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ABSTRACT

Deep model-based architectures (DMBAs) are widely used
in imaging inverse problems to integrate physical measure-
ment models and learned image priors. Plug-and-play priors
(PnP) and deep equilibrium models (DEQ) are two DMBA
frameworks that have received significant attention. The key
difference between the two is that the image prior in DEQ is
trained by using a specific measurement model, while that in
PnP is trained as a general image denoiser. This difference
is behind a common assumption that PnP is more robust to
changes in the measurement models compared to DEQ. This
paper investigates the robustness of DEQ priors to changes in
the measurement models. Our results on two imaging inverse
problems suggest that DEQ priors trained under mismatched
measurement models outperform image denoisers.

Index Terms— Computational imaging, inverse prob-
lems, plug-and-play priors, deep equilibrium models.

1. INTRODUCTION

Deep learning (DL) has become a popular data-driven strat-
egy for solving imaging inverse problems—such as image de-
noising, deblurring, super-resolution, and reconstruction—by
training deep neural net architectures to map noisy measure-
ments to the desired images [1]. Among various DL archi-
tectures for inverse problems, deep model-based architectures
(DMBA ) have received significant attention due to their abil-
ity to integrate physical measurement models and image pri-
ors specified as convolutional neural nets (CNN). Well-known
strategies for designing DMBAs include plug-and-play pri-
ors (PnP), regularization by denoising (RED), deep unfolding
(DU), and deep equilibrium architectures (DEQ) (see review
papers [2—4]). DMBAs can be systematically obtained from
model-based iterative algorithms by parametrizing the regu-
larization step as a CNN and training it to adapt to the empir-
ical distribution of desired images.

Current DMBA strategies can be conceptually divided into
two categories. The first category consists of models that
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rely on image priors trained independently of the measure-
ment model. PnP and RED are two well-known frameworks
that specify image priors using image denoisers trained to re-
move additive white Gaussian noise (AWGN) in the first cat-
egory [5-7]. DU and DEQ are two well-known frameworks
in the second category where the image prior is trained to
be end-to-end optimal for a specific inverse problem [8-10].
Since all DMBA categories use the knowledge of the mea-
surement model during inference, it is commonly accepted
that DMBAs are more robust than generic CNNs to changes
in the measurement model [3]. On the other hand, since the
image prior in PnP/RED is independent of the specific mea-
surement model, it is a common assumption that PnP/RED
are more robust than DU/DEQ to changes in the measure-
ment models. Model adaptation [11] has been proposed to in-
vestigate and improve image reconstruction with mismatched
measurement model within PnP frameworks. Despite the rich
literature on DMBAs, the robustness of DEQ to changes in
the measurement models has never been systematically com-
pared to PnP.

This paper addresses this gap by comparing DEQ to PnP. Both
frameworks can be viewed as implicit neural networks with
potentially an infinite number of layers [10]. While the image
priors in PnP are AWGN denoisers, those in DEQ are arti-
fact removal (AR) operators trained end-to-end using specific
measurement models. We consider two distinct inverse prob-
lems: (a) compressive sensing magnetic resonance imaging
(CS-MRI) [12] and (b) image super-resolution with known
blur kernels [13]. We use the same deep architecture for both
PnP and DEQ derived from the well-known model-based iter-
ative algorithms. Our results suggest that contrary to common
intuition, AR priors trained using mismatched measurement
models within DEQ can perform better relative to the pure
AWGN priors in PnP. We observe that mismatched AR priors
outperform AWGN priors on average by 1.84 dB in CS-MRI
and 0.23 dB in image super-resolution.
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Fig. 1. Schematic illustration of two DMBAs for inverse problems:
(a) PnP-PGM and (b) SD-RED. While both architectures have the
same set of fixed points, their difference is in the use of the data-
fidelity term, namely PnP-PGM uses prox.,, and SD-RED uses Vg.

2. INVERSE PROBLEMS

Recovering an unknown image x* € R" from its sub-

sampled and noisy measurements
y=Az* +e, (1)

is an inverse problem, often formulated as a regularized opti-
mization

T =argmin f(x) with f(z)=g(x)+h(z), ()

xcR"

where A € R™*"™ is the measurement model that character-
izes the response of a physical system, e is the AWGN, g is
the data-fidelity term that measures the consistency of the so-
lution with y, and h is a regularizer that enforces prior knowl-
edge on x. For example, two traditional data-fidelity and reg-
ularization terms are the least-squares function g(z) = 1||y—
Ax||% and the total variation (TV) function h(x) = 7||Dz||;,
where 7 > 0 is the regularization parameter and D is an im-
age gradient [14].

When the function g or A in (2) is nonsmooth, the optimiza-
tion problem is often solved using a proximal algorithm.
Given a proper, closed, and convex function g, both of these
algorithms avoid differentiating it by relying on the proximal
operator

. 1
prox, ,(z) := argmin {Ilw —z|3 + vg(w)}, 3)
xzER™ 2

where the parameter v > 0 is analogous to step-size.

3. DEEP MODEL-BASED ARCHITECTURES

We now present the details of DMBAs used in this paper. We
first present two deep architectures and then discuss two train-
ing approaches for the image priors.

3.1. Plug-and-Play Architectures

We adopt steepest descent variant of RED (SD-RED) and
proximal gradient method version of PnP (PnP-PGM) for CS-
MRI and image super-resolution experiments, respectively.

The SD-RED updates can be expressed as

x" = Tsprep (CU]F ! )

with Tsprsn(@) = @ — 1(V(a) + (@ - D@)),

where v > 0 is the step-size, D is the CNN prior, and 7 > 0
is the regularization parameter. Note that if the conditions on
D from [6] are satisfied then 7(x — D(«)) is interpretable as
a gradient of some convex regularizer h. Note that depending
on the training procedure (see Section 3.2), the CNN prior can
correspond to an AWGN denoiser or AR operator.

Instead of using the gradient Vg, PnP-PGM performs a
proximal update prox., with respect to the data-fidelity term
g. This update has a closed-form solution for image super-
resolution, which makes it preferable for that problem. The
update rule for PnP-PGM can be summarized as

@* = Tpwppom (2" 1)
with  Tpappoum(Z) = prox., (z — y7(x — D(x))),

®)

where 7 > 0 is the regularization parameter, and v > 0 is
the step-size. For linear inverse problems, the proximal oper-
ator corresponding to g(x) = 3 |ly — A||3 has the following

2
closed-form solution

prox. ,(z) = (vATA + 1)z + 'yATy), (6)
which can be efficiently evaluated in the Fourier domain for
image super-resolution [15].

It is straightforward to verify that both methods have the same
set of fixed points T € Fix(T) = {x € R" : T(x) = =}
that balance the measurement model and learned prior model.

3.2. Training Image Priors

The traditional PnP strategy considers the following image
denoising problem

z=xg+wW To~ Py, w~N0I), (7)

and trains D as a CNN that maps z to xy. Since the training
does not use the measurement model A, the prior is viewed
as a generic image prior usable in multiple applications.

DEQ seeks to train D by minimizing the discrepancy between
the fixed-point T = Tg() and the ground truth image x*

1
0(6) = - |[z(0) — z*|3. (8)

The gradient of the loss with respect to € can be computed
using implicit differentiation at the fixed-points
VU(O) = (VoTo(@) (1= VoTo(@) " (®—2"), ©)

where ¢ is given in (8) and | is the identity mapping. Since
DEQ includes the information of the measurement model A
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Fig. 2. The comparison of AWGN (PnP) and AR (DEQ) priors on CS-MRI image reconstruction at 10%, 20%, and 30% radial Fourier
sampling. Since the AR prior was trained at 10% sampling rate, it is a mismatched prior for 20% and 30% sampling scenarios. Note how the
mismatched AR prior outperforms AWGN prior in every scenario, showing its robustness to measurement model mismatch.

(embedded in the operator T), the corresponding AR operator
can be viewed as a problem-specific image prior.

We consider image priors trained via DEQ using a “mis-
matched” measurement operator A’ and applied at infer-
ence time using the true measurement operator A. Ac-
cordingly, we train SD-RED by replacing Vg in (4) with
Vg (z) = A" (A’z — y). Similarly, PnP-PGM is trained by
replacing prox.,, in (6) by a mismatched update rule

(2)= (A A + ) Nz ++A"y). (10

Prox.

4. NUMERICAL RESULTS

Our numerical results evaluate the robustness of DEQ priors
to changes in the measurement operator A in the context of
two imaging problems: CS-MRI and image super-resolution.

4.1. Compressive Sensing MRI

In CS-MRI, the goal is to recover an image x* from its
sparsely-sampled Fourier measurements. We simulate a
single-coil CS-MRI with radial Fourier Sampling. The mea-
surement model A in CS-MRI is A = PF, where F is the
Fourier transform and P is a diagonal sampling matrix.

Image priors were trained using the brain dataset [16],
where we used 10 slices of 256 x 256 images as the test
images. The AWGN denoisers for PnP correspond to a
DnCNN architecture [17] trained using noise levels o €
{1,2,3,5,7,8,10,12,15}. For each experiment, we select
the denoiser that achieves the highest PSNR. We trained AR
operators for DEQ using different CS ratios (m/n) with the

Table 1. Average PSNR (dB) for CS-MRI.

CS ratio 10% 20% 30% Avg
AWGN Prior 31.37 35.52 37.88 34.92
Mismatched AR Prior 33.05 37.48 39.77 36.76

same DnCNN architecture. The AR priors were initialized
using the pre-trained AWGN denoiser with 0 = 5. Nes-
terov [18] and Anderson accelerations [19] were used in the
forward pass and the backward pass during DEQ training.

Fig. 2 shows results on a test image from [16] at three sam-
pling ratios: 10%, 20%, and 30%. The AR prior in the re-
construction was trained using the measurement model cor-
responding to 10% sampling. Therefore, it is a mismatched
prior for performing inference at 20% and 30% sampling. De-
spite the mismatch, the AR prior significantly outperforms
the AWGN prior in all considered scenarios. Table 1 reports
all the comparisons between the mismatched AR priors and
AWGN priors in CS-MRI. Note that the mismatched AR op-
erator outperforms the AWGN prior in all experiments.

Fig. 3 illustrates the impact of using an inaccurate measure-
ment model during inference. The results are obtained by us-
ing the measurement model at 20% sampling for reconstruct-
ing from data corresponding to 10% sampling. Fig. 3 shows
the results obtained using matched and mismatched measure-
ment models at inference for both AWGN and AR priors. We
observe a severe performance drop due to the usage of an in-
accurate measurement model during inference, which high-
lights the importance of the measurement models in DMBAs.
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Fig. 3. llustration of using mismatched measurement models during inference. The mismatched setting is obtained by using the measurement
model at 20% sampling for reconstructing from data corresponding to 10% sampling. Note the dramatic performance drop due to the usage

of mismatched measurement models during inference for both AWGN and AR priors.
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Fig. 4. Image super-resolution on two images using an AWGN prior and a mismatched AR prior. The measurement model corresponds to
scaling of 3x superresolution with a input noise level of # = 0.03. Note how the mismatched AR prior outperforms the AWGN prior.

Table 2. Average PSNR (dB) for image super-resolution.

Blur kernel kernel 1 kernel 2 kernel 3 Avg
AWGN Prior 24.63 24.22 25.75 25.12
Mismatched AR Prior 24.86 24.57 25.90 25.35

4.2. Image Super-Resolution

The measurement model in image super-resolution corre-
sponds to A = SH, where H is the convolution with an
anti-aliasing kernel, S is the standard s-fold downsampling
matrix of size m x n, and n = s2 x m. The priors were
trained using color image dataset in [20]. CBSD68 dataset
proposed in [21] was used for inference. Three Gaussian blur
kernels (kernels (b), (d), and (e) from [22]) were used to
downsample images at scale s = 3 for inference, and jointly,
at scale s = 2 and s = 4 during training of the DEQ prior.
The CNN priors architectures correspond to U-net [23].

Fig. 4 illustrates results on two subsampled images at scale
s = 3. Table 2 reports the results over all the test images for
3 different Gaussian blur kernels. Note how regardless of the
blur kernel, mismatched AR priors outperform AWGN priors.

5. CONCLUSION

This work investigates the robustness of CNN priors trained
using the DEQ framework to changes in the measurement
operators. To that end, we compare image priors obtained
via DEQ to PnP, where image priors are characterized using
general AWGN denoisers. We show on two imaging inverse
problems that DEQ priors outperform traditional PnP despite
DEQ using different measurement operators at training and
testing. Our results suggest the robustness of the image priors
trained using DEQ to moderate shifts in the measurement op-
erators, thus complementing the recent theoretical analysis of
DMBAs under mismatched priors in [24]. In future works,
we plan to broaden the perspective regarding the robustness
of PnP frameworks by investigating (a) the performance of
DEQ priors beyond moderate shift in measurement model to
fundamentally different measurement models (i.e. DEQ prior
trained on one task and tested on other tasks), and (b) deep
unfolding against DEQ priors with mismatched measurement
model.
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