How Data Analysts Use a Visualization Grammar in Practice

Xiaoying Pu
University of California, Merced
Merced, CA, USA
xpu@umich.edu

Matthew Kay
Northwestern University
Evanston, IL, USA
mjskay@northwestern.edu

Executing plots 1. GoG iteration patterns 2. GoG x data wrangling
Section 5.2
_ El - IEI Incremental and Feedback loop
Analytical task, GoG 2 O-O experimental edits .
o 2 ° Section 5.5.1
customization components L2 Section 5.4.1
3 4.
2 Vis Data
@ Tight coupling ;
1
Evaluating analysis 8 Informal plot spec , wrangling
. x templates Section 5.5.2
Section 5.3 w

Silent errors

Section 5.5.1

Figure 1: Overview of our study results on how analysts used the Grammar of Graphics (GoG)-based ggplot2.

ABSTRACT

Visualization grammars, often based on the Grammar of Graphics
(GoG), have much potential for augmenting data analysis in a pro-
gramming environment. However, we do not know how analysts
conceptualize grammar abstractions, or how a visualization gram-
mar works with data analysis in practice. Therefore, we qualitatively
analyzed how experienced analysts (N = 6) from TidyTuesday, a
social data project, wrangled and visualized data using GoG-based
ggplot2 without given tasks in R Markdown. Though participants’
analysis and customization needs could mismatch with GoG compo-
nent design, their analysis processes aligned with the goal of GoG to
expedite visualization iteration. We also found a feedback loop and
tight coupling between visualization and data transformation code,
explaining both participants’ productivity and their errors. From
these results, we discuss how future visualization grammars can
become more practical for analysts and how visualization grammar
and analysis tools can better integrate within a programming (i.e.,
computational notebook) environment.

CCS CONCEPTS

« Human-centered computing — Empirical studies in visual-
ization; Visualization theory, concepts and paradigms.
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1 INTRODUCTION

Creating visualizations is a significant part of data analysts’ work.
Through writing code in computational notebooks, analysts can
interleave visualization with analyses to explore data, generate
hypotheses, and evaluate modeling results. Given the utility of
visualizations, analysts need a way to easily and reliably specify
visualizations in their data work. One solution is to use visualization
grammars, formalisms that create a wide range of visualizations by
combinations of grammar components. Building from the original
Grammar of Graphics (GoG) [70], visualization grammars have
proliferated in the past decade (in literature as reviewed by Mc-
Nutt [38] and in major scripting languages). Popular visualization
grammars include ggplot2 [66] in the R language and the Vega
ecosystem [55-57] in Javascript.

In theory, GoG-based visualization grammars can be beneficial.
The Grammar of Graphics is intended to be expressive, using a com-
bination of components to describe a wide range of visualizations
with simple and elegant specifications [70]. When evaluated with
usability heuristics (i.e. the cognitive dimensions of notations [6]),
GoG-based grammars have been found to promote iteration and
encourage the exploration of visualization designs [48, 57].

Despite the popularity and theoretical benefits of visualization
grammars, we know little about whether or how analysts take ad-
vantage of these grammars in practice [38, 49], especially given
the potential tension between GoG design intention and analysts’
needs. Understanding how analysts use visualization grammars can
be crucial to improving grammar designs. Since GoG is designed
for expressiveness, learning from analysts’ conceptualizations and
usage patterns can make grammars more aligned with analysts’
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tasks and analysis less error-prone. Contextualizing grammar use
within data analysis can lead to grammar design more integrated
into analysis workflows. Thus far in the literature, when assessing
anew grammar or system building on a grammar, researchers have
asked study participants to recreate visualizations [32, 44], but recre-
ation does not tell us how analysts explore and iterate on analysis
and visualizations. When study participants use a custom interface
(e.g. Voyager 2 [74]), their exploration can be constrained by what
the interface supports, compared to the full array of analyses they
would have access to in a programming environment. In this paper,
we directly study how real-world analysts use GoG-based ggplot2
to wrangle and plot data for analyses in computational notebooks.
We answer the following research questions:

RQ1. What are the analysts’ conceptualization and usage patterns
of the Grammar of Graphics (GoG) [65, 70]? We interpret
analysts’ use of ggplot2 in terms of the GoG abstractions
for generalizability.

RQ2. What is the interplay between a GoG-based visualization
grammar and programming-based data wrangling in an anal-
ysis environment? Our other focus is on data wrangling, a
significant part of the visualization process.

The #TidyTuesday R community provided us with an oppor-
tunity to answer the above questions. #TidyTuesday is a “weekly
social data project”, where participants explore, wrangle, and visu-
alize weekly datasets in the R language and post their process and
results on social media [41, 58]. We collected #TidyTuesday record-
ings from six (N = 6) participants with intermediate to advanced
ggplot2 experience, followed up with retrospective interviews, and
analyzed this rich data set with reflexive thematic analysis. Summa-
rized in Figure 1, we used an execution-evaluation loop [1] to explain
participants’ use of a visualization grammar in data analysis:

e When creating (executing) plots, participants’ analysis and
customization needs are sometimes mismatched with the
GoG design. For example, participants who wanted to apply
custom colors, positions, and angles faced difficulties because
GoG only facilitates the mapping of data, not customizations,
onto visual elements.

e Participants made hard-to-evaluate silent errors [37], where
their data wrangling and visualization specifications implied
different data semantics, producing plausible-looking plots
without explicit errors.

e When viewing participants’ analysis processes as an execution-
evaluation loop, participants iterated and explored visual-
ization alternatives visualizations as GoG was designed for,
and they also made informal plot templates that encapsu-
lated their visualization and wrangling code. Between GoG
visualization and data wrangling specifications, we identi-
fied a feedback loop enabled by the modular design of GoG:
plotting outputs inform subsequent data wrangling, and vice
versa. There is also a tight coupling, where GoG specification
and analysis need to be kept consistent to avoid errors.

Our findings can inform future visualization grammar designs:
we offer suggestions for making grammars more practical for ana-
lysts’ needs by supporting plot templates and customizations. We
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also discuss ways to help analysts evaluate and integrate visual-
ization and analysis specifications in the computational notebook
programming environment.

2 RELATED WORK
2.1 The Grammar of Graphics and ggplot2

The Grammar of Graphics (GoG) is an influential formalism for
specifying statistical graphics [70]. The grammar consists of six
types of components, including DATA and ELEMENT, and concise
grammar rules, such as one for relating data attributes to visual
attributes. GoG is powerful because it describes a wide range of
visualizations (i.e., being expressive [36]) through combinations of
components. This is in contrast to using visualization templates [72]
like in Google Charts and Charts.js,! where we might need to start
over to change from a scatterplot to a bar chart. GoG inspired many
visualization grammars in multiple languages. McNutt provides an
in-depth, literature-oriented survey and analysis of 57 visualization
grammars (broadly defined as JSON-style DSLs) [38]. In practice,
GoG-inspired grammars include ggplot2 [66] in R, Vega-Lite [55]
in Javascript, Seaborn,? Altair (Vega-Lite frontend) [62], and plot-
nine? in Python, and Gadfly.jl, Algebra of Graphics in Julia.*

We studied how analysts used visualization grammars through
ggplot2 partly because its syntax directly corresponds to the un-
derlying grammar components. ggplot2 implements the Layered
Grammar of Graphics, a re-parametrization of GoG proposed by
Wickham [65]. We introduce the syntax of ggplot2 with a snippet
from participant 3 (P3) in our study, see Figure 2. Each ggplot2
visualization consists of a default layer (ggplot(), line 3). The an-
alyst can add (+) layers by instantiating geometries (geom_point,
line 5) or statistical transformations (e.g., density estimate). Geome-
tries are also known as marks in Vega-Lite [55]. Aesthetics (a.k.a.
encoding channels) are visual properties of the geometries that can
vary with data variables, such as x-axis position and color. aes()
(line 4) establish the aesthetic mapping (a.k.a. encoding) from data
variables to aesthetics; here a variable about pumpkin size (ott,
“over-the-top”) is mapped onto the x-axis position aesthetic of the
point geometry. Note that alpha and size in geom_point() are
not part of an aesthetic mapping but hard-coded arguments not in
the dataset pumpkins. We discuss how our findings may generalize
to other GoG-based grammars in Section 6.4.

2.2 Evaluating the benefits of visualization
grammars

Visualization grammars are associated with many benefits. Claims
about being expressive [36] can be demonstrated by enumerating
the types of visualizations a grammar can specify, as seen in Vega-
Lite [55], ATOM [45], Canis [22], and Nebula [15]. Several stud-
ies have used the Cognitive Dimensions of Notations [6], a set of
heuristics, to evaluate the usability of a grammar (e.g. Vega [57],
Nebula [15], the Probabilistic Grammar of Graphics [48]). These

!Google charts: https://developers.google.com/chart; Charts.js: https://www.chartjs.
org

2Seaborn with the “next-generation interface”, see https://seaborn.pydata.org/nextgen/
3https://plotnine.readthedocs.io/en/stable/
4Gadflyjl: http:/gadflyjlorg/. Algebra
AlgebraOfGraphics.jl/stable/

of Graphics: http://juliaplots.org/
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ggplot2 syntax

columns as variables data wrangling translation
1 bumpkins %>% \ ggplot2 Vega-Lite equiv.
2 filter(ott < 1e3, ott > 1@) %>% “pipes into” aes() Aesthetic mapping Encoding
3 ggplot( : ‘.\ Lot X,y Aesthetic Encoding channel
= — : t
4 aes(x = ott, y = weight_lbs)) + g?apm;ar geom *() Geometry Mark
5

geom_point(alpha 0.1, size = 1.1)

.. components

stat_*() Statistic Transform

Figure 2: Left: example R code chunk from P3, showing a dataset pumpkins, data wrangling using the filter() function from
the dplyr R package [69], and ggplot2 specification. The results from data wrangling is “piped into” ggplot2 by the %>% operator.
Right: equivalences between the ggplot2 and Vega-Lite [55] syntax for reader’s reference.

dimensions imply that if a grammar evaluates favorably, it can pro-
mote the iteration of visualization specification and the exploration
of the visualization design space, as argued in Pu & Kay [48].

Beyond heuristics, user studies have the potential to further
evaluate expressiveness and how grammars promote exploration
and iteration. However, existing literature has not studied these
benefits directly due to task design and participant expertise. For
study task designs, asking participants to recreate pre-specified
visualizations with Gemini [32] or Vega-Lite [44] does not capture
how analysts would have explored and iterated on visualization
designs. Completing given visual analysis tasks in Voyager [74]
or answering data questions in ggplot2 [43] does not necessarily
reflect how analysts would have explored data and visualization
designs on their own. Another barrier to capturing iteration and
exploration in a study can be the participants’ expertise: evaluating
a grammar with new users can be premature [25] because they
need tutorials and may not take full advantage of the benefits of a
grammar. In our study, we improve the evaluation of visualization
grammars by studying visualization and analysis processes done
without prescribed tasks, and by recruiting analysts experienced
with ggplot? as participants.

2.3 Significance of the analysis context for
understanding visualization specification

In descriptive models, data wrangling and analysis have been con-
sidered an integral part of the visualization process (not specific
to using visualization grammars). For example, the visualization
reference model by Card et al. includes a step for “raw data trans-
forms” [12, Chapter 1]. As an extension to the reference model,
Chi’s visualization state model for operators allows multiple analy-
sis pipelines and adopts a state-transition (data-operator) abstrac-
tion [17]. Munzner’s nested model focuses on the abstraction from
domain problem to generic data operations [42]. Through a sense-
making lens, Grolemund and Wickham further considered visual-
ization a form of data transformation [26]. These models provide
a theoretical motivation for including data analysis as part of the
visualization specification process.

In data science practice, visualizations are specified in the con-
text of data analysis. As an analysis medium, computational note-
books are documents where analysts can interleave analysis code,
documentation, and visualizations, often used for exploratory data
analysis (EDA) [61]. To illustrate, Figure 2 shows a code chunk from

P3’s R Markdown notebook [78] that contains both data wrangling
(filter) and visualization specification. Other notebook environ-
ments include Jupyter notebook [47] and Observable.? As visualiza-
tion grammars in common scripting languages (e.g. Python, R, Julia)
get more adoption, we need a better understanding of how visual-
ization specifications (with grammars) integrate with data analysis
in notebooks. Wood proposed litvis, a notebook environment for
integrating writing visualization code with documenting design
expositions [75], though the focus is not on analysis. As Battle et al.
pointed out, there is currently little research on how visualization
grammars incorporate into analysts’ implementation workflows [3].
Chattopadhyay et al. identified visualization-related pain points in
notebook use, including customizing the plots and interfacing be-
tween data exploration and visualization tools [13]; however, they
did not analyze specific visualization grammars or libraries. From
a sample of Stack Overflow posts, Battle et al. tallied the broader
toolsets D3 (a visualization “kernel”) [7] users employ [3], such as
other JavaScript libraries, R/python, and Excel, but this dataset con-
tained little description about analysts’ workflow process. In this
study, we pinpointed how analysts use a visualization grammar (i.e.
ggplot?) during data analysis in R Markdown. We incorporated
the analysis workflow information from participant recordings and
formulated answers about how ggplot2, or GoG in general, works
together with data analysis.

3 STUDY

The #TidyTuesday community provides an opportunity to study
how analysts wrangle and visualize data in a practical setting. We
collected existing and new recordings of participants completing
#TidyTuesday projects at their own pace, and we followed up
with retrospective interviews. Our goal is to answer RQ1 about
the conceptualization and use of GoG and RQ2 about the interplay
between visualization grammar and data analysis. Before recruiting
started, the IRB at the University of Michigan determined the study
to be exempt (HUMO00201007).

3.1 Reasons to recruit from #TidyTuesday

#TidyTuesday is a community-based, “social data project in R”
running since 2018 [41]. It provides a new dataset each week, and

Shttps://observablehq.com
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participants wrangle and visualize the data following their inter-
ests. As the guidelines® of #TidyTuesday encourage, participants
often share their visualizations, source code, even videos and ani-
mations of their creation process on social media. #TidyTuesday is
popular—the hashtag has been tweeted more than 22,000 times as of
November, 2022 [41]. We chose to recruit from the #TidyTuesday
community for the following reasons:

e Shared goal and convention: according to Shrestha et al,
#TidyTuesday is a connected community with the shared
goal of improving their analysis and visualization skills [58].
From our observation, #TidyTuesday participants tend to
wrangle and visualize data for their weekly datasets as self-
contained projects, which helped us avoid giving task in-
structions. Participants also mostly use ggplot2, a grammar
we aimed to study.

o Culture of sharing: #TidyTuesday participants post their
visualizations, even recordings of their process, on social
media. We collected these recordings as part of our study.

e Variety of expertise: analysts from novices to experts par-
ticipate in #TidyTuesday albeit in different roles [58]. Com-
pared to recruiting from college classrooms, #TidyTuesday
participants who are data science professionals might bring
their practical experiences and expertise. We recruited peo-
ple who successfully completed #TidyTuesday projects—
they self-identified as intermediate to expert-level ggplot2
users and had relevant industry experience or academic train-
ing, see Table 1.

3.2 Participants

We recruited in two phases between September and November 2021.
In Phase 1, we contacted Twitter, Youtube, and Twitch users who
posted recordings of their data analysis with the #TidyTuesday
hashtag. Three out of 13 potential participants joined the study; the
inclusion criteria are:

(1) The recording is a self-contained, unedited data analysis
session with iterations on > 3 ggplot2 visualizations.

(2) R source code is available or shown in the recording.

(3) For better recall during the interview, the recording is no
more than a month old.”

(4) The participant does not reside in the EU or UK for GDPR
compliance.

After exhausting the first participant pool, we recruited with
a survey (Phase 2). All Phase 2 participants created new record-
ings for our study. We distributed the survey in a public Slack
channel and on Twitter under #TidyTuesday and #RStat hashtags.
Recruiting continued until we gathered enough data to answer our
research questions and observe similar patterns in participants’
recordings [10]. Three participated among 24 survey respondents.

In total, six (N = 6) participants completed the study, their demo-
graphics summarized in Table 1. Phase 1 and Phase 2 participants
may differ in their proficiency and motivation, but both groups
met the inclusion criteria and contributed to the richness of the

®https://github.com/rfordatascience/tidytuesday#readme

"Russell and Chi provide an example review delay of 1-6 weeks [53]. With a maximum
six-week delay in mind, we looked for videos recorded at most four weeks ago and
factored in two weeks for scheduling the interview.

Pu and Kay

results. During interviews, participants self-reported their ggplot2
experience level (all intermediate to advanced). Phase 2 participants
received $25 for making recordings for this study, and everyone
received $25 for their respective interview.

3.3 Recording task

Phase 1 participants (P1, P2, P3) recorded and posted their analysis
process online without the knowledge of our study.” For Phase 2
participants (P4, P6, P7), we asked them to record a video as if
they were creating a new #TidyTuesday submission while thinking
out loud. We expected that the survey would reach people who
understood what a #TidyTuesday submission entails—wrangling
data and creating plots; all participants met our expectation and the
inclusion criteria. Applicable to all participants, we did not specify
which dataset to work on, what data questions to answer, or what
visualizations to create. Prior work has found that task questions
can affect participants’ process and visualization choices [24], so
by holding back specific instructions, we hoped to capture a wide
variety of data analysis and visualization processes.

3.4 Retrospective interview

The first author conducted a retrospective, semi-structured inter-
view with each participant via Zoom. We scheduled the interviews
within 3.3 weeks on average after each participant’s recording date.
The time delay was for us to analyze the recordings and write tar-
geted questions. According to Russell and Chi, 3.3 weeks is within
the acceptable range of review delay [53]. At the beginning of each
interview, we asked the participant to confirm their consent to be
recorded (video of screenshare and audio).

There are two parts to each interview: 1) general questions to
elicit experiences and opinions about ggplot2 and the Grammar
of Graphics, and 2) targeted questions that asked participants to
clarify and explain their decisions and analysis patterns. We en-
couraged participants to use their own words to describe analysis
and visualization concepts. For the second part, we followed the
retrospective cued recall protocol [53]. As we asked participants
questions specific to each GIF or video, we showed slides with the
visualizations and the corresponding R source code. The visuals
served as memory cues to reconstruct the context of the recording
quickly. Questions were ordered chronologically, in the order of
the recording. For validation, we asked two recall questions per
participant, for example, “Could you describe what you did next?”.
All participants answered correctly, if not immediately. Even if par-
ticipants had blurred memory, the interviews still revealed what
participants would have done in similar situations.

4 ANALYSIS

Combining the participant recordings and interviews, we used
reflexive thematic analysis [8, 9] to find RQ1 participants’ concep-
tualizations and use of the Grammar of Graphics; and RQ2 the
interplay between visualization grammar and data transformation

8P5 was interrupted during their recording and chose not to finish. We did not include
P5 in the analysis, but they still received $25.

Unlike other participants’ videos, P1’s recording was a GIF without think-aloud audio
or a history of code edits. We reconstructed P1’s code by using our ggplot2 knowledge
and asking clarifying questions during the interview.
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Education ggplot2 experience Industry Job title Format Phase
P1  Master Intermediate HigherEd/Gov Data scientist GIF 1
P2 PhD Expert Tech/Analytics Data scientist = (55m.) 1
P3 PhD Adv. intermediate Software Software engineer  ww (37 m.) 1
P4 Bachelor  Fairly experienced Financial services  Business analyst = (57 m.) 2
P6 (PhD) Experienced HigherEd (biostat) PhD student m (66 m.) 2
P7 (Bachelor) Intermediate HigherEd (HCI) Undergrad. student = (100 m.) 2

Table 1: Participant demographics and the formats of their recordings. Education level in parentheses is the level each participant
was working towards. ggplot2 experience was self-described during the interviews. s« : a video recording of x minutes.

1. TidyTuesday recording collection 2. Retrospective interviews (6) 3. Synthesis
Phase 1 Phase 2
. . Interview Interview Codes from
Search on Twitter, Recruitment survey questions transcript interviews
YouTube, Twitch on Twitter, Slack
13 existing recordings 24 survey responses Update Annotate
Codes from How analysts Interplay of GoG
recordings use GoG and wrangling

Recruitment; inclusion criteria

3 existing + 3 new recordings

®) g

Segmented
edit logs

Grammar of
Graphics (GoG)

Figure 3: The three steps of our study and thematic analysis. Data, codes, and themes are bolded.

in a data project. Figure 3 summarizes our analysis process in the
context of the study design.

4.1 Recording edit logs and segmentation

We derived codes and conceptualized themes from the #TidyTuesday
recordings (Figure 3.2). First, we reconstructed the recordings through
a log of code edits and other interactions, shown in Figure 5. The
types of code edit are: data wrangling (dplyr functions [69]) edits, vi-
sualization (ggplot2) edits, console output, errors and interactions
such as googling and reading the R documentation. For example, if a
participant runs their code twice by adding an aesthetic mapping in
their code and then changing its arguments, we count this process
as two visualization edits. We reconstructed P1’s analysis process
in R based on the GIF keyframes and P1’s final R script (which
included all data wrangling). During the interview, we confirmed
our reconstruction with P1. Since all participants did think-aloud
during video recordings, we also selectively transcribed quotes
when participants explained their edits.

We arranged each participant’s edit log into segments. Similar to
visualization construction cycles in Grammel et al. [24], we define
each segment to capture how a participant created and refined a
visualization or dataframe. A segment starts when a participant
started a new analysis objective [4], a new plot (ggplot() call), or
switched to a different dataframe or variable. The segment ends
when the participant finished iterating on the plot or dataframe.
Segmentation helps us structure our qualitative analysis, and it

captures how individual plots are created—including the data wran-
gling that precedes the plot and the iterations on the plot design.

4.2 Thematic analysis

We used reflexive thematic analysis [8] to analyze our data. The
first author derived the initial codes, either semantic or latent, from
the edit logs and think-aloud quotes from the recordings, as well as
the transcribed interviews. In Figure 4, for example, the first author
assigned a semantic code to describe the filter () data edit P3 made.
Latent codes are from when the first author interpreted participants’
common behavioral patterns, mistakes, or conceptualizations, such
as “confusion about how color mapping works: data vs. aesthetic
space”. We created 219 (1 = 36.50, sd = 20.34 per participant) initial
codes from the recordings and 422 (¢ = 70.33, sd = 19.69) from the
interviews. To incorporate different perspectives on interpreting
the data, the first author discussed code assignments with other
authors, which included reviewing latent codes in the context of
the raw data (i.e., participants’ R code and quotes).

Then, we combined codes from the recordings and interviews
to collaboratively generate inductive and deductive themes in an
affinity diagram. We intended the themes to capture “clusters of
meaning” with a coherent narrative, as advised by Braun et al. [10].
In particular, inductive themes were bottom-up, from common
meanings in the codes, such as “participants liked ggplot2 for
the Tidyverse”. Deductive themes were informed by theory: 1) the
components of the Grammar of Graphics, and 2) the hypothesis
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"This is very [Quote from recording think-aloud]
useful because ...

some bad data"

pumpkins %>%
ggplot(aes(ott, weight_lbs)) +
geom_point(alpha = 0.1, size = 1.1)

[Vis edit]

+aes(x, y)
+ geom_point(alpha,
size)

Pu and Kay

"Let's make it
more clear"

pumpkins %>%
filter(ott < 1e3, ott > 10) %>%
ggplot(aes(ott, weight_lbs)) +

geom_point(alpha = 0.1, size =
labs(x = "...", y = "...")

[Data edit] [Code]
. Vis output leads
+ filter() +labs(x, y) to data op
(filtering)

Figure 4: How we coded participant recordings on a virtual whiteboard, showing two consecutive screenshots from P3’s RStudio
IDE interface. Colored stickies notes contain think-aloud quotes, visualization or data edits, and a thematic analysis code.

that GoG helps iterative visualization designs. After two to three
passes, all authors contributed to adding, removing, and finalizing
the themes, which make up the titles in Section 5.

5 RESULTS

5.1 Overview of participant recordings

The six participants completed data projects with different foci.
P1 made a lollipop chart (Figure 8), “data art” in their own words.
P2, P3, and P6 recorded similar exploratory data analysis (EDA)
processes where they explored the relationships among several vari-
ables through wrangling and plotting. P2 and P3 additionally tuned
machine learning models. P4 and P7 each created a communicative
visualization that showed one aspect of the data they explored. As
an example of participants’ analysis process, Figure 5 shows the edit
log from P4 divided into segments (defined in Section 4.1). Other
edit logs are available in Supplemental Materials.

To roughly assess how expressive participants’ data and visual-
ization specifications were, we tallied the average number of code
edits across all participants with video recordings. We also contex-
tualized the tally by analyzing a GitHub corpus of all R code files
(R, Rmd, Qmd) containing the #TidyTuesday library import [41],
with N = 3649 files from 975 unique contributors. Shown in Fig-
ure 6, our participants used roughly the same set of data wrangling
functions as the broader code corpus. Our participants also used
a variety of geometry (14) and scale (9) functions, while the code
corpus contained even more unique geometries, themes, and sta-
tistical transformations as expected from the larger sample size.
The average edit per file was higher in participants’ edit logs; one
explanation is that the code corpus contained the final versions
of the code and did not capture addition, change, and deletion ed-
its. Judging by the tallies, our participants’ analysis code could be
typical of the #TidyTuesday code corpus.

5.2 Execution: conceptualization of GoG
components

Even though participants successfully created (executed) visualiza-
tions with ggplot2, their tasks and needs did not always directly
correspond to how Grammar of Graphics components are designed.

5.2.1 Dataspace vs. aesthetic space. When participants customized
their plots, they had difficulties specifying the data component in
the Layered Grammar of Graphics [65], either making mistakes or
finding customization tedious. Customizations included colors (P1),
relative sizes (P1, P4), and locations of visual elements (P7).

To interpret participants’ difficulties, we use the distinction of
data space and aesthetic space [66, Chapter 15]. The data space con-
tains input data with domain meanings, for example, “types of bee
colony stressors”. In contrast, the aesthetic space contains values
describing aesthetics, such as the color hex value #a62d3b. Partici-
pants specified customizations in the data and aesthetic spaces in
these ways:

e Hard-coding values in the data space (Figure 7.2). Partici-
pants hard-coded values to adjust the relative sizing of visual
elements (P1), position annotations (P7), and shrink the size
of dots to avoid overlaps (P4). With no support from the gram-
mar, participants needed to guess what data space values
could achieve their desired output. P1 expressed frustration
with this “back-and-forth” process.

o (Mis)-using aesthetic space values in the data space. P1 wished
to apply a custom color palette. When they first assigned
hex values including "#a62d3b" to the color aesthetic, the
color did not change because "#a62d3b" was treated as a
value in the data space,'® not a color in the aesthetic space,
see Figure 7.3.

e Specifying values in the aesthetic space via a custom scale
function. To fix the color palette problem above, P1 changed
the mapping to aes(color = year) and introduced the color

101 ggplot?2, categorical values in the data space all use the same default colors
palette [66, Chapter 11.3]
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P4's full edit log in segments. Data on chocolate ratings by country
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Figure 5: P4’s full edit log from their #TidyTuesday video recording. One square is one edit or interaction. Squares are arranged

from left to right in chronological order, grouped by segments.

Participant edit log
Edit type Edit
Data group_by
wrangling | mutate
(dplyr) filter
select
count
Top 6 summarize
Edit type Edit
vis geom
(ggplot2)  aes
scale
facet
theme
stat

Mean #/file

6.8

5.6

4.2

2.8

2.2

2.0

Mean #[file  # unique
8.0 14

4.6 -

2.2 9

1.8 3

1.8 4

1.6 2

#TidyTuesday corpus (N = 3649)
dplyr fn Mean #/file
mutate 3.30
filter 3.30
group_by 1.57
select 114
count 0.96
arrange 0.71
ggplot fn | Mean #/file # unique
geom 4.49 105
aes 4.44 -
theme 1.44 104
facet 0.65 13
scale 0.04 9
stat 0.04 23

Figure 6: Top data and visualization edit types by average counts per participant with video recordings. Variants of a grammar
component, such as geom_bar and geom_col, are merged into the base function, in this case geom. We also provide average counts
from a #TidyTuesday code corpus (N = 3649), which is static and does not capture code edits such as changing parameters.

Data Space

@ stressor

@

scale func.

Aesthetic Space

_—— default colors
|

=0 T Ty (position)

L

®

®

Data Space

Aesthetic Space

default scale

"#262d3b" _———__ default colors

year

— custom colors
scale("#M") EEE

Figure 7: Data space and aesthetic space. 1: mapping a data variable stressor in data space to the color aesthetic; all participants
specified such mapping without incident. 2: hard-coding values in the data space to place a text annotation (P7). 3: misusing
aesthetic space value (hex code) in the data space (P1). 4: P1’s fix to use a custom palette—the year variable is mapped onto the
color aesthetic with a custom scale function, the range of which is the custom color palette.
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Figure 8: P1’s final visualization as a lollipop chart.

values (in the aesthetic space) through a scale() function!!
(Figure 7.4). The scale function notes the custom mapping
from color hex values to year, and transforms the year data
into the corresponding hex values when the plot builds.

Compared to customizing plots, all participants specified within
the data space by data column/variable names without incident.
For example, P6 used x = stressor to map the stressor column
name onto the x-axis as part of a bar chart, see Figure 7.1. We hy-
pothesize that customization was challenging because it fell outside
the GoG norm of mapping names in data space onto aesthetics.
For customizations, participants’ first intuition (i.e. using aesthetic
space color value in an aesthetic mapping) might not comply with
GoG rules. Since GoG is not designed for generating data to achieve
custom plot appearance, participants needed to do extra work (i.e.
using a custom scale function and “back-and-forth” hard-coding)
to introduce customization data into the rest of the GoG abstrac-
tion. We discuss how a visualization grammar may better support
customization in Section 6.

5.2.2  Aesthetic vs. faceting. Aesthetics (also called visual chan-
nels [55]) are visual properties of geometries that can vary with
data, such as the x-axis position or color of a point. Participants
chose aesthetics based on their tasks, which included comparing dis-
crete categories and assessing correlations in the dataset. However,
participants’ tasks and approaches did not always align with the
abstractions of GoG. With the task of comparisons, P3 considered
color and faceting to be alternatives. When asked how they would
explore more variables with the same plot, P3 thought both the
color aesthetic and faceting'? were options, calling them “effects”
that can “highlight differences in that relationship, or relationship
versus no relationship”. What P3 described was the task of mak-
ing comparisons. In GoG, it is natural to consider color vs. alpha
as alternatives—they are both aesthetics while color vs. faceting
are not. However, in terms of comparative visualization design,

11P1 used scale_color_manual(), see https://ggplot2.tidyverse.org/reference/scale_
manual.html
12Faceting in ggplot?2 splits a plot into a small multiples by a variable [66].
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Figure 9: Correspondence between P3’s comparison task and
GoG components. Color (a type of aesthetic) and facet are
not the same type of component in the Layered Grammar of
Graphics [65]. Line charts are reproduced from Gleicher [23].

ggplot2 Analysts’
geometries plot types
geom_area 1:1 Area plot P2, P7
geom_beeswarm N:1 "Dots" P4
stat_dots
N>1
stat_halfeye + Rain cloud plot P4
geom_boxplot Box plot P3, P7
geom_point 1:N Scatterplot P2, P3, P7
Bubble plot P7

Figure 10: A subset of the mappings between geometries and
the plot types described by participants.

faceting corresponds to “juxtaposition” and color aesthetic “super-
position” [23]. Figure 9 shows our interpretation—P3’s conceptual-
ization matched the task of comparison instead of the organization
of GoG components.

The mismatch between GoG abstractions and analysts’ tasks does
not necessarily mean that GoG components are ill-equipped for
analysts in practice. However, making comparisons is one task for
which the grammar design does not communicate task-appropriate
alternatives; therefore, analysts need to translate their task to the
choice of GoG components.


https://ggplot2.tidyverse.org/reference/scale_manual.html
https://ggplot2.tidyverse.org/reference/scale_manual.html
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5.2.3 Geometry through plot types. Geometries are geometric shapes
in visualizations, such as points and lines. Participants used geome-
tries in code but sometimes talked about and made choices based on
plot types, like box plots and line charts. Across participants, they
used 18 different geometries in the ggplot2 grammar13 and men-
tioned nine plot types; the correspondence between plot types and
geometries is often one-to-one (1:1) but not always, see Figure 10.

Since participants had both geometries and plot types in their
vocabulary, we may ask which concept is closer to the participants’
needs. Section 5.4 will discuss how geometries worked well as part
of participants’ iteration process, but when seeking help to find and
choose components (geometries), participants preferred plot types
with visual examples. For instance, P4 searched for “histogram” and
“rain cloud plot”, P6 looked up “United States map”, and P7 visited
gallery websites that listed by plot types. They all browsed pages
with example plots. Reflecting on their search process, P6 found it
helpful to “look for an example visualization that’s similar to what [
have an idea of”, suggesting that they were motivated by the visual
outcome of the plot. P4, P6, and P7 did not look up specific geome-
tries, which could be due to a discoverability challenge—ggplot2
grammar contains many geometries, and reading documentation
without visuals can be “a steep learning curve” (P7).

Plot type as a concept is excluded from GoG because it can only
express as many plots as there are type names [70, Chapter 1.1].
The GoG design is about combining different components like
geometries and aesthetics to achieve expressiveness. Almost to the
contrary, participants were motivated by achieving visual output—
they expanded their use of geometries and increased expressiveness
by looking up plot types. Bako et al. [2] also echo the significance
of plot types in D3, a visualization toolkit without explicit notion
of “graphical marks” (geometries) [7]. In Bako et al., “standard” plot
types such as bar and line charts made up the majority (80%) of
their online code corpus, and users implemented a given plot type
with similar specifications. It is hard to quantify whether using plot
types limited our participants’ expressiveness. Here we highlight
the tension among the GoG design, participants’ visually-oriented
goals, and the discoverability of the grammar components.

5.3 Evaluation: silent errors

As participants wrangled and visualized data, they evaluated whether
the analyses achieved what they intended. Most participants en-
countered R error messages that explicitly pointed out problems.
In contrast, we also observed harder-to-evaluate silent errors [37],

where problematic wrangling and visualization specifications suc-
cessfully produced plausible outputs without explicit errors. Silent

errors can be common in visualization specifications—Battle et al.
found that D3 users also struggled with “unexpected behaviors

rather than explicit errors” [3]. McNutt et al. named “silent and

significant” errors visualization mirages, visualizations that can

mislead inattentive readers about the data [37].

3This count includes stat_dots and stat_halfeye. Statistical transformation in
ggplot2 transforms the data (usually summarization). In ggplot2 implementation,
stat_x creates layers with the namesake statistical transformation and default geome-
tries. We don’t report stat as a separate category since participants didn’t explicitly
specify custom stat within their geom calls, and stat_dots and stat_halfeye were
used in the same way as geometries.

CHI 23, April 23-28, 2023, Hamburg, Germany

We observed two types of silent errors. For the first type, par-
ticipants noticed the error because the visual output did not meet
their expectations. With different datasets, P6 and P7 wrangled
and plotted to show the top-n categories (e.g. top-5) in their data
over time. They caught the silent errors because the plots showed
an excess number of categories, see Figure 11.6. We will explain
their mismatched data wrangling and plot specifications in Sec-
tion 5.5.2. To fix the errors, P6 aggregated data and P7 manually
filtered out categories to reduce the number of categories shown.
Their fixes were workarounds, presumably because identifying the
root cause in the specification code was challenging; we discuss
potential solutions in Section 6.2.

With the second type of silent errors, participants did not notice
their plots were problematic at all. P6 and P7 created visualization
mirages [37]— Table 2 shows how P6 and P7’s final plots may give
the readers the wrong impression of the underlying data, such as
missing data or a perfectly linear trend. In these silent errors, the
visualization grammar in part enabled visualization mirages. Some
participants might have relied on “visual hints” (P7) to evaluate
their analysis. Of a silent error that they did notice, P7 said:

[T]he only time I realize [the error] is when it shows
up in this way because otherwise, I would not have
realized what was wrong with the [data] processing...

Since the visualization grammar successfully assembled plots, the
plots might have validated the analyses. Beyond evaluating analysis
with the visualization outputs, participants had few strategies to
notice data errors if the plots appeared plausible—P6 said that their
collaborators could judge based on prior knowledge. Without such
priors, which can happen during data exploration, analysts risk
overlooking the silent errors when using visualization grammars.

5.4 Execution-evaluation: Iterating with the
Grammar of Graphics

To answer RQ1 about how analysts conceptualize and use GoG,
we consider not only stand-alone edits on GoG components (Sec-
tion 5.2) but also a cycle of execution and evaluation—how and
why participants wrangled data, specified visualizations, and eval-
uated their analyses as a process. According to Wickham, using a
GoG-based library should enable users to “iteratively update a plot,
changing a single feature at a time” [65]. We identified incremental
and experimental iteration patterns, which were consistent with
the design intention of GoG. On the other hand, participants also
reused GoG specifications as plot templates, showing how par-
ticipants circumvented specifying and iterating GoG components
directly and still achieved their analytical tasks.

5.4.1 Incremental and experimental edits during iteration. We ob-
served an incremental pattern in editing aesthetics, geometries,
and plot types. For aesthetic edits, P2 and P3 followed a similar
editing pattern: they created scatterplots with x and y aesthetics
first and then added color or alpha aesthetic for clarity. After each
edit, P2 and P3 rendered the resulting plot to evaluate. For geometry
edits, P2 and P3 layered more geometries on their scatterplots for
visual inference (P2 added a linear fit line, P3 splines). P4 had an
analogy for the layering of geometries: “I feel like they’re Photo-
shop layers”. To change from one plot type to the next, P2 made two
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Pé6’s final plot implies that there were no data for the first quarter in 2019
(highlighted), but only second quarter data were missing. First quarter data

were not plotted because a line needs two endpoints.
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P7’s final plot without customizations. Highlighted: the "dice" category had
count of zero between 1972 and 2012. The straight line erroneously implies that

there is an upward trend.

Table 2: P6 and P7’s final plots showed visualization mirages.

edits to turn a bar chart into a scatterplot: edits to the y aesthetic
mapping and geometry, see Figure 12. In P2’s case, they said during
the recording that they wanted to see the correlation between two
variables with a "scatterplot”, in addition to the initial bar chart that
only tallied one variable. Their two edits saved them the trouble of
writing a scatterplot from scratch. Even though P2 reasoned with
plot types (“scatterplot”) that are not part of the GoG, they iterated
as GoG was designed for.

These edits above were incremental in that the edits built up to
the final plots. In comparison, some edits are experimental—they
were part of the exploration and not reflected in the final plot. P1
often took some geometries off to focus on one part of the plot,
only to put them back soon after. P7 experimented with geometries,
swapping five (line, area, point, boxplot, density_ridges) in and out
while keeping the aesthetic mappings the same, see Figure 12. They
iterated through so many geometries because they wanted to affirm
their choice of geometry/plot type. Commenting on their trying out
the boxplot, P7 said, “now I know [the boxplot] makes no sense and
I need to see that”. In addition to editing plot designs, experimental
edits can also help understand data. To see how rankings change for
top songs over time, P2 started with a line chart for the top-ranked
song and then used faceting to display two and then nine top songs.
Their use of faceting supported their need to understand the data
through a small number of examples and concrete thinking. Even
though the experimental edits were eventually overwritten, they
helped participants design plots and understand data concretely.

5.4.2 GoG anti-pattern: plot templates. Participants did not always
make incremental and experimental edits (Section 5.4.1) enabled by
GoG design. We define plot templates as code chunks participants
reused, which could include both visualization and data wrangling
specifications. Participants (P2, P4, P6, P7) copied plot templates
and added a few edits to create plots similar to what they had made

or found online. Despite the convenience, templates were not fool-
proof. P2 copied and pasted a template with a bar chart, only to
miss one variable when updating the template. They quickly fixed
the error because they noticed that the bars were unexpectedly
out of order. P2 was not satisfied with using copying and pasting
because “it [needing to change multiple things] pulls me farther
from the data”. As a solution, P2 said that they would encapsulate
what we call templates with convenience functions. Explaining
why they used templates, P6 said that “it’s just easier to use code
that I already know what’s going to happen”. In our interpretation,
plot templates encapsulate a unit of analysis and apply plot types
from Section 5.2.3 to new situations.

5.5 Execution-evaluation: GoG and data
wrangling

To answer RQ2 about how GoG works alongside data wrangling,
we expand the execution-evaluation perspective to include data
wrangling edits. As participants interleaved their data wrangling
and visualization in R Markdown notebooks, we found that visu-
alization specification and data wrangling form a feedback loop,
a flexible process where one informs the other. There was also a
tight coupling between visualization and wrangling code, which
can explain the silent errors in Section 5.3.

5.5.1 Vis-analysis feedback loop. In a feedback loop between data
wrangling and visualization specifications, we found that 1) the
results of data wrangling informed participants’ decisions on plot-
ting, and 2) the results of plotting helped participants progress in
data wrangling.

Participants used their understanding of the data to determine
how to visualize them. With data wrangling code written, partici-
pants often printed the results to console and gained an understand-
ing of the properties of their data, such as data types, dimensions,
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Figure 11: How P2 and P7’s data wrangling matched or not matched the visualizations they created. In 7, we only show three

years in the facets for simplicity.

and simple aggregates like counts and unique values. As an ex-
ample of data informing visualization specifications, P2 avoided
mapping a variable for song names onto the color aesthetic because
P2 “already knew there were hundreds of songs”. In another in-
stance, P4 rejected the beeswarm plot they saw on a tutorial because
they found that the data variable had “very specific levels” (being
discrete) through data aggregation functions. Given their under-
standing of the data, P4 reasoned that the layout of the beeswarm
(jittered points implying continuous values) “would be misleading”.

In the other direction, participants decided what to change about
the data once they saw a plot output. Participants removed outliers
(P3) and filtered to top entries (P2, P3, P4, P6, P7) in response to see-
ing their plot outputs. P4 reasoned that “nobody would understand”
too many levels of categorical data in a plot. Figure 13 shows an
example from P2’s edit log, where they added filter() function
based on visualization output.

The feedback loop was productive in that participants made
data-informed visualizations and visualization-informed wrangling.
Reflecting on the role of GoG, we highlight the GoG’s capacity to

add and edit modular components and still produce a visualization.
The data wrangling participants wrote was in the form of analy-
sis pipelines made up of modular dplyr data operations such as
filter() [69]. Though not its express design goal, the modularity
of GoG components worked flexibly with data wrangling and thus
contributed to the feedback loop.

5.5.2 Tight coupling. In some workflows, data wrangling is done
separately before visualization specification [30]. For example, P1
described a process at work, where they exported data from R into
Tableau to create plots. In a programming setting with visualization
grammar, however, visualization and data wrangling specifications
can interleave and express the same meanings such as data aggre-
gation. Therefore, the two parts of the specifications need to be
consistent to prevent errors, a constraint we call tight coupling.
The constraints from tight coupling are in contrast to the flexi-
bility and productivity of the feedback loop in Section 5.5.1. Since
GoG offers options to express data transformation within the GoG
specification, participants needed to keep visualization and data
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Box plot Bubble chart
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Figure 12: Two excerpts from the edit logs to demonstrate incremental and experimental edits.

+ group_by, + summarize, ...

+ geom_area, + aes
[Feedback loop]

+ filter Vis informs wrangling & vice versa

+ facet, + scale
[Tight coupling]

A count Need consistent vis & wrangling

+ scale, A aes, + labs

P2, part of segment 4 vis + add
Top performers each decade A change
data
- delete

Figure 13: Excerpt from P2’s edits, demonstrating the feed-
back loop and tight coupling between visualization and data
wrangling. The full edit log is in Supplementary Materials.

wrangling specifications consistent. As an example (Figure 13), P2
intended to smooth out a count over time, changing data aggrega-
tion (count()) from “by year” to “by every five years”. Executing
their code, P2 produced an area plot showing counts inflated about
five times. To keep the visualization specification consistent with
the updated data wrangling, P2 needed to change the data variable n
to n/5 in the aesthetic mapping so that the plot still showed annual
counts after smoothing.

Breaking the coupling and having inconsistent specifications
can lead to the silent errors described in Section 5.3. To explain, we
introduce the fact that GoG [70, Chapter 5] and the data wrangling
tool (dplyr [69]) share the same roots in relational algebra. Since
analysts can edit GoG and data wrangling separately (feedback
loop), the underlying algebra representation can go out of sync. We

compare P2 and P7’s code and plots in Figure 11.14 ggplot2 specifi-
cations were translated into GoG algebra expressions [70, Chapter
5]. Figure 11-1 shows P2’s code, which found the top categories by
count, and counted the (top) categories for each year. In compari-
son, P7 group_by () the year variable first, making category count
conditional on year (Figure 11-2). There can be different top cate-
gories for each year. We argue that P2’s visualization matched their
wrangling but P7’s did not. Figure 11-3 shows that the visualiza-
tion specification contains a cross operator (x) in the GoG algebra,
implying year and catgory being independent, which was the case
with their wrangling code. P7’s visualization algebra expression is
the same, but their category is conditional on year, and therefore
P7’s visualization did not match their analysis. In other words, P7’s
visualization did not convey the conditional from the analysis. To
synchronize P7’s visualization with analysis, Figure 11-4 shows one
potential visualization specification, using a nesting operator (/)
that expresses the meaning of conditional. In this case, the nesting
operator translates to faceting by year, and each facet only contains
the top categories for that year.

Participants needed to negotiate and disentangle the tight cou-
pling, since the visualization and data wrangling specifications
cannot communicate with each other and maintain consistency, a
problem Wu et al. call the semantic gap [77]. The semantic gap, in
our context, means that the wrangling code does not know how
the data is plotted, and the visualization specification has no access
to the wrangling history of the data. But successfully maintained
or not, tight coupling is not immediately visible to participants,
therefore leading to silent errors. We discuss how to bring more

14For ease of reading, we translated P2 an P7’s fct_lump() calls into data op-
eration functions (verbs) that are closer to SQL syntax. fct_lump() “lumps all
[factor/categorical variable] levels”; documentation: https://forcats.tidyverse.org/
reference/fct_lump.html. SQL translations determined by the dbplyr package, see
https://dbplyr.tidyverse.org/articles/sql-translation.html
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consistency and transparency to coordinate visualization and data
wrangling specifications in Section 6.2.2.

5.5.3  Participants liked ggplot2 for the Tidyverse. Since not all par-
ticipants would know visualization grammars (the framing of our
analysis), we directly asked them about preferences for the ggplot2
library. Participants’ answers were as much about ggplot2’s in-
tegration with data analysis as about the quality of visualizations
it creates. Since the participants were likely biased, they found
ggplot? “intuitive” (P2), “makes so much sense” (P3), customizable
(P1), layer-able (P4), and nice-looking (P6). Despite the praise for
ggplot2 as a visualization library, we were struck by how much
participants (P1, P2, P6, P7) talked about the synergy between gg-
plot and their data analysis, mostly enabled by the dplyr [69] and
Tidyverse [68] packages.!® P2 told the story of a “big realization”,
where they realized the plyr package (predecessor of dplyr) and
ggplot2 were linked by the tidy data format [68]. The convenience
of transforming data and plotting made P2 switch to using ggplot2.
Other participants gave similar reasons: ggplot2 fit into P6’s job
with “alot of data cleaning and preparation”, and it “integrates well”
with P6’s projects. P1 thought ggplot2 gave them more control of
the data. Participants’ subjective preferences for ggplot2 corrobo-
rate our findings of the vis-analysis feedback loop in Section 5.5.1.

6 DISCUSSION AND DESIGN IMPLICATIONS

6.1 Practical visualization grammars for data
analysts

6.1.1 Supporting plot templates. At its core, ggplot2 is an imple-
mentation of the layered GoG without explicit components for plot
types [65]. However, there can be a disconnect between the moti-
vation for the grammar design and how it is used. Our participants
talked about visualizations in terms of plot types (Section 5.2.3), and
they were also able to code-switch and edit the GoG abstractions to
achieve their goals such as copying a plot or changing plot types. In
effect, participants encapsulated their both visualization and data
wrangling specifications into plot templates. Our findings suggest
that if plot templates are based on a visualization grammar, data
analysts can take advantage of the plot templates as well as the
grammar itself (Section 5.4.2).

Interests exist in creating plot templates for analysts based on
GoG-style grammars. The ggplot2 API already implements conve-
nience geometries, such as geom_jitter, a shortcut for geom_point
with jittered positions. Outside of ggplot2, Ivy and Encodable are
two recent template-based contributions. Ivy is a visualization edi-
tor that can create a plot template from any visualization grammars
based on JSON [39]. However, the Ivy interface is Polestar/Tableau-
like [60, 73] and analysts cannot encapsulate data wrangling in
Ivy templates, except data transformations within Vega-Lite. En-
codable is a configurable grammar for plot “components” (i.e. tem-
plates) [71] with user-defined “component-specific channels” (i.e.
aesthetics). Compared to Encodable templates, the plot templates
our participants used are more informal, with no error checks, and

5dplyr is part of the Tidyverse collection of packages that “share an underlying
design philosophy, grammar, and data structures”, see http://www.tidyverse.org/.
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they are rendered only with ggplot2. We propose a design wish-
list for supporting plot templates in a data analysis environment,
covering definition, presentation, and use:

e We need more research on how to define or generate a plot
template in a programming/computational notebook envi-
ronment. Our participants only made informal plot templates
by copying and pasting code chunks. Bako et al. suggests
that to help D3 users, templates could be extracted from
users’ implementation patterns from an existing corpus [2].
Lee et al. considered boilerplate template code cumbersome,
motivating them to build an always-on visualization recom-
mender in Jupyter notebooks [33]. Regardless of how plot
templates should be extracted or introduced, they should
integrate well with the rest of the analysis workflow, which
Battle et al. recommend in the context of D3 implementation
challenges [3].

e Based on how our participants sought templates online, plot
templates should be visual, meaning the analysts can preview
a concrete instance of a template. Battle et al. also outlined
the importance of “meaningful code components” (in D3)—
users may otherwise be unable to relate part of a template
to the visual output [3].

o Plot templates should be editable—analysts may benefit from
code-switching and moving between editing the abstractions
of GoG and using plot templates. Templates should also
reduce the opportunities for slips and mistakes during edits.

6.1.2  Supporting customizations in the aesthetic space. Participants
customized their plots by creating new data, building special plot
types, applying custom color palettes, and adding annotations. Be-
yond our study, literature and anecdotal evidence also support the
need for customizations. In a study about Tableau, Heer et al. found
that “formatting” (changing sizes and styling) was a common cate-
gory of actions “performed in succession” in interaction logs [27].
Hadley Wickham, the creator of ggplot2, stated that “theming is
unimportant early on [in the development of ggplot2] but critical
in the long run” [49].

To systematically describe customization in GoG, we used the
concepts of data space vs. aesthetic space. Grammar of Graphics
uses scale functions to map from the data space (domain) to the
aesthetic space (range). Therefore, changes in the data space, like
filtering or binning, will be updated to the aesthetic space.

The GoG design leads to two types of difficulties around cus-
tomization we observed. First, analysts can make conceptual slips,
confusing aesthetic space specification as one in the data space (e.g.
P1 with the custom color palette). Granted, to customize colors and
other aesthetics, analysts can use the identity scale function'® or a
scale function with a custom color range as P1 did (see Figure 16 in
the Appendix for code in ggplot2 and Vega-Lite). We speculate that
the slips are possible because analysts might expect the aesthetic
space values (like color hex values) to just work like data space
values. Another reason might be that the scale functions are usually
not explicitly specified—many visualization libraries, ggplot2 and
Vega-Lite included, provide good defaults and therefore analysts
might not be conceptually familiar with data vs. aesthetic spaces

16 Available in ggplot2 as I() and in Vega-Lite as . scale(null)
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and scale functions. Addressing such difficulty with customization
may entail more transparency into visualization library internals—
if analysts can peak into the data being plotted before and after the
scale computation, they may have a better mental model to identify
the scale function they need.

Second, since there are no inverse scale functions to map aes-
thetic space values back to the data space, participants needed to
make “back-and-forth” edits in the data space to achieve the desired
appearance of a plot with the abstractions of GoG alone. For exam-
ple, if an analyst wants to add a text label in the bottom left corner
of a plot, they need to translate “bottom left” into values in the
data space, e.g., year = 1900, see Figure 15 in the Appendix. Worst
still, if the analyst changes the data space values (like by filtering),
the analyst needs to manually update label positions, e.g., year =
1950 to keep the label in the same relative position. Without an
automatic two-way mapping between the data space and aesthetic
space, it can be tedious to update in the data space and keep a plot
looking the way the analyst wants.

Outside GoG, there are escape hatches in visualization libraries
that allow analysts to specify in the aesthetic space directly. In the
R language, the low-level graphics library grid exposes physical
positions like inches and “native units”, which are relative positions
between 0 and 1. For example, (0, 0) is the coordinate for the “bot-
tom left” corner of a viewport [46, Chapter 4.5]. However, analysts
cannot access native units in ggplot2 unless they program custom
components. Similarly, Vega-Lite supports specification by pixel
positions!” and relative height/width (e.g., 0.1 * width), but these
are arguments passed to marks, not part of the GoG abstractions.

We need systematic and practical solutions to help data ana-
lysts customize grammar-based plots. Analogous to the aesthetic
mappings (mapping data variables to aesthetics), we can design
similar APIs to support translating aesthetic space definitions to
data space values. Such mapping should alleviate analysts’ burden
of trial and error, e.g. P1’s back-and-forth edits. One step towards
this goal, ggrepel is a ggplot2 extension that detects collision
of text labels and repel ones that overlap.'® With ggrepel, the
aesthetic space instruction is effectively “no overlap”. Outside of
ggplot2, we may borrow ideas from authoring systems for cus-
tom charts, where chart designers could start from visual marks or
hand-drawn shapes in the aesthetic space. Then, the data space in-
formation can be bound to those marks in stand-alone systems such
as Lyra [54], Data Illustrator [34] and Charticulator [51]. Hempel
et al. used direct manipulation of graphical output to augment text-
based programming and specify a recursive fractal pattern [28]. In
a programming environment such as a computational notebook,
direct manipulation of marks might not be feasible, but it is worth
investigating how analysts can specify in the aesthetic space along-
side the GoG abstractions while keeping the aesthetic space and
data space in sync.

6.2 Helping analysts evaluate data wrangling

Visualization can be viewed as a type of data transformation [26].
Participants made silent errors and failed to identify the problems in

7For example, v1.markText("x": 5), 5 is in pixels. With Vega-Lite Javascript API
https://vega.github.io/vega-lite-api/.
Bhttps://ggrepel.slowkow.com
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their analyses because of the tight coupling between data wrangling
and visualization specifications (Section 5.5.2). Here we propose
two areas of research that may help analysts evaluate the results of
data wrangling:

6.2.1 Maintaining the consistency between visualization and data
wrangling specifications. In our study, silent errors could have been
avoided if analysts maintained the consistency between the data
wrangling and plot specifications (Section 5.5.2). Instead of solely re-
lying on analysts, we suggest that visualization grammars validate
the consistency as well. Grammar of Graphics exposes two ways to
wrangle data within a specification: the data and statistics compo-
nents. Depending on the implementation, visualization grammars
support data wrangling with various degrees of expressiveness:
ggplot2 allows arbitrary R functions, while Vega-Lite supports a
predefined list that covers common wrangling operations,!® such
as pivots and joins (see Table 3 in the Appendix). With Vega-Lite’s
pre-defined list of operations, for example, it is possible to have a
linter in a grammar implementation to check for consistency. With
examples in Vega-Lite, McNutt et al. have proposed a “metamorphic
visualization linter”; this linter verifies that data changes reflects
proportionally in visualization output [37]. By varying the input
data, such a linter may notice that the highlighted line from P7 in
Table 2 does not change as expected. Alternatively, a linter can lever-
age and verify using the shared algebraic representation between
data transformation and visualization as seen in recent works in
databases and visualization [16, 35, 76, 77]. Ideally, a consistency-
aware implementation can identify and explain the mismatch to
analysts; VizLinter, a Vega-Lite linter that checks for problems in
encodings and marks, implements similar explanations [14].

An alternative approach is to introduce atomic primitives for spe-
cific tasks. In visualization grammars, such primitives can replace
otherwise multi-step, error-prone operations and reduce opportu-
nities for errors. For example, the Probabilistic Grammar of Graph-
ics makes probability expressions, such as P(A|B), primitives [48].
This design avoids the pre-computation of conditional probabili-
ties and circumvents errors in plot specification. Another example
is autoplot(), a generic function in ggplot2 used by P2 and P3.
When called on a model tuning object, autoplot() dispatches the
corresponding method to produce a ggplot2 object. Since the plot
is determined from the modeling workflow without analyst input,
there is little concern for consistency. Compared to the algebraic
approach, however, creating new primitives is less generalizable
and hinges on understanding analysts’ particular tasks and goals.

6.2.2 Increasing transparency and visibility. Visualization gram-
mars should support the interpretation and critical thinking around
data analyses. In our study, making plots is a major way that the
participants understood their wrangled data. When our participants
did not notice silent errors in their plots or apply their prior knowl-
edge, it was difficult to recognize problems in the data manipulation.
McNutt et al. has suggested tests to catch silent errors from plot
specification and data wrangling [37]. Besides error detection, visu-
alization tools may help analysts interpret analysis pipelines. Recent
studies have taken a variety of approaches, such as explaining the
analysis pipelines with animations (Datamations [50]), comparing

https://vega.github.io/vega-lite/docs/transform.html
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results of alternative data manipulations (DITL [63]) and showing
thumbnails of variable distributions inline with code [29].

Trust is involved in evaluating a visualization output. The fact
that a plot rendered without error might give analysts more trust in
the output, validating the analysis in general. We do not yet have
good evidence for this form of trust (cf. [18]), but more transparency
and visibility, especially in visualization format, may give analysts
more opportunities to spot problematic analysis.

6.3 Degree of vis-analysis integration

We argue that to understand a visualization grammar, we need
to look at where it’s used—in data analysis that includes not only
wrangling but also modeling. We can imagine a continuum of how
well a visualization grammar integrates with data analysis, see Fig-
ure 14. On it, there are visualization grammars and systems for a
specific task, such as CAST for creating animations [21]. They are
low on data-analysis integration, assuming cleaned data as input.
For Tableau-like?® systems, usually for exploratory visual analysis
(EVA), there are fixed set of data operations (filtering, etc.) enabled
through interface widgets; analysts are known to copy and paste re-
sults from notebooks into Tableau-like interfaces [13], presumably
because some analyses are not well-supported within such inter-
faces. On the far end, there is the R Tidyverse (ggplot2 included)
ecosystem, which our participants used to program their analyses.
Similar ecosystems exist in other languages. For example, JavaScript
ecosystem contains JSON-based visualization grammars [38], data
libraries like Arquero,21 and Observable notebooks. Granted, the vi-
sualization grammars and systems on this continuum serve various
purposes, and not every analyst can or need to specify arbitrary
analysis through programming.

Our focus is on the right end of the continuum: we need more
research into how to support visualization and analysis specifica-
tions in computational notebooks, an environment that can afford a
high degree of vis-analysis integration. There is a substantial need
for the vis-analysis integration [19, 30]—data analysts could find it
desirable to rapidly explore, transform, model, and visualize data in
the same programming environment. A computational notebook
environment (R Markdown) gave our participants full access to
the analysis capacities in R and led to our findings on the feed-
back loop and tight coupling between visualization and wrangling
specifications. With notebooks getting wider adoption [52], this
environment can give analysts more agency and write expressive
code for analysis and plotting. One implication can be that analysts
do not have to rely on visualization designers to create task abstrac-
tions (e.g. [11]) and monolithic systems. In other words, a notebook
environment with vis-analysis integration can be an opportunity
to introduce visualization research into practical use [5].

On the flip side, analysts who write code can make mistakes, and
they can use support. With a relatively small set of notebook-related
contributions in visualization (e.g. litvis [75]), we can look to the
data science literature. For example, there is the idea of a fluid in-
terface, where interacting with a table (mage [31]) or visualization

20The Tableau commercial software can pull results from R and Python scripts through
client-server connections, but this setup still separates the scripting and visualization
https://www.tableau.com/about/blog/2013/10/tableau-81-and-r-25327

21 A relation algebra-based data querying and transformation library, see uwdata.github.
io/arquero
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GUI (B2 [77]) can turn into an update in the analysis code.?? There
is the idea of sticky notes, where the analyst can drag a notebook
cell onto a dashboard like a sticky note [64]. More recently, the
integration between visualization and analysis has been made more
explicit. Data analysis provenance can now inform visualization
recommendations within the notebook [20, 33], instead of similar-
ity between visualization specifications alone (e.g. [79]). We may
borrow the different modes of interactions and integration, which
consider writing code and interacting with the GUI simultaneously.
We are excited about the outlook in this area of research: what can
visualization contributions look like in computational notebooks or
other environments with this high degree of visualization-analysis
integration? And what can we learn and enable analysts to do?

6.4 Limitations and generalizability

Our study participants can be biased in favor of ggplot2 because
of the recruitment protocol—they were within the #TidyTuesday
community. However, the positive bias is necessary for participants
to be proficient enough to complete data wrangling and plotting
tasks, because we were explicitly interested in experienced ana-
lysts, not novices. Another issue is whether participants’ use of
ggplot2 was realistic. It was realistic in that participants were
data professionals or students and used ggplot2 in context of their
#TidyTuesday projects. When asked, participants stated that their
goals for participating #TidyTuesday were to hone skills or help
others, corroborating the findings in Shrestha et al. [58]. On the
other hand, participants were motivated by their interests instead of
specific domain question when analyzing the #TidyTuesday data.
Their approaches might differ with problems they had more prior
knowledge in. We mitigated this concern by asking about partici-
pants’ general preferences and approaches during interviews.

6.4.1 Generalizing to Vega-Lite. Since all our participants created
visualizations with ggplot2, we assess the generalizability of our
findings in the context another GoG-based grammar, Vega-Lite [55].
Vega-Lite is similarly popular in practice (1.1M monthly downloads
vs. ggplot2’s 2.9M?3), and there is a vibrant research ecosystem
around Vega-Lite [38, Figure 8].

We can assume generalizability from the close correspondence
between ggplot2 and Vega-Lite syntax and Grammar of Graphics
concepts, shown in Figure 2. We frame our results in Section 5
around the shared GoG concepts, and what our participants did in
ggplot2 can be closely replicated in Vega-Lite (code examples in
the Appendix). However, replicability does not necessarily translate
to an identical usage pattern.

We speculate that how a visualization grammar handles data
transformation can affect how analysts use it. Though ggplot2
and Vega-Lite enable data transformation through the same set of
GoG components (Table 3 in the Appendix), Vega-Lite supports
pre-defined data operations, more limited compared to ggplot2.
22Commercial notebook tools such as Hex and Deep Note have supported specifying
Vega/Vega-Lite with no-code interfaces; though users can export or update Vega/Vega-
Lite specifications as code, chart cells do not synchronize with analyses outside of
visualization specifications. See https://learn.hex.tech/docs/logic-cell-types/display-
cells/chart-cells and https://deepnote.com/docs/chart-blocks
ZVega-Lite download count on Node Package Manager (npm): https://npm-stat.com/
charts.html?package=vega-lite&from=2022-10-28&to=2022-11-28; ggplot2 download

count on the Comprehensive R Archive Network (CRAN): https://cranlogs.r-pkg.org.
As of November 2022.


https://www.tableau.com/about/blog/2013/10/tableau-81-and-r-25327
uwdata.github.io/arquero
uwdata.github.io/arquero
https://learn.hex.tech/docs/logic-cell-types/display-cells/chart-cells
https://learn.hex.tech/docs/logic-cell-types/display-cells/chart-cells
https://deepnote.com/docs/chart-blocks
https://npm-stat.com/charts.html?package=vega-lite&from=2022-10-28&to=2022-11-28
https://npm-stat.com/charts.html?package=vega-lite&from=2022-10-28&to=2022-11-28
https://cranlogs.r-pkg.org

CHI 23, April 23-28, 2023, Hamburg, Germany

Tableau-like
EVA interface

Specialized
vis system

(Data already
cleaned)

Analysis via
widgets

Pu and Kay

Computational
notebooks

Degree of
vis-analysis
. integration
Any analysis,

n datasets

Figure 14: Continuum of vis-analysis integration for visualization tools. Towards the right end, computational notebooks, with
visualization grammars and data wrangling libraries, offer a high degree of integration.

Vega-Lite’s transformations may be sufficient for many use cases,
or analysts may be more inclined to wrangle data with other tools
before specifying plots, changing the tight coupling described in
Section 5.5.2. In addition, interactions, such as selecting and brush-
ing on a visualization, can be considered data transformations [77],
but we did not observe such interactions with our participants.
Vega-Lite supports a wide range of interactions natively [55], while
ggplot2 visualizations can become interactive with Shiny apps or
Plotly [59]. With Vega-Lite, analysts might be more likely to replace
a part of their data analysis code with interactions such as brushing
and selecting, adding new dimensions to our findings.

Beyond the design choices of visualization grammars, we should
consider the grammar ecosystems. First, the extensibility of a vi-
sualization grammar can determine how expressive analysts can
be with plotting. Our participants (P4 and P7) used ggplot2 com-
ponents from community contributors,?* not part of the core li-
brary. ggplot2 is extensible because it uses an prototype-based
system [67]; user-created components (custom geometries, scales,
etc.) are plain functions, compatible with the rest of ggplot2. In
comparison, Vega-Lite has no similar user-facing extension mecha-
nism. Extending Vega, what Vega-Lite synthesizes to [55], can lead
to specifications not reusable by other people.? If our participants
had used Vega-Lite, their visualizations could have been different.
Second, factors other than language features can influence how ana-
lysts use visualization grammars. A programming languages survey
has suggested that “domain specialization” and “developer experi-
ence” are significant factors in language adoption [40]. Analysts
often use ggplot2 in tandem with statistical modeling packages
in R, while Vega-Lite often works with Javascript or Python (via
the Altair API [62]). A future study with Vega-Lite/Altair may help
answer whether analysts have different analytical tasks or norms
beyond the R ecosystem.

7 CONCLUSION

We conducted a qualitative study to understand how data ana-
lysts conceptualize and use a GoG-based visualization grammar
(i.e. ggplot2), and to characterize how the grammar works along-
side data wrangling specifications. Our participants were inter-
mediate to advanced analysts who recorded how they completed
#TidyTuesday data projects involving data wrangling and ggplot2

24The components were geom_density_ridges for ridgeline plots and stat_dots for
dotplots. A gallery of ggplot2 extensions: https://exts.ggplot2.tidyverse.org/gallery/
%5Explained in Vega Documentation: https://vega.github.io/vega-lite/ecosystem.html

visualizations in R Markdown, without prescribed tasks. We found
that when participants created (executed) visualizations, their needs
for analytical tasks and customization directed their use of GoG
components. Despite specifying valid plots, participants sometimes
made hard-to-evaluate silent errors. Viewing the analysis process as
an execution-evaluation loop, we identified incremental and exper-
imental visualization iteration patterns consistent with GoG design
intentions. Between visualization specification and data wrangling,
we found a feedback loop that informs iteration, while the tight
coupling between visualization and wrangling constrains it. Based
on our findings, we discuss design implications for future visualiza-
tion grammars used in computational notebooks, a programming
environment we believe can facilitate vis-analysis integration. Our
recommendations focus on making the grammar more practical for
analysts by incorporating plot types and other customizations, in
addition to helping analysts maintain consistency between visual-
ization and data wrangling specifications.
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GoG component related to data
transformation

ggplot2, see book [66, Chpt. 5 & 21]

Vega-Lite, see documentation: https://vega.github.io/vega-lite/
docs/transform.html

Statistics/transformation

Example: stat_density()

Out-of-the-box statistical transformations can execute count,
density, and other common wrangling operations. Analysts can
write custom stats, but doing so requires knowledge of ggplot2
internals and object-oriented programming.

.transform(vl.density("density"))

Also called “view-level” transform. There is a pre-defined list
of supported transformations (see documentation), including
many common operators such as pivot and join.

Data, inside aesthetic
mapping/encoding

Example: aes(x = sort(var))

Analysts can apply arbitrary function to the data variable/col-
umn specified in aesthetic mapping, such as taking the absolute
value, or casting strings to a discrete variable type (factor in R).

.encode(vl.x().field("var").sort())

Also called “field-level” or “inline” transform, including aggre-
gate, bin, sort, stack, and timeUnit operators. The data grouping
is inferred from unaggregated fields, if applicable.

Table 3: Comparing options of data transformation in ggplot2 and Vega-Lite. Both ggplot2 and Vega-Lite allow data transfor-
mation through the GoG data and statistics components.
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Customization with text annotation position

Code example from P7, mentioned in Sections 5.2.1 and 6.1.2

1. Problematic specification: P7 pasted an annotation from another project

ggplot2

Specification ggplot(categories) +
geom_line(

aes (
x = decade,
y = count,

color = category)) +
geom_text(

aes(
X = -0.8,
y =17,

label = "Annotation"),
hjust = "left")

Output

count

. Annolation J

decade

Vega-Lite

vl.data(categories)

.layer(
vl.markLine()
.encode (
vl.x().fieldQ("decade"),
vl.y().fieldQ("count"),
vl.color().field("category")
),
vl.markText({align: "left"})
.encode(
vl.x().datum(-0.8),
vl.y().datum(17),
vl.text().datum("Annotation")
)
)
.render()

category
CaraGama

Pary Game
Wagana

2. Fix we provide: “nudging” annotation in the data space (possible in ggplot2 and Vega-Lite), or use pixel offsets (Vega-Lite)

Specification ggplot(categories) +
geom_line(

aes (
x = decade,
y = count,

color = category)) +
geom_text(

aes(
X = -0.8,
y =17,

label = "Annotation"),
position = position_nudge(x = 1900),
hjust = "left")

Output

docade

vl.data(categories)

.layer(
vl.markLine()
.encode (
vl.x().fieldQ("decade"),
vl.y().fieldQ("count"),
vl.color().field("category")

)

vl.markText ({
dx: -165,
dy: 140

1)
.encode(

vl.text().datum("Annotation")
)
)
.render()

o ijw b

o tem | tse | e ise0 | ame | 20w
cade

Pu and Kay

Legend (ggplot2/Vega-Lite)

data
aesthetic mapping/encoding
geometry/mark

// Hard-coded data values

// Text pushed the lines to the side

// Vega-Lite: dx, dy offsets in pixels;
no explicit x, y encodings needed

// ggplot2: offset specified in data
space (x = 1900)

// For correspondance between ggplot2
and Vega-Lite, we write Vega-Lite
specifications with its Javascript API
instead of the JSON form.

Figure 15: P7’s code example about placing a text annotation, reproduced in Vega-Lite syntax. The two versions of the code show
similar syntax, suggesting that our findings might generalize to users of Vega-Lite, another GoG-based visualization library.
Vega-Lite allows for offsets in pixel units, which are arguments only available for the text mark, not part of the GoG encodings.
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Customization with colors

Code example from P1, mentioned in Sections 5.2.1 and 6.1.2

1. Problematic specification: using aesthetic space values (hex codes) as data space values

ggplot2

Specification ggplot(inferred_year_segment)
geom_segment (

aes(
X = x, xend = x + 10,
y =90, yend = 0,
color = Year_colors),
size = 3)

Output om0

0,025

> 0.000-

+

0,025+

Year_colors
- 006209
- 15400
= 277694
- aseeds
- 1204
=275
- ga2tis2

2. P1’s corrected specification: using custom scale function

Specification ggplot(inferred_year_segment)
geom_segment (

aes(
X = X, xend = x + 10,
y =0, yend = 0,
color = year)

size = 3) +

values = Year_colors)

Output 00507

0.025-

> 0.000-

0,025+

0050+

- afa01s
- #p2336a
- e3a034
100
+
year
- 1990
- 1991
- 1002
- 1993
— L RE
- 1905
- 1006
- 1007
1998
- 1999

Vega-Lite
vl.data(inferred_year_segment)
.layer(
vl.markLine({ "strokewidth": 10 })
.encode(

vl.x().fieldQ("x"),
vl.y().fieldQ("y"),
vl.color().field("yearColor")
)
)

.render()
yearcolor
japivo
= et
~orress
faseecs
et
tezmrs
e
Tasore
s
e
=0 — LB e —
o B s b w0 s % w
x
vl.data(inferred_year_segment)
.layer(
vl.markLine({ "strokewidth": 10 })
.encode(

vl.x().fieldQ("x"),
vl.y().fieldQ("y"),
vl.color()
.fieldN("year")
({range: yearColor})
)
)
.render()

0 10

3. Alternative specification we provide: using the identity (null) scale function

Specification ggplot(inferred_year_segment)
geom_segment (

aes(

X = X, xend = x + 10,

y =0, yend = 0,

color = I(Year_colors)),
size = 3)

Output o001

0.025-

> 0.000-

+

0.025-

0,050

100

vl.data(inferred_year_segment)
.layer(
vl.markLine({ "strokewidth":
.encode(
vl.x().fieldQ("x"),
vl.y().fieldQ("y"),
vl.color()
.field("yearColor")
(null)

10 })

)
)
.render()

%0 100
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Legend (ggplot2/Vega-Lite)

data
aesthetic mapping/encoding
geometry/mark

// Vega-Lite does not support
arithmetics (x + 10) or array of
colors (Year_colors) within encode();
otherwise this is a direct
translation.

// ggplot2 and Vega-Lite outputs still
have the default color palette; color
hex codes are treated as a
categorical/discrete variable.

// In ggplot2 and Vega-Lite (GoG in
general), a scale function maps data
space values (domain) into the
aesthetic space (range). Here the
range of the color scale is changed
from the defaults to a custom array
yearColor

// The domain and range are the same
for the identity/null scale function,
both in the aesthetic space.

// For correspondance between ggplot2
and Vega-Lite, we write Vega-Lite
specifications with its Javascript API
instead of the JSON form.

Figure 16: P1’s code example about applying a custom color palette, reproduced in Vega-Lite syntax. The two versions of the
code use the same GoG components and have similar syntax, suggesting that our findings might generalize to users of Vega-Lite,
another GoG-based visualization library.
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Silent error example

Legend (ggplot2/Vega-Lite)
Code example mentioned in Sections 5.3

data
aesthetic mapping/encoding
1. Problematic: data transformation implies top categories conditional on decade, while visualization spec does not. geometry/mark
ggplot2 + dplyr Vega-Lite
Specification categories %>% vl.markArea()
(decade, boardgamecategory) %>% .data(categories)
(name = “n") %>% .transform(
(decade) %>% vl.
mutate(rank = (-n)) %% [“decade", "boardgamecategory"l)
(rank <= 5) %>% .aggregate(
ungroup() %>% vl. ().as("n")),
mutate(boardgamecategory = vl. ("decade")
fct_drop(boardgamecategory)) %>% .window(
complete(decade, boardgamecategory, vl. ().as("rank"))
fill = list(n = 0)) %% .sort(vl.field("n")
ggplot() + .order("descending")),
geom_area( vl. ('datum.rank <= 5")
aes|( )
x = decade, .encode (
y =n, vl.x().fieldQ("decade"),
fill = boardgamecategory) vl.y().fieldQ("n").aggregate("sum"),
) vl.color().field("boardgamecategory")
)
.render()

Output

// Too many boardgame categories

2. Fix we provide: get top 5 boardgame category without conditional on “decade”

Specification categories %>% vl.markArea()
(boardgamecategory) %>% .data(categories)
(name="n") %>% .transform(
ungroup() %>% vl. ("boardgamecategory") // Without grouping by "“decade”
mutate(rank = (-n)) %% . ([{op: " ", as: "n"}1),
filter(rank <= 5) %>% v1.window( .
select(boardgamecategory) %>% vl. ().as("rank")) // Added the join
.sort(
categories %>% ( vl.field("n").order("descending")),
decade, boardgamecategory) %>% vl. ('datum.rank <= 5')
' )
by = "boardgamecategory") %>% .encode(
mutate(boardgamecategory = vl.x().fieldQ("decade")
fct_drop(boardgamecategory)) %>% vl.y().fieldQ("n").aggregate(“count”),
complete(decade, boardgamecategory, vl.color().field("boardgamecategory")
fill = list(n = 0)) %% )
ggplot() + .render()
geom_area(
aes(
x = decade,
y =n,
fill = boardgamecategory)

Output * oty X
. © = // Top 5 categories overall
. i
boardgamecatagory 1
y ® // For correspondance between ggplot2
2 and Vega-Lite, we write Vega-Lite
} “l specifications with its Javascript API

R o w2 instead of the JSON form.

Figure 17: P6/P7’s code example about silent error, reproduced in Vega-Lite syntax. The two versions of the code share similar
syntax and produce the same data operations, suggesting that our findings might generalize to users of Vega-Lite, another
GoG-based visualization library. All our participants wrangled data outside ggplot2 specifications using dplyr in R, while
Vega-Lite provides its own data transformation functions.
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