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ABSTRACT

Plug-and-Play Alternating Direction Method of Multipliers
(PnP-ADMM) is a widely-used algorithm for solving inverse
problems by integrating physical measurement models and con-
volutional neural network (CNN) priors. PnP-ADMM has been
theoretically proven to converge for convex data-fidelity terms
and nonexpansive CNNs. It has however been observed that
PnP-ADMM often empirically converges even for expansive
CNNs. This paper presents a theoretical explanation for the
observed stability of PnP-ADMM based on the interpretation
of the CNN prior as a minimum mean-squared error (MMSE)
denoiser. Our explanation parallels a similar argument recently
made for the iterative shrinkage/thresholding algorithm variant
of PnP (PnP-ISTA) and relies on the connection between MMSE
denoisers and proximal operators. We also numerically evaluate
the performance gap between PnP-ADMM using a nonexpan-
sive DnCNN denoiser and expansive DRUNet denoiser, thus
motivating the use of expansive CNNs.

Index Terms— Computational imaging, inverse problems,
plug-and-play priors, nonconvex optimization.

1. INTRODUCTION

A fundamental problem in computational imaging is the recov-
ery of an unknown image x 2 Rn from noisy measurements

y = Ax+ e,

where A 2 Rm⇥n is the measurement operator and e 2 Rn is
the measurements noise. It is common to formulate the recovery
as a composite optimization problem

bx = argmin
x2Rn

f(x) with f(x) = g(x) + h(x) , (1)

where the function g represents the data-fidelity term and h
denotes the regularizer or the prior term.

These authors contributed equally.
This material is based upon work supported by the NSF CAREER award
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Proximal algorithms are commonly used to solve the opti-
mization problems in eq. (1) when the functions g or h are nons-
mooth. For example, iterative shrinkage/thresholding algorithm
(ISTA) [1, 2] and alternating direction method of multipliers
(ADMM) [3,4] have been widely-used in the context of imaging
inverse problems. The iterations of ADMM can be expressed as

xk  prox�g(z
k�1 � sk�1) (2a)

zk  prox�h(x
k + sk�1) (2b)

sk  sk�1 + xk � zk. (2c)

The key operation within ADMM is the proximal operator

prox�h(z) := argmin
x2Rn

⇢
1

2
kx� zk22 + �h(x)

�
, (3)

where the parameter � > 0 controls the influence of h. When
h(x) = � log (px(x)), the proximal operator can be interpreted
as a maximum a posteriori (MAP) estimator for the additive
white Gaussian noise (AWGN) denoising problem

z = x+ n with x ⇠ px, n ⇠ N (0,�2I). (4)

The statistical interpretation of the proximal operator as a de-
noiser has led to the development of the plug-and-play ADMM
(PnP-ADMM) [5], where prox�h is replaced with a more general
image denoiser D�

xk  prox�g(z
k�1 � sk�1) (5a)

zk  D�(x
k + sk�1) (5b)

sk  sk�1 + xk � zk, (5c)

where � > 0 controls the relative strength of the denoiser. The
popularity of deep learning has led to a wide adoption of PnP for
exploiting learned priors specified through convolutional neural
networks (CNNs), leading to its state-of-the-art performance in
a variety of applications [6–8].

There has been significant interest in theoretically under-
standing the convergence behavior of PnP-ADMM [9–14] (see
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Fig. 1. Comparison of four different methods for deblurring a color image with a noise level of 0.03. The reconstruction performance is quantified
using PSNR and SSIM in the top-left corner of each image. Note the improved performance of PnP-ADMM using an expansive DRUNet denoiser
compared to nonexpansive DnCNN denoiser.

also the recent review [15]). The most well-known theoretical
convergence results for PnP-ADMM are based on monotone
operator theory, and require for g to be convex and D� or its
residual to be nonexpansive [9, 11, 13]. Another well-known
result does not assume nonexpansiveness by instead requiring
boundedrg and D� [10]. Recently PnP-ADMM was also ana-
lyzed for proximal operators associated with denoisers trained
as gradients of explicitly specified regularizers [14].

While the current theory provides useful insights into the
stability of PnP-ADMM iterations, it has been observed that
PnP-ADMM often converges for denoisers that are expansive,
unbounded, and/or are not trained using any explicitly specified
function h. The goal of this paper is to offer an explanation for
this stability by building on the recent analysis of PnP-ISTA for
denoisers that perform minimum mean squared error (MMSE)
estimation [16]. The analysis of PnP-ISTA relies on an elegant
connection between MMSE denoisers and proximal operators
established by Gribonval [17]. What makes this connection
pertinent is that the MSE is frequently used as a loss function
for training stete-of-the-art image denoisers. We explicitly re-
late the statistical interpretation of CNNs trained as MMSE
denoisers with the nonconvex analysis of the traditional ADMM
algorithm [18–22]. We numerically motivate our theoretical
exposition by comparing PnP-ADMM using two different pre-
trained CNN denoisers, a nonexpansive DnCNN and an expan-
sive DRUNet. The numerical results show the convergence
of PnP-ADMM with an expansive denoiser and highlight the
limitations of nonexpansive denoisers as priors within the PnP
framework.

2. CONVERGENCE THEORY

We state three assumptions required to establish the convergence
of PnP-ADMM under a nonconvex data-fidelity term g and a
MMSE denoiser D� .

Assumption 1. The prior px is non-degenerate over Rn
.

We call the probability distribution px a degenerate distribution

over Rn, if its support lies on a space with lower dimension
than n. For the MMSE denoiser D� with the image set of
X := Im(D�), Assumption 1 is required to establish an explicit
link between D� and the following regularizer [17]

hmmse(x) := (6)
(
� 1

2� kx� D�1
� (x)k22 + �2

� h�(D�1
� (x)) for x 2 X

+1 for x /2 X ,

where � > 0 is the step-size, D�1
� is a smooth inverse mapping

over X , and h�(·) = � log (pz(·)), where pz os the probability
distribution in (4). Due to smoothness of both D�1

� and h�,
the function hmmse is smooth for all x 2 X . For additional
discussion see [16, 17].

Assumption 2. Function g is continuously differentiable. The

function h in (6) associated with D� has a Lipschitz continuous

gradients with constants M > 0 over the set X .

The smoothness of g is a mild and commonly used assump-
tion [21]. Since it is known (see [16, 17]) that the implicitly
defined function h is infinitely differentiable over X , our as-
sumption is a mild extension that additionally requires Lipschitz
continuity of the gradient.

Assumption 3. The explicit data-fidelity term and the implicit

regularizer are bounded from below

inf
x2Rn

g(x) > �1, inf
x2Rn

h(x) > �1.

Assumption 3 implies that there exists f⇤ > �1 such that
f(x) � f⇤ for all x 2 Rn.

Theorem 1. Run PnP-ADMM with a MMSE denoiser under

Assumptions 1-3 using a fixed step-size 0 < �  1/(2M). Then,

then the iterates satisfy krf(xk)k2 ! 0 as k ! 0, where

f = g + h with h defined in (6).

The proof is provided in the appendix. Theorem 1 establishes
the convergence of PnP-ADMM with MMSE denoisers to a
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Fig. 2. Comparison of PnP-ADMM and PnP-FISTA, each using a non-expansive DnCNN denoiser and an expansive DRUNet denoiser. The
figure plots the evolution of kxk � xk+1k2/kxk+1k2, while the right one that of PSNR (dB).

critical point of the problem (1) where h is defined in (6). It is
important to note that the proof does not require the convexity of
g or h, or nonexpansiveness of the denoiser. This result suggests
the stability of PnP-ADMM under possibly expansive denoisers
trained to minimize MSE. The convexity of hmmse requires for
D� to be monotone and nonexpansive, which does not hold for
many CNNs.

3. NUMERICAL EVALUATION

We explore the convergence and performance of two PnP algo-
rithms, PnP-ADMM and PnP-FISTA, on the problem of image
deblurring using two popular CNN priors, DnCNN and DRUNet,
trained to minimize mean squared error. The DnCNN is trained
to be nonexpansive by removing its batch normalization layers
and using spectral normalization to bound its Lipschitz con-
stant. The evaluation of these methods is conducted using four
different blur kernels and four CBSD68 test images at three
distinct noise levels (0.01, 0.02, and 0.03). The performance is
quantified using peak signal-to-noise ratio (PSNR) in dB and
structural similarity index (SSIM) metrics.

Figure 1 compares all the four methods applied to a color im-
age with a noise level of 0.03. It is observed that PnP-ADMM
converges for the expansive denoiser and achieves significantly
better results in terms of both PSNR and SSIM. PnP-FISTA with
DRUNet outperforms the one using a nonexpansive DnCNN.
Figure 2 presents the convergence profiles of PnP-ADMM and
PnP-FISTA with DnCNN and DRUNet as image priors. Theoret-
ical support for the convergence of PnP-ADMM is established
through Theorem 1, which does not impose any assumptions on
the expansiveness of the image prior. The results in Figure 2 plot
the evolution of kxk � xk+1k2/kxk+1k2 and PSNR for the im-
age presented in Figure 1, supporting the theoretical observation
that PnP-ADMM can converge for expansive CNNs.

Table 1 presents the performance comparison of PnP-ADMM
and PnP-FISTA for both image priors. The reported results are

Noise Level
PnP Methods 0.01 0.02 0.03 avg
ADMM (DRUNet) 30.67 29.48 28.03 29.39
ADMM (DnCNN) 28.84 28.01 26.25 27.70

FISTA (DRUNet) 27.30 27.20 26.84 27.11
FISTA (DnCNN) 26.57 26.40 25.90 26.29

Table 1. Performance of PnP-ADMM and PnP-FISTA using two
priors on image deblurring at different levels of noise.

Fig. 3. Four blur kernels [23] and test color images [24] used for the
numerical evaluation.

obtained by averaging PSNR values over all the test images and
kernels, illustrated in Figure 3. Note how PnP-ADMM outper-
forms PnP-FISTA in terms of PSNR for both priors. Addition-
ally, the use of the expansive denoiser, DRUNet, results in better
performance compared to the nonexpansive denoiser, DnCNN,
regardless of the algorithm used. The presented findings em-
phasize the notable advantage that PnP methods can leverage
advanced denoisers, resulting in enhanced performance.

4. CONCLUSION

This paper presents new insights to the well-established PnP
methodology by revisiting the convergence of PnP-ADMM un-
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der MMSE denoisers. We present convergence analysis of PnP-
ADMM for expansive image denoisers and possibly nonconvex
data-fidelity terms. We present numerical results highlighting
the potential benefit of using expansive denoisers corresponding
to CNNs trained to minimize MSE. Our findings emphasize
that superior performance of PnP-ADMM under expansive de-
noisers can still come with stable convergence. This highlights
the potential of combining state-of-the-art denoising techniques
with the flexibility of PnP.

A. APPENDIX

We now present the convergence analysis of PnP-ADMM with-
out any convexity or nonexpansiveness assumptions. Consider
the augmented Lagrangian of the objective function f(x) =
g(x) + h(x)

µ(x, z, s) (7)

= g(x) + h(z) +
1

�
sT(x� z) +

1

2�
kx� zk22.

For iteration k � 1 we have

µ(xk, zk, sk)� µ(xk, zk, sk�1) =
1

�
ksk � sk�1k22, (8)

where we used the definition of the augmented Lagrangian in (7)
and the ADMM update (5c). The results from [17] imply that
for a MMSE denoiser we have D� = prox�h. Therefore, from
the optimality of proximal operator and the ADMM update (5c),
we have sk = �rh(zk). Using the Lipschitz continuity ofrh
in Assumption 2, we have

h(zk)� h(zk�1) (9)

 1

�
(sk)T(zk � zk�1) +

M

2
kzk � zk�1k22.

From the fact that xk = prox�g
�
zk�1 � sk�1

�
, we have

µ(xk, zk�1, sk�1)  µ(xk�1, zk�1, sk�1). (10)

By combining equations (8), (9) , and (10), we get

µ(xk, zk, sk)� µ(xk�1, zk�1, sk�1)

 1

�
ksk � sk�1k22 � (

1� �M

2�
)kzk � zk�1k22

 �⌘kzk � zk�1k22, (11)

where ⌘ := (1��M�2�2M2)/(2�), and in the last inequality,
we used

ksk � sk�1k2 = �krh(zk)�rh(zk�1)k2
 �Mkzk � zk�1k2. (12)

Since 0 < �  1/(2M), we have ⌘ > 0, which implies that the
augmented Lagrangian is monotonically decreasing. Using the
fact that sk = �rh(zk), we can write

µ(xk, zk, sk) = g(xk) + h(zk) +rh(zk)T(xk � zk)

+
1

2�
kxk � zkk22 � g(xk) + h(xk),

where we used Lipschitz continuity of rh and the fact
that �M  1. This inequality establishes that augmented
Lagrangian is bounded from below due to the fact that
both function g and h are bounded from below. This im-
plies that there exists µ⇤ > �1 such that almost surely
µ⇤  µ(xk, zk, sk), k � 1. Thus, the augmented Lagrangian
converges due to monotocity. By summing both sides of eq. (11)
over t � 1 iteration, we have

tX

k=1

kzk � zk�1k22 
µ(x0, z0, s0)� µ(xt, zt, st)

⌘

 µ(x0, z0, s0)� µ⇤

⌘
, (13)

which implies that kzk � zk�1k22 ! 0 as k ! 1. Eq. (12)
ensures convergence of ksk � sk�1k2 and kxk � zkk2 to 0
as k ! 1. For the objective function in (1), by adding and
subtracting required terms, we have

krf(xk)k2 = krg(xk) +rh(xk)k2

= krg(xk) +
1

�

�
xk � zk�1 + sk�1

�

+rh(xk) +
1

�

�
zk � xk � sk�1

�
+

1

�
(zk�1 � zk)k2

= k 1
�
(zk�1 � zk) +rh(xk)�rh(zk)k2

 1

�
kzk � zk�1k2 +Mkxk � zkk2 (14)

where we used optimality of proximal operator from eq. (5a)
and (5b), and in the last line, we used triangle inequality and
Lipschitz continuity ofrh. From convergence of kzk�zk�1k2
and kxk � zkk2 to 0 as k !1, we get

krf(xk)k2 ! 0,

x as k ! 0. This shows that PnP-ADMM with MMSE denoiser
converges to a critical point of the original objective function
f(x).
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