
A Probabilistic Grammar of Graphics
Xiaoying Pu

University of Michigan
Ann Arbor, MI, US

xpu@umich.edu

ABSTRACT
Visualizations depicting probabilities and uncertainty are used
everywhere from medical risk communication to machine
learning, yet these probabilistic visualizations are difficult to
specify, prone to error, and their designs are cumbersome to
explore. We propose a Probabilistic Grammar of Graphics
(PGoG), an extension to Wilkinson’s original framework. In-
spired by the success of probabilistic programming languages,
PGoG makes probability expressions, such as P(A|B), a first-
class citizen in the language. PGoG abstractions also reflect
the distinction between probability and frequency framing, a
concept from the uncertainty communication literature. It is
expressive, encompassing product plots, density plots, icon
arrays, and dotplots, among other visualizations. Its coher-
ent syntax ensures correctness (that the proportions of visual
elements and their spatial placement reflect the underlying
probability distribution) and reduces edit distance between
probabilistic visualization specifications, potentially support-
ing more design exploration. We provide a proof-of-concept
implementation of PGoG in R.

Author Keywords
Grammar of Graphics; Uncertainty visualization

CCS Concepts
•Human-centered computing→ Visualization theory, con-
cepts and paradigms; Visualization systems and tools;

INTRODUCTION
Creating effective visualizations of probability distributions
is a critical task: there is a growing consensus that we need
to show uncertainty in scientific and everyday data, often ex-
pressed as probabilities [59, 29, 48]. Visualizations can help
communicate uncertainty in ways that draw users’ attention
to it and help them understand it. For example, during the
2016 US presidential election, the New York Times created a
forecast “needle” visualization (Figure 1.5), using animated
jitter to encode the uncertainty in a real-time prediction for the
electoral college margin [51], an example of a hypothetical
outcome plot [25]. Other examples of principled uncertainty

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376466

Matthew Kay
University of Michigan

Ann Arbor, MI, US
mjskay@umich.edu

visualizations have been found to help people comprehend
data and make better decisions in domains such as medical
risk communication [22], hurricane forecasting [34], and tran-
sit prediction [28, 13]. All of these examples belong a broader
class of visualizations we call probabilistic visualizations: vi-
sualizations of (possibly conditional) probability distributions.

Effective probabilistic visualizations can be hard to specify:
the New York Times election needle is a bespoke JavaScript
application, the kind of visualization only a small number of
premier data journalism outlets are producing. The implemen-
tation of the needle involves the careful handling of probability
distributions, sampling, and animation, and these aspects are
intertwined in the implementation. Existing declarative for-
malisms for specifying visualizations, such as the Grammar
of Graphics [35, 58] do not fully incorporate notions of proba-
bility distributions and conditional probabilities, forcing the
user to carefully handle probability distributions to ensure
the correctness of the output. As a result, visualizations for
probabilities are currently difficult to create, their design space
costly to explore, and their specification process error-prone.

To address these shortcomings, we propose a Probabilistic
Grammar of Graphics (PGoG), a high-level grammar for spec-
ifying probabilistic visualizations. Extending the original
Grammar of Graphics [58], PGoG makes probability distribu-
tions first-class citizens in its specifications and defines other
grammar components around them. PGoG improves the spec-
ification of probabilistic visualizations in two ways: 1) by
reinforcing parsing rules on probability data and aesthetics
mappings, PGoG guarantees that the visualization reflects the
probability distribution the user intends to communicate; 2)
by covering a wide range of common statistical graphics with
a consistent set of language elements (Figure 3), PGoG aims
to enable rapid prototyping and reasoning with minimal edit
distances among designs.

The design of PGoG is motivated by calls for “systematic
ways of displaying uncertainty” [56] and “a closer integration
of visualization and statistical algorithms” [24]. We devel-
oped and evaluated PGoG based on principles from cognitive
ergonomics [6] — the usability of notational systems. To
that end, we follow a similar approach to probabilistic pro-
gramming, a paradigm where syntax is close to statistical
notation while shielding users away from implementation de-
tails. Given the success of probabilistic programming for
helping users with diverse backgrounds (from biologists to so-
cial scientists) specify complex statistical models, we expect to
empower similar users to specify probabilistic visualizations.

mailto:mjskay@umich.edu
http://dx.doi.org/10.1145/3313831.3376466
mailto:permissions@acm.org
mailto:xpu@umich.edu

Additional channels (25/100)

ɤ

Special layouts → hierarchical (8/100)

ɢ�

Special layouts (33/100)

Generated with
Carmody, 2010 [8]

cf. Romei et al., 2018 [45] cf. Bycoffe & Dottle, 2018 [7]

ɣ

cf. Badger et al., 2018 [4]

Binder et al., 2015 [5]

Can reasonably specify (34/100)

Density (count/m^2)

City A City B

cf. Abrams, 2019 [2]

Candidate +0.4

cf. Almukhtar et al., 2018 [3]

ɥ

Correll et al.,
2018 [10] Liu et al., 2019 [34]

cf. Popovich, 2019 [42]

Race 1 Race 2 Others

Gen W

Gen X

Gen Y

Gen Z

ɠ

2001 202120112006 2016
0%

100%

Fair

Good

Very Good

Premium

Ideal

0 2000 4000 6000 8000
price

cu
t

cf. Geiger, 2016 [16]

Rushworth, 2019 [46] cf. Kommenda
et al. 2018 [32]

Wattenberg et al.,
2016 [53]

Fernandes et al., 2018 [13] PAIR-code/facet, 2019 [1]

ɡ

Figure 1. A sample of our probabilistic visualization collection. On the left: a subset of visualizations PGoG can reasonably specify. On the right:
categories of visualizations that informed the grammar design but are not yet fully reproduced by PGoG; see the Expressiveness section of the evaluation
for more details and a discussion of how PGoG could be extended to support them. 1 quantile dotplot for uncertain bus arrival times [28]; 2 barchart
for America’s shifting demographics [16]; 3 icon array that flows, showing social mobility [4]; 4 icon array for medical risk communication [5]; 5
NYT election needle [3]; 6 ensemble of hurricane path predictions [34]. The full collection (N = 100) is in the supplemental materials.

ggplot(mtcars) +
geom_density(
 aes(x = mpg,
 y = stat(density),
 fill = cyl),
position = "stack")

a) P(mpg) in ggplot

10 15 20 25 30 35
mpg

cyl (# of cylinders)
4

6

8

b) Naive ggplot

10 15 20 25 30 35

c) ggplot: corrected

10 15 20 25 30 35

ggplot(mtcars) +
geom_bloc(
 aes(x = mpg,
 height = P(cyl|mpg) P(mpg),
 fill = cyl))

d) PGoG

10 15 20 25 30 35

ggplot(mtcars)+
geom_density(
 aes(x = mpg,
 y = stat(density*n),
 fill = cyl)),
position = "stack")

✘ ✔ ✔

ggplot(mtcars) +
geom_density(
 aes(x = mpg,
 y = stat(density)
))

P(cyl|mpg)

P(mpg)

height = P(cyl|mpg) P(mpg),

Figure 2. A motivating example for the Probabilistic Grammar of Graphics. a) For reference, a density plot for variable mpg alone: P(mpg). b) In
base ggplot2: naively introducing the variable cyl creates partition of the density plot disproportional to the true cyl counts. c) In base ggplot2:
normalizing the colored regions by hacking internal variables (density * n) creates a correct stacked density plot. d) PGoG generates the correct
density plot using syntax closer to users’ statistical language, in terms of probability expressions.

We provide a proof-of-concept implementation of PGoG in
the programming language R, based on the visualization li-
brary ggplot2. Since PGoG is an abstract formalism, we
believe that it can be integrated with other declarative visual-
ization frameworks, such as Vega-Lite [47]. PGoG can also
serve as a theoretical framework for future work to formalize
other visualizations of uncertainty and to ground uncertainty
visualization research questions.

A MOTIVATING EXAMPLE: SPECIFYING DENSITY PLOTS
Figure 2 shows how current specifications can visualize prob-
ability distributions in an incorrect or convoluted manner. The
specification code is in ggplot2, a popular visualization pack-
age in R [21] and the dataset is the Motor Trend Cars Road
Tests data in R [43]. At first sight, Figure 2.b looks like a

depiction of the distribution of car mileages (P(mpg)), pro-
portionally colored by cylinder count cyl1. Accordingly, the
ggplot2 code contains fill = cyl, the common way of ex-
pressing “break down by this variable using fill color”. Little
does the inexperienced user know that Figure 2.b is erroneous,
because the system does not understand the laws of probability.
Instead of showing the proportion of 8-cylinder cars within the
dataset as one would assume, the portion of 8-cylinder cars (in
light green) will always be 1/3 no matter the data. We show
how ggplot2 commits this error in Figure 4. Essentially, the
system pieces together three separate densities P(mpg|cyl)
without normalizing by cyl group counts P(cyl), resulting in

1cyl = number of cylinders in a car engine. mpg = miles per gallon,
a measure of mileage. am = automatic or manual transmission.

x ← A
h ← ...

y ← A
w ← ...

x ← A
y ← B
f ← C
h ← ...

y ← A
x ← B
f ← C
w ← ...

x ← A
h ← ...

y ← A
w ← ...

x ← A
y ← B
f ← C
h ← ...

y ← A
x ← B
f ← C
w ← ...

x ← A
f ← B
h ← ...

y ← A
f ← B
w ← ...

x ← A
f ← B
h ← ...

y ← A
f ← B
w ← ...

P(A)

P(A|B)

P(B|A) P(A) P(C|A, B) P(A|B)

ridge plot

onion plot*

violin plot

geom_bloc geom_icon

density plot dotplot

b1 -

b2 -

b3 -

b3
 -

b2
 -

b1
 -

b1 -
b2 -
b3 -

b3
 -

b2
 -

b1
 -

b1 -
b2 -
b3 -

b3
 -

b2
 -

b1
 -

b1 -

b2 -

b3 -

b3
 -

b2
 -

b1
 -

P(B|A) P(C|A, B)

Conditional on
a continuous

variable A

Joint

P(B|A) P(C|A, B)

P(B|A) P(C|A, B) P(A|B)

icon array

P(A|B, C)

Conditional on
discrete

variables

b1 -
b2 -
b3 -

P(A|B) P(A|B, C)

geometry

prob var
aes

Figure 3. A subset of visualizations described by the PGoG grammar. For geom_bloc, we assume that variable A is continuous, and B, C are discrete. (If
A is also discrete, geom_bloc will produce area plots [56].) h <- ... is height <- [the probabilistic variable in the first column]. f = fill aesthetic.

P(mpg|cyl) ΣcylP(mpg|cyl) = ??

Stack y coordinates

Figure 4. How ggplot2 constructs Figure 2.b. Left: the system first
computes three density estimates, each of unit area, that represent
P(mpg|cyl) (cyl = 4, 6 and 8). Right: ggplot2 stacks the densities naively
(position = stack), creating an incorrect figure: the viewer might in-
terpret there to be roughly 1/3 8-cylinder cars, while in the data, this
proportion is 43%. In terms of probability notations, stacking creates a
part-whole relationship and thus implies summation, but ∑cyl P(mpg|cyl)
does not simplify to P(mpg).

incorrect proportions of cyl when the user views the visual-
ization as a whole. In this example, the system’s approach to
visualizing a bivariate distribution departs from what the user
might expect, or what is correct statistically.

For the purposes of this paper, a probabilistic visualization
is correct if the proportions of visual elements (such as
counts or areas) and their spatial placement reflect the un-
derlying probability distribution, including any conditional
probabilities or part-to-whole relationships. Thus, Figure 2.b
is incorrect.

Even when the existing languages produce correct probabilis-
tic visualizations, the necessary specifications can be con-
voluted. In Figure 2.c and 2.d, we compare how ggplot2
and our specification, PGoG, describe the same distribution
P(mpg,cyl). In Figure 2.c, the normalization term, P(mpg),

is implied with the line stat(density*n), which is a hack
to access the internal cylinder count n. As Figure 2.c further
shows, specifying color (fill) is an indirect way of creat-
ing a conditional density P(cyl|mpg). This ggplot2 example
illustrates how complex it is to specify even simple probabil-
ity distributions in existing languages. In comparison, PGoG
understands how to map probability expressions directly to
visual elements. This allows users who understand probability
distributions but are unfamiliar with implementation details to
specify precisely the probabilities they wish to depict, analo-
gous to how probabilistic programming lanugages allow users
to directly specify statistical models.

RELATED WORK

Probabilistic Programming
The probabilistic aspect of PGoG is partly inspired by proba-
bilistic programming languages. These languages use explicit
notations to represent probability distributions, with the ca-
pacity to condition on (observed) values of variables [19].
For instance, in the Stan language, an independent Bernoulli
model can be specified using syntax very close to statistical
notations (Figure 1 in Carpenter et al. [9]):
model {
theta ~ beta(1, 1); //prior
y ~ bernoulli(theta); //likelihood

}

Stan, and probabilistic programming languages in general,
hide implementation details of samplers (including scalabil-
ity improvements), enabling not only statisticians but also a
broader user group to specify custom models [18, 49, 41, 9].

As evidence for the value of probabilistic programming for
Bayesian inference alone, JAGS [41] and Stan [9] are widely
cited (3000+ and 1600+, respectively), with applications in
a range of disciplines. PGoG similarly defines visualizations
with probability notations (hence the “probabilistic” in name),
hiding the complexity of lower-level specification and oppor-
tunities for errors. PGoG thus enables users with knowledge
of probability distribution notation to more easily create prob-
abilistic visualizations.

Probabilistic visualizations
Probabilistic visualizations have various designs and are used
to communicate uncertainty information in many domains, see
Figure 1. The probabilities they express can be a probability
mass function (pmf) for discrete variables or a probability
density function (pdf) for continuous variables. PGoG covers
a subset of probabilistic visualizations.

Probability & frequency formats in uncertainty visualization
We use a distinction in uncertainty communication [17] —
probability v.s. frequency formats — to ground the types of
probabilistic visualizations covered by PGoG. A probability
format is a continuous representation, represented verbally
with percentages (x%) or visually with area plots [56], where
the area of a visual element is proportional to its probabil-
ity. Examples of area plots include variants of pie charts, bar
charts, and density plots. A frequency format is a discrete
representation, represented verbally with fractions or ratios
(x-in-100) or visually with icon-based (or unit [39]) visualiza-
tions, which include variants of icon arrays and dotplots.

A designer may want to choose between probability and fre-
quency formats. Frequency format visualizations are often
found to help comprehension and decision-making; such is
the case with quantile dotplots in a public transit setting in
Figure 1.1 [28, 13], and icon arrays in medical risk commu-
nication [36, 22, 38]. Figure 1.4 shows an icon array, with
patients grouped by disease condition and test results. On the
other hand, probability format visualizations, such as density
plots, are widely used in scientific communication, and can be
more compact to display than icon-based counterparts.

PGoG supports both probability and frequency formats. This
feature may help users to quickly explore visualizations of the
same probability distribution in either format.

Grammar of Graphics
The power of high-level visualization grammars comes
from their coverage of common chart types with a relatively
small vocabulary. One notable example of high-level
grammars is Wilkinson’s Grammar of Graphics [58]. In
this formalization, a plot is a combination of components,
including data — “data operations that create variables from
datasets” and elements — “graphs [geometries] and their
aesthetic attributes [aesthetics or encodings]”. As an example,
a scatterplot of variable B against A can be specified as:

encoding(x position ← A, y position ← B) +
geometry(point)A

B

Some widely-used instantiations of the Grammar of Graphics
include Vega-lite [47] and Polaris (later Tableau) [50].

PGoG

P(A|B,...), ...
height ← P(A|B,...), ...

geom_bloc

geom_icon

Grammar ggplot2

x ← A, ...

geom_bar

geom_density

geom_points

geom_rect

geom_...

Aesthetics

...

A, ...

Figure 5. PGoG in the context of the layered grammar of graphics [54].
The leftmost “Grammar” column is adapted from Figure 4 of Wick-
ham’s paper [54]. The middle column lists some representative instanti-
ations of layered grammar of graphics components in ggplot2. PGoG
extends the instances of data, aesthetics, and geometry components from
the layered grammar of graphics, shown in the rightmost column.

Most relevant to our work, Wickham’s layered Grammar
of Graphics groups the original components into layers to
better embed the grammar into an implementation, namely
the ggplot2 package in R [54]. We reproduce and extend
Wickham’s illustration of the layered Grammar of Graphics
and ggplot2 components in Figure 5.

One benefit of Grammar of Graphics is that its components
leverage structures inherent to visualization to create a
modular grammar, instead of using named graphics like
“bar chart” [54]. As a result, it is easy to change from
one visualization design to another. The previous scatter
plot specification can be easily changed to a bar chart:

encoding(x position ← A, y position ← B) +
geometry(bar)A

B

PGoG conceptually extends the data component in the
grammar of graphics, and defines additional aesthetics and
geometries to specify probabilistic visualizations.

Convoluted specifications for probabilistic visualizations
While the Grammar of Graphics works well generally, it lacks
abstractions for probabilistic visualizations. As a result, speci-
fying probabilistic visualizations can be ad hoc. For example,
the ggplot2 package has a proliferation of geometry types
for density plot variants alone, such as ones for plain density
plots (geom_density) , violin plots , and ridge plots

[21, 57]. Arguably, this ad hoc approach diverges from
the flexibility and elegance of the Grammar of Graphics; an
approach that directly incorporates probability distributions
might be more modular and flexible.

Current languages also have hidden dependencies that could
be inferred from the probabilistic structure of the data, such as
the need for manual normalization in the ggplot2 example

of stacked densities in Figure 2. Similar dependencies exist
in another Grammar of Graphics instantiation, Vega-lite [47],
where the user must override the default of three different
parameters, extent, steps, and counts2 to create a stacked
density. Since parameters set otherwise will not produce a
correct stacked density plot, errors are likely; a grammar that
understands the underlying probability distributions might
prevent such errors.

Specifications for probabilities and visual elements can also
be difficult to separate and change. Consider ATOM, a layout-
based grammar with a broad coverage for unit visualizations
(icon-based probabilistic visualizations) [39]. The ATOM
grammar is extremely powerful and creates visualizations by
combining low-level layout operations. However, the power of
ATOM may come at a cost: its layout operations imply what
probability distribution the system computes and visualizes
without making it explicit; the probability distribution itself
may be hard to interpret from the specification, and it may
be hard to ensure that the distribution is preserved if the user
changes the layout of the visualization during design explo-
ration. A grammar that directly encodes the desired probability
distribution might aid exploration of valid visualizations by
inferring layouts from the structure of probability expressions,
rather than the other way around.

GRAMMAR DESIGN CONSIDERATIONS AND PROCESS
We derive three design considerations for the PGoG grammar
based on the Motivating Example and Related Work:

1. Guaranteeing correctness: a grammar for probabilistic
visualizations should ensure correctness as we define in the
Motivating Example. Specifically, the grammar needs to
ensure that 1) the probability distributions supplied in the
specification are valid, and 2) the visualization accurately
reflects the supplied distributions, including any part-to-
whole relationships.

2. Untangling specification: given that current systems can
make specifying probabilistic visualizations convoluted, a
grammar should untangle the specification for probabilistic
visualizations. Our approach is to center the PGoG grammar
around probability expressions, such as P(A|B).

3. Facilitating exploration: following other grammars that
facilitate exploration, PGoG should be coherent and sys-
tematic [11], its components reusable [23]. According to
one visualization model, GraphScape, the process of ex-
ploring the visualization design space can be thought of as
making edits to visualization specifications [30]. From that
perspective, easier exploration could be enabled by having
shorter edit distances in the space of supported probabilistic
visualizations, a property PGoG aims to have.

We defined the PGoG grammar through an iterative process.
For several months, we collected and reviewed 100 probabilis-
tic visualizations from academic papers and reputable news
outlets, in addition to basic statistical graphics such as density
plots and bar charts. The collection is in the Supplemental
Materials. We did not intend to reproduce every visualization
in the collection. Rather, we used these real-life examples to

2https://vega.github.io/vega-lite/docs/density.html

prototype PGoG components — asking, e.g., can this aesthet-
ic/geometry describe how this visualization encodes probabil-
ity? We then systematically iterated through combinations
of the components to refine the grammar rules. Criteria for
in-/excluding a particular combinations are mainly based on
correctness instead of perceptual or aesthetic properties: does
it produce a probabilistic visualization (as opposed to a non-
probabilistic plot)?, and does the resulting visualization show
the intended distribution?

GRAMMAR SPECIFICATION
The PGoG grammar is an extension of the data, aesthetics, and
geometry components in the layered Grammar of Graphics,
see Figure 5. Most notably, probability distributions are made
to be first-class citizens as data variables. We also define new
aesthetics and geometries to work with probabilities. Not all
combinations of data and aesthetics are allowed; we enforce a
set of grammar rules to cover existing probabilistic visualiza-
tions while ensuring that the generated visualizations can be
represented in the 2D plane.

Data variables
We assume that the dataset is in the tidy format [55], i.e., each
row represents an observation or a sample from a distribution,
and each column is an attribute. Existing high-level visualiza-
tion libraries such as ggplot2 and Vega-Lite treat columns
as data variables, which we call simple variables in PGoG.
Simple variables can be discrete or continuous, which later
determines the plot type, such as density plot v.s. bar charts.
In addition, PGoG has probabilistic variables, defined in the
form P(A|B, ...), where A,B, ... are simple variables. Each
probabilistic variable is 1D, with one marginal variable (left
of the pipe) and any number of conditionals (right of the pipe).
One or more probabilistic variables are used with aesthetics to
construct data mappings.

A visualization described by PGoG can represent any proba-
bility function P(A, ...|...) for discrete variables. In a PGoG
specification, this probability function is computed as the prod-
uct of all probabilistic variables P(A|...) provided. For exam-
ple, the probability function P(A,B) can be specified with
P(A|B)P(B) or P(B|A)P(A). Since there are multiple ways to
factor a probability function, PGoG requires the user to supply
each factor directly, not just the joint like P(A,B), to eliminate
ambiguity in data mapping. We currently have the 1D restric-
tion because the probabilistic variables can then correspond
to the 1D aesthetics (discussed next). Unlike the case with
other grammars [56], 2D probabilistic variables/aesthetics (e.g.
P(A,B|...)) are not yet included; we have not yet developed
comprehensive rules to ensure the correctness of specifications
with such expressions but plan this for future work.

Validating the probabilistic variables
PGoG checks to ensure that the probability factors multiply
to a single, valid probability function. The logic for checking
follows standard probability rules, outlined in Algorithm 1,
which essentially verifies the correctness of the factors using
the chain rule for probabilities. PGoG builds and parses a
data structure (the “chain”) shown in Figure 6. Malformed
factorizations, such as P(A|B)P(A), will not pass this check.

https://vega.github.io/vega-lite/docs/density.html

 P(A, B, C)
= P(A)
× P(B|A)
× P(C|A,B)

...①

...②

...③

geom_bloc:
 height ← P(A)
 P(B|A)
 width ← P(C|A,B)
 x ← A
 color ← B
 fill ← C

Probability PGoG syntax

Aa1 a2

b1
B

b2

C
c1
c2

①
 P

(A
=

a1
)

②
 P

(B
=

b1
 |

A=
a1

)

③ P(C=c2 | A=a1,
 B=b1)

An area plot for P(A, B, C)

A

B

C

∅

A

A,B

Validation

(chain)

Figure 6. How PGoG turns probabilities into an area plot. PGoG parses
aesthetics mappings (middle) with probabilities into a validation data
structure (“chain”). The marginal and conditional variables combined
from the first level should be the conditional variables of the second level.
The PGoG implementation uses this chain data structure to check for
malformed probabilities and keep track of visualization layouts.

PGoG orders the factors by the number of conditionals in each
factor; each valid specification has only one ordering. The user
can thus supply the factors in any order. The probability chain
structure is used for checking the factors and later, deriving
the visualization layout.

Algorithm 1 Checks if all probability factors are well-formed
1: chain← order by conditionals length(chain)
2: legit← T RUE
3: for row ∈ chain do
4: if next row exists AND legit then
5: if next$cond , row$marg∪ row$cond then
6: legit← FALSE
7: if row$marg∩ row$cond , 0/ then
8: legit← FALSE
9: assert(legit)

Aesthetics
Aesthetics, in the Grammar of Graphics model, are plot el-
ements that data variables are mapped onto [58]. In PGoG,
we add new probabilistic aesthetics to accommodate proba-
bilistic variables: width and height. These 1D aesthetics are
inspired by Product Plots [56], where the width and height of
a rectangle each express a factor of a probability function, and
thus the area of the rectangle is the joint probability. During
our design process, we find that the concept of width and
height as aesthetics also applies to other probabilistic visu-
alization types. width and height can be recursive, in that
we can subdivide one or both dimensions to create partitions

a1 a2 a3Ba
r c

ha
rt

(equidistant)

“L
yi

ng
 d

ow
n”

(not equidistant)Sp
in

e
pl

ot

 x <- A
height <- P(A)

 x <- A
width <- P(A)

width <- P(A)

Product Plot

~ A
hbar

Does not exist

 ~ A
hspine

PGoG

Figure 7. Combinations of aesthetics x, width, and height create differ-
ent area plots in PGoG. The x<-A mapping creates equidistant partitions
on the x-axis. Product plot specifications are on the right, which requires
the user to learn its visual primitives such as hbar (horizontal bar). Fig-
ure 3 shows more density plot and dotplot examples in PGoG.

according to marginalization P(A) = ∑b∈B P(A,B). This recur-
sive property of the probabilistic aesthetics makes use of the
probability chain structure, as seen in Figure 6: nested condi-
tional probabilities correspond to nested partitions of the area
plot. Note how P(A), P(B|A), and P(C|A,B) directly create
values that can be read from the chart using the aesthetics they
are mapped onto; e.g., P(B|A) is mapped to height, and the re-
cursive layout guarantees that P(B= b1|A= a1) (or other com-
binations of B ∈ {b1,b2} and A ∈ {a1,a2}) can be read from
the chart using height. This even suggests a method to recreate
the original TreeMap algorithm [27] using PGoG: alternately
mapping conditional probabilities onto height, then width, then
height (e.g. width <- P(A), height <- P(B|A), width
<- P(C|B,A), height <- P(D|C,B,A), etc). Such a speci-
fication reveals the conditional probability structure underly-
ing TreeMaps.

Coordinate aesthetics include the common x and y, the two
axes in the Cartesian plane. In traditional visualization spec-
ification, we often map two simple variables onto x and y, a
combination that can create a scatter plot. In PGoG, using
coordinate aesthetics implies conditioning on simple variables.
Mapping a simple variable A onto the x-axis, for example,
means to condition on A; for discrete variables this creates
equal-width partitions along the x-axis, see Figure 7. Unlike
traditional specifications where we can only assign one vari-
able to one axis, it is possible to do so with multiple simple
variables in PGoG. The coordinate aesthetics could also be
easily extended to include polar coordinates in the future; the
concept of width and height can still apply.

It is worth noting that probabilistic and coordinate aesthetics
are different. With probabilistic aesthetics, the variation in
the visual element (width and height) carries probabilistic
information. In comparison, coordinate aesthetics lay out
simple variables on the canvas; they create a uniform partition

on an axis for a discrete variable (equivalent to faceting [58]),
or a real-valued axis for a continuous variable.

Visual aesthetics currently include color, fill, and alpha.
Each visual aesthetic changes the appearance of visual ele-
ments based on the given simple or probabilistic variable. For
example in Figure 2, the number of cylinders is mapped onto
fill color. We can also map a probabilistic variable onto a visual
aesthetic, provided that this probabilistic variable is the base
case (the bottom one) in the probability chain. This restric-
tion exists because unlike width or height, visual aesthetics
are not recursive and cannot be partitioned: there is no color
palette that conveys marginalization, i.e., ∑n P(A,Bn) = P(A).

We describe the format of PGoG aesthetics mapping as an
EBNF grammar, listed below. However, there are additional
checks to ensure that the mapping from data variables to aes-
thetics is valid. As an example, if the final probability function
is a conditional probability such as P(A|B,C), the conditionals
B and C are expected to be mapped onto either coordinate or
visual aesthetics. These checks are meant for fully specifying
each data and visual element and eliminating ambiguity.

========== data ==========
simple_var = discrete_var|continuous_var;
example variable names in dataset
discrete_var = "A".."Z";
continuous_var = "x"; # at most one
prob_var = marg cond;
marg = coord_var | visual_var;
cond = {coord_var} {visual_var};
coord_var = simple_var;
visual_var = discrete_var;
========== aesthetics ==========
coord_aes = "x" | "y";
visual_aes = "fill" | "color" | "alpha";
prob_aes = "height" | "width";
========== mappings ==========
coord_mappings = {coord_aes coord_var};
visual_mappings = {visual_aes visual_var};
prob_mappings = prob_aes prob_var

{prob_aes | visual_aes prob_var};
mappings = prob_mappings coord_mappings

visual_mappings;

Geometries
Based on the distinction between probability and frequency
formats, we designed two separate geometries for PGoG,
geom_bloc for area plots and geom_icon for icon-based (or
unit) representations.

geom_bloc covers product plots [56] for discrete variables
and density plots for continuous variables, both using the
area of a geometry to convey probability values. Though
geom_bloc includes visualizations similar to product plots,
Figure 7 shows one of their differences. PGoG’s aesthetics
combination produces more plot types based on 1D aesthetics:
by using the x and width aesthetics combination, geom_bloc
can generate a “lying down” bar chart; despite its resemblance
to the spine plot (covered by product plots), it has equidistant
bars determined by the x mapping. Figure 1.2 also shows such
a bar chart.

 y <- A
width <- P(A) P(B|A)
color <- B

b1
b2
b3

a1

a2

Figure 8. An icon array with a bar chart layout using geom_icon. The
aesthetics mappings are listed below the legends. The arrows indicate
that for width aesthetics, icons are colored first from up to down then
from left to right.

A density plot variant of geom_bloc describes a probability
function of one continuous variable and potentially other dis-
crete variables, see Figure 3. Since the density curves are
often irregular in shape, the recursive subpartition in product
plots does not apply. As a result, only one level of coloring is
allowed within each density shape, and thus the density/contin-
uous variable versions of geom_bloc can accommodate fewer
aesthetics combinations than the discrete-variable version.

For the frequency representation, we use geom_icon. The
name is from icon arrays, a common visualization where
each icon (or point) represents one observation in the
dataset [15]. geom_icon differs from a scatter plot geom-
etry (e.g. geom_point) in that the x,y coordinates of an icon
are not directly provided by the aesthetics mapping as in x <-
A. Rather, geom_icon combines information about the data
variable and the aesthetics to determine how to place the icons:

• geom_icon determines the location of each icon with us-
ing all relevant x and y mappings and the first probability
function factor. This layout rule effectively arranges icons
into groups, the outline of which can resemble bars (with
coordinate aesthetics) or spines (without coordinate aesthet-
ics) in the geom_bloc. In the Figure 8 example, the first
probability function with its associated aesthetics width <-
P(A) and y <- A creates a bar chart-shaped icon array.
• Each of the remaining probability function factors creates its

subgroups recursively until all probability function factors
are processed.
• Within a group, if the height aesthetic is provided,
geom_icon applies other aesthetics (e.g. fill color) from
left to right first and then from top to bottom. If width is
provided, other aesthetics are applied from top to bottom
first and then from left to right. Figure 8 visualizes how the
width aesthetic works within an icon bar chart. It is advis-
able to combine width and height with visual aesthetics
to differentiate the icon subgroups; the example in Figure 8
uses fill to color subgroups.

PROOF-OF-CONCEPT IMPLEMENTATION IN R
We prototype PGoG in the R language as an extension to the
popular ggplot2 package [21], hosted at https://github.com/
MUCollective/pgog. To make the prototype self-contained yet
compatible with the rest of ggplot2, we wrap PGoG data,
aesthetics and geometry computation within two new function
calls, geom_icon and geom_bloc. The PGoG geometries
compute probabilistic expressions from data and parse aes-
thetics before returning a layer object to core ggplot2 for
plot-building. All visualizations produced by the prototype

https://github.com/MUCollective/pgog
https://github.com/MUCollective/pgog

Table 1. Visualization types covered by various grammars. “w/ transformation” means that the coordinates for the icons are obtained by either
computation beforehand or explicit data transformation in the code. “w/ extension" refers to the ggmosaic extension for ggplot2 [26].

Type Icon array Dotplot Bar chart Mosaic plot Density plot

ggplot2 [21] High-level w/ transformation yes yes w/ extension yes
Vega-lite [47] High-level w/ transformation w/ transformation yes yes yes
ATOM [39] Layout-based yes no no no no
Product Plot [56] Layout-based no no yes yes no

PGoG High-level yes yes yes yesyes

can be replicated with existing ggplot2 code, though signif-
icant data manipulation or lower-level library calls might be
necessary. Overall, the R prototype shows that the PGoG ab-
straction can work alongside an unmodified, existing system
that implements the Grammar of Graphics. Therefore, we
anticipate few barriers to implementing PGoG in other similar
declarative visualization languages, such as Vega-lite [47].

EVALUATION
We first evaluate the expressiveness of the Probabilistic Gram-
mar of Graphics as a visualization grammar. Then, we assess
the design of PGoG in terms of heuristics from the Cognitive
Dimensions of Notations. We choose these expert evalua-
tion methods because they are appropriate for the type of
contribution we make (a formalism) [37] Further, since the
current implementation of PGoG requires working knowledge
of Grammar of Graphics and the R language, expert evaluation
is more practical than user studies [12].

Expressiveness
In line with the convention in recent visualization literature [39,
44, 47], we view an expressive specification language as one
that covers a wide range of visualizations types. The PGoG
grammar can express area plots (including density plots), icon
arrays, and dotplots, a meaningful coverage unique to PGoG,
see Table 1. We show the breadth of the plot types covered
in Figure 3. It is worth noting that Figure 3 does not cover
all legal combinations on aesthetics and geometries in PGoG
and leaves out all bar chart/spine plot variants. In addition,
it is possible to have arbitrarily nested probability expres-
sions for geom_bloc with discrete variables. Overall, the
expressiveness of PGoG comes from its ability to map prob-
ability distributions directly onto aesthetics, and the flexible
re-combination of coherent grammar components.

While PGoG unites many types of probabilistic visualizations
with various layouts, Figure 1 shows how PGoG is still limited
in expressiveness in the wild. We categorize what PGoG can-
not cover into two broad categories. First, some probabilistic
visualizations use special layouts, such as parliament seating
or hierarchy of probabilities; even though PGoG do not cover
such layouts, the PGoG concepts often still apply (e.g., use the
width aesthetics to encode probabilities). The Discussion sec-
tion will suggest how a future version of PGoG might achieve
some of the special layouts informed by the structure of prob-
ability expression or even statistical models. The other class
of visualizations express probabilities through visual channels
not in PGoG; notable examples includes temporal (animation)
(Figure 1.5) and geospatial channels (Figure 1.6). In the future,

we plan to cover these and other additional channels to express
probabilities informed by uncertainty visualization research.

Cognitive dimensions of notations
We designed the PGoG grammar to bring probabilistic visual-
ization specification closer to the existing language of proba-
bility expressions, and hopefully therefore closer to the mental
model of users familiar with that notation. To formalize this
design intuition, we judge the PGoG grammar against the Cog-
nitive Dimensions of Notations, which “describes the usability
of notational systems”, including programming languages [6].

Below, we highlight several relevant dimensions from Black-
well et al. [6]. Dimensions not included below either evaluate
similarly to the ones included, or they don’t distinguish PGoG
from the original Grammar of Graphics.

• Viscosity: Resistance to Change. A system should not be
viscous: the user should not have to unnecessarily take mul-
tiple actions to make a change. PGoG avoids viscosity by
allowing the user to change (probabilistic) variables, aes-
thetics, and geometries independently of each other, so there
is a shorter edit distance to switch between visualizations
and the syntax remains consistent, see Figure 9.
• Visibility: Ability to View Components Easily. PGoG makes

probability distributions first-class citizens, helping the user
directly express and visualize the probability expressions
they want. In other languages, the user needs to translate the
probability distributions they want into the corresponding
coordinate and visual aesthetics mappings when writing
specifications, as shown in Figure 2.d.
• Premature Commitment: constraints on the Order of Doing

Things. As we note in the Grammar specification Section,
PGoG syntax allows the user to compose arbitrary proba-
bilistic variables from column variables. From this angle,
PGoG avoids premature commitment in that the user can
keep the data tidy without having to calculate various pro-
portions in the data before visualizing them.
• Closeness of Mapping: Closeness of Representation to Do-

main. We motivate the design of PGoG with the need for
“a closer integration between visualization and statistical
algorithms” [24]. As a result, our notations for probability
distributions are the same as in statistics. If the user knows
the distribution they want to specify, they can do so directly,
as in probabilistic programming. Thus, the user may focus
more on choosing the probability distribution, or deciding
whether the frequency format will be more effective. The
PGoG grammar shields user from of configuring a recursive
layout or naming the plot they want (e.g. violin plot).

geom_bloc
 x <- mpg*
 h <- P(mpg*)
 P(cyl|mpg*)
fill<- cyl

+x

geom_bloc
 h <- P(mpg*)
 P(cyl|mpg*)
fill<- cyl

geom_icon
 x <- mpg
 h <- P(mpg*)
 P(cyl|mpg*)
fill<- cyl Pr

ob
ab

ilis
tic

 G
ra

m
m

ar

of
 G

ra
ph

ic
s

(P
G

oG
)

C
ha

ng
es

Sy
nt

ax

geom:bloc!icon

mpg*: discretized miles per gallon

geom_bar
 x = mpg*
 y = stat(prop)
fill = cyl

geom:mosaic!bar
+y
-divider

geom_mosaic
 x = cyl,
 mpg*
divider = hspine, hspine
 fill = cyl

geom_dotplot
 x = mpg*
 fill = cyl
stackgrp = TRUE
 method = histodot

Ex
is

tin
g

gg
pl

ot
2

pa
ck

ag
es C

ha
ng

es
Sy

nt
ax

geom:bar!dotplot
+stackgroup +method
-y

Figure 9. PGoG specification shortens edit distances in the space of probabilistic visualizations. This figure reads from left to right: a spine plot, bar
chart, and dotplot with the same underlying distribution P(cyl, mpg). Compared to existing implementations, the user needs far fewer changes to switch
from one probabilistic visualization to another.

• Hidden dependencies: Important Links between Entities Are
not Visible. There are two main hidden dependencies in the
PGoG implementation. First, whether the user gets density
plots or product plots depends on data: if the marginal of
a probabilistic variable is continuous, PGoG will construct
a density plot. We choose a more uniform interface (only
one geometry for all area plots) over two separate geome-
tries named “density” and “product”. Second, if the user
modifies the conditionals in the overall probability func-
tion, other aesthetics likely need modifying, too. This is
because all conditionals in a probabilistic variable need to
be grounded, or mapped to, a coordinate or visual aesthetic,
as determined by the grammar rules.
• Error-proneness: The Notation Invites Mistakes and the

System Gives Little Protection; Hard Mental Operations:
High Demand on Cognitive Resources. PGoG does require
the user to factor a desired probability function, which can
be cognitively demanding for some users. This is necessary
for an unambiguous specification but can result in errors.
The user might write factors such as P(A)P(B) instead of
P(A)P(B|A), thinking that they want the probability for
event A and B. The current system cannot educate users
on probability fundamentals; however as mitigation, the
implementation checks and throws an error when the proba-
bility factors do not multiply to a valid probability function
(this ensures, at least, that if a chart is generated, it is valid).
In addition, PGoG infers layout from the probability struc-
ture once they are specified correctly, so it prevents some
potential errors and alleviates some cognitive demand for
reasoning about (recursive) layouts.

Overall, PGoG evaluates favorably against the cognitive di-
mensions of notations: its elegant syntax allows it to stay close

to the notation of probability distributions. We do identify
potential hidden dependency and error-proneness problems,
issues that future user studies might investigate.

Validation through a visualization algebra
To show that PGoG can avoid making some misleading vi-
sualizations, we apply the algebraic process for visualiza-
tion design model [31]. Among other things, this model de-
fines a symmetry (“invertible transformations”) in the data
space (α : D→ D) and a symmetry in the visualization space
(ω : V → V). These symmetries lead to the Principle of Unam-
biguous Data Depiction for a visualization design: a substan-
tial change in data (α) should result in a substantial change in
the resulting visualization (ω). In our motivational example
in Figure 2, the naive ggplot2 version always calculates the
density plot regions to have equal area. This leads to a viola-
tion of the Principle of Unambiguous Data Depiction: if we
remove half of the data points for 8-cylinder cars, the visible
proportion of 8-cylinder cars does not change in the ggplot
chart; in the PGoG chart, it does (see Figure 10).

DISCUSSION AND FUTURE WORK
The Evaluation section demonstrates that PGoG covers a wide
range of probabilistic visualizations with a descriptive syntax
close to statistics, while facilitating design exploration through
combinations of simple aesthetics. In addition to its current
power and benefits, PGoG has potential to improve how we
communicate a wider range of uncertainty data.

Defining visualizations with uncertainty concepts
Though the current PGoG can express one probability distribu-
tion per visualization, we wish to extend the coverage of PGoG
to uncertainty data in general. We are interested in uncertainty

All data 1/2 of 8−cylinder data removed

10 15 20 25 30 35

mpg

10 15 20 25 30 35

mpg

N
ai

ve
 g

gp
lo

t
PG

oG

✘

✔

Figure 10. Evaluating naive ggplot2 and PGoG against the Unambigu-
ous Data Depiction principle in the algebraic process for visualization
design [31]. For a naive ggplot2 spec (Figure 2.b), removing data
(transformation α , 1D) is hardly reflected in the visualization (transfor-
mation ω = 1V); in PGoG, removing the same data shrank the shaded
region proportionately, indicated by the arrowhead.

because it is important for decision-making but also difficult to
communicate; in particular, one of the barriers of visualizing
uncertainty is a lack of effective visualization techniques and
tools [14]. The motivation behind PGoG should be transfer-
able to uncertainty visualizations: a Grammar of Graphics for
uncertainty data may help users externalize uncertainty into
visualizations.

There exist many taxonomies for uncertainty data [52, 40, 48].
In addition to the single probability distribution PGoG handles,
the taxonomies cover more complex data structures and se-
mantics, such as the epistemic v.s. aleatory distinction [48] and
errors [52]. Below, we show how one category, uncertainty
lineage [52], can translate to effective visualizations with a
future PGoG extension.

Leveraging uncertainty lineage and model structures
Uncertainty data can be hierarchical or sequential (“lineage”
in Thomson et al.) [52]. For example, a Bayesian mixed
linear model can produce parameter estimates that can be
organized in a hierarchy (see Figure 16.3 in Doing Bayesian
data analysis: A tutorial with R, JAGS, and Stan [33]); in
machine learning, an event sequence prediction model can
generate probabilities of state transitions [20]. These structures
in data (or even in statistical models) can be captured with
formal specifications, such as probabilistic programs.

Then, a future version of PGoG can use the structures in data
(or models) to inform and expedite visualization specifications.
In addition to maintaining a close mapping between user men-
tal models (uncertainty concepts and models), this capability
can hide the messiness of common statistical model outputs.
In the case of Stan, the model output is a combination of scalar
and vector parameters of different data types drawn from thou-
sands of iterations3. Since these messy parameters are defined
in the model already, given reasonable defaults, PGoG might
be able to infer plots from model specifications. For instance,
a hierarchical model response∼ (1|condition) might lead to
two plots: one for condition v.s. posterior predictions, and
another for condition v.s. posterior distribution of the means.

3Example of inspecting Stan outputs: https://cran.r-project.org/
web/packages/rstan/vignettes/stanfit-objects.html

With sensible defaults, a future version of PGoG can map
uncertainty data and model structures onto more visualization
layouts. These can include as Sankey diagrams and elements
such as links [44], but they are not yet systematically described
with a formalization such as the Grammar of Graphics. One
example of such mapping can be from the summation in the
law of total probability P(A)= ∑B P(A∩B) to a forking layout,
such as the one in a New York Times article in Figure 1.3 [4].

Enabling uncertainty visualization best practices
There are effective uncertainty visualization techniques we
have not included in PGoG. Wilkinson discusses uncertainty
intervals and several aesthetics to convey uncertainty (“error”),
such as transparency and blur [58]. Recently, Correll et al.
proposed a color palette that maps both probability (uncer-
tainty) and data values [10]. Animation can reflect uncertainty
through sampling, as in the New York Times election nee-
dle [51]. A future version of PGoG can have new aesthetics
and geometries to represent these sorts of visualizations; e.g.,
aesthetics for temporal frequency could be used to create ani-
mated probabilistic visualizations, such as HOPs [25].

Informing uncertainty visualization research
Beyond the potential for PGoG to facilitate specification of un-
certainty visualizations, it can provide a theoretical framework
to more systematically study people’s understanding of differ-
ent uncertainty visualization (and probabilistic visualization)
types. For example, by giving a theoretical definition of an
equivalent frequency format visualization for any given prob-
ability format visualization (by moving from geom_bloc to
geom_icon while keeping aesthetics constant), we could more
comprehensively study the effect of frequency formats across
a range of visualization types. Or, to better understand how
people interpret different depictions of the same conditional
probability distributions, we could study a set of visualizations
that all use the same probability function expression. This
would allow us to better understand how well people under-
stand conditional probabilities from different visual depictions
of the same distribution.

CONCLUSION
In this paper, we introduce a new abstraction for visualiz-
ing probability data: the Probabilistic Grammar of Graphics
(PGoG), a set of new Grammar of Graphics components and
specification rules. We instantiate this visualization grammar
in R. PGoG treats probabilistic variables as first class citi-
zens in visualization specifications. This design guarantees
the correctness of intended probabilities, stays close to users’
mental models, and facilitates exploration of probabilistic visu-
alization designs. By instantiating probability concepts within
visualization, PGoG has the potential to further uncertainty
visualization research through allowing systematic study of
probability distributions and their representations.

ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation,
Award Number 1910431. Many thanks to Puhe Liang for
helping build the visualization collection, as well as Dominik
Moritz and Eytan Adar for their valuable feedback.

https://cran.r-project.org/web/packages/rstan/vignettes/stanfit-objects.html
https://cran.r-project.org/web/packages/rstan/vignettes/stanfit-objects.html

REFERENCES
[1] 2020. PAIR-Code/Facets. PAIR code. (Jan. 2020).

https://github.com/PAIR-code/facets.
[2] Corinne Abrams. 2019. ‘You Have to Actually Cut Open

Mumbai’s Belly’—Inside One of the World’s Most
Audacious Transit Projects. Wall Street Journal (Jan.
2019). https://www.wsj.com/articles/through-monsoons-
around-slums-under-templesmumbai-builds-its-first-

subway-11546803877.
[3] Sarah Almukhtar, Mike Andre, Wilson Andrews,

Matthew Bloch, and et al. 2018. Live Forecast: Who
Will Win the House? The New York Times (Nov. 2018).
https://www.nytimes.com/interactive/2018/11/06/us/
elections/results-house-forecast.html,https:
//www.nytimes.com/interactive/2018/11/06/us/elections/
results-house-forecast.html.

[4] Emily Badger, Claire Ann Miller, Adam Pearce, and
Kevin Quealy. 2018. Income Mobility Charts for Girls,
Asian-Americans and Other Groups. Or Make Your
Own. New York Times (March 2018).
https://www.nytimes.com/interactive/2018/03/27/upshot/
make-your-own-mobility-animation.html

[5] Karin Binder, Stefan Krauss, and Georg Bruckmaier.
2015. Effects of visualizing statistical information – an
empirical study on tree diagrams and 2 × 2 tables.
Frontiers in Psychology 6 (2015). DOI:
http://dx.doi.org/10.3389/fpsyg.2015.01186

[6] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C.
Gurr, G. Kadoda, M. S. Kutar, M. Loomes, C. L.
Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong, and
R. M. Young. 2001. Cognitive Dimensions of Notations:
Design Tools for Cognitive Technology. In Cognitive
Technology: Instruments of Mind, Meurig Beynon,
Chrystopher L. Nehaniv, and Kerstin Dautenhahn (Eds.).
Springer Berlin Heidelberg, 325–341.

[7] Aaron Bycoffe and Rachael Dottle. 2019. The 2020
Endorsement Primary.
https://projects.fivethirtyeight.com/2020-

endorsements/democratic-primary/. (Feb. 2019).
[8] Sean Carmody. 2010. Risk Characteriztion Theatres

(RCT). https://github.com/seancarmody/stubborn-mule.
(2010).

[9] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman,
Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus
Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
2017. Stan: A probabilistic programming language.
Journal of statistical software 76, 1 (2017).

[10] Michael Correll, Dominik Moritz, and Jeffrey Heer.
2018. Value-Suppressing Uncertainty Palettes.
Conference on Human Factors in Computing Systems -
CHI ’18 (2018). DOI:
http://dx.doi.org/10.1145/3173574.3174216 ISBN:
9781450356206.

[11] D. R. Cox. 1978. Some remarks on the role in statistics
of graphical methods. Journal of the Royal Statistical
Society: Series C (Applied Statistics) 27, 1 (1978), 4–9.

[12] Alan Dix (Ed.). 2004. Human-computer interaction (3rd
ed ed.). Pearson/Prentice-Hall, Harlow, England ; New
York.

[13] Michael Fernandes, Logan Walls, Sean Munson, Jessica
Hullman, and Matthew Kay. 2018. Uncertainty Displays
Using Quantile Dotplots or CDFs Improve Transit
Decision-Making. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, 144:1–144:12.
DOI:http://dx.doi.org/10.1145/3173574.3173718
event-place: Montreal QC, Canada.

[14] Baruch Fischhoff, Noel Brewer, and Julie Downs. 2012.
Communicating Risks and Benefits: An Evidence-Based
User’s Guide. Technical Report. 242 pages.

[15] Mirta Galesic, Rocio Garcia-Retamero, and Gerd
Gigerenzer. 2009. Using Icon Arrays to Communicate
Medical Risks: Overcoming Low Numeracy. Health
Psychology 28, 2 (2009), 210–216. DOI:
http://dx.doi.org/10.1037/a0014474 ISBN: 0278-6133.

[16] A.W. Geiger. 2018. 18 striking findings from 2018.
Technical Report. https://www.pewresearch.org/fact-
tank/2018/12/13/18-striking-findings-from-2018/

[17] Gerd Gigerenzer and Ulrich Hoffrage. 1995. How to
improve Bayesian reasoning without instruction:
Frequency formats. Psychological Review 102, 4 (1995),
684–704. DOI:
http://dx.doi.org/10.1037/0033-295X.102.4.684 ISBN:
0033-295X\r1939-1471.

[18] Andrew D. Gordon, Thore Graepel, Nicolas Rolland,
Claudio Russo, Johannes Borgstrom, and John Guiver.
2014a. Tabular: A Schema-driven Probabilistic
Programming Language. In Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’14). ACM, New York,
NY, USA, 321–334. DOI:
http://dx.doi.org/10.1145/2535838.2535850 event-place:
San Diego, California, USA.

[19] Andrew D. Gordon, Thomas A. Henzinger, Aditya V.
Nori, and Sriram K. Rajamani. 2014b. Probabilistic
Programming. In Proceedings of the on Future of
Software Engineering (FOSE 2014). ACM, New York,
NY, USA, 167–181. DOI:
http://dx.doi.org/10.1145/2593882.2593900 event-place:
Hyderabad, India.

[20] Shunan Guo, Fan Du, Sana Malik, Eunyee Koh,
Sungchul Kim, Zhicheng Liu, Donghyun Kim,
Hongyuan Zha, and Nan Cao. 2019. Visualizing
Uncertainty and Alternatives in Event Sequence
Predictions. (2019), 12.

[21] Hadley Wickham. 2016. ggplot2: Elegant Graphics for
Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

https://github.com/PAIR-code/facets
https://www.wsj.com/articles/through-monsoons-around-slums-under-templesmumbai-builds-its-first-subway-11546803877
https://www.wsj.com/articles/through-monsoons-around-slums-under-templesmumbai-builds-its-first-subway-11546803877
https://www.wsj.com/articles/through-monsoons-around-slums-under-templesmumbai-builds-its-first-subway-11546803877
https://www.nytimes.com/interactive/2018/11/06/us/elections/results-house-forecast.html, https://www.nytimes.com/interactive/2018/11/06/us/elections/results-house-forecast.html
https://www.nytimes.com/interactive/2018/11/06/us/elections/results-house-forecast.html, https://www.nytimes.com/interactive/2018/11/06/us/elections/results-house-forecast.html
https://www.nytimes.com/interactive/2018/11/06/us/elections/results-house-forecast.html, https://www.nytimes.com/interactive/2018/11/06/us/elections/results-house-forecast.html
https://www.nytimes.com/interactive/2018/11/06/us/elections/results-house-forecast.html, https://www.nytimes.com/interactive/2018/11/06/us/elections/results-house-forecast.html
https://www.nytimes.com/interactive/2018/03/27/upshot/make-your-own-mobility-animation.html
https://www.nytimes.com/interactive/2018/03/27/upshot/make-your-own-mobility-animation.html
http://dx.doi.org/10.3389/fpsyg.2015.01186
https://projects.fivethirtyeight.com/2020-endorsements/democratic-primary/
https://projects.fivethirtyeight.com/2020-endorsements/democratic-primary/
https://github.com/seancarmody/stubborn-mule
http://dx.doi.org/10.1145/3173574.3174216
http://dx.doi.org/10.1145/3173574.3173718
http://dx.doi.org/10.1037/a0014474
https://www.pewresearch.org/fact-tank/2018/12/13/18-striking-findings-from-2018/
https://www.pewresearch.org/fact-tank/2018/12/13/18-striking-findings-from-2018/
http://dx.doi.org/10.1037/0033-295X.102.4.684
http://dx.doi.org/10.1145/2535838.2535850
http://dx.doi.org/10.1145/2593882.2593900
https://ggplot2.tidyverse.org

[22] Sarah T. Hawley, Brian Zikmund-Fisher, Peter Ubel,
Aleksandra Jancovic, Todd Lucas, and Angela Fagerlin.
2008. The impact of the format of graphical presentation
on health-related knowledge and treatment choices.
Patient Education and Counseling 73, 3 (2008),
448–455. DOI:
http://dx.doi.org/10.1016/j.pec.2008.07.023 ISBN:
0738-3991 (Print)\r0738-3991 (Linking).

[23] Jeffrey Heer, Stuart K. Card, and James A. Landay.
2005. Prefuse: A Toolkit for Interactive Information
Visualization. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’05).
ACM, New York, NY, USA, 421–430. DOI:
http://dx.doi.org/10.1145/1054972.1055031 event-place:
Portland, Oregon, USA.

[24] Jeffrey Heer and Ben Shneiderman. 2012. Interactive
Dynamics for Visual Analysis. Queue 10, 2 (Feb. 2012),
30:30–30:55. DOI:
http://dx.doi.org/10.1145/2133416.2146416

[25] Jessica Hullman, Paul Resnick, and Eytan Adar. 2015.
Hypothetical Outcome Plots Outperform Error Bars and
Violin Plots for Inferences about Reliability of Variable
Ordering. PLOS ONE 10, 11 (Nov. 2015), e0142444.
DOI:http://dx.doi.org/10.1371/journal.pone.0142444

[26] Haley Jeppson, Heike Hofmann, and Di Cook. 2019.
ggmosaic: Mosaic Plots in the ’ggplot2’ Framework.
http://github.com/haleyjeppson/ggmosaic R package
version 0.2.1.

[27] Brian Johnson. 1992. TreeViz: treemap visualization of
hierarchically structured information. In CHI, Vol. 92.
369–370.

[28] Matthew Kay, Tara Kola, Jessica R Hullman, and
Sean A Munson. 2016. When (ish) is My Bus?:
User-centered Visualizations of Uncertainty in
Everyday, Mobile Predictive Systems. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems - CHI ’16. 5092–5103. DOI:
http://dx.doi.org/10.1145/2858036.2858558

[29] Matthew Kay, Dan Morris, Mc Schraefel, and Julie A
Kientz. 2013. There’s No Such Thing as Gaining a
Pound: Reconsidering the Bathroom Scale User
Interface. Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing
- UbiComp ’13 (2013), 401–410. DOI:
http://dx.doi.org/10.1145/2493432.2493456 ISBN:
9781450317702.

[30] Younghoon Kim, Kanit Wongsuphasawat, Jessica
Hullman, and Jeffrey Heer. 2017. GraphScape: A Model
for Automated Reasoning About Visualization Similarity
and Sequencing. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 2628–2638.
DOI:http://dx.doi.org/10.1145/3025453.3025866
event-place: Denver, Colorado, USA.

[31] G. Kindlmann and C. Scheidegger. 2014. An Algebraic
Process for Visualization Design. IEEE Transactions on

Visualization and Computer Graphics 20, 12 (Dec.
2014), 2181–2190. DOI:
http://dx.doi.org/10.1109/TVCG.2014.2346325

[32] Niko Kommenda, Caelainn Barr, Josh Holder, Niko
Kommenda, Caelainn Barr, and Josh Holder. 2018.
Gender Pay Gap: What We Learned and How to Fix It.
The Guardian (April 2018). https:
//www.theguardian.com/news/ng-interactive/2018/apr/05/
women-are-paid-less-than-men-heres-how-to-fix-it.

[33] John Kruschke. 2014. Doing Bayesian data analysis: A
tutorial with R, JAGS, and Stan. Academic Press.

[34] L. Liu, L. Padilla, S. H. Creem-Regehr, and D. H.
House. 2019. Visualizing Uncertain Tropical Cyclone
Predictions using Representative Samples from
Ensembles of Forecast Tracks. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (Jan. 2019),
882–891. DOI:
http://dx.doi.org/10.1109/TVCG.2018.2865193

[35] Jock Mackinlay. 1986. Automating the design of
graphical presentations of relational information. ACM
Transactions on Graphics (TOG) 5, 2 (April 1986),
110–141. DOI:http://dx.doi.org/10.1145/22949.22950

[36] Michelle McDowell, Gerd Gigerenzer, Odette
Wegwarth, and Felix G. Rebitschek. 2019. Effect of
Tabular and Icon Fact Box Formats on Comprehension
of Benefits and Harms of Prostate Cancer Screening: A
Randomized Trial. Medical Decision Making 39, 1 (Jan.
2019), 41–56. DOI:
http://dx.doi.org/10.1177/0272989X18818166

[37] Tamara Munzner. 2008. Process and Pitfalls in Writing
Information Visualization Research Papers. In
Information Visualization. Vol. 4950. Springer Berlin
Heidelberg, Berlin, Heidelberg, 134–153. DOI:
http://dx.doi.org/10.1007/978-3-540-70956-5_6

[38] Jurriaan P. Oudhoff and Daniëlle R. M. Timmermans.
2015. The Effect of Different Graphical and Numerical
Likelihood Formats on Perception of Likelihood and
Choice. Medical Decision Making 35, 4 (May 2015),
487–500. DOI:
http://dx.doi.org/10.1177/0272989X15576487

[39] Deokgun Park, Steven Mark Drucker, Roland
Fernandez, and Niklas Elmqvist. 2017. ATOM: A
Grammar for Unit Visualizations. IEEE Transactions on
Visualization and Computer Graphics 2626, c (2017).
DOI:http://dx.doi.org/10.1109/TVCG.2017.2785807

[40] M.Elisabeth Paté-Cornell. 1996. Uncertainties in risk
analysis: Six levels of treatment. Reliability Engineering
& System Safety 54, 2 (1996), 95–111. DOI:
http://dx.doi.org/10.1016/S0951-8320(96)00067-1 ISBN:
0951-8320.

[41] Martyn Plummer. 2003. JAGS: A program for analysis
of Bayesian graphical models using Gibbs sampling.
Working Papers (2003), 8.

http://dx.doi.org/10.1016/j.pec.2008.07.023
http://dx.doi.org/10.1145/1054972.1055031
http://dx.doi.org/10.1145/2133416.2146416
http://dx.doi.org/10.1371/journal.pone.0142444
http://github.com/haleyjeppson/ggmosaic
http://dx.doi.org/10.1145/2858036.2858558
http://dx.doi.org/10.1145/2493432.2493456
http://dx.doi.org/10.1145/3025453.3025866
http://dx.doi.org/10.1109/TVCG.2014.2346325
https://www.theguardian.com/news/ng-interactive/2018/apr/05/women-are-paid-less-than-men-heres-how-to-fix-it
https://www.theguardian.com/news/ng-interactive/2018/apr/05/women-are-paid-less-than-men-heres-how-to-fix-it
https://www.theguardian.com/news/ng-interactive/2018/apr/05/women-are-paid-less-than-men-heres-how-to-fix-it
http://dx.doi.org/10.1109/TVCG.2018.2865193
http://dx.doi.org/10.1145/22949.22950
http://dx.doi.org/10.1177/0272989X18818166
http://dx.doi.org/10.1007/978-3-540-70956-5_6
http://dx.doi.org/10.1177/0272989X15576487
http://dx.doi.org/10.1109/TVCG.2017.2785807
http://dx.doi.org/10.1016/S0951-8320(96)00067-1

[42] Nadja Popovich. 2019. America’s Light Bulb
Revolution. The New York Times (March 2019).
https://www.nytimes.com/interactive/2019/03/08/
climate/light-bulb-efficiency.html,https:
//www.nytimes.com/interactive/2019/03/08/climate/
light-bulb-efficiency.html.

[43] R Core Team. 2019. R: A language and environment for
statistical computing. Vienna, Austria.
https://www.R-project.org/ R Foundation for Statistical
Computing.

[44] D. Ren, B. Lee, and M. Brehmer. 2019. Charticulator:
Interactive Construction of Bespoke Chart Layouts.
IEEE Transactions on Visualization and Computer
Graphics 25, 1 (Jan. 2019), 789–799. DOI:
http://dx.doi.org/10.1109/TVCG.2018.2865158

[45] Valentina Romei, James Politi, Cale Tilford, and Billy
Ehrenberg-Shannon. 2018. Italian Election Poll-Tracker
2018: Who Is Running and Why It Matters. Financial
Times (Jan. 2018).
https://ig.ft.com/italy-poll-tracker/.

[46] Alastair Rushworth. 2019. Inspectdf: Inspection,
Comparison and Visualisation of Data Frames.
https://CRAN.R-project.org/package=inspectdf. (2019).

[47] Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A
Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017),
341–350. DOI:
http://dx.doi.org/10.1109/TVCG.2016.2599030

[48] David Spiegelhalter. 2017. Risk and Uncertainty
Communication. Annual Review of Statistics and Its
Application 4, 1 (March 2017), 31–60. DOI:http:
//dx.doi.org/10.1146/annurev-statistics-010814-020148

[49] David J. Spiegelhalter, Andrew Thomas, Nicky G. Best,
Wally Gilks, and D. Lunn. 1996. BUGS: Bayesian
inference using Gibbs sampling. Version 0.5,(version ii)
http://www. mrc-bsu. cam. ac. uk/bugs 19 (1996).

[50] C. Stolte, D. Tang, and P. Hanrahan. 2002. Polaris: a
system for query, analysis, and visualization of
multidimensional relational databases. IEEE

Transactions on Visualization and Computer Graphics 8,
1 (Jan. 2002), 52–65. DOI:
http://dx.doi.org/10.1109/2945.981851

[51] The Upshot Staff. 2018. What Is the Needle? The New
York Times (Nov. 2018). https://www.nytimes.com/2018/
11/05/upshot/needle-election-night-2018-midterms.html

[52] Judi Thomson, Elizabeth Hetzler, Alan MacEachren,
Mark Gahegan, and Misha Pavel. 2005. A typology for
visualizing uncertainty. In Visualization and Data
Analysis 2005, Vol. 5669. International Society for
Optics and Photonics, 146–157. DOI:
http://dx.doi.org/10.1117/12.587254

[53] Martin Wattenberg, Fernanda Viégas, and Moritz Hardt.
2016. Attack Discrimination with Smarter Machine
Learning. https://research.google.com/bigpicture/
attacking-discrimination-in-ml/. (2016). Retrieved on
1/5/2020.

[54] Hadley Wickham. 2010. A Layered grammar of
graphics. Journal of Computational and Graphical
Statistics 19, 1 (2010), 3–28. DOI:
http://dx.doi.org/10.1198/jcgs.2009.07098 ISBN:
1061-8600.

[55] Hadley Wickham. 2014. Tidy Data. Journal of
Statistical Software 59, 1 (Sept. 2014), 1–23. DOI:
http://dx.doi.org/10.18637/jss.v059.i10

[56] Hadley Wickham and Heike Hofmann. 2011. Product
Plots. IEEE Transactions on Visualization and
Computer Graphics 17, 12 (Dec. 2011), 2223–2230.
DOI:http://dx.doi.org/10.1109/TVCG.2011.227

[57] Claus O. Wilke. 2018. ggridges: Ridgeline Plots in
’ggplot2’. https://CRAN.R-project.org/package=ggridges
R package version 0.5.1.

[58] Leland Wilkinson. 2005. The Grammar of Graphics.
Springer-Verlag, New York.
http://link.springer.com/10.1007/0-387-28695-0

[59] Jingxiong Zhang, Michael F. Goodchild, and Michael F.
Goodchild. 2002. Uncertainty in Geographical
Information. CRC Press. DOI:
http://dx.doi.org/10.1201/b12624

https://www.nytimes.com/interactive/2019/03/08/climate/light-bulb-efficiency.html, https://www.nytimes.com/interactive/2019/03/08/climate/light-bulb-efficiency.html
https://www.nytimes.com/interactive/2019/03/08/climate/light-bulb-efficiency.html, https://www.nytimes.com/interactive/2019/03/08/climate/light-bulb-efficiency.html
https://www.nytimes.com/interactive/2019/03/08/climate/light-bulb-efficiency.html, https://www.nytimes.com/interactive/2019/03/08/climate/light-bulb-efficiency.html
https://www.nytimes.com/interactive/2019/03/08/climate/light-bulb-efficiency.html, https://www.nytimes.com/interactive/2019/03/08/climate/light-bulb-efficiency.html
https://www.R-project.org/
http://dx.doi.org/10.1109/TVCG.2018.2865158
https://ig.ft.com/italy-poll-tracker/
https://CRAN.R-project.org/package=inspectdf
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1146/annurev-statistics-010814-020148
http://dx.doi.org/10.1146/annurev-statistics-010814-020148
http://dx.doi.org/10.1109/2945.981851
https://www.nytimes.com/2018/11/05/upshot/needle-election-night-2018-midterms.html
https://www.nytimes.com/2018/11/05/upshot/needle-election-night-2018-midterms.html
http://dx.doi.org/10.1117/12.587254
https://research.google.com/bigpicture/attacking-discrimination-in-ml/
https://research.google.com/bigpicture/attacking-discrimination-in-ml/
http://dx.doi.org/10.1198/jcgs.2009.07098
http://dx.doi.org/10.18637/jss.v059.i10
http://dx.doi.org/10.1109/TVCG.2011.227
https://CRAN.R-project.org/package=ggridges
http://link.springer.com/10.1007/0-387-28695-0
http://dx.doi.org/10.1201/b12624
http://www

	Introduction
	A Motivating example: specifying density plots
	Related work
	Probabilistic Programming
	Probabilistic visualizations
	Probability & frequency formats in uncertainty visualization

	Grammar of Graphics
	Convoluted specifications for probabilistic visualizations

	Grammar design considerations and process
	Grammar specification
	Data variables
	Validating the probabilistic variables

	Aesthetics
	Geometries

	Proof-of-concept implementation in R
	Evaluation
	Expressiveness
	Cognitive dimensions of notations
	Validation through a visualization algebra

	Discussion and future work
	Defining visualizations with uncertainty concepts
	Leveraging uncertainty lineage and model structures

	Enabling uncertainty visualization best practices
	Informing uncertainty visualization research

	Conclusion
	Acknowledgements
	References

