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ABSTRACT

Implicit neural representations (INR) have been recently pro-
posed as deep learning (DL) based solutions for image com-
pression. An image can be compressed by training an INR
model with fewer weights than the number of image pixels
to map the coordinates of the image to corresponding pixel
values. While traditional training approaches for INRs are
based on enforcing pixel-wise image consistency, we pro-
pose to further improve image quality by using a new struc-
tural regularizer. We present structural regularization for INR
compression (SINCO) as a novel INR method for image com-
pression. SINCO imposes structural consistency of the com-
pressed images to the groundtruth by using a segmentation
network to penalize the discrepancy of segmentation masks
predicted from compressed images. We validate SINCO on
brain MRI images by showing that it can achieve better per-
formance than some recent INR methods.

Index Terms— Image compression, implicit neural rep-
resentations, neural radiance fields, deep learning.

1. INTRODUCTION

Image compression is an important step for enabling efficient
transmission and storage of images in many applications.
It is widely used in biomedical imaging due to the high-
dimensional nature of data. While traditional image compres-
sion methods are based on fixed image transforms [1,2], deep
learning (DL) has recently emerged as a powerful data-driven
alternative. The majority of DL-based compression methods
are based on training autoencoders to be invertible mappings
from image pixels to quantized latent representations [3-5].

In this work, we seek an alternative to the autoencoder-based
compression methods by focusing on a recent paradigm us-
ing implicit neural representations (INRs). INR refers to a
class of DL techniques that seek to learn a mapping from
input coordinates (e.g., (x,y)) to the corresponding physi-
cal quantities (e.g., density at (x,y)) by using a multi-layer
perceptron (MLP) [6-9]. Recent studies have shown the po-
tential of INR in image compression [10-14]. The key idea
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behind INR based compression is to train a MLP to repre-
sent an image and consider the weights of the trained model
as the compressed data. One can then reconstruct the image
by evaluating the pre-trained MLP on the desired pixel loca-
tions. The traditional training strategy for image compression
using INRs seeks to enforce image consistency between pre-
dicted and groundtruth image pixels. On the other hand, it is
well-known that image quality can be improved by infusing
prior knowledge on the desired images [15,16]. Based on this
observation, we propose Structural regularlzatioN for INR
COmpression (SINCO) as new method for improving INR-
based image compression using a new structural regularizer.
Our structural regularizer seeks to improve the Dice score be-
tween the groundtruth segmentation maps and those obtained
from the INR compressed image using a pre-trained segmen-
tation network. We validate SINCO on brain MR images by
showing that it can lead to significant improvements over the
traditional INR-based image compression methods. We show
that the combination of the traditional image-consistency loss
and our structural regularizer enables SINCO to learn an INR
that can better preserve desired image features.

2. BACKGROUND

INR (also referred to as neural fields) denotes a class of algo-
rithms for continuously representing physical quantities us-
ing coordinate-based MLPs (see a recent review [6]). Re-
cent work has shown the potential of INRs in many imaging
and vision tasks, including novel view synthesis in 3D ren-
dering [7], video frame interpolation [8], and dynamic imag-
ing [9]. The key idea behind INR is to train a MLP to map
spatial coordinates to corresponding observed physical quan-
tities. After training, one can evaluate the pre-trained MLP
on desired coordinates to predict the corresponding physical
quantities, including on locations that were not part of train-
ing. Let ¢ denotes a vector of input coordinates, v the cor-
responding physical quantity, and Mg a MLP with trainable
parameter @ € R™. The INR training can be formulated as

N
6= argminz line(Ma(ci), v5) - 9]

0cr" ‘=]

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 06,2024 at 04:45:16 UTC from IEEE Xplore. Restrictions apply.



back-propagation

——————————————

no-update

: linear layer :
: linear layer + ReLU : NeRF
-------------- sin(n -€) | 1IN
(2,9) e
c=(z,y
Y cos(keos - €) ko

-20—0—0- > (2>
12 4 8

positional encoding

SIREN

image coordinate

sine function

compressed image

predicted segmentaiton

H
“(';:_uluum\ I

segmentation network H

groundtruth segmentaiton

|

—]]

raw image

Fig. 1. SINCO consists of two components: (a) a multi-layer perceptron (MLP) for compressing an image by mapping its co-
ordinates to the corresponding pixel values; (b) a segmentation network that predicts segmentation masks from the compressed
image. Unlike traditional INR methods that only enforce consistency between compressed and groundtruth images, SINCO
uses information from a regularizer that penalizes the discrepancy between predicted and groundtruth segmentation masks.

Fig. 2. Test images (top) and corresponding segmentation
masks (bottom) used for our numerical evaluations.

where N > 1 denotes the number training pairs (¢, v). The
common choices for ¢;,, include /> and ¢; norms.

INRs have been recently used for image compression [10—13]
(see also a recent evaluation in medical imaging [14]). COm-
pressed Implicit Neural representations (COIN) [10] is a pio-
neering work based on training a MLP by mapping the pixel
locations (i.e., ¢ = (x,y)) of an image to the pixel values.
The pre-trained MLP in COIN is quantized and then used as
the compressed data. In order to reconstruct the image, one
can evaluate the model on the same pixel locations used for
training. Several papers have investigated the meta-learning
approach to accelerate COIN by first training a MLP over a
large collection of datapoints and then fine-tuning it on an
instance-dependent one [11, 12, 17]. Two recent papers pro-
posed to regularize INR-based image compression by using
{o- and ¢1-norm penalties on the weights of the MLP to im-
prove the compression rate [11, 13].

The structural regularization in SINCO is based on image seg-
mentation using a pre-trained convolutional neural network
(CNN) (see a comprehensive review of the topic [18]). There
exists a rich body of literature in the context of DL-based im-
age segmentation that can be integrated into SINCO [19-21].

To the best of our knowledge, no prior work has considered
higher-level structural regularization in the context of INR-
based image compression. It is worth mentioning that our
structural regularizer is fully compatible to the existing INR
compression methods; for example, one can easily combine
our structural regularizer with an additional ¢y-regularizer.

3. PROPOSED METHOD

SINCO consists of two components: (a) a MLP Mg that rep-
resents an image by mapping its coordinates to corresponding
pixel values and (b) a CNN g, that predicts a segmentation
mask given the compressed image produced by MLP. Specifi-
cally, let z € R¥*W denote an image of height H and width
W that we seek to compress. Let ¢ € RTW*2 represents
all the pixel locations within &. Then, My is trained to take
c as input and predict all the corresponding HW pixels val-
ues. We format the output of Mg to be the compressed image
z € R¥>W _ The function g, denotes the segmentation CNN
that takes the compressed image and predicts a segmentation
mask § = g, (). The SINCO pipeline is illustrated in Fig. 1.

3.1. Network Architecture

We implemented two different architectures for Mg: (a)
SIREN! [22] that consists of linear layers followed by sine
activation functions and (b) NeRF that incorporates the posi-
tional encoding to expand ¢ before passing it to Mg? [7]

. 0 0 : L L
v(e) = (sin(2%7c), cos(2°me)... sin(2™ 7 ¢), cos(2™/ 7 c))

ksin kcos

2
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Fig. 3. Visual illustration of compressed images (fop) with corresponding segmentation masks (bottom) obtained by SINCO
and two INR baselines. The PSNR and SSIM values for image compression and dice score values for image segmentation are
provided in the top-left corners of the images. This figure shows that SINCO can lead to significant improvements in image
quality both quantitatively and qualitatively. Note the quality of the SINCO images in the areas highlighted by the yellow arrow.

where Ly > 0 denotes the number of frequencies. Mg
of NeRF consists of linear layers followed by ReLU acti-
vation functions. For the NeRF architecture, we also add
residual connections from the input to intermediates layers.
We subsequently denote SINCO based on the two MLPs
as SINCO (SIREN) and SINCO (INR). We adopt the widely-
used U-Net [21] architecture as the CNN for the segmentation
network g.

3.2. Training Strategy
SINCO is trained by minimizing the following loss

lsinco = gcompress(ia CL') + )\gregularize('éy 5) s 3)

where s denotes the reference segmentation mask of x, and
A > 0 is a parameter that balances image consistency with
structural regularization. We implement £compress as a £2-norm
between the compressed image and the groundtruth image.
We implement {reguiarize as 1 — Dice(8, s), where Dice(8, s)
is the Dice score coefficent between the segmentation mask
predicted from the compressed image and the groundtruth
one. In eq. (3), the segmentation network g, is assumed to be
pre-trained, which implies that we only optimize the param-
eters of My during training. Note that when A = 0, eq. (3)
is equivalent to the traditional INR-based image compression.
After the training, we follow the approach in [10] by quantiz-
ing the weights of Mg from 32-bits to 16-bits.

4. NUMERICAL EXPERIMENTS

4.1. Setup and comparison

For our experiments, we used MR images of brain tumors
with the corresponding segmentation masks obtained from

Metrics PSNR (dB) SSIM Dice score
COIN 34.49 0.907 0.892
Vanilla INR 35.18 0.923 0.877
SINCO (SIREN) 34.93 0.915 0.894
SINCO (INR) 35.69 0.952 0.895

Table 1. Average quantitative evaluation metrics over the test-
ing images. This table shows that SINCO can achieve better
image compression and segmentation performance than INR
baselines by imposing structural regularization.

the Decathlon dataset [23] (TaskO1). We selected ten test
images with resolution 240 x 240. Fig. 2 illustrates several
images used in our experiments with the corresponding seg-
mentation masks for tumors.

We compared SINCO against two reference INR methods:
(a) COIN?, a recent INR method discussed in Sec. 2, and (b)
Vanilla INR, a variant of SINCO (INR) that sets A in (3) to
0. Note that since COIN also uses SIREN as its MLP archi-
tecture, it can be viewed as SINCO (SIREN) using a differ-
ent loss. For all methods we used the same compression rate
quantified with bits per pixel (bpp)

_ bit per parameters X #parameters

b
PP #pixels

We set bbp to 1.2 in our experiments, corresponding to the
compression rate of 2% relative to the raw file size. We eval-
uated all the methods on both image compression and im-
age segmentation using compressed images. For image com-
pression, we used two widely-used quantitative metrics, peak

3github.com/EmilienDupont/coin
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Fig. 4. Visual illustration of compressed images obtained by SINCO and two other INR methods. The PSNR and SSIM values
of compressed images relative to the groundtruth are provided in the top-left corner of the images. Note how SINCO provides
images with better sharpness and overall quality by leveraging a structural regularizer (see features highlighted by arrows).

signal-to-noise ratio (PSNR), measured in dB, and structural
similarity index (SSIM). We used the Dice score coefficient to
evaluate image segmentation.

4.2. Implementation Details

We followed [21] to train the segmentation network g,,. We
used about 500 images from the same dataset in training. The
corresponding training loss can be written as

M
Z gseg(gcp(mi)a si) (4)
i=1

where M > 1 denotes the number of training samples and £,
corresponds to binary cross entropy [21]. We used Adam [24]
as an optimizer with learning rate 0.0001. We set training
epochs to 75 and batch size to 8. In the training of SINCO,
we set Ly in (2) to 12. We have experimented with different
values of A in (3). The best results were obtained when \ =
1. We used Adam [24] as an optimizer with learning rate
0.001. We set training epochs to 50,000. We performed our
experiments on a machine equipped with an Intel Xeon Gold
6130 Processor and an NVIDIA GeForce RTX 1080Ti GPU.

4.3. Results

Figure 3 presents visual results of SINCO and two other INR
methods. For image compression, SINCO achieves higher
PSNR and SSIM values than other INR methods, while also
providing sharper images with features that are more con-
sistent with the groundtruth. For example, SINCO can re-
construct sharper brain tissue highlighted by the yellow ar-
row, while INR baselines blur out the same features. For
image segmentation using compressed images, SINCO can
qualitatively and quantitatively outperforms INR baselines in
general. Especially, SINCO (SIREN) provides more consis-
tent results relative to the groundtruth segmentaion mask (see
also segmentation mask highlighted by yellow arrows) com-
pared with COIN. Note that COIN also uses SIREN as its
MLP architecture. Another set of visual results shown in Fig-
ure 4 are also consistent with the observations that SINCO

A 0 0.1 0.5 1 2

PSNR (dB) 35.18 35.42 35.45 35.69 35.48
SSIM 0.923 0.948 0.949 0.952 0.950

Table 2. Average quantitative evaluation metrics achieved by
SINCO (INR) over the test images. The weight of the reg-
ularization loss () is varied, with A\ = 0 being the Vanilla
INR baseline method. This table highlights that the perfor-
mance of SINCO (INR) can be improved by using the opti-
mized value of \.

leads to significant improvements in the image quality. Ta-
ble 1 summarizes quantitative results over all the testing im-
ages. The table shows that, under the same MLP architecture
(i.e., COIN versus SINCO (SIREN) and Vanilla INR versus
SINCO (INR)), SINCO can achieve better performance by
leveraging the structural regularization. Table 2 summarizes
average quantitative evaluation metrics achieved by SINCO
(INR) with different values of A. Table 2 shows that the per-
formance of SINCO (INR) can be improved by using the op-
timized value of \.

5. CONCLUSION

We present SINCO as a new structurally regularized image
compression method using implicit neural representation.
The key idea behind SINCO is to use a pre-trained segmen-
tation network to ensure that the INR compressed images
produce accurate segmentation masks. Our experiments on
brain MR images show that SINCO can quantitatively and
qualitatively outperform traditional INR approaches. In the
future work, we will further investigate SINCO for higher
dimensional data compression (e.g., 3D or 4D MRI [25]) and
leverage recent development of meta-learning strategies to
accelerate the INR training [17].
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