ≤ C0

2
ε, (5.6)

‖u(t)‖L2 , ‖∂3u(t)‖L2 , ‖θ(t)‖L2 , ‖∂3θ(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 , (5.7)

‖∇hu(t)‖L2 , ‖∇hθ(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2
− 1

2 . (5.8)

The bootstrapping argument then asserts that (5.5), (5.6), (5.7) and (5.8) hold for
all t > 0.

It then suffices to prove (5.5) through (5.8). (5.5) follows directly from Proposi-
tion 1.2 with m = 4. By Proposition 1.2,

‖u(t)‖H4 , ‖θ(t)‖H4 ≤ C1ε.

Then (5.5) clearly holds when we take C0 ≥ 2C1. The rest of this section is divided
into four subsections. The first subsection estimates ‖Λ−σh u(t)‖L2 and ‖Λ−σh θ(t)‖L2

and verifies (5.6). The second subsection estimates ‖u(t)‖L2 and ‖θ(t)‖L2 and verifies
part of (5.7). The third subsection bounds ‖∂3u(t)‖L2 and ‖∂3θ(t)‖L2 and completes
verifying (5.7). The last subsection works on ‖∇hu(t)‖L2 and ‖∇hθ(t)‖L2 and proves
(5.8).

5.1. Verification of (5.6). This subsection estimates ‖Λ−σh u(t)‖L2 and ‖Λ−σh θ(t)‖L2

and verifies (5.6). Applying Λ−σh to (1.3) and dotting with (Λ−σh u,Λ−σh θ), we obtain

d

dt

(
‖Λ−σh u‖2

L2 + ‖Λ−σh θ‖2
L2

)
+ 2

(
‖Λ1−σ

h u‖2
L2 + ‖Λ1−σ

h θ‖2
L2

)
= −2

∫
Λ−σh (u · ∇u) · Λ−σh u dx− 2

∫
Λ−σh (u · ∇θ) · Λ−σh θ dx

:= N1 +N2, (5.9)

where we have used ∫
(Λ−σh (θe3) · Λ−σh u− Λ−σh u3 Λ−σh θ) dx = 0.

We distinguish the horizontal derivatives from the vertical ones and write N1 as

N1 = −2

∫
Λ−σh (uh · ∇hu) · Λ−σh u dx− 2

∫
Λ−σh (u3∂3uh) · Λ−σh uh dx

− 2

∫
Λ−σh (u3∂3u3) · Λ−σh u3 dx

:= N11 +N12 +N13. (5.10)
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N12 involves the unfavorable derivative ∂3 and may potentially generate the worst
upper bound. We deal with this term first. By Hölder’s inequality, the Hardy-
Littlewood-Sobolev inequality and Lemmas 5.1, 5.2 and 5.3,

|N12| ≤ ‖Λ−σh (u3∂3uh)‖L2 ‖Λ−σh uh‖L2

=
∥∥∥‖Λ−σh (u3∂3uh)‖L2

h

∥∥∥
L2
x3

‖Λ−σh uh‖L2

≤
∥∥∥‖u3∂3uh‖Lqh

∥∥∥
L2
x3

‖Λ−σh uh‖L2

≤
∥∥∥‖u3∂3uh‖L2

x3

∥∥∥
Lqh

‖Λ−σh uh‖L2

≤
∥∥∥‖u3‖L∞x3‖∂3uh‖L2

x3

∥∥∥
Lqh

‖Λ−σh uh‖L2

≤ ‖u3‖
L

2
σ
h L
∞
x3

‖∂3uh‖L2
hL

2
x3
‖Λ−σh uh‖L2 ,

where
1

2
+
σ

2
=

1

q
.

Clearly, for
3

4
≤ σ < 1, we have

1 < q < 2.

The first part on the right-hand side can be further bounded as follows. By Lemma

5.1 and Hölder’s inequality with
σ

2
=

1

4
+

2σ − 1

4
,

‖u3‖
L

2
σ
h L
∞
x3

≤ C
∥∥∥‖u3‖

1
2

L2
x3

‖∂3u3‖
1
2

L2
x3

∥∥∥
L

2
σ
h

≤ C
∥∥∥‖u3‖

1
2

L2
x3

∥∥∥
L

4
2σ−1
h

∥∥∥‖∂3u3‖
1
2

L2
x3

∥∥∥
L4
h

≤ C ‖∂3u3‖
1
2

L2 ‖u3‖
1
2

L
2

2σ−1
h L2

x3

≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
1
2

L2
x3
L

2
2σ−1
h

≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 .

Thus we have obtained the following bound

|N12| ≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3uh‖L2 ‖Λ−σh uh‖L2 .

The other two terms in (5.10) can be estimated similarly,

N11 ≤ C ‖∂3uh‖
1
2

L2 ‖uh‖
σ− 1

2

L2 ‖∇huh‖1−σ
L2 ‖∇hu‖L2 ‖Λ−σh u‖L2 ,

N13 ≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∇h · uh‖L2 ‖Λ−σh u3‖L2 .

Combining the upper bounds for N1 yields

|N1| ≤ C ‖u‖σ−
1
2

L2 ‖∇u‖L2‖∇hu‖
3
2
−σ

L2 ‖‖Λ−σh u‖L2 . (5.11)
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The estimate of N2 shares some similarities with that for N1 and starts by writing

N2 = −2

∫
Λ−σh (uh · ∇hθ) · Λ−σh θ dx− 2

∫
Λ−σh (u3∂3θ) · Λ−σh θ dx

= N21 +N22.

The two terms N21 and N22 can be estimated similarly as N11 and N12,

N21 ≤ C ‖∂3uh‖
1
2

L2 ‖uh‖
σ− 1

2

L2 ‖∇huh‖1−σ
L2 ‖∇hθ‖L2 ‖Λ−σh θ‖L2 ,

N22 ≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3θ‖L2 ‖Λ−σh θ‖L2 .

Therefore,

|N2| ≤ C ‖u‖σ−
1
2

L2 ‖(∇u,∇θ)‖L2

(
‖∇hu‖

3
2
−σ

L2 + ‖∇hθ‖
3
2
−σ

L2

)
‖Λ−σh θ‖L2 . (5.12)

Inserting (5.11) and (5.12) in (5.9) and integrating in time, we obtain

‖Λ−σh u‖2
L2 + ‖Λ−σh θ‖2

L2 + 2

∫ t

0

(
‖Λ1−σ

h u‖2
L2 + ‖Λ1−σ

h θ‖2
L2

)
dτ

≤ C

∫ t

0

‖u‖σ−
1
2

L2 ‖(∇u,∇θ)‖L2

(
‖∇hu‖

3
2
−σ

L2 + ‖∇hθ‖
3
2
−σ

L2

)
‖Λ−σh θ‖L2 dτ.

Invoking the ansatz in (5.1) through (5.4), we obtain

‖Λ−σh u‖2
L2 + ‖Λ−σh θ‖2

L2 ≤ C C3
0 ε

3

∫ t

0

(1 + τ)−
σ
2

(σ+ 1
2

) (1 + τ)( 3
2
−σ)(−σ

2
− 1

2
) dτ

≤ C C3
0 ε

3

∫ t

0

(1 + τ)−
σ
2
− 3

4 dτ

≤ C C3
0 ε

3

for any σ >
1

2
. If we choose ε > 0 to be sufficiently small such that

CC0ε ≤
1

4
,

then

‖Λ−σh u‖2
L2 + ‖Λ−σh θ‖2

L2 ≤
1

4
C2

0ε
2,

which, in particular, verifies (5.6).

5.2. Estimates of ‖u‖L2 and ‖θ‖L2 and verification of (5.7). This subsection
verifies part of (5.7). We take advantage of the integral representation formula in
(2.1), (2.2) and (2.3). Since the linear terms in these formula have been estimated
in Proposition 1.1 and its proof, it suffices to bound the time integral parts. For
notational convenience, we denote the time integral terms in (2.1), (2.2) and (2.3)
as

K1 =

∫ t

0

eλ1(t−τ)( ̂P(u · ∇u))h(τ) dτ,

K2 =

∫ t

0

(
ξhξ3

|ξh|2
eλ1(t−τ +

ξhξ3

|ξh|2
G2(t− τ) + ξhξ3G1(t− τ)

)
( ̂P(u · ∇u))3(τ) dτ,
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K3 =

∫ t

0

ξhξ3

|ξ|2
G1(t− τ) ̂(u · ∇θ)(τ) dτ,

K4 =

∫ t

0

(G2 + |ξh|2G1)(t− τ) ̂P(u · ∇u)3(τ) dτ,

K5 =

∫ t

0

|ξh|2

|ξ|2
G1(t− τ) ̂(u · ∇θ)(τ) dτ,

K6 =

∫ t

0

G1(t− τ) ̂P(u · ∇u)3(τ) dτ,

K7 =

∫ t

0

(G3(t− τ) + |ξh|2G1(t− τ)) ̂(u · ∇θ)(τ) dτ.

We first bound uh and start with K1. By the definition of the projection operator
P = I −∇∆−1∇·, we have

P(u · ∇u))h = u · ∇uh −∇h∆
−1∇ · (u · ∇u)

= uh · ∇huh + u3∂3uh −∆−1∇ · ∇ · ∇h(u⊗ u). (5.13)

Correspondingly the upper bound consists of three parts,

‖K1‖L2 ≤
∫ t

0

‖e∆h(t−τ)uh · ∇huh(τ)‖L2 dτ

+ C

∫ t

0

‖e∆h(t−τ)∇h(u⊗ u)(τ)‖L2 dτ

+

∫ t

0

‖e∆h(t−τ)u3∂3uh(τ)‖L2 dτ

= K11 +K12 +K13,

where we have used the bounedness of the Riesz transform on L2,

‖∆−1∇ · ∇ · F‖L2 ≤ C ‖F‖L2 .

K11 and K12 involve the good derivative ∇h and are easier to control while K13 is
harder due to the bad derivative ∂3. By Lemmas 5.1, 5.2 and 5.3,

K11 ≤
∫ t

0

∥∥∥‖e∆h(t−τ)uh · ∇hu(τ)‖L2
h

∥∥∥
L2
x3

dτ

≤
∫ t

0

∥∥∥(t− τ)−
1
2‖uh · ∇hu(τ)‖L1

h

∥∥∥
L2
x3

dτ

≤
∫ t

0

(t− τ)−
1
2

∥∥∥‖uh(τ)‖L2
h
‖∇hu(τ)‖L2

h

∥∥∥
L2
x3

dτ

≤
∫ t

0

(t− τ)−
1
2‖uh(τ)‖L∞x3L2

h
‖∇hu(τ)‖L2

x3
L2
h
dτ

≤
∫ t

0

(t− τ)−
1
2‖uh(τ)‖L2

hL
∞
x3
‖∇hu(τ)‖L2 dτ
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≤
∫ t

0

(t− τ)−
1
2‖uh(τ)‖

1
2

L2
hL

2
x3

‖∂3uh(τ)‖
1
2

L2
hL

2
x3

‖∇hu(τ)‖L2 dτ

≤
∫ t

0

(t− τ)−
1
2‖uh‖

1
2

L2‖∂3uh‖
1
2

L2‖∇hu(τ)‖L2 dτ.

Invoking (5.1) through (5.4), we have,

K11 ≤ C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

σ
4 (1 + τ)−

σ
2
− 1

2 dτ

= C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−σ−

1
2 dτ

≤


C2

0 ε
2 (1 + t)−σ if σ <

1

2

C2
0 ε

2 (1 + t)−
1
2 if σ >

1

2

C2
0 ε

2 (1 + t)−
1
2 ln(1 + t) if σ =

1

2
.

Therefore, for
1

2
< σ < 1,

K11 ≤ C2
0 ε

2 (1 + t)−
σ
2 .

If ε is taken to be sufficiently small such that

C0 ε ≤
1

128
, (5.14)

then

K11 ≤
C0

128
ε (1 + t)−

σ
2 .

K12 contains the good derivative ∇h and admits the same upper bound as the one
for K11. We now turn to K13.

K13 ≤
∫ t

0

∥∥∥‖e∆h(t−τ)u3∂3uh(τ)‖L2
h

∥∥∥
L2
x3

dτ

≤
∫ t

0

‖(t− τ)−
1
2‖u3∂3uh(τ)‖L1

h
‖L2

x3
dτ

≤
∫ t

0

(t− τ)−
1
2‖‖u3(τ)‖L2

h
‖∂3uh(τ)‖L2

h
‖L2

x3
dτ

≤
∫ t

0

(t− τ)−
1
2‖u3(τ)‖

1
2

L2
hL

2
x3

‖∂3u3(τ)‖
1
2

L2
hL

2
x3

‖∂3uh(τ)‖L2 dτ

≤
∫ t

0

(t− τ)−
1
2‖u3(τ)‖

1
2

L2‖∇h · uh(τ)‖
1
2

L2‖∂3uh(τ)‖L2 dτ

Invoking (5.1) through (5.4) yields∫ t

0

‖e∆h(t−τ)u3∂3uh(τ)‖L2 dτ

≤ C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

σ
4
− 1

4 (1 + τ)−
σ
2 dτ
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= C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−σ−

1
4 dτ

≤ C2
0 ε

2 (1 + t)−
σ
2

for any
1

2
≤ σ < 1. If ε is taken to satisfy (5.14), then∫ t

0

‖e∆h(t−τ)u3∂3uh(τ)‖L2 dτ ≤ C0

128
ε (1 + t)−

σ
2 .

Combining the upper bounds, we obtain

‖K1‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

We now bound ‖K2‖L2 . We take a quick inspection of the integrand in K2. In order
to bound

ξhξ3

|ξh|2
eλ1(t−τ) +

ξhξ3

|ξh|2
G2(t− τ) + ξhξ3G1(t− τ)

suitably, we need to generate the factor ξh from ̂P(u · ∇u)3. By the definition of P,

P(u · ∇u)3 = u · ∇u3 − ∂3∆−1∇ · (u · ∇u)

= ∂1(u1u3) + ∂2(u2u3) + ∂3(u3u3)

− ∂3∆−1(∂1(u · ∇u1) + ∂2(u · ∇u2) + ∂3(u · ∇u3))

= ∂1(u1u3) + ∂2(u2u3)− ∂3∆−1(∂1∇ · (uu1) + ∂2∇ · (uu2)

+ ∂3(u3u3))− ∂3∆−1∂3∇ · (uu3)

= ∂1(u1u3) + ∂2(u2u3)− ∂3∆−1(∂1∇ · (uu1) + ∂2∇ · (uu2))

− ∂3∆−1∂3∂1(u1u3)− ∂3∆−1∂3∂2(u2u3)

+ ∂3(u3u3)− ∂3∆−1∂3∂3(u3u3)

= ∂1(u1u3) + ∂2(u2u3)− ∂3∆−1(∂1∇ · (uu1) + ∂2∇ · (uu2))

− ∂3∆−1∂3∂1(u1u3)− ∂3∆−1∂3∂2(u2u3)

+ ∆−1(∆∂3(u3u3)− ∂3∂3∂3(u3u3))

= ∂1(u1u3) + ∂2(u2u3)− ∂3∆−1(∂1∇ · (uu1) + ∂2∇ · (uu2))

− ∂3∆−1∂3∂1(u1u3)− ∂3∆−1∂3∂2(u2u3)

+ ∆−1∆h∂3(u3u3), (5.15)

where we have combined two terms to generate the desirable factor

∆∂3(u3u3)− ∂3∂3∂3(u3u3) = ∆h∂3(u3u3).

It is clear that each term contains ∂1 or ∂2. That is, its Fourier transform has the
desired factor |ξh|. Therefore, by the upper bounds for G1 and G2 in Lemma 3.1

|G1| ≤ t e−|ξh|
2t, |ξh|2|G1| ≤ C e−c0|ξh|

2t, |G2| ≤ C e−c0|ξh|
2t,
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we have ∣∣∣∣( 1

|ξh|
eλ1(t−τ) +

1

|ξh|
G2(t− τ) + ξhG1(t− τ)

)
ξ3

̂P(u · ∇u)3

∣∣∣∣
≤ C e−c0|ξh|

2(t−τ)
(
|ξ3û1u3|+ |ξ3û2u3|+ |ξ3|2|ξ|−2| ̂∇ · (uu1)|

+ |ξ3|2|ξ|−2| ̂∇ · (uu2)|+ |ξ3|2|ξ|−2| ̂∂3(u1u3)|

+ |ξ3|2|ξ|−2| ̂∂3(u2u3)|+ |ξ3|2|ξ|−2| ̂∇h · (u3u3)|
)

≤ C e−c0|ξh|
2(t−τ)

(
| ̂∂3(uhu3)|+ | ̂∇ · (uuh)|+ | ̂∇h · (u3u3)|

)
. (5.16)

Therefore,

‖K2‖L2 ≤ C

∫ t

0

‖ec0∆h(t−τ)∂3(uhu3)(τ)‖L2 dτ

+ C

∫ t

0

‖ec0∆h(t−τ)∇h · (uuh)(τ)‖L2 dτ

+ C

∫ t

0

‖ec0∆h(t−τ)∇h · (u3u3)‖L2 dτ.

These terms are pretty much like the terms in K1. Thus similar estimates lead to
the same upper bound

‖K2‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

To bound K3, we first bound the kernel. By the definition of G1,∣∣∣∣ξhξ3

|ξ|2
G1

∣∣∣∣ =

∣∣∣∣∣ξhξ3

|ξ|2
e−|ξh|

2t
sin |ξh||ξ| t

|ξh|
|ξ|

∣∣∣∣∣ ≤ e−|ξh|
2t. (5.17)

As in the estimate of ‖K1‖L2 ,

‖K3‖L2 ≤ C

∫ t

0

‖ec0∆h(t−τ)uh · ∇hθ(τ)‖L2 dτ

+

∫ t

0

‖ec0∆h(t−τ)u3∂3θ(τ)‖L2 dτ.

The two terms on the right-hand side can be bounded as K11 and K13 above. Thus,

‖K3‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

To bound K4, we use Lemma 3.1 and the definition of G1,∣∣(G2 + |ξh|2G1)(t− τ)
∣∣ ≤ C e−c0|ξh|

2(t−τ)

for two constants C > 0 and c0 > 0. We also invoke (5.15). Then the estimate of
‖K4‖L2 can be proceeded as in ‖K2‖L2 and

‖K4‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .
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K5 behaves like K3. Since∣∣∣∣ |ξh|2|ξ|2 G1(t− τ)

∣∣∣∣ ≤ C e−c0|ξh|
2(t−τ),

‖K5‖L2 obeys the same bound as ‖K3‖L2 ,

‖K5‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

The estimate of K6 is pretty much like the last term in K2, and thus

‖K6‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

K7 behaves like K3 and has the same bound

‖K7‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

Combining the upper bounds for the linear parts and the upper bounds for K1

through K5, we obtain

‖u(t)‖L2 ≤ C ε(1 + t)−
σ
2 +

1

4
C0 ε(1 + t)−

σ
2 ≤ 1

2
C0 ε(1 + t)−

σ
2

if we choose C0 ≥ 4C. Similarly, by the upper bounds on K6 and K7, we obtain

‖θ(t)‖L2 ≤ 1

2
C0 ε(1 + t)−

σ
2 .

5.3. Estimates of ‖∂3u‖L2 and ‖∂3θ‖L2 and verification of (5.7). This subsec-
tion provides upper bounds for ‖∂3u‖L2 and ‖∂3θ‖L2 , which allow us to complete
the verification of (5.7). We again make use of the integral representation (2.1),
(2.2) and (2.3). We apply ∂3 to (2.1), (2.2) and (2.3) and then take the L2-norm.
The linear parts have been estimated in the proof of Proposition 1.1, so we focus
on the bounds for ∂3K1 through ∂3K7 with K1 through K7 defined in the previous
subsection.

We start with ‖∂3K1‖L2 . As in (5.13), we can write

∂3P(u · ∇u))h = ∂3u · ∇uh + u · ∂3∇uh − ∂3∇h∆
−1∇ · (u · ∇u)

= ∂3uh · ∇huh + ∂3u3∂3uh + uh · ∇h∂3uh

+ u3∂33uh − ∂3∆−1∇ · ∇h(u · ∇u)

= u3∂33uh + ∂3uh · ∇huh −∇h · uh∂3uh +∇h · (uh∂3uh)

−∇h · uh∂3uh − ∂3∆−1∇ · ∇h(u · ∇u)

= u3∂33uh + (∂3uh · ∇huh − 2∇h · uh∂3uh)

+∇h · (uh∂3uh)− ∂3∆−1∇ · ∇h(u · ∇u).

Correspondingly ∂3K1 is then divided into four terms,

∂3K1 = L11 + L12 + L13 + L14, (5.18)



THE 3D BOUSSINESQ EQUATIONS 29

where

L11 =

∫ t

0

e∆h(t−τ) u3∂33uh(τ) dτ,

L12 =

∫ t

0

e∆h(t−τ) (∂3uh · ∇huh − 2∇h · uh∂3uh)(τ) dτ,

L13 =

∫ t

0

e∆h(t−τ)∇h · (uh∂3uh)(τ) dτ,

L14 = −
∫ t

0

e∆h(t−τ) ∂3∆−1∇ · ∇h(u · ∇u)(τ) dτ.

L11 involves the unfavorable derivative ∂33 and may yield the worst decay rate. By
Lemmas 5.1, 5.2 and 5.3,

‖L11‖L2 ≤
∫ t

0

‖e∆h(t−τ)u3 ∂33uh(τ)‖L2 dτ

≤
∫ t

0

∥∥∥‖e∆h(t−τ)u3 ∂33uh(τ)‖L2
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2

∥∥∥‖u3 ∂33uh(τ)‖L1
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2

∥∥∥‖u3‖L2
h
‖∂33uh‖L2

h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2‖u3‖L2

hL
∞
x3
‖∂33uh‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1
2‖u3‖

1
2

L2 ‖∂3u3‖
1
2

L2 ‖∂33uh‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1
2‖u3‖

1
2

L2 ‖∇h · uh‖
1
2

L2 ‖∂3uh‖
2
3

L2 ‖∂4
3uh‖

1
3

L2 dτ,

where we have used the interpolation inequality,

‖∂33uh‖L2 ≤ ‖∂3uh‖
2
3

L2 ‖∂4
3uh‖

1
3

L2 .

We now invoke the ansatz in (5.3) and (5.4) to obtain, for
3

4
≤ σ < 1,∫ t

0

‖e∆h(t−τ)u3 ∂33uh(τ)‖L2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

1
4
−σ

4 (1 + τ)−
σ
3 dτ

= C C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

5
6
σ− 1

4 dτ

≤ C C2
0 ε

2 (1 + t)−
5
6
σ+ 1

4

≤ C C2
0 ε

2 (1 + t)−
σ
2
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≤ C0

128
ε (1 + t)−

σ
2 ,

where σ ≥ 3

4
is used in the last inequality to ensure that

−5

6
σ +

1

4
≤ −σ

2
.

This is exactly where we need the constraints on σ. L12 and L13 can be dealt with
similarly.

‖L12‖L2 ≤ C

∫ t

0

∥∥∥‖e∆h(t−τ)∂3uh · ∇huh(τ)‖L2
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2

∥∥∥‖∂3uh · ∇huh(τ)‖L1
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2‖∂3uh‖

1
2

L2 ‖∂33uh‖
1
2

L2 ‖∇huh(τ)‖L2 dτ

≤ C

∫ t

0

(t− τ)−
1
2‖∂3uh‖

5
6

L2 ‖∂4
3uh‖

1
6

L2 ‖∇huh(τ)‖L2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

5
12
σ(1 + τ)−

1
2
−σ

2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
1
2 (1 + τ)−

11
12
σ− 1

2 dτ

≤ C C2
0 ε

2 (1 + t)−
11
12
σ

≤ C0

128
ε (1 + t)−

σ
2 .

‖L13‖L2 ≤ C

∫ t

0

∥∥∥‖e∆h(t−τ)∇h · (uh∂3uh)(τ)‖L2
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
3
4

∥∥∥‖uh∂3uh‖L4/3
h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
3
4

∥∥∥‖uh‖L4
h
‖∂3uh‖L2

h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
3
4‖uh‖L4

hL
∞
x3
‖∂3uh‖L2 dτ

≤ C

∫ t

0

(t− τ)−
3
4‖uh‖

1
2

L2
hL
∞
x3

‖∇huh‖
1
2

L2
hL
∞
x3

‖∂3uh‖L2 dτ

≤ C

∫ t

0

(t− τ)−
3
4‖u‖

1
4

L2 ‖∂3u‖
1
4

L2 ‖∇huh‖
1
4

L2 ‖∂3∇huh‖
1
4

L2‖∂3uh‖L2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
3
4 (1 + τ)−

7
8
σ− 1

8 dτ

≤ C C2
0 ε

2(1 + t)−
7
8
σ+ 1

8
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≤ C0

128
ε (1 + t)−

σ
2 .

The estimate of L14 in L2 is pretty much the same as those in the first three terms,
so we just briefly sketch it. By the boundedness of the Riesz transform

‖∂3∆−1∇ · f‖L2 ≤ C ‖f‖L2 ,

‖L14‖L2 ≤ C

∫ t

0

∥∥e∆h(t−τ)∇h(u · ∇u)
∥∥
L2 dτ ≤

C0

128
ε (1 + t)−

σ
2 .

Therefore,

‖∂3K1‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

To bound ‖∂3K2‖L2 , we obtain as in (5.16) the following upper bound∣∣∣∣((
ξhξ3

|ξh|2
eλ1(t−τ) +

ξhξ3

|ξh|2
G2 + ξhξ3G1)(t− τ)

)
̂∂3P(u · ∇u)3

∣∣∣∣
≤ C e−c0|ξh|

2(t−τ)
(
| ̂∂33(uhu3)|+ | ̂∂3∇ · (uuh)|+ | ̂∂3∇h · (u3u3)|

)
.

Therefore,

‖∂3K2‖L2

≤ C

∫ t

0

∥∥ec0∆h(t−τ) (|∂33(uhu3)|+ |∂3∇ · (uuh)|+ |∂3∇h · (u3u3)|)
∥∥
L2 dτ.

The three terms on the right-hand side are similar to those terms in (5.18) and
admit the same bound as the one for ‖∂3K1‖L2 ,

‖∂3K2‖L2 ≤ C0

32
ε (1 + t)−

σ
2 .

The estimates of ∂3K3 through ∂3K7 are very similar and thus omitted. Combining
all the upper bounds, we obtain

‖∂3u(t)‖L2 , ‖∂3θ(t)‖L2 ≤ 1

2
C0 ε (1 + t)−

σ
2 ,

which verifies (5.7).

5.4. Estimates of ‖∇hu‖L2 and ‖∇hθ‖L2 and verification of (5.8). This sub-
section proves (5.8). We again make use of the integral representation (2.1), (2.2)
and (2.3). We apply ∇h to (2.1), (2.2) and (2.3) and then take the L2-norm. The
linear parts have been estimated in the proof of Proposition 1.1, so we focus on the
bounds for ∇hK1 through ∇hK7 with K1 through K7 defined in the Subsection 5.2.

We start with ∇hK1. As in (5.13), we write

P(u · ∇u))h = u3∂3uh + uh · ∇huh −∆−1∇ · ∇ · ∇h(u⊗ u).

and ‖∇hK1‖L2 is then bounded

Mi := ‖∇hKi‖L2 ≤M11 +M12 +M13, for i = 1, · · · , 7,
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where

M11 =

∫ t

0

‖∇he
∆h(t−τ)(u3∂3uh)(τ)‖L2 dτ,

M12 =

∫ t

0

‖∇he
∆h(t−τ)(uh · ∇huh)(τ)‖L2 dτ,

M13 =

∫ t

0

‖∇he
∆h(t−τ)(∆−1∇ · ∇ · ∇h(u⊗ u))(τ)‖L2 dτ.

By Lemma 5.3,

M11 ≤
∫ t

0

∥∥∥‖∇he
∆h(t−τ)(u3∂3uh)(τ)‖L2

h

∥∥∥
L2
x3

dτ

≤ C

∫ t

0

(t− τ)−
1
2‖‖e∆h(t−τ)(u3∂3uh)(τ)‖L2

h
‖L2

x3
dτ.

We remark that we can no longer proceed as in the estimate of K13. We already

have the factor (t− τ)−
1
2 and an estimate as in that of K13 would generate another

(t − τ)−
1
2 and thus produce (t − τ)−1, which is not integrable on (0, t). Instead we

use a different estimate. We choose q satisfying

1

q
=

1

2
+
σ

2
or q =

2

1 + σ
.

For
3

4
≤ σ < 1, we have 1 < q < 2. Then, by Lemma 5.3,

M11 ≤ C

∫ t

0

(t− τ)−
1+σ
2

∥∥∥‖u3∂3uh(τ)‖Lqh
∥∥∥
L2
x3

dτ

The integrand can be further bounded as in Subsection 5.1,∥∥∥‖u3∂3uh‖Lqh
∥∥∥
L2
x3

≤
∥∥∥‖u3‖L∞x3‖∂3uh‖L2

x3

∥∥∥
Lqh

≤ ‖u3‖
L

2
σ
h L
∞
x3

‖∂3uh‖L2
hL

2
x3

≤ C
∥∥∥‖u3‖

1
2

L2
x3

‖∂3u3‖
1
2

L2
x3

∥∥∥
L

2
σ
h

‖∂3uh‖L2

≤ C
∥∥∥‖u3‖

1
2

L2
x3

∥∥∥
L

4
2σ−1
h

∥∥∥‖∂3u3‖
1
2

L2
x3

∥∥∥
L4
h

‖∂3uh‖L2

≤ C ‖∂3u3‖
1
2

L2 ‖u3‖
1
2

L
2

2σ−1
h L2

x3

‖∂3uh‖L2

≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
1
2

L2
x3
L

2
2σ−1
h

‖∂3uh‖L2

≤ C ‖∇h · uh‖
1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3uh‖L2 .
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Therefore, for any
3

4
≤ σ < 1,

M11 ≤ C

∫ t

0

(t− τ)−
1+σ
2 ‖∇h · uh‖

1
2

L2 ‖u3‖
σ− 1

2

L2 ‖∇hu3‖1−σ
L2 ‖∂3u‖L2 dτ

≤ C C2
0 ε

2

∫ t

0

(t− τ)−
1+σ
2 (1 + τ)−( 3

2
−σ)( 1

2
+σ

2
) (1 + τ)−

σ
2

(σ+ 1
2

) dτ

= C C2
0 ε

2

∫ t

0

(t− τ)−
1+σ
2 (1 + τ)−

3
4
−σ

2 dτ

≤ C C2
0 ε

2 (1 + t)−
1+σ
2

≤ 1

128
C0 ε (1 + t)−

1+σ
2 .

M12 can be bounded similarly and they admit the same upper bound. For M13, we
first bound it by the fact that Riesz transforms are bounded on L2,

M13 ≤ C

∫ t

0

‖∇he
∆h(t−τ)∇h(u⊗ u))(τ)‖L2 dτ

and then proceed as in the estimates of M11 to obtain the same upper bound.
Therefore,

‖∇hM1(t)‖L2 ≤ C0

4
ε (1 + t)−

1+σ
2 .

According to (5.16),

‖∇hM2(t)‖L2 ≤ C

∫ t

0

‖∇he
∆h(t−τ)∂3(uhu3)‖L2 dτ

+ C

∫ t

0

‖∇he
∆h(t−τ)∇ · (uuh)‖L2 dτ

+ C

∫ t

0

‖∇he
∆h(t−τ)∇h · (u3u3)‖L2 dτ.

These three terms can be estimated as those in ∇hM1 and obey the same upper
bound. By (5.17),

‖∇hM3(t)‖L2 ≤ C

∫ t

0

‖∇he
∆h(t−τ)uh · ∇hθ(τ)‖L2 dτ

+ C

∫ t

0

‖∇he
c0∆h(t−τ)u3∂3θ(τ)‖L2 dτ.

The terms in ∇hM3 can also be bounded similarly as those in ∇hM1. The terms in
∇hM4 through ∇hM7 can also be bounded similarly and the details are omitted. As
a consequence, we have verified (5.8). This completes the proof of Theorem 1.3. �

Finally we make some concluding remarks. We have proposed and implemented
a new and effective approach to extracting the optimal decay estimates for the 3D
Boussinesq system with only horizontal dissipation. It is not difficult to see that this
approach also works for the Boussinesq system with full dissipation. When the full
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dissipation is present, the estimates of many terms (especially those with vertical
derivatives) can be significantly simplified. In addition, although the approach is
developed in this paper for the Boussinesq system, it is expected to be applicable to
many other anisotropic PDE systems such as the magneto-hydrodynamic equations
with horizontal dissipation. We are also working on anisotropic Boussinesq systems
without horizontal velocity or thermal dissipation. There are many challenges. One
particular difficult case is when there is no horizontal velocity dissipation in the
Boussinesq system. Then the dissipation is only in the vertical direction and it is
not clear in R3 if one can control the velocity nonlinearity by dissipation in only one
direction in the Sobolev setting. We are hopeful that some progress will be made
on this front in the near future.
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