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Abstract. The three-dimensional incompressible magnetohydrodynamic (MHD) system
with only vertical dissipation arises in the study of reconnecting plasmas. When the
spatial domain is the whole space R3, the small data global well-posedness remains an
extremely challenging open problem. The one-directional dissipation is simply not suf-
ficient to control the nonlinearity in R3. This paper solves this open problem when the
spatial domain is the strip Ω := R2 × [0, 1] with Dirichlet boundary conditions. By invok-
ing suitable Poincaré type inequalities and designing a multi-step scheme to separate the
estimates of the horizontal and the vertical derivatives, we are able to establish the global
well-posedness in the Sobolev setting H3 as long as the initial horizontal derivatives are
small. We impose no smallness condition on the vertical derivatives of the initial data.
Furthermore, the H3-norm of the solution is shown to decay exponentially in time. This
exponential decay is surprising for a system with no horizontal dissipation. This large-
time behavior reflects the smoothing and stabilizing phenomenon due to the interaction
within the MHD system and with the boundary.

1. Introduction

This paper focuses on the following 3D incompressible magnetohydrodynamic (MHD)
system with only vertical dissipation in a strip domain Ω = R2 × [0, 1],

∂tu + (u · ∇)u + ∇p = ν ∂33u + (b · ∇)b, x ∈ Ω, t > 0,
∂tb + (u · ∇)b = η ∂33b + (b · ∇)u,
∇ · u = ∇ · b = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x)

(1.1)

supplemented with the Dirichlet boundary condition

u|∂Ω = 0, b|∂Ω = 0, t > 0.

Here u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and b = (b1(x, t), b2(x, t), b3(x, t)) denote the fluid
velocity and the magnetic field, respectively, p(x, t) the total pressure, and the parameters
ν > 0 and η > 0 represent the viscosity and resistivity, respectively. The MHD system is
a combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations
of electromagnetism. They govern the motion of electrically conducting fluid such as
plasmas, liquid metals and electrolytes, and have a very wide range of applications in
astrophysics, geophysics, cosmology and engineering (see, e.g., [5,7, 17,41]). The MHD
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system (1.1) focused here is relevant in the modeling of reconnecting plasmas (see, e.g.,
[13, 14]).

The goal of this paper is twofold: first to solve the global well-posedness problem,
second, to determine the precise large-time behavior of the solutions. The issues put
forward for study here are not trivial and can not be dealt with via existing approaches.
There are three immediate difficulties. The first is that the dissipation in only one direction
is not sufficient to control the nonlinearity. Extra regularizing properties are needed in
order to obtain time-integrable upper bounds for the nonlinear terms. In the case of whole
space R3, exactly due to this difficulty, the small-data global well-posedness on (1.1)
remains a challenging open problem. Clearly we need to take advantage of the domain
Ω and the associated boundary condition in order to solve the well-posedness problem
focused here.

The second difficulty is due to the presence of the boundary. In the process of esti-
mating the Sobolev norms of the solutions, we can no longer integrate by parts freely as
in the whole space case. This forces us to design a more delicate scheme to avoid the
boundary terms. Observing that the horizontal derivatives of the solution are all zero on
the boundary due to the boundary conditions, we need to distinguish the estimates of the
horizontal derivatives from those of the vertical derivatives. In addition, we need to es-
timate the time derivatives in order to control the vertical derivatives. This explains why
the estimates on the Sobolev norms of the solutions are much more involved than those
in the whole space case.

The third difficulty arises in the study of the large-time behavior. Powerful methods
have been created to determine the large-time behavior of fully dissipative systems of
partial differential equations (PDEs). Schonbek’s Fourier splitting scheme has worked
very well when the Navier-Stokes, the Boussinesq or the MHD equations involve full
dissipation (see, e.g., [25, 44]). However, these methods can not be extended to partially
dissipated PDE systems. In fact, no existing method can be adapted to deal with the
MHD system with dissipation in only one direction. This paper intends to develop new
approaches that are capable of extracting the large-time behavior of anisotropic PDE sys-
tems. This paper is able to resolve all three difficulties described here and successfully
establish the desired well-posedness and large-time behavior.

To give a precise account of our main result, we introduce the following notations and
norms,

vh = (v1, v2), ∇hv = (∂1v, ∂2v), ∆hv = ∂2
1v + ∂2

2v,

‖ f ‖2Hs,0(Ω) =

2∑
i=1

∑
0≤|α|≤s

‖∂αi f ‖2L2(Ω),

‖( f , g)‖2Hs = ‖ f ‖2Hs + ‖g‖2Hs , ‖( f , g)‖2Hs,0 = ‖ f ‖2Hs,0 + ‖g‖2Hs,0 .

Our main result can then be stated as follows.
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Theorem 1.1. Assume that the initial data satisfies (u0, b0) ∈ H3(Ω) with ∇ · u0 = 0 and
∇ · b0 = 0, and the zero boundary conditions on ∂Ω. Then there exists δ > 0 such that, if

‖u0‖H3,0(Ω) + ‖b0‖H3,0(Ω) ≤ δ,

then the 3D MHD system (1.1) admits a unique global solution (u, b) satisfying

‖(u(t), b(t))‖2H3(Ω) + ‖(∂tu(t), ∂tb(t))‖2H1(Ω) + ‖∇p(t)‖2H1(Ω) + 2ν
∫ t

0
‖∂3u(τ)‖2H3,0(Ω) dτ

+ 2η
∫ t

0
‖∂3b(τ)‖2H3,0(Ω)dτ ≤ C

(
δ2 + ‖(∂3u0, ∂3b0)‖4H1(Ω) + ‖(∂2

3u0, ∂
2
3b0)‖2H1(Ω)

)
for any t > 0 and some uniform constant C. In addition, the following decay estimate
holds:

‖(u(t), b(t))‖H3(Ω) + ‖(∂tu(t), ∂tb(t))‖H1(Ω) + ‖∇p(t)‖H1(Ω) ≤ Ce−C∗t (1.2)

for some constants C > 0 and C∗ > 0.

We make several remarks on Theorem 1.1.

Remark 1.1. The smallness condition on the initial data is only imposed on the L2-norms
of (u0, b0) and its horizontal derivatives. There is no requirement on the vertical deriva-
tives. Therefore, the H3-norm of (u0, b0) is not necessarily small. In this sense, our result
is actually a global well-posedness without smallness assumption on the full initial H3-
norm.

Remark 1.2. The exponential decay estimate for ‖(u(t), b(t))‖H3 in (1.2) is surprising if
we take into account of the fact that the MHD system concerned here has no horizontal
dissipation and the horizontal variables are in the whole spaceR2. This remarkable large-
time behavior does not directly come from the dissipation in the system, but rather is a
consequence of the smoothing and stabilizing effect of the interactions within the MHD
system and with the boundary.

Remark 1.3. A special consequence of Theorem 1.1 is the global well-posedness of the
3D incompressible Navier-Stokes equations in a strip domain,

∂tu + (u · ∇)u = −∇p + ν∂33u, x ∈ Ω, t > 0,
∇ · u = 0,
u(x, 0) = u0(x),
u|∂Ω = 0

(1.3)

when the horizontal derivatives of u0 is sufficiently small. More precisely, if

‖u0‖H3,0(Ω) ≤ δ

for sufficiently small δ > 0, then (1.3) has a unique global solution u ∈ L∞(0,∞; H3(Ω)).
In addition, (u, p) decays exponentially in the sense that, for two positive constants C,C∗

and for all t > 0,

‖u(t)‖H3(Ω) + ‖∂tu(t)‖H1(Ω) + ‖∇p(t)‖H1(Ω) ≤ Ce−C∗t.

We remark that an important work by Paicu and Zhang [39] has investigated the small
data global well-posedness of (1.3) in the anisotropic Besov setting.
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To place our result in a suitable context of existing research, we describe some of
the closely related work on the incompressible MHD equations. Due to their physi-
cal applications and mathematical importance, the global well-posedness, stability and
large-time behavior problems on the MHD equations have recently attracted consider-
able interests from the community of mathematical fluid mechanics. Many recent efforts
are devoted to various partially or fractionally dissipated MHD systems. Since clas-
sical approaches designed for systems with full dissipation no longer work, new tech-
niques and methods have recently been developed to deal with anisotropic MHD equa-
tions. Significant progress has been made. Existence and regularity results for the 2D
MHD equations with various partial or fractional dissipation has been established (see,
e.g., [9–11, 19, 20, 31–33, 46, 54, 55]). Local and global well-posedness on the 3D MHD
equations with standard dissipation or various form of hyperdissipation has also been ob-
tained (see, e.g., [12,21,28,34,35,45,48–50,53,56,57]). The study on the well-posedness
and stability problem on the MHD equations near the trivial solution or a background
magnetic field has recently gained a lot of momentum. There are substantial develop-
ments (see, e.g., [3, 6, 8, 18, 22, 26, 27, 29, 30, 36, 37, 40, 42, 43, 47, 51, 52, 58–60]). Es-
pecially, [3, 6, 22, 26, 36, 52] reveal and rigorously confirm the stabilizing phenomenon
observed in physical experiments on MHD turbulence (see, e.g., [1, 2, 15–17, 23, 24]).
We remark that previous work on the 3D anisotropic MHD equations requires either the
velocity equation or the equation of the magnetic field has dissipation in at least two di-
rections. Consequently, none of the previous approaches can be applied directly to solve
the problems concerned here.

We explain the main idea in the proof of Theorem 1.1. Naturally the proof is divided
into two main parts with the first devoted to the global well-posedness and the second
to the decay estimate. The center piece of the global well-posedness is the global bound
on ‖(u, b)‖H3 . Due to the presence of the boundary, we can no longer integrate by parts
freely as in the whole space case. Our observation is that the horizontal derivatives of the
solution are all zero on the boundary due to the boundary conditions on u and b. On the
contrary, the boundary-values of the vertical derivatives are unknown. To accommodate
this observation, we design a multi-step scheme to estimate ‖(u, b)‖H3 . The first step
focuses on the norm of the horizontal derivatives, namely ‖(u, b)‖H3,0 . With no boundary
terms generated in the process, our attention focuses on how to control the nonlinearity by
the vertical dissipation. To make up for the lack of dissipation in two directions, we make
use of the boundary conditions to derive strong versions of Poincaré type inequalities such
as

‖ f ‖L2(Ω) ≤ C‖∂3 f ‖L2(Ω),

‖ f ‖L∞(Ω) ≤ C‖∂3 f ‖H2,0(Ω),

which are valid for any functions f with zero boundary conditions. More information can
be found in Section 2. In addition, we use various anisotropic upper bounds for triple
products generated from the nonlinearity. After a long process of estimating many terms,
we are able to obtain the following energy inequality,

‖(u, b)‖2H3,0 + min{ν, η}
∫ t

0

(
‖∂3u(τ)‖2H3,0 + ‖∂3b(τ)‖2H3,0

)
dτ
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≤ C‖(u0, b0)‖2H3,0 + C
∫ t

0
‖(u, b)(τ)‖H3,0

(
‖∂3u(τ)‖2H3,0 + ‖∂3b(τ)‖2H3,0

)
dτ.

Remarkably this inequality is self-contained and involves no vertical derivatives. An
application of the bootstrapping argument then yields a global bound on ‖(u, b)‖H3,0 as
well as on

∫ t

0
‖∂3u(τ)‖2H3,0 +‖∂3b(τ)‖2H3,0 dτwhen the initial norm ‖(u0, b0)‖H3,0 is sufficiently

small.

However, the lack of boundary conditions on the vertical derivatives prevents us from
estimating the norms of the vertical derivatives directly. Our strategy is to rewrite the
equation of u in (1.1) as 

− ∆u + ∇p = f , x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0

(1.4)

with
f := −∂tu − (u · ∇)u + (b · ∇)b − ∆hu,

and the equation of b in (1.1) as
− ∆b = g, x ∈ Ω, t > 0,
b(x, t) = 0, x ∈ ∂Ω, t > 0,
∇ · b = 0, x ∈ Ω, t > 0

(1.5)

with
g := −∂tb − (u · ∇)b + (b · ∇)u − ∆hb.

The regularity theory on the Stokes system in (1.4) and the Poisson equation in (1.5) then
converts the estimates of the H3-norm of (u, b) into the estimates of the H1-norm of f and
g. In particular, we need to bound ‖(∂tu, ∂tb)‖H1 . This is accomplished in the second step.
Naturally this step is divided into the estimates of ‖(∂tu, ∂tb)‖L2 and of ‖(∇∂tu,∇∂tb)‖L2 .
Moreover, due to the lack of boundary conditions for the vertical derivatives, we need to
further write

‖(∇∂tu,∇∂tb)‖2L2 = ‖(∇h∂tu,∇h∂tb)‖2L2 + ‖(∂3∂tu, ∂3∂tb)‖2L2

and deal with the horizontal derivatives and the vertical derivatives accordingly. We are
able to show that

‖ut‖L2 + ‖bt‖L2 ≤ CeC
∫ t

0 ‖(∂3u,∂3b)(τ)‖2
H3,0 dτ(

‖(u0, b0)‖2H2 + ‖(∂2
3u0, ∂

2
3b0)‖L2

)
,

‖∇ut‖L2 + ‖∇bt‖L2 ≤ CeC
∫ t

0

(
1+‖(∇u,∇b)(τ)‖2

L2

)
‖(∂3u,∂3b)(τ)‖2

H3,0 dτ

×
(
‖(u0, b0)‖2H2 + ‖(∇∂2

3u0,∇∂
2
3b0)‖L2

)
.

The final step is to invoke the regularity theory on the Stokes system and the Poisson
equation to establish the desired global bound on ‖(u, b)‖H3 .

The exponential decay estimate (1.2) in Theorem 1.1 is established through three
stages. The first stage proves the exponential decay rate for ‖(u, b)‖H3,0 + ‖(∂3u, ∂3b)‖L2 .
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This is achieved by first deriving an equation for ∂t(ν‖∂3u‖2L2 + η‖∂3b‖2L2) and then com-
bining with the equation for ∂t‖(u, b)‖H3,0 previously obtained in the well-posedness part.
This process leads to a differential inequality of the form

∂tX(t) + C X(t) ≤ 0

for a constant C > 0 and X(t) = ‖(u, b)‖H3,0 + ‖(∂3u, ∂3b)‖L2 . The second stage focuses on
the exponential decay rate for ‖(∂tu, ∂tb)‖H1 ,

‖(∂tu, ∂tb)(t)‖H1 ≤ C e−Ct, (1.6)

where C > 0 is a constant. (1.6) is verified by first deriving a refined energy inequality
for

‖(∂tu, ∂tb)‖2H1,0 + ν‖∂3∂tu‖2L2 + η‖∂3∂tb‖2L2 .

The precise inequality and its proof are provided in Proposition 4.2. The final stage
invokes the regularity estimates of the Stokes system (1.4) and the Poisson equation (1.5),
and combines the exponential rates from the first two stages.

The rest of this paper is divided into three sections. Section 2 presents three tool
lemmas to be used in the proof of Theorem 1.1. The first contains three Poincaré-type in-
equalities, the second provides several anisotropic upper bounds for triple products while
the third states the the existence and regularity result on a Stokes system with no-slip
boundary condition. Section 3 is devoted to the proof of the global well-posedness part of
Theorem 1.1. It is further divided into four subsections. Section 4 proves the exponential
decay estimate of Theorem 1.1. It first derives two main propositions and then use them
to establish the desired decay estimates.

2. Preliminary

This section prepares three tool lemmas to be used in the proof of Theorem 1.1. The
first lemma provides several Poincaré-type inequalities, which allow us to bound the L2-,
L∞- and L4-norms of a function f defined on Ω in terms of suitable norms of ∂3 f . This
is one of the reasons that we can control the nonlinearity of the MHD system in terms of
the vertical dissipation. They play a crucial role in achieving the time-integrable upper
bounds for the nonlinear terms.

The second lemma presents several anisotropic upper bounds for triple products. Non-
linear terms in the MHD system emerge as triple products in the estimates of the norms
on the solutions, and this lemma can bound such products by selectively placing partial
derivatives on the components of the products. This helps maximally make use of the
anisotropic dissipation. These type of inequalities have proven to be extremely important
in the study of the 2D anisotropic PDEs (see, e.g., [10]) as well as 3D anisotropic PDEs
(see, e.g., [52]).

The third lemma states the existence and regularity result on a Stokes system defined
on Ω with no-slip boundary condition. It will be used to estimate the vertical derivatives
of the solutions such as ‖∂3u‖H2(Ω).
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We now state and prove the first lemma that contains several Poincaré-type inequali-
ties. Standard Poincaré inequalities require the gradient, but what we need here is mainly
the x3-directional derivative.

Lemma 2.1. Let Ω = R2 × [0, 1]. Assume f |∂Ω = 0, f ∈ H1,0(Ω) and ∂3 f ∈ H2,0(Ω). Then
for some constant C > 0, we have

‖ f ‖L2(Ω) ≤ C‖∂3 f ‖L2(Ω), (2.1)
‖ f ‖L∞(Ω) ≤ C‖∂3 f ‖H2,0(Ω), (2.2)

‖ f ‖L4(Ω) ≤ C‖ f ‖
1
4
L2‖∇h f ‖

1
2
L2 ‖∂3 f ‖

1
4
L2 ≤ C‖∇h f ‖

1
2
L2 ‖∂3 f ‖

1
2
L2 . (2.3)

Proof of Lemma 2.1. According to the one-dimensional Poincaré inequality,

‖ f ‖L2
x3
≤ C‖∂3 f ‖L2

x3
.

Squaring each side of the inequality above and integrating over (x1, x2) ∈ R2 yield

‖ f ‖L2(Ω) ≤ C‖∂3 f ‖L2(Ω).

Due to f |∂Ω = 0, by Hölder’s inequality and Poincaré’s inequality, we have

‖ f ‖L∞x3
≤
√

2 ‖ f ‖
1
2

L2
x3
‖∂3 f ‖

1
2

L2
x3
≤ C‖∂3 f ‖L2

x3
.

By Minkowski’s inequality and the Sobolev imbedding inequality,

‖ f ‖L∞ =
∥∥∥∥‖ f ‖L∞x3

∥∥∥∥
L∞x1 ,x2

≤ C
∥∥∥∥‖∂3 f ‖L∞x1 ,x2

∥∥∥∥
L2

x3

≤ C
∥∥∥∥‖∂3 f ‖H2

x1 ,x2

∥∥∥∥
L2

x3

= C‖∂3 f ‖H2,0 .

Similarly,

‖ f ‖L4 =
∥∥∥∥‖ f ‖L4

x3

∥∥∥∥
L4

x1 ,x2

≤ C
∥∥∥∥‖ f ‖ 3

4

L2
x3
‖∂3 f ‖

1
4

L2
x3

∥∥∥∥
L4

x1 ,x2

≤ C
∥∥∥∥‖ f ‖L6

x1 ,x2

∥∥∥∥ 3
4

L2
x3

‖∂3 f ‖
1
4
L2

≤ C
∥∥∥∥‖ f ‖ 1

3

L2
x1 ,x2
‖∇h f ‖

2
3

L2
x1 ,x2

∥∥∥∥ 3
4

L2
x3

‖∂3 f ‖
1
4
L2

≤ C‖ f ‖
1
4
L2‖∇h f ‖

1
2
L2 ‖∂3 f ‖

1
4
L2 ≤ C‖∇h f ‖

1
2
L2 ‖∂3 f ‖

1
2
L2 .

This completes the proof of of Lemma 2.1. �

The second lemma presents several anisotropic inequalities for triple products, which
play a crucial role in establishing the global bound for ‖(u, b)‖H3,0(Ω) and for the decay
estimates. This lemma can be shown by means of the proof in [52] together with Poincaré
inequality ‖ f ‖L∞x3

≤ C‖∂3 f ‖L2
x3

for f |∂Ω = 0.

Lemma 2.2. Let Ω = R2 × [0, 1]. Assume f |∂Ω = 0. Then∫
| f gh|dx ≤ C‖∂3 f ‖L2(Ω)‖g‖

1
2
L2(Ω)‖∂1g‖

1
2
L2(Ω)‖h‖

1
2
L2(Ω)‖∂2h‖

1
2
L2(Ω), (2.4)∫

| f gh|dx≤ C‖ f ‖
1
4
L2(Ω)‖∂3 f ‖

1
4
L2(Ω)‖∂2 f ‖

1
4
L2(Ω)‖∂2∂3 f ‖

1
4
L2(Ω)‖g‖

1
2
L2(Ω)‖∂1g‖

1
2
L2(Ω)‖h‖L2(Ω)
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≤ C‖∂3 f ‖
1
2
L2(Ω)‖∂2 f ‖

1
4
L2(Ω)‖∂2∂3 f ‖

1
4
L2(Ω)‖g‖

1
2
L2(Ω)‖∂1g‖

1
2
L2(Ω)‖h‖L2(Ω). (2.5)∫

| f gh|dx ≤ C‖ f ‖
1
2
L2(Ω)‖∂3 f ‖

1
2
L2(Ω)‖g‖

1
4
L2(Ω)‖∂1g‖

1
4
L2(Ω)‖∂2g‖

1
4
L2(Ω)‖∂1∂2g‖

1
4
L2(Ω)‖h‖L2(Ω)

≤ C‖∂3 f ‖L2(Ω)‖g‖
1
4
L2(Ω)‖∂1g‖

1
4
L2(Ω)‖∂2g‖

1
4
L2(Ω)‖∂1∂2g‖

1
4
L2(Ω)‖h‖L2(Ω). (2.6)

The last lemma of this section states the existence and regularity result on a Stokes
system with no-slip boundary condition. This lemma is taken from Beirao da Veiga [4].

Lemma 2.3 (Stokes estimates). Let Ω = R2 × [0, 1] be the strip domain. Let f ∈ Hk(Ω)
with k ≥ 0 being an integer. Assume v ∈ H1(Ω) is the weak solution of the Stokes
equations 

−4v + ∇P = f , in Ω,

∇ · v = 0, in Ω,

v = 0, on ∂Ω.

(2.7)

Then (2.7) has a unique strong solution (v, P) ∈ Hk+2(Ω) × Hk+1(Ω) and the following
estimate

‖∇v‖Hk+1(Ω) + ‖∇P‖Hk(Ω) ≤ C‖ f ‖Hk(Ω), (2.8)

holds for some positive constant C.

3. The global well-posedness

This section proves the global well-posedness part of Theorem 1.1. Since the local
well-posedness can be shown via a standard procedure (see, e.g., [38]), our attention will
be focused on the global bounds. As aforementioned in the introduction, we need to
distinguish the estimates of the horizontal derivatives from those of the vertical ones. In
addition, we also need to estimate the time derivatives in order to achieve suitable bounds
on the vertical derivatives. The whole process involves the estimates of many terms and
is very lengthy. For the sake of clarity, we split the proof into four parts. The first focuses
on the estimates of ‖(u, b)‖H3,0 , the second bounds ‖(ut, bt)‖H1 while the third presents the
estimates on ‖(u, b)‖H3 . The last part assembles the energy inequalities from the first three
parts, establishes the desired global bounds on (u, b) and thus finishes the proof on the
global well-posedness. Naturally we divide the rest of this section into four subsections.

3.1. Estimates for ‖(u, b)‖H3,0 . This subsection estimates the horizontal derivatives of
the solution. We use the crucial fact that, due to the boundary conditions on u and b, the
horizontal derivatives of u and b are also zero on ∂Ω, namely

∂k
i u|∂Ω = ∂k

i b|∂Ω = 0

for any i = 1, 2 and k = 1, 2, 3.
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Proposition 3.1. Assume (u0, b0) ∈ H3,0 and let (u, b) be the corresponding solution to
(1.1). Then (u, b) satisfies

‖(u, b)‖2H3,0 + min{ν, η}
∫ t

0

(
‖∂3u(τ)‖2H3,0 + ‖∂3b(τ)‖2H3,0

)
dτ

≤ C‖(u0, b0)‖2H3,0 + C
∫ t

0
‖(u, b)(τ)‖H3,0

(
‖∂3u(τ)‖2H3,0 + ‖∂3b(τ)‖2H3,0

)
dτ. (3.1)

Proof of Proposition 3.1. Taking the L2-inner product of (1.1) with (u, b), integrating by
parts and applying ∇ · u = ∇ · b = 0 and the boundary conditions, we find

1
2

d
dt

(‖u‖2L2 + ‖b‖2L2) +
(
ν‖∂3u‖22 + η‖∂3b‖22

)
= 0. (3.2)

Since the norm ‖(u, b)‖H3,0 is equivalent to ‖(u, b)‖L2 + ‖(u, b)‖Ḣ3,0 in Ω, it suffices to estab-
lish the estimate on ‖(u, b)‖Ḣ3,0 . Applying ∂3

i (i = 1, 2) to (1.1) and taking L2-inner product
of the resulting equations with ∂3

i u and ∂3
i b, respectively, we obtain

1
2

d
dt

2∑
i=1

(
‖∂3

i u‖2L2 + ‖∂3
i b‖2L2

)
+

2∑
i=1

(
ν‖∂3

i ∂3u‖2L2 + η‖∂3
i ∂3b‖2L2

)
:= I1 + I2 + I3 + I4, (3.3)

where

I1 = −

2∑
i=1

∫
∂3

i (u · ∇u) · ∂3
i u dx,

I2 =

2∑
i=1

∫
[∂3

i (b · ∇b) − b · ∇∂3
i b] · ∂3

i u dx,

I3 = −

2∑
i=1

∫
∂3

i (u · ∇b) · ∂3
i b dx,

I4 =

2∑
i=1

∫
[∂3

i (b · ∇u) − b · ∇∂3
i u] · ∂3

i b dx.

Here we have used∫
∂3

i u · ∂3
i∇p dx = 0 and

∫
b · ∇(∂3

i u · ∂3
i b) dx = 0

by integration by parts, ∇ ·u = ∇ ·b = 0 and the boundary conditions ∂3
i u|∂Ω = ∂3

i b|∂Ω = 0.
To bound I1, we write u · ∇u = uh · ∇hu + u3∂3u to decompose I1 into two parts,

I1 = −

2∑
i=1

∫
∂3

i (uh · ∇hu) · ∂3
i u dx −

2∑
i=1

∫
∂3

i (u3 ∂3u) · ∂3
i u dx

:= I1,1 + I1,2.
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By Leibniz’s formula, we further split I1,1 into three terms according to the order k of the
derivative.

I1,1 = −

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i uh · ∂
3−k
i ∇hu · ∂3

i u dx := I1,1,1 + I1,1,2 + I1,1,3.

By Hölder’s inequality, ∇hu|∂Ω = ∇3
hu|∂Ω = 0, and (2.1) and (2.2),

I1,1,1 + I1,1,3 = −3
2∑

i=1

∫
∂iuh · ∂

2
i∇hu · ∂3

i u dx −
2∑

i=1

∫
∂3

i uh · ∇hu · ∂3
i u dx

≤ C
2∑

i=1

‖∇huh‖L∞‖∇
3
hu‖L2‖∂3

i u‖L2

≤ C‖∂3∇huh‖H2,0‖∂3u‖H3,0‖u‖H3,0

≤ C‖u‖H3,0‖∂3u‖2H3,0 . (3.4)

Applying the anisotropic inequality (2.4) and the Poincaré-type inequality (2.1), we have

I1,1,2 = −3
2∑

i=1

∫
∂2

i uh · ∇h∂iu · ∂3
i udx

≤ C
2∑

i=1

‖∂2
i u‖

1
2
L2‖∂

2
i ∂1u‖

1
2
L2‖∂i∇hu‖

1
2
L2‖∂2∂i∇hu‖

1
2
L2‖∂

3
i ∂3u‖L2

≤ C‖∇2
hu‖L2‖∂3∇

3
hu‖2L2 . (3.5)

For I1,2, we split it into two parts,

I1,2 = −

2∑
i=1

2∑
k=1

Ck
3

∫
∂k

i u3 ∂
3−k
i ∂3u · ∂3

i u dx −
2∑

i=1

∫
∂3

i u3 ∂3u · ∂3
i u dx,

= I1,2,1 + I1,2,2.

An argument similar to (3.5) and (3.4) yields

I1,2,1 ≤ C
2∑

i=1

2∑
k=1

‖∂k
i u3‖

1
2
L2‖∂

k
i ∂1u3‖

1
2
L2‖∂

3−k
i ∂3u‖

1
2
L2‖∂

3−k
i ∂2∂3u‖

1
2
L2‖∂

3
i ∂3u‖L2

≤ C‖u‖H3,0‖∂3∇hu‖2H2,0 ,

and

I1,2,2 =

2∑
i=1

∫
∂3

i ∂3u3 u · ∂3
i u dx +

2∑
i=1

∫
∂3

i u3 u · ∂3
i ∂3u dx

≤ C
2∑

i=1

‖∂3
i ∂3u‖L2‖u‖L∞‖∂3

i u‖L2

≤ C‖∇3
h∂3u‖L2‖∂3u‖H2,0‖∇3

hu‖L2 ≤ C‖u‖H3,0‖∂3u‖2H3,0 . (3.6)

where we have used integration by parts for I1,2,2. Collecting all the estimates above yields

I1 ≤ C‖u‖H3,0‖∂3u‖2H3,0 . (3.7)
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I2, I3 and I4 can be dealt with similarly. For I2, we first rewrite it as

I2 =

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i b · ∂
3−k
i ∇b · ∂3

i u dx

=

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i bh · ∂
3−k
i ∇hb · ∂3

i u dx +

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i b3 ∂
3−k
i ∂3b · ∂3

i u dx

:= I2,1 + I2,2.

Furthermore, we split I2,1 and I2,2 in terms of the index k to get

I2,1 =

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i bh · ∂
3−k
i ∇hb · ∂3

i u dx

= I2,1,1 + I2,1,2 + I2,1,3,

I2,2 =

2∑
i=1

2∑
k=1

Ck
3

∫
∂k

i b3 ∂
3−k
i ∂3b · ∂3

i u dx +

2∑
i=1

∫
∂3

i b3 ∂3b · ∂3
i u dx,

= I2,2,1 + I2,2,2.

A direct application of (2.2) gives

I2,1,1 + I2,1,3 ≤ C
2∑

i=1

‖∇hb‖L∞‖∇3
hb‖L2‖∂3

i u‖L2

≤ C‖∇3
hb‖L2

(
‖∂3∇

3
hu‖2L2 + ‖∇h∂3b‖2H2,0

)
.

As in (3.6), integration by parts and (2.2) yields

I2,2,2 = −

2∑
i=1

∫
∂3

i ∂3b3 b · ∂3
i u dx −

2∑
i=1

∫
∂3

i b3 b · ∂3
i ∂3u dx

≤

2∑
i=1

(
‖∂3

i ∂3b‖L2‖b‖L∞‖∂3
i u‖L2 + ‖∂3

i b‖L2‖b‖L∞‖∂3
i ∂3u‖L2

)
≤ C‖∇3

h∂3b‖L2‖∂3b‖H2,0‖u‖H3,0 + C‖b‖H3,0‖∂3b‖H2,0‖∂3u‖H3,0

≤ C‖(u, b)‖H3,0
(
‖∂3u‖2H3,0 + ‖∂3b‖2H3,0

)
.

By (2.4) and (2.1), I2,1,2 and I2,2,1 can be estimated as

I2,1,2 + I2,2,1 = 3
2∑

i=1

∫
∂2

i bh · ∇h∂ib · ∂3
i u dx +

2∑
i=1

2∑
k=1

Ck
3

∫
∂k

i b3 ∂
3−k
i ∂3b · ∂3

i u dx

≤ C
2∑

i=1

‖∂2
i b‖

1
2
L2‖∂

2
i ∂1b‖

1
2
L2‖∂i∇hb‖

1
2
L2‖∂2∂i∇hb‖

1
2
L2‖∂

3
i ∂3u‖L2

+ C
2∑

i=1

2∑
k=1

‖∂k
i b3‖

1
2
L2‖∂

k
i ∂1b3‖

1
2
L2‖∂

3−k
i ∂3b‖

1
2
L2‖∂

3−k
i ∂2∂3b‖

1
2
L2‖∂

3
i ∂3u‖L2

≤ C‖b‖H3,0(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0).
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Consequently,

I2 ≤ C‖(u, b)‖H3,0(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0). (3.8)

Using a similar argument as in the estimates of I1 and I2, we can show

I3 + I4 ≤ C‖(u, b)‖H3,0(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0). (3.9)

For the convenience of the readers, we give some details. First, we still split them as

I3 + I4 = −

2∑
i=1

3∑
k=1

Ck
3

∫
(∂k

i uh · ∂
3−k
i ∇hb − ∂k

i bh · ∂
3−k
i ∇hu) · ∂3

i b dx

−

2∑
i=1

2∑
k=1

Ck
3

∫
(∂k

i u3 ∂
3−k
i ∂3b · ∂3

i b − ∂k
i b3 ∂

3−k
i ∂3u · ∂3

i b)dx

−

2∑
i=1

∫
R3

(∂3
i u3 ∂3b · ∂3

i b − ∂3
i b3 ∂3u · ∂3

i b) dx

= I34,1,1 + I34,1,2 + I34,1,3 + I34,2,1 + I34,2,2.

where I34,1,k represents three terms of the first integral term in terms of the derivative k.
As in I1,1, I34,1,1 through I34,1,3 can be bounded by

I34,1,1 + I34,1,3 ≤ C
2∑

i=1

(
‖∂iu‖L∞‖∂2

i∇hb‖L2 + ‖∂ib‖L∞‖∂2
i∇hu‖L2

)
‖∂3

i b‖L2

+ C
2∑

i=1

(
‖∂3

i u‖L2‖∇hb‖L∞ + C‖∂3
i b‖L2‖∇hu‖L∞)‖∂3

i b‖L2

≤ C‖(u, b)‖H3,0(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0

)
,

I34,1,2 ≤ C
2∑

i=1

‖∂2
i u‖

1
2
L2‖∂

2
i ∂1u‖

1
2
L2‖∂i∇hb‖

1
2
L2‖∂i∇h∂2b‖

1
2
L2‖∂

3
i ∂3b‖L2

+ C
2∑

i=1

‖∂2
i b‖

1
2
L2‖∂

2
i ∂1b‖

1
2
L2‖∂i∇hu‖

1
2
L2‖∂i∂2∇hu‖

1
2
L2‖∂

3
i ∂3b‖L2

≤ C‖(u, b)‖H3,0(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0).

Similarly to I1,2, we have

I34,2,1 ≤ C
2∑

i=1

2∑
k=1

‖∂k
i u3‖

1
2
L2‖∂

k
i ∂1u3‖

1
2
L2‖∂

3−k
i ∂3b‖

1
2
L2‖∂

3−k
i ∂2∂3b‖

1
2
L2‖∂

3
i ∂3b‖L2

+ C
2∑

i=1

2∑
k=1

‖∂k
i b3‖

1
2
L2‖∂

k
i ∂1b3‖

1
2
L2‖∂

3−k
i ∂3u‖

1
2
L2‖∂

3−k
i ∂2∂3u‖

1
2
L2‖∂

3
i ∂3b‖L2

≤ C‖(u, b)‖H3,0(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0)

and

I34,2,2 =

2∑
i=1

∫
(∂3

i ∂3u3 b · ∂3
i b + ∂3

i u3 b · ∂3
i ∂3b) dx
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−

2∑
i=1

∫
(∂3

i ∂3b3 u · ∂3
i b + ∂3

i b3 u · ∂3
i ∂3b) dx

≤ C
2∑

i=1

(
‖∂3

i ∂3u‖L2‖∂3
i b‖L2 + ‖∂3

i u‖L2‖∂3
i ∂3b‖L2

)
‖b‖L∞

+ C
2∑

i=1

(
‖∂3

i ∂3b‖L2‖∂3
i b‖L2 + ‖∂3

i b‖L2‖∂3
i ∂3b‖L2

)
‖u‖L∞

≤ C‖(u, b)‖H3,0(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0),

which, together with the estimate for I34,1,1 through I34,1,3, gives the desired bound (3.9).
Inserting (3.7), (3.8) and (3.9) in (3.3) and combining with (3.2), we obtain

1
2

d
dt

(
‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2

)
+ c0(ν‖∂3u‖2H3,0 + η‖∂3b‖2H3,0)

≤ C‖(u, b)‖H3,0
(
‖∂3u‖2H3,0 + ‖∂3b‖2H3,0

)
, (3.10)

where we have used the fact that ‖∂3v‖H3,0 is equivalent to

‖∂3v‖L2 +

2∑
i=1

‖∂3
i ∂3v‖L2

in Ω. Then integrating (3.10) over [0, t] for any t > 0 yields the desired estimate. This
completes the proof of Proposition 3.1. �

3.2. Estimates for ‖(ut, bt)‖H1 . The first subsection has obtained an energy inequality
involving (u, b) in H3,0, i.e., the horizontal derivatives of (u, b). To establish the well-
posedness in H3, we also need a bound for ‖(∂3u, ∂3b)‖H2 . Unfortunately, ‖(∂3u, ∂3b)‖H2

can not be estimated directly due to the lack of boundary condition on the vertical deriva-
tives of (u, b). A key observation is to resort to the elliptic regularity theory and the
Stokes estimates to achieve the goal. To do so, we need to establish an upper bound on
‖(ut, bt)‖H1 . This is shown by Propositions 3.2 and 3.3 below. To shorten the notation, we
sometimes write ft for ∂t f .

Proposition 3.2. Let (u, b) be the solution of the system (1.1). Then, for some constant
C > 0,

‖ut‖L2 + ‖bt‖L2 ≤ CeC
∫ t

0 ‖(∂3u,∂3b)(τ)‖2
H3,0 dτ(

‖(u0, b0)‖2H2 + ‖(∂2
3u0, ∂

2
3b0)‖L2

)
. (3.11)

Proof of Proposition 3.2. Applying ∂t to the system (1.1) yields
∂ttu + ((u · ∇)u)t + ∇pt = ν∂33ut + ((b · ∇)b)t,

∂ttb + ((u · ∇)b)t = η∂33bt + ((b · ∇)u)t,

∇ · ut = ∇ · bt = 0,
ut|∂Ω = bt|∂Ω = 0.

(3.12)
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Taking the L2-inner product of (3.12) with (ut, bt) and applying the boundary conditions
ut|∂Ω = bt|∂Ω = 0, we have

1
2

d
dt
‖(ut, bt)‖2L2 +

(
ν‖∂3ut‖

2
L2 + η‖∂3bt‖

2
L2

)
= −

∫
(u · ∇u)t · utdx +

∫
(b · ∇b)t · utdx −

∫
(u · ∇b)t · btdx +

∫
(b · ∇u)t · btdx

:= J1 + · · · + J4. (3.13)

By ut|∂Ω = 0, integration by parts, and the inequalities (2.2) and (2.6),

J1 = −

∫
∂tuh · ∇hu · utdx −

∫
∂tu3 ∂3u · utdx

≤ ‖∇hu‖L∞‖ut‖
2
L2 + C‖∂3ut‖L2‖∂3u‖

1
4

L2‖∂1∂3u‖
1
4

L2‖∂2∂3u‖
1
4

L2‖∂1∂2∂3u‖
1
4

L2‖ut‖L2

≤ C‖∂3∇hu‖H2,0‖ut‖L2‖∂3ut‖L2 + C‖∂3ut‖L2‖∂3u‖H2,0‖ut‖L2

≤ C‖∂3u‖2H3,0‖ut‖
2
L2 +

ν

4
‖∂3ut‖

2
L2 , (3.14)

where we have used the fact ‖ut‖L2 ≤ C‖∂3ut‖L2 (the Poincaré-type inequality (2.1)). With
a minor modification of (3.14), we get

J3 ≤ C‖∂3b‖2H3,0‖bt‖
2
L2 +

ν

4
‖∂3ut‖

2
L2 . (3.15)

Also,

J2 + J4 =

∫
bt · ∇b · utdx +

∫
bt · ∇u · btdx

≤ C(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0)‖(ut, bt)‖2L2 +
η

2
‖∂3bt‖

2
L2 . (3.16)

Substituting (3.14), (3.15) and (3.16) into (3.13), we obtain

d
dt
‖(ut, bt)‖2L2 +

(
ν‖∂3ut‖

2
L2 + η‖∂3bt‖

2
L2

)
≤ C(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0)‖(ut, bt)‖2L2 .

Then Gronwall’s inequality implies

‖ut‖L2 + ‖bt‖L2 ≤ CeC
∫ t

0 ‖(∂3u,∂3b)(τ)‖2
H3,0 dτ(

‖(u0, b0)‖2H2 + ‖(∂2
3u0, ∂

2
3b0)‖L2

)
.

Here we have used

‖(ut(0), bt(0)‖L2 ≤ C
(
‖(u0, b0)‖2H2 + ‖(∂3u0, ∂3b0)‖L2

)
,

which follows from

∂tu(0) = −u0 · ∇u0 − ∇p0 + ∂2
3u0 + b0 · ∇b0,

∂tb(0) = −u0 · ∇b0 + ∂2
3b0 + b0 · ∇u0,

with the pressure determined by the elliptic equations

−∆p0 = ∇ · (u0 · ∇u0 − b0 · ∇b0), x ∈ Ω, ∇p0 · n = ∂2
3u0 · n, x ∈ ∂Ω.

This completes the proof of Proposition 3.2. �
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Proposition 3.3. Let (u, b) be the solution of the system (1.1). Then, for some constant
C > 0,

‖∇ut‖L2 + ‖∇bt‖L2 ≤ CeC
∫ t

0

(
1+‖(∇u,∇b)(τ)‖2

L2

)
‖(∂3u,∂3b)(τ)‖2

H3,0 dτ

×
(
‖(u0, b0)‖2H2 + ‖(∇∂2

3u0,∇∂
2
3b0)‖L2

)
. (3.17)

Proof of Proposition 3.3. Taking the L2-inner product of (3.12) with (utt, btt) and (∆hut,∆hbt),
respectively, integrating by parts, and applying the boundary conditions for u, b, we have

1
2

d
dt

(
ν‖∂3ut‖

2
L2 + η‖∂3bt‖

2
L2 + ‖(∇hut,∇hbt)‖2L2

)
+

(
‖(utt, btt)‖2L2 + ν‖∂3∇hut‖

2
L2 + η‖∂3∇hbt‖

2
L2

)
= −

∫
(u · ∇u)t · utt dx +

∫
(b · ∇b)t · utt dx −

∫
(u · ∇b)t · btt dx

+

∫
(b · ∇u)t · btt dx +

∫
(u · ∇u)t · ∆hut dx −

∫
(b · ∇b)t · ∆hut dx

+

∫
(u · ∇b)t · ∆hbt dx −

∫
(b · ∇u)t · ∆hbt dx

:= K1 + · · · + K8, (3.18)

where we have used∫
∇pt · utt dx = 0 and

∫
∇pt · ∆hut dx = 0.

Firstly, K1 can be written as

K1 = −

∫
ut · ∇u · utt dx −

∫
u · ∇ut · utt dx.

By the anisotropic inequalities (2.5), (2.1) and (2.2),

K1 ≤ C‖∂3ut‖
1
2
L2‖∂2ut‖

1
4

L2‖∂2∂3ut‖
1
4

L2‖∇u‖
1
2

L2‖∂1∇u‖
1
2

L2‖utt‖L2 + C‖u‖L∞‖∇ut‖L2‖utt‖L2

≤ C‖∂3ut‖
1
2

L2‖∂2∂3ut‖
1
2

L2‖∇u‖
1
2

L2‖∂1∇u‖
1
2

L2‖utt‖L2 + C‖∂3u‖H2,0‖∇ut‖L2‖utt‖L2

≤ C(1 + ‖∇u‖2L2)‖∂3u‖2H2,0‖∇ut‖
2
L2 +

( ν
10
‖∂2∂3ut‖

2
L2 +

1
4
‖utt‖

2
L2

)
.

where we also have used
‖∂1∇u‖

1
2

L2 ≤ C‖∂3∂1u‖
1
2

H1,0 .

Similarly, we have

K2 ≤ C(1 + ‖∇b‖2L2)‖∂3b‖2H2,0‖∇bt‖
2
L2 +

(η
8
‖∂2∂3bt‖

2
L2 +

1
4
‖utt‖

2
L2

)
,

K3 ≤ C‖∂3ut‖
1
2

L2‖∂2∂3ut‖
1
2

L2‖∇b‖
1
2

L2‖∂1∇b‖
1
2

L2‖btt‖L2 + C‖∂3u‖H2,0‖∇bt‖L2‖btt‖L2

≤ C(1 + ‖∇b‖2L2)‖(∂3u, ∂3b)‖2H2,0‖(∇ut,∇bt)‖2L2 +
( ν
10
‖∂2∂3ut‖

2
L2 +

1
4
‖btt‖

2
L2

)
,

K4 ≤ C‖∂3bt‖
1
2

L2‖∂2∂3bt‖
1
2

L2‖∇u‖
1
2

L2‖∂1∇u‖
1
2

L2‖btt‖L2 + C‖∂3b‖H2,0‖∇ut‖L2‖btt‖L2
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≤ C(1 + ‖∇u‖2L2)‖(∂3u, ∂3b)‖2H2,0‖(∇ut,∇bt)‖2L2 +
(η
8
‖∂2∂3bt‖

2
L2 +

1
4
‖btt‖

2
L2

)
.

To deal with K5, we decompose it as

K5 = −

∫
∇hut · ∇u · ∇hut dx −

∫
ut · ∇∇hu · ∇hut dx −

∫
∇hu · ∇ut · ∇hut dx

:= K5,1 + K5,2 + K5,3. (3.19)

Applying (2.6), (2.4) and (2.2) to K5,1, K5,2 and K5,3 , respectively, and combining with
(2.1), we get

K51 ≤ C‖∂3∇hut‖L2‖∇u‖
1
4

L2‖∂1∇u‖
1
4

L2‖∂2∇u‖
1
4

L2‖∂1∂2∇u‖
1
4

L2‖∇hut‖L2

≤ C‖∂3u‖2H3,0‖∇ut‖
2
L2 +

ν

30
‖∂3∇hut‖

2
L2 , (3.20)

K52 ≤ C‖ut‖
1
2

L2‖∂1ut‖
1
2

L2‖∇∇hu‖
1
2

L2‖∂2∇∇hu‖
1
2

L2‖∂3∇hut‖L2

≤ C‖∂3∇hu‖2H2,0‖∇ut‖
2
L2 +

ν

30
‖∂3∇hut‖

2
L2 ,

and

K53 ≤ ‖∇hu‖L∞‖∇ut‖L2‖∇hut‖L2 ≤ C‖∂3∇hu‖H2,0‖∇ut‖L2‖∂3∇hut‖L2

≤ C‖∂3∇hu‖2H2,0‖∇ut‖
2
L2 +

ν

30
‖∂3∇hut‖

2
L2 . (3.21)

Thus,

K5 ≤ C‖∂3u‖2H3,0‖∇ut‖
2
L2 +

ν

10
‖∂3∇hut‖

2
L2 .

By a similar argument as the one for K5, we can show the estimates for the rest of terms
in (3.18). First,

K6 + K8 =

∫
∇hbt · ∇b · ∇hut +

∫
bt · ∇∇hb · ∇hut +

∫
∇hb · ∇bt · ∇hut

+

∫
∇hbt · ∇u · ∇hbt +

∫
bt · ∇∇hu · ∇hbt +

∫
∇hb · ∇ut · ∇hbt. (3.22)

Then invoking (3.20), we obtain∫
∇hbt · ∇b · ∇hut +

∫
∇hbt · ∇u · ∇hbt

≤ C‖(∂3u, ∂3b)‖2H3,0‖(∇ut,∇bt)‖2L2 +
η

24
‖∂3∇hbt‖

2
L2 .

Similarly to K52,∫
bt · ∇∇hb · ∇hut +

∫
bt · ∇∇hu · ∇hbt

≤ C‖(∂3∇hu, ∂3∇hb)‖2H2,0‖∇bt‖
2
L2 +

( ν
20
‖∂3∇hut‖

2
L2 +

η

24
‖∂3∇hbt‖

2
L2

)
.

Also, by (3.21)∫
∇hb · ∇bt · ∇hut +

∫
∇hb · ∇ut · ∇hbt
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≤ C‖∂3∇hb‖2H2,0‖(∇ut,∇bt)‖2L2 +
( ν
20
‖∂3∇hut‖

2
L2 +

η

24
‖∂3∇hbt‖

2
L2

)
.

Consequently, we have

K6 + K8 ≤ C‖(∂3u, ∂3b)‖2H3,0‖(∇ut,∇bt)‖2L2 +
( ν
10
‖∂3∇hut‖

2
L2 +

η

8
‖∂3∇hbt‖

2
L2

)
.

Analogously,

K7 = −

∫
∇hut · ∇b · ∇hbt dx −

∫
ut · ∇∇hb · ∇hbt dx −

∫
∇hu · ∇bt · ∇hbt dx

≤ C‖(∂3u, ∂3b)‖2H3,0‖(∇ut,∇bt)‖2L2 +
( ν
10
‖∂3∇hut‖

2
L2 +

η

8
‖∂3∇hbt‖

2
L2

)
.

Substituting all the estimates above for K1 through K8 into (3.18), we have
d
dt

(
ν‖∂3ut‖

2
L2 + η‖∂3bt‖

2
L2 + ‖(∇hut,∇hbt)‖2L2

)
+ (‖(utt, btt)‖2L2 + ν‖∂3∇hut‖ + η‖∂3∇hbt)‖2L2)

≤ C(1 + ‖(∇u,∇b)‖2L2)‖(∂3u, ∂3b)‖2H3,0‖(∇ut,∇bt)‖2L2 .

Using the inequality ‖u0 · ∇u0‖H1 ≤ C ‖u0‖
2
H2 in the equation of (ut(0), bt(0)), we have

‖(ut(0), bt(0))‖H1 ≤ C
(
‖(u0, b0)‖2H2 + ‖(∇∂2

3u0,∇∂
2
3b0)‖L2

)
. (3.23)

Gronwall’s inequality with (3.23) then leads to the desired estimate of Proposition 3.3. �

3.3. Estimates for ‖(∂3u, ∂3b)‖H2 and ‖(u, b)‖H3 . This subsection presents the estimates
for ‖(∂3u, ∂3b)‖H2 and thus for ‖(u, b)‖H3 . The approach here is to invoke the elliptic
regularity theory and the Stokes estimates. For the sake of clarity, we state the results in
two propositions with Proposition 3.4 containing the H2-bound and Proposition 3.5 the
H3-bound.

Proposition 3.4. Let (u, b) be the solution to the system (1.1). Then we have

‖∇u‖H1 + ‖∇p‖L2 + ‖b‖H2 ≤ C
(
‖(∂tu, ∂tb)‖L2 + ‖(∇hu,∇hb)‖H1,0 (‖∇u‖H1 + ‖∇b‖H1)

+ ‖(∆hu,∆hb)‖L2
)
. (3.24)

Proof of Proposition 3.4. We can then rewrite the velocity equation and magnetic equa-
tion of (1.1) as 

− ∆u + ∇p = f , x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,

(3.25)

and 
− ∆b = g, x ∈ Ω, t > 0,
b(x, t) = 0, x ∈ ∂Ω, t > 0,
∇ · b = 0, x ∈ Ω, t > 0,

(3.26)

respectively, with
f := −∂tu − (u · ∇)u + (b · ∇)b − ∆hu,

g := −∂tb − (u · ∇)b + (b · ∇)u − ∆hb.
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It follows from the Stokes estimates (2.8) that

‖∇u‖H1 + ‖∇p‖L2 ≤C
(
‖∂tu‖L2 + ‖(u · ∇)u‖L2 + ‖(b · ∇)b‖L2 + ‖∆hu‖L2

)
.

By Hölder’s inequality, (2.3) and Sobolev’s imbedding inequality,

‖(u · ∇)u‖L2 ≤‖uh‖L4‖∇hu‖L4 + ‖u3‖L4‖∂3u‖L4

≤C‖∇huh‖
1
2
L2 ‖∂3uh‖

1
2
L2 ‖∇

2
hu‖

1
2
L2 ‖∂3∇hu‖

1
2
L2

+ C‖∇hu3‖
1
2
L2 ‖∂3u3‖

1
2
L2 ‖∂3u‖H1

≤C‖∇hu‖H1,0 ‖∇u‖H1 , (3.27)

where we have used the divergence-free condition for u. Similarly,

‖(b · ∇)b‖L2 ≤C‖∇hb‖H1,0 ‖∇b‖H1 .

Thus,

‖∇u‖H1 + ‖∇p‖L2 ≤C(‖∂tu‖L2 + ‖∇hu‖H1,0 ‖∇u‖H1 + ‖∇hb‖H1,0 ‖∇b‖H1 + ‖∆hu‖L2). (3.28)

The bound for b can be obtained by applying the classical elliptic regularity theory,

‖b‖H2 ≤C
(
‖∂tb‖L2 + ‖(∇hu,∇hb)‖H1,0 ‖(∇u,∇b)‖H1 + ‖∆hb‖L2

)
(3.29)

after we have applied the bounds

‖(u · ∇)b‖L2 ≤C(‖∇hu‖L2 + ‖∇2
hb‖L2) (‖∇u‖L2 + ‖∇b‖H1),

‖(b · ∇)u‖L2 ≤C(‖∇hb‖L2 + ‖∇2
hu‖L2) (‖∇b‖L2 + ‖∇u‖H1),

which follows from a similar argument as (3.27). The estimates in (3.28) and (3.29) lead
to the desired bound. This completes the proof of Proposition3.4. �

Proposition 3.5. Let (u, b) be the solution to the system (1.1). Then we have

‖∇u‖H2 + ‖∇p‖H1 ≤ C(‖ut‖H1 + ‖u‖2H2 + ‖b‖2H2 + ‖∆hu‖H1,0),
‖b‖H3 ≤ C(‖bt‖H1 + ‖u‖H2‖∇b‖H1 + ‖b‖H2‖∇u‖H1 + ‖∆hb‖H1,0).

Proof of Proposition 3.5. The Stokes estimates applied to (3.25) yield

‖∇u‖H2 + ‖∇p‖H1 ≤ C(‖ut‖H1 + ‖u · ∇u‖H1 + ‖b · ∇b‖H1 + ‖∆hu‖H1)

≤ C(‖ut‖H1 + ‖u‖2H2 + ‖b‖2H2 + ‖∆hu‖H1,0 + ‖∂3∆hu‖L2).

By integration by parts, Hölder’s inequality and Young’s inequality, the last term on the
right side above can be estimated as

‖∂3∆hu‖L2 =
( ∫

∂2
3∇hu · ∇h∆hu dx

) 1
2
≤ ‖∂2

3∇hu‖
1
2
L2‖∇

3
hu‖

1
2
L2

≤
1

2C
‖∂2

3∇hu‖L2 +
C
2
‖∇3

hu‖L2 . (3.30)

Therefore,

‖∇u‖H2 + ‖∇p‖H1 ≤ C(‖ut‖H1 + ‖u‖2H2 + ‖b‖2H2 + ‖∆hu‖H1,0).
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Next we show the estimate for ‖∇b‖H2 . Applying the classical elliptic regularity theory to
the equation (3.26) and using Sobolev’s inequality, we have

‖b‖H3 ≤ C(‖bt‖H1 + ‖u · ∇b‖H1 + ‖b · ∇u‖H1 + ‖∆hb‖H1)
≤ C(‖bt‖H1 + ‖u‖L∞‖∇b‖H1 + ‖b‖L∞‖∇u‖H1 + ‖∆hb‖H1,0 + ‖∂3∆hb‖L2)
≤ C(‖bt‖H1 + ‖u‖H2‖∇b‖H1 + ‖b‖H2‖∇u‖H1 + ‖∆hb‖H1,0 + ‖∂3∆hb‖L2).

As in (3.30), we also have

‖∂3∆hb‖L2 ≤
1

2C
‖∂2

3∇hb‖L2 +
C
2
‖∇3

hb‖L2 .

Then we obtain

‖b‖H3 ≤ C(‖bt‖H1 + ‖u‖H2‖∇b‖H1 + ‖b‖H2‖∇u‖H1 + ‖∆hb‖H1,0).

This completes the proof of Proposition 3.5. �

3.4. Proof of the global well-posedness part of Theorem 1.1. This subsection com-
pletes the proof of the global well-posedness part of Theorem 1.1 by combining the en-
ergy estimates obtained in the previous three subsections.

Proof of the global well-posedness. First we apply the bootstrapping argument to (3.1)
in Proposition 3.1 to establish a global bound for ‖(u, b)‖H3,0 and the time integral of
‖∂3u(t)‖2H3,0 +‖∂3b(t)‖2H3,0 under the condition that the initial H3,0-norm is sufficiently small.

Denoting

E(t) = sup
0≤τ≤t

(‖u(τ)‖2H3,0 + ‖b(τ)‖2H3,0) +

∫ t

0
(‖∂3u(τ)‖2H3,0 + ‖∂3b(τ)‖2H3,0) dτ,

we obtain from (3.1) that

E(t) ≤ a0E(0) + a1E
3
2 (t) (3.31)

for some constants a0 > 0 and a1 > 0. We assume that the initial norm is sufficiently
small, say

‖(u0, b0)‖H3,0 ≤ δ ≤
1
2

√
M
a0
. (3.32)

To apply the bootstrapping argument, we make the ansatz that

E(t) ≤ M :=
1

4a2
1

. (3.33)

Our goal is to show that E(t) actually admits a smaller bound, say

E(t) ≤
M
2
.

By (3.31), (3.32) and (3.33),

E(t) ≤ a0E(0) + a1E
1
2 (t)E(t) ≤ a0δ

2 +
1
2

E(t),

or

E(t) ≤ 2a0δ
2 ≤

M
2
, (3.34)
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which shows that E(t) actually admits a smaller bound. The bootstrapping argument then
asserts that (3.34) holds for any time, namely,

(‖u‖2H3,0 + ‖b‖2H3,0) +

∫ t

0
(‖∂3u(τ)‖2H3,0 + ‖∂3b(τ)‖2H3,0) dτ ≤ Cδ2. (3.35)

Next we combine (3.35) with the energy estimates in Propositions 3.2 through 3.5 to
establish a global bound for ‖(∂3u, ∂3u)‖H2 and thus ‖(u, b)‖H3 . It follows from (3.11) that

‖ut‖L2 + ‖bt‖L2 ≤ CeC
∫ t

0 ‖(∂3u,∂3b)(τ)‖2
H3,0 dτ
‖(u0, b0)‖H2 ≤ C ‖(u0, b0)‖H2 , (3.36)

for a uniform constant C (independent of δ). Invoking the estimate (3.24) along with
(3.35), we have

‖∇u‖H1 + ‖∇p‖L2 + ‖b‖H2 ≤ C
(
‖(ut, bt)‖L2 + δ(‖∇u‖H1 + ‖∇b‖H1) + ‖(∆hu,∆hb)‖L2

)
.

Then, for δ sufficiently small, we find

‖∇u‖H1 + ‖∇p‖L2 + ‖b‖H2 ≤ C(‖(ut, bt)‖L2 + ‖(∆hu,∆hb)‖L2), (3.37)

which, together with (3.36) and (3.35), implies

‖∇u‖H1 + ‖∇p‖L2 + ‖b‖H2 ≤ C(δ + ‖(∂3u0, ∂3b0)‖H1) (3.38)

for some constant C > 0. Furthermore, by (3.17), we obtain the uniform bound for
‖(∇ut,∇bt)‖L2 ,

‖∇ut‖L2 + ‖∇bt‖L2 ≤ C(1 + ‖(u0, b0)‖2H2 + ‖(∇∂2
3u0,∇∂

2
3b0)‖L2). (3.39)

As a consequence, by Proposition3.5, (3.35), (3.36), (3.38) and (3.39), we derive

‖∇u‖H2 + ‖∇p‖H1 ≤ C(‖ut‖H1 + ‖(u, b)‖H2 + ‖∆hu‖H1,0)

≤ C(δ + ‖(∂3u0, ∂3b0)‖2H1 + ‖(∂2
3u0, ∂

2
3b0)‖H1),

‖b‖H3 ≤ C(‖bt‖H1 + ‖u‖H2 + ‖∆hb‖H1,0)

≤ C(δ + ‖(∂3u0, ∂3b0)‖2H1 + ‖(∂2
3u0, ∂

2
3b0)‖H1).

This completes the proof of the global well-posedness part in Theorem 1.1. �

4. The decay estimates

This section is devoted to proving the decay estimates in Theorem 1.1. This is accom-
plished in three steps. The first step establishes the exponential decay rate for ‖(u, b)‖H3,0

and ‖(∂3u, ∂3b)‖L2 . An energy inequality involving these norms is derived in Proposi-
tion 4.1 to serve this purpose. The second step shows the exponential decay rate for
‖(ut, bt)‖H1,0 and ‖(∂3ut, ∂3bt)‖L2 . This step involves a key energy inequality stated in
Proposition 4.2. The final step applies the Stokes estimates and the elliptic regularity
theory to obtain the decay rates for ‖(u, b)‖H3 and ‖∇p‖H1 .

We start with the Proposition 4.1 and its proof.

Proposition 4.1. Assume (u, b) is the solution of the system (1.1). Then,
d
dt

(
ν‖∂3u‖2L2 + η‖∂3b‖2L2

)
+

(
‖ut‖

2
L2 + ‖bt‖

2
L2

)
≤ C‖(u, b)‖2H1,0

(
‖∂3u‖2H3,0 + ‖∂3b‖2H3,0

)
. (4.1)
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for some constant C > 0.

Proof of Proposition 4.1. Taking the L2-inner product of (1.1) with (ut, bt), and using the
boundary condition ut = bt = 0 on ∂Ω, we have

1
2

d
dt

(
ν‖∂3u‖2L2 + η‖∂3b‖2L2

)
+ (‖ut‖

2
L2 + ‖bt‖

2
L2)

= −

∫
u · ∇u · ut dx +

∫
b · ∇b · ut dx −

∫
u · ∇b · bt dx +

∫
b · ∇u · bt dx.

Invoking the anisotropic inequality (2.5) and (2.6) yields

−

∫
u · ∇u · ut dx = −

∫
uh · ∇hu · utdx −

∫
u3 ∂3u · utdx

≤ C‖uh‖
1
2
L2‖∂1uh‖

1
2
L2‖∂3∇hu‖

1
2

L2‖∂2∇hu‖
1
4

L2‖∂2∂3∇hu‖
1
4

L2‖ut‖L2

+ C‖∂3u3‖L2‖∂3u‖
1
4

L2‖∂1∂3u‖
1
4

L2‖∂2∂3u‖
1
4

L2‖∂1∂2∂3u‖
1
4

L2‖ut‖L2

≤ C‖u‖2H1,0‖∂3u‖2H2,0 +
1
4
‖ut‖

2
L2 ,

where we have used the fact ‖∂2∇hu‖L2 ≤ C‖∂3∂2∇hu‖L2 . With a similar argument, the
other integrals can be bounded as∫

b · ∇b · ut ≤ C‖b‖2H1,0‖∂3b‖2H2,0 +
1
4
‖ut‖

2
L2 ,

−

∫
u · ∇b · bt ≤ C‖u‖2H1,0‖∂3b‖2H2,0 +

1
4
‖bt‖

2
L2 ,∫

b · ∇u · bt ≤ C‖b‖2H1,0‖∂3u‖2H2,0 +
1
4
‖bt‖

2
L2 .

Therefore, we have
d
dt

(
ν‖∂3u‖2L2 + η‖∂3b‖2L2

)
+

(
‖ut‖

2
L2 + ‖bt‖

2
L2

)
≤ C‖(u, b)‖2H1,0

(
‖∂3u‖2H3,0 + ‖∂3b‖2H3,0

)
.

This completes the proof of Proposition 4.1. �

The second proposition presents a sharper estimate on ‖(ut, bt)‖H1 . A different estimate
on ‖(ut, bt)‖H1 was obtained in Proposition 3.2 and Proposition 3.3. This upper bound is
needed to extract the desired decay rate.

Proposition 4.2. Let (u, b) be the solution of the system (1.1). Then,
d
dt

(
‖(ut, bt)‖2H1,0 + ν‖∂3ut‖

2
L2 + η‖∂3bt‖

2
L2

)
+

(
ν‖∂3ut‖

2
H1,0 + η‖∂3bt‖

2
H1,0 + ‖(utt, btt)‖2L2

)
≤ C

(
‖(∂3u, ∂3b)‖L2 + ‖(u, b)‖H2,0

)
‖(∂3∇hu, ∂3∇hb)‖2H2,0‖(∇ut,∇bt)‖2L2 (4.2)

for some constant C > 0.

Proof of Proposition 4.2. By (3.13) and (3.18), we have
1
2

d
dt

(‖(ut, bt)‖2H1,0 + ν‖∂3ut‖
2
L2 + η‖∂3bt‖

2
L2

)
+ (ν‖∂3ut‖

2
H1,0 + η‖∂3bt‖

2
H1,0 + ‖(utt, btt)‖2L2)

:= J1 + · · · + J4 + K1 · · · + K8,
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where J1 through J4 and K1 through K8 are defined as in (3.13) and (3.18), respectively.
By the anisotropic inequality (2.4), J1 can be bounded as

J1 = −

∫
∂tuh · ∇hu · ut dx −

∫
∂tu3 ∂3u · ut dx

≤ C‖∂3ut‖L2

(
‖∇hu‖

1
2

L2‖∂2∇hu‖
1
2

L2 + ‖∂3u‖
1
2
L2‖∂2∂3u‖

1
2
L2

)
‖ut‖

1
2
L2‖∂1ut‖

1
2
L2

≤ C‖∂3ut‖
3
2
L2

(
‖∇hu‖H1,0 + ‖∂3u‖

1
2

L2‖∂2∂3u‖
1
2

L2

)
‖∂1ut‖

1
2
L2

≤ C(‖∇hu‖2H1,0 + ‖∂3u‖2L2)‖∂3∇hu‖2H1,0‖∇ut‖
2
L2 +

ν

12
‖∂3ut‖

2
L2 ,

where we have used

‖ut‖L2 ≤ C‖∂3ut‖L2 , ‖∇hu‖H1,0 ≤ C‖∂3∇hu‖H1,0

due to ut = 0 and ∇hu = 0 on ∂Ω. Similarly, for J2 through J4, we have

J2 + J3 + J4 ≤ C
(
‖(∇hu,∇hb)‖2H1,0 + ‖(∂3u, ∂3b)‖2L2

)
‖(∂3∇hu, ∂3∇hb)‖2H1,0‖(∇ut,∇bt)‖2L2

+
( ν
12
‖∂3ut‖

2
L2 +

η

8
‖∂3bt‖

2
L2

)
.

Now we bound K1 through K4. By the anisotropic inequalities (2.5) and (2.6),

K1 = −

∫
ut · ∇u · utt dx −

∫
uh · ∇hut · utt dx −

∫
u3 ∂3ut · utt dx

≤ C‖∂3ut‖
1
2

L2‖∂2ut‖
1
4

L2‖∂2∂3ut‖
1
4

L2‖∇u‖
1
2

L2‖∂1∇u‖
1
2

L2‖utt‖L2

+ C‖uh‖
1
4

L2‖∂1uh‖
1
4

L2‖∂2uh‖
1
4

L2‖∂1∂2uh‖
1
4

L2‖∇hut‖
1
2
L2‖∂3∇hut‖

1
2
L2‖utt‖L2

+ C‖∂3u3‖
1
2

L2‖∂2u3‖
1
4

L2‖∂2∂3u3‖
1
4

L2‖∂3ut‖
1
2
L2‖∂1∂3ut‖

1
2

L2‖utt‖L2 .

Due to ∂2ut = 0, ∂2u = 0, ∂1∂2uh = 0 on ∂Ω, we can apply the Poincaré-type inequality
(2.1) to obtain

K1 ≤ C‖∂3ut‖
1
2

L2‖∂2∂3ut‖
1
2

L2‖∇u‖
1
2

L2‖∂1∇u‖
1
2

L2‖utt‖L2

+ C‖u‖
1
2

H1‖∂3∂2u‖
1
2

H1,0‖∇ut‖
1
2
L2‖∂3∇hut‖

1
2
L2‖utt‖L2

≤ C(‖∇u‖2L2‖∇h∇u‖2L2 + ‖u‖2H1‖∂3∇hu‖2H1,0)‖∇ut‖
2
L2 +

( ν
36
‖∂3∇hut‖

2
L2 +

1
4
‖utt‖

2
L2

)
≤ C‖u‖2H1‖∂3∇hu‖2H1,0‖∇ut‖

2
L2 +

( ν
36
‖∂3∇hut‖

2
L2 +

1
4
‖utt‖

2
L2

)
,

where we have used ‖∇h∇u‖L2 ≤ C‖∂3∇hu‖H1,0 in the last inequality. Similarly,

K2 ≤ C‖b‖2H1‖∂3∇hb‖2H1,0‖∇bt‖
2
L2 +

( η
24
‖∂3∇hbt‖

2
L2 +

1
4
‖utt‖

2
L2

)
,

K3 ≤ C(‖∇b‖2L2‖∇h∇b‖2L2‖∇ut‖
2
L2 + ‖u‖2H1‖∂3∇hu‖2H1,0‖∇bt‖

2
L2)

+
( ν
36
‖∂3∇hut‖

2
L2 +

η

24
‖∂3∇hbt‖

2
L2 +

1
4
‖btt‖

2
L2

)
,

K4 ≤ C(‖∇u‖2L2‖∇h∇u‖2L2‖∇bt‖
2
L2 + ‖b‖2H1‖∂3∇hb‖2H1,0‖∇ut‖

2
L2)
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+
( ν
36
‖∂3∇hut‖

2
L2 +

η

24
‖∂3∇hbt‖

2
L2 +

1
4
‖btt‖

2
L2

)
.

Therefore, we have

K1 + K2 + K3 + K4 ≤ C(‖u‖2H1 + ‖b‖2H1)‖(∂3∇hu, ∂3∇hb)‖2H1,0‖(∇ut,∇bt)‖2L2

+
( ν
12
‖∂3∇hut‖

2
L2 +

η

8
‖∂3∇hbt‖

2
L2 +

1
2
‖(utt, btt)‖2L2

)
.

Recalling (3.19), we have

K5 = −

∫
∇hut · ∇u · ∇hut dx −

∫
ut · ∇∇hu · ∇hut dx −

∫
∇hu · ∇ut · ∇hut dx

:= K51 + K52 + K53.

By (2.6) and Poincaré-type inequality (2.1),

K51 ≤ C‖∂3∇hut‖L2‖∇u‖
1
4

L2‖∂2∇u‖
1
4

L2‖∂1∇u‖
1
4

L2‖∂1∂2∇u‖
1
4

L2‖∇hut‖L2

≤ C‖∇u‖
1
4

L2‖∂2∇u‖
1
4

L2‖∂1∂3u‖
1
2
H2,0‖∇hut‖

1
2
L2‖∂3∇hut‖

3
2
L2

≤ C‖∇u‖L2‖u‖H2‖∂3∇hu‖2H2,0‖∇ut‖
2
L2 +

ν

36
‖∂3∇hut‖

2
L2 .

Similarly,

K53 ≤ C‖∇hu‖
1
4

L2‖∂1∇hu‖
1
4

L2‖∂2∇hu‖
1
4

L2‖∂1∂2∇hu‖
1
4

L2‖∇ut‖L2‖∂3∇hut‖L2

≤ C‖∇hu‖
1
4

L2‖∂1∇hu‖
1
4

L2‖∂2∇hu‖
1
4

L2‖∂1∂2∇hu‖
1
4

L2‖∇ut‖
1
2
L2(‖∂3ut‖

1
2
L2 + ‖∂3∇hut‖

1
2
L2)‖∂3∇hut‖L2

≤ C‖∇hu‖2H1,0‖∂3∇
2
hu‖2H1,0‖∇ut‖

2
L2 +

ν

36
‖∂3ut‖

2
H1,0 ,

where we have used ‖∇hut‖
1
2
L2 ≤ C‖∂3∇hut‖

1
2
L2 in the second inequality. The estimates for

K52 is more complicated. By integration by parts, (2.4) and (2.5) and invoking ‖ut‖L2 ≤

C‖∂3ut‖L2 and ‖∇hut‖L2 ≤ C‖∇h∂3ut‖L2 , we deduce

K52 = −

∫
∂tuh · ∇

2
hu · ∇hut dx +

∫
∂3u3t ∇hu · ∇hut dx +

∫
u3t ∇hu · ∂3∇hut dx

≤ C‖ut‖
1
2

L2‖∂1ut‖
1
2

L2‖∇
2
hu‖

1
2

L2‖∂2∇
2
hu‖

1
2

L2‖∂3∇hut‖L2

+ C‖∂3ut‖
1
2
L2‖∂1∂3ut‖

1
2
L2‖∇hu‖

1
2

L2‖∂2∇hu‖
1
2

L2‖∂3∇hut‖L2

+ C‖∂3ut‖
1
2

L2‖∂2ut‖
1
4

L2‖∂2∂3ut‖
1
4

L2‖∇hu‖
1
2

L2‖∂1∇hu‖
1
2

L2‖∂3∇hut‖L2

≤ C‖∇hu‖2H1,0‖∂3∇
2
hu‖2H1,0‖∇ut‖

2
L2 +

ν

36
‖∂3∇hut‖

2
L2 .

Thus,

K5 ≤ C
(
‖∇u‖L2‖u‖H2 + ‖∇hu‖2H1,0

)
‖∂3∇hu‖2H2,0‖∇ut‖

2
L2 +

ν

12
‖∂3ut‖

2
H1,0 .

As in (3.22), K6 + K8 can be split into six parts as

K6 + K8 =

∫
∇hbt · ∇b · ∇hut dx +

∫
bt · ∇∇hb · ∇hut dx +

∫
∇hb · ∇bt · ∇hut dx
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+

∫
∇hbt · ∇u · ∇hbt dx +

∫
bt · ∇∇hu · ∇hbt dx +

∫
∇hb · ∇ut · ∇hbt dx.

Similarly to K51,K52 and K53, we have∫
∇hbt · ∇b · ∇hut dx +

∫
∇hbt · ∇u · ∇hbt dx

≤ C‖(∇u,∇b)‖L2‖(u, b)‖H2‖(∂3∇hu, ∂3∇hb)‖2H2,0‖(∇ut,∇bt)‖2L2

+
( ν
36
‖∂3∇hut‖

2
L2 +

η

24
‖∂3∇hbt‖

2
L2

)
,

∫
bt · ∇∇hb · ∇hut dx +

∫
bt · ∇∇hu · ∇hbt dx

≤ C‖(∇hu,∇hb)‖2H1,0‖(∂3∇
2
hu, ∂3∇

2
hb)‖2H1,0‖∇bt‖

2
L2 +

( ν
36
‖∂3∇hut‖

2
L2 +

η

24
‖∂3∇hbt‖

2
L2

)
,

and ∫
∇hb · ∇bt · ∇hut dx +

∫
∇hb · ∇ut · ∇hbt dx

≤ C‖∇hb‖2H1,0‖∂3∇
2
hb‖2H1,0‖(∇ut,∇bt)‖2L2 +

( ν
36
‖∂3ut‖

2
H1,0 +

η

24
‖∂3bt‖

2
H1,0

)
.

Consequently,

K6 + K8 ≤ C
(
‖(∇u,∇b)‖L2‖(u, b)‖H2 + ‖(∇hu,∇hb)‖2H1,0

)
× ‖(∂3∇hu, ∂3∇hb)‖2H2,0‖(∇ut,∇bt)‖2L2 +

( ν
12
‖∂3ut‖

2
H1,0 +

η

8
‖∂3bt‖

2
H1,0

)
.

Finally, K7 can also be bounded by

K7 ≤ C
(
‖∇b‖L2‖b‖H2 + ‖(∇hu,∇hb)‖2H1,0

)
× ‖(∂3∇hu, ∂3∇hb)‖2H2,0‖(∇ut,∇bt)‖2L2 +

( ν
12
‖∂3ut‖

2
H1,0 +

η

8
‖∂3bt‖

2
H1,0

)
.

Collecting all the estimates above for J1 through J4 and K1 through K8, we obtain

d
dt

(
‖(ut, bt)‖2H1,0 + ν‖∂3ut‖

2
L2 + η‖∂3bt‖

2
L2

)
+

(
ν‖∂3ut‖

2
H1,0 + η‖∂3bt‖

2
H1,0 + ‖(utt, btt)‖2L2

)
≤ C

(
‖(∇u,∇b)‖L2‖(u, b)‖H2 + ‖(∂3u, ∂3b)‖2L2 + ‖(u, b)‖2H2,0

)
× ‖(∂3∇hu, ∂3∇hb)‖2H2,0‖(∇ut,∇bt)‖2L2

≤ C
(
‖(∂3u, ∂3b)‖L2 + ‖(u, b)‖H2,0

)
‖(∂3∇hu, ∂3∇hb)‖2H2,0‖(∇ut,∇bt)‖2L2 ,

where we have used the uniform bound for ‖(u, b)‖H2 . This completes the proof of Propo-
sition 4.2. �

Next we prove the decay rate in Theorem 1.1.

Proof of the decay estimate in Theorem 1.1. As aforementioned, the proof of the decay
estimates is divided into three main steps. The first step shows the exponential decay
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for ‖(u, b)‖H3,0 + ‖(∂3u, ∂3b)‖L2 by making use of the estimate in Proposition 4.1. Adding
(3.10) and (4.1), and invoking the global bound in (3.35), we have

d
dt

(
‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 + ν‖∂3u‖2L2 + η‖∂3b‖2L2

)
+

(
2c0ν‖∂3u‖2H3,0 + 2c0η‖∂3b‖2H3,0 + ‖(ut, bt)‖2L2

)
≤ C0

(
‖(u, b)‖H3,0 + ‖(u, b)‖2H1,0

)(
‖∂3u‖2H3,0 + ‖∂3b‖2H3,0

)
≤ C0(δ + δ2)

(
‖∂3u‖2H3,0 + ‖∂3b‖2H3,0

)
.

If we select δ to be sufficiently small such that C0(δ + δ2) < min{2c0ν, 2c0η}, then, for a
positive constant C,

d
dt

(
‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 + ν‖∂3u‖2L2 + η‖∂3b‖2L2

)
+ C(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0) ≤ 0.

Due to u|∂Ω = b|∂Ω = 0, by virtues of (2.1), we have

‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 ≤ ‖u‖2H3,0 + ‖b‖2H3,0 ≤ C(‖∂3u‖2H3,0 + ‖∂3b‖2H3,0).

Then, for some constant C1(ν, η) > 0,
d
dt

X(t) + 2C1X(t) ≤ 0,

where

X(t) = ‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 + ν‖∂3u‖2L2 + η‖∂3b‖2L2 .

Therefore,

X(t) ≤ e−2C1tX(0)

or

‖(u, b)‖H3,0 + ‖(∂3u, ∂3b)‖L2 ≤ Ce−C1t(‖(u0, b0)‖H3,0 + ‖(∂3u0, ∂3b0)‖L2). (4.3)

The second step verifies the exponential decay rate for ‖ut‖H1 + ‖bt‖H1 , for any t > 0,

‖ut‖H1 + ‖bt‖H1 ≤ Ce−C3t. (4.4)

We relies on Proposition 4.2. Adding (3.10) and (4.2), and using (4.3), we deduce that,
for a constant C2,

d
dt

(
‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 + ‖(ut, bt)‖2H1,0 + ν‖∂3ut‖
2
L2 + η‖∂3bt‖

2
L2

)
+ C(ν, η)(‖(∂3u, ∂3b)‖2H3,0 + ‖(∂3ut, ∂3bt)‖2H1,0)

≤ C
(
‖(∂3u, ∂3b)‖L2 + ‖(u, b)‖H3,0

)
‖(∂3u, ∂3b) ‖2H3,0(‖(ut, bt)‖2H1 + 1)

≤ C2e−C1t‖(∂3u, ∂3b)‖2H3,0 , (4.5)
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where we have used the uniform bound of ‖(ut, bt)‖2H1 . We choose T > 0 satisfying

C(ν, η,T ) := C(ν, η) −C2e−C1T > 0.

Then (4.5) implies that, for t > T ,

d
dt

(
‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 + ‖(ut, bt)‖2H1,0 + ν‖∂3ut‖
2
L2 + η‖∂3bt‖

2
L2

)
+ C(ν, η,T )(‖(∂3u, ∂3b)‖2H3,0 + ‖(∂3ut, ∂3bt)‖2H1,0) ≤ 0. (4.6)

Due to the Poincaré-type inequality (2.1), we have

‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 ≤ ‖(u, b)‖2H3,0 ≤ C‖(∂3u, ∂3b)‖2H3,0 ,

‖(ut, bt)‖2H1,0 ≤ C‖(∂3ut, ∂3bt)‖2H1,0

and thus

‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 + ‖(ut, bt)‖2H1,0 + ν‖∂3ut‖
2
L2 + η‖∂3bt‖

2
L2

≤ C(‖(∂3u, ∂3b)‖2H3,0 + ‖(∂3ut, ∂3bt)‖2H1,0). (4.7)

Combining (4.6) and (4.7), and setting

Y(t) = ‖(u, b)‖2L2 +

2∑
i=1

‖(∂3
i u, ∂3

i b)‖2L2 + ‖(ut, bt)‖2H1,0 + ν‖∂3ut‖
2
L2 + η‖∂3bt‖

2
L2 ,

we obtain, for a constant C3 > 0,
d
dt

Y(t) + 2C3Y(t) ≤ 0,

which yields
Y(t) ≤ e−C3tY(0).

That is, for t > T ,

‖ut‖H1 + ‖bt‖H1 ≤ Ce−C3t(‖(u0, b0)‖2H2 + ‖(∇3
hu0,∇

3
hb0)‖L2 + ‖(∂2

3∇u0, ∂
2
3∇b0)‖L2). (4.8)

For 0 ≤ t ≤ T , by (3.36) and (3.39), it is easy to see that

‖ut‖H1 + ‖bt‖H1 ≤ C(‖(u0, b0)‖2H2 + ‖(∇∂2
3u0,∇∂

2
3b0)‖L2) ≤ Ce−C3t (4.9)

for some constant C depending on the initial data. Then (4.8) and (4.9) give the desired
estimate (4.4).

The final step of the proof is to derive the exponential decay rate for ‖(u, b)‖H3 using
the decay rates from the first two steps, and the Stokes and elliptic regularity estimates.
Invoking the estimate (3.37) yields

‖∂3∇u‖L2 + ‖∂3∇b‖L2 ≤ C(‖(ut, bt)‖L2 + ‖(∆hu,∆hb)‖L2) ≤ Ce−C4t.

for a constant C4 = min{C1,C3}. Furthermore, according to Proposition 3.5, we have

‖∂3∇
2u‖L2 + ‖∇p‖H1 ≤ C(‖ut‖H1 + ‖(u, b)‖H2 + ‖∆hu‖H1,0) ≤ Ce−C4t.

‖∂3∇
2b‖L2 ≤ C(‖bt‖H1 + ‖(u, b)‖H2 + ‖∆hb‖H1,0) ≤ Ce−C4t,
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This completes the proof of the decay estimate in Theorem 1.1. �
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