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This election forecast displays that
the Republican candidate has a 0.28 win
probability, i.e., the right-tailed probability
(the red area in the histogram).

People may misinterpret it, acting as if the
candidate’s win probability is , Which is
their subjective win probability, modeled by a
linear-in-probit (Ipr) function.

The distribution below is adjusted to
account for the bias in subjective probability
and causes people to act as if they had
believed the win probability is 0.28.

Dem wins « tie - Rep wins

pSUBJECTI\/E = lpr( pTRUE )
Ipr( 0.28) is

Using the inverse of this subjective
probability function (Ipr), we can find

_III|‘|||‘|III_ Prrue

another distribution to display.

= Ipr(Psussecrive)
Dem wins « tie - Rep wins lpl"l( 0.28 ) is
Figure 1: The concept of subjective probability correction: In this exemplar election forecast, the right-tailed probability
represents the Republican candidate’s win probability. {) When viewing a win probability of 0.28, ¢) people may misinterpret it
and act as if the candidate has a 0.11 probability of winning. &) To compensate for this bias in decision-making, we can use the
inverse of the subjective probability function, which allows us to start with the desired probability, say 0.28, and find another
distribution to display. () The resulting bias-corrected distribution causes people to act as if their subjective probability of that

candidate winning is the desired 0.28, while actually displaying a win probability of 0.37.

ABSTRACT

We propose a new approach to uncertainty communication: we
keep the uncertainty representation fixed, but adjust the distri-
bution displayed to compensate for biases in people’s subjective
probability in decision-making. To do so, we adopt a linear-in-
probit model of subjective probability and derive two corrections to
a Normal distribution based on the model’s intercept and slope: one
correcting all right-tailed probabilities, and the other preserving
the mode and one focal probability. We then conduct two experi-
ments on U.S. demographically-representative samples. We show
participants hypothetical U.S. Senate election forecasts as text or a
histogram and elicit their subjective probabilities using a betting
task. The first experiment estimates the linear-in-probit intercepts
and slopes, and confirms the biases in participants’ subjective prob-
abilities. The second, preregistered follow-up shows participants
the bias-corrected forecast distributions. We find the corrections
substantially improve participants’ decision quality by reducing the

preprint

integrated absolute error of their subjective probabilities compared
to the true probabilities. These corrections can be generalized to
any univariate probability or confidence distribution, giving them
broad applicability. Our preprint, code, data, and preregistration
are available at https://doi.org/10.17605/0sf.io/kcwxm

CCS CONCEPTS

+ Human-centered computing — Visualization design and evalu-
ation methods; Information visualization; Empirical studies in visual-
ization; User models.

KEYWORDS

uncertainty visualization, subjective probability, perception, elec-
tion forecasts

ACM Reference Format:

Fumeng Yang, Maryam Hedayati, and Matthew Kay. 2023. Subjective Prob-
ability Correction for Uncertainty Representations. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems (CHI °23),
April 23-28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3544548.3580998

1 INTRODUCTION

Subjective probability measures the quality of decisions made under
uncertainty [2, 36]. It is the internal probabilities people act as if
they had believed when making decisions. In uncertainty commu-
nication, one way to improve subjective probability is to assume
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a probability distribution over future events, then tackle how to
represent this distribution in a way that reduces biases in subjec-
tive probabilities, bringing them closer to the true probabilities
being communicated. This has been a fruitful line of inquiry in
uncertainty visualization, leading to visualization types that im-
prove decision quality [12, 27, 41]. However, there may exist a limit
to how much we can improve decision quality by modifying rep-
resentations alone; for example, some improved representations
may only increase decision quality for people with higher working
memory capacity [42].

We introduce a new approach that fixes the uncertainty rep-
resentation, but adjusts the distribution being displayed to
account for biases in subjective probability. Intuitively, we must
“undo” the distortions that occur when transitioning from true prob-
ability to subjective probability. More formally, if showing people
distribution X will cause them to act as if they had seen some
other distribution, say g(X), then we need an invertible function
g that describes people’s subjective probabilities as a function of
the true probabilities. We then invert g and display the distribution
X' = g7 1(X), so people will act as if they had seen X. This adjust-
ment to the displayed probability distribution compensates for
biases in subjective probability to improve decision quality, and
we call it a subjective probability correction.

To create a subjective probability correction, we adopt a linear-
in-probit model of subjective probabilities, a mathematically con-
venient variation on the linear-in-log-odds model [61] that gener-
alizes both prospect theory [26] and models of proportion percep-
tion [15, 22]. In principle, the linear-in-probit model can be used to
adjust any univariate distribution. We demonstrate how, for Nor-
mal distributions, we can scale and shift that distribution based on
the intercept and slope of the linear-in-probit model to obtain a
bias-corrected distribution. As this correction may move the mode
of the distribution, we also present another correction that uses the
skew-Normal distribution to preserve the mode of the distribution
and one focal probability.

We evaluate our proposed corrections in the context of U.S. Sen-
ate election forecasts. These forecasts predict candidates’ (or par-
ties’) vote percentages and compute win probabilities from the vote
percentage distributions. In recent years, U.S. election forecasts
have become controversial partly because people tend to misinter-
pret these probabilities [11, 58], making them a promising testbed.

Specifically,

(1) We derive two corrections for Normal distributions based on
a linear-in-probit model of subjective probability: a Normal
correction and a skew-Normal correction. These corrections
can be applied so long as the intercept and slope of the linear-
in-probit model for a given decision task are known.

(2) We conduct an online experiment using a Senate election sce-
nario and a U.S. demographically-representative sample (N=306),
and test two common representations (text and histogram)
for the forecast distributions. We elicit participants’ subjective
probabilities of a candidate winning under a betting task, esti-
mate the linear-in-probit intercepts and slopes for this task, and
measure integrated absolute error of subjective probabilities
compared to the true probabilities.
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(3) We derive bias-corrected forecast distributions from the esti-
mated intercepts and slopes, and, in a preregistered follow-up,
we repeat the experiment (N=603) but show participants text
and histograms of these bias-corrected distributions. The correc-
tions substantially improve decision quality. For example, the
skew-Normal correction reduces 60% of integrated absolute
error for text (the posterior median reduces from 0.13 [0.12,
0.14] to 0.054 [0.030, 0.076]) and 30% for histograms (the pos-
terior median reduces from 0.092 [0.074, 0.11] to 0.064 [0.045,
0.081]), bringing subjective probabilities much closer to the
true probabilities. The corrections debias the linear-in-probit
intercepts, but do not completely debias the linear-in-probit
slopes.

While our approach substantially improves decision quality, our
inability to fully correct biases in subjective probability opens up
avenues for future work. Perhaps there is a ceiling on how much we
can improve, or perhaps considering a mixture of decision strate-
gies people use would allow a more complete correction [27]. In any
case, an error reduction of 5-10 percentage points is on par with im-
provements seen by modifying uncertainty representations [27, 31],
suggesting our subjective probability corrections may be a valuable
tool in the toolbox for uncertainty communication, complementing
work on improved uncertainty representations.

Preregistration statement Our first experiment does not have
a preregistration, because we do not have any expectation of ef-
fect size nor any specific hypotheses. We use the data from this
experiment to decide on model specification, priors, and sample
size for the second experiment; these are preregistered. We also
preregistered three measures for the second experiment: the (1) in-
tercept and (2) slope of the linear-in-probit model, and (3) integrated
absolute error of subjective probability elicited from participants’
decision-making.

2 BACKGROUND

Our works draw upon three areas: (1) subjective probability in
decision-making, (2) uncertainty visualization, and (3) perceptual
optimization for visualization.

2.1 Subjective probability in decision-making
under uncertainty

Subjective probability is commonly used in decision analysis [19].
This concept is different but related to the true (objective) probabil-
ity used by statisticians. It describes a decision-maker’s underlying
belief in a probabilistic outcome, which they use for estimating
their utilities or expected rewards [19, 36]. It is a behavioral mea-
sure, often inferred from the choices people make in a sequence of
lotteries with an incentive [45, 56].

By contrast, directly reported probabilities of visually perceived
proportions, which are sometimes used to evaluate uncertainty
visualizations, do not measure decision quality [23]. For example,
people may accurately repeat back the exact probability of rain
from a weather forecast presented as text or a histogram. How-
ever, their responses might not match their underlying belief in
the probability of rain (their subjective probability), perhaps better
measured by whether or not they actually bring an umbrella. In an
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election forecasting context, the subjective probability of a candi-
date winning may drive voters to cast a ballot or mobilize in their
community [16] or lead them to be surprised when a candidate
with a 0.3 forecasted win probability ultimately wins an election.

In these decision-making processes, people do not usually per-
form mental calculations, but instead rely on cues or heuristics [7],
leading to some distortion of judgment or misperception of prob-
abilities, which are biases in their subjective probability [7]. Our
work builds upon such literature to measure people’s subjective
probability in decision-making and aims to correct for people’s
biases to improve their decision quality.

2.2 Uncertainty visualization

Much work in uncertainty visualization attempts to find more ef-
fective representations of distributional uncertainty, e.g., through
encodings based on intervals [8, 12, 31], density functions [8, 12,
21, 25, 31], or cumulative distribution functions [12, 25, 59]; or by
employing frequency-framing approaches such as quantile dot-
plots [12, 27, 31], hypothetical outcome plots (HOPs) [24, 28], or
spaghetti plots [33, 46]. Often this work is grounded in attempts
to help the viewer better understand uncertainty or make better
decisions from a representation. For example, Helske et al. [21]
used densities with faded tails in an attempt to reduce researchers’
reliance on dichotomous thinking; frequency representations (like
dotplots [31] or HOPs [24]) are also commonly used to improve de-
cisions under uncertainty, inspired by research in cognitive science
that suggests people reason better with discrete outcomes than
continuous probabilities [17]. Much of this work fundamentally
rests on visualizing distributions or summary statistics of distri-
butions (whether they are probability distributions or confidence
distributions [60]), and so is compatible with our approach to sub-
jective probability correction through adjusting distributions. A
related bias-correction approach for uncertainty visualization is
Correll et al’s Value-Suppressing Uncertainty Palettes [10]: they
merge successive categories in a bivariate colormap and suppress
the color of the point estimate when uncertainty is larger. Their
approach is more heuristic and is not based on models of perception
or decision-making. Our model-driven approach could provide a
theoretical grounding for similar value-suppression functions, as
well as a principled way to choose how much value to suppress [30].

2.3 Perceptual optimization for visualization

Perceptual optimization and bias correction are commonly em-
ployed in other areas of visualization, with a focus on perceptual
features. For example, Micallef et al. optimized parameters like opac-
ity for scatterplots based on task objectives [37]. Other examples in-
clude adjusting orientation to compensate for biases in trend estima-
tion in scatterplots [34] and including annotations when two bars
are perceptually indistinguishable [35]. Color is also oft-targeted
for debiasing; for example, previous work constructed perceptually
rather than mathematically uniform colormaps (e.g., viridis [52]
and its corrected version cviridis [39]); colormaps have also been
optimized for separating different classes in scatterplots [57], differ-
entiating common mark types [55], or highlighting unexpected
events [9]. Area is another visual channel amenable to debias-
ing: Flannery [13] proposed scaling points on maps according to
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a power-law transformation of area perception rather than raw
areas (cf. Stevens’ power law [54]). Other approaches changed sam-
pling methods [44] to create perceptually-optimized scatterplots
or used a neural network simulation of early perceptual process-
ing to adjust the parameterization of flow visualizations [43]. Our
work attempts to bring this tradition to uncertainty visualization
by systematically adjusting a displayed distribution using models
of people’s subjective probability [61].

3 BIAS-CORRECTING PROBABILITY
DISTRIBUTIONS

This section describes our mathematical derivation of the subjective
probability correction. To help readers follow our derivation, we
first introduce the statistical concepts needed using an example of
election forecasts.

3.1 Preliminaries: Probability distributions and
election forecasts

Forecasts are often made using probability distributions over possi-
ble outcomes. For example, election forecasters may show a proba-
bility distribution for the vote percentage that a candidate is pre-
dicted to receive using @) a probability density function (PDF).
The PDF for distribution X is denoted fx (x). The highest point
on the PDF, @ the mode, is the most likely vote percentage the
candidate will receive. On a PDF, probability is read by looking at
the area under the curve.

In election forecasts, a meaningful €) focal point is 50% vote
share: above this value, the candidate wins. In this example, the
area under the curve to the right of 50% is 0.3 of the total area
under the curve. In other words, @) the right-tailed probability,
P(X > 50%), is 0.3, which is the candidate’s win probability.

The @ complementary cumulative distribution function
(CCDF) gives all of the right-tailed probabilities for a distribution.!
It is denoted 1 — Fx(x) = P(X > x). For example, if we read

1Similarly, the cumulative distribution function (CDF), Fx (x) = P(X < x), gives
left-tailed probabilities.

©® Themode ~ © The focal point is 50%

@ The forecast

distribution (PDF) o )
The win (right-tailed)

probability is 0.3

5 - vote%
40% 459 50% 55% 60% °

© ccorF

0% 5% 50% voted%

o
o

Figure 2: An election forecast (top) and its CCDF (bottom).
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down from 50% to the CCDF and across, we see that the probability
of winning, P(X > 50%), is @ 0.3. Our goal then is to translate
all of the probabilities in a forecast distribution (e.g., its CCDF)
into a new, bias-corrected distribution—one which causes people’s
subjective probabilities to resemble the original distribution. For
that translation, we turn to models of probability perception.

3.2 Linear-in-probit model for subjective
probability

In a review of work on subjective probability and proportion percep-
tion (including prospect theory [26] and visual perception [15, 22]),
Zhang and Maloney [61] propose a linear-in-log-odds (1lo) model
as a good fit for patterns of probability and frequency distortions
in a variety of domains. This makes it a promising foundation for a
robust bias correction for subjective probability. While their model
is expressed in terms of a slope and a crossover point, we express
it as a slope (') and intercept (a’):

PsuBJECTIVE = Ho(prrue) = 10git_1 [0(’ + ﬁ, : logit(PTRUE)] (1)

For mathematical convenience, we will use a linear-in-probit
(Ipr) model instead:

PsusjEcTIVE = Ipr(prrue) = probit_l [e + B - probit(prrus)]  (2)

The logit and probit functions are both S-shaped functions, and
are difficult to distinguish empirically (see Appx. B); consequently,
one or the other is often adopted for mathematical convenience [1].
Here, the probit formulation is useful because the probit function is
the inverse cumulative distribution function of the standard Normal
distribution (probit(p) = ®~1(p)), which will allow us to derive a
closed-form bias correction for Normal distributions.

The linear-in-probit function is controlled by its intercept (o) and
slope (f), which determine the shape of the relationship between
true and subjective probabilities (Fig. 3). When both probabilities
are probit-transformed, their relationship is linear (Fig. 3b). This
model allows for an overall bias (determined by «) in subjective
probability, and for distortions which pull probabilities towards 0
or 1 (f > 1) or towards the center (8 < 1; Fig. 3, the third column).

Besides empirical work suggesting its broad applicability [61],
this model has face validity when applied to an election forecasting
scenario. Journalists encounter challenges communicating uncer-
tainty in their forecasts to ensure readers do not ignore it [11].
People tend to “round” forecasted win probabilities towards 0 or 1,
e.g., misinterpreting a forecast that a candidate has a 0.3 chance of
winning as a very unlikely event (Fig. 1), then being frustrated if the
candidate ultimately wins the election. This phenomenon can be
captured by a linear-in-probit model with f > 1: large probabilities
are pulled towards 1, and small probabilities are pulled towards 0
(Fig. 3, the fourth column).

3.3 Generic bias correction

If we wish for people’s subjective probability distribution to be X,
we need to display an alternative distribution—the bias-corrected
version—such that people will act as if they had seen X. This re-
quires knowing the intercept () and slope (f) of the linear-in-probit
model, which are domain-dependent [61] and must be empirically
measured (Sec. 4). We must also know the probabilities of interest
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to the viewer: they might be interested in left- or right-tailed prob-
abilities, e.g.,loss or win probabilities of a candidate. Assuming we
know «a and f, and the viewer is interested in left-tailed probabili-
ties (P(X < x)), one approach would be to use the inverse of the
linear-in-probit function? (Ipr'!) to transform the cumulative distri-
bution function (CDF) of X to derive a bias-corrected distribution.
We call this distribution X<, a left-tailed bias correction:

probability we display
P(X™ <x) =1lpr i )

Alternatively, the viewer may be interested in right-tailed probabil-
ities (P(X > x)). In election forecasts, this could be the probability
a candidate gets more than 50% of the vote and wins the election.
Thus, we may use the complementary cumulative distribution func-
tion (CCDF) of X to derive X~, the right-tailed bias correction:

probability we display
P(X” > x) =lpr~' ( )
Applied to a general distribution, such a correction may require
the use of numerical differentiation to find corresponding densi-

ties. However, applied to a Normal distribution, we can derive the
correction analytically.

3.4 Normal correction for subjective
probabilities
If X ~ Normal(y, o), then the complementary cumulative distri-

bution function (CCDF) of X gives the probability the candidate
receives more than any given vote percentage, and it is denoted:
P(X > x) = 1 - Fxormal (x 4 02) —1- c1>(u) = @(u)
o o
Then given the intercept («) and slope (f) of the linear-in-probit
function, we can derive the right-tailed bias-corrected distribu-
tion, X~, by substituting the CCDF into the inverse of the linear-
in-probit function:

probability we display

PX™ > ) =Ipr ! ( :
= 1p1r7l (‘D (%))
~oftter)

=1 - FNormal (X H—ao, (ﬁo')z)
=— X~ ~ Normal (u>, 32)
where i~ =y — ac
and 0~ = fio

We can similarly derive a left-tailed bias-corrected distribu-
tion,3 X<:

Lo RPN
2By inverting Eq. 2, we get Ipr’! = probit™ (pmbn;ix) “) = <I>( 2 (;) a).
3The step-by-step derivation is provided in Appx. C.
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Examples of linear-in-probit functions

a=-0.75

(a) probability space

In the probability space, these 0.9

functions are S-shaped or 07
inverted-S-shaped.

).5

PsusJecTive 0.3

0.1
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B=2

towards 1

0.9

towards O

0.1 03 05 0.7 0.9

Prrue

(b) probit space

In the probit space, the
relationship between true and
subjective probabilities is linear.

probit(psygecrive)

0.7 0.9

T

PR T

corNA
Nuwooo
Goocoo

-2 -1 0 1 2
probit(preye)

The linear-in-probit intercept (a) controls the
fixed point of the function, shifting the
function in both probability and probit space.

It can be considered an overall bias,

describing how people map the probability

of 0.5 to other probabilities.

The linear-in-probit slope (B) controls the
degree of distortion. The further it is from 1,
the more distorted the function is. When 3 >
1and a=0 (the last column), small
probabilities are pulled towards O, and large
probabilities are pulled towards 1.

Figure 3: Examples of linear-in-probit models of subjective probability as a function of the true probability. Each panel shows a
fixed intercept (a; an overall bias) or a fixed slope (f; the degree of distortion). The bottom row shows the same models as in the
top row, with both the x— and y—axis transformed by the probit function. More examples are provided in Appx. A.

probability we display
P(XT < x) =lpr~'( )
= X~ ~ Normal (;1<, 32)
where ;< = i+ ac
and ¢ = fio

This suggests that when faced with Normally-distributed uncer-
tainty, a viable correction for subjective probability is to scale the
original distribution by f and shift it up by ao (left-tailed correction)
or down by ao (right-tailed correction; see Fig. 5a).

One limitation of this correction is that when « is nonzero, the
mode of the distribution is also shifted. This may not be desirable:
in the context of election forecasting, for example, if the forecast is
for the vote percentage in a two-party race, the modal prediction
may be shifted from below 50% of the vote to above it, changing
which party is forecast to win in the most likely case (see Fig. 5). It

may be desirable to keep the predicted winner unchanged, which
motivates another correction method as below.

3.5 Skew-Normal correction to preserve modal
forecast
If we wish to preserve the modal probability when the point pre-

diction is meaningful, we cannot use the Normal correction, as it
will shift the mode of the distribution. Since the Normal correction

is entailed by a transformation of all right- (or left-) tailed probabil-
ities, we must relax those conditions. We will derive a right-tailed
skew-Normal correction, X*, with the following conditions:*

(1) Instead of ensuring all right-tailed true probabilities are ac-
curately reflected by their corresponding subjective proba-
bilities, we will preserve a focal probability; i.e., we want
P(X* > xpocar) = Ipr ' (P(X > xpocar)) for some domain-
specific xpocar- In the election forecasting scenerio, we preserve
P(X > 50%); i.e., the probability that one candidate gets more
than 50% of the vote and wins the election.

(2) Unlike with the Normal correction, we will preserve the mode
of the distribution; i.e., we want mode(X™) = mode(X). Since
the mode and mean of a Normal distribution are equal, this
implies we want mode(X™) = p.

(3) Finally, so that the width of X* roughly approximates the cor-
rected Normal distribution apart from the skew, we will pre-
serve the standard deviation; i.e., we let c* = 6.

Unfortunately, there is no closed-form parameterization of the
skew-Normal distribution in terms of its mode,’ so we use numeri-
cal optimization to find a skew-Normal distribution with the desired

4A left-tailed skew-Normal correction could be derived analogously.

SThough it is unimodal, and given a skew-Normal distribution, it is straightforward to
use numerical optimization to find the mode by finding the x value that maximizes its
density function.
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Displayed P(X” > x)

0.1 03 05

0.7 0.9

For election forecasts, people may
care about the win (right-tailed)
probability of this distribution,
described by the

o
©

Subjective P(X > x)

We start with the distribution which 01
we wish to be people’s

The new CCDF gives us the density
function of the final distribution (X ),
which we display to people to cause
them to believe

is 1.

Displayed P(X” > x)

30%  40% 50% 60%  70%

X (vote percentage)

Figure 4: Illustration of the Normal correction for right-tailed probabilities. If we want the

linear-in-probit function— /- i

We transform the desired
subjective probability to
the probability we should display to
people P(X > > x) via the inverse of
the Ipr function.

We map the displayed probability
to a new CCDF, which preserves
the desired right-tailed probability.

to be people’s

subjective probability distribution, we display the @ blue distribution X, and subjective quantiles from this distribution are
preserved (have the same x values) when translating the two CCDFs () @) through the @ linear-in-probit function.

The forecast distribution (a)
(aka the subjective distribution)
has a modal point prediction
where the candidate may receive

<50% of the vote and lose.

The corrected distribu-
tion has a modal point prediction
where the candidate may receive
>50% of the vote and win.

vote percentage 40% 50% 60%

70%

(b)

The Skew-Normal corrected
distribution preserves the mode,
also showing that the candidate
may receive <50% of the vote
and lose.

40% 50% 60% 70%

Figure 5: The difference between the Normal and Skew-Normal corrections. (a) The Normal correction may shift the mode of
the distribution, changing the modal point prediction; (b) the Skew-Normal preserves the mode of the distribution and the

modal point prediction.

mode, focal probability (P(X* > Xpocar) = Procar), and standard
deviation (c*).

The typical parameterization of the skew-Normal is defined by
location (&), scale (w), and skew (1): ©

SWe use the typical definition of a skew-Normal distribution, with density function:

Sekew-Normal (x]&, @, A) = %(ﬁ (x — §)¢ (A (%‘5))

w

X* ~ skew-Normal(¢, w, A) (3)

We reparameterize the skew-Normal distribution in terms of its
standard deviation (¢*) to satisfy the third condition:
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X* ~ skew-Normal’ (¢, %, 1) (4)

O_*

where 0 = —— (5)
1— _22
\ m(A2+1)

The goal then is to find the location(¢) and skew (1) parameters
to satisfy the first two conditions. We use Nelder-Mead optimiza-
tion [38] to minimize the sum of two squared distances: (1) the
squared distance between the focal probability under the distribu-
tion X* (P(X™ > xpocar)) and the desired focal probability (procar);
and (2) the squared distance between the mode of the distribution
X* (mode(X™)) and the original mode/mean (u).

In practice, we are able to minimize this sum to ~ 0; i.e., to find
& and A such that P(X* > Xpocar) = Procar and mode(X™) = p,
satisfying conditions (1) and (2) above. An example of the resulting
distribution is shown in Fig. 4b. It is similar to the Normal correc-
tion, except that its mode is the same as the mode of the original
distribution. We provide code for this procedure in supplementary
materials.

To apply these corrections to a decision-making task, we must
know the intercept («) and slope (f) parameters of the linear-in-
probit function for a particular domain. It is also important to assess
whether or not the theory of our bias corrections strategies holds
up in practice. Thus, we require human subjects experiments.

4 EXPERIMENTS

We conduct two human subject experiments set in the context of
U.S. Senate election forecasts. Here we assume people care about
win probability and only correct for win (right-tailed) probabilities.
Experiment 1 estimates the intercept («) and slope (f) parameters
of the linear-in-probit function for subjective probabilities in the
decision-making task of betting on election winners. These param-
eters allow us to derive the Normal and skew-Normal corrections
described above (Sec. 3).

Experiment 2, which is preregistered, evaluates the two proposed
bias corrections for win probabilities. We repeat the same procedure
but show participants the bias-corrected distributions, expecting
that the biases in participants’ subjective probabilities of a candidate
winning will decrease.

This section describes the experimental materials and design
shared between the two experiments.

4.1 Materials

Cover story We use a cover story where participants read and
interpret hypothetical U.S. Senate election forecasts. U.S. election
forecasts have become controversial in recent years partly because
people tend to misinterpret them [11, 58]. While media outlets such
as FiveThirtyEight have been forecasting U.S. Senate elections since
2018, the general public is less familiar with U.S. Senate elections
than a presidential election, which may reduce the effects of partici-
pants’ prior knowledge on the experiments. We use the same cover
story as Westwood et al. [58], but simplify it to focus on one candi-
date (Candidate A). As Westwood et al. only use text to convey a
forecast in their experiments, we adjust the wording for histograms
(bottom of Fig. 6).
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Election forecasts State-of-the-art election forecasts estimate the
percentage of the vote a candidate (or party) receiving, and con-
vert the vote percentage distributions into the probability of one
candidate (or party) winning the election [20, 32]. As the proposed
corrections focus on Normal distributions, we generate election
forecasts using Normal distributions with a standard deviation of
2.5% for vote percentage. These roughly correspond to the known
standard deviation (2-4%) of senatorial polling in the U.S. [47].
We vary the means of the Normal distributions to generate differ-
ent forecasts, and have ten values {46.80, 47.80, 48.53, 49.15, 49.72,
50.28, 50.85, 51.47, 52.20, 53.20}% for Candidate A’s vote percentage.
At a standard deviation of 2.5%, these mean values correspond to
ten forecasts with various win probabilities: {0.1, 0.19, 0.28, 0.37,
0.46, 0.54, 0.63, 0.72, 0.81, 0.9}; i.e. the right-tailed probabilities
P(X > 50%) = 1 — Formal (50% g, 2.5%*).

Text Similar to Westwood et al. [58], both experiments use a text
representation to convey the probability of winning and vote per-
centage (Fig. 6 top). We explicitly tell participants the probability
of Candidate A winning and a point prediction of the mode of the
vote percentage distribution (the most likely outcome). A text de-
scription is also commonly used to convey election forecasts and
polling results in media outlets [4, 50, 51].

Histogram The other representation in the experiments is a his-
togram of a forecast distribution, with the right-tailed probabili-
ties P(X > 50%) highlighted (Fig. 6 bottom). We use a violet color
(#b150fDb) for highlighting to avoid partisan effects. There are many
visualizations for conveying forecast distributions (e.g.,densities [12,
25], CDFs [12, 25], quantile dotplots [12, 27, 31], intervals [8, 27]).
Because our focus is on adjusting the distribution, not the represen-
tation, we select one as a representative to assess our corrections.
Histograms are a natural choice as they are commonly used in
media outlets to convey election forecasts, especially senatorial
forecasts [49-51].

Corrections After analyzing the data of Experiment 1, we would
have known the intercepts (as) and slopes (fs) of the linear-in-
probit functions for text and histogram (detailed in Sec. 5). In Exper-
iment 2, we derive both Normal and skew-Normal bias corrections
for the original Normal forecast distributions. We recalculate the
point predictions for text and regenerate histograms, preserving
the same y-axis height and total area under the histogram as were
in the first experiment.

4.2 Elicitation

For each of the ten forecasts (ten probabilities of Candidate A
winning), we use three questions (Fig. 7). The first two ascertain
whether participants can read the text (or histogram) and are used
to examine the construct validity. The third elicitation induces par-
ticipants to make decisions using probabilistic forecasts and is the
focus of our analysis. It elicits the subjective probabilities people
internalize and act on in their decision-making [36] and measures
decision quality (see Sec. 2.1).

Elicitation 1: Likelihood. On a scale from 0 (very unlikely) to 100
(very likely), how likely is Candidate A to win the election? (Fig. 7a)
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Experiment 1

(a) Display original distributions

Probabilty of vote share

A prominent group of statisticians
analyzed the most recent polls that
include questions about who voters
prefer. Their analysis a few days before
the election shows that Candidate A
has a 19% chance of victory and is
expected to win between 47% and
48% of the vote.

A prominent group of statisticians
analyzed the most recent polls that
include questions about who voters
prefer. Their analysis a few days before

the election is shown in the chart below.

Candidate A wins

Predicted vote share for Candidate A

Experiment 2

(b)

aand
for text

aandf
for histogram

£

corrections

A prominent group of statisticians
analyzed the most recent polls that
include questions about who voters
prefer. Their analysis a few days before
the election shows that Candidate A
has a 41% chance of victory and is
expected to win between 48% and
49% of the vote.

A prominent group of statisticians
analyzed the most recent polls that
include questions about who voters
prefer. Their analysis a few days before

the election is shown in the chart below.

Pradtod o shre o Cndi A

Figure 6: Examples of representations and bias-corrected forecast distributions.
Fig. (a) shows text (top) and the histogram (bottom) in Experiment 1. In this example forecast, the true probability of winning
is 0.19, and the mode of the vote percentage distribution falls into 47%-48%.
Figs. (b) — (c) show the representations of the bias-corrected distributions in Experiment 2. For text, note that the differences in
the bolded description. For histograms, the two corrections have the modes falling into 48%-49% and 47%-48%, respectively, and
the areas highlighted are 0.37. Also, note that for histograms, we use a different color in this figure for aesthetic purposes.
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(c) Skew-Normal corrections

Probabity of vote share

A prominent group of statisticians
analyzed the most recent polls that
include questions about who voters
prefer. Their analysis a few days before
the election shows that Candidate A
has a 41% chance of victory and is
expected to win between 47% and
48% of the vote.

A prominent group of statisticians
analyzed the most recent polls that
include questions about who voters
prefer. Their analysis a few days before
the election is shown in the chart below.

Option 1: You win 100 coins
if a coin flip results in heads.

Option 2: You win 350 coins
if Candidate A wins.

O Option1

O Option2

Figure 7: Illustration of the user interface for the three elicitations: For each of the ten forecasts, participants first answer (a) a
likelihood question and (b) a surprise question. They then make (c) a sequence of 10 betting decisions, asking them to choose
between two options. Each bet (a box) is presented separately, and the rewards in Option 2 are randomized.

Elicitation 2: Surprise. On a scale from 0 (very unsurprised) to 100
(very surprised), how surprised would you be if Candidate A wins the
election? (Fig. 7b)
Elicitation 3: Betting. Participants are asked to make a sequence
of ten binary decisions where they choose between two reward
options (Fig. 7¢):
Option 1: You win 100 coins if a coin flip results in heads.
Option 2: You win {50, 60, 70, 80, 90, 100, 150, 200, 350, 1000} coins
if Candidate A wins.

As participants decide whether or not to take the bets, this elicita-
tion invites a sequence of comparisons between 0.5 (the result of a
coin flip) and participants’ subjective probabilities of Candidate A
winning. Comparisons to well-known frequency probabilities reli-
ably elicit subjective probability in decision-making [40], especially
under a betting task [3, 19, 26, 36]. Also, online prediction markets
for U.S. elections have been active for decades [18], giving this
task some real-world applicability. We refined the task by piloting
several versions based on the literature, consulting with colleagues,
fine-tuning the wording, and carefully checking quantitative and
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qualitative data from each pilot. We also incentivize participants,
following the literature in subjective probability [19, 56], and sim-
ulate a winner for the election based on the forecast and inform
participants that they will receive the coins as a study bonus (10,000
coins = $1 USD).

The two options are set as follows. The expected reward of
Option 1 is 50 coins (100 coins - 0.5), and the expected reward
of Option 2 is the reward times the true probability of winning
(reward - prryz). Thus, the rewards in Option 2 are set to cover the
range of values of 50/prrue (Prrue € {0.1...0.9}, see Sec. 4.1), the
rewards at which a normative decision-maker would switch from
Option 1 to Option 2. To avoid learning and order effects, the ten
bets are presented one at a time in random order for each forecast.

4.3 Experimental design

Factorial design Both experiments follow mixed factorial designs.
The within-subjects factor is the ten forecasts. The between-subjects
factors are representations and corrections. Each participant sees
ten forecasts, and the order is randomized. In Experiment 1, each
participant is randomly assigned to either histogram or text. In Ex-
periment 2, each participant is randomly assigned to one of the four
combinations: {text, histogram} X {Normal correction, skew-Normal
correction}. This design reliably measures subjective probabilities
in decision-making and minimizes carryover and fatigue effects.

Training Both experiments include a training session for partic-
ipants to ensure the construct validity of the study. The training
session presents an example forecast and asks participants three
questions: (1) which candidate is more likely to win; (2) what is
Candidate A’s chance of winning; and (3) which outcome is more
likely. For histograms, we annotate the example histogram to ex-
plain the meaning of the highlighted (and gray) areas, which is the
probability of Candidate A winning (or losing), and the meaning of
the tallest bar, which is the most likely outcome (the mode of the
distribution). The training session does not give feedback, and all
participants in both experiments get at least one of the questions
correct. We provide these in supplementary materials.

Procedure After participants enter the Qualtrics survey and con-
sent, they first take part in the training session. Participants are then
informed that the scenario and questions will always be the same,
and they will receive a bonus of up to $2.30 USD based on their
responses. They then finish ten forecasts, and in each forecast, they
answer the likelihood and surprise questions, and make ten betting
choices. After ten forecasts, they are asked for their strategies in
the questions and additional feedback. Each participant answers 10
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likelihood and 10 surprise questions and makes 10 - 10 = 100 binary
betting choices, taking about 15 minutes (see the details in Appx. D).

Participants We recruit all participants from Prolific.co and limit
experiments to desktop users, as forecast websites are often de-
signed for desktop use. Because of the U.S. election context, we use
U.S. demographically-representative samples provided by Prolific.co.
In Experiment 1, we request a minimal sample size of 300, as we do
not have an expectation of effect size; each of the two conditions has
about 150 participants. In Experiment 2, we have four conditions.
As the precision of our estimates from Experiment 1 is satisfac-
tory, we request the same per-condition sample size (150) to ensure
similar precision, resulting in a request of 600 participants.” The
exact number of participants depends on Prolific.co’s sampling
strategies, and we obtain 306% and 603 participants for the two
experiments (see demographics and breakdowns in Appx. D). The
pilot and previous participants are excluded from later experiments.
The study was approved by the Institutional Review Board (IRB)
at Northwestern University as exempt human subjects research
(STU00215415).

Compensation We pay each participant $4.00 USD for completing
an experiment. For each forecast, we simulate the winner using a
random number generator and pay them the reward based on their
responses. The means of resulting bonuses are $0.98 (o = 0.23) and
$1.02 (o = 0.24) USD for the two experiments.

5 MODELING SUBJECTIVE PROBABILITIES

With participants’ binary responses to the betting questions, we
use a nonlinear Bayesian multilevel model to infer participants’
subjective probabilities of Candidate A winning for this decision-
making task.

5.1 Model specification

As described in Sec. 3.2, we model subjective probabilities as a linear-
in-probit function of the true probabilities. Because participants
were asked to choose between a coin flip and a bet of Candidate A
winning, we presume they make decisions based on the following
rule: they are more likely to take the bet (praxeser > 0.5) if their
subjective expected reward is greater than the expected reward of
a coin flip (reward - psugrcrive > 50 coins). Here, we use a scaling
factor 6 that determines how sensitive people are to differences in
rewards, and derive a model formula that satisfies this requirement:

subjectiveE( taking the bet) > E(flipping the coin)

reward - psyggecrive > 0.5 - 100

reward - Ipr(prrye) > 50

reward - probit_1 (e + B - probit(prrue)) > 50

reward - probit™!(a + f - probit(prrus)) — 50 > 0

0- [reward - probit™ (o + S - probit(prrue)) — 50] >0 0>0

logit(praxeser) = 0 - [reward . probit_l(a + f - probit(prrur)) — 50] > logit(0.5) 0>0
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Built around this core formula representing the decision rule for
the task, the full model formula is:

line 1 takebet ~ Bernoulli(praxeser)
line 2
a scaling factor

line 3 arj = ar + Oqj
line 4 ,b’rjzﬁr"'fsﬁj
line 5 Sai| N (|, x

Sﬁj 0
line 6 0, ~ Exponential(1)
line 7 re{1.2} (two representations)
line 8 je{t.J} (7 participants)

line 1 We model participants’ decisions as a Bernoulli distribu-
tion, with the probability of taking a bet (praxeser) as a function of
their decision rule described above.

line 2 Inthe logit space, this line is the participants’ decision rule:
when reward - psygyrcrive > 50, it ensures praxgger > 0.5. In other
words, participants are more likely to take the bet than not if their
subjective expected reward is greater than the expected reward of
a coin flip. Within 1line 2 | blue indicates model parameters to
be estimated, indicates input to the model (predictors), and
indicates transformed parameters and constants.

lines 3-5 We expect that both the linear-in-probit intercepts (as)
and slopes (fs) vary with different representations and participants.
arj and fB;; are the intercept and slope for participant j with rep-
resentation r. &, and B, (without participant j) are the intercept
and slope for an average participant (o j = 0, 6g; = 0) with repre-
sentation r. The posterior medians of this average participant will
be used to construct corrected distributions. Because different par-
ticipants may have personal strategies, we model participant-level
slopes and intercepts as random effects. The d ; and d4; capture the
differences between each participant’s own intercepts and slopes
compared to the average participant’s for each representation.

line 6 The non-negative scaling factor 8 may also vary in differ-
ent representations. As it is a nuisance parameter and we are inter-
ested only in o and S, for simplicity, we do not model participant-
level differences in 6.

"We used our Experiment 1 data to simulate Experiment 2 results at various sample
sizes, and concluded that using the same overall sample size would yield much less
precise estimates.

8The analysis of Experiment 1 includes six participants who did not finish the experi-
ment but at least one forecast. Because we preregistered this analysis and used it in
Experiment 2, we include these participants in our report. We provide the analysis
excluding these participants in supplementary materials, which yields almost identical
results. The analysis of Experiment 2 includes only participants who accomplished
the experiment.
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logit(praxeser) = 0r - [[reward . probit_1 (arj + Brj -probit(pTRUE))] - 50]

|

intercept slope

priors In the logit space, we center priors for a,; at 0 and f;;
at 1, indicating no bias in subjective probability. We allow them
to approach the extreme distorted cases and thus have a,; ~
Normal(0,1) and fBr; ~ Normal(1,2) (see Fig. 3 and Appx. A).
For covariance, we let ¥ = diag(r)Qdiag(z), then 7 is a vector
of standard deviations of §,; and 5ﬁ it and Q is their correlation
matrix. We expect some variance in slopes and intercepts and
have 7 ~ half-Normal(0,0.5) as priors. We also expect a weak
correlation between participants’ slopes and intercepts and set a
Q ~ LK]Jcorr(2) prior.

Experiment 2 We expect that the two corrections have different
effects on participants’ subjective probabilities in this decision-
making task. Therefore, the model for Experiment 2 replaces repre-
sentations with the interaction between representations and correc-
tions in all lines, i.e.,r € {1...4} from the four combinations: {text,
histogram} X {Normal correction, skew-Normal correction}. The
priors and other terms are otherwise the same. We preregistered
the model specification and priors for Experiment 2.

Implementation We implemented these models using R 4.2.0,
Rstan 2.21.5 [53], CmdStanR @.5.2 [14], brms 2.17.0 [5], and tidybayes
3.0.2 [29]. We use the logit approximation of probit [1], which is
logit=!(1.7-a+ fx) = probit™! (a+ fx), to help the model converge.
We inspected the minimal bulk and tail effective sample size (ESS) to
ensure reliable estimates; and they are 1613 and 2693, both coming
from the average participant’s ff for histograms in Experiment 1. We
also examined R values (1.0) to ensure model convergence. We pro-
vide code and fitted model files in supplementary materials (x.Rmd
and *.rds files).

5.2 Derived measures

We derive three measures from participants’ subjective probabilities
of Candidate A winning. The first two are part of the linear-in-probit
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subjective probability function. The third measure describes the
overall deviation from the true probabilities.

Intercept (a) This is the estimated intercept of the linear-in-probit
function. If participants do not systematically under- or over-estimate
the 0.5 probability, the intercept should be close to 0. If the intercept
deviates from 0, participants believe a different probability is 0.5.

Slope () This is the estimated slope of the linear-in-probit func-
tion. If participants’ subjective probabilities are not distorted, the
slope should be close to 1. If the slope is larger than 1, participants
may systematically underestimate small probabilities and overesti-
mate large probabilities (the intercept determines the threshold).

Integrated absolute error (IAE) The last
measure combines both the intercept and
slope to provide an overall estimate of de-
cision quality. This measure integrates the
difference between subjective and true prob-
abilities in the range of 0 and 1, defined as
_/01 |PSUBJECTIVE — prrueldprrue. It can be in- 0 .
terpreted as the average bias in subjective
probabilities. Visually, this measure is the area
between the linear-in-probit function and the diagonal line y = x,
as shown in the figure on the right side.

-

PsusJecTive

Prrue

Because of our use of a Bayesian modeling approach, the un-
certainty in these measures is quantified by posterior probability
distributions from the models. Similar to our corrections, we only
use the posterior estimates conditional on the average participant
(i.e., setting participants’ random effects to zero) to calculate these
measures. The exploration of the scaling factor 6 is provided as
Appx. G and in supplementary materials.

6 RESULTS

With the models and measures, for each experiment, we first present
the modeled subjective probabilities of winning for an average
participant (Figs. 8a and 9a). We then present posterior distributions
of the three measures as well as comparisons between the two
experiments (Figs. 8b-d and 9b-d). We also report the standard
deviations of random effects in text and provide an exploration of
participant-level random effects in Appx. F; those results lead to
similar conclusions but are more difficult to interpret due to the non-
linearity. All the results are reported as medians and 95% quantile
credible intervals (Cls; Bayesian analog to confidence intervals).
The analyses of likelihood and surprise questions are provided in
Appx. E to ensure the construct validity.

We also conducted two post hoc analyses: (1) calculating the total
expected rewards as a post hoc alternative measure for decision
quality and (2) coding participants’ self-reported decision strategies
based on their free-text responses.

6.1 Experiment 1: Decision-making with the
original forecast distributions

Subjective probability Participants’ subjective probabilities are
biased (Fig. 8a) when they make decisions based on the election
forecasts in both text and histogram representations. They underes-
timate small probabilities and overestimate large probabilities. With
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text, their subjective probabilities have a more distorted S-shape.
With histograms, their subjective probabilities are less biased for
large probabilities, e.g., prrur > .8: the S-shape is closer to the
diagonal line.

Measures The linear-in-probit intercepts (as; Fig. 8b) for text
and histograms are similar, and they both deviate from 0 (-0.34
[-0.44, —0.24]), indicating a non-zero fixed point in the probit
space. The linear-in-probit slopes (fis; Fig. 8c) also deviate from
1, but histograms yield smaller deviations (1.58 [1.31, 1.86]) than
text (2.44 [2.16, 2.74]). Combining them, the integrated absolute
errors (IAE; Fig. 8d) show that both text and histograms lead to
substantial biases in average participants’ subjective probabilities
(0.092 [0.074, 0.11] and 0.13 [0.12, 0.14]). In this decision-making
task, average participants’ subjective probabilities, on average, are
about 10 percentage points away from the true probabilities. The
standard deviations of random intercepts for o and f are 0.62 [0.56,
0.68] and 1.67 [1.49, 1.86], respectively.

Summary Together, the results of this experiment suggest that
there are systematic biases in participants’ subjective probabilities
in making decisions from probabilistic election forecasts, regardless
of the representation we chose.

The results of Experiment 1 also give us the linear-in-probit in-
tercepts and slopes for this decision-making task to derive the cor-
rected distributions. Because our goal is to create a single corrected
forecast, i.e., not to tailor forecast distributions to each participant,
our bias corrections for Experiment 2 use the median intercept and
slope from posterior estimates conditional on an average participant.
In principle, we could use this model to derive participant-level
corrections; however, this level of tailoring would be difficult to
accomplish in a journalistic setting like election forecasting. Here
we leave participant-level corrections for discussion and future
work (see Sec. 7.1). Thus, for text, we use the posterior medians
o = —0.34and f§ = 2.44 to derive bias-corrected distributions for Ex-
periment 2; for histogram, we use the posterior medians o = —0.34
and [ = 1.58 to derive bias-corrected distributions.

6.2 Experiment 2: Decision-making with the
bias-corrected forecast distributions

In Experiment 2, we show participants the bias-corrected distribu-
tions in text or as histograms and repeat the same procedure. We
expect that these corrections will improve participants’ subjective
probabilities in decision-making, reducing biases and bringing them
closer to the true probabilities. We preregister three measures: the
linear-in-probit (1) intercept and (2) slope, as well as (3) integrated
absolute error.

Subjective probability Visually, participants’ subjective probabil-
ities look much closer to the true probabilities across all conditions,
regardless of the representation or correction we chose for the
experiments (Fig. 9a). In particular, participants improve their un-
derestimation of small probabilities, although it appears that both
Normal and skew-Normal corrections slightly over-correct large
probabilities, making large subjective probabilities slightly further
deviate from the true probabilities.
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Experiment 1 « Decision-making with uncertainty representations of election forecasts
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Figure 8: The main results of Experiment 1. All are posterior estimates from the model. (a) We find substantial biases in
participants’ subjective probabilities. These are evidenced by (b) the intercepts (as) of the linear-in-probit functions deviating
from 0 and (c) the slopes (fs) deviating from 1. (d) The integrated absolute errors between subjective and true probabilities are
0.13 [0.12, 0.14] (text) and 0.092 [0.074, 0.11] (histogram), indicating about 10 percentage points of biases.

Preregistered measures Both Normal and skew-Normal correc-
tions debias the linear-in-probit intercepts (as; Fig. 9b) for text
and histograms, bringing them closer to 0. In particular, the skew-
Normal correction brings the intercepts very close to 0, e.g., —0.032
[-0.14, 0.081] for histograms; the Normal correction slightly over-
corrects the intercepts, e.g.,0.15 [0.032, 0.27] for histograms. The
standard deviation of random intercepts for « is 0.69 [0.64, 0.74].

Both Normal and skew-Normal corrections debias the slopes
(Bs; Fig. 9c) for text and bring them much closer to 1, e.g., 1.43
[1.21, 1.66]; neither correction debiases the slopes for histograms
(though this was already around 1.5 in Experiment 1). The standard
deviation of random intercepts for f is 1.32 [1.22, 1.43].

Combining them, both corrections reduce the integrated abso-
lute errors (IAE; Fig. 9d) and improve decision quality from both
representations, and the improvement for text is very substantial,
from more than 10 percentage points to about 5 percentage points
(i.e.,reducing 50% of the biases), suggesting a large improvement.
Between the two corrections, the skew-Normal correction for text
makes participants slightly less biased in their decision-making,
but these two corrections are similar for histograms.

Summary Both corrections improve participants’ subjective prob-
abilities for text and histograms; they also bring the subjective
probabilities of the two different representations closer to each
other. These corrections have a bigger impact on text because of
the larger innate biases found in Experiment 1. Between the two
corrections, the skew-Normal correction may be slightly more ef-
fective (perhaps due to its preserving of the mode of a forecast

distribution). But the shift in the mode is subtle (Fig. 5), which may
explain why the differences between the two corrections are small.

6.3 Post hoc analysis: Corroborating the
improvement in decision quality

Method Because of our bonus mechanism (see Sec. 4.1), expected
rewards can also be used to measure participants’ decision quality.
Given the posterior probability of (i.e., setting participants’ random
effects to zero) taking a bet, we can calculate the expected reward
of an average participant’s decision on that bet:

Praxeser * (Prrug - reward) + (1 — prageser) * 50 (6)

We accumulate the average participant’s expected reward for all
100 bets and report the total expected rewards in Fig. 10. Unlike
the results above, this measure is not preregistered; we use it as a
reasonability check.

Results Both corrections result in a substantial improvement in
the total expected rewards for the average participant, from 11.31k
[11.42k, 11.57K] to 11.63k [11.61k, 11.65K] coins depending on rep-
resentation and correction, although the absolute improvement
(about 300 coins) is small compared to the total expected reward
under an optimal strategy (11,879 coins). These results are simi-
lar to those of integrated absolute errors of subjective probability.
This is because participants’ subjective probabilities underlie their
decisions, and the optimal decision is achieved when participants’
subjective probabilities match the true probabilities.
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Experiment 2 - Decision-making with uncertainty representations of bias-corrected election forecasts

(a) Subjective probability

(b) Intercept (a) (c) Slope (B)

The intercept is getting closer to O, and the slope is getting
closer to 1, indicating less biased subjective probability.
The medians and 95% Cls are 0.17 [-0.44, -0.24] and 2.44
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The intercept is almost centered at O, and the slope is
closer to 1. Both indicate less biased subjective probability.
The medians and 95% Cls are 0.056 [-0.057, 0.17] and 1.43
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Figure 9: The main results of Experiment 2. All are posterior estimates from the model. (a) When showing bias-corrected
distributions to participants, visually, we find the biases in participants’ subjective probabilities decrease. These are evidenced
by (b) the intercepts (as) of the linear-in-probit functions are closer to 0, and (c) the slopes (fs) for text are closer to 1. (d)
The integrated absolute errors between subjective and true probabilities are also reduced for text (from 0.13 [0.12, 0.14] to

0.054 [0.030, 0.076]) and slightly for histograms.

6.4 Post hoc analysis: Coding decision strategies

We asked participants to report their strategies as free-text re-
sponses and performed qualitative coding to gain further insight
into this decision-making task.

Method Because we had over 900 responses, one of us (the primary
coder) looked through comprehensible responses and categorized
them until they exhausted the types of participants’ strategies.
All the authors then discussed and refined the coding scheme as

presented by the primary coder using representative examples. This
proceeded in several rounds until all were satisfied with the code
book. The primary coder then randomly sampled 200 responses (100
from histogram and 100 from text) and coded them to estimate the
prevalence of each strategy. Of these, 33 were too vague to identify
a clear strategy and were removed from the analysis. We coded the
remaining 167 responses based on whether the participant used
(1) Candidate A’s win probability, (2) the reward for each option,
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Post hoc analysis: expected rewards
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Figure 10: The two corrections also improve the total ex-
pected rewards for an average participant. This alternative
measure of decision quality corroborates our preregistered
measure, IAE of subjective probability.

(3) both, or (4) neither. We also cataloged specific strategies under
each category, reporting the results in Table 1.

Results Around 42% of participants used both the win proba-
bility and the reward in betting. This included participants who
calculated expected values for each option, participants who de-
scribed making some kind of tradeoft between win probability and
reward, and participants who described using probability and re-
ward, but did not outline a more specific strategy. Around 47% of
participants described various strategies using only the win prob-
ability, whether this was by always selecting the option with the
highest win probability, or through some other probability-based
decision rule. Around 9% of participants only used the reward in
their decision-making, by always selecting the option with the high-
est reward. Around 2% of participants did not refer to probability
or reward at all.

It is notable that 42% of participants used both probability and re-
wards; i.e., the information that forms the basis of our presumptive
decision rule: expected value. They might not all have calculated
an expected value, but it is reasonable to think that many of their
strategies could approximate this rule. While others might have not
followed an approximation, the improvements in subjective proba-
bility suggest our corrections have some robustness to variance in
strategies. However, around 11% of participants did not describe
using probability at all. They were likely to be unaffected by our
corrections. Similarly, some participants might not have interpreted
the task correctly (e.g., “I chose the coin flip because it has a greater
chance of winning”). Both help explain why our corrections are
imperfect.

Fumeng Yang, Maryam Hedayati, and Matthew Kay

7 DISCUSSION

7.1 Why is the correction imperfect?

While our correction methods improve subjective probability and
overall decision quality, it is worth interrogating why the slopes
of the linear-in-probit function were not completely debiased. One
explanation is that participants may be using multiple, different
strategies: Kale et al. [27], for example, found evidence that differ-
ent people employ different strategies when attempting to make
decisions from uncertainty visualizations, some of which are better
matched to the decision task than others. Our qualitative results
revealed a similar variety of strategies and heuristics, only about
half of which correspond approximately to our decision rule (and
even then, many of these not precisely). Other heuristics may not
respond to changes in the linear-in-probit parameters in the way
our model expects: e.g., people using a heuristic of always picking
the highest reward may not change their decisions at all, even if
the model predicts that someone with their particular linear-in-
probit curve should change. Other cognitive biases (e.g., preferring
an immediate reward [45]) may also affect decisions in ways not
captured by the model (a coin flip may sound more tangible than
a hypothetical election—and we did see some participants always
take the coin flip).? Another ostensible explanation may be that
individuals focus on different visualization properties than the ones
we corrected for (e.g., left-tailed lose probabilities instead of right-
tailed win probabilities); while we did not see explicit evidence for
this (participants talked mostly about the reward or the win proba-
bility, not the lose probability), it may be worth investigating more
directly, perhaps via eye- or mouse-tracking studies. In any case, it
is clear that some individuals’ strategies will not be impacted by
our corrections as we expected.

Whatever the cause, imperfect subjective probability correction
is a natural result of using a model that simplifies complex human
behavior to a two-parameter equation. It is notable that even this
simplified model is able to produce an effective and robust correc-
tion. Future work could attempt to model the mixture of strategies
employed within a population to develop more precise corrections,
or even develop personalized corrections (this could help address
the variance in IAE across participants; see Appx. F). Our work sets
a baseline of comparison against which more complicated correc-
tion methods can be judged.

7.2 Applying corrections in practice

It is exciting to see that both correction methods improve decision
quality for both representations. After correction, both represen-
tations elicit very similar performance, and the impact of the cor-
rection on error (reduction on the order of 5 percentage points) is
large for uncertainty visualization. If this result holds across other
representations, for tasks where it is possible to apply such correc-
tions, the particular representation used may matter less. This has
important implications when some representations are harder for
some people to understand than others, e.g., if working memory

°It may be tempting to look to perceptual biases for an explanation as well; e.g., ten-
dencies to underestimate areas according to Stevens’ power law [54]. We think this is
a less likely explanation, as the mathematical basis of the linear-in-log-odds model
(and therefore the linear-in-probit approximation) in Stevens’ power law means such
biases should be accommodated by changes in the parameters of the linear-in-probit
function; our secondary examination of likelihood results (Appx. E) corroborates this.
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Table 1: Participants’ betting strategies.

Category Specific strategy Examples Est. %

Probability & reward Using expected values “Compared the EV of Option 2 (probability X potential payoff) with EV of 6%
Option 1 (50)”

“I multiplied the coins won by the projected chance of victory”
Probability & reward A tradeoff between probability  “I chose what I thought were the better odds. Except I always picked 1000  28%
and reward because why not?”
“I would always hit option 2 if I thought A was going to win or if it was
350+ to win”

Probability & reward Unspecified strategy using prob-  “Based upon probability and amount of gamble” 8%

ability and reward “I'tried to pick the bigger coin amount that had more likelihood of winning”

Probability Using win probability “I would choose the ‘safer bet’ ” 47%
“What I thought had the best odds”

“If the candidate had better than 70%”

Reward Choosing the highest reward “I picked the larger coin amount no matter by who” 9%
“Everyone wants the higher amount so I took that just in case a miracle
happened and they did win”

Neither Choosing the coin flip “I wanted a 50/50 chance of winning” 1%

Neither Choosing at random “I randomly picked” 2%

“Kind of back and forth to make the odd go either way”

capacity limits some people’s ability to take advantage of some
representations [6].

That said, there are practical issues with applying these cor-
rections. First, the decision task and associated heuristics must
be unambiguous; in election forecasting, we have assumed peo-
ple are interested in right-tailed (win) probabilities, not left-tailed
probabilities—and this is largely corroborated by our qualitative
results. If a task called for people to focus on other aspects of a dis-
tribution (e.g., its variance), a different correction would be needed.
In the election forecasting scenario, because the intercept (@) is
nonzero, a slightly different correction would be applied depending
on if the viewer is interested in whether Candidate A wins (right-
tailed probability) or loses (left-tailed). One compromise would be to
pick a correction that is symmetric, even if imperfect: since « in this
task is relatively small, we could fix it to 0 so that the corrections
for left- and right-tailed probabilities are equivalent. This would
amount to multiplying the forecast distribution standard deviation
by B = 2 (the approximate value of § estimated in Experiment 1);
and this would essentially attempt to correct for people’s tendency
to “round to 100%” or “round to 0%” (see Fig. 3a right column, where
B = 2). In this way, knowledge of domain tasks and the biases at
play may be used to construct a correction tailored to a particular
use case; work on guidelines for applying distribution corrections
in practice may therefore be fruitful.

Second, distributions other than the Normal may require tailored
corrections, depending on the task. We provide the closed-form
Normal correction because Normal distributions are ubiquitous
in uncertainty quantification, and this simpler correction may be
more accessible to practitioners. For other distributions, if the goal
is to correct the CDF or CCDF, it is not necessary to know a closed-
form correction nor to tailor the correction to the distribution.
The generic correction formula in Sec. 3.3 can be applied directly

to either the parametric CDF or CCDF of a distribution, or an
approximate CDF or CCDF estimated from a sample (see Appx. H).
However, if domain-specific concerns complicate the task—like the
mode crossing the 50% line in an election forecast—more tailored
corrections like the skew-Normal correction may be needed.
Third, it is necessary to elicit the parameters of any correction
before applying it in practice. At the very least, there are several
domains of sufficient societal importance that this elicitation exer-
cise is worthwhile: e.g., election forecasts, climate change forecasts,
and epidemiological modeling (as in the COVID-19 pandemic and
its associated forecasts). For journalists working in U.S. election
forecasting, corrections using our parameter estimates should be
appropriate, as we used U.S. demographically-balanced samples.
Future research could use our methods to estimate correction pa-
rameters for other domains, which could then be adopted by practi-
tioners. Such efforts would lead to a clearer picture of how and why
subjective probability varies across domains, yielding an improved
understanding of people’s decision-making under uncertainty.

7.3 Ethics of subjective probability correction

One possible objection to applying these corrections may be that
adjusting probabilities is not transparent (or worse, amounts to
lying). We believe this question is not so simple, and rests some-
what on a foundational question of uncertainty communication:
is the goal to communicate mathematically precise probabilities
(assuming a forecaster’s probabilities are “true”—which is already
dubious), or is the goal to induce reasonable subjective probabili-
ties in the viewer? If a viewer’s decision-making process is better
aligned to forecasts that overstate uncertainty, e.g., by multiplying
the standard deviation by a factor of = 2, is applying this correction
unethical? Or if it is ethical to correct color scales to be perceived as
uniform even when mathematically they are not, is it also ethical to
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correct probabilities to be acted on more normatively even if those
probabilities are not displayed exactly as calculated by a forecast?
And if the answers to these questions differ: why?

We do not claim to have perfect answers to these questions, and
suspect that the answers will vary by decision context, audience
values, etc. Some forecasters appear already to have answered “yes™:
weather forecasters, for example, may over-predict the probability
of rain, because their audience is happier when a forecast for rain is
wrong (they don’t get wet) than when a forecast for no rain is wrong
(and they get wet) [48]. An understanding of the stakes in a decision,
the expertise of the decision-maker, and the communication norms
of a domain should determine whether and how bias corrections
might be applied.

These questions do suggest a need for further study and guidance
in how to report forecasts if a correction is applied. One approach
may be to apply such corrections transparently: e.g., to experiment
with showing an uncorrected and corrected distribution together,
or to include descriptions of the correction and its rationale in text
even if the uncorrected distribution is not shown. The impact of
such approaches on decision-making is worth studying: if people
are told the correction is applied to aid their decision-making, does
this negate the benefit of the correction?

Another approach may be to adopt communication strategies
that have the effect of a bias correction without applying it to the
distribution representation itself. For example, Padilla et al. [42]
found that qualitative expressions of low forecaster confidence,
e.g., labeling a forecast “low confidence”, paired with a forecast
distribution, had essentially the equivalent effect of increasing the
standard deviation. If a qualitative expression could be found that
approximately aligns with the desired increase in standard deviation
implied by the slope (f) for a domain, this may be an alternative to
changing the representation itself. Overall, we believe that careful
consideration of the values of the audience, the decision-making
context, and further study of approaches to bias correction should
allow visualization designers to more effectively—and ethically—
construct uncertainty representations.

8 CONCLUSION

We propose a new approach to improve uncertainty communication:
we can fix uncertainty representations but change the distribution
being displayed to improve people’s decision quality. Our approach
corrects biases in subjective probabilities for uncertainty representa-
tions based on models of people’s beliefs. We derive two corrections
tailored for Normal distributions and show how to estimate the pa-
rameters for these corrections empirically. We also demonstrate that
the corrections reduce biases in people’s subjective probabilities
and improve their decision quality. Our approach can be applied to
any visual representation where the subjective probability function
is known, and it can be generalized to any univariate probability
or confidence distribution, giving it broad applicability. That said,
questions remain about how to tailor the correction to the domain
tasks (and concordant biases), and how to transparently apply such
corrections in practice. Overall, our work opens a new avenue for
subjective probability correction in uncertainty communication,
providing a promising tool for decision-making under uncertainty.
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