THE GLOBAL WELL-POSEDNESS AND DECAY ESTIMATES FOR THE 3D
INCOMPRESSIBLE MHD EQUATIONS WITH VERTICAL DISSIPATION IN
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AssTrACT. The three-dimensional incompressible magnetohydrodynamic (MHD) system
with only vertical dissipation arises in the study of reconnecting plasmas. When the
spatial domain is the whole space R, the small data global well-posedness remains an
extremely challenging open problem. The one-directional dissipation is simply not suf-
ficient to control the nonlinearity in R3. This paper solves this open problem when the
spatial domain is the strip Q := R? x [0, 1] with Dirichlet boundary conditions. By invok-
ing suitable Poincaré type inequalities and designing a multi-step scheme to separate the
estimates of the horizontal and the vertical derivatives, we are able to establish the global
well-posedness in the Sobolev setting H> as long as the initial horizontal derivatives are
small. We impose no smallness condition on the vertical derivatives of the initial data.
Furthermore, the H3-norm of the solution is shown to decay exponentially in time. This
exponential decay is surprising for a system with no horizontal dissipation. This large-
time behavior reflects the smoothing and stabilizing phenomenon due to the interaction
within the MHD system and with the boundary.

1. INTRODUCTION
This paper focuses on the following 3D incompressible magnetohydrodynamic (MHD)
system with only vertical dissipation in a strip domain Q = R? x [0, 1],
ou+ w-Vyu+Vp=vosu+ (b-V)b, xeQ, t>0,
0b+ (u-V)b=n03b+ (b-V)u,
V-u=V-b=0,
u(x,0) = up(x),  b(x,0) = bo(x)

(1.1

supplemented with the Dirichlet boundary condition
ulgo =0, blaga =0, t>0.

Here u(x, 1) = (u(x, 1), ux(x, 1), us(x, 1)) and b = (b(x, 1), bo(x, 1), b3(x, t)) denote the fluid
velocity and the magnetic field, respectively, p(x, 7) the total pressure, and the parameters
v > 0 and 1 > O represent the viscosity and resistivity, respectively. The MHD system is
a combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations
of electromagnetism. They govern the motion of electrically conducting fluid such as
plasmas, liquid metals and electrolytes, and have a very wide range of applications in
astrophysics, geophysics, cosmology and engineering (see, e.g., [5,7,17,41]). The MHD
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system (1.1) focused here is relevant in the modeling of reconnecting plasmas (see, e.g.,
[13,14]).

The goal of this paper is twofold: first to solve the global well-posedness problem,
second, to determine the precise large-time behavior of the solutions. The issues put
forward for study here are not trivial and can not be dealt with via existing approaches.
There are three immediate difficulties. The first is that the dissipation in only one direction
is not sufficient to control the nonlinearity. Extra regularizing properties are needed in
order to obtain time-integrable upper bounds for the nonlinear terms. In the case of whole
space R?, exactly due to this difficulty, the small-data global well-posedness on (1.1)
remains a challenging open problem. Clearly we need to take advantage of the domain
Q and the associated boundary condition in order to solve the well-posedness problem
focused here.

The second difficulty is due to the presence of the boundary. In the process of esti-
mating the Sobolev norms of the solutions, we can no longer integrate by parts freely as
in the whole space case. This forces us to design a more delicate scheme to avoid the
boundary terms. Observing that the horizontal derivatives of the solution are all zero on
the boundary due to the boundary conditions, we need to distinguish the estimates of the
horizontal derivatives from those of the vertical derivatives. In addition, we need to es-
timate the time derivatives in order to control the vertical derivatives. This explains why
the estimates on the Sobolev norms of the solutions are much more involved than those
in the whole space case.

The third difficulty arises in the study of the large-time behavior. Powerful methods
have been created to determine the large-time behavior of fully dissipative systems of
partial differential equations (PDEs). Schonbek’s Fourier splitting scheme has worked
very well when the Navier-Stokes, the Boussinesq or the MHD equations involve full
dissipation (see, e.g., [25,44]). However, these methods can not be extended to partially
dissipated PDE systems. In fact, no existing method can be adapted to deal with the
MHD system with dissipation in only one direction. This paper intends to develop new
approaches that are capable of extracting the large-time behavior of anisotropic PDE sys-
tems. This paper is able to resolve all three difficulties described here and successfully
establish the desired well-posedness and large-time behavior.

To give a precise account of our main result, we introduce the following notations and
norms,

v =1, v2), Vv =(01v,0,v), Ay = (9%\/ + 6%\/,
2

2 2
ey = D D 10 fIRq

i=1 0<|al<s

I s = WA + gl NG @0 = 1 s + gl peo-

Our main result can then be stated as follows.
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Theorem 1.1. Assume that the initial data satisfies (ug, by) € H>(Q) with V - uy = 0 and
V - by =0, and the zero boundary conditions on dC). Then there exists & > 0 such that, if
llzeoll 3002y + lbollm30) < 0,

then the 3D MHD system (1.1) admits a unique global solution (u, b) satisfying

!
”(I/l(t), b(t))”i[%(g) + ||(0tu(t)a 0tb(t))||i]l(g) + ”Vp(t)”i]l(g) + zvf ||63M(T)”§.]3.0(Q) dT
0

t
+ an ”a3b(T)”i]3,0(Q)dT < C(62 + ”(631/!0, 83b0)||4;.11(g) + ||(5§u0, 8§b0)”i11(g))
0

for any t > 0 and some uniform constant C. In addition, the following decay estimate
holds:

(D), DO 32y + 1(Ou(®), 0:6(D)l| 1) + IV POl () < Ce ! (L.2)

for some constants C > 0 and C* > 0.
We make several remarks on Theorem 1.1.

Remark 1.1. The smallness condition on the initial data is only imposed on the L*-norms
of (ug, by) and its horizontal derivatives. There is no requirement on the vertical deriva-
tives. Therefore, the H>-norm of (uy, by) is not necessarily small. In this sense, our result
is actually a global well-posedness without smallness assumption on the full initial H>-
norm.

Remark 1.2. The exponential decay estimate for ||(u(t), b(t))||g in (1.2) is surprising if
we take into account of the fact that the MHD system concerned here has no horizontal
dissipation and the horizontal variables are in the whole space R*. This remarkable large-
time behavior does not directly come from the dissipation in the system, but rather is a
consequence of the smoothing and stabilizing effect of the interactions within the MHD
system and with the boundary.

Remark 1.3. A special consequence of Theorem 1.1 is the global well-posedness of the
3D incompressible Navier-Stokes equations in a strip domain,
ou+w-Vyu=-Vp+voyzu, xeQ,t>0,
V.u=0,
u(x, 0) = uo(x),
ulpo = 0

(1.3)

when the horizontal derivatives of uy is sufficiently small. More precisely, if

llueol| o) < O
for sufficiently small § > 0, then (1.3) has a unique global solution u € L(0, co; H3(Q)).
In addition, (u, p) decays exponentially in the sense that, for two positive constants C, C*
and for all t > 0,
lu(®)ll g3 + 10:u®lm @) + IVPOllp @) < Ce ™.

We remark that an important work by Paicu and Zhang [39] has investigated the small
data global well-posedness of (1.3) in the anisotropic Besov setting.
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To place our result in a suitable context of existing research, we describe some of
the closely related work on the incompressible MHD equations. Due to their physi-
cal applications and mathematical importance, the global well-posedness, stability and
large-time behavior problems on the MHD equations have recently attracted consider-
able interests from the community of mathematical fluid mechanics. Many recent efforts
are devoted to various partially or fractionally dissipated MHD systems. Since clas-
sical approaches designed for systems with full dissipation no longer work, new tech-
niques and methods have recently been developed to deal with anisotropic MHD equa-
tions. Significant progress has been made. Existence and regularity results for the 2D
MHD equations with various partial or fractional dissipation has been established (see,
e.g., [9-11,19,20,31-33,46, 54, 55]). Local and global well-posedness on the 3D MHD
equations with standard dissipation or various form of hyperdissipation has also been ob-
tained (see, e.g., [12,21,28,34,35,45,48-50,53,56,57]). The study on the well-posedness
and stability problem on the MHD equations near the trivial solution or a background
magnetic field has recently gained a lot of momentum. There are substantial develop-
ments (see, e.g., [3,6,8,18,22,26,27,29,30,36,37,40,42,43,47,51, 52,58-60]). Es-
pecially, [3,6,22,26, 36, 52] reveal and rigorously confirm the stabilizing phenomenon
observed in physical experiments on MHD turbulence (see, e.g., [1,2, 15-17, 23, 24]).
We remark that previous work on the 3D anisotropic MHD equations requires either the
velocity equation or the equation of the magnetic field has dissipation in at least two di-
rections. Consequently, none of the previous approaches can be applied directly to solve
the problems concerned here.

We explain the main idea in the proof of Theorem 1.1. Naturally the proof is divided
into two main parts with the first devoted to the global well-posedness and the second
to the decay estimate. The center piece of the global well-posedness is the global bound
on ||(u, b)||yz. Due to the presence of the boundary, we can no longer integrate by parts
freely as in the whole space case. Our observation is that the horizontal derivatives of the
solution are all zero on the boundary due to the boundary conditions on u and . On the
contrary, the boundary-values of the vertical derivatives are unknown. To accommodate
this observation, we design a multi-step scheme to estimate ||(u, b)||z3. The first step
focuses on the norm of the horizontal derivatives, namely ||(«, b)||g0. With no boundary
terms generated in the process, our attention focuses on how to control the nonlinearity by
the vertical dissipation. To make up for the lack of dissipation in two directions, we make
use of the boundary conditions to derive strong versions of Poincaré type inequalities such
as

1fll2 < ClOs fll2),

1fllz=) < ClO3 fll20()s
which are valid for any functions f with zero boundary conditions. More information can
be found in Section 2. In addition, we use various anisotropic upper bounds for triple

products generated from the nonlinearity. After a long process of estimating many terms,
we are able to obtain the following energy inequality,

t
1(et, D350 + miny, U}f (103130 + 036Dl 50) d
0
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!
< Cli(uo, bo)llzso + C f 1Get, YO0 (1836(D)l 330 + 1036(DI7430) d.
0

Remarkably this inequality is self-contained and involves no vertical derivatives. An
application of the bootstrapping argument then yields a global bound on ||(«, b)||g0 as

well as on fot 103u(D)|2 5 +1103b(T)II7,5, dT when the initial norm [|(u, bo)ll3o is sufficiently
small.

However, the lack of boundary conditions on the vertical derivatives prevents us from
estimating the norms of the vertical derivatives directly. Our strategy is to rewrite the
equation of u# in (1.1) as

-Au+Vp=f, xeQ, t>0,
u(x,t) =0, xe€0Q, t>0, (1.4)
V-u=0, xeQ, tr>0
with
fi=—0u—w-Vu+®-V)b-Ayu,
and the equation of b in (1.1) as
-Ab=g, xeQ, t>0,
b(x,t) =0, xe€0Q, t>0, (1.5)
V-b=0, xe€Q, t>0
with
g:==0b—w-VYb+ (b -Vyu—Ab.
The regularity theory on the Stokes system in (1.4) and the Poisson equation in (1.5) then
converts the estimates of the H3-norm of (u, b) into the estimates of the H'-norm of f and
g. In particular, we need to bound ||(0;u, 9;b)||y1. This is accomplished in the second step.
Naturally this step is divided into the estimates of ||(d,u, 9;b)||;> and of ||[(VO,u, VI,b)||;>-

Moreover, due to the lack of boundary conditions for the vertical derivatives, we need to
further write

1(VO,u, Vab)II7, = (Vadyut, Vid D)7, + 11830, D:0,b)II7,

and deal with the horizontal derivatives and the vertical derivatives accordingly. We are
able to show that

C [ 1@3u.03b) D2 5 d 2 2 2
llotsll 2 + [1DAll2 < Ce b 1@su 0300, 30 (o, bl + (0310, 33b0)l112),
Vil + VBl < Ce€ Iy LI, 9B) (IR @310 5 g dm
2 2 2
X (I(uo, bo)ll72 + 11(V3u0, VO3bo)|12).

The final step is to invoke the regularity theory on the Stokes system and the Poisson
equation to establish the desired global bound on ||(u, b)||g5.

The exponential decay estimate (1.2) in Theorem 1.1 is established through three
stages. The first stage proves the exponential decay rate for ||(u, b)||g30 + ||(O3u, 03D)||;2.
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This is achieved by first deriving an equation for 8,(1/||83u||i2 + n||83b||iz) and then com-
bining with the equation for 9;||(«, b)||z30 previously obtained in the well-posedness part.
This process leads to a differential inequality of the form

0X1+CX(1) <0

for a constant C > 0 and X(¢) = ||(«, b)||g30 + ||(O3u, 03b)||;2. The second stage focuses on
the exponential decay rate for ||(0,u, 0,b)||g1,

1@, 3 DY Dl < C e, (1.6)

where C > 0 is a constant. (1.6) is verified by first deriving a refined energy inequality
for

1(@t, b0 + VIIO30,ul}, + D20,

The precise inequality and its proof are provided in Proposition 4.2. The final stage
invokes the regularity estimates of the Stokes system (1.4) and the Poisson equation (1.5),
and combines the exponential rates from the first two stages.

The rest of this paper is divided into three sections. Section 2 presents three tool
lemmas to be used in the proof of Theorem 1.1. The first contains three Poincaré-type in-
equalities, the second provides several anisotropic upper bounds for triple products while
the third states the the existence and regularity result on a Stokes system with no-slip
boundary condition. Section 3 is devoted to the proof of the global well-posedness part of
Theorem 1.1. It is further divided into four subsections. Section 4 proves the exponential
decay estimate of Theorem 1.1. It first derives two main propositions and then use them
to establish the desired decay estimates.

2. PRELIMINARY

This section prepares three tool lemmas to be used in the proof of Theorem 1.1. The
first lemma provides several Poincaré-type inequalities, which allow us to bound the L*-,
L>- and L*-norms of a function f defined on Q in terms of suitable norms of d;f. This
is one of the reasons that we can control the nonlinearity of the MHD system in terms of
the vertical dissipation. They play a crucial role in achieving the time-integrable upper
bounds for the nonlinear terms.

The second lemma presents several anisotropic upper bounds for triple products. Non-
linear terms in the MHD system emerge as triple products in the estimates of the norms
on the solutions, and this lemma can bound such products by selectively placing partial
derivatives on the components of the products. This helps maximally make use of the
anisotropic dissipation. These type of inequalities have proven to be extremely important
in the study of the 2D anisotropic PDEs (see, e.g., [10]) as well as 3D anisotropic PDEs
(see, e.g., [52]).

The third lemma states the existence and regularity result on a Stokes system defined
on  with no-slip boundary condition. It will be used to estimate the vertical derivatives
of the solutions such as [|93ullx2(q).
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We now state and prove the first lemma that contains several Poincaré-type inequali-
ties. Standard Poincaré inequalities require the gradient, but what we need here is mainly
the x3-directional derivative.

Lemma 2.1. Let Q = R? x [0, 1]. Assume flsq = 0, f € H'(Q) and 0sf € H**(Q). Then
for some constant C > 0, we have

fll2 < ClOsfll2q) (2.1)

fllzo) < CllO3 fll2o)s (2.2)
1 1 1 1 1

Al < CUALIVAALL 10311, < VAL, 1: 1. 23)

Proof of Lemma 2.1. According to the one-dimensional Poincaré inequality,
11z, < ClOs Iz,
Squaring each side of the inequality above and integrating over (x;, x,) € R? yield

1fll2) < ClIO3 fll2)-
Due to flsq = 0, by Holder’s inequality and Poincaré’s inequality, we have

1 1
Il < V2IA1E, 1051117, < Cllos fllzz, -
X3 3

2
L3,

By Minkowski’s inequality and the Sobolev imbedding inequality,

WAl = [|Ifles | < o fins, ||,
Ty Ly
< cl|iosfilz, ||, = Clos fileo.
X3
Similarly,
3 1
_ I 7
ks = 0 < s, w0 [,
3 1
I
<l |, 1051
4 Sk ;
< ||y, 1wty | 19113,
X% ¥ 1Ly,
1 1 1 1 1
< CUFILIVAAIE 103 15: < CIUVAAIL, 103111
This completes the proof of of Lemma 2.1. O

The second lemma presents several anisotropic inequalities for triple products, which
play a crucial role in establishing the global bound for ||(u, b)||f30) and for the decay
estimates. This lemma can be shown by means of the proof in [52] together with Poincaré
inequality || fllzz; < Clldsfll2, for flag = 0.

Lemma 2.2. Let Q = R? x [0, 1]. Assume flsq = 0. Then

1 1 1 1
f [ 8hldx < Cl95 fllz@llglo o 11812 oy Vil 1021 g - (2.4)

1 1 1 1 1 1
f 8IS CILUS g 1031 192 1 10205 F1 53 g 11 0 1O €11 g WAl 2
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1 1 1 1 1
< €195 f1lp2,0 102 12 0 10205 f 1 0 81 2 1018l o Ml 2y (225)
1 1 1 1 1 1
1 1 1 1
< Cl0s fll I8l g 101811 o 102811 0 101028 o Wil 2y (2.6)

The last lemma of this section states the existence and regularity result on a Stokes
system with no-slip boundary condition. This lemma is taken from Beirao da Veiga [4].

Lemma 2.3 (Stokes estimates). Let Q = R? x [0, 1] be the strip domain. Let f € H*(Q)
with k > 0 being an integer. Assume v € H'(Q) is the weak solution of the Stokes
equations

—-Av+VP=F, inQ,
Vov=0, inQ, 2.7

v=0, ondQ.

Then (2.7) has a unique strong solution (v, P) € H*?(Q) x H*"'(Q) and the following
estimate

V¥l + IVPllar) < Clifllaxe, (2.8)

holds for some positive constant C.

3. THE GLOBAL WELL-POSEDNESS

This section proves the global well-posedness part of Theorem 1.1. Since the local
well-posedness can be shown via a standard procedure (see, e.g., [38]), our attention will
be focused on the global bounds. As aforementioned in the introduction, we need to
distinguish the estimates of the horizontal derivatives from those of the vertical ones. In
addition, we also need to estimate the time derivatives in order to achieve suitable bounds
on the vertical derivatives. The whole process involves the estimates of many terms and
is very lengthy. For the sake of clarity, we split the proof into four parts. The first focuses
on the estimates of ||(u, b)||y30, the second bounds ||(u;, b;)|| while the third presents the
estimates on ||(u, b)||z3. The last part assembles the energy inequalities from the first three
parts, establishes the desired global bounds on (u, ) and thus finishes the proof on the
global well-posedness. Naturally we divide the rest of this section into four subsections.

3.1. Estimates for ||(u, b)||y30. This subsection estimates the horizontal derivatives of
the solution. We use the crucial fact that, due to the boundary conditions on u# and b, the
horizontal derivatives of u and b are also zero on 9€2, namely

B} uloq = 01blog = 0
foranyi=1,2and k = 1,2,3.
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Proposition 3.1. Assume (ug, by) € H*° and let (u,b) be the corresponding solution to
(1.1). Then (u, b) satisfies

!
l1(2t, D135 + min{v, ) f I03u(D) 350 + 1035(Dl3;30) dT
0

< Cli(uo, bo)ll0 + C f G, DYDMo (1036330 + 183Dl 50) di. 3.1
0

Proof of Proposition 3.1. Taking the L>-inner product of (1.1) with (u, b), integrating by
parts and applying V - u = V - b = 0 and the boundary conditions, we find

1d
5 77 (Il + 11BI1Z) + (I3l + 7lldsbil;) = 0. (3.2)
Since the norm ||(u, b)||g30 1s equivalent to ||(u, b)||z2 + ||(u, b)|| 30 in €, it suffices to estab-

lish the estimate on [|(u, b)||gs0. Applying 8 (i = 1,2) to (1.1) and taking L*-inner product
of the resulting equations with &’u and 37b, respectively, we obtain

1d 2 2
5= ) (180ul, +18515.) + (167 0sully, + nlla}osbll
2dt i=1 i=1

=L+L+5L+1, (3.3)

where

2
h=-) faf(u - Vu) - Bu dx,
i=1

2
L = Z f[aﬁ(b -Vb) - b -VO?b] - u dx,
i=1

2
L=— Z fa,?(u - Vb) - 8;b dx,
i=1
2
I, = Z f[a?(b -Vu) - b-Voiu] - &b dx.
i=1

Here we have used
fafu -8;Vpdx=0 and fb “V(Bu-db)ydx =0

by integration by parts, V-u = V-b = 0 and the boundary conditions afulag = a?blag =0.
To bound 1, we write u - Vu = uy, - V,u + uzd;u to decompose I, into two parts,

2 2
I = - Z f@?(uh -Vyu) - 6?udx - Z f@?(m ozu) - (')?udx
i=1 i=1

= 11’1 + 11,2.
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By Leibniz’s formula, we further split /; ; into three terms according to the order k of the

derivative.
2 3

Il,l = - Z ché f@fuh . 8?_"th . 6?14 dx = 11’1’1 + ]1’1’2 + 11’1’3.

i=1 k=1
By Holder’s inequality, V,ulyo = Vzl/l'(jg =0, and (2.1) and (2.2),

2 2
Liyi1+1,5=-3 Z fﬁiuh . G?th . a?u dx — Z f@?uh -Vyu - B?M dx
i=1 i=1
2

3 3
< C Y IVl Vil 210wl
i=1
< CUGVitagllollFsullgsolullso
2
< Cllullpolldsul (3.4)

H},O'
Applying the anisotropic inequality (2.4) and the Poincaré-type inequality (2.1), we have

2
11’1’2 =-3 Z fﬁizuh . Vhﬁl-u . ﬁfudx
i=1

2
1 1 1 1
2 112 2 2 2 2 3
< C ) 167ull 6201l 10:V a1, 1020,V a2 107 D3l
i=1

< C|IVull 21105 V;ull?.. (3.5)

For I, 5, we split it into two parts,

2 2 2
I, =- Z Z o f@fb@ O 0zu - Oudx - Z f@?m Osu - Oludx,
i=1

i1 k=1
=1ip1 +1i25.

An argument similar to (3.5) and (3.4) yields

zzklkla—k%3—k 31143
Liza < C 7Y 105us|1Z 1050 sl 110 950l 103 029502, 1107 05l
i=1 k=1
2
< Cllull o1l Vil o,

and
2 2
Loy = Z f&?(%ug u- G?u dx + Z f@?m u- 8?83udx
i=1 i=1
2
<C Z 116; B3l 2 lul 1165, w2
i=1
< CIIV,85ull 211031l 20l Vyulle < Cllull o llBsulso- (3.6)
where we have used integration by parts for /; 5 ,. Collecting all the estimates above yields
Iy < CllullsollOsulls0. (3.7)
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I, I and 1, can be dealt with similarly. For I,, we first rewrite it as

2 3
L= >¢} f 0ib - 8,7*Vb - Oludx
i=1 k=1
2 3 2 3
=Y >.ch f Fby- 07 V)b - udx+ Y Y Ch f 8b3 87 03b - Bludx
i=1 k=1 i=1 k=1
= 12,1 + 12’2.

Furthermore, we split I, ; and I, in terms of the index k to get

2

3
L, = Z ZC§ f@fbh Vb - Fudx

i=1 k=1
=hi1+hi2+ L3,

2 2 2
hy=) % C f by 0} 05b - udx+ ) f 0;bs dsb - Gu dx,
i=1 k=1 =1
=hoi+ oo

A direct application of (2.2) gives

2
3 3
Dt + s < C Y IVblIIVIBl 10 ull»
i=1

< ClIVbll (165 V;ull2, + (IV403bl[3,20)-
As in (3.6), integration by parts and (2.2) yields

2 2
har=-) f 0sb3b - Fudx - ) f b3 b - 82dudx
i=1 i=1
2

< Z (107 03D 2 1Bl 107 ull 2 + 1107 blI 2116 1167 D30l )
i=1

< CIIV;83b11,21103bl 2o llul 30 + ClIBl| 0|03l 20183l 50
< Cll(u, D)o (103ull250 + 1035117 50)-
By (2.4) and (2.1), 151> and I, can be estimated as

2

2 2
his+hai=3) f by - V4dib - udx+ . > Ch f 83 077483b - Bludx
i=1
2

i=1 k=1

1 1 1 1
<C Z 107D N107 01 D11 110V b1 11020,V bl 1167 Dsll 2

i=1
2 2
1 1 1 1
+C 3 3 104bsl 110401 bl 100501, 1107 0,051,103 sl
i=1 k=1

< Clbllso(1dsullys0 + 103b1750)-

11
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Consequently,
L < ClIG, D)o (103ull 750 + 103bll7730)- (3.8)
Using a similar argument as in the estimates of /; and /,, we can show
I3 + Iy < Cll(u, D)l o ([103ull3y50 + 1103b11750)- (3.9)

For the convenience of the readers, we give some details. First, we still split them as

L+1, = Zch f @y - 87*V,b — 8'by, - 837V - 03b dx

i=1 k=1

[\

2

Z ct f (0 uz 07*05b - 03b — 0by 7 05u - O3b)dx
i=1 k=1

2

Z (@3 03 - b — b3 dsu - 97b) dx

R3

Duagg +Dago+ Bags + Bagg + ano.

where I34 1 represents three terms of the first integral term in terms of the derivative k.
Asin I, , I34;, through 134 3 can be bounded by

B + a3 < CZ (10l =107V bl 2> + 10:b =167 V el 2)11O7 bl 2

i=1

2
+C " (103ull 2V bllz + CIOTbILNIV el )63 Bl 2
i=1

< CliG, )0 (103ull350 + 103b11730),

2 ) 1 o) 1 1 1 3
Ly < CZ 197 ull ;1107 01 ull,110; VDI, 110;V 102Dl 11107 3Dl 2

2
1 1 1 1
+C Z 1076112110701 B11 110: 1all 110,02V naal| 1167 3l 2

< Cllu, D)o (l183ullzs0 + 1103b17,50)-
Similarly to 7, we have

1 1 1 1
Lz, <C Z Z 1643112, 105011311, 16383112, 1102 ™ 0206112, 1162 031 .2

i=1 k=1

2 2
1 1 1 1
+C D N bs7 1650 b1 Dsull 2,107 0205l 1163052
i=1 k=1

< ClIu, D)l o (ldsullzso + 103bI1750)

and

2
134,2,2 = Z f(@?@gug b- 8?19 + 6l3u3 b- 8[3(93b) dx
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2
3 3 3 3
- f(6i03b3u b + Obs u - 303b) dx
i=1

2
< CZ (107031l 21167 bl 2 + 1871l 2116 Dbl 2 )1l

i=1

2
+C Z (16703621107 bl 2 + 1076 2115, 33l 2 aal
i=1

< CliG, D)o 103ull350 + 103b11750),

which, together with the estimate for /34 ; through /34 3, gives the desired bound (3.9).
Inserting (3.7), (3.8) and (3.9) in (3.3) and combining with (3.2), we obtain

1d :
5 (16D + > 107, B20):) + cotduliaa + mI0sblE )

i=1

< Cliu, D)o (l103ull350 + 103b117530), (3.10)

where we have used the fact that ||03V||30 1s equivalent to

2
3
183vllz2 + ) 107050l

i=1

in Q. Then integrating (3.10) over [0, 7] for any # > 0 yields the desired estimate. This
completes the proof of Proposition 3.1. O

3.2. Estimates for ||(u;, b)||y:. The first subsection has obtained an energy inequality
involving (u, b) in H3?, ie., the horizontal derivatives of (u, b). To establish the well-
posedness in H>, we also need a bound for ||(8su, 83b)||;2. Unfortunately, ||(03u, 03D)|| 2
can not be estimated directly due to the lack of boundary condition on the vertical deriva-
tives of (u,b). A key observation is to resort to the elliptic regularity theory and the
Stokes estimates to achieve the goal. To do so, we need to establish an upper bound on
l(us, by)||g1 . This is shown by Propositions 3.2 and 3.3 below. To shorten the notation, we
sometimes write f; for 0, f.

Proposition 3.2. Let (u, b) be the solution of the system (1.1). Then, for some constant
C >0,

‘ o3U,G T 2 T
leallz + 1Bl < CeC b IO OMeand (g bR, + 118210, B2b0) 2). (3.11)
Proof of Proposition 3.2. Applying 0, to the system (1.1) yields

Oyu + ((u - VYu), + Vp, = voszu, + (b - V)b),,
Oub + ((u - V)b); = nos3b; + (b - Vu),,
V-u,=V-b, =0,

Uloa = biloa = 0.

(3.12)
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Taking the L*-inner product of (3.12) with (u,, b,) and applying the boundary conditions
Uloa = bilaq = 0, we have

1d
5 bl + (Asull7, + 7ll0sbilI7,)

= - f(u -Vu), - udx + f(b -Vb), - u,dx — f(u -Vb), - bdx + f(b -Vu), - b,dx
=Ji+ -+ Jy4 (313)
By u|sq = 0, integration by parts, and the inequalities (2.2) and (2.6),

Ji=- fﬁtuh -V - udx — f@tu3 Osu - udx
1 1 1 1
2 4 4 4 4
< IVaullollugll7, + CllOsullr2l105ull 1101 83ull; 2 110203ull 11010205 ull  llu | 2
< Cll03Vullgollugl 21031l 2 + CllOzul| 211030l 20 |uay || 2
2 2 Y 2
< Cll0zullzsolludly> + leaauzll (3.14)

12

where we have used the fact ||u,||;2 < C||0su,||;2 (the Poincaré-type inequality (2.1)). With
a minor modification of (3.14), we get

4
J3 < Cl103bl[3x0IbA 17, + leawflliz- (3.15)
Also,
< C(I03ullfyso + 1135550 1s, I, + gllé’sbzlliz- (3.16)

Substituting (3.14), (3.15) and (3.16) into (3.13), we obtain

d
PGS bl + (suillys +7lldsbilI7,) < CUIBsullyyso + 183bIs0)l s, BN
Then Gronwall’s inequality implies

il + bz < CeCh @500 (11, B)IIE, + D30, 32b0)12).
Here we have used
11(24,(0), b (O)lz2 < C(lI(ut0, bo)ll7z2 + 1(B3tt0, D3bo)I2),
which follows from
Au(0) = —uy - Vg — Vpo + 31 + by - Vb,
0:b(0) = —ug - Vby + 83y + by - Vuy,
with the pressure determined by the elliptic equations
~Apo =V - (ug - Vg — by - Vby), x € Q, Vpy-n=0dug-n, x €.

This completes the proof of Proposition 3.2. O
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Proposition 3.3. Let (u, b) be the solution of the system (1.1). Then, for some constant
C>0,

IVl + VBl < Ce€ b (HTUTIORNGAbN e
X (o, bl + (VB0 VBb)2).  (3.17)

Proof of Proposition 3.3. Taking the L>-inner product of (3.12) with (u, b,,) and (Ayu,, A,b,),
respectively, integrating by parts, and applying the boundary conditions for u, b, we have

1d
EE(V”a:ﬁut”iz + ll03b:17, + 1V atty, Vab)Il72)

(et I + VIOVt + 7185V,
= —f(u -Vu), - u, dx + f(b -Vb), - u, dx — f(u -Vb), - b, dx
+ f(b -Vu), - b, dx + f(u -Vu), - Apu; dx — f(b -Vb), - Apu, dx

+f(u~Vb),-Ahb,dx—f(b~Vu),-Ahb,dx
=K, +---+Kjg, (3.18)
where we have used

pr, ‘uUydx =0 and pr, - A, dx = 0.

Firstly, K| can be written as

Kl:_fut.vbt.undx—fu'vl/lt'ul[dx-

By the anisotropic inequalities (2.5), (2.1) and (2.2),

1

1 1 1 1 1
3 4 4 2 2
K < Cl105t12, 1020, 210205101 21Vl 2101 Vel o etz + Clall 1Vl 2ol 2

1 1 1 1
2 2 2 2

< ClI0511 10203141211Vl 2101 Vel el 2 + ClOsulloo IVl 2ol -

2 2 2 v » 1 2
< (1 + IV ulfE 030l IVl + (5102050l + el )

where we also have used
1

1
101 Vull;, < Cll330,ull

2
Hl 0
Similarly, we have

1
K> < C(1 + [IVBIEDNO3 b7 20V, + (gl|6263bt”iz + leunlliz),
K3 < Cll05ul,110:203u,1, 1V DN 51101 VO ball 2 + CllOsullzol IVl 2 11bll 2
v 1
< C(1 + [IVBIE)I@3u, 33D poll(Vutr, VBIIZ, + (Ellazﬁsuzlliz + lebnllé),

1 1 1 1
Ky < Clld3bill 2110203511 oIVl 1101 Vil 1Bl + CllGsblleol Vel 21162l 2
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1
< C(1+ VUl Gatt, B30) ol (Vs VBN, + (2110205011 + 51wl
To deal with K5, we decompose it as
Ks = - thut -Vu-Vyu, dx — fu, -VVou - Vyu, dx — thu -Vu, - Vyu, dx

= K5’1 + K5’2 + K5’3. (3.19)

Applying (2.6), (2.4) and (2.2) to K5, Ks, and K53 , respectively, and combining with
(2.1), we get

1 1 1 1
Ks1 < CllO3 V| 21V ull 1101 Vutll 1102 Vall 110102 Vaall | Vel 2

12°

4
< ClIO3ullypsol Va7 + %Ilathuzll2 (3.20)

1 1 1 |
2 2 2 2

Ksy < Cllugll 1016l IV V tal| 102V V dl] 1103V el 2

2 2 v 2

< C||83Vh’/l”H2,0”VMz||L2 + 30||83tht||L27

and
Ks3 < |IVaullp=|IVugll 2 [IViugllz < ClO3V il 2ol Vil 2105V gl 2

%
< ClB3VullzpollVullz, + %Ilﬁthutlliz- (3.21)
Thus,
%
Ks < Cllosull;slIVudlly, + EIIC%VMIIZ-

By a similar argument as the one for Ks, we can show the estimates for the rest of terms
in (3.18). First,

K¢ + Kg = thb, -Vb-Vyu, + fb, -VVub - Vyu, + thb -Vb, - V,u,

+thb,-Vu-Vhbt+fbt-Vth-Vhb,+thb-Vut-Vhb,. (3.22)

Then invoking (3.20), we obtain
thbt -Vb - tht + thb, -Vu - Vhbt
2 2 n 2
< Cll(03u, 33b)l530l1(Vuy, VB)II7, + ﬁllathbzlle-

Similarly to Ks;,

fb, . VVhb . Vhlxlt + fb, . Vth . Vhbt

v
< CI@: 31, Vi)l Vo, + (55 105Vl + 5210916112,

Also, by (3.21)

thb -Vb,-Vyu, + thb -Vu, - V,b,
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4
< ClO Vbl l(Vit VI + (55 105Vl + %nagvhb[ng).
Consequently, we have
4
Ko + Ky < Cll@s1t, 930) 3l (Vut VoI, + (5510 Vel + gnasvhb,niz).

Analogously,

4
< Cl@st, Bsb)poll(Vitr, VBN, + (5510 Va2, + 2103961

Substituting all the estimates above for K; through Ky into (3.18), we have

d
—(V9st7: + 7I0sbAG: + (Tt Vb))

+ (IICu, btt)”iz + V[103 V| + 77”(93Vhbt)||i2)

< CA + [[(Vu, VO)EN(B31, 35|30 l1(T ity VB[
Using the inequality ||ug - Vugllgr < C ||u0||f12 in the equation of (u,(0), ,(0)), we have

1(24,(0), (Ol < C(lI(ut0, bo)ll3,z + 1V 310, VI3b0)I12). (3.23)

Gronwall’s inequality with (3.23) then leads to the desired estimate of Proposition3.3. O
3.3. Estimates for ||(03u, 95b)||y2 and ||(u, b)||z. This subsection presents the estimates
for ||(O3u, 03b)||y2 and thus for ||(u, b)||z3. The approach here is to invoke the elliptic
regularity theory and the Stokes estimates. For the sake of clarity, we state the results in

two propositions with Proposition 3.4 containing the H2-bound and Proposition 3.5 the
H?3-bound.

Proposition 3.4. Let (u, b) be the solution to the system (1.1). Then we have
IVullen + IVl + 16l < C(10ut, 8,112 + (Ve Vib)llgnro [Vl + 1IVBl| )
+ 1(Anu, Apb)lI2). (3.24)
Proof of Proposition 3.4. We can then rewrite the velocity equation and magnetic equa-

tion of (1.1) as
-Au+Vp=f, xe€Q, t>0,

u(x,t) =0, xe€0Q, t>0, (3.25)
V-u=0, xeQ, t>0,

and
-Ab=g, xe€Q, t>0,

b(x,t)=0, xe€0Q, t>0, (3.26)
V-b=0, xeQ, t>0,
respectively, with
fi=—0u—w-Vu+®-V)b—- Ayu,
g:=—0b—Ww-V)b+ (b -V)u—-Apb.
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It follows from the Stokes estimates (2.8) that
IVullenr + 1IVpllrz <C(10ullz2 + MG - Vullzz + 115 - V)bl 2 + [|Ayul]2).
By Holder’s inequality, (2.3) and Sobolev’s imbedding inequality,
Qe - Vullrz <letpll IV aellzs + lusllzsll03ull s
<CIV 1, 1054l V201, 105Vl
+ ClIV s 12, 18511, @l
<ClIVyullgro [IVullp, (3.27)
where we have used the divergence-free condition for u. Similarly,
1D - V)blir2 <ClIVibllgo [Vl
Thus,
IVullgr + 11V pllzz <CUIGullr2 + IVpullgio IVullgs + Vil [IVOlla + 1Apullz2). (3.28)
The bound for b can be obtained by applying the classical elliptic regularity theory,
10112 SC(Ilazblle + |(Vtt, Vib)llgro |(Via, VD)l + IIAhblle) (3.29)
after we have applied the bounds
(e - V)bll2 <C(IVpedlyz +11V56112) (IVull2 + [1Vbl),
I - Vyullz <CAIVublI2 + 1IVull2) (VDI + [Vull),

which follows from a similar argument as (3.27). The estimates in (3.28) and (3.29) lead
to the desired bound. This completes the proof of Proposition3.4. O

Proposition 3.5. Let (u, b) be the solution to the system (1.1). Then we have
IVullge + VPl < Cllullzn + el + 1B, + Al pi0),
161l < C1bAlgr + el 21 VBI g + 11012 IVl |1 + [1A3DI| o).
Proof of Proposition 3.5. The Stokes estimates applied to (3.25) yield
IVullgz + IVpllm < Clludlm + Ml - Vullgr + 115 - VBl + |Apullg)
< Cllugllz + llully + b1, + Al + 103A,ull.2).

By integration by parts, Holder’s inequality and Young’s inequality, the last term on the
right side above can be estimated as

_ 2 AN SR
183 Mntllz = (| B3V - Vidpuedix)® < 103Vl IV ull 2

1 C
< %uagvhuny + Envguny. (3.30)
Therefore,

2 2
IVulle> + VPl < Cllule + Ml + 1161152 + 1 Apul|r0).
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Next we show the estimate for ||Vb||52. Applying the classical elliptic regularity theory to
the equation (3.26) and using Sobolev’s inequality, we have

Iblls < CllbAlgr + [l - VOl + 116 - Vullg + 1AxD| 1)
< C1bdlla + el IV Dl + D= lIVullen + 1ARDI o + 1103A1D1112)
< C1bdla + el 2 IVBll g + 11012l Vutl | + 1ARDN 1o + 1103 AkbI12).
As in (3.30), we also have

C
1830112 < =103 Vabll, 2 + EHV?,bHLZ-

1 |
2C
Then we obtain

161l < Clblgr + Nl VOl + D12l Vull g + [[ARD 10).
This completes the proof of Proposition 3.5. O
3.4. Proof of the global well-posedness part of Theorem 1.1. This subsection com-

pletes the proof of the global well-posedness part of Theorem 1.1 by combining the en-
ergy estimates obtained in the previous three subsections.

Proof of the global well-posedness. First we apply the bootstrapping argument to (3.1)
in Proposition 3.1 to establish a global bound for ||(«, b)||z30 and the time integral of
103u(DI[> 5 +103b(DII7 5, under the condition that the initial H>°-norm is sufficiently small.

Denoting

E(1) = sup (lu(0)ll0 + 16()IIF30) + fo (183u(D)l[30 + 1036(DI30) d,

0<r<t

we obtain from (3.1) that
E(t) < agE(0) + a,E2(f) (3.31)

for some constants ay > 0 and a; > 0. We assume that the initial norm is sufficiently
small, say

1 /M
1Gt0. Dol <6 < 5[~ (3.32)
ap
To apply the bootstrapping argument, we make the ansatz that
E(t)s M :=—. 3.33
(1) 4 (3.33)
Our goal is to show that E(¢) actually admits a smaller bound, say
E@®) < M
<5
By (3.31), (3.32) and (3.33),
1
E(1) < agE(0) + | EX(1)E(7) < apd” + SE@,
or
M
E(t) < 2a¢6* < —, (3.39)

2
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which shows that E(#) actually admits a smaller bound. The bootstrapping argument then
asserts that (3.34) holds for any time, namely,

!
(led 70 + 116150) + f(llasu(T)Ili,s,o +1103b(T)l350) dT < C5°, (3.35)
0

Next we combine (3.35) with the energy estimates in Propositions 3.2 through 3.5 to
establish a global bound for ||(03u, d5u)||z2 and thus ||(«, b)||xs. 1t follows from (3.11) that

C [ 103,030) (@) 4 d
el + bl < Ce€ b I@IDONa0dm 1 bl < C lltto, bo)laes (3.36)

for a uniform constant C (independent of ¢). Invoking the estimate (3.24) along with
(3.35), we have

IVullgr + [IVpllzz + |1l < C(Il(ut,bf)lle +0(|Vullgr + [IVb||) + II(Ahu,Ahb)llLZ)-
Then, for ¢ sufficiently small, we find

Vullen + IV pllzz + 1Dl < ClGs bl + 1(Anu, Apb)|12), (3.37)
which, together with (3.36) and (3.35), implies
IVullzn + IVpllzz + 16l < C(6 + (0310, d3b0)l|1) (3.38)

for some constant C > 0. Furthermore, by (3.17), we obtain the uniform bound for
I(Vuy, VOl 12,

IVidllz + 11VBll2 < C(1 + 11w, bo)ll3 + 1(VB3u0, VO3b0)12). (3.39)
As a consequence, by Proposition3.5, (3.35), (3.36), (3.38) and (3.39), we derive
IVullgz + IVplla < Clludlm + 11, D)2 + [|Apullg10)
< C(8 + (310, 03bo) 13,1 + (B30, B30I,
161l < CBllgr + llual |2 + [|A3DI|pr10)
< C(6 + @310, 3bo)llzs + (0310, B3bo)ll1)-
This completes the proof of the global well-posedness part in Theorem 1.1. O

4. THE DECAY ESTIMATES

This section is devoted to proving the decay estimates in Theorem 1.1. This is accom-
plished in three steps. The first step establishes the exponential decay rate for ||(u, b)||g30
and ||(0su, 05b)||;2. An energy inequality involving these norms is derived in Proposi-
tion 4.1 to serve this purpose. The second step shows the exponential decay rate for
(e, b)||pr0 and ||(Osu,, O3b;)||;2. This step involves a key energy inequality stated in
Proposition 4.2. The final step applies the Stokes estimates and the elliptic regularity
theory to obtain the decay rates for ||(u, b)||z3 and ||V pl|z:.

We start with the Proposition 4.1 and its proof.

Proposition 4.1. Assume (u, b) is the solution of the system (1.1). Then,

d
E(Vllasulliz + 7ll83bl172) + (ludZ + 1154172) < Cllu, D)0 (103ll350 + 103b10)-  (4.1)
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for some constant C > 0.

Proof of Proposition 4.1. Taking the L*-inner product of (1.1) with (u,, b,), and using the
boundary condition u, = b, = 0 on 9€), we have

1d
EE(Vllazulliz +l03bl17) + Al |7, + 1bi17)

:—fu-Vu-utdx+fb-Vb-u,dx—fu-Vb-btdx+fb-Vu-b,dx.

Invoking the anisotropic inequality (2.5) and (2.6) yields

—fu-Vu-utdx:—fuh-th‘u,dx—fm@gu-utdx

1 1 1 1 1
5 5 2 4 4
< Cllugll L 1101unll 1,105V pull 5102V iul] 510205V pull ) el 2
1 1 1 1
1 1 1 1
+ Cll05usll 2 1105ull 110103 ull, 10205 ull 1|01 0203 ull ||| .2
1
2 2 2
< Cllullyoll03ullyp, + leutlle,

where we have used the fact [|0,V,ull;2 < Cl||030,V,ull;2. With a similar argument, the
other integrals can be bounded as

1
fb - Vb -, < ClIbll3,10103b1l7,20 + leutlliz,

1
- fu - Vb - by < Cllullf,o103b117,20 + Z”bt”ih

1
fb -V - by < ClIbll3,0103ull}20 + Z”bt”iz-

Therefore, we have

d
E(V||a3ul|i2 +ll036117.) + (ldl7> + 1B4152) < Cll, B30 (183ull750 + 1035117 50)-
This completes the proof of Proposition 4.1. O
The second proposition presents a sharper estimate on ||(u,, b,)||1. A different estimate

on ||(u;, b,)||;;1 was obtained in Proposition 3.2 and Proposition 3.3. This upper bound is
needed to extract the desired decay rate.

Proposition 4.2. Let (u, b) be the solution of the system (1.1). Then,

d
(1t DI o + VIOl + 13bAl52) + (A3l + 1103541510 + Wt I,
< (11314, 3sD)lIz2 + 1at, b))Vt 3Vab)Iooll(Vaar, VB (4.2)

for some constant C > Q.

Proof of Proposition 4.2. By (3.13) and (3.18), we have

1d
5 7l b0 + V03wl + nlldsbil3,) + (NOsull7,0 + 103D + Wie, B)II22)

=Ji 4+ L+ K-+ Ks,
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where J; through J; and K, through Ky are defined as in (3.13) and (3.18), respectively.
By the anisotropic inequality (2.4), J, can be bounded as

Ji = —f&tuh -Vuu-u,dx — f&tu383u-u,dx
| : % E vt 19t
< ClUBs il (Ve 102V el + 105012 10205012 a2, 0]
3 1 1 1
3 1 1 1
< C||a3ut||22<||vhu”H]~0 + ||t93u||LzIIGzasulle)llalutllzz
2

2 2 2 2 4
< C(IVaullgio + 103ull)N03Viull ol Va7, + Ellaauzlle,

where we have used
el 2 < CllOsullr2, IVattllgro < CllO3V pul o

due to u, = 0 and V,u = 0 on 0Q. Similarly, for J, through J,, we have
Jo+ I3+ U4 < C(II(th, Vib)I20 + (D51, 33b)||iz)||(33th, Vb ol(Vue, VB,
\4
+ (5 lstl, + 2103611

Now we bound K| through K,. By the anisotropic inequalities (2.5) and (2.6),

Kl:—fu,-Vu-uttdx—fuh-th,-ut,dx—fmﬁgut-u,,dx

1 1 1 1 1
2 1 1 2 2
< Cl0suill 11021l 10203ul| [Vl 21101 Vaall 2 ot 22

1 1 1 1 1 1
3 s g 3 3 3
+ Cllull 101 unll1102unll 1101 02unll IV w1, 1105 Vitag|| o it 2

1 1 1 1 1
2 a 3 3 2
+ Cll0susl Ll102usll 5 10205 usl L1031 1101930l 5 ekl 2

Due to 0u, = 0,0,u = 0,9,0,u;, = 0 on 0€2, we can apply the Poincaré-type inequality
(2.1) to obtain

1 1 1 1
Ky < Cll03uill 110:203u,ll 1V el 1101 Vall 2 et 2
1 1 1 1
+ Cllull 1 1030204l 1o oIVt 112,105V || el 2
\% 1
< CUIVUll2 IV, Yl + el 105V el )l Va7 + (%Ilﬁswuzlliz + leunlliz)
< IR0 Vttlo[V s + (2195 Vttls + 1l
< Cllul 195V el o1Vl + (S 193V aul72 + lhel2).
where we have used ||V, Vul|;2 < C||03V,ul|g10 in the last inequality. Similarly,
1
Kz < CIBIRI0sViblEolIVEE, + (SE105Vibis + 7l ),
K3 < CUIVDILNVR VDI IVull7, + Nl 1105V aul 0 V)
v 1
+ (3 l0sVaael + S0V + 51l
Ky < CUNVUllNVR VUl VDA + 16121105 Vibl 2o Vil )
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v 1
+ (3105l + %uagvhbtniz + 7 lbull)
Therefore, we have
Ky + Ky + K3 + Ky < Clully, + 161501185 Viute, 35Vl (V. V)2
% 1
+ (105 Ve, + guagvhbtn; o ()

Recalling (3.19), we have

Ks =- thut -Vu-V,u,dx - fu, -VV,u - Vyu, dx — thu -Vu, - Vyu, dx
= K51 + K52 + K53.
By (2.6) and Poincaré-type inequality (2.1),

1

1 1 1
Ks1 < Cl03 Vgl 2V udl 110, Vadll 1161 Vtll 118182Vl IV el 2
1 1
< CIVull 10>Vl 101 D3l [Vt 2,105 Vit
< ClIVull 2 ull 2105V a0 IVt 117, + %||63tht”iz-
Similarly,

1 1 1 1
3 3 3 3

Ks3 < ClIVyull 1101 Viull 1102V wdll 110102Vl IV sl 21105V |12
1 1 1

1 1 1 1 1 1 1
7 7 7 7 3 5 5
< ClIVaull 5101 Viull 5 102V pull 10102V dll o Vatell 7, (N5l + 103V il 1)103V el 2

2 2112 2 v 2
< C”th”Hl,o||63th||H1.ollvut”L2 + %”83”!1‘”]_]1,0’

1 1
where we have used ||tht||22 <C ||63th,||z2 in the second inequality. The estimates for
K5, 1s more complicated. By integration by parts, (2.4) and (2.5) and invoking |[u||;2 <
Cllosu |2 and [|Vyuill,> < ClIV,,03ull 2, we deduce

K5 = — fﬁ,uh . Vﬁu - Vyu, dx + fa3l/t3[ Vuu-Vyu,dx + fbt3, Viu - 83th, dx

1 1 1 1
2 2 2 2 2 2
< Cllul 211011 NIV ull 21102V ull 1103 V|| 2
1 1 1 1
3 b3 2 2
+ CllOsul| 1101 03ull L IV el 102V el 5 103V |2
1 1 1 1 1
2 4 4 2 2
+ Cl103ud| 10214l 1020341 LIV ndl] 1101 Vil 103V | 2
2 ) 2 v 2
< ClIVaullzoll03 Vil ol Vall;, + %llawhuzlly-
Thus,
Ks < c(IIv Vol MOVt [V ity + ~—18528,]2
s < CUIVull2|ullzz + IV aullg 0 103 Viull g IVall;, + 12|| U0

As in (3.22), K¢ + Kg can be split into six parts as

K¢ + Kg = thb, -Vb-V,u,dx + fbt -VVub - Vyu, dx + thb -Vb, - Vyu, dx
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+ thb, -Vu-V,b,dx + fb, -VVuu - Vb, dx + thb -Vu, - V,b, dx.
Similarly to Ks;, K5, and Ks3, we have

< CIN(Vat, VD)l lut, D)1 1 @3 Ve, B3V 1) Eoll(Vitr, YOOI
v
+ (3 l0sVils + L 10:Vib )

fb[ * VVhb * thl d.x + fbt * Vth ° Vhb[ d.x

v
< Cl(Vntt, Vib)ll310ll(83V 31, 33V IV AL, + (%Ilathutlliz + %Ilé‘ﬂhbzlliz),

and
thb -Vb, - Vyu,dx + thb -Vu, - Vb, dx
< ClIVABIE o103V 201Vt VBIZ: + (i3t Buo + 218551, 10
= H A= g ’ L 36 H 24 H
Consequently,

Ko + Ks < C(I(Vu, VOl 2llGat, D)l + 1V it Vi) 700
X 1@ Vit 35V 0ol (Vs VBIE: + (551030010 + L1031l )
Finally, K5 can also be bounded by
K7 < C(IVBI2lIbllge + (V. Vib)I300)
X133t Vi) ol Vi, VBN + (5510510l + 25b1y10):

Collecting all the estimates above for J; through J, and K; through Kg, we obtain

d
(1t D0 + Vst + 1lsbil32) + (V1932 so + 1IBsBAG 10 + e, b))

< C(II(VM, VD)l lI(ut, b)llpe + 1183, Dsb)I7 + I, b)ll?,z,o)
X (183 Vit 35V D)l 320l(Vity, VO)II7,
< C(Il(ﬁsu, 93D)llz2 + l(u, b)||H2’0)||(83th’ 03 Vib)l[20ll(Vir, VB2,
where we have used the uniform bound for ||(«, b)||52. This completes the proof of Propo-
sition 4.2. m|
Next we prove the decay rate in Theorem 1.1.

Proof of the decay estimate in Theorem 1.1. As aforementioned, the proof of the decay
estimates is divided into three main steps. The first step shows the exponential decay
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for ||(u, b)||g30 + ||(O3u, O3D)||;2 by making use of the estimate in Proposition 4.1. Adding
(3.10) and (4.1), and invoking the global bound in (3.35), we have

d 2
(I D) + G S0, + sl + mlosbil,)
i=1

+ oVl dzullyso + 2conlldzbllyse + s, b
< Co(ll(t, D)o + 11, D)lI3y10)(1B31all550 + 183b1155)
< Co(6 + 6*)(I103ull7ys0 + 193b117;30)-

If we select 6 to be sufficiently small such that Co(6 + 6%) < min{2cyv, 2con}, then, for a
positive constant C,

d 2
(1 D) + G GBI + sl + mldsbil,)

i=1
+ C(103ull7 0 + 103b1250) < O.
Due to ulsq = blsa = 0, by virtues of (2.1), we have

2
G, DI, + Z 187, D172 < Null3so + 1611750 < CAlBsul750 + 103b11550).

i=1

Then, for some constant Cy(v,n) > 0,

d
EX(I) +2CX() <0,

where
2
X(0) =l bYZ + Y W@, B30I, + vidsulZ, + 9Bl
i=1
Therefore,
X(1) < e*"X(0)
or

(2t D)o + (D31, B3b)lI2 < Ce™ " ([[(ug, bo)llzo + (D310, D3bo)l12)- (4.3)
The second step verifies the exponential decay rate for ||u,||g + ||by]|z1, for any ¢ > 0,
lltellep + 1Bl < Ce™ . (4.4)

We relies on Proposition 4.2. Adding (3.10) and (4.2), and using (4.3), we deduce that,
for a constant Cs,

d 2
(1 DR + 1@ B + s bl + Vsl + bl )
i=1

+ C, )(I@st, 3b) 550 + 1(D31ts, D3l 700)
< C(I[3u, d3b)I.2 + 1, D)) @st, D3b) 350 (Il ates DN + 1)
< Coe™ V|85, sb)II; (4.5)

H3,0 9
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where we have used the uniform bound of ||(u;, b,)llip. We choose T > 0 satisfying
Cv,n,T) :=C(v,n) — Cre T > 0.
Then (4.5) implies that, fort > T,

d 2
(I BIE: + 3 1@ BB, + W, b + 93t + i)
i=1

+ C, 1, TY(I(@311, 33b) 350 + 1 D3141, D3b)l500) < O. (4.6)

Due to the Poincaré-type inequality (2.1), we have

2
G, DI + Z 187, D)7, < 11, D)0 < Cll(B3t4, B3)lI 350,
i=1

|2 bt)lllqu,o < Cll(d3uy, (93[7,)”2

Hl 0
and thus

2
(e, DI, + Z 137w, DT, + s, b0 + VIOsuilI7, + 1llBsbill7,
i=1

< C(l(B5u, 33b) |30 + 3141, 3D 1) 4.7)
Combining (4.6) and (4.7), and setting

2
Y(0) = I, I}, + Z 187w, B2D)IZ, + 1I(tts, B0 + VIIOsuI7, + 1llB3bAL,
i=1
we obtain, for a constant C3 > 0,
d
—Y(@®) +2C3Y(r) <0,
o () 3Y (1)
which yields
Y(t) < e 'Y (0).
That is, fort > T,
Nl + 1bellen < Ce < (ll(uo, bo)ll2 + (V5 u0, Vibo)llz2 + 13 Vug, B3Vbo)12).  (4.8)
For 0 <t < T, by (3.36) and (3.39), it is easy to see that
Nl + 1Bellen < Cliuo, bo)ll7 + V310, VO3bo)II2) < Ce™ 4.9)

for some constant C depending on the initial data. Then (4.8) and (4.9) give the desired
estimate (4.4).

The final step of the proof is to derive the exponential decay rate for ||(u, b)||3 using
the decay rates from the first two steps, and the Stokes and elliptic regularity estimates.
Invoking the estimate (3.37) yields

105 Vull 2 + 185Vl 2 < ClI(uss bl + 1A, Apb)ll2) < Ce™ .

for a constant C, = min{C;, C5}. Furthermore, according to Proposition 3.5, we have
105V2ull2 + IV pll < Cllugllz + 1, D)l + 1 Apullpgr0) < Ce™ .
185V2Dll2 < C(UIbillr + 11, D)l + 1Anbllgr0) < Ce™,



GLOBAL WELL-POSEDNESS ON THE 3D MHD EQUTIONS 27

This completes the proof of the decay estimate in Theorem 1.1. O
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