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Abstract

Limited-Angle Computed Tomography (LACT) is a non-
destructive 3D imaging technique used in a variety of appli-
cations ranging from security to medicine. The limited angle
coverage in LACT is often a dominant source of severe arti-
facts in the reconstructed images, making it a challenging
imaging inverse problem. Diffusion models are a recent class
of deep generative models for synthesizing realistic images
using image denoisers. In this work, we present DOLCE
as the first framework for integrating conditionally-trained
diffusion models and explicit physical measurement mod-
els for solving imaging inverse problems. DOLCE achieves
the SOTA performance in highly ill-posed LACT by alter-
nating between the data-fidelity and sampling updates of a
diffusion model conditioned on the transformed sinogram.
We show through extensive experimentation that unlike ex-
isting methods, DOLCE can synthesize high-quality and
structurally coherent 3D volumes by using only 2D condi-
tionally pre-trained diffusion models. We further show on
several challenging real LACT datasets that the same pre-
trained DOLCE model achieves the SOTA performance on
drastically different types of images.

1. Introduction

Computed Tomography (CT) is one of the most widely-
used imaging modalities with applications in medical diag-
nosis, industrial non-destructive testing, and security [76,

, 77, 80]. In a typical parallel-beam CT imaging system,
the x-ray measurements obtained from all viewing angles
are combined to reconstruct a cross-sectional image of a 3D
object [39]. Conventional reconstruction methods such as
Filtered Back Projection (FBP) can produce high-quality CT
images given a complete set of projection data, but com-
pletely fail under more ill-posed scenarios such as Limited-
Angle CT (LACT), where projections from only a limited
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Ground truth FBP

Figure 1. We show that the same pre-trained DOLCE model can
reconstruct distinct CT images such as checked-in luggage [55]
and human body [50]. Top: 3D rendering of a luggage from its 2D
slices reconstructed using DOLCE on the limited-angle data con-
taining just one-third of the views (0-60°). Note how our method
preserves the 3D edges, enabling a successful recovery of the object
geometries. Bottom: Comparison of DOLCE on a medical dataset
with DPS, which is a SOTA method for solving imaging inverse
problems using unconditional diffusion models [13]. See Section 5
for the complete set of experimental results.

range of angles can be acquired (i.e., 0 < 0 < O With
Omax < m) [3, 56, 37, 11, 52]. A typical solution to this in-
verse problem is model-based optimization that integrates a
forward model characterizing the imaging system and a reg-
ularizer imposing priors on the unknown image. While there
has been significant progress in algorithms that leverage so-
phisticated image priors (e.g., transform-domain sparsity,
self-similarity, and learned dictionaries) [20, 19, 43, 16], the
focus in the area has recently shifted to deep learning (DL).

Deep Learning for CT: A traditional DL reconstruction
involves training a convolutional neural network (CNN) ar-
chitecture, such as U-Net [58], to directly perform a regu-
larized inversion of the forward model by exploiting redun-
dancies in the training data [38, 35, 25, 27, 88, 2, 92, 91].
Model-based DL (MBDL) is another popular reconstruc-
tion strategy that seeks to explicitly use the knowledge
of the forward model by integrating a CNN into a model-
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based algorithm. Popular MBDL frameworks include Plug-
and-Play Priors (PnP) [73, 57], which use pre-trained deep
denoisers as image priors [68, 51, 90], and Deep Unfold-
ing [24, 1,46, 23, 94, 33], which interpret the iterations of
a model-based algorithm as layers of a CNN to perform
end-to-end supervised training. Other DL strategies used in
CT reconstruction include dual-domain learning [84, 71, 93],
deep internal learning [89, 59, 72], and measurement syn-
thesis learning [44, 45, 70]. Despite the rich literature on
tomographic imaging, the reconstruction of high-quality im-
ages with sharp edges remains a well-known challenge, par-
ticularly when the acquired data is missing a large-range of
angles (i.e., Omax < 90°). Furthermore, most prior work in
the area has focused on methods that can only produce point
estimates without any quantification of the reconstruction
uncertainty, which can be essential in critical applications
such as healthcare or security.

Proposed Work: We present Diffusion Probabilistic
Limited-Angle CT Reconstruction (DOLCE), a conditional
generative model for LACT, which can generate multiple di-
verse, yet high-quality, reconstructions from a given limited-
angle data. Inspired by the recent successes of Denoising
Diffusion Probabilistic Models (DDPM) [62, 18] and de-
noising score matching [64, 65], we design DOLCE as a
“repeated-refinement” conditional diffusion model. Specif-
ically, DOLCE trains a stochastic sampler conditioned
on noisy seed reconstructions obtained using transformed
limited-angle sinograms. To boost the imaging quality fur-
ther, DOLCE imposes an additional data-consistency step at
every iteration after the sampling-update step. DOLCE can
thus be viewed as a method for transforming a standard nor-
mal distribution into an empirical data distribution through
a sequence of refinement steps, while integrating physical
forward models and learned stochastic samplers (see Fig. 2).

We demonstrate several unique features of DOLCE com-
pared to the prior work through extensive experimentation on
two real-world LACT datasets. We first show that, on both
applications, DOLCE achieves the state-of-the-art (SOTA)
performance by directly producing high-resolution 512 x 512
images across a range of limited-angle scenarios (0. €
{60°,90°, 120°}). Next,we make an interesting finding that
the same pre-trained DOLCE model can be effective on
LACT from significantly different data distributions, such as
images of human body and of checked-in luggage, enabling
highly generalizable CT reconstruction networks for the first
time. Finally, we show how the diverse realizations produced
by DOLCE (from a given sinogram) can enable meaningful
uncertainty quantification [41]. Notably, we find the vari-
ances estimated by DOLCE to be well calibrated, i.e., con-
sistent with the true reconstruction errors. In short, DOLCE
is the first model-based probabilistic diffusion framework
for LACT that achieves SOTA performance and enables sys-
tematic uncertainty characterization. Our code is available
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athttps://github.com/wustl-cig/DOLCE.

Our main contributions can be summarized as follows:

1. We propose DOLCE as the first conditional diffusion
model for the recovery of high-quality CT images from
limited-angle sinograms.

2. We show that DOLCE is effective across two real-
world datasets: checked-in luggage and medical-image
datasets. DOLCE achieves a PSNR improvement of at
least 3 dB over ILVR [12] and DPS [13], two SOTA
diffusion models for inverse problems.

3. We use DOLCE to provide uncertainty maps for the
reconstructed LACT images. The uncertainty estimates
are reflective of the true reconstruction errors.

4. Using a 3D segmentation experiment, we show the
effectiveness of DOLCE in recovering the geometric
structure and sharp edges in high-resolution images,
even in severely ill-posed settings.

2. Related Work

Tomographic Image Reconstruction. Traditional analytic
algorithms such as FBP are commonly used for CT recon-
struction. However, FBP produces inaccurate reconstruc-
tions with noise and artifacts when the imaging conditions
are highly ill-posed such as in limited angle or sparse-views
scenarios. Model-based iterative reconstruction (MBIR) al-
gorithms [52, 36, 87, 75, 6, 74] are a popular alternative
for tomographic reconstruction. MBIR optimizes the recon-
struction solution such that it best fits to the forward model,
which captures the measurement physics and noise statistics,
and a prior model for the object.

Recent DL-based methods adopt an end-to-end approach
where a deep network architecture is trained in a supervised
fashion to directly produce a point estimate [38, 35, 2, 21,
1. For example, [23, 10, 94, 46, 33] pro-
pose to unfold an iterative algorithm and train it end-to-end
as a deep neural network. This enables integration of the
physical information into the architecture in the form of data-
consistency blocks that are combined with trainable CNN
regularizers. Deep internal learning methods are alternates
for tomographic reconstruction that explore the internal in-
formation of the test signal for learning a neural network
prior without using any external data [22, 89, 59, 4, 83]. A
related family of denoising-driven approaches known as PnP
algorithms represents alternative to traditional DL methods
by combining iterative model-based algorithms with deep
denoisers as priors and have been shown to be effective in

bl s O )

various forms of tomographic imaging [49, 86, 79, 69, 47].
Diffusion Models in Imaging. Denoising diffusion mod-
els [30, 18, 42] and score-based models [64, 65, 67] are

two related classes of generative models that were shown
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Figure 2. Overview of the proposed approach. Starting from the Gaussian noise &7, we sample an image o from the proxy posterior by
solving the reverse process of conditional denoising diffusion model, alternating between the denoising-update and the data-consistency step.

to achieve the SOTA performance in unconditional image
generation. Despite being discovered independently, both
classes are often referred to as diffusion models due to their
similarity [34, 42]. Diffusion models are trained to model
the Markov transition from a simple distribution to the data
distribution, enabling the generation of samples through se-
quential stochastic transitions. Apart from unconditional
image generation, diffusion models have recently been ap-
plied to various conditional imaging tasks. For example, one
line of work has focused on designing diffusion models for
specific image-to-image translation problems [60, 62, 85].

Unlike these methods, however, DOLCE explicitly lever-
ages a forward model at inference, ensuring consistency of
generated results with the physics of the imaging instrument.
Another line of work has focused on keeping the training of
a unconditional diffusion model intact, and only modify the
inference procedure to enable sampling from a conditional
distribution [12, 13, 14, 15, 40, 48, 66]. These methods can
be thought of as solving different image reconstruction prob-
lems by using the learned score function as a generative prior
of the data distribution. However, for the severely ill-posed
LACT reconstruction, the current SOTA diffusion models
often fail to generate images with desired semantics and ac-
curate details (see Section 5). The proposed DOLCE method
addresses this issue by integrating conditional learning and
model-based inference for SOTA reconstruction in LACT.

3. Preliminaries

Inverse Problems. The problem of LACT reconstruction
can be formulated as a linear inverse problem involving the
recovery of an image € R" from incomplete measure-
ments y = Ax, where A € R™*" is the measurement op-
erator modeling the observation process. Recovering  from
y in LACT is highly ill-posed, often requiring addition as-
sumptions on the unknown x. From the Bayesian statistical
perspective, the estimation can be viewed as sampling from
the posterior distribution p(x|y). One can also compute
point estimates of x using the maximum-a-posteriori prob-
ability (MAP) arg max p(x|y) or minimum mean square
error (MMSE) E[x|y] estimators.
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Denoising Diffusion Probabilistic Models. DDPM refers
to generative models that learn a target data distribution from
samples [30, 63]. DDPM consists of two Markov processes:
the fixed forward process and the learning-based reverse
process. The forward process starts from a sample of a
clean image ¢ ~ g(x() and gradually adds Gaussian noise
according to the following transition probability:

q(xe|lmi—1) == N(x;\/1 — Bri—1, Bid), (1)

where NV (-) denotes the Gaussian pdf, 3.7 refers to a vari-
ance schedule subject to 5, € (0,1) forallt = 1,--- | T.
The latent variables x;.7 have the same dimensionality as
the original image sample xy € R™, and latent 7 is nearly
an isotropic Gaussian distribution for large enough 7" and
a properly selected 3; schedule. By parameter change of
ag :=1— By and & = I1¢_, ag, we can write x; as a linear
combination of noise € and x

Ty =/ ayxo + V1 — (e, ()

where € ~ N(0,TI). This allows a closed-form expression
for the marginal distribution for sampling x; given xg

q(x¢|xo) = N (45 VAo, (1 — ay)I). 3)

Improved Reverse Process. Since the reverse process
q(x+—1|x:) depends on the entire data distribution and is
not tractable, we can learn the parameterized Gaussian tran-
sitions pg (x;—1|x;) using a neural network as follows:

po(Ti—1|@s) = N(zi—1; o (T, 1), 07 1), 4)

where g (24, t) refers to the learned mean. It is worth noting
that originally Ho et al. [30] set the variance o to a fixed
constant value. However, subsequent works [54, 18] proved
the improved generation efficiency by using learned variance
o} = og(x,t), which we also adopt. In particular, the
variances og (¢, t) = exp(vlog B;+ (1 —v)log Bt), corre-
spond to the output of the neural network and [, refers to the
lower bounds for the reverse process variances [30]. We use
a single neural network with two separate output heads to
estimate the mean and variance of this Gaussian distribution
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jointly. Practically, one can relate ; and x via Equation (2)
and (3) by decomposing ug into a linear combination of x;
and the noise approximation eg. More specifically, we have
x; = Vaxg++/(1 — a)e for e ~ N(0,I) and can train the
network eg as a denoiser to predict €. During sampling, we
can use simple substitution to derive ug (¢, t) from network
prediction eg (¢, )

1—Oét

Go(ﬂﬂtﬂf)) +oz, (5
1-— (e77

1
L1 = —(— | Tt —
VOt
where z ~ N(0,I). Since the model learns the reverse
Markov Chain running backward in time from xr to xg,
estimating clean image x( from partially noisy image x;,
we refer to this as the reverse process.

4. Proposed Approach: DOLCE

In this section, we present our proposed approach for
LACT, and describe the training and testing strategies. An
overview of DOLCE is provided in Fig. 2. Our goal here
is to reconstruct full-view images sampled from the condi-
tional distribution p(x¢|c), where the condition ¢ is obtained
from a limited angle sinogram. Specifically, we make the
neural network accept ¢ as the conditioning input. Note that
while related ideas have been considered in other applica-
tions, such as image blurring [81] and super-resolution [62],
our work is the first to adopt conditional sampling for CT
reconstruction. This way, the iterative denoising procedure
becomes dependent on ¢ and the conditional diffusion model
can generate a target image x( in 7" refinement steps. Start-
ing from step 7', each Markov transition under the condition
c is approximated as follows:

CCt—l\CCt,C),

T
po(zo.r|c) = H ©)

pe(wt—l |wt7 C) = N(wt—l; ,U/Q(wt’ (& t)? diag(a-?))’

where x is sampled from the normal distribution p(x1) ~
N(0,I), and we use o} = o2(x¢,c,t) to denote the
learned variances. Similar to the reverse process of uncondi-
tional model, the inference process pg (:—1|x¢, ¢) is learned
using a neural network that takes the conditional data c as
an additional input.

4.1. Optimizing the Conditional Denoising Network

While it would be possible to impose the condition ¢
directly from the measurement domain, we find that using
a low-fidelity reconstruction, from any standard inversion
technique, to define ¢ greatly simplifies the learning. Sim-
ilar approaches are routinely used in traditional full-view
CT reconstruction [38, 27, 46]. Popular choices for stan-
dard inversion include FBP and the regularized least squares
(RLS). Note that our approach is generic enough to support
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Algorithm 1 DOLCE Iterative Refinement
1: Input: €g: Adjusted denoiser network, c¢: Conditional
inputs image (FBP or RLS), g: Data-fidelity; v, > 0;
Output: Restored image xg
Sample 7 ~ N (0,1)
fort=1T,...,1do
z~N(0,I)
Ty = \/%—t(ﬂ'?t -
i1 = Prox,, (1)
end for
return: x

> Run diffusion sampling

11—«

\/jaigG(mh (& t)) +ot- 2z,
> Proximal operator

R AN A ol e

the use of other condition specifications as well. In practice,
the choice is made based on both the inversion quality and
computational efficiency. For example, RLS inversion is
known to be time-efficient, due to efficient GPU implementa-
tions, and can produce better quality reconstructions. Hence,
we concatenate x; with reconstruction from RLS along the
channel dimension to condition the model, leading to the
training objective:

Lpase = Ewo,c e,t~[1,T] “|6 - 69($t7 c, t)” ] (N

where ¢ € R™ has the same dimension as latent variables
a1.7. Similar to [54], we did not apply any training con-
straints on og(x¢, c,t), and we did not observe any no-
ticeable performance drop, suggesting that the bounds for
oe(xy, ¢, t) are expressive enough.

In order to improve the generation flexibility and em-
pirical performance of DOLCE, we jointly train a single
diffusion model on conditional and unconditional objectives
by randomly dropping ¢ during training (e.g., Puncond = 0.2),
similar to the classifier free guidance [31, 61]. Hence, the
sampling is performed using the adjusted noise prediction:

€o(xs, c,t) = Aeg(xy, ¢, t) + (1 — Neg(xt,t), (8)
where A > 0 is the trade-off parameter, and eg (¢, 1) is
the unconditional e-prediction. For example, setting A = 1
disables the unconditional guidance, while increasing A > 1
strengthens the effect of conditional e-prediction.

4.2. Model Based Iterative Refinement

It is well known that sinograms have certain consistency
conditions that are hard to enforce entirely within the neural
network. As such, given the trained conditional diffusion
model, we propose to directly enforce consistency with the
limited-angle sinogram y. This is done during inference by
including an additional step to the denoising iteration update
conditioned on the FBP or RLS. Similar to the reverse pro-
cess (5) of the unconditional diffusion model, each iteration
of iterative refinement under our adjusted denoising model
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takes the form:

1*0&15

V-

Ty = o(xy, C, t)) +oi-z, (9

-

where z ~ N(0,I). This resembles one step of Langevin
dynamics with ég providing an estimate of the gradient of
the data log-density. Then, the data consistency mapping
under />-norm loss is promoted by solving a proximal opti-
mization [53] step:

Ti g = arg%lin {llwu =213+ ) Au—y|3}, (10)
ueR™

where the parameter 7, > 0 at each step balances the im-
portance of the data consistency ||[Az — y||3. Since our
implementation of the forward and backward projection
uses GPU accelerated backend !, the sub-problem (10) can
be efficiently solved with any gradient-based method, e.g.,
conjugate-gradient [29] or accelerated-gradient methods [5].

Sample Average. Similar to [81], we can average multiple
samples from our method to approximate the conditional
mean E[z|y]. Hence, we also report results averaged over
multiple samples, denoted as “DOLCE-SA”.

4.3. Model Architecture and Sampling Schedules

The network architecture within DOLCE is similar to
the U-Net in guided diffusion [18], with self-attention and
modifications adapted from [67], where the original DDPM
residual blocks are replaced with residual blocks from Big-
GAN [7], and the skip connections are re-scaled with 1/ V2
for faster training convergence. In addition, we add time-
embedding into the attention bottle block, and we increase
the number of residual blocks at lower-resolution in order to
increase the model capacity through more model parameters.

For our training noise schedule we set 7' = 2000, and the
variance (;’s are uniformly spaced. We also experimented
with a cosine noise schedule proposed in IDDPM [ | §] during
training, but observed similar image reconstruction quality.
At inference time, early diffusion models [30, 67] require
the same number of diffusion steps (7") as training, making
generation slow, especially for high-resolution images. For
a more efficient generation (inference), we use K € [1,T)
evenly spaced real numbers (see Fig. 5), and then round each
resulting number to the nearest integer following [18]. In
addition, we run a grid search over the hyperparameters of
the proximal step and the rescheduling time step K for the
best peak signal-to-noise-ratio score (PSNR). This inference-
time hyperparameter tuning is relatively cheap as it does not
involve retraining or fine-tuning the model itself.

! Implementation using the Pytorch’s Custom C++and CUDA extensions
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5. Experiments
5.1. Datasets

Checked-in Luggage Dataset. The luggage dataset is col-
lected using an Imatron electron-beam medical scanner —
a device similar to those found in transportation security
systems, provided by the DHS ALERT Center of Excellence
at Northeastern University [55] for the development and test-
ing of Automatic Threat Recognition (ATR) systems. The
dataset is comprised of 190 bags, with roughly 300 slices per
bag on an average. In total, the dataset consists of 50K full
view sinograms along with their corresponding FBP recon-
structions. The image matrix is resampled to be 512 x 512,
and correspondingly the sinograms are subsampled to be of
size 720x512. This corresponds to views obtained at every
0.25° uniformly sampled from 180°. Following a common
LACT setting [2, 33], we repurpose this dataset for generat-
ing CT reconstructions from sinograms. We split the bags
into a training set of 165 bags and a test set with the rest,
corresponding to about 40K for training and 10K for testing.
The bags contain a variety of everyday objects, including
clothes, food, electronics etc., that are arranged in random
configurations.

Metric PSNR 1 SSIM 1
Angle 60° 90° 120° 60° 90° 120°
FBP 1517 1751 2120 0464 0540  0.601
RLS 2275 2626 3047 0698 0832  0.887
TV [5] 2560 3027 3633 0791 0907  0.956

U-Net [38] 26.86 31.31 38.61 0.852 0.932 0.966
DPIR [90] 26.22 31.25 37.60 0.849 0.930 0.951

ILVR [12] 28.63 33.34 37.68 0.861 0.931 0.955
DPS [13] 28.97 33.45 37.92 0.897 0.937 0.959
DOLCE 35.11 39.04 42.16 0.941 0.959 0.971

DOLCE-SA 3558 39.61 42.84 0.946 0.963 0.975
Table 1. Average PSNR and SSIM results for several methods on

human body CT dataset. Best values and second-best values
for each metric are color-coded.

Body CT Scan Datasets. We additionally use Kidney CT
scans of 210 patients from the publicly available dataset 2079
Kidney and Kidney Tumor Segmentation Challenge (C4KC-
KiTS) [28]. The collection contains 406 scans, where each
patient has 1-3 scans. Each 3D scan consists of about 92 ~
812 2D slices covering a range of anatomical regions from
chest to pelvis, resulted in about 70K slices in total. We
choose 60K 2D slices of size 512 x 512 corresponding to
190 patients to train the models. The test images correspond
to 10K slices randomly selected from the remaining patients.

5.2. Training details and parameters

We train and evaluate the models with Pytorch using Tesla
V100 GPUs with 16GB memory. To show the effectiveness
of our conditional diffusion model, we train a single DOLCE
model on the luggage and body CT dataset jointly, by mini-
mizing the loss in Eq. (7). We rescale each dataset globally
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Figure 3. Visual evaluation of limited angle tomographic reconstruction in body CT scan (top) and checked-in luggage (bottom), where the
input measurements are captured respectively from an angular coverage of 60° and 90°, respectively. PSNR (dB) is indicated at bottom for
each reconstruction, measured against the ground truth. Note the remarkable accuracy of DOLCE reconstructions that preserve fine image
details. See Table 1 and Table 2 for quantitative comparisons with additional baselines. Images are normalized for better visualization.

to make them have the same intensity range, but we do not
perform any normalization on those images. As baselines
for comparison, we also train individual models on luggage
and body CT dataset. For both two datasets, FBP and RLS
reconstructions are obtained using publicly available CT re-
construction tools such as LTT [9] and TomoPy [26]. During
training, we randomly select FBP or RLS reconstructed us-
ing Omax € {60°,90°,120°} as the conditional input, so that
the models can handle multiple scenarios. The FBP or RLS
is normalized to intensity range of [0, 1] for better perfor-
mance and stable training. We also train two unconditional
diffusion models on each dataset and one on the joint dataset
as additional baselines. Due to GPU memory constraints,
we train all diffusion models in half precision (float16)
with a batch-size of 256. We use the Adam optimizer with a
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fixed learning rate of 1.5 x 10~* and a dropout rate of 0.2
for each model. We do not perform any checkpoint selection
on our models and simply select the latest checkpoint. It
takes about two days to obtain a DOLCE model.

5.3. Quantitative and Qualitative Results

Table 1 and Table 2 show average PSNR and SSIM [78]
results of several methods for 150 randomly chosen slices
from each test set, respectively. The compared methods in-
clude FBP, RLS, TV [5], U-Net [38], CTNet [2], DPIR [90],
ILVR [12], and DPS [13]. Note that CTNet is a method
specifically designed for luggage dataset to reconstruct di-
rectly from sinograms. We observed that making CTNet
perform well on other datasets requires dedicated fine-tuning
so we omit its results on medical dataset for fair comparison.
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Metric PSNR 1 SSIM 1

Angle 60° 90° 120° 60° 90° 120°
FBP 2570 2787 3175 0673 0694  0.739
RLS 2745 3069 3491 0756 0852  0.909
TV [5] 29.13 3301 3906 0811 0902  0.963

CTNet [2] 29.72 33.39 37.95 0.824 0.895 0.952
U-Net [38] 29.47 33.45 39.22 0.851 0.910 0.972
DPIR [90] 30.40 34.35 38.92 0.845 0.916 0.970

ILVR [12] 29.64 3306 3897 0.846 0911 0968
DPS [13] 3096 3484 3875  0.885 0923  0.968
DOLCE 3406  39.01 4483 0932 0964  0.985

DOLCE-SA  34.74 39.67 45.52 0.937 0.972 0.987
Table 2. Average PSNR and SSIM results comparing test slices

with the ground truth from checked-in luggage dataset.

U-Net corresponds to our own implementation of the archi-
tecture used in the FBPConvNet [38], and we use the same
RLS reconstruction instead of FBP to train the U-Net models.
DPIR refers to an iterative deterministic method that uses
deep Gaussian denoiser as prior for solving various imaging
inverse problems. The denoisers used in DPIR are retrained
on our CT datasets. ILVR and DPS are two sampling al-
gorithms that use unconditionally trained diffusion models
for solving inverse problems. It is worth noting that to the
best of our knowledge there is no existing work that uses
diffusion models for LACT reconstruction. We run a grid
search over the noise schedule and data-consistency hyper-
parameters for both ILVR and DPS, and we observe that
both ILVR and DPS perform better in terms of PSNR/SSIM
when using models trained separately on each dataset. Ac-
cordingly, we report the results that have the best PSNR (dB)
values. From Table 1 and Table 2, it is evident that DOLCE
is significantly better than existing approaches and signif-
icantly outperforms recent methods using unconditionally
trained diffusion models.

5.4. Ablation Studies

Capacity for Multiple Data Distributions. We extract
additional 150 slices randomly selected from luggage and
body CT datasets, respectively, in order to evaluate the ef-
fectiveness of our DOLCE using model jointly trained on
two distinct datasets (denoted as “Lug.+Med.”) versus mod-
els trained separately. The average PSNR/SSIM values for
different limited angles are presented in Table 3. We find
that DOLCE is remarkably consistent in matching the per-
formance of the individually trained models across both
domains, which highlights the potential of using a single
diffusion-based CT reconstruction model to work effectively
across a variety of applications. Visual Evaluation. We
compare the visual results of DOLCE to RLS, TV, ILVR,
and DPS for 0, € {60°,90°} in Fig. 3. In general, we
observe that RLS is dominated by the artifacts due to miss-
ing angles, while TV reduces those artifacts, but blurs the
fine structures by producing cartoon-like features. Although
ILVR and DPS show better reconstruction with sharper edges
than TV, DOLCE produces more accurate reconstructions

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 06,2024 at 04:44:06 UTC from IEEE Xplore. Restrictions apply.

60° available 90° available 60° available 90° available

£
I
g
=)
<]
£
[}

Sample 1 (Ours)

Sample 2 (Ours)

Absolute Error
7 4 )

Variance
{ v
4 7

|y 3%

Figure 4. Visual results on two different CT images. The error to
the ground truth is computed using the conditional mean E[z|y],
and the variance corresponds to per-pixel standard deviation. It
is evident that the ill-posed nature of the reconstruction task has
a direct impact on the diversity of the generated samples, and the
variances are highly correlated with the reconstruction errors.

Angle Dataset Lug. Med. Lug.+Med.
60° Lug. 33.59/0.935 26.78/0.701 33.98/0.935
Med. 22.56/0.726 34.95/0.949 35.15/0.945
90° Lug. 39.19/0.966 31.36/0.853 39.28/0.967
Med. 29.96/0.732  39.28/0.969 39.27/0.963
120° Lug. 45.43/0.988 34.71/0.933 45.18/0.987

Med.  33.97/0.927 43.05/0.976 42.52/0.974
Table 3. Average PSNR/SSIM results of DOLCE on luggage and
medical images, where DOLCE uses two models separately trained
on luggage and medical and one trained on the combined dataset.

with fine details. This highlights the SOTA performance of
DOLCE using our conditionally trained denoising diffusion
model.

Uncertainty Quantification. Fig. 4 shows that DOLCE
is able to quantify uncertainty by estimating the variances
directly. Since a well-calibrated model indicates larger vari-
ance in areas of larger absolute error, variance can be used
as a proxy for reconstruction error in the absence of ground
truth. It is evident in Fig 4, that the variance images are
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Figure 5. Comparison of average PSNR (left) and likelihood
(right) of DOLCE w/ and w/o data-consistency mapping in Eq. (10)
on medical CT dataset with Omax =90°. Both methods use re-
scheduling strategy of IDDPM [54] starting from K = 10. The
likelihood is plotted using &' = 60. Note the improved reconstruc-
tion quality by imposing data-consistency during inference.

highly correlated to the absolute error images, reflecting
higher uncertainty in the corresponding regions. As ex-
pected, we also observe that the level of detail produced by
our method is adaptive to the ill-posed nature of the recon-
struction task, since more ill-posed input generally leads to
higher variance in the resulting samples.

Incorporation of Data-Consistency. Visualizing the trend
of PSNR in Fig. 5 (left), we see that the quality of the image
improves as we use more number of iterations and remains
steady after K = 50. More importantly, DOLCE using the
data-consistency provided in Eq. (10) boosts the reconstruc-
tion quality with less sampling steps. Additionally, both
DOLCE w/ and w/o proximal mapping are reducing the
likelihood during inference as illustrated in Fig. 5 (right),
whereas enforcing proximal mapping leads to a lower likeli-
hood as expected, which highlights the potential of enforcing
data-consistency within sampling.

Segmentation Label

Figure 6. We use a region growing 3D segmentation in all cases
and the resulting segmentations are highlighted in color, against
a 3D rendering of the reconstructed 2D slices using Omax =90°.
Note that our method performs very similar to ground truth in
determining the object boundaries compared to RLS and DPS.
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5.5. 3D Segmentation from CT Reconstructions

Since CT images are primarily used to study 3D objects,
we evaluate the quality of the DOLCE reconstructions in 3D
segmentation to demonstrate its usefulness in practice. To
this end, we use the popular region-growing based segmenta-
tion proposed in [82] to identify high intensity objects in the
bags from their reconstructions with limited angular range.
We show in Fig. 6 an example of a bag (from the test set)
with 274 image slices that has been rendered in 3D using
the 2D slices reconstructed with the proposed DOLCE. We
compare the segmentations obtained using our method to the
segmentation labels as reference, and those obtained using
RLS and DPS, respectively. Specifically, both RLS and DPS
preserves 3D edges poorly resulting in spurious segments,
whereas our DOLCE reconstruction is significantly better,
resembling the ground truth. Additional segmentation results
can be found in the supplementary material.

6. Conclusion

We consider the recovery of high-quality images from the
LACT data in the settings where the viewing angles can be as
small as 60°. We present the first model-based probabilistic
conditional diffusion framework for LACT called DOLCE.
Our framework enables the recovery of high-quality CT im-
ages that preserve the geometric structure and sharp edges by
using an image prior in the form of a diffusion model condi-
tioned on the transformed limited-angle sinograms. DOLCE
can use FBP or RLS images as the conditional input to its
diffusion model. During inference, DOLCE enforces the for-
ward model using the data-consistency update implemented
as a proximal mapping. As a result, DOLCE imposes both
forward-model and prior constraints on the solution. Exten-
sive experimental results demonstrate the SOTA performance
of DOLCE on widely different data distributions, such as
images of human body and of checked-in luggage, thus en-
abling highly generalizable LACT reconstruction networks
for the first time. Additionally, we show how the diverse
realizations produced by DOLCE from a given sinogram can
enable meaningful uncertainty quantification. In summary,
our work presents a new SOTA method for LACT that en-
ables systematic uncertainty characterization, thus opening a
new exciting avenue for future research on diffusion models
for severely ill-posed imaging problems such as LACT.
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