ggdist: Visualizations of Distributions and
Uncertainty in the Grammar of Graphics

Matthew Kay

A. Some combinations of slabs and pointintervals B. Multiple lineribbons with varying probability mass C. Anthropomorphic dotplots using the dots

35 geometry and the Wee People font
- Cylinders
20 3 . B W s RS
- . A0 41 A1t
————— s N FANIEARATT Ay
A RN LIV
——— e ——— 20 > 3 -1 0 1 2 3
—————— 15 — e .
‘ E. Raincloud plots created by combining slab,
— ————— 10mpg o pointinterval, and dots geometries
100hp 200 300
D. Logit dotplot using lineribbon and dots geoms
———— _ 10
E
n 0.5
3 T ———
- € 00

4000g 4500 5000 5500 6000
Body mass of Gentoo penguins

Fig. 1: Examples from the three major classes of geometries in ggdist: (A) slabintervals, such as density plots, CDFs, intervals,
and gradient plots; (B) lineribbons, such as uncertainty bands and fan charts; and (C) dots, such as dotplots and beeswarm charts.
Myriad combinations of these are possible, leading to charts like (D) logit dotplots and (E) raincloud plots [1].

Abstract—The grammar of graphics is ubiquitous, providing the foundation for a variety of popular visualization tools and toolkits. Yet
support for uncertainty visualization in the grammar graphics—beyond simple variations of error bars, uncertainty bands, and density
plots—remains rudimentary. Research in uncertainty visualization has developed a rich variety of improved uncertainty visualizations,
most of which are difficult to create in existing grammar of graphics implementations. ggdist, an extension to the popular ggplot2
grammar of graphics toolkit, is an attempt to rectify this situation. ggdist unifies a variety of uncertainty visualization types through the
lens of distributional visualization, allowing functions of distributions to be mapped to directly to visual channels (aesthetics), making it
straightforward to express a variety of (sometimes weird!) uncertainty visualization types. This distributional lens also offers a way to
unify Bayesian and frequentist uncertainty visualization by formalizing the latter with the help of confidence distributions. In this paper, |
offer a description of this uncertainty visualization paradigm and lessons learned from its development and adoption: ggdist has existed
in some form for about six years (originally as part of the tidybayes R package for post-processing Bayesian models), and it has evolved
substantially over that time, with several rewrites and API re-organizations as it changed in response to user feedback and expanded to
cover increasing varieties of uncertainty visualization types. Ultimately, given the huge expressive power of the grammar of graphics
and the popularity of tools built on it, | hope a catalog of my experience with ggdist will provide a catalyst for further improvements to
formalizations and implementations of uncertainty visualization in grammar of graphics ecosystems.

A free copy of this paper is available at https://osf.io/2gsz6. All supplemental materials are available at https://github.com/mjskay/ggdist-
paper and are archived on Zenodo at doi:10.5281/zenodo.7770984.

Index Terms—Uncertainty visualization, probability distributions, confidence distributions, grammar of graphics

<+

INTRODUCTION

The grammar of graphics [54] is ubiquitous, providing the foundation
for a variety of visualization toolkits. Yet support for uncertainty
visualization in grammar graphics systems, generally speaking, remains
rudimentary. Popular implementations like ggploz2 [48,49] and Vega-
lite [44] typically provide versions of error bars (for points), uncertainty
bands (for lines), boxplots, and density plots. However, research in
uncertainty visualization has developed a rich variety of alternative

e Matthew Kay is with Northwestern University. E-mail:
mjskay @northwestern.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

uncertainty representations, often designed to address shortcomings
in those existing visualization types. Examples include, but are not
limited to, quantile dotplots [14,31], gradient error bars [11], gradient
plots [6,25], fan charts [25], and innumerable variations on eye plots [4,
18,31,45]. Yet, most of these alternative representations are—simply
put—painful to convince existing grammar of graphics implementations
to produce.

ggdist [29] is an attempt to rectify this situation. It started under
the guise of tidybayes [30]—an R package I wrote for post-processing
Bayesian models for use with ggplot2—in 2016. tidybayes slowly
gained usage in the Bayesian statistics community, but the package
always had two complementary, but not perfectly aligned, uses: post-
processing Bayesian model output for visualization, and creating un-
certainty visualizations in the grammar of graphics. The latter is bigger
than just Bayesian statistics: everyone needs to visualize uncertainty!
And, contrary to popular opinion—as we’ll see later—Bayesian and

https://orcid.org/0000-0001-9446-0419
https://mjskay.github.io/ggdist/articles/slabinterval.html
https://mjskay.github.io/ggdist/articles/lineribbon.html
https://mjskay.github.io/ggdist/articles/dotsinterval.html
https://lnalborczyk.github.io/post/glm/
https://osf.io/2gsz6
https://github.com/mjskay/ggdist-paper
https://github.com/mjskay/ggdist-paper
https://doi.org/10.5281/zenodo.7770984
mailto:reprints@ieee.org
mailto:mjskay@northwestern.edu

frequentist uncertainty visualization can be done within the same frame-
work. Recognizing this broader need, in 2020 I spun off the uncertainty
visualization components of tidybayes into a new package, ggdist, and
published it to CRAN [21]. Since then it has steadily grown in use inside
and outside the Bayesian statistics community in R, and now averages
about 14,000 downloads per month (modest for an R package).

ggdist aims to be (1) a coherent extension to the grammar of graph-
ics that makes it easy to create a variety of uncertainty visualizations,
and (2) an implementation of a particular formalism for describing
uncertainty visualizations: mappings of functions of distributions (e.g.
densities, CDFs, quantiles) onto aesthetics (e.g. height, color, opacity).
That formalism is the primary focus and contribution of this paper. My
ambition is that not only should that formalism be able to express a va-
riety of uncertainty visualizations through a single coherent framework,
but that that framework should be complete enough that someone else
can wander along and use it to express new uncertainty visualization
types I’ve never thought of before.! Naturally this is hard to demon-
strate, but I will attempt to do so by giving a tour of ggdist through
recreations of a variety of uncertainty visualizations in the literature.
Along the way, I'll discuss lessons I’ve learned in how to effectively
integrate uncertainty visualization into the grammar of graphics.

Ultimately, in the spirit of recent retrospectives on visualization
system design [43], I hope to distill down some of what I’ve learned
developing a moderately-well-used uncertainty visualization toolkit.2
Given the huge expressive power of the grammar of graphics and
the popularity of tools built on it, I hope a systematic approach to
integrating uncertainty into the grammar of graphics might provide a
catalyst for improved implementations of uncertainty visualization to
flourish in existing grammar of graphics ecosystems, and ultimately for
even better formal descriptions of uncertainty visualization to arise.

2 SETTING THE STAGE
2.1 A simplified notation for the grammar of graphics

As I would like to talk more generally than a specific grammar of
graphics implementation—that is, I am more concerned with the for-
malism underlying ggdist than with the idiosyncrasies of its API—I’1l
need a formal way of writing down visualization specifications sepa-
rated from a particular implementation. I’ll adopt here a notation that
I’ve used when teaching ggplot2, Vega-lite, Altair, and Tableau. I've
found students pick it up handily, which is at least some evidence for
its understandability. The core notation describes a visualization in
terms of its data variables, aesthetic mappings, and geometries. We
create a scatterplot of the infamous mtcars dataset [19], for example,
by mapping one variable onto the x aesthetic and another onto the y

aesthetic:
35

30
..
. 25
weight — x & o« o
E 2 .
mpg —y ROR
GEOM = point ' * ¢
10 (1]
2 3 4 5
weight

This notation sets up two aesthetic mappings:* a mapping from the
weight variable onto the x aesthetic, and a mapping from the mpg
variable onto the y aesthetic. It then employs a point geometry> for

'Emphasis on I—I think a formalism and its corresponding API truly shows
its power when people make things with it that its creator did not conceive.

2In the spirit of this being a retrospective, I'm keeping the tone informal. I
think that’s more honest; besides, after two years of a pandemic, I at least need a
break from stilted academic writing. I hope you do too! If not, my condolences.

31 am aware it is traditional to slap a number on each figure and float it off
into a random corner of the page. I violate that norm throughout this paper
without remorse.

40r in Vega-lite parlance, encodings

3Vega-lite-ese: mark

display. I like this notation because it emphasizes that we are creating
functions from data space to aesthetic (display) space; in grammar
of graphics parlance these are scale functions which can themselves
be specified (e.g., to use log scales, to pick how colors are assigned,
etc). Other notations obscure this key insight into the structure of the
grammar of graphics by, e.g., placing the aesthetic first and “assigning”
data variables to it. In fact, let’s see that now: here is a translation of
the above into ggplor2 and Vega-lite® code, assuming cars is a data
frame with weight and mpg columns:

ggplot2: Vega-lite:
ggplot(cars) + vl.data("path/to/cars.json")
aes(.encode(
x = weight, vl.x().fieldQ("weight"),
y = mpg vl.y(Q).fieldQ("mpg")
)+)
geom_point () .markPoint ()

This shows the close correspondence between the abstract notation
above and the particulars of code in actual grammar of graphics imple-
mentations. Throughout the rest of this paper, I'll stick to the abstract
notation and corresponding ggplot2 + ggdist code for some particulars.

2.2 Uncertainty visualization in the grammar of graphics,
as she is spoke

Speaking of existing implementations of the grammar of graphics, how
do they implement uncertainty visualization? Rudimentarily, I think.

One natural approach to uncertainty visualization is to use a Gaussian
approximation: to represent all estimates and their uncertainty as a
mean and standard deviation. This makes specification easy: instead
of mapping a single value onto the x aesthetic, say, we map a point
estimate onto x and provide an aesthetic for its standard deviation; call
it xsp. Say we had a point estimate ¢ and had quantified its standard
error (i.e. the standard deviation of its sampling distribution) as o, we
might plot a point with an error bar using a composite pointinterval
geometry as follows, yielding a 95% interval calculated from a Normal
distribution with mean u and standard deviation o:

H—x "
o — -xSD ——
I~ —
GEOM = pointinterval 5

This is one approach taken by Vega-lite: it provides an errorbar’
mark (analogous the interval portion of pointinterval) and an xError
channel (analogous to xsp). I'll refer to this as the {x,xsp } approach.

The problem, fundamentally, is that not all uncertainty is well-
represented by a Gaussian distribution. Consider uncertainty in a
proportion (bounded at 0 and 1, thus as estimates approach the bound-
ary the interval becomes asymmetric—yet Gaussian intervals must be
symmetric) or uncertainty in a variance parameter (bounded below at
0). Or, consider the ubiquitous Student-¢ confidence interval: as the de-
grees of freedom go to oo, a Student-¢ distribution is well-approximated
by the Normal, but with low degrees of freedom (incidentally common
in small-n studies—Ilike at VIS), the tails of the distribution become
fatter, and the Normal distribution is a poor approximation. Thus, a
more general approach is needed.

The obvious alternative, at least for interval representations, is to
simply specify the interval endpoints; e.g. for a 95% Gaussian interval:

oI use the Vega-lite API instead of its JSON form, as JSON is a horrifying
mess of visual noise that no sane human should want to read or write. The
Vega-lite API is a notable improvement, though without R’s facility for capturing
and re-writing abstract syntax trees, it doesn’t quite reach the succinctness
of ggplot2. This seems to be a fundamental limitation when writing domain-
specific languages in JavaScript, though the Vega-lite authors have done an
excellent job with the language they’ve been given.

Terrorbar is, in my view, a misnomer, as is XxError: fundamentally, the
mark calculates a Gaussian interval, which might be being used to represent
error in an estimate, but might not. Error is not the generic notion at play, a
standard deviation is; and the generic mark is an interval, not an error bar.

U—x
u71'96'6‘>xMIN

———
1.96-0 — x 1 1
Kt MAX u-196- o n+1.96-

GEOM = pointinterval

Here, the magic values —1.96 and +1.96 are the (1 —95%)/2 =2.5%
and (1+95%)/2 = 97.5% quantiles of the standard Normal distribu-
tion, thus yielding a 97.5% — 2.5% = 95% interval. This is generic
in the sense that any interval can be represented, but unsatisfying in
the sense that we have lost some level of abstraction that was present
when we were just thinking in terms of estimates and their variances.
This approach also requires that the user knows how to make these
calculations. Both ggplor2 (with geom_pointrange) and Vega-lite
(with the x and x2 channels supplied to errorbar) offer a variant of
this solution for pre-calculated intervals.

I will offer a different solution: to instead represent intervals as prop-
erties of a distribution, allowing us to neatly handle both the simple case
of Gaussian error and more complex cases. Centering distributions—
not standard deviations or intervals—in the specification of uncertainty
will also allow us to build a richer set of uncertainty representations.

3 UNCERTAINTY VISUALIZATION AS
DISTRIBUTIONAL VISUALIZATION

3.1 Intervals

Imagine we represent an uncertain value generically as a distribution,
or a random variable, M. Importantly, I do not consider this a probabil-
ity distribution necessarily: it could be a probability distribution, but
it could also be a confidence distribution, which is a frequentist gen-
eralization of sampling distributions and bootstrap distributions [55].
Its defining characteristic will be that it has a cumulative distribution
function (CDF), Fjs(x), which is:

* For a probability distribution, Fys(x) = Pr(M < x), the probability
that M is less than or equal to x.

* For a confidence distribution, Fys(x) = ¥ is the confidence ¥ at
which x would be the upper limit of a one-sided Y% confidence
interval, [—eo,x], for M.

For either representation, we may also be interested in other func-
tions of the distribution. These include the derivative of the cumulative
distribution function, i.e. the density function (or the mass function, if
the distribution is discrete), fus(x), as well as the inverse of the CDF
(also known as the quantile function), F}, ! (x). Given these functions,
we can generate a variety of uncertainty representations, including but
not limited to density plots and intervals.

For example, a median and Y% quantile interval could be defined
generically on any distribution M as follows:

median(M) — x
o T1= median(M)
k M1 [Ty:| — XMIN

|1+
FMI [TY:| — XMAX
GEOM = pointinterval

If M is a probability distribution, this is a Bayesian credible interval,
and if M is a confidence distribution, this is a frequentist confidence
interval. This lets us abstract over the petty battles between this or
that statistical camp and get to the meaningful business of visualizing
uncertainty. This also allows us something not present in other attempts
so far: to make it easy to specify multiple interval sizes, and to map
interval size itself onto an aesthetic. For example, if we® wanted to
show two intervals, a 95% and a 66%, where the smaller interval is
shown as a thicker line, we could write:

8Yes yes, I am using both “T” and “we” in this paper. “I” is me, and “we”
is the conspiratorial “we”: I'd like to hope you’ll come along with me on this
exciting journey of trying to sort out reasonable ways to visualize uncertainty.

median(M) — x

vy=0.95

e ————
I ——

L v=0.66
Y — linewidth

GEOM = pointinterval
v € {0.66,0.95}

This is a not-uncommon approach that tries to avoid dichotomous
thinking by showing multiple intervals of different masses. It also has
the nice grammar-of-graphics-ish property of mapping the mass ()
onto the width of the line, instead of creating two explicit, separate
layers, each specifying a different interval—it makes the mass into
data.® This also makes it easy to generalize to other visualizations, e.g.
by modifying the previous specification to map mass onto color instead
of linewidth:

mass
Y — color 095
GEOM = pointinterval o 08
v € {0.50,0.80,0.95} - os

On the other hand, these are still a bit low-level: they require the user
to know how to calculate interval endpoints from the quantile func-
tion. This also limits us specifically to quantile intervals, when other
intervals types, such as highest-density intervals [24] or shortest inter-
vals [34], might be preferable. Thus, ggdist also supplies a stat version
of pointinterval, which bundles up some statistical calculations and
default aesthetic mappings with the pointinterval geometry.'® All stats
in ggdist support the xp;st and ypist aesthetics, onto which objects that
represent distributions can be mapped. They also allow the user to spec-
ify the type of point and interval used, and generate the corresponding
values and mappings for x, xyn, Xmax, and linewidth. This changes
the specification to something like:

M — xpist

STAT = pointinterval v

POINT = median
INTERVAL = quantile interval
v € {0.66,0.95}

The representation of the distribution M could be a sample-based rep-
resentation, e.g. a bunch of draws from a Bayesian posterior or from
a bootstrap distribution, or it could be an object representing a theo-
retical distribution in terms of its parameters, such as a Normal distri-
bution with a defined mean and standard deviation. Point estimates
and interval types can be defined by arbitrary functions of distributions,
and predefined functions for mean, median, and mode, and quantile,
highest-density, and shortest intervals are provided. This generalizes
the {x,xsp } approach used by Vega-lite to any distribution type while
abstracting over the specifics of how points and intervals are calculated.

In implementation, ggdist allows distributions to be represented

°I learned at least two useful things from a relational databases class in
undergrad: (1) it’s always better to put data into rows than into column names of
tables—an insight that stems from database normal forms [10] (distinctions be-
tween which I have long forgotten) or what some statisticians call tidy data [50];
and (2) you are rarely at Google scale, so you’re probably better off with a
relational database with proper transactions than some dumb old key—value
store. The latter lesson each of my students refuses to learn until they build a
web app to collect data from 300 people using some newfangled database they
aren’t the target users for, and end up with garbage. Kids these days, etc.

10Gee Sec. 5, or Wickham [48], for more on stats and geoms.

by numeric vectors (a sample-based representation), objects from the
distributional R package [39] (which supports theoretical distributions
as well as samples), and rvar objects from the posterior R package [7]
(a sample-based representation that mimics numeric arrays in R). For
example, if we re-create the {x,xsp } representation abstractly thus:

Normal(t, o) — Xprst
STAT = pointinterval

Normal(p, c)
POINT = median e —

INTERVAL = quantile interval
v € {0.66,0.95}

In ggdist, using distributional: :dist_normal, the specification
is quite similar:

ggplot(data) +
aes(xdist = dist_normal (mu, sigma)) +
stat_pointinterval(
point_interval = median_qi,
.width = c(.66, .95)
)

These are the default values for point_interval and .width (7/),] 1
sojust stat_pointinterval() also works here. To demonstrate gen-
eralizing this approach, consider the common need to place uncertainty
intervals on the results of a ¢-test, which can be derived from a ¢, (U,)
distribution with v degrees of freedom, location u (e.g. an estimated
mean), and scale ¢ (e.g. a standard error). Given these three values in
a data frame, a visualization specification might be:

(1, o)

ty(U,0) = Xpist °

STAT = pointinterval

In ggdist code, the aesthetic specification closely matches this abstract
notation: aes(xdist = dist_student_t(nu, mu, sigma)).

3.2 Ribbons

Once we have pointinterval representations, it is straightforward to
develop uncertainty band representations by generalizing points to lines
and intervals to ribbons—thus, lineribbon. Imagine a regression that
models car miles per gallon based on weight (the details of the function
g are not important):

log(mpg) ~ Normal (g(weight),o)

Such a model could provide a predictive distribution for a car’s miles
per gallon conditional on its weight: p(mpg | weight), which we might
want to plot alongside the raw data. If a lineribbon is a geometry
combining a line with an arbitrary number of uncertainty bands around
it, abstractly, we want something like this:

40

weight — x "
p(mpg | weight) — ypist 2
Y — fill 20
STAT = lineribbon 10
v € {0.50,0.80,0.95} 5 3 4 :
weight

(I also show the raw data as a separate point layer, for comparison.)
Assuming fit is a Bayesian version of this model fit using the brms

For historical reasons that have to do with a combination of a very long
discussion with a bunch of people on the Stan probabilistic programming lan-
guage forums [28] and naming conventions in some R APIs for fixed arguments
to functions with variable argument lists [47], ¥ in ggdist is spelled .width.
Reflecting on my past mistakes, a better name would be mass.

modeling package, and preds is a data frame of weight values to predict
on, we can add a column to preds that contains a random variable rep-
resentation of p(mpg | weight) using brms: : posterior_predict [8]
and the posterior: :rvar data type [7]. The latter is a data type I
created specifically to wrap large samples that represent distributions
into objects that mimic R vectors and arrays, and which can be added
to data frames:

preds$mpg_given_weight = rvar(posterior_predict(fit, preds))

This creates a new column, mpg_given_weight, containing rvar
objects representing p(mpg | weight) for the weight on each row of
the preds data frame. Given this data frame, the code equivalent of
the abstract specification above is:

ggplot(preds) +
aes(x = weight, ydist = mpg_given_weight) +
stat_lineribbon()

stat_lineribbon defaults to .width = c(.5, .8, .95) and
maps the resulting .width onto the £ill aesthetic, so we do not need
to specify the .width or £i11 mappings. Once we have a multiple-
ribbon geometry, it is easy to create other visualization types, like
gradient fan charts [6,25]. For example, we could use a large number of
intervals, say k = 50 or 100, with masses between 0 and 1 (exclusive):

y — fill “0
STAT = lineribbon é_" 30
| —0.5
ye{l iel...k} ?
k 10
k=100 2 3 4 5

weight

This set of k 7y values is the same sequence generated by the
ppoints(k) function in R, so we can pass .width = ppoints(100)
to stat_lineribbon to get a gradient fan chart with 100 intervals.
This stems directly from the choice to make ¥ into data that can be
mapped onto aesthetics, and is one example of support for a chart type
that was a happy accident of ggdist’s design.!?

3.3 Slabs

Speaking of gradients, the obvious other direction to go for uncertainty—
if we are to move beyond intervals—is density plots. Most grammar of

graphics implementations support density plots, but these are typically

designed only for sample-based representations: they calculate a kernel

density estimate (KDE) from a sample and allow this to be visualized.

Given ggdist’s core abstraction of distributions, we can take this a step

further, visualizing both sample-based representations and theoretical

distributions. 3

However, stopping at just densities seems the wrong level of abstrac-
tion:'* many useful uncertainty visualizations can be created through
the whole suite of distributional functions: CDFs, densities, and quan-
tiles. Thus, ggdist instead has a notion of a slab geometry, which has
a thickness onto which arbitrary functions of the distribution can be
mapped. For example, imagine two groups, a and b, each with uncer-
tainty in its mean represented by a random variable M | group. We
could specify a density plot of these distributions as:

12This happy accident was discovered in my response to a user’s question in
tidybayes issue #103.

13You may be tempted to say: but Matthew, of course you could easily
pre-calculate densities from a theoretical density function and plot them, e.g.
using ggplot2::stat_function. Unfortunately, once you add non-linear
axis transformation into the mix, this is a recipe for silent errors caused by
failing to adjust the density by the derivative of the transformation—an error
ggdist prevents. See Sec. 6.3.

14See earlier footnote” about error bars versus intervals.

https://github.com/mjskay/tidybayes/issues/103

max fy(x)T
M — xpist thickness
group =y Sy 4l ol
o o N\
Jfm(x) — thickness & max f3,(x)
STAT = slab
a —— ol

(I also include a pointinterval with a median and 66% interval above—
and elsewhere in this section—for reference.) The slabs have a subscale
for thickness,'> which is an orientation-aware aesthetic (if the distribu-
tions were mapped onto yp;st, thickness would act as a width instead of
height) with a fixed baseline: values of O on the thickness scale always
correspond to the base of the slab. This makes it appropriate for both
probability densities and CDFs, both of which have a natural O point.
In the above example, the density fjs(x) is mapped onto thickness,
creating a traditional density plot. Importantly, because the geometries
use the same scale, both subscales have the same overall maximum
thickness, which ensures that the area under both densities is equal.'®

This is the default output of stat_slab() in ggdist, which maps
densities onto the thickness aesthetic. If desired, the mapping fys(x) —
thickness can be translated to code in one of two ways:

1. aes(thickness = after_stat(pdf)): This maps the pdf
computed variable onto thickness. Computed variables in gg-
plot2 are calculated by stats and made accessible in aesthetic
mappings via after_stat (). ggdist stats provide several com-
puted variables, including pdf, cdf, and .width. See Sec. 5.

2. aes(thickness = !!p_(x)): This uses a small domain-
specific language for probability expressions I added to ggdist,
and is intended to more closely mimic a mapping like p(x) —
thickness in code. The !! pseudo-operator comes from the
rlang meta-programming R package [20] and performs unquota-
tion [51]: it inserts the expression returned by p_(x), which in
this case is after_stat (pdf), into the aes call.!”

Slab geometries have several useful properties designed to make it
easy to create a variety of uncertainty visualizations. One important
property is that the alpha (opacity), fill, and outline color aesthetics of
the slabs can have data values mapped onto them at a sub-geometry
level.!® This functionality, combined with the ability to map arbitrary
distribution functions, means we can easily recreate a bunch of visual-
izations from the literature. The obvious first example would be a color
gradient plot [25], by mapping density onto alpha:

M — xpist b -
group —y E3
o
— alph o
fm(x) — alpha o
STAT = slab

15Grammar of graphics aficionados might ask: why not use faceting instead of
creating a new positional subscale? Experience has shown many situations where
faceting doesn’t cut it: for example, a thickness subscale easily handles complex
plot layouts with multiple estimates as grouped or even possibly-overlapping
densities (even combined with layers showing raw data)—combinations difficult
or impossible to create with facets.

16This default is, most of the time, what you want, as it ensures each distribu-
tion integrates to 1. For exceptions to this rule, ggdist provides a normalize
option and a scale_thickness_shared function which allow finer control
over how thickness scales are shared across groups, panels, and geometries.

17 T added this syntax when ggplor2 deprecated stat (), which was a synonym
for after_stat(). This (1) made expressions with after_stat needlessly
verbose and (2) replaced a declarative verb, stat—which indicates the type of
expression but not when it is computed—with a procedural verb, after_stat.
I feel that this change violates the declarative foundations of ggplor2, and the
mini-DSL for probabilistic expressions is my small protest against it.

18 Just as an implementation note, this happens to be an incredible pain in the
ass. See the description of geom_slab rendering in Sec. 5.

This translates naturally to aes(alpha = !!p_(x)). Fine fine, but
let’s get weird. Back in 2014, the inimitable Michaels Correll and
Gleicher—arguing that error bars should be considered harmful [11]—
proposed instead a visualization which has a solid bar inside the 95%
interval and gradient tails that fade out beyond the interval, to emphasize
the arbitrariness of the 95% confidence level. We can use the CDF to
construct a function with these properties, and map it to alpha:

2Fa(x) — 1] S
—max { 0.95 — alpha g
STAT = slab *. ——
In ggdist this function is either:
e -pmax(abs(2*after_stat(cdf) - 1), .95) or

e -pmax(abs(2*!'!Pr_(X <= x) - 1), .95), using the proba-

bility expression mini-DSL.

Thus, ggdist can create this particularly weird uncertainty visualiza-
tion without breaking the bonds of its core abstraction. Importantly, the
function I've used to construct the tails is not arbitrary; it is meaningful
in itself: 1— |2Fy(x) — 1| is the consonance curve [2], which (in the
frequentist interpretation) is the two-sided p-value for the null hypoth-
esis M = x. Horizontal slices through this curve at a height of ¢ are
(1 —)% quantile intervals:

1 —|2Fy(x) — 1| — thickness 0.50 50% CI

STAT = slab

1= RFu(x) -1

0.05
0

95% CI

Fair enough, but let’s get weirder: in 2021, Helske et al [18], inspired
by Correll and Gleicher, proposed combining their gradient tail with a
violin plot. We can do that by adding back in the density-to-thickness
mapping, and use the SIDE parameter, which specifies if the slab should
be drawn on the top side (default), bottom side, or both. I'll also adjust
the tails to fade outside the 85% interval, since otherwise the fading is
hard to see in the skinny tails of the violin:

Jfm(x) — thickness

b -
2Fy(x)—1
— max P %(8)5 q — alpha g
[}
STAT = slab a —o—
SIDE = both

Okay fine, but let’s get even weirder: Helske et al [18] further suggested
using discrete intervals for the colors instead of a gradient, to aid
discriminability. We can do that too! A key feature of the slab stat is
that it also computes intervals, and for each point along the slab, retains
a column indicating the mass () of the smallest requested interval
containing that point.!® This means that we can integrate intervals
directly into the slab by mapping y onto alpha or fill:

Sfm(x) — thickness

y— fill L 1]
y€{0.5,0.8,0.95,1} 3
[}
STAT = slab R =
SIDE = both

Helske describes these violin-interval plots as “more challenging to cre-
ate”; ggdist supports them naturally through a combination of its core

19This can also be done by discretizing the CDF, and that was the recom-
mended approach in earlier versions of ggdist; see the cut_cdf_qi function.
However, that does not generalize to other kinds of intervals, like highest-density
intervals—hence the approach described here.

https://mjskay.github.io/ggdist/reference/cut_cdf_qi.html

features: making interval mass () into data and allowing distribution
functions and intervals to be mapped to aesthetics within a single slab.

Another variation on violin plots is the raindrop plot of Barrowman
and Myers [4], which maps log-density instead of density onto thickness
inside a desired interval, say 95%:

log fur(x) if y<.95

. b ---
(o) otherwise } —+ thickness a
=]
o
STAT = slab o
SIDE = both a ==

The rationale here is that some distributional features, such as fat tails
(kurtosis), can be easier to see in log-density than density [4]. In ggdist,
the above spec is written:

aes(thickness = ifelse(.width <= .95, log(!!p_(x)), NA)) +
stat_slab(side = "both", normalize = "groups")

Where normalize = "groups" is needed to tell the slab to normalize
thickness on a per-group basis, as log-density does not have a natu-
ral zero point. Without this, the endpoints of the arcs defining the
“raindrops” may not reach the thickness baseline.

Another interesting?®?! uncertainty visualization is Haber and

Wilkinson’s [16] fuzzygram, i.e. fuzzy histogram. We can general-
ize it to a fuzzy bar chart. This chart type has what I would call a
compelling generative story: an explanation for how the uncertainty
encoding in the chart arises based on a generative process. Imagine we
want to add uncertainty to a bar chart, and we have a distribution for the
uncertainty in the value of each bar. Now say we sample a large number
of semi-transparent bar charts from these distributions, and plot them
all on top of each other. As the number of charts approaches o and the
opacity of any given chart goes to 0, the stack of overlapping bars for
each value will begin to resemble the complementary CDF, 1 — F(x),
of that distribution.?? That insight leads to the following encoding:

1 — Fy(x) — alpha
STAT = slab

group

I would describe this chart type as theoretically interesting but inter-
pretationally problematic. Anecdotally, without the overlaid reference
point and interval, folks I show this to often do not correctly identify
the mean, believing the darker garts of the bar are more likely (a not-
unreasonable misinterpretation).>> On the other hand, I do like the idea
of generative stories in uncertainty visualization; e.g., I've used Plinko
boards to depict uncertainty in election forecasts, which try to capital-
ize on a physical process—one that might intuitively?* feel random to
people—to depict uncertainty through a form of sedimentation [23].

Another advantage to being able to map arbitrary data values onto
slab aesthetics is that we can map the results of logical conditions onto
those aesthetics. A common procedure in Bayesian estimation is to use
regions of practical equivalence (ROPEs) [32]. Say you are interested in
whether an estimate is “practically” equal to 0. You define a ROPE of
0+ some small effect size that you consider so close to 0 it is effectively
indistinguishable from it. Then you ask: what is the probability the
value is in the ROPE—i.e., practically equivalent to 0? We can visualize
this probability by highlighting the ROPE on a density:

20 Ak A weird.

21¥es, there are a lot of footnotes. No, I don’t care.

22 Assuming additive blending and opacities that sum to 1.

231 don’t know if this is an example of within-the-bar bias [38] or not.

24As this is an uncertainty visualization paper, I am professionally obligated
to use “intuitive” at least once without defining it.

[x| <2
TRUE
fu(x) — thickness S, FALSE
|x| <2 — fill g
STAT = slab
a
2 0 2 4 6 8 10 12

For each distribution, Pr(|X| < 2)—the probability the value is in the
ROPE of +2—is directly encoded by the proportion of the slab high-
lighted in blue. Because logical conditions can be mapped directly onto
aesthetics, we can write aes(fill = after_stat(abs(x) < 2))
to create this chart.

3.4 Dotplots

These days, when every other uncertainty visualization paper is about
frequency framing or discrete outcome displays—spaghetti plots [12,
33] hypothetical outcome plots [22,27], quantile dotplots [14,31] and
so on—I would be remiss to write a whole uncertainty visualization
toolkit that can’t make one measly discrete outcome visualization.2)
The natural counterpart to the continuous encoding of the slab geometry
is ggdist’s dots geometry, which can create Wilkinson dotplots [53] (for
raw data)?® and quantile dotplots (to show uncertainty).

Quantile dotplots were designed for uncertainty communication, and
depict quantiles of a continuous distribution using a dotplot, to help
the viewer reason about that distribution as a set of discrete possible
outcomes [31]. Put another way, they discretize the density function,
and allow reasoning about intervals through counting: e.g., in a 100-dot
quantile dotplot, Pr(X < 2) translates to the question, how many dots
out of 100 are less than 2? Continuing our example from the slab
geometries, here are two quantile dotplots using 100 dots each:

M — xpist
Q
group —y 3P
STAT = dots o
QUANTILES = 100)

2 0 2 4 6 8 10

It is worth noting that ggplot2 has a dotplot geometry already, but that
it is often awkward to use: as it uses a bin width specified by the user,
there is no guarantee the dotplot fits inside the available space, often
leading to dots running outside the plot region. By contrast, the dots
geometry in ggdist uses numerical optimization to automatically find a
shared bin width across all dotplots in the geometry that ensures they
fit in the available space (notice I did not specify bin width above).?’

One property of dotplots is the opportunity to encode additional
information in the dots themselves. For example, we could take ad-
vantage of Unicode support in the shape aesthetic (which determines
how points are drawn) to use emoji to encode just how we feel about
possible effect sizes in a distribution:28

25Plus it would be a bit silly for me to develop a whole-ass visualization
toolkit that can’t at least make quantile dotplots, since I came up with them in
the first place [31].

26 And minor variations thereof, like beeswarm plots, which can be created by
setting SIDE = both and (optionally) adjusting the LAYOUT parameter; see the
dotsinterval vignette for examples.

271t also allows constraints on minimum and maximum bin width, and has
various options for what to do if those constraints are exceeded, such as com-
pressing the layout so that dots may overlap. Anecdotally, automatic dotplot
layout is one of the most popular features of ggdist, as it relieves the intense
frustration of the endless tweaking necessary to get the dot size right.

28This example was inspired by a tweet from Michael Correll suggesting
effect sizes at VIS might be best described with a dotplot of poop emojis. I was
delighted to find that ggdist could replicate it, but have spared the literature a
faithful rendering of the poopmoji plot by opting for smiley faces here.

https://presidential-plinko.com/
https://mjskay.github.io/ggdist/articles/dotsinterval.html
https://twitter.com/Birdbassador/status/916332327696875520
https://twitter.com/mjskay/status/1361366253424832512

x>0
TRUE

M = Xpist D FALSE

x> 0 — shape
STAT = dots
QUANTILES = 50

This plot does require us to specify what the shape scale function
is. Abstractly, if we assume each aesthetic mapping foo has a scale
function sg,,, we might define the scale function for shape as:

. © ifx
Sshape (X) X w if —x
In ggploz2 this is:
scale_shape_manual (values = c("TRUE" = "", "FALSE" = "(G2"))

This may seem manifestly silly, but there’s something to the idea of

making discrete outcomes more concrete—or at least more memorable—
through graphic depictions, whether it be with emoji or other icons [17].

Since arbitrary fonts can be used with ggplot2 shapes, it is one avenue

to creating more expressive dotplots: for example, inspired by a tweet

from Gabe Bassett, I once used Alberto Cairo’s Wee People font [9] with

geom_dots to create dotplots with anthropomorphic icons (Fig. 1C).

3.5 Further examples

My hope in the preceding sections was to whet your appetite for the
expressive power of an uncertainty visualization grammar grounded in
distributions, both of probability and of confidence. It was not intended
as a tutorial (hence the paucity of code), but to give a taste for the
underlying formalism of ggdist, how it can help us think about uncer-
tainty visualizations, and how it extends the grammar of graphics in a
principled way to support fluid specification of a variety of uncertainty
visualizations. For more examples, and specifically for examples with
code, the interested reader can check out the vignettes in the ggdist
documentation, which include a slew of examples not covered here, and
the vignettes in the tidybayes documentation, which include examples
of the use of ggdist with Bayesian models.

4 USE IN THE WILD

I sometimes wonder if the best way to validate visualization ideas is to
deploy them into the world and wait to see what happens (as Munzner
puts it: to see what users do of their own accord [36]). Yet, given the
vagaries of research project timelines, most systems in VIS do not have
this luxury—understandably so, lest we wait 10 years to graduate a
PhD student. While there are examples of wildly successful systems
that came out of visualization research (e.g. d3 [5], Vega-lite [44]), few
systems have both the generality and reach of those exemplars. I think
ggdist falls somewhere in the middle: it has been deployed for several
years and enjoys a modest following. This gives me the opportunity to
look at some coarse—but naturalistic—data on usage.

ggdist currently sees about 14,000 downloads per month from
CRAN [13] (up from just a few thousand on original launch in 2020,
piggy-backing on tidybayes’ already-established community). Per
Google Scholar, it has been cited 46 times (and tidybayes 236 times).?
Its Github project has been starred ~620 times, putting it in the com-
pany of popular packages like cowplot (~640), ggalt (~630), and ggtext
(~600) in the ggplot2 extension gallery. It has 169 issues in its Github
issue tracker, not counting the 305 issues in tidybayes (many of which
are ggdist-related issues from before ggdist and tidybayes split). Issues
especially can be a sign of user engagement, because projects without
broader engagement will have issues opened only by the author. To
better understand that engagement, I exported all issues from ggdist
(see Github or the supplement) and read back through them, engaging
in a light tagging process based on what I recalled about those issues.

These are all citations of the software itself: neither package has had a paper
written about it—yet.

Of the 169 issues on Github, 79 (47%) were opened by someone
other than me; there were 45 unique authors, excluding me. A further
16 issues were opened by me in direct response to some user need,
either flowing from a comment on another issue or from a conversation
on another platform, often Twitter.3? Thus, just over half of all issues
on ggdist’s tracker stem from user engagement—and from a variety of
users. I roughly categorized issues (with some overlap) as follows:

* 38%: A request that did (or would) result in a new feature.

* 20%: A user asking for help, usually with a particular plot they
are trying to create.

* 17%: A bug.

* 16%: Internal issues, such as code refactoring, cleanup, or TODOS.

* 9%: Documentation.

Currently, 34 issues (20%) remain open; only one of these is a bug
(recently-reported). I have been fortunate to get a wide variety of
engagement from users, which has lead to substantive improvement
to ggdist. It is hard for me to summarize that engagement, but I’ll
highlight two instances that had a salient impact on the overall design
of ggdist, and which also carry some useful lessons for uncertainty
visualization in the grammar of graphics.

First, issue #83 involves an extensive discussion about how to refac-
tor ggdist to merge two classes of stars. Older versions of ggdist
distinguished between stats designed to summarize distributions repre-
sented as vectors of samples (mapped onto x or y) and those designed
to represent distribution objects (mapped onto a now-superceded dist
aesthetic). My experience answering user issues led me to conclude
that this distinction was confusing, so I opened this issue as an attempt
to find a better solution.

Two expert users joined in the discussion, and together we consid-
ered a variety of options, including (1) creating a new distribution
subtype of x and y scales, similar to the way that continuous values,
discrete values, dates, and times are handled by ggplot2; or (2) creating
new aesthetics, like xpjst and ypisr. I prototyped an implementation of
the former, realizing some shortcomings: distributions cannot easily be
treated as subtypes of positional scales like continuous or discrete vari-
ables are, because distributions themselves have subtypes (like being
continuous or discrete). After further discussion, I settled on the xpst
and ypist design, which also makes it easy to intermix distributional
objects with non-distributional objects along the same positional scale.
This has proven to be a good choice, as I have received feedback from
users that the new xpist and ypst aesthetics are much easier to use.

Second, issue #19—to automatically detect discrete theoretical dis-
tributions and render them correctly as histograms—had been a long-
standing wishlist item. About 9 months after I opened it, prompted
by a conversation on Twitter, a ggdist user posted some examples of
plots they might be able to create if the issue were resolved. After a
productive brainstorming about the design of discrete distribution dis-
plays, I implemented a feature in ggdist whereby histograms of discrete
theoretical distributions are treated as a type of density plot: a stepped
version of their probability mass function is available through the same
mappings used for density functions of continuous distributions. This
integrates discrete distributions into the same broader framework used
to construct other visualization types in ggdist, meaning I was able
to resolve the issue without creating new special cases for handling
discrete distributions from the users’ perspective.

Several other issues and features have stemmed from interactions
of this kind, including interactions with other R package authors who
make use of ggdist (18 other packages, not including tidybayes, depend
on ggdist). Overall, I think ggdist has garnered a modest following, and
I owe a great debt to community for contributing to its development.

5 HOW DOES ALL THIS WORK, ANYWAY?

Interested implementers might ask: whither the implementation de-
tails? The glib response, of course, is the ggdist source code, which is

30 spend possibly too much time on #rstats Twitter/Mastodon/Bluesky
engaging with data scientists around visualization problems.

https://twitter.com/gdbassett/status/1519067260555513859?s=20
https://twitter.com/gdbassett/status/1519067260555513859?s=20
https://github.com/mjskay/uncertainty-examples/blob/master/weepeople_dotplots.md
https://mjskay.github.io/ggdist/
https://mjskay.github.io/ggdist/
https://mjskay.github.io/tidybayes/
https://exts.ggplot2.tidyverse.org/gallery/
https://github.com/mjskay/ggdist/issues
https://github.com/mjskay/ggdist/issues/83
https://github.com/mjskay/ggdist/issues/19

C:Q layer applies 0 stat_slab createsanx grid @ layer applies D)
before-stat mappings i andateachx after-stat mappings
. i F . b
) = Xpist - X)
D—-V y)4
= =)
group | v u| o y Xpist y x| f(x)| Flx)| v y x | thickness fill 0 5 1
b 60 | 1 11 —» {2 tell,1.1) \JO; 2 -3 -3 ... #E2E2E2
' B = B
a 86 16 —» i1 ty6,1.6) 229 229 . #E2E2E2
\: 1, -3 1, -3 . #E2E2E2
1]-29 i1 29 . #E2E2E2

Fig. 2: Flow of data through the visualization construction pipeline for a Helske [18]-style interval+density plot using ggdist: :stat_slab. The
layer, part of ggplot2, applies initial aesthetic mappings, translating input data into columns understood by stat_slab, which then constructs a
larger data frame containing evaluations of distribution functions over an x grid for each distribution (the user can specify the grid size if needed;
the default size is 501). Then, layer applies a second set of aesthetic mappings, and geom_s1lab uses the final data frame to construct the plot.

well-tested (with near-100% test coverage), available on Github, and
archived on Zenodo. The less glib response is: this section of the paper.

Space being artificially scarce,>! T’ll outline the data processing
pipeline (Fig. 2) for just the slab statistic/geometry; the others follow
similar principles. The basic implementation of slabs relies on two enti-
ties: stat_slab and geom_slab. Both of these objects are contained
inside a ggplot2 layer, which amongst other things is responsible for
applying aesthetic mappings and scale functions. For more details on
how stats, geoms, and layers work in ggplot2, see Wickham [48].

To render a slab layer, first, the layer applies an initial set of
aesthetic mappings (Fig. 2A), defining (at least) positional variables
like x/y and distribution mappings like xp;st/ypist- Then, stat_slab
(Fig. 2B) evaluates the distributional functions (the density and CDF)
and the intervals for each distribution in the xpist (or ypist) aesthetic.
It determines reasonable limits within which to draw each distribution
(the exact limits if finite, and the 0.1% or 99.9% quantile by default if
infinite) and creates a grid of x (or y) values to evaluate the functions at.
Several special cases must be handled, including constant distributions
(rendered as a point mass) and discrete distributions (as a histogram;
see the end of Sec. 4). It then creates a data frame containing values of
x, f(x) (in a column named pdf),3? F(x) (cdf), and y (.width—the
mass of the smallest interval containing x). These new columns are
called computed variables in ggplot2.

The layer then applies a second set of aesthetic mappings (Fig. 2C):
those which depend on computed variables (as indicated by wrapping
them in after_stat() or by using the probability expression mini-
DSL; see Footnote 17). Then, geom_slab (Fig. 2D) renders each slab
using one of two algorithms, depending on its £i11_type parameter:
segments or gradient. Prior to R 4.1, the R graphics engine did
not have proper gradient support, so the only available algorithm was
segments (depicted in Fig. 2D), which sub-divides slabs into blocks
of consecutive x (or y) values with the same appearance, interpolating
X, y, and thickness values at cutpoints between blocks. This algorithm
remains well-suited for fills with sharp cuts, such as ROPEs or small
numbers of intervals. Alternatively, as of R 4.1, with proper gradient
support in some R graphics output formats (e.g. SVG and PDF) [37],
ggdist can output high-quality color gradients. The gradient algo-
rithm does this by rendering each slab as a polygon with a linear gra-
dient fill, using the x (or y) positions as control points on the gradient.
This algorithm is best-suited to color gradient density plots.

In support of the above pipeline, ggdist includes extensive utilities
for manipulating distributions (some of which are exposed in its API),
including functions for calculating various interval types, for detecting
discrete and constant distributions, and for determining distribution
limits. As the basic structure of the pipeline in ggplot2 should be
similar to other grammar of graphics systems, my hope is that such
systems could easily adopt a formalism like the one I've described,

31Perhaps one day we’ll throw off the shackles of the IEEE.
32This is also where corrections to the density must be made, depending on
the x (or y) scale function; see Sec. 6.3.

allowing them to support a variety of uncertainty visualizations through
a distributional approach.

6 REFLECTIONS AND LESSONS LEARNED

6.1 Distributional notation makes uncertainty
visualization much less annoying

The core use of distributional visualization to enable a variety of uncer-
tainty visualization types was inspired by my work with Xiaoying Pu
developing a Probabilistic Grammar of Graphics (PGOG) [40], which
tackled the problem of specifying area and unit visualizations of condi-
tional probability distributions by integrating probability notation into
the grammar of graphics. PGOG focused mainly on product plots [52],
icon arrays [3], and dotplots [53], while ggdist expands the expres-
siveness of a distributional visualization syntax to cover visualization
types that are not just functions of density and mass functions, but also
functions of CDFs and intervals.??

A key insight from working on both PGOG and ggdist is that bringing
notation for probability distributions into the grammar of graphics is a
powerful, expressive way to create visualizations of distributions and
uncertainty. Iterating on that syntax through user feedback (Sec. 4) has
lead to, I think, an approachable but flexible abstraction for uncertainty
visualization. A crucial insight—that frequentist uncertainty visual-
ization can be brought into that same framework under the remit of
confidence distributions [55]—frees us from multiple tyrannies: (1)
endless battles about whether one should be a frequentist or Bayesian
when you just want to get on with visualizing your uncertainty; (2)
memorizing silly little formulas for this or that test statistic; (3) im-
plementing different, mutually incompatible, and wholly brittle code
paths for visualizing uncertainty under different statistical paradigms.
A better world is possible!

6.2 Balancing abstraction and learnability

A continual source of tension in the design of ggdist has been the
balance between abstraction and learnability. At its base, ggdist actually
only has three geometries, all of which are composite meta-geometries:
(1) a slabinterval geometry, consisting of a slab, point, and interval,
(2) a lineribbon geometry, consisting of a line and ribbon; and (3) a
dotsinterval geometry, consisting of dots, a point, and an interval. All
other geometries in ggdist are shortcut geometries, constructed using
some combination of default parameters and/or aesthetic mappings
applied to one of those three mera-geometries.

In principle, ggdist could have only those three geometries; in prac-
tice, this would not be as usable. First, certain combinations of options

330n the other hand, ggdist still does not implement the conditional probabil-
ity syntax we had in PGOG—though the mini-DSL for probability expressions
was inspired by it—and it does not support product plots or stacked densities.
In a way, ggdist has to be more conservative at integrating crazier ideas from
research since it has actual users; also, while the conditional syntax in PGOG
is elegant for specifying a general class of probabilistic visualizations, its use
cases for uncertainty specifically are a little less clear to me. So we’ll see.

https://github.com/mjskay/ggdist
https://doi.org/10.5281/zenodo.3879620

are often used together to create useful geometries; shortcuts for these
save time. Second, many users will not delve into the depths of ggdist’s
options to learn how to create each combination they need, so short-
cuts aid learnability and discoverability. ggdist’s shortcut geometries
include ones for intervals, eye plots (mirrored slabs with a pointinter-
val), complementary CDF plots, and gradient plots (See Fig. 1A). I
have found users appreciate these shortcuts, and often ask for more: a
raincloud plot shortcut (Fig. 1E) is a common request, for example.>*

I have found it productive to hold off on implementing every re-
quested shortcut. I usually wait until I can figure out how solving a
particular problem (e.g., creating Helske-esque violin-interval plots)
can be done within the distributional framework in a way that ex-
pands the expressiveness of ggdist (e.g., allowing interval masses to
be mapped onto slab aesthetics). Meanwhile, extensive documentation
and examples tempers the need for quite so many explicit shortcuts; an
easy-to-adapt example in the documentation acts as a sort of shortcut
itself. ggdist has extensive long-form vignettes that showcase myriad
plot types with simple examples. This tension between abstraction
and learnability is common to grammar of graphics toolkits: if the
“purest” form of the grammar of graphics has no chart types at all (per
Wilkinson [54]), but designers often think in terms of chart types [41],
how do we best meet them in the middle?

6.3 Uncertainty visualization is tightly coupled
with grammar of graphics scales

As an earlier footnote alluded,'?> we must be very careful when vi-
sualizing density functions. A naive implementation of stat_slab
might simply pass x values through the density function of the distri-
bution mapped to xp;st. However, if a non-linear scale transformation
is applied, this will result in incorrect densities. This is because, for a
random variable Y = g(X), the density function fy is:

HrO)=rxle ' 0]l

In other words, if we have a random variable X that we transform via
the function g to get Y, we must adjust its density values by the factor

|g’1/(y) |, the absolute value of the derivative of the inverse of g. For ex-
ample, if X is drawn from a log-Normal(0, 1) distribution, we could plot
this distribution in base ggplot2 by using ggplot2::stat_function
combined with R’s built-in log-Normal density function, dlnorm:

median
ggplot() +
stat_function(
fun = \(x) dlnorm(x, 0, 1)
]
01 2 3 4 5 6 7 8 9 10

If we plot this on a log scale, i.e. plot Y = log(X), we should hope to
see a Gaussian density with a median of 10° = 1 (since medians are
preserved under transformation). However, because ggplot2 has no
way to know this function is a density (nor if it did, does it know the
derivative of the scale function), the resulting density will be incorrect:

median should

ggplot() + dian sh
stat_function(be here???
fun = \(x) dlnorm(x, 0, 1)
) +
scale_x_logl0()
0.01 0.1 1 10 100

The line at 1 does not divide the area into two regions with equal mass,
as it would if it were the median. I have no doubt this has led to
errors amongst ggplot2 users.>> Fortunately, ggdist does know how to

34 A request T am unlikely to fulfill, as the complexity of specifying options
and aesthetics for such a bloated composite geometry—with point, interval, slab,
and dots sub-geometries!—means the shortcut is unlikely to be much easier to
use than just specifying a slabinterval alongside a dots geometry.

35For example, ggplot2 issue #4783 is written by a user asking why a theoreti-
cal density and samples from a distribution do not line up under transformation—
a less attentive user may never have noticed.

correctly transform densities. It uses a combination of symbolic and (as
a fallback) numerical methods to calculate derivatives of ggplot2 scale
transformations to adjust densities.>® As a result, we can visualize a
log-transformed log-Normal density and get the correct result:
median is here :)
ggplot() +
aes(xdist = dist_lognormal(0,1))
stat_slab() +
scale_x_logl0()
0.01 0.1 1 10 100

This emphasizes the need for uncertainty visualization systems to be
scale-aware: it is not possible to comprehensively implement uncer-
tainty visualization purely as a data pre-processing step.>’ This is one
example of what Xiaoying Pu and I termed a tight coupling in a study
of ggplot2 users [41]: data pre-processing (calculating the density) is
tightly coupled with the visualization specification (the scale transfor-
mation), and these must be kept in sync. Moving the calculation of
densities into the visualization specification itself is one way to ensure
this, eliminating a whole class of potential errors.

6.4 Where to go from here

I would hardly deign to pretend ggdist has solved all of uncertainty
visualization. In truth, it’s stuck to a well-defined corner of it:
largely univariate uncertainty visualization (although lineribbon sup-
ports some multivariate chart types: besides being able to visualize
many conditional distributions at once as ribbons, when used with the
curve_interval function lineribbons can visualize joint uncertainty
bands in the style of functional boxplots [26, 35,46]).38 Obvious ex-
tensions include two-dimensional densities, for which support exists
in ggplot2, but that support is not built around the same framework
of distributional functions and objects that ggdist is. Thus, ripe for
integration and extension.

Thinking further afield, there are other types of uncertainty visualiza-
tions not well-supported in ggdist, or which ggdist’s abstractions are not
relevant to. One obvious example is spaghetti plots [12,33]—though,
if you already have a joint sample from a distribution of paths in a
long-format data frame, ggplot2 makes it trivial to construct these plots.
Similarly, animated hypothetical outcome plots (HOPs) [22,27] are
straightforward to construct using ggplot2 with the gganimate package.
A more interesting question might be: if one designed a new uncertainty
visualization grammar from the ground up to support all of the visual-
izations in ggdist and PGOG, plus static sample-based visualizations
like spaghetti plots and animated sample-based HOPs, what would it
look like? Can a coherent framework bring all of these ideas together,
and suggest new ideas too? I am hopeful it can.

7 CONCLUSION

ggdist has been a six-year journey in implementing a distributional,
petty-statistics-camp-agnostic approach to uncertainty visualization in
the grammar of graphics. While there remain many interesting future
challenges to integrating further classes of uncertainty visualizations
under one umbrella, the flexibility and expressiveness of ggdist thus far
demonstrates the power of its underlying abstractions. Taking a step
back, it also shows the value of continuing to push more aspects of vi-
sualization specification into the formal description of the visualization
itself, both by enabling a wider range of visualization types to be easily
created and by reducing the potential for certain classes of errors.>

36Specifically, ggdist applies R’s built-in D [42] function to get the symbolic
derivative of the expression defining the scale function and, if that fails, uses
numDeriv:: jacobian [15]. In the future, if my pull request #341 to the scales
package is accepted, derivatives of scale functions will be offloaded into the
guts of ggplot2 and simultaneously be made more reliable.

31t also suggests that grammar of graphics systems should implement deriva-
tives as part of their scale transformation functions.

38See examples at the end of the lineribbon vignette.

3Potential we also saw in reducing errors with incorrect normalization of con-
ditional probability distributions in PGOG [40] or in keeping data transformation
and visualization specification code in sync more generally in ggplot2 [41].

https://mjskay.github.io/ggdist/articles/
https://github.com/tidyverse/ggplot2/issues/4783
https://github.com/r-lib/scales/pull/341
https://mjskay.github.io/ggdist/articles/lineribbon.html#curve-boxplots-aka-lineribbons-with-joint-intervals-or-curvewise-intervals

SUPPLEMENTAL MATERIALS

Supplemental materials, released under a CC-BY 4.0 license, are avail-
able on GitHub (github.com/mjskay/ggdist-paper) and archived on Zen-
odo (doi:10.5281/zenodo.7770984). Materials include: (1) an RMark-
down file that generates the figures in the paper; (2) generated figure
images; (3) a tagged archive of ggdist Github issues; (4) an RMark-
down file calculating some descriptive statistics of ggdist Github isses;
and (5) the full source of this paper.

The full source of ggdist, released under a GPL 3.0 license, is
available on GitHub (github.com/mjskay/ggdist) and archived on Zen-
odo (doi:10.5281/zenodo.3879620). ggdist may also be installed from
CRAN [21] via the R command install.packages("ggdist").

FIGURE CREDITS

All figures were created by Matthew Kay and are released under a
CC-BY 4.0 license.

ACKNOWLEDGMENTS

I would like to thank various folks who have used, given feedback on,
or contributed to ggdist over the years (this list is neither exhaustive
nor in any particular order): Xiaoying Pu, Alex Kale, Abhraneel Sarma,
Fumeng Yang, Hyeok Kim, Matti Vuorre, Dominique Makowski, TJ
Mahr, Tim Mastny, Aki Vehtari, Brenton M. Wiernik, Arthur Albu-
querque, A. Solomon Kurz, Gabe Bassett, Mitchell O’Hara-Wild, Steve
Haroz, Jarrett Byrnes, Dylan H. Morris, Dmytro Perepolkin, Cédric
Scherer, Isabella Ghement, Teun van den Brand, and Jonas Kristoffer
Lindelgv. This work was supported in part by NSF award 2126598.

REFERENCES

[1] M. Allen, D. Poggiali, K. Whitaker, T. R. Marshall, and R. A. Kievit. Rain-
cloud plots: a multi-platform tool for robust data visualization. Wellcome
open research, 4(63), 2019. doi: 10.12688/wellcomeopenres.15191.1 1

[2] V. Amrhein and S. Greenland. Discuss practical importance of results
based on interval estimates and p-value functions, not only on point esti-
mates and null p-values. Journal of Information Technology, 37(3):316—
320, 2022. doi: 10.1177/02683962221105904 5

[3] J. S. Ancker, Y. Senathirajah, R. Kukafka, and J. B. Starren. Design
features of graphs in health risk communication: a systematic review.
Journal of the American Medical Informatics Association, 13(6):608-618,
2006. doi: 10.1197/jamia.M2115 8

[4] N.J.Barrowman and R. A. Myers. Raindrop plots: a new way to display
collections of likelihoods and distributions. The American Statistician,
57(4):268-274, 2003. doi: 10.1198/0003130032369 1, 6

[5] M. Bostock, V. Ogievetsky, and J. Heer. D? data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301-2309,
2011. doi: 10.1109/TVCG.2011.185 7

[6] A.W.Bowman. Graphics for uncertainty. Journal of the Royal Statistical
Society Series A: Statistics in Society, 182(2):403-418, 01 2019. doi: 10.
1111/rssa.12379 1, 4

[7]1 P-C. Biirkner, J. Gabry, M. Kay, and A. Vehtari. posterior: Tools for work-
ing with posterior distributions. R package version 1.4.1. https://CRAN.R-
project.org/package=posterior, 2022. 4

[8] P.-C. Biirkner. brms: An R package for Bayesian multilevel models
using Stan. Journal of Statistical Software, 80(1):1:1-1:28, 2017. doi: 10.
18637/jss.v080.101 4

[9] A. Cairo and S. Klein. Our font is made of people. OpenNews — Source.

https://source.opennews.org/articles/our-font-made-people/, Feb 2018. 7

E. F. Codd. The Relational Model for Database Management: Version 2.

Addison-Wesley Longman Publishing Co., Inc., USA, 1990. 3

M. Correll and M. Gleicher. Error bars considered harmful: Exploring al-

ternate encodings for mean and error. IEEE Transactions on Visualization

and Computer Graphics, 20(12):2142-2151, 2014. doi: 10.1109/TVCG.

2014.2346298 1,5

J. Cox, D. House, and M. Lindell. Visualizing uncertainty in pre-

dicted hurricane tracks. International Journal for Uncertainty Quantifica-

tion, 3(2):143-156, 2013. doi: 10.1615/Int.J.UncertaintyQuantification.

2012003966 6, 9

G. Csérdi. cranlogs: Download logs from the RStudio CRAN mirror.

R package version 2.1.1. https://CRAN.R-project.org/package=cranlogs,

2019. 7

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

M. Fernandes, L. Walls, S. Munson, J. Hullman, and M. Kay. Uncertainty
displays using quantile dotplots or CDFs improve transit decision-making.
In Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems, CHI ’18, p. 144:1-144:12. Association for Computing
Machinery, New York, NY, USA, 2018. doi: 10.1145/3173574.3173718
1,6

P. Gilbert and R. Varadhan. numderiv: Accurate numeri-
cal derivatives. R package version 2016.8-1.1. https://CRAN.R-
project.org/package=numDeriv, 2019. 9

R. N. Haber and L. Wilkinson. Perceptual components of computer
displays. IEEE Computer Graphics and Applications, 2(03):23-35, March
1982. doi: 10.1109/MCG.1982.1674217 6

S. Haroz, R. Kosara, and S. L. Franconeri. ISOTYPE visualization: Work-
ing memory, performance, and engagement with pictographs. In Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, CHI *15, p. 1191-1200. Association for Computing Machinery,
New York, NY, USA, 2015. doi: 10.1145/2702123.2702275 7

J. Helske, S. Helske, M. Cooper, A. Ynnerman, and L. Besancon. Can
visualization alleviate dichotomous thinking? Effects of visual representa-
tions on the cliff effect. IEEE Transactions on Visualization and Computer
Graphics, 27(8):3397-3409, 2021. doi: 10.1109/TVCG.2021.3073466 1,
58

H. V. Henderson and P. F. Velleman. Building multiple regression models
interactively. Biometrics, 37(2):391-411, 1981. doi: 10.2307/2530428 2
L. Henry and H. Wickham. rlang: Functions for base types and core
R and Tidyverse features. R package version 1.1.1. https://CRAN.R-
project.org/package=rlang, 2023. 5

K. Hornik. The comprehensive R archive network. Wiley Interdisciplinary
Reviews: Computational Statistics, 4(4):394-398, 2012. doi: 10.1002/
wics. 1212 2, 10

J. Hullman, P. Resnick, and E. Adar. Hypothetical outcome plots outper-
form error bars and violin plots for inferences about reliability of variable
ordering. PLOS ONE, 10(11):e0142444, 2015. doi: 10.1371/journal.pone.
0142444 6,9

S. Huron, R. Vuillemot, and J.-D. Fekete. Visual sedimentation. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2446-2455,
2013. doi: 10.1109/TVCG.2013.227 6

R.J. Hyndman. Computing and graphing highest density regions. The
American Statistician, 50(2):120-126, 1996. doi: 10.1080/00031305.1996
10474359 3

C. H. Jackson. Displaying uncertainty with shading. The American
Statistician, 62(4):340-347, 2008. doi: 10.1198/000313008X370843 1, 4,
5

J. L. Juul, K. Grasbgll, L. E. Christiansen, and S. Lehmann. Fixed-time
descriptive statistics underestimate extremes of epidemic curve ensembles.
Nature Physics, 17(1):5-8, 2021. doi: 10.1038/s41567-020-01121-y 9
A. Kale, F. Nguyen, M. Kay, and J. Hullman. Hypothetical outcome
plots help untrained observers judge trends in ambiguous data. [EEE
Transactions on Visualization and Computer Graphics, 25(1):892-902,
2019. doi: 10.1109/TVCG.2018.2864909 6, 9

M. Kay. Unifying names of output columns in bayesplot / tidybayes /
etc. The Stan Forums. https://discourse.mc-stan.org/t/unitfying-names-of-
output-columns-in-bayesplot-tidybayes-etc/4577, Jun 2018. 4

M. Kay. ggdist: Visualizations of distributions and uncertainty. R package
version 3.3.0. https://CRAN.R-project.org/package=ggdist, 2023. doi: 10.
5281/zenodo.3879620 1

M. Kay. tidybayes: Tidy data and geoms for Bayesian models. R package
version 3.0.4. https://CRAN.R-project.org/package=tidybayes, 2023. doi:
10.5281/zenodo.1308151 1

M. Kay, T. Kola, J. R. Hullman, and S. A. Munson. When (ish) is my bus?
user-centered visualizations of uncertainty in everyday, mobile predictive
systems. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, CHI "16, p. 5092-5103. Association for Computing
Machinery, New York, NY, USA, 2016. doi: 10.1145/2858036.2858558
1,6

J. K. Kruschke. Rejecting or accepting parameter values in bayesian
estimation. Advances in Methods and Practices in Psychological Science,
1(2):270-280, 2018. doi: 10.1177/2515245918771304 6

L. Liu, L. Padilla, S. H. Creem-Regehr, and D. H. House. Visualizing
uncertain tropical cyclone predictions using representative samples from
ensembles of forecast tracks. IEEE Transactions on Visualization and
Computer Graphics, 25(1):882-891, 2019. doi: 10.1109/TVCG.2018.
2865193 6,9

https://github.com/mjskay/ggdist-paper
https://doi.org/10.5281/zenodo.7770984
https://github.com/mjskay/ggdist
https://doi.org/10.5281/zenodo.3879620
https://doi.org/10.12688/wellcomeopenres.15191.1
https://doi.org/10.1177/02683962221105904
https://doi.org/10.1197/jamia.M2115
https://doi.org/10.1198/0003130032369
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1111/rssa.12379
https://doi.org/10.1111/rssa.12379
https://CRAN.R-project.org/package=posterior
https://CRAN.R-project.org/package=posterior
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.18637/jss.v080.i01
https://source.opennews.org/articles/our-font-made-people/
https://doi.org/10.1109/TVCG.2014.2346298
https://doi.org/10.1109/TVCG.2014.2346298
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2012003966
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2012003966
https://CRAN.R-project.org/package=cranlogs
https://doi.org/10.1145/3173574.3173718
https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/package=numDeriv
https://doi.org/10.1109/MCG.1982.1674217
https://doi.org/10.1145/2702123.2702275
https://doi.org/10.1109/TVCG.2021.3073466
https://doi.org/10.2307/2530428
https://CRAN.R-project.org/package=rlang
https://CRAN.R-project.org/package=rlang
https://doi.org/10.1002/wics.1212
https://doi.org/10.1002/wics.1212
https://doi.org/10.1371/journal.pone.0142444
https://doi.org/10.1371/journal.pone.0142444
https://doi.org/10.1109/TVCG.2013.227
https://doi.org/10.1080/00031305.1996.10474359
https://doi.org/10.1080/00031305.1996.10474359
https://doi.org/10.1198/000313008X370843
https://doi.org/10.1038/s41567-020-01121-y
https://doi.org/10.1109/TVCG.2018.2864909
https://discourse.mc-stan.org/t/unifying-names-of-output-columns-in-bayesplot-tidybayes-etc/4577
https://discourse.mc-stan.org/t/unifying-names-of-output-columns-in-bayesplot-tidybayes-etc/4577
https://CRAN.R-project.org/package=ggdist
https://doi.org/10.5281/zenodo.3879620
https://doi.org/10.5281/zenodo.3879620
https://CRAN.R-project.org/package=tidybayes
https://doi.org/10.5281/zenodo.1308151
https://doi.org/10.5281/zenodo.1308151
https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1109/TVCG.2018.2865193
https://doi.org/10.1109/TVCG.2018.2865193

[34] Y. Liu, A. Gelman, and T. Zheng. Simulation-efficient shortest probability
intervals. Statistics and Computing, 25:809-819, 2015. doi: 10.1007/
s11222-015-9563-8 3

[35] M. Mirzargar, R. T. Whitaker, and R. M. Kirby. Curve boxplot: Gen-
eralization of boxplot for ensembles of curves. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2654-2663, 2014. doi: 10.
1109/TVCG.2014.2346455 9

[36] T. Munzner. A nested model for visualization design and validation. /[EEE
Transactions on Visualization and Computer Graphics, 15(6):921-928,
2009. doi: 10.1109/TVCG.2009.111 7

[37] P. Murrell. Vectorised pattern fills in R graphics.
https://www.stat.auckland.ac.nz/ paul/Reports/GraphicsEngine/vecpat/vecpat.html,
May 2022. doi: 10.17608/k6.auckland.19945787 8

[38] G. E. Newman and B. J. Scholl. Bar graphs depicting averages are percep-
tually misinterpreted: The within-the-bar bias. Psychonomic Bulletin &
Review, 19:601-607, 2012. doi: 10.3758/s13423-012-0247-5 6

[39] M. O’Hara-Wild, M. Kay, and A. Hayes. distributional: Vectorised
probability distributions. R package version 0.3.1. https://CRAN.R-
project.org/package=distributional, 2022. 4

[40] X.Puand M. Kay. A probabilistic grammar of graphics. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems,
CHI ’20, p. 339:1-339:13. Association for Computing Machinery, New
York, NY, USA, 2020. doi: 10.1145/3313831.3376466 8, 9

[41] X. Pu and M. Kay. How data analysts use a visualization grammar in
practice. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, CHI *23, pp. 840:1-840:22. Association for Com-
puting Machinery, New York, NY, USA, 2023. doi: 10.1145/3544548.
3580837 9

[42] R Core Team. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. https://www.R-
project.org/, 2022. 9

[43] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical reflections on visualization author-
ing systems. IEEE Transactions on Visualization and Computer Graphics,
26(1):461-471, 2020. doi: 10.1109/TVCG.2019.2934281 2

[44] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341-350, 2017. doi: 10.1109/TVCG.2016.
2599030 1,7

[45] D.J. Spiegelhalter. Surgical audit: statistical lessons from Nightingale
and Codman. Journal of the Royal Statistical Society: Series A (Statistics
in Society), 162(1):45-58, 1999. doi: 10.1111/1467-985X.00120 1

[46] Y. Sun and M. G. Genton. Functional boxplots. Journal of Computational
and Graphical Statistics, 20(2):316-334, 2011. doi: 10.1198/jcgs.2011.
09224 9

[47] Tidyverse Team. Dot prefix. Tidyverse Design Guide.
https://design.tidyverse.org/dots-prefix.html, 2020. 4

[48] H. Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3-28, 2010. doi: 10.1198/jcgs.2009.07098
1,3,8

[49] H. Wickham. ggplot2. Wiley Interdisciplinary Reviews: Computational
Statistics, 3(2):180-185, 2011. doi: 10.1002/wics.147 1

[50] H. Wickham. Tidy data. Journal of Statistical Software,
59(10):10:1-10:23, 2014. doi: 10.18637/js5.v059.110 3

[51] H. Wickham. Advanced R, Second Edition. CRC Press, 2019. https://adv-
r.hadley.nz/. 5

[52] H. Wickham and H. Hofmann. Product plots. [EEE Transactions on
Visualization and Computer Graphics, 17(12):2223-2230, 2011. doi: 10.
1109/TVCG.2011.227 8

[53] L. Wilkinson. Dot plots. The American Statistician, 53(3):276-281, 1999.
doi: 10.1080/00031305.1999.10474474 6, 8

[54] L. Wilkinson. The Grammar of Graphics. Statistics and Computing.
Springer, New York, NY, USA, 2005. 1,9

[55] M.-g. Xie and K. Singh. Confidence distribution, the frequentist distribu-
tion estimator of a parameter: A review. International Statistical Review,
81(1):3-39, 2013. doi: 10.1111/insr.12000 3, 8

https://doi.org/10.1007/s11222-015-9563-8
https://doi.org/10.1007/s11222-015-9563-8
https://doi.org/10.1109/TVCG.2014.2346455
https://doi.org/10.1109/TVCG.2014.2346455
https://doi.org/10.1109/TVCG.2009.111
https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/vecpat/vecpat.html
https://doi.org/10.17608/k6.auckland.19945787
https://doi.org/10.3758/s13423-012-0247-5
https://CRAN.R-project.org/package=distributional
https://CRAN.R-project.org/package=distributional
https://doi.org/10.1145/3313831.3376466
https://doi.org/10.1145/3544548.3580837
https://doi.org/10.1145/3544548.3580837
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1111/1467-985X.00120
https://doi.org/10.1198/jcgs.2011.09224
https://doi.org/10.1198/jcgs.2011.09224
https://design.tidyverse.org/dots-prefix.html
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1002/wics.147
https://doi.org/10.18637/jss.v059.i10
https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://doi.org/10.1109/TVCG.2011.227
https://doi.org/10.1109/TVCG.2011.227
https://doi.org/10.1080/00031305.1999.10474474
https://doi.org/10.1111/insr.12000

	Introduction
	Setting the stage
	A simplified notation for the grammar of graphics
	Uncertainty visualization in the grammar of graphics, as she is spoke

	Uncertainty visualization asdistributional visualization
	Intervals
	Ribbons
	Slabs
	Dotplots
	Further examples

	Use in the wild
	How does all this work, anyway?
	Reflections and lessons learned
	Distributional notation makes uncertaintyvisualization much less annoying
	Balancing abstraction and learnability
	Uncertainty visualization is tightly coupledwith grammar of graphics scales
	Where to go from here

	Conclusion

