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ABSTRACT

Three-dimensional fluorescence microscopy often suffers
from anisotropy, where the resolution along the axial direc-
tion is lower than that within the lateral imaging plane. We
address this issue by presenting Dual-Cycle, a new framework
for joint deconvolution and fusion of dual-view fluorescence
images. Inspired by the recent Neuroclear method, Dual-
Cycle is designed as a cycle-consistent generative network
trained in a self-supervised fashion by combining a dual-view
generator and prior-guided degradation model. We validate
Dual-Cycle on both synthetic and real data showing its state-
of-the-art performance without any external training data.

Index Terms— Light-sheet fluorescence microscopy,
Dual-view imaging, deep learning, image deconvolution.

1. INTRODUCTION

Three-dimensional fluorescence imaging, such as light-sheet
fluorescence microscopy (LSFM) [1,2] is an essential tool for
revealing important structural information in biological sam-
ples. However, it is common for 3D fluorescence microscopy
to suffer from spatial-resolution anisotropy, where the axial
direction is more blurry than the lateral imaging plane. Such
anisotropy is due to several factors, including the diffraction
of light and axial undersampling.

The spatial-resolution anisotropy is often addressed using
image deconvolution methods, such as Richardson-Lucy al-
gorithm [3, 4]. However, achieving isotropic resolution from
a single 3D volume is an ill-posed inverse problem. The
problem can be simplified by using multiview microscopy
systems, such as dual-view inverted selective plane illumina-
tion microscope (diSPIM) [5,6], equipped with classical joint
multi-view deconvolution and fusion methods [5, 7, 8].

Deep learning (DL) has emerged as an alternative to the
classical deconvolution algorithms [9–11]. Neuroclear [10]
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Fig. 1. Dual-Cycle reconstructs a 3D image with isotropic
resolution given two views, A and B, of the same sample.

is a recent self-supervised DL framework that uses cycle-
consistent generative adversarial network (CycleGAN) [12]
to improve the axial resolution from a single 3D input image
without any knowledge of the point spread function (PSF).
However, in many cases, the experimental PSF can be read-
ily measured using either fluorescent beads [8, 13] or small
structures within samples [14], or derived theoretically [15].

In this paper, we present Dual-Cycle as an improvement
to Neuroclear that extends it into a dual-view self-supervised
model-based framework. The inclusion of an additional view
as input improves the reconstruction capability, while the ad-
ditional prior on estimated PSFs allows our model to account
for the expected degradation process. We experimentally val-
idate Dual-Cycle on synthetic and real data showing that it
can outperform Neuroclear as well as traditional dual view
reconstruction algorithms.IC
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Fig. 2. Schematic illustration of the Dual-Cycle framework. a) Scheme of dual-view inverted selective plane illumination
microscope (diSPIM). b) CycleGAN approach: for two domains Y and X , CycleGAN learns two mutually-inverse generator
mappings Gen and Deg with the assistance of corresponding discriminators. c) Dual-Cycle network architecture. d) Schematic
of the generator based on U-Net. e) Degradation forms two paths each consisting of blurring with known PSF followed by the
deep linear generator. f) PatchGAN-based [16] discriminators work on 2D slices of input 3D volumes.

2. FORWARD PROBLEM

We focus on images recorded with single-plane illumination
microscopes (SPIMs) [17] in a dual-view setup (diSPIM,
Fig. 2a). Data is acquired by two cameras, A and B, with an
ideal relative rotation of 90 degrees. The image formation
process (forward model) can be represented as the following
linear observation model:

gA = AAHAu+ n,

gB = R?ABHBu+ n.
(1)

where gA, gB , and u correspond to the vectorized forms
of deskewed 3D volumes, measured by camera A (View A),
camera B (View B), and the original high-resolution 3D vol-
ume (Fig. 1). HA (resp. HB) denote 3D convolution along
the axial direction z (resp. x) with some known PSF hA (resp.
hB). To model the mismatch from an ideal dual view setup,
we include operators AA/B , representing 3D affine transfor-
mation. We assume a coordinate system of unknown image
u to be the same as gA and that the ideal rotation of View B
with respect to View A is 90 degrees around axes y, denoted
as R?. We omit subsampling in the axial directions by in-
terpolating measurements to have voxels of equal size. In the
general case, we consider additive noise n.

Problem 1 leads to an inherently ill-posed inverse prob-
lem. To solve it, we adopt and extend the approach in [10].

3. INVERSE PROBLEM

Our proposed framework is illustrated in Fig. 2c. In our setup,
View A has a higher resolution in the xy plane and is blurred
in the axial direction z, while View B has a higher resolution
in the yz plane and is blurred in the axial direction x. Our goal
is to reconstruct the original 3D volume with an isotropic res-
olution. We focus mainly on joint deconvolution and fusion
with additional fine registration. Our framework is based on
a CycleGAN approach illustrated in Fig. 2b and consists of
two cycle-consistency paths, hence the name Dual-Cycle. It
is worth mentioning that Dual-Cycle does not require any ex-
ternal training data beside the test object to be reconstructed.

The two views of the 3D volume are used as input for the
3D U-net-based generator (Fig. 2d). The result of the gen-
erator is one 3D image representing the original 3D volume
with isotropic resolution. To achieve this, we employ two
sets of discriminators A1 and B1 (Fig. 2f). Discriminators
A1 distinguish between xy planes of View A and xy and xz
planes of the reconstructed volume. Discriminators B1 distin-
guish between yz planes of View B and yz and xz planes of
the reconstructed volume. To regularize and stabilize learn-
ing, the dual-cycle consistency is imposed. Therefore, the
reconstructed image is degraded along two paths to imitate
the forward problem (1). Consequently, Degradation A and
B, Fig. 2e, consist of 3D convolution with given PSFs hA

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 06,2024 at 04:45:11 UTC from IEEE Xplore.  Restrictions apply. 



and hB followed by a deep linear generator (DLG) to address
ideal model mismatch caused by affine operators A. For the
blind case, when PSFs are unknown, degradation can be per-
formed by DLGs only. Eventually, two other sets of discrim-
inators A2 and B2 are added to map the distribution of corre-
sponding planes of input View A/B onto generated View A/B.
All discriminators are PatchGAN-based [16] and work on 2D
slices of analyzed 3D volumes (Fig. 2f). Pixel-wise L1 loss
between View A/B and generated View A/B is added to the
GAN objective function to enforce cycle consistency.

4. EXPERIMENTAL VALIDATION

We now present the numerical evaluation of Dual-Cycle on
synthetic and real light-sheet data.

4.1. Synthetic data

We first illustrate possible improvements due to our dual-view
framework over the single-view Neuroclear [10]. Addition-
ally, we compare our network with other commonly used
multi-view reconstruction techniques diSPIMFusion [9] and
MIPAV-generatefusion [6]. The performance was measured
using the peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM).

We consider a dataset of six generated 3D volumes (120
× 120 × 120 voxels), shown in Fig. 3. We drew 30-50 lines
randomly in space and applied 3D elastic grid-based deforma-
tion. These volumes were treated as original ground truth vol-
umes. All images were scaled to have values in the range 0-1.
To obtain degraded volumes View A/B, we used the degrada-
tion process (1), without noise and 90-degree rotation. The
original volume was blurred in the z direction for View A and
in the x direction for View B (blurring by Gaussian kernel
with a standard deviation in range 2-4). Further, we applied
random affine transformations to simulate the imperfection of
the registration method. Relatively small mismatch (repre-
senting by A in eq. (1)) is implemented as transformation
of 3D points p as follows: p0 = (I + N)p + t, where I is
identity matrix and N is random matrix with elements from a
uniform distribution over [�0.0025, 0.0025], and t is random
translation vector sampled from a uniform distribution over
[�0.05, 0.05]3.

Except for Neuroclear, all methods use prior knowledge
about the PSFs and both views as input. Visual comparison
of reconstructed volumes corresponding to the first 3D vol-
ume of the synthetic dataset is in Fig. 4. All methods can
effectively perform the reconstruction, yet the improvement
of Dual-Cycle compared to single view baseline is visually
noticeable and corroborated by an increase in SSIM. Table
1 summarizes the average PSNR/SSIM results of the tested
methods. Overall, Dual-Cycle improves over the second best
methods by 1.49 db (PSNR) and 0.017 (SSIM).

Fig. 3. The set of six generated 3D volumes used in experi-
ments.

Fig. 4. Comparison of MIPAV-generatefusion [6], diSPIM-
Fusion [9], Neuroclear [10], and Dual-Cycle applied on the
views A and B generated from the first 3D volume in the syn-
thetic dataset in Fig. 3. Visualized XY, XZ, and YZ images
represent central cross-sections of the corresponding cubes in
xy, xz, and yz planes. Each reconstruction is labeled with its
SSIM value with respect to the original volume.
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Fig. 5. Image reconstruction from real diSPIM data from [9] using reconstruction methods MIPAV-generatefusion [6], diSPIM-
Fusion [9], Neuroclear [10], and the proposed Dual-Cycle framework.

Implementation of Dual-Cycle was based on the Neuro-
clear and CycleGAN PyTorch framework; we used Adam
optimizer and learning rate set to 0.0001. The network was
initialized with weights pre-trained on the first volume. The
training of the first (resp. following volumes) lasted approxi-
mately 12 hours (resp. 3-6 hours) using NVIDIA RTX A5000.

4.2. Real data

We also tested reconstruction on diSPIM data from [9]. Data
was preprocessed using the Fiji software [18]. The prepro-
cessing involved denoising of both views and performing ini-
tial coarse registration of View B on View A. For both views:
the minimum brightness value was truncated at value 78, vol-
umes were normalized to 0-1 range, and were interpolated to
have voxel sizes equal to (0.1625 µm)3. For the registration
of view B on view A, we used Fiji plugin Fijiyama [19]. Im-
ages were cropped to 120 × 120 × 120 voxels and tested with
the same methods as in Sec. 4.1. Visual comparison of re-
constructed volumes is presented in Fig. 5. The improvement
of Dual-Cycle reconstruction over the Neuroclear is indicated
via cross sections. Overall, Dual-Cycle achieves comparable
or better performance relative to the state-of-the-art methods.

Table 1. The average PSNR/SSIM results of the blurred
view A/B, MIPAV-generatefusion, diSPIMFusion, Neuro-
clear and Dual-Cycle on the testing 3D volumes.

Method PSNR [dB] SSIM
View A 29.32 0.929
View B 29.13 0.927
MIPAV-generatefusion [6] 29.13 0.931
diSPIMFusion [9] 28.55 0.943
Neuroclear [10] 29.79 0.942
Dual-Cycle (our) 31.28 0.960

5. CONCLUSION

We presented Dual-Cycle, a self-supervised framework for
dual-view fluorescence image reconstruction. The proposed
method extends the recent Neuroclear method based on the
CycleGAN framework. Compared to Neuroclear, Dual-Cycle
includes two perpendicular views of the sample as input and
uses prior knowledge on the estimated PSFs as a part of the
degradation process within the framework. We have experi-
mentally shown that Dual-Cycle achieves the state-of-the-art
performance on synthetic and real data. While we only ex-
plored the dual-view setup in this work, our framework can
be readily expanded into the multiple-view regime.
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