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ABSTRACT There has been significant recent interest in the use of deep learning for regularizing imaging inverse
problems. Most work in the area has focused on regularization imposed implicitly by convolutional neural networks
(CNNs) pre-trained for image reconstruction. In this work, we follow an alternative line of work based on learning
explicit regularization functionals that promote preferred solutions. We develop the Explicit Learned Deep Equilibrium
Regularizer (ELDER) method for learning explicit regularization functionals that minimize a mean-squared error (MSE)
metric. ELDER is based on a regularization functional parameterized by a CNN and a deep equilibrium learning
(DEQ) method for training the functional to be MSE-optimal at the fixed points of the reconstruction algorithm. The
explicit regularizer enables ELDER to directly inherit fundamental convergence results from optimization theory. On the
other hand, DEQ training enables ELDER to improve over existing explicit regularizers without prohibitive memory
complexity during training. We use ELDER to train several approaches to parameterizing explicit regularizers and
test their performance on three distinct imaging inverse problems. Our results show that ELDER can greatly improve
the quality of explicit regularizers compared to existing methods, and show that learning explicit regularizers does not

compromise performance relative to methods based on implicit regularization.

INDEX TERMS Computational imaging, imaging inverse problems, plug-and-play priors, deep learning.

I. INTRODUCTION

The recovery of an unknown image from a set of noisy measurements
is one of the most widely-studied problems in computational imag-
ing. The task is often formulated as an inverse problem, and solved
by integrating the measurement model characterizing the response
of the imaging instrument with a regularization functional imposing
prior knowledge of the unknown image. Over the years, many regu-
larizers have been proposed as image priors, including those based on
transform-domain sparsity, low-rank penalty, and self-similarity. The
focus in the area has recently shifted to methods based on deep learn-
ing (DL). Instead of explicitly defining a regularization functional,
DL approaches for solving inverse problems learn a mapping from
the measurements to the desired image by training a convolutional
neural network (CNN) [1], [2].

Model-based DL (MBDL) has emerged as an alternative to the
traditional DL, where the knowledge of the measurement model is
combined with an image prior specified by a CNN (see reviews [3],
[4]). For example, plug-and-play priors (PnP) is a widely-used

MBDL regularisation method based on specifying the image prior
using a pre-trained image denoiser [4], [S], [6], [7]. Deep unfolding
(DU) is another MBDL approach based on interpreting a fixed-
number of iterations of an algorithm as layers of a neural network and
training it end-to-end in a supervised fashion [8]. DU architectures,
however, are usually limited to a small number of unfolded iterations
due to the high memory complexity of training. Deep equilibrium
learning (DEQ) is an alternative to DU that enables training of very
deep neural networks with a constant memory complexity in the
number of iterations [9], [10], [11], [12].

Existing research on MBDL for inverse problems, including
most of the work on PnP, DU, and DEQ, has largely focused on
regularization implicit in pre-trained neural networks [13]. While
this strategy has led to state-of-the-art performance, it requires
stringent assumptions on the MBDL architecture to ensure algo-
rithmic stability (see related reviews [4], [14]). For example, a
common assumption used for proving stability of MBDL architec-
tures is that the CNN is nonexpansive [10], [15], [16], [17], [18]. An
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alternative line of work has explored MBDL with learned explicit
regularization functionals parameterized by neural networks [19],
[20], [21], [22], [23]. Explicit regularization functionals significantly
simplify the convergence analysis due to the direct applicability
of optimization theory. Throughout this article, we will use the
term explicit to specify the direct availability of the regularization
functional.

We develop Explicit Learned Deep Equilibrium Regularizer (EL-
DER) as a new method for learning explicitly defined regularization
functionals for imaging inverse problems. This method seeks to learn
a regularizer that achieves the smallest value of mean-squared error
(MSE) for a given inverse problem. To this end, we parameterize
the regularization functional by a CNN and train it end-to-end by
using DEQ on the MSE loss. Similarly to existing approaches for
learning explicit regularizers, ELDER directly inherits traditional
concepts from optimization for parameter selection and convergence
analysis. ELDER thus improves the stability and flexibility of DEQ
by introducing a new forward pass based on minimizing an explicit
objective function using line-search. On the other hand, ELDER
outperforms existing PnP methods based on explicit regularization
functionals due to its ability to optimize learned functionals near the
fixed points of the reconstruction algorithm. We present numerical
results on three imaging inverse problems: image super-resolution,
image reconstruction from subsampled Fourier measurements, and
image inpainting. We apply ELDER to optimize the weights of three
parameterization approaches for regularization functionals—namely
least squares residual (LSR), regularization by denoising (RED), and
direct scalar-valued network (DSV)—and compare the effectiveness
of all three as regularizers when trained to be MSE-optimal. We also
show that ELDER does not compromise the imaging quality relative
to methods based on implicit regularization. Our results show that
ELDER achieves excellent imaging results, while also offering the
potential for automatic step-size selection and algorithmic stability,
even when using expansive update rules. In short, our work provides
a method to learn state-of-the-art explicit regularizers for MBDL that
preserve traditional tools from optimization theory.'

Il. BACKGROUND

Inverse Problems: We consider the imaging inverse problem of re-
covering an unknown image x € R" from noisy measurements y =
Ax + e, where A is the measurement operator and e € R™ is additive
white Gaussian noise (AWGN) vector. The problem is traditionally
formulated as an optimization problem

X =argmin f(x) with f(x) = gx) + th(x), (¢))
xeR"
where 7 > 0 is the regularization parameter, g is the data-fidelity
term enforcing consistency of the solution with y, and 4 is the regu-
larizer enforcing prior knowledge of x.

Model-based Optimization: Proximal algorithms are often used
for solving problems of form (1) when 4 is nonsmooth (see the
review [24]). One widely used family of proximal algorithms
for imaging inverse problems are the proximal gradient method
(PGM) [25]. PGM avoids differentiating & by using the proximal
operator, which can be defined as

1
prox,,(z) := arg min {5 lx — z||§ + rh(x)}, 2)

xeR"

Our code is publicly available at https:/github.com/wustl-cig/ELDER
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with t > 0, for any proper, closed, and convex function & [24].
Comparing (2) and (1), we see that the proximal operator can be
interpreted as a MAP estimator for the problem

w ~ NO, tI), 3)

z=xo+w where xy~ py,

by setting h(x) = —log(py,(x)). Another less known but equally
valid statistical interpretation of the proximal operator is as a min-
imum mean-squared error (MMSE) estimator [26].

PnP: PnP refers to a family of algorithms that integrate measure-
ment operators and CNN denoisers for solving inverse problems (see
the recent review [4]). Since the prior in PnP is implicit in the de-
noiser, it is common to interpret PnP as fixed-point iterations of some
high-dimensional operators [27]. For example, given a denoiser Dy :
R" — R" parameterized by a CNN with weights 6, the iterations of
proximal gradient method (PGM) [25] variant of PnP can be written

xF = Ty(x*") with Ty := Dy(I — yVyg), 4)

where g is the data-fidelity term in (1), | is the identity mapping, and
y > 01is the step size.

DU and DEQ: DU is a DL paradigm that has gained popularity
due to its ability to systematically connect iterative algorithms and
deep neural network architectures (see reviews in [3], [28]). The DU
training is usually performed by solving the optimization problem
0 = argmin, >, ITo(x*) — x;13 by a MSE loss. DEQ [9] is a related
approach that enables training of infinite-depth, weight-tied networks
by analytically backpropagating through the fixed points using im-
plicit differentiation. The DEQ output is specified implicitly as a
fixed point of an operator Ty parameterized by weights 6

x=T,x). ®)

The DEQ forward pass usually estimates X in (5) by running a
fixed-point iteration. The comparison of (4) and (5) highlights the
connection between PnP and DEQ, which was recently explored [10]
by using DEQ for end-to-end learning of the weights of the CNN
prior Dy. There has been considerable interest in DEQ for imaging,
including in MRI [10], [29], computed tomography (CT) [18] and
video snapshot imaging [30]. The relationship between DEQ and
bilevel learning in the context of inverse problems was recently
explored in [12].

The convergence of forward iterations is essential for the stability
and accuracy of DEQ. Similar to the theoretical analysis of PnP [15],
[31], a sufficient condition to guarantee the convergence of the DEQ
forward pass is to ensure that g is convex and the residual Ry :=
| — Dy of Dy is Lipschitz continuous with constant 0 < o < 1 [10]

[Ry(x) — Ro(@)ll2 < erllx —zll2, Vx,z € R". (6)

Since most CNN architectures do not inherently satisfy this property,
several methods have been proposed to train Lipschitz constrained
CNNs [15], [32]. However, it has been observed that constraining
CNNs s to be Lipschitz continuous can negatively impact their perfor-
mance [21], [23].

Learning Explicit Regularization Functionals: RED [19] is an
early approach for specifying an explicit regularization functional by
parameterizing it using an image denoiser Dy

1
h(x) = 5xT(x — Dy(x)). (N

When the denoiser is locally homogeneous and has a symmetric
Jacobian [19], [27], the gradient of the RED regularizer 4 has a

391


https://github.com/wustl-cig/ELDER

IEEE OPEN JOURNAL OF SIGNAL PROCESSING, VOL. 4, 2023

simple expression
Vh(x) = x — Dy(x), (3)

which enables efficient minimization of the RED functional
within (1). However, when these rather stringent conditions are
not satisfied, RED does not correspond to an explicit regularizer,
corresponding instead to an MBDL method with an implicit regu-
larizer [27].

Other notable approaches for learning explicit regularization
functionals include fields of experts (FoE) [33] and its bi-level
counterpart [34], adversarial regularization [35] and its convex coun-
terpart [36], network Tikhonov (NETT) [37], and total deep variation
(TDV) [38]. These approaches are similar to ELDER in the sense
that they seek to explicitly parametrize 4 using a neural network, but
differ in the way the functional is learned. Another line of work has
explored gradient-step denoisers for PnP based on the direct param-
eterization of regularization functionals, thus leading to explicit loss
functions and convergence guarantees without Lipschitz constraints
on the neural networks [20], [21], [39].

1il. PROPOSED METHOD

We now present our proposed method. Unlike the traditional DEQ
approach for inverse problems [10], the forward pass in our method
is designed to minimize an explicit objective, where the regular-
ization functional is parameterized by a CNN. Our method inherits
the benefits of having an explicit regularizer, such as convergence
without Lipschitz constraints on the CNN and the possibility of using
line-search strategies for step-size selection. At the same time, our
method leads to state-of-the-art explicit regularizers that are trained
to be MSE optimal at the fixed-point of the inference algorithm.

A. ELDER FORWARD PASS
We consider an inverse problem with a regularization function /4y :
R" — R parameterized by weights 6

X = argmin fy(x) with fo(x) = g(x) + thy(x). )

xeR"

The forward pass of ELDER seeks to minimize fy via the iterations

xf =Ty(x*") with Ty := prox,, (I —ytVhy),  (10)

where y > 0 is the step-size. For a linear inverse problems with a £,-
norm loss g(x) = 3 |ly — Ax|]3, the proximal operator has a closed-
form solution

prox,,,(z) = (I + yA"A) " (z + yAy), (11)

where I is the identity matrix and A" denotes the conjugate transpose
of A. In many applications, the proximal map (11) can be com-
puted or approximated efficiently using general methods—such as
conjugate gradient—or with specialized methods—such as when the
forward model is a spatial blurring operator that can be computed
using the fast Fourier transform (FFT) [4], [40], [41].

The step-size y must be carefully selected to ensure the con-
vergence of the algorithm in eq. (10). Since we have access to the
explicit objective function, we can ensure convergence by adopting
a line-search strategy. To that end, we use a backtracking line-search
(BLS) to ensure the sufficient decrease condition (see Section IX-B
in [42])

_ P _ 1
fEH = fa) = ;lek —x5 0<p< 5 {42
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Our implementation starts with a large step-size y > 0, which is
subsequently reduced by a factor 0 < 8 < 1 to ensure that (12) is
satisfied.

B. PARAMETERIZATION OF REGULARIZATION
FUNCTIONALS
Several approaches for explicitly parametrizing regularization func-
tionals using CNNs have been previously proposed. We consider
three well-known approaches and compare them in our numerical
evaluations. All three regularizers are based on an operator Gy :
R" — R" corresponding to an image-to-image CNN. Note that G
can be implemented using any differentiable CNN architecture.
Least-Squares Residual (LSR): Inspired by one of the formula-
tions suggested in [19] (see Section V-B) and in the recent work on
the gradient-step denoiser for PnP [21], we first consider a regular-
izer that explicitly quantifies the distance between the input and the
output of Gy. More specifically, we consider

1
hgR(x) = 7l = Go(x)[5 and

VIR () = (1~ Jg, () (x — Gy(x)). (13)

where Jg, is the Jacobian of Gy with respect to x. LSR can be
interpreted as promoting solutions to the inverse problem that are
near the fixed points of the CNN Gg.

(Real) RED Regularizer: While the RED gradient in (8) has
been extensively used for solving inverse problems, the RED func-
tional (7) has not been previously used as a regularizer. We explore
the RED functional itself as a regularizer by considering the true
gradient of A§™ given by

RED 1 1 T
Vg~ () = x — 5Gy(x) — 5T, ()] x, (14)
where we do not require that the network Gy is locally homogeneous
and has a symmetric Jacobian.

Direct Scalar-Valued (DSV) Regularizer: Similar to [20] and [43],
we can also directly sum the output of the CNN Gy to obtain a scalar-
valued neural network

hp¥(x) =1"Gy(x) and VA¥(x) = [Jg,0)]'1.  (15)

It is worth noting that for all the considered regularizers, we use
conventional auto-differentiation tools to efficiently compute the
Jacobian-vector products without actually storing the entire matrix.

C. JACOBIAN-FREE DEEP EQUILIBRIUM LEARNING

We train the regularizer /4y by minimizing the discrepancy between a
fixed-point ¥ = Ty(¥) obtained via (10) and the ground-truth image
x using MSE loss L£(0) = %llf(ﬂ) — x||3. The DEQ backward pass
produces gradients by implicitly differentiating through the fixed
points

VL®) = [Jr0)] (1 - J,®) T @ —x). (16)

This converts the memory-intensive task of backpropagating through
many iterations of Ty to the problem of calculating an inverse
Jacobian-vector product. Since inverting the Jacobian matrix in (16)
can become computationally expensive, we introduce an approxima-
tion that replaces the inverse-Jacobian term in (16) with an identity
asin [11]

VL®) ~ VL(®) = [J1,0)] @ - x). (17)
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FIGURE 1. Visual illustration of the results obtained by ELDER using the three parameterization approaches for h,. We show results for three inverse
problems: image super-resolution (top), reconstruction from Fourier samples (middle), and image inpainting (bottom). The rightmost panel plots the
evolution of PSNR (dB) accross forward iterations. Note how LSR achieves an overall better performance compared to DSV and RED.

This Jacobian-free approximation significantly reduces the complex-
ity of the backward pass without compromising the quality of DEQ.

D. CONVERGENCE THEORY

Since ELDER minimizes an explicit loss fp = g+ thy, it directly
inherits traditional convergence results from optimization theory. For
completeness, we state these convergence results using our notation.

Assumption 1: The function g is proper, convex, and lower
semi-continuous. The function 4y : R" — R is proper, lower semi-
continuous, finite valued, and differentiable with L-Lipschitz gradi-
ent. The function f is bounded from below.

These assumptions on g and &y are standard, and are satisfied by
a large number of functions used in the context of inverse problems
(see, for example, the discussion in [21]).

Proposition 1: Run the PGM in (10) under Assumption 1 using
y € (0, 1/(zL)]. Then, the sequence {fy(x')},>; monotonically de-
creases and V fy(x') — 0 ast — oo.

The proof is widely available in the existing analyses of PGM [21].
The importance of this result is that, unlike the traditional DEQ based
on implicit regularization [10], the stability of the ELDER forward
pass does not require any assumptions on the non-expansiveness of
the CNN prior.

E. ADDITIONAL TECHNICAL DETAILS

Our method is compatible with any differentiable CNN architecture
for implementing Gp. We use the simplified DRUNet architec-
ture [41] for ELDER and the traditional DEQ [10]. We have replaced
the rectified linear unit (ReLU) activations with exponential linear
unit (ELU) ones to ensure the smoothness of hy. We also limit the
number of residual blocks at each scale to 2. Similar to [10], the
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CNN prior of ELDER is initialized using a pre-trained denoisers.
Additionally, we follow [10], [44] in setting the convergence crite-
rion in training to

[l =X/ M < e (18)

where we choose € = 1072 for all experiments.

IV. NUMERICAL EVALUATION AND RESULTS

A. COMPARING PARAMETRIZATION STRATEGIES

We first compare the performance of the three parameterization
strategies in Section III-B on image denoising. We pre-train all
the regularizers by adopting the gradient-step denoising strategy
from [21]. Pre-training explicit regularizers as denoisers is compu-
tationally useful for ELDER, since the denoisers can be used to
initialize the DEQ learning. All three explicit denoisers are compared
against DRUNet [41], which was shown to result in state-of-the-art
PnP image restoration.

We employ the color image training dataset in [41]. During train-
ing we consider AWGN with standard deviation ¢ at a uniform
random draw from the range [0, 55/255]. Table 1 presents the results
of all denoisers at several noise levels (o € {5, 15, 25, 50}) on both
color and gray images. The RED denoisier in the table refers to
the gradient-step in (14). While all three explicit denoisers perform
well at all noise levels, LSR most closely matches the performance
of DRUNet. It is worth noting that LSR (with 2 residual blocks at
each scale) uses fewer parameters than DRUNet (with 4 residual
blocks). Note that the PSNR gap between DRUNet and LSR is within
0.15 dB, which implies that having explicit regularizers does not
significantly impair performance (this was also observed in [21]).
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TABLE 1. Average PSNR (dB) Results of Different Methods for Noise Levels
5, 15, 25 and 50 on BSD68, CBSD68 and Kodak24 Datasets. The Best and
Second Best Results are Highlighted, Respectively

. Noise Level
Datasets Denoiser 3 3 73 B Average
DRUNet 38.04 31.89 2943 26.56 3148
BSD63 LSR 3798 3185 2942 2652 3144
RED 37.83 31.77 2936 2648  31.36
DSV 37.63 31.52 29.10 26.18  31.11
DRUNet 40.64 34.31 31.69 2849  33.78
LSR 40.55 3424 31.62 2842 3371
CBSDGS RED 4023 3406 3146 2827 33.64
DSV 40.24 3405 3145 2825 33.50
DRUNet 40.95 35.32 3290 29.87 3476
Kodak24 LSR 4078 3519 3277 29.71  34.61
RED 40.33 3495 3254 2947 3432
DSV 4043 3492 3253 2946 3434

TABLE 2. Average PSNR (dB) Values for Different Explicit CNN Regularizer
Used in ELDER on SISR, CS-MRI and Inpainting

Reeularizer SISR CS-MRI Inpainting
ceularizers X3 x4 10% 20% 50% 0%
LSR 2553 2522 35.14 38.68 3230 2882
RED 2542 2517 3476 3821 3222 2855
DSV 2542 25,19 34.07 37.87 32.14 2877

Fig. 1 and Table 2 present the results of comparing the three
parameterization strategies within ELDER on the three inverse
problems: single image super-resolution, reconstruction from Fourier
measurements, and image inpainting (each problem is discussed in
the dedicated section below). We observe that LSR leads to the best
results, motivating its use as a primary parameterization strategy for
ELDER.

B. SINGLE IMAGE SUPER-RESOLUTION

We consider measurements of form y = SHx + e, where H € R
is the blurring matrix and S € R™*" performs standard d-fold
down-sampling with d> = n/m. When the blur satisfies the circular
boundary conditions, the blurring matrix and its conjugate trans-
pose can be decomposed as H = F'MF and H" = F*M"F, where
F is the discrete Fourier transform (and F" its inverse, satisfying
FFH = FHF =1), and M € C"" is a diagonal matrix whose diag-
onal elements are the Fourier coefficients of the blur. The proximal
operator (11) of g(x) = %H y — SHx||3 has the closed-form solution

() F" MEr (19)
rox., (z) =r — — ),

P%rs d’1+ yMM"

where r = yH"S"y 4+ z. The matrix M = [My, - - - , Mj2] € C™m,

and where the blocks M; € C™*" satisfy M = diag{M,, - - - , My}
a block-diagonal decomposition according to a d x d tiling in the
Fourier domain (see Lemma 1 in [47]). Note that the inverse of
diagonal matrix d°I + MM" can be computed element-wise.

We verify the effectiveness of ELDER on SISR using a large
variety of blur kernels and different down-sampling factors. We use
8 realistic camera shake kernels tested in [41], plus a 9 x 9 uniform
kernel, and a 25 x 25 Gaussian kernel with standard deviation 1.6.
All 10 kernels are presented in Table 3. We use the same dataset
in Section IV-A for training ELDER. We train a single model on
all blur kernels, each with downsampling factors of d € {2, 3, 4},
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to test the generalizability under different SISR settings. We set the
number of forward-iterations to K = 100. At every training iteration,
we initialize x, with a shift-corrected bicubic interpolation of y [41].
Additionally, during training we use AWGN with random noise lev-
els o € [0, 10.0]/255 to ensure robustness of our model to different
noise perturbations.

We compare ELDER and DEQ against bicubic interpola-
tion, RCAN [45], and state-of-the-art PnP methods IRCNN [46],
DPIR [41], and GSPnP [21]. We use the publicly available imple-
mentations for all the baseline methods. RCAN refers to the PSNR
oriented deep model based on bicubic degradation. GSPnP [21] is a
PnP method using pre-trained denoising CNN as an explicit regular-
ization functional, with an algorithmic update similar to the ELDER
forward pass. DPIR uses the original DRUNet in Table 1, while
GSPnP uses the LSR gradient-step denoiser. The regularization and
step-size parameters of GSPnP, DEQ, and ELDER were optimized at
test time using fminbound in scipy.optimize.

Table 3 summarizes the PSNR values achieved by ELDER
and other methods when applied to {0 = 7.65,d =3} and {0 =
2.55,d = 4} on the CBSD68 dataset. It is clear that both ELDER
and DEQ outperform the other methods at all settings. ELDER also
matches the overall performance of DEQ, while performing better for
higher noise levels at d = 3. The excellent performance of ELDER
relative to DEQ highlights that use of an explicit regularizer does not
imply a compromise in performance. Fig. 2 visually compares EL-
DER against the baseline methods at scale factors x3 (top) and x4
(bottom), respectively. The enlarged regions in the images suggest
that ELDER better recovers the fine details and sharper edges com-
pared to DPIR and GSPnP, while providing same or better PSNR than
DEQ. These results indicate that ELDER reaches state-of-the-art per-
formance in PnP/DEQ SISR for a variety of kernels and noise levels.

Fig. 3 illustrate the convergence behavior of the forward pass
of ELDER in terms of the objective f(x*) (left) and the residual
lx* — x*~1||,/y (middle), when tested on a subset of 10 color images
taken from the original CBSD68 dataset (CBSD10). Fig. 3 (right)
shows the corresponding step-size y used in the experiment. The
optimal step-size on each test image is optimized for the best PSNR
value. Note how ELDER using the backtracking line-search strategy
enables automatic selection of the step-size parameter.

Fig. 4 compares the convergence of ELDER and GSPnP in terms
of PSNR for SISR with scale factor 3. The figure also shows visual
results for both methods at different iterations. Note how ELDER
learns a regularizer that leads to an improved PSNR compared to
GSPnP. Since both methods share the same parametrized regular-
ization functional, the improvement is due to DEQ learning of the
regularizer.

C. COMPRESSED SENSING MRI (CS-MRI)
MRI is a widely-used medical imaging technology that is limited
by the low speed of data acquisition. CS-MRI seeks to address
this limitation by recovering an image x* from its sparsely-sampled
Fourier measurements. We simulate a simplified noiseless single-coil
CS-MRI using radial Fourier sampling. The measurement operator is
thus A = BF, where B is the diagonal sampling matrix with values in
{0, 1}. The proximal operator of g(x) = 1|y — BFx||3 has a closed-
form

H
M) . 20)
I+ yB"B
We train ELDER using the brain dataset from [8], which consists
of 800 slices of 256 x 256 training images and 50 slices of testing

prox,.(z) = F" (
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TABLE 3. Average PSNR (dB) Results of Different Methods on CBSD68. The Best and Second Two Results are Highlighted, Respectively

Blur Kernel

ey B B-H B:-H B N B-N B
Bicubic 2171 2196 2131 19.11 2254 1936 2024 2030 2211 23.06 21.17
RCAN [45] 20.67 2099 20.17 1848 2132 1844 1946 1945 21.13 22.14 20.23
IRCNN [46] o — 765 2434 2436 2498 2413 25.04 2460 2449 2451 2411 2499 24.56
DPIR [41] d— 3' ’ 2450 24.63 2551 2422 2575 2499 2492 2497 2438 25.86 24.97
GSPnP [21] 2462 2486 2563 2399 2572 2417 2455 2493 2436 2592 24.88
DEQ [10] 2490 25.03 2584 2459 2591 24.69 25.06 25.15 2470 26.14 25.20
ELDER (Ours) 25.15 2531 2597 25.01 2611 25.65 2553 2549 2484 26.24 25.53
Bicubic 21.60 22.04 21.12 1940 2231 1970 2046 20.71 2228 22.64 21.23
RCAN [45] 20.84 21.50 20.04 1898 2132 1877 1991 20.11 21.84 21091 20.52
IRCNN [46] o —9255 24.17 2423 2497 2405 2489 2446 2412 2436 2443 25.18 24.49
DPIR [41] d— 4' ’ 2435 2458 2533 2414 2521 2478 2429 2480 2479 2557 24.78
GSPnP [21] 24.03 2425 2509 2288 2489 2355 2321 2388 2472 2541 24.19
DEQ [10] 24.85 2486 25.62 2493 25,53 2537 2511 25.26 25.17 25.87 25.26
ELDER (Ours) 2485 25.00 25.67 2496 2545 2529 2505 25.18 25.07 25.74 25.22

Ground Truth Bicubic

ELDER (Ours)

FIGURE 2. Visual comparison of ELDER against several well-known methods on the problem of single image super-resolution (SISR) with scale d = 3
(top) and d = 4 (bottom). The blur kernels are shown in the zoomed low-resolution (LR) images, respectively. Note how ELDER significantly improves over
GSPnP, a recent method for learning explicit regularizers. Additionally, it performs better than DEQ and DPIR, both of which rely on implicit regularization
specified by a CNN. This figure shows that ELDER learns explicit regularizers without compromising image quality.
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FIGURE 3. lllustration of the convergence of the ELDER forward iterations on SISR using three step-size selection strategies: (a) backtracking, (b) optimal,
and (c) sub-optimal. Optimal is the idealized strategy that uses MSE with respect to the ground truth for step-size selection. Backtracking is a practical

strategy that uses a backtracking line-search for automatic step-size selection.

Suboptimal refers to a step-size selected as 10% of the optimal one. Left:

Convergence of the objective. Middle: Convergence of the updates. Right: Step-size values across iterations. This figure illustrates that one of the key
benefits of ELDER is that it can use backtracking for automatic step-size selection.

images. Both ELDER and conventional DEQ are trained on sampling
ratios within [10, 20%]. At every training iteration, we use zero-filled
image xo = A"y to initialize the forward pass with 100 iterations.
Table 4 presents PSNR values obtained by ELDER, publicly
available implementations of several well-known methods, includ-
ing TV [48], ADMM-Net [49], as well as IRCNN, DPIR, GSPnP,

VOLUME 4, 2023

ISP [20], and DEQ. TV is solved using the accelerated proximal gra-
dient descent method [48]. ADMM-Net is a DU method that trains
both image transforms and shrinkage functions within the algorithm.
ISP refers to an MBDL using explicit deep denoisers, similar to
GSPnP. Overall, ELDER and DEQ achieve the best performances,
indicating that having the explicit regularizer does not compromise
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FIGURE 4. Comparison between ELDER and GSPnP for SISR with d = 3. Both methods seek to learn explicit regularizers parametrized by the same CNN
architecture, but are trained differently. Left: Evolution of the PSNR is plotted against iteration number for both methods. Right: Visual illustration of
iterates obtained by GSPnP (top) and ELDER (bottom). Note how ELDER outperforms GSPnP due to its ability to learn regularizers that minimize MSE.

TABLE 4. Average PSNR (dB) and SSIM Values for Different Methods on CS-MRI

CS Ratio Metric Method
TV [48] ADMM-Net [49] IRCNN [46] DPIR [50] ISP [20] GSPnP [21] DEQ [10] ELDER
10% PSNR 31.36 34.19 33.86 34.98 34.27 34.86 35.16 35.14
SSIM 0.8200 0.8959 0.8865 0.9060 0.9007 0.9063 09114 0.9116
20% PSNR 35.62 37.17 37.84 38.70 38.35 38.56 38.88 38.68
SSIM 0.9121 0.9471 0.9411 0.9464 0.9414 0.9478 0.9499 0.9492
Averdge L g e 7@
SSIM 0.8660 0.9215 0.9138 0.9262 0.9211 0.9271 0.9307 0.9304

Ground Truth

Zerofilled ™V

ELDER (Ours)

FIGURE 5. Visual evaluation of several well-known methods on reconstruction of a brain image from its radial Fourier measurements at 10% sampling.
Note how ELDER outperforms DPIR, GSPnP, and the traditional DEQ both quantitatively and visually.

performance. Fig. 5 provides some visual examples at sampling ratio
10%, highlighting the imaging quality obtained by our method rela-
tive to several baseline methods. From the zoomed regions and the
corresponding error maps, ELDER improves over DPIR and GSPnP
due to the training of the explicit regularizer to be end-to-end MSE
optimal.

D. IMAGE INPAINTING

We apply ELDER to image inpainting characterized by the mea-
surement model y = Px, where A = P is a random diagonal matrix
with p € [0, 1] denoting a probability of missing a pixel. We assume
a noiseless setting. The data-fidelity term is the indicator function
g(x) = Ie(x) for the set C = {x € R" : y = Px}, which, by defini-
tion is 0 when x € C and 400 elsewhere. The proximal step (11) has
a closed form solution

prox,(z) =y +z — Pz. (21)

At the kth forward iteration of ELDER, the proximal operator returns
an image consisting of the network output at the missing pixels and
measured pixels at the other locations.

We train our model under random sampling parameter p €
[0.3, 0.7]. To demonstrate the flexibility of ELDER, we consider p =

396

TABLE 5. Average PSNR (dB)/SSIM Values for Different Methods for Image
Inpainting on CBSD68 Dataset

Probability of Masking

Method 30% 0% Average

IRCNN 31.61/0.9227 27.87/0.8558 29.77/0.8893
DPIR 31.72/0.9274 28.11/0.8601  29.92/0.8938
GSPnP 31.66/0.9263 27.98/0.8251 29.82/0.8757
DEQ 32.79/0.9432  29.31/0.8820 31.05/0.9126
ELDER (Ours) 32.30/0.9352 28.82/0.8700 30.56/0.9026

0.5 and p = 0.7 and compare to IRCNN, DPIR, GSPnP, and DEQ.
Again, since IRCNN and DPIR lack the implementation for inpaint-
ing, we apply our data fidelity term on them, set the ox parameter
to 3.0, and set the iteration number to 100. The PSNR performance
is reported in Table 5, and visual results are provided in Fig. 6.
These results indicate that, achieves better performance compared
to GSPnP and nearly matches the performance of DEQ. Moreover,
we can observe from the visual results that GSPnP smoothes out the
fine details, while DPIR generates distortions. In contrast, ELDER
can recover detail as well as avoid distortions.
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FIGURE 6. Visual illustration of ELDER relative to DPIR, GSPnP and DEQ for image inpainting with masked probability of p = 0.7 on CBSD68. Note that
ELDER provides substantial improvements over PnP image reconstruction methods, matching the performance of DEQ.

V. CONCLUSION

ELDER is a new method for learning explicit regularization func-
tionals for model-based deep learning in inverse problems. It pa-
rameterizes the regularizer using a CNN and learns its weights to
minimize MSE values using DEQ. The benefit of having an explicit
regularizer is that one directly inherits the fundamental results from
optimization. This article shows that ELDER outperforms existing
approaches for learning explicit regularizers for inverse problems. It
also suggests that using an explicit regularization functional does not
compromise imaging performance compared to the traditional DEQ
methods based on implicit regularization.
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