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ABSTRACT

Plug-and-Play Priors (PnP) is a well-known class of meth-
ods for solving inverse problems in computational imaging.
PnP methods combine physical forward models with learned
prior models specified as image denoisers. A common issue
with the learned models is that of a performance drop when
there is a distribution shift between the training and testing
data. Test-time training (TTT) was recently proposed as a
general strategy for improving the performance of learned
models when training and testing data come from differ-
ent distributions. In this paper, we propose PnP-TTT as a
new method for overcoming distribution shifts in PnP. PnP-
TTT uses deep equilibrium learning (DEQ) for optimizing
a self-supervised loss at the fixed points of PnP iterations.
PnP-TTT can be directly applied on a single test sample to
improve the generalization of PnP. We show through sim-
ulations that given a sufficient number of measurements,
PnP-TTT enables the use of image priors trained on natu-
ral images for image reconstruction in magnetic resonance
imaging (MRI).

Index Terms— computational imaging, inverse prob-
lems, plug-and-play priors, deep learning, test-time training.

1. INTRODUCTION

Many computational imaging problems can be formulated
as inverse problems, where the goal is to recover an un-
known image from a set of noisy measurements. It is
common to solve inverse problems by integrating the mea-
surement model characterizing the response of the imaging
instrument with a regularizer infusing prior knowledge on
the unknown image. There has been considerable recent in-
terest in using deep learning (DL) for designing data-driven
image priors [1, 2, 3]. DL methods eliminate the need
for explicit prior modeling by learning a mapping from
measurements to target images using convolutional neural
networks (CNN).

This material is partially based upon work supported by the NSF
CAREER award under grant CCF-2043134 and by the Gordon and Betty
Moore Foundation grant 11396.

979-8-3503-4452-3/23/$31.00 ©2023 IEEE

186

Model-based DL (MBDL) is an extension to traditional
DL that integrates the image prior defined through a CNN
with the knowledge of the measurement models. For ex-
ample, plug-and-play priors (PnP) is a well-known MBDL
approach that uses pre-trained image denoiser as priors [4,
5, 3]. Other MBDL widely-used MBDL approaches include
deep unfolding (DU) and deep equilibrium (DEQ) learning,
both of which rely on the integration of the measurement
model during the training of the image prior [6, 7, 8, 9, 10].
While both DU and DEQ interpret iterations of image recon-
struction as neural network layers, the memory complexity
of DEQ is independent of the number of unfolded iterations.

Much of the existing research on MBDL has focused on the
scenarios where the statistical distribution of the training
data matches that of the testing data. While this strategy has
led to significant theoretical and algorithmic innovations, it
does not address the issue of the performance gap due to data
distribution shifts. For example, image priors trained with
a specific distribution in PnP, performs poorly on samples
from different distributions [11]. Thus, distribution shifts
limit the applicability of priors pre-trained for one class to
another one.

Domain adaptation refers to a class of DL techniques for im-
proving the performance of a learned model on a target task
containing insufficient annotated data by using the knowl-
edge learned by the model from another related task with
adequate labeled data [12, 13]. Test-time training (TTT) was
recently proposed as a domain adaptation strategy based
on self-supervised optimization of the learned model utiliz-
ing only test-time measurements [14]. The TTT strategy
was also recently used in the context of imaging inverse
problems to address domain shifts in end-to-end image re-
construction with DL for accelerated magnetic resonance
imaging (MRI) [15].

In this paper, we investigate TTT in the context of PnP
methods. We propose PnP-TTT as a method for overcom-
ing the performance gap in PnP due to data distribution
shifts. PnP-TTT uses DEQ to update the weights of the
CNN prior in PnP at test-time. The DEQ learning in PnP-
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TTT is used to minimize a self-supervised loss at the fixed
points of PnP iterations for one test sample. We also present
numerical results showing that DEQ training in PnP-TTT
can significantly boost the performance of the shifted priors.
We evaluate the proposed method on image reconstruction
for compressed sensing MRI (CS-MRI), where we recover
MRI images from subsampled Fourier measurements. Our
results show that given enough measurements, PnP-TTT
can close the gap due to distribution shift between test and
training data. It is worth mentioning that our method can
also be applied to other tasks and different variants of PnP,
highlighting its broader applicability for inverse problems
in computational imaging.

2. BACKGROUND
2.1. Inverse Problems

We consider the problem of recovering an image € C”
from its noisy measurement y = Ax + e, where A €
C™>*" is the measurement operator and e € C™ is addi-
tive white Gaussian noise (AWGN). We can formulate the
problem as a regularized optimization problem

with  f(x) = g(z) + h(z), (1)

x* = argmin f(x)
xR

where g is the data-fidelity term used to ensure the consis-
tency of the solution with the measurement and % is the
regularization term that infuses prior knowledge. For exam-
ple, the least-squares loss is a widely-used data-fidelity term
g(x) = 3|ly — Az|3 and total variation (TV) is commonly
used as the regularizer [16].

2.2. Plug-and-Play Priors

PnP framework includes a family of methods that incorpo-
rate the measurement model with CNN denoisers to solve
inverse problems [3]. PnP methods can be interpreted as
a fixed-point iteration of some high-dimensional operator
where the CNN takes the role of the prior. For example,
the proximal gradient method (PGM) variant of PnP can be
expressed as

" :Tg(:ck_l) with Tg :

Do(I —7Vyg), (2)

where Dg is the denoiser, g is the data-fidelity term, Vg is
the gradient of g, | is the identity mapping, and v > 0 is the
step-size. The PnP method in (2) is commonly refered to as
PnP-PGM.

2.3. Deep Equilibrium Models

DEQ is a recent approach for training MBDL architectures
in a memory-efficient way [9]. DEQ uses implicit differ-
entiation for training possibly infinite-depth networks by
backpropagating through the fixed points of an operator.
For the operator defined in eq. (2), the output is implicitly
expressed as T =To(Z), 3)

where Ty is the operator parameterized by 6, and x is
the fixed point acquired using fixed point iterations in the

187

Algorithm 1 Test-Time Training for Plug-and-Play

input: forward model A, PnP initialization x(, measure-
ment y, denoiser Dy, and numIter> 0
x§ = PnP(xo,y; Do)
for i = 1tonumIter do
| =10SS(Ax] ,,y)
DEQ_GRAD(!, 0)
DEQ}
xf = PnP(xo,y; D)
end for
return x;

forward pass of DEQ. The connection of DEQ and PnP
has inspired end-to-end training of CNN denoisers as model
dependant priors in many imaging problems such as MRI [9]
and computed tomography (CT) [10]. The prior Dg in DEQ
is trained by minimizing the loss between the fixed points
from eq. (3) and the ground truth x*

(0) = 5| To(m) — 3. @)
Implicit differentiation of the fixed points yields the gradient
of the loss with respect to 8 in the backward pass as

VUB) = (VoTo(®)T (I - VaTo(®) " ( —z*), (5)

where | is the identity mapping and ¢ is the loss.

{Update parameters 6 using

2.4. Test-Time Training

Current PnP methods are built on the premise that the prior
represents the same distribution as that of the desired solu-
tion. However, it is common to observe distribution shifts
between training and testing data. In some scenarios, there
are insufficient training samples to train a DL network as the
prior, hence, alternative priors trained on a shifted distribu-
tion are used with suboptimal reconstruction performance.
TTT has been proposed to reduce the performance gap due
to distribution shift in various tasks [14]. The key idea of
TTT is to update the shifted model’s weight at test-time by
minimizing a self-supervised loss

0" = arg;nin Ly (Do(y),y), 6)

where Dy is the neural network and y is a test sample.
Depending on the selection of £,,, TTT has shown improved
performance in many imaging tasks. For example, it can be
used to improve the MRI reconstruction using DL models
trained in an end-to-end matter on shifted distributions [15].
In this scenario, the self-supervised loss proposed is

|ADg (ATy) -y,
lep(0) =
+(0) Tl

where A is the measurement model, AT is the Hermitian
transpose, and y is the test-time measurement. Note that
as opposed to (4), TTT in (7) does not need ground truth
reconstruction to compute /,,, and one can use other loss
functions rather than the normalized ¢; [15].

(7

bl

2.5. Our contribution

We propose PnP-TTT as a novel approach for enhancing
the performance of image reconstruction for PnP methods

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 06,2024 at 04:35:05 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
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Fig. 1: Evaluation of PnP-TTT for different sampling ratios in accelerated MRI. The leftmost chart displays the best PSNR
performance achieved by PnP-TTT vs. sampling ratios. The remaining charts show PSNR at each TTT iteration. Note that
the best performance is above the lower baseline for all the sampling ratios; however, TTT eventually overfits to the test-time
measurement, reducing performance. Additionally, note that at larger sampling ratios, the performance of PnP-TTT prior
can surpass that of the matched prior due to the DEQ training.

Table 1: PSNR (dB) values for accelerated MRI with matched, mismatched, and PnP-TTT priors.

Radial CS Ratio 10% 20% 30% 40% 50%
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Natural prior 30.81 09351 33.87 09648 3529 09721 3637 09759 37.25 09782
MRI Prior 31.67 09468 349 09707 36.51 09773 37.67 09807 38.57 0.9828

PnP-TTT (Ours) 3097 0938 3497 09718 37.03 09796 3858 0984 3996 0.9873
PnP-TTT — Natural  0.16  0.0029 1.1 0.007 1.74  0.0075 2.21 0.0081 271  0.0091

under distribution shifts. Our approach involves domain 180 x 180 [19]. We train MRI priors on MRI brain images
adaptation for a shifted pre-trained image prior through TTT of size 256 x 256 [20].

using DEQ to close the distribution gap, which only requires

a test single measurement. Our results show that PnP-TTT For test-time training, we initialize PnP-PGM with z'=0

can improve the performance significantly given sufficient and 100 iterations in the forward pass of DEQ, using the
measurement for shifted priors with minimal computational trained denoising prior. We use Nesterov acceleration [21],
cost. and set stepsize v = 1. We use 100 iterations and Anderson

3. METHOD acceleration in the backward pass of DEQ [22]. We allow

TTT to run for 50 iterations, using SGD to update the param-
eters § with a step size of 1 x 107°. At inference, using the
adapted prior, we again run for 100 iterations with Nesterov
acceleration in PnP-PGM with step size v = 1. Note that
once all 50 TTT iterations are performed for a particular
measurement, 6 is reset to the non-domain-adapted weights.
Since the goal of PnP-TTT is to overcome the performance
gap from a distribution shift between train- and test-time,

We now present our method for domain adaption of im-
age priors in PnP. We consider the PnP-PGM algorithm
in eq. (2) and run it until its convergence. In practice, we
find that about 100 iterations of PnP-PGM are sufficient in
our configuration. We can update the weights of the image
prior on a test measurement by minimizing the following
self-supervised loss

— 2

tan(8) = [ ATo () — vl ®) performing TTT on as many measurements are available at
where T is the fixed-point of PnP-PGM defined in eq. (3) test-time may be beneficial. Future experiments could ex-
and Ty is the operator defined in (2). We use the DEQ to amine if there is any performance improvement when using
compute the gradient of /,, at test-time using implicit dif- multiple measurements instead of only one for PnP-TTT.
ferentiation. We follow a method similar to [17, 18] to train The measurement model for a single-coil, accelerated MRI
the image priors using the DnCNN architecture, with batch with radial Fourier sampling can be modeled as A = M F',
normalization layers replaced with spectral normalization where M is the diagonal sampling matrix and F' is the
to control the Lipschitz constant of the denoisers. DnCNN Fourier transform. We investigate five different sampling
is trained as a denoiser for AWGN level 0 = 5. During ratios (m/n) in the experiments. For the experiments re-
the training stage we do not use DU or DEQ so that the ported here, we consider a noiseless scenario; however, we
learned prior model is purely an image denoiser. We use expect similar performance of PnP-TTT under moderate
400 CBSD to train natural prior on grayscale images of size amounts of noise.
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Fig. 2: Visual evaluation of priors at various CS ratios for CS-MRI with corresponding PSNR (upper left) and SSIM (upper
right). Note the suboptimal performance of natural prior compared to matched MRI prior and improvement of PnP-TTT

(middle row).

4. RESULTS

We test our proposed method by reconstructing ten brain
MRI images selected from the test dataset of [20] with mis-
matched DnCNN prior trained on natural images. Due
to distribution shift, natural priors demonstrate subopti-
mal performance for the MRI task. To establish a perfor-
mance baseline, we compare the result of the proposed
method with those obtained by mismatched natural prior
and matched MRI prior. Specifically, we consider the per-
formance achieved by natural prior as the lower baseline,
and that achieved by the MRI prior as the upper baseline.
Our proposed PnP-TTT seeks to enhance the performance
of a mismatched natural prior so as to approach that of a
matched MRI prior.

Table 1 reports the best results achieved for five CS ratios:
10, 20, 30, 40, and 50. It can be seen that PnP-TTT can
close the performance gap for CS ratios of 20 and more,
while for a CS ratio of 10, it can make an improvement
compared to the lower baseline (mismatched natural prior).
The reconstruction quality is quantified using peak signal-to-
noise ratio (PSNR) in dB and the structural similarity index
measure (SSIM). Figure 1 illustrates two empirical results:
(a) The empirical performance of PnP-TTT at testing for dif-
ferent CS ratios (left figure), (b) The empirical performance
during test-time training (remaining five figures). Note that
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during test-time training, the prior can overfit to the mea-
surement. Thus, in practice it is necessary to hold out some
measurements to use early stopping during TTT [15], al-
though we have not included such results in this paper. The
visual results can be found in Figure 2. It can be seen both
empirically and visually that PnP-TTT can shorten the gap
due to distribution shift, close it completely, or go beyond
closing it given the CS ratios.

5. CONCLUSION

We present PnP-TTT as a novel framework for closing the
performance gap that arises due to mismatched priors in
imaging inverse problems. PnP-TTT achieves this by adapt-
ing the mismatched priors during the testing phase by using
DEQ training to update the weights of the mismatched pri-
ors. One of the main advantage of PnP-TTT is that one
can use mismatched priors on a shifted distribution with-
out the need to do additional training. Instead, the prior
can simply be adapted to the test-time measurements. Our
results show that PnP-TTT can significantly enhance the
performance, achieving performance comparable to that of
using a matched prior during inference. Furthermore, this
work demonstrates that priors from different tasks can be
used interchangeably in scenarios with shifted distribution
without the loss of performance.
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