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ABSTRACT

Deformable image registration (DIR) is an active research topic in biomedical
imaging. There is a growing interest in developing DIR methods based on deep
learning (DL). A traditional DL approach to DIR is based on training a convolu-
tional neural network (CNN) to estimate the registration field between two input
images. While conceptually simple, this approach comes with a limitation that it
exclusively relies on a pre-trained CNN without explicitly enforcing fidelity be-
tween the registered image and the reference. We present plug-and-play image
registration network (PIRATE) as a new DIR method that addresses this issue by
integrating an explicit data-fidelity penalty and a CNN prior. PIRATE pre-trains a
CNN denoiser on the registration field and “plugs” it into an iterative method as a
regularizer. We additionally present PIRATE+ that fine-tunes the CNN prior in PI-
RATE using deep equilibrium models (DEQ). PIRATE+ interprets the fixed-point
iteration of PIRATE as a network with effectively infinite layers and then trains
the resulting network end-to-end, enabling it to learn more task-specific informa-
tion and boosting its performance. Our numerical results on OASIS and CANDI
datasets show that our methods achieve state-of-the-art performance on DIR.

1 INTRODUCTION

Deformable image registration (DIR) is an important component in modern medical imaging (Soti-
ras et al., 2013; Haskins et al., 2020; Maintz & Viergever, 1998). DIR seeks to estimate a dense
registration field to align voxels between a moving image and a fixed image. DIR has become an ac-
tive research area with many applications, including radiation therapy planning (Brock et al., 2010),
disease progression tracking (Ashburner & Friston, 2000), and image-enhanced endoscopy (Uneri
et al., 2013). DIR is often formulated as an optimization problem that minimizes an energy function
composed of two terms: a penalty function measuring the similarity between the aligned image and
the fixed image, and a regularizer imposing prior constraints on the registration field (e.g., smooth-
ness via the gradient loss penalty). This optimization problem is usually solved using iterative
methods (Thirion, 1998; Bajcsy & Kovacic, 1989; Rueckert et al., 1999; Glocker et al., 2008).

Deep learning (DL) has recently gained importance in DIR due to its promising performance (Hask-
ins et al., 2020; Fu et al., 2020; Boveiri et al., 2020). A common approach in this context is to
use a convolutional neural network (CNN) to directly estimate the registration fields between the
moving and fixed images. The training process uses an energy function as the loss function. How-
ever, a potential limitation of this approach is that its results exclusively depend on the pre-trained
CNN, without incorporating an explicit penalty function for imposing data consistency during in-
ference. Several studies have explored the integration of explicit penalty and CNN priors in the
inference phase by training a recursive network comprising multiple blocks that incorporate both
explicit penalty and CNNs (Qiu et al., 2022; Jia et al., 2023; Wang et al., 2023b). In the context
of inverse problems in imaging, such methods are often referred to as model-based deep learning
(MBDL) (Ongie et al., 2020; Wen et al., 2023; Kamilov et al., 2023).

Plug-and-play (PnP) priors are widely used MBDL frameworks for solving inverse problems in
imaging (Venkatakrishnan et al., 2013). The central idea of PnP is that one can use a pretrained
neural network as a Gaussian denoiser as a regularizer for solving any inverse problem. The motiva-
tion behind using a denoiser prior is that training neural network denoisers can model the statistical

*Denotes co-first author.
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Figure 1: Illustration of the PIRATE and PIRATE+ pipelines. PIRATE updates the registration field
¢ using the penalty function that measures the similarity between the warped image and the fixed
image, as well as a pre-trained CNN denoiser used as a regularizer. The DEQ update in PIRATE+
enables to fine-tune the CNN by calculating the gradients using implicitly differentiation through
the fixed point of the forward iteration. As described in this paper, the DEQ update of PIRATE+ is
computed using the weighted loss consisting of similarity loss, smoothness loss, and Jacobian loss.

Moving Imagem ~

distribution of high-dimensional data. PnP has been successfully used in many imaging applications
such as super-resolution, phase retrieval, microscopy, and medical imaging (Nachaoui et al., 2021;
Wau et al.,, 2019; Zhang et al., 2017b; Sun et al., 2019; Wei et al., 2020; Liu et al., 2020; Zhang
et al., 2019) (see also reviews Ahmad et al. (2020); Kamilov et al. (2023)). Practical success of
PnP has also motivated novel extensions, theoretical analyses, statistical interpretations, as well as
connections to related approaches such as score matching and diffusion models (Chan et al., 2016;
Romano et al., 2017; Buzzard et al., 2018; Reehorst & Schniter, 2018; Ryu et al., 2019; Kadkhodaie
& Simoncelli, 2021; Cohen et al., 2021; Hurault et al., 2022a;b; Laumont et al., 2022; Gan et al.,
2023a).

Despite the rich literature on PnP, the existing work on the topic has primarily focused on using
denoisers to specify priors on images. To the best of our knowledge, the potential of denoisers to
specify priors over registration fields in DIR has never been investigated before. We address this gap
by proposing a new DIR method Plug-and-play Image RegistrATion nEtwork (PIRATE). PIRATE
is the first PnP approach that trains a CNN-based denoiser on the registration field and integrates
this denoiser as a regularizer within iterative methods. We additionally present PIRATE+ as an ex-
tension of PIRATE based on deep equilibrium learning (DEQ) (Bai et al., 2019) that can fine-tune
the denoiser to learn more task-specific information from the training dataset. PIRATE+ interprets
the fixed-point iteration of PIRATE as a network with effectively infinite layers and trains the re-
sulting network end-to-end by calculating implicit gradients based on fixed point convergence. We
propose a three-term loss function in DEQ training: normalized cross-correlation (NCC), gradient
loss, and Jacobian loss. We present an extensive validation of PIRATE and PIRATE+ on two widely
used datasets: OASIS (Marcus et al., 2007) and CANDI (Kennedy et al., 2012). We used Dice
similarity coefficient (DSC) and ratio of negative Jacobian determinant (JD) to evaluate the quality
of registration. On both two datasets and metrics, the experimental results show that both PIRATE
and PIRATE+ achieves state-of-the-art performance. This work thus addresses a gap in the current
literature by providing a new application to PnP and introducing a new principled framework for
infusing prior information on registration fields in DIR.

2 RELATED WORK

Deformable image registration. DIR refers to the process of obtaining a registration field ¢ that
maps the coordinates of the moving image m to those of the fixed image f by comparing the content
of the corresponding image (Sotiras et al., 2013; Haskins et al., 2020; Maintz & Viergever, 1998).
DIR is typically formulated as an optimization problem

= arg¢min{g(f,¢om) +7(9)} (1)



Published as a conference paper at ICLR 2024

where ¢ o m represents aligned (warped) image obtained by using ¢ to warp m, g is the penalty
function measuring the dissimilarity between the aligned and fixed images, and r is a regularizer
imposing prior constraints on the registration field. Examples of g in DIR include mean squared
error (MSE), global cross-correlation (GCC), and normalized cross-correlation (NCC). A commonly
used r is the smoothness regularizer implemented by the gradient loss || V(|3 (Balakrishnan et al.,
2019; Mok & Chung, 2020; Wu et al., 2022), where V ¢ denotes to the gradient of ¢.

Iterative algorithms. Iterative algorithms are traditional approaches to solve the optimization
problem in (1) on each image pair with satisfactory performance. Widely used examples include
Demons (Thirion, 1998; Vercauteren et al., 2009), elastic type methods (Bajcsy & Kovacic, 1989;
Davatzikos, 1997), b-splines based methods (Rueckert et al., 1999; Xie & Farin, 2004), and discrete
methods (Glocker et al., 2008; 2011). The key idea of these methods is to update the registration
field with the gradient of an energy function consisting of their unique design of the penalty func-
tion and regularizers. For example, Demons (Thirion, 1998) uses the first derivative of intensity
difference and a Gaussian smoothing regularizer. Log-Demons (Vercauteren et al., 2009) improves
Demons by using the second derivative. Its regularizer consists of a Gaussian fluid-like regularizer
and a Gaussian diffusion-like regularizer.

Deep learning. DL in DIR has gained widespread attention over the last few years due to its ex-
cellent performance (Haskins et al., 2020; Fu et al., 2020; Boveiri et al., 2020). A traditional ap-
proach of DL is to train a CNN ng that models ¢ following ¢ = ng(f, m), where 6 are network
parameters updated by training loss e (Balakrishnan et al., 2019; Mok & Chung, 2020; De Vos
et al., 2019; 2017; Eppenhof et al., 2018). This method usually involves a spatial transform net-
work (STN) (Jaderberg et al., 2015) to ensure a differentiable warping operator o. For example,
Voxelmorph (Balakrishnan et al., 2019) uses the U-net as ng to exploit features from the image
pairs. The moving image is warped by using the output registration field in STN. Another approach,
SYMNet (Mok & Chung, 2020), involves fully convolutional network (FCN) as ng. It performs
stronger topology preservation and invertibility by learning the symmetric deformation fields that
also formulates the inverse transformation. Moreover, recent DL approaches such as reinforcement
learning (Luo et al., 2022; Hu et al., 2021; Lotfi et al., 2013; Liu & Liu, 2022) and generative mod-
els (Kim et al., 2022; Tanner et al., 2018; Mahapatra et al., 2018; Zhang et al., 2020) have shown
their potentials in DIR. However, the output of DL methods in the inference phase exclusively de-
pends on the pre-trained CNN without incorporating the penalty function that can promote data
consistency.

Deep Unfolding. DU is a DL paradigm with roots in sparse coding (Gregor & LeCun, 2010; Chen
et al., 2018b) that has recently been used in DIR (Qiu et al., 2022; Jia et al., 2023; Wang et al.,
2023b), due to its ability to provide a systematic connection between iterative algorithms and CNN
architectures. For example, GraDIRN (Qiu et al., 2022) updates ¢ in iterations of form ¢‘*! =
@t —v(Vg(e?) + Vne(f, m, d')). A practical limitation of DU is that the number of iterations is
usually limited due to the the high computational and memory complexity of end-to-end training. In
GraDIRN, this limitation is reflected in its network structure that contains only 9 iterations.

Plug-and-play. PnP is a MBDL approach that has been extensively used for solving inverse prob-
lems in imaging (Venkatakrishnan et al., 2013; Romano et al., 2017; Kamilov et al., 2023). The key
idea behind PnP is that one can use pre-trained deep denoisers to specify regularizers for various
inverse problems. The key difference between PnP and DU is that PnP does not seek to train a
MBDL architecture by instead focusing on an easier task of traininig a Gaussian. For example, a
widely used variant of PnP is the steepest descent regularization by denoising (SD-RED) (Romano
etal., 2017)

2t = To(z') = 2" — 9[Vg(a') + (' — D(z"))] 2)

where g denotes the data-fidelity term that measures data consistency. The data-fidelity term is
conceptually similar to the use of ¢ in (1) for DIR. The operator D denotes an additive white Gaussian
noise (AWGN) denoiser (Zhang et al., 2017a; 2021; Rudin et al., 1992; Dabov et al., 2007) on «.
It is worth noting that PnP based methods typically train the denoiser on images. Recent work has
shown the potential of training the denoiser on other modalities. For example, recent work (Gan
et al., 2023a) has explored the effectiveness of training the denoiser on the measurement operators,
such as blur kernels. To the best of our knowledge, no prior work has explored using denosers within
PnP to regularize registration fields in DIR.
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Deep equilibrium learning. DEQ (Bai et al., 2019; Winston & Kolter, 2020; Gilton et al., 2021)
and neural ordinary differential equations (NODE) (Chen et al., 2018a; Dupont et al., 2019; Kelly
et al., 2020) are two related methods for training infinite-depth, weight-tied feedforward networks.
Both of them have shown their effectiveness in inverse problems (Pramanik & Jacob, 2022; Pra-
manik et al., 2023; Liu et al., 2022; Zhao et al., 2022). The key idea of NODE is to represent the
network with an infinite continuous-time perspective, while DEQ updates the network by analyt-
ically backpropagating through the fixed points using implicit differentiation. The DEQ output is
specified implicitly as a fixed point of the operator Tgy parameterized by weights 6

z=Te(x) 3)

In forward pass, DEQ runs a fixed-point iteration to estimate £. The DEQ backward pass pro-
duces the gradients with respect to 8 by implicitly differentiating through the fixed point (). For
example, for the least-squares loss function, we get an analytical gradient

(0) = %HE(G) —z' 3 = VUO) = (VeTe(@)' (1= VaTo(@)) ' (2 -2z") 4

where x* is the training label, and | is the identity mapping. Two recent papers have investi-
gated DEQ and ODE in DIR. DEQ-RAFT (Bai et al., 2022) extends the recurrent flow estimator
RAFT (Teed & Deng, 2020) into infinite layers and updates the resulting network using implicit
DEQ differentiation. NODEO (Wu et al., 2022) models each voxel in moving images as a moving
particle and considers the set of all voxels as a high-dimensional dynamical system whose trajectory
determines the registration field. NODEO uses a neural network to represent the registration field
and optimizes that dynamical system using adjoint sensitivity method (ASM) (Chen et al., 2018a) in
NODE. The proposed PIRATE/PIRATE+ methods are different from these prior approaches since
they combine an explicit penalty function g and a CNN prior. DEQ-RAFT does not have any penalty
function, while NODEO does not involve learning from training data.

Our contribution. (1) Our first contribution is the use of learned denoisers for regularizing the reg-
istration fields. The proposed PIRATE method can thus be seen as an extension of PnP framework
to DIR. (2) Our second contribution is a new DEQ method for fine-tuning the regularizer within
PnP iterations. The proposed PIRATE+ method thus extends prior work on DEQ for DIR by inte-
grating both a penalty function measuring the dissimilarity between aligned and fixed images, and a
CNN regularizer for infusing prior knowledge. (3) Our third contribution is the extensive validation
of the proposed methods on OASIS and CANDI datasets. Our numerical results show the SOTA
performance of PIRATE and PIRATE+, thus highlighting the potential of PnP and DEQ for DIR.

3 A PLUG-AND-PLAY IMAGE REGISTRATION NETWORK

In this section, we present two new methods: PIRATE and PIRATE+. Fig. 1 illustrates the pipelines
of PIRATE and PIRATE+. PIRATE is a new PnP algorithm that integrates a pre-trained denoiser
for estimating ¢p. PIRATE+ fine-tunes the AWGN denoiser into a task-specific regularizer using
DEQ. For each image pair during DEQ training, the forward iterations of PIRATE run until a fixed
point. The backward DEQ iterations update the regularizer by backpropagating through the fixed
point using implicit differentiation of the loss.

3.1 PIRATE

The objective function that PIRATE optimizes is formulated as a variation of (1)

¢ = arg¢min{g(f,¢om) +h(#)} 5

where h represents the regularizer consisting of an explicit smoothness constraint and the implicit
denoising regularizer. The iterations of PIRATE can be expressed as

@' @' = (Vo(f, 9" om) +aVr(¢') + 7(¢" — D(¢))) (©)

where ¢@? is the estimated registration field at iteration ¢, v > 0 is a step size, and o > 0 and 7 > 0
are regularization parameters.
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The PIRATE updates consist of three terms. The first term g is the penalty function measuring
similarity between the aligned and fixed images, which in our implementation corresponds to the
global cross correlation (GCC) function

1
=1-— - - om ) 7
9(f,¢om) T§0pom Z(f pg) © (dom —pgom) 7
where 1 and o denote the mean and the standard deviation of the warped image ¢ o m and the fixed
image f. The second term is the classical smoothness promoting regularizer 7(¢) = ||V ||3.

The third term is the PnP regularizer consisting of the residual term @ — D(x), where D is a pre-
trained AWGN denoiser. We will consider denoisers trained to perform minimum mean squared
error (MMSE) estimation of ¢ from

z=¢+n with ¢~ps n~N(00I). (8)
MMSE denoisers can be analytically expressed as
(=) = 510121 = [ Gpaa(onz)ds = [ ¢ S D0eld gy, ©)
where we used the probability density function of the noisy reglstratlon ﬁeld
2= [ Galz~ @lpa@) 4o, (10

The function G, in (9) denotes the Gaussian density with the standard deviation ¢ > 0. The
remarkable property of the MMSE denoiser is that its residual satisfies (Robbins & Monro, 1951)

¢ — D(¢) = —0”logp=(4), (1D
which implies that PIRATE is seeking to compute high probability registration fields from p,, which
is a Gaussian smoothed version of the prior pg.

3.2 PIRATE+

PIRATE+ uses DEQ to fine-tune the regularizer D in the PIRATE iteration by minimizing the fol-

lowing loss
€(¢a fa m) = wofsmi(fa ¢ o m) + wlgsmt((ﬁ) + w2€Jac(¢) (12)

where wg, wy, and wy are non-negative weights. The term (g, in (12) corresponds to the same
smoothness regularizer in (6). The term Esmi is the normalized cross correlation (NCC) function

1
lami(frpom) =1~ Z Troamm 2 () = 15) © (0 mlr) = tgemn), (1)

where f(r) and ¢ o m(r) refer to the 3D sliding windows centered on the pixel r = (z,y, z) in
the fixed image and the aligned image, respectively. The quantities x and o denote the mean and the
standard deviation in those windows. The term ¢, in (12) represents Jacobian loss

ac(®) = - 3 IReLU(-1I D)) 3 (149

where |J(i)| denotes the Jacobian determinant (JD) at each 7 in ¢. Negative JD in registration field
indicates non-physical transformations such as flipping. A value greater than one indicates local
expansion, a value less than one but greater than zero indicates local compression, and a negative
value indicates a physically implausible inversion. The ¢?-norm promotes the sparsity on negative
JD by filtering positive values using ReLU activation function, leading to physically plausible trans-
formations in DIR. Note that regularizer in PIRATE+ is learned by minimizing the loss of a specific
registration task. On the other hand, regularizer in PIRATE is learned by minimizing a MSE loss of
purely denoising noisy registration fields.

We adopt Jacobian-Free DEQ (JFB) (Fung et al., 2022) to efficiently minimize the PIRATE+ loss

function - -
Vises(0) = (VoTo(9))T (Vol(d(0), f,m)) (15)
where V/,rg(0) is been a descent direction for the loss function ¢ with respect to 8 (Fung et al.,

2022). The effectiveness of JFB has been shows in prior work (Wang et al., 2023a; Gan et al., 2023b;
Liet al., 2022).
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Table 1: Numerical results of DSC, ratio of negative JD, and inference time for PIRATE, PIRATE+,
and benchmarks on OASIS and CANDI datasets. The variances are shown in parentheses. Note
that the best and the second-best result are highlighted in red and blue. The result shows that PI-
RATE+ performs state-of-the-art performance comparing with other baselines. Moreover, PIRATE
can achieve competitive performance without DEQ

OASIS CANDI .
Method Time (s)
Avg. DSC 1 Neg. JID % | Avg. DSC 1 Neg. JID % |
SyN 0.6986 (0.028) 0.1471 (0.002) 0.7274 (0.049) 0.1211 (0.001)  42.52

VoxelMorph ~ 0.7655 (0.033)  0.0940 (0.001)  0.7459 (0.014) 0.1149 (0.020)  0.17
SYMNet  0.7664 (0.032) 0.0796 (0.001)  0.7489 (0.016) 0.0912 (0.001)  0.32
GraDIRN  0.7311 (0.054) 0.1418 (0.002)  0.7362 (0.019) 0.1532 (0.028)  0.49
Log-Demons 0.7931 (0.040) 0.0912 (0.007)  0.7553 (0.036) 0.0997 (0.006)  46.72
NODEO  0.7947 (0.027) 0.0531 (0.001)  0.7629 (0.019) 0.0726 (0.001)  89.01

PIRATE 0.7948 (0.033)  0.0567 (0.002) 0.7624 (0.020)  0.0833 (0.002)  32.01
PIRATE+ 0.7952 (0.029) 0.0495 (0.001) 0.7633 (0.027) 0.0660 (0.001) 49.47

4 NUMERICAL EXPERIMENTS

4.1 SETUP

Datasets. We validated PIRATE and PIRATE+ on two widely used datasets: OASIS-1 (Marcus
et al., 2007) and CANDI (Kennedy et al., 2012). The OASIS-1 dataset includes a cross-sectional
collection of 416 subjects with T1-weighted brain MRI scans and anatomical segmentations. We
followed a widely used preprocessing method!, including affine pre-registration, skull stripping,
and rescaling to 0-1. All images were padded to the size [192, 128, 224]. We used anatomical seg-
mentations of 35 different brain structures provided by OASIS-1 for evaluation. The CANDI dataset
comprises 54 T1-weighted brain MRI scans and anatomical segmentations. The preprocessing does
not include affine pre-registration and skull stripping, since images in CANDI are pre-registered and
do not contain skulls. Besides the preprocessing methods used on OASIS, we excluded structures
smaller than 1000 pixels in anatomical segmentations and used the remaining 28 structures for eval-
vation in CANDI. For both datasets, we randomly shuffled the images and allocated 100 unique
image pairs for training and another 100 unique image pairs for evaluation.

Evaluation metrics. We adopted two evaluation metrics: Dice similarity coefficient (DSC) and
ratio of negative JD, to evaluate the accuracy and quality of the registration. The DSC quantifies the
spatial overlap between the anatomical segmentations of the fixed image and the warped image. We
obtained the segmentation mask of the warped image by applying the associated registration field to
the segmentation mask of the moving image. JD evaluates physical plausibility of the transformation
by quantifying the expansion and compression of each voxel’s neighbors. We employed the ratio of
negative JD of each registration field to evaluate the quality of the transformation.

4.2 IMPLEMENTATION DETAILS

PIRATE setup. The penalty function in PIRATE is based on GCC, which, unlike NCC, relies on the
whole image instead of sliding windows. Due to lower computational complexity of GCC, we used
it instead of NCC in the forward iterations. In our implementation, we used a dynamic cosine-based
step size in (6)

) (16)
which we observed to give better results compared to the fixed ~.

We chose DnCNN (Rudin et al., 1992) as a deep learning based AWGN denoiser. We obtained
the ground truth for DnCNN training by using registration fields estimated by NODEO. In training

1 it
v =71+ cos(

2 max

'https://github.com/adalca/medical-datasets
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Figure 2: The visual results of warped images (top) and correlated warped segmentation masks
(bottom) from PIRATE+ and selected benchmarks on the OASIS dataset. The regions of interest are
highlighted within a red box. The DSC for each image is displayed in the bottom row. Note that the
result of PIRATE+ is more consistent with the fixed image with fewer artifacts compared with other
baselines.

Table 2: Numerical results of DSC, Jacobian determinant, and inference time for PIRATE+ and its 5
ablated variants. The variances are shown in parentheses. We denote P as the penalty function, R as
the denoiser regularizer, S as the smoothness regularizer, and D as the DEQ refined denoiser. In this
case, PIRATE is formulated as P+R+S, and PIRATE+ is formulated as P+D+S. Note that the best
and the second-best result are highlighted in red and blue. The result shows that the dual-regularizer
structure and DEQ significantly reduce the negative Jacobian.

Method OASIS CANDI Time (s)
Avg. DSC 1 ID | Avg. DSC 1 D |
P 0.7281 (0.044) 6.2931 (0.002) 0.7156 (0.047) 7.5804 (0.003) 20.20
P+R 0.7989 (0.023) 1.3319 (0.002) 0.7644 (0.001) 2.1713 (0.031) 28.37
P+S 0.7782 (0.012) 0.2091 (0.001)  0.7492 (0.019) 1.5847 (0.001) 25.64
P+D 0.7897 (0.008) 0.1120 (0.001) 0.7585 (0.011) 1.1844 (0.001) 27.64

PIRATE: P+R+S  0.7948 (0.033) 0.0567 (0.002)  0.7624 (0.020) 0.0833 (0.002) 32.01
PIRATE+: P+D+S 0.7952 (0.029) 0.0495 (0.001)  0.7633 (0.027) 0.0660 (0.001) 49.47

phase of the denoiser, we used Adam (Kingma & Ba, 2014) optimizer with learning rate 1e~* for 400
epochs. We selected the best-performing denoiser from 10 denoisers trained on different noise levels
(Gaussian noise with standard deviations starting from 1 to 10). Moreover, we downsampled the
registration field to half the size of the image. The downsampled registration fields were interpolated
back to the original size before being applied to the moving image. Note that the denoiser was also
trained on the downsampled data. We tested different values of fyo, a, and 7 in (6). PIRATE achieved
the best performance by assigning v° to 5 x 10, ato 5 x 1071, and 7 to 1 x 10~7 for OASIS-1. «
was assigned to 5 x 10~ for CANDI while ° and « stayed the same.

DEQ training in PIRATE+. We used the Anderson solver (Anderson, 1965) to accelerate the
fixed-point iteration in PIRATE. For DEQ in PIRATE+, we used Adam optimizer with learning rate
1 x 1075 for 50 epochs. We assigned wy to 1, wy to 5, wo to 1 for both datasets. Note that only
deep learning based denoiser (DnCNN in our experiment) can be fine-tuned by DEQ.
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P+R P+S P+D PIRATE: P+R+S PIRATE+: P+D+S

Figure 3: The visual results for the warped grid (top) and negative JD (yellow points in bottom) of
PIRATE+ and its five ablated variants on CANDI dataset. We denote P as the penalty function, R as
the denoiser regularizer, S as the smoothness regularizer, and D as DEQ. PIRATE is formulated as
P+R+S, and PIRATE+ is formulated as P+D+S. The gradient loss is shown in the top row, and the
ratio of negative JD is shown in the bottom row. Note that PIRATE’s architecture is optimal, since
it significantly reduces the negative JD and provides smoother registration field.

Table 3: Numerical results of DSC, Jacobian determinant, and inference time for PIRATE+ with
fixed and dynamic step size in its forward iteration on OASIS and CANDI datasets. The variances
are shown in parentheses. Note that the optimal results are highlighted in red. The result shows that
the dynamic step size in the forward iteration improves the overall performance.

Method OASIS CANDI Time (s)
Avg. DSC 1 D | Avg. DSC 1 D |
Fixed 0.7902 (0.044) 0.0742 (0.001) 0.7556 (0.071)  0.0988 (0.002)  31.42

Dynamic v 0.7952 (0.029) 0.0495 (0.001) 0.7633 (0.027)  0.0660 (0.001)  32.01

4.3 RESULTS

Comparison with benchmarks. We compared PIRATE and PIRATE+ against three iterative meth-
ods (SyN (Avants et al., 2008), Log-Demons (Vercauteren et al., 2009), and NODEO (Wu et al.,
2022)), two CNN based methods (VoxelMorph (Balakrishnan et al., 2019) and SYMNet (Mok &
Chung, 2020)), and one DU based method (GraDIRN (Qiu et al., 2022)). We retrained all DL based
methods and DU based method using the optimal hyperparameters mentioned in their papers.

Table 1 shows the numerical results of PIRATE, PIRATE+ and benchmarks on OASIS and CANDI
datasets. On both two datasets and metrics, PIRATE+ shows superior performance compared
with other benchmarks. It is worth noting that PIRATE+ outperforms NODEO, although we used
NODEO to generate the ground truth for the denoiser. The results of PIRATE show that the pre-
trained AWGN denoiser can provide competitive results without refinement of the DEQ. Moreover,
PIRATE+ performs competitive inference time while maintaining state-of-the-art performance com-
pared with iterative baselines.

Fig. 2 shows the visual results of warped images (top) and correlated warped segmentation masks
(bottom) from PIRATE+ and benchmarks on the OASIS dataset. In the top row, the result of PI-
RATE+ in the region of interest (ROI) is more consistent with the fixed image with fewer artifacts
than other benchmarks. In the bottom row, the DSC shows that PIRATE+ achieves a better structure
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Figure 4: The visualization and plot for the warped image from PIRATE+ with different iterations.
The error map of ROI is shown at the upper right corner. The results show a convergence behaviour
of PIRATE+.

matching. The ROI in the output of PIRATE+ shows better alignments to the fixed image while
maintaining the original anatomical structure.

Ablation study. We conducted an ablation study to demonstrate the effectiveness of each part in
PIRATE+. We denoted P as the penalty function, R as the denoiser regularizer, S as the smoothness
regularizer, and D as DEQ refined denoiser regularizer. Note that PIRATE and PIRATE+ can be
expressed as P +S + Rand P 4+ S + D, respectively.

Table 2 shows the numerical results of PIRATE+ and its five ablated variants. The results show that
the dual-regularizer structure and DEQ of PIRATE+ significantly reduce the ratio of negative JD
with acceptable decrement in DSC.

Fig. 3 visualizes the warped grid (top) and negative JD (yellow points in bottom) from PIRATE+
and its five different variants. It is evident that the two regularizers and DEQ contribute to smooth
registration fields while maintaining low ratio of negative JD, which underlines the effectiveness of
the PIRATE+’s architecture.

Convergence. We designed an experiment to validate the convergence of PIRATE+. Fig. 4 illus-
trates the warped images from PIRATE+ with different iterations on CANDI dataset. The result
shows a convergence behavior.

Step size. We tested the effectiveness of the dynamic step size compared with the fixed step size.
Table 3 shows the numerical results of using fixed step size and dynamic step size in PIRATE+
on OASIS and CANDI datasets. The result shows that the dynamic step size improves the overall
performance of PIRATE+.

5 CONCLUSION

This paper presents PIRATE as the first PnP-based method for DIR and PIRATE+ as its further
DEQ extension. The key advantages of PIRATE and PIRATE+ are as follows: (a) PIRATE achieves
competitive performance in comparison to other baselines. This superior performance is attributed
to its ability to seamlessly integrate the penalty function with learned CNN priors; () PIRATE treats
the CNN prior as an implicit regularizer, which renders it compatible with other regularizers. For
instance, in our experiments, we combined it with the gradient loss to further enhance its perfor-
mance; (c) PIRATE+ achieves state-of-the-art performance in comparison to other baselines. DEQ
in PIRATE+ fine-tuned the denoiser in PIRATE, enabling it to learn more task-specific informa-
tion. The training time of PIRATE+ is longer than traditional DL methods. However, our results
show that PIRATE+ can gain noticeable improvement than traditional CNN-based methods. It’s
also worth mentioning that our validation of PIRATE and PIRATE+ in this work was based on brain
MRI datasets. Potential future endeavors might explore their adaptability to different anatomies and
imaging modalities, such as whole-body registration and cross-modal registration.

6 ACKNOWLEDGEMENT

This work was supported by the following grants: NIH RO1HL129241, RFINS116565,
R21NS127425, R01 EB032713, and the NSF CAREER award under grants CCF-2043134.



Published as a conference paper at ICLR 2024

REFERENCES

R. Ahmad, C. A. Bouman, G. T. Buzzard, S. Chan, S. Liu, E. T. Reehorst, and P. Schniter. Plug-and-
play methods for magnetic resonance imaging: Using denoisers for image recovery. IEEE Signal
Process. Mag., 37(1):105-116, 2020.

D. G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547-560,
1965.

J. Ashburner and K. J. Friston. Voxel-based morphometry—the methods. Neurolmage, 11(6):805—
821, 2000.

B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image registra-
tion with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain.
Med. Image Anal., 12(1):26-41, 2008.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in Neural Information
Processing Systems (NeurlPS), 32, 2019.

S. Bai, Z. Geng, Y. Savani, and J. Z. Kolter. Deep equilibrium optical flow estimation. Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), pp. 620-630, 2022.

R. Bajcsy and S. Kovaci¢. Multiresolution elastic matching. Comput. graph. image process., 46(1):
1-21, 1989.

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca. Voxelmorph: a learning
framework for deformable medical image registration. IEEE Trans. Med. Imag., 38(8):1788—
1800, 2019.

H. R. Boveiri, R. Khayami, R. Javidan, and A. Mehdizadeh. Medical image registration using deep
neural networks: a comprehensive review. Comput. Electr. Eng., 87:106767, 2020.

K. K. Brock, Deformable Registration Accuracy Consortium, et al. Results of a multi-institution
deformable registration accuracy study (midras). Int. J. Radiat. Oncol. Biol. Phys., 76(2):583—
596, 2010.

G. T. Buzzard, S. H. Chan, S. Sreehari, and C. A. Bouman. Plug-and-play unplugged: Optimization-
free reconstruction using consensus equilibrium. SIAM J. Imaging Sci., 11(3):2001-2020, 2018.

S. H. Chan, X. Wang, and O. A. Elgendy. Plug-and-play admm for image restoration: Fixed-point
convergence and applications. IEEE Trans. Comput. Imag., 3(1):84-98, 2016.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018a.

X. Chen, J. Liu, Z. Wang, and W. Yin. Theoretical linear convergence of unfolded ISTA and its prac-
tical weights and thresholds. In Advances in Neural Information Processing Systems (NeurIPS),
pp- 9079-9089, 2018b.

R. Cohen, Y. Blau, D. Freedman, and E. Rivlin. It has potential: Gradient-driven denoisers for
convergent solutions to inverse problems. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 18152-18164, December 6-14, 2021.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. I[EEE Trans. Image Process., 16(8):2080-2095, 2007.

C. Davatzikos. Spatial transformation and registration of brain images using elastically deformable
models. Comput. Vis. Image Underst., 66(2):207-222, 1997.

B. D. De Vos, F. F. Berendsen, M. A. Viergever, M. Staring, and I. ISgum. End-to-end unsupervised

deformable image registration with a convolutional neural network. Medical Image Computing
and Computer-Assisted Intervention Workshop (MICCAIW), pp. 204-212, 2017.

10



Published as a conference paper at ICLR 2024

B. D. De Vos, F. F. Berendsen, M. A. Viergever, H. Sokooti, M. Staring, and 1. ISgum. A deep
learning framework for unsupervised affine and deformable image registration. Med. Image Anal.,
52:128-143, 2019.

E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. Advances in Neural Information
Processing Systems (NeurlPS), 32, 2019.

K. A. J. Eppenhof, M. W. Lafarge, P. Moeskops, M. Veta, and J. P. W. Pluim. Deformable image
registration using convolutional neural networks. Med. Image Anal., 10574:192—-197, 2018.

Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang. Deep learning in medical image registra-
tion: a review. Phys. Med. Biol., 65(20):20TR01, 2020.

S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Jfb: Jacobian-free backpropaga-
tion for implicit networks. Proc. AAAI Conf. Artif. Intell., 36(6):6648-6656, 2022.

W. Gan, S. Shoushtari, Y. Hu, J. Liu, H. An, and U. S. Kamilov. Block coordinate plug-and-
play methodsfor blind inverse problems. In Advances in Neural Information Processing Systems
(NeurlIPS), 2023a.

W. Gan, C. Ying, P. E. Boroojeni, T. Wang, C. Eldeniz, Y. Hu, J. Liu, Y. Chen, H. An, and U. S.
Kamilov. Self-supervised deep equilibrium models with theoretical guarantees and applications
to mri reconstruction. /IEEE Trans. Comput. Imag., 2023b.

D. Gilton, G. Ongie, and R. Willett. Deep equilibrium architectures for inverse problems in imaging.
IEEE Trans. Comput. Imag., 7:1123-1133, 2021.

B. Glocker, N. Komodakis, G. Tziritas, N. Navab, and N. Paragios. Dense image registration through
mrfs and efficient linear programming. Med. Image Anal., 12(6):731-741, 2008.

B. Glocker, A. Sotiras, N. Komodakis, and N. Paragios. Deformable medical image registration:
setting the state of the art with discrete methods. Annu. Rev. Biomed. Eng., 13:219-244, 2011.

K. Gregor and Y. LeCun. Learning fast approximation of sparse coding. In Proc. 27th Int. Conf.
Machine Learning (ICML), pp. 399-4006, Haifa, Israel, June 21-24, 2010.

G. Haskins, U. Kruger, and P. Yan. Deep learning in medical image registration: a survey. Mach.
Vis. Appl., 31:1-18, 2020.

J. Hu, Z. Luo, X. Wang, S. Sun, Y. Yin, K. Cao, Q. Song, S. Lyu, and X. Wu. End-to-end multimodal
image registration via reinforcement learning. Med. Image Anal., 68:101878, 2021.

S. Hurault, A. Leclaire, and N. Papadakis. Gradient step denoiser for convergent plug-and-play. In
Int. Conf. on Learning Representations (ICLR), Kigali, Rwanda, May 1-5, 2022a.

S. Hurault, A. Leclaire, and N. Papadakis. Proximal denoiser for convergent plug-and-play opti-
mization with nonconvex regularization. In Proc. 39th Int. Conf. Machine Learning (ICML), pp.
9483-9505, Baltimore, MD, July 17-23, 2022b.

M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks.
Advances in Neural Information Processing Systems (NeurIPS), 28, 2015.

X. Jia, A. Thorley, A. Gomez, W. Lu, D. Kotecha, and J. Duan. Fourier-net+: Leveraging band-
limited representation for efficient 3d medical image registration. arXiv:2307.02997, 2023.

Z. Kadkhodaie and E. P. Simoncelli. Stochastic solutions for linear inverse problems using the prior
implicit in a denoiser. In Advances in Neural Information Processing Systems (NeurlPS), pp.
13242-13254, December 6-14, 2021.

U. S. Kamilov, C. A. Bouman, G. T. Buzzard, and B. Wohlberg. Plug-and-play methods for integrat-

ing physical and learned models in computational imaging: Theory, algorithms, and applications.
IEEE Signal Process. Mag., 40(1):85-97, 2023.

11



Published as a conference paper at ICLR 2024

J. Kelly, J. Bettencourt, M. J. Johnson, and D. K. Duvenaud. Learning differential equations that
are easy to solve. Advances in Neural Information Processing Systems (NeurlPS), 33:4370-4380,
2020.

D. N. Kennedy, C. Haselgrove, S. M. Hodge, P. S. Rane, N. Makris, and J. A. Frazier. Candishare:
a resource for pediatric neuroimaging data. Neuroinformatics, 10:319-322, 2012.

B. Kim, I. Han, and J. C. Ye. Diffusemorph: unsupervised deformable image registration using
diffusion model. European Conf. on Comput. Vis., pp. 347-364, 2022.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Int. Conf. on Learning
Representations (ICLR), 2014.

R. Laumont, V. De Bortoli, A. Almansa, J. Delon, A. Durmus, and M. Pereyra. Bayesian imaging
using plug & play priors: When Langevin meets Tweedie. SIAM J. Imaging Sciences, 15(2):
701-737, 2022.

M. Li, Y. Wang, Y. Wang, and Z. Lin. Unbiased stochastic proximal solver for graph neural networks
with equilibrium states. Int. Conf. on Learning Representations (ICLR), 2022.

J. Liu, Y. Sun, C. Eldeniz, W. Gan, H. An, and U. S. Kamilov. Rare: Image reconstruction using
deep priors learned without groundtruth. [EEE J. Sel. Top. Signal Process., 14(6):1088—1099,
2020.

J. Liu, X. Xu, W. Gan, S. Shoushtari, and U. S. Kamilov. Online deep equilibrium learning for
regularization by denoising. Advances in Neural Information Processing Systems (NeurIPS), 35:
25363-25376, 2022.

T. Liu and J. Liu. Application of reinforcement learning in multimodal non-rigid image registration.
Proc. CISC, pp. 376-384, 2022.

T. Lotfi, L. Tang, S. Andrews, and G. Hamarneh. Improving probabilistic image registration via
reinforcement learning and uncertainty evaluation. Medical Image Computing and Computer-
Assisted Intervention Workshop (MICCAIW), pp. 187-194, 2013.

Z. Luo, J. Hu, X. Wang, S. Hu, B. Kong, Y. Yin, , Q. Song, X. Wu, and S. Lyu. Stochastic planner-
actor-critic for unsupervised deformable image registration. Proc. AAAI Conf. Artif. Intell., 36(2):
1917-1925, 2022.

D. Mahapatra, B. Antony, S. Sedai, and R. Garnavi. Deformable medical image registration using
generative adversarial networks. Proc. Int. Symp. Biomedical Imaging, pp. 1449—-1453, 2018.

J. B. A. Maintz and M. A. Viergever. A survey of medical image registration. Med. Image Anal., 2
(1):1-36, 1998.

D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner. Open access
series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented,
and demented older adults. J. Cogn. Neurosci., 19(9):1498-1507, 2007.

C. W. Mok and C. S. Chung. Fast symmetric diffeomorphic image registration with convolutional
neural networks. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 4644—
4653, 2020.

M. Nachaoui, L. Afraites, and A. Laghrib. A regularization by denoising super-resolution method
based on genetic algorithms. Signal Process.: Image Commun., 99:116505, 2021.

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett. Deep learning
techniques for inverse problems in imaging. IEEE J. Sel. Areas Inf. Theory, 1(1):39-56, May
2020.

A. Pramanik and M. Jacob. Improved model based deep learning using monotone operator learning
(mol). Proc. Int. Symp. Biomedical Imaging, pp. 1-4, 2022.

A. Pramanik, M. B. Zimmerman, and M. Jacob. Memory-efficient model-based deep learning with
convergence and robustness guarantees. I[EEE Trans. Comput. Imag., 2023.

12



Published as a conference paper at ICLR 2024

H. Qiu, K. Hammernik, C. Qin, C. Chen, and D. Rueckert. Embedding gradient-based optimization
in image registration networks. Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pp. 56-65, 2022.

E. T. Reehorst and P. Schniter. Regularization by denoising: Clarifications and new interpretations.
IEEE Trans. Comput. Imag., 5(1):52-67, 2018.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Stat., 22(3):400-407,
September 1951.

Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regularization by denoising
(RED). SIAM J. Imaging Sci., 10(4):1804-1844, 2017.

L. I. Rudin, S. O, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys.
D: Nonlinear Phenom., 60(1-4):259-268, 1992.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid
registration using free-form deformations: application to breast mr images. [EEE Trans. Med.
Imag., 18(8):712-721, 1999.

E. K. Ryu, J. Liu, S. Wnag, X. Chen, Z. Wang, and W. Yin. Plug-and-play methods provably
converge with properly trained denoisers. In Proc. 36th Int. Conf. Machine Learning (ICML), pp.
5546-5557, Long Beach, CA, USA, June 2019.

A. Sotiras, C. Davatzikos, and N. Paragios. Deformable medical image registration: A survey. IEEE
Trans. Med. Imag., 32(7):1153-1190, 2013.

Y. Sun, S. Xu, Y. Li, L. Tian, B. Wohlberg, and U. S. Kamilov. Regularized fourier ptychography
using an online plug-and-play algorithm. Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Process. (ICASSP)., pp. 7665-7669, 2019.

C. Tanner, F. Ozdemir, R. Profanter, V. Vishnevsky, E. Konukoglu, and O. Goksel. Generative
adversarial networks for mr-ct deformable image registration. arXiv:1807.07349, 2018.

Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for optical flow. European Conf. on
Comput. Vis., pp. 402-419, 2020.

J. P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons. Med.
Image Anal., 2(3):243-260, 1998.

A. Uneri, S. Nithiananthan, S. Schafer, Y. Otake, J. W. Stayman, G. Kleinszig, M. S. Sussman, J. L.
Prince, and J. H. Siewerdsen. Deformable registration of the inflated and deflated lung in cone-

beam ct-guided thoracic surgery: Initial investigation of a combined model-and image-driven
approach. Med. Phys., 40(1):017501, 2013.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-play priors for model based
reconstruction. Proc. IEEE Global Conf. Signal Process. and Inf. Process., pp. 945-948, 2013.

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: Efficient non-
parametric image registration. Neurolmage, 45(1):S61-S72, 2009.

S. Wang, Y. Teng, and L. Wang. Deep equilibrium object detection. arXiv:2308.09564, 2023a.

Y. Wang, H. Qiu, and C. Qin. Conditional deformable image registration with spatially-variant and
adaptive regularization. Proc. Int. Symp. Biomedical Imaging, 2023b.

K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C. B. Schonlieb, and H. Huang. Tuning-free plug-and-
play proximal algorithm for inverse imaging problems. Proc. 37th Int. Conf. Machine Learning
(ICML), pp. 10158-10169, 2020.

B. Wen, S. Ravishankar, Z. Zhao, R. Giryes, and J. C. Ye. Physics-driven machine learning for
computational imaging. IEEE Signal Process. Mag., 40(1):28-30, 2023.

E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. Advances in Neural Infor-
mation Processing Systems (NeurlPS), 33:10718-10728, 2020.

13



Published as a conference paper at ICLR 2024

Y. Wu, T. Z. Jiahao, J. Wang, P. A. Yushkevich, M. A. Hsieh, and J. C. Gee. Nodeo: A neural
ordinary differential equation based optimization framework for deformable image registration.
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 20804-20813, 2022.

Z. Wu, Y. Sun, J. Liu, and U. S. Kamilov. Online regularization by denoising with applications to
phase retrieval. Proc. IEEE Int. Conf. Comp. Vis. (ICCV), pp. 0-0, 2019.

Z. Xie and G. E. Farin. Image registration using hierarchical b-splines. IEEE Trans. Vis. Comput.
Graph., 10(1):85-94, 2004.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: Residual learning
of deep cnn for image denoising. IEEE Trans. Image Process., 26(7):3142-3155, 2017a.

K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep cnn denoiser prior for image restoration.
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3929-3938, 2017b.

K. Zhang, W. Zuo, and L. Zhang. Deep plug-and-play super-resolution for arbitrary blur kernels.
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1671-1681, 2019.

K. Zhang, Y. Li, W. Zuo, L. Zhang, L. V. Gool, and R. Timofte. Plug-and-play image restoration
with deep denoiser prior. IEEE Trans. Pattern Anal. Mach. Intell., 44(10):6360-6376, 2021.

X. Zhang, W. Jian, Y. Chen, and S. Yang. Deform-gan: an unsupervised learning model for de-
formable registration. arXiv:2002.11430, 2020.

Y. Zhao, S. Zheng, and X. Yuan. Deep equilibrium models for snapshot compressive imaging. Proc.
AAAI Conf. Artif. Intell., 2022.

14



Published as a conference paper at ICLR 2024

A APPENDIX

Our main manuscript presents PIRATE and PIRATE+ as the first PnP based method in DIR. Our ex-
perimental results show the effectiveness of the architectures of PIRATE and PIRATE+ and demon-
strate their state-of-the-art performance. The additional materials in this section supplement our
experimental results and further support the conclusions mentioned above. In appendix, we provide
the visualization of warped images and segmentation masks on CANDI dataset as a supplement to
the results on OASIS dataset in main manuscript. We also provide additional results on the EM-
PIREI10 lung CT dataset. In addition to the image similarity and DSC used in main manuscript,
we illustrate the warped grids on OASIS and CANDI datasets to further evaluate the performance
using the smoothness of registration fields. We design an experiment by using total variation (TV)
denoiser (Rudin et al., 1992) in PIRATE to demonstrate the compatibility of PIRATE with non-
learning based denoisers. Moreover, we show the visualization of warped images and segmentation
masks from PIRATE using dynamic and fixed step size on OASIS dataset, which matches the nu-
merical results in main manuscript. To further evaluate our methods, we include the analysis of
computational efficiency and scalability. To clarify the acronyms, we provide a table of acronyms
and corresponding full names in this paper. We also provide the corner case of our method and the
number of function evaluation(NFE) along with the training iterations of PIRATE+.

Fig. 5 shows the visual results for warped images and correlated warped segmentation masks from
PIRATE+ and benchmarks on the CANDI dataset. In the top and bottom row, the results of PIRATE+
in ROI are more consistent with the fixed image with fewer artifacts than other benchmarks.

Table. 4 shows the numerical results of PIRATE, PIRATE+ and benchmarks on the EMPIRE10
lung CT dataset. PIRATE+ shows superior performance compared with other benchmarks. The
results of PIRATE show that the pre-trained AWGN denoiser can provide competitive results without
refinement of the DEQ.

Fig. 6 and Fig. 7 show the illustration of warped images and correlated warped segmentation masks
from PIRATE+ and benchmarks on the EMPIRE10 lung CT dataset. In both warped images and seg-
mentation masks, the results of PIRATE+ are more consistent with the reference than other bench-
marks.

Fig. 8 shows the visual results of warped grid from OASIS and CANDI datasets of PIRATE and
different baselines. The results show that PIRATE maintains the smoothness of the registration
fields.

Fig. 9 shows the visual results of using dynamic step size and fixed step size from OASIS and
CANDI datasets. It shows that dynamic step size can provide results more similar to the fixed
images and segmentation masks with less artifact.

Fig. 10 shows the visual results of using TV denoiser and DnCNN denoiser from OASIS dataset.
Table 5 shows the numerical result of using TV denoiser and DnCNN denoiser from OASIS and
CANDI datasets. The results show that TV denoiser can still provide reasonable result, although
with some performance degradation.

Table. 6 shows the numerical results of memory cost, running time in training and inference for
PIRATE, PIRATE+, and benchmarks on OASIS and CANDI datasets. Table. 6 shows that PIRATE
and PIRATE+ has lower memory complexity compared to other DL baselines.

Fig. 11 shows the visual results of memory cost and inference time of PIRATE and PIRATE+ with
different size of inputs. Fig. 11 shows that PIRATE and PIRATE+ have similar scalability.

Table. 7 shows acronyms and corresponding full names in this paper.

Fig. 12 shows the visual results of the corner case of PIRATE+ (with the least improvement in Dice)
compared with results from other benchmarks on this case. Note that the result of PIRATE+ still
maintains state-of-the-art performance in the corner case.

Fig. 13 shows the visual results of NFE along with the training iterations of PIRATE+. The figure
shows that the NFE converges in the training process.
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VoxelMorph GraDIRN NODEO Log-Demons PIRATE+

Fixed Image

Figure 5: The visual results of warped images (top) and correlated warped segmentation masks
(bottom) from PIRATE+ and selected benchmarks on the CANDI dataset. The regions of interest
are highlighted within a red box. The DSC for each image is displayed in the bottom row. Note that
the result of PIRATE+ is more consistent with the fixed image with fewer artifacts comparing with
other baselines.

Table 4: Numerical results of DSC, ratio of negative JD, and inference time for PIRATE, PIRATE+,
and benchmarks on the EMPIRE10 lung CT dataset. The variances are shown in parentheses. Note
that the best and the second-best result are highlighted in red and blue. The result shows that PI-
RATE+ performs state-of-the-art performance comparing with other baselines. Moreover, PIRATE
can achieve competitive performance without DEQ

Method Avg. DSC 1 Neg. JD %]  Time (s)

SyN 0.9246 (0.045) 0.0854 (0.008)  37.28
VoxelMorph  0.9681 (0.022) 0.0521 (0.012) 0.16
SYMNet 0.9701 (0.012) 0.0542 (0.009) 0.28
GraDIRN 0.9644 (0.012) 0.0542 (0.009) 0.44
Log-Demons 0.9772 (0.019) 0.0571 (0.011) 43.29
NODEO 0.9802 (0.028) 0.0441 (0.008) 82.17
PIRATE  0.9797 (0.032) 0.0546 (0.009)  29.77
PIRATE+ 0.9811 (0.027) 0.0467 (0.007) 45.32
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Figure 6: The visual results of warped images from PIRATE+ and selected benchmarks on the
EMPIRE1O lung CT dataset. The regions of interest are highlighted within a red box. Note that the
result of PIRATE+ is more consistent with the fixed image with fewer artifacts comparing with other
baselines.

PIRATE+

DICE: 0.9211 DICE: 0.9840 DICE: 0.9805 DICE : 0.9531

GraDIRN

DICE: 0.9796

DICE: 0.9764 DICE: 0.9742 DICE: 0.9601

Figure 7: The visual results of warped segmentation masks from PIRATE+ and selected benchmarks
on the EMPIREI10 lung CT dataset. The red region is the mask from fixed image, and the gray region
is the misalignment of the warped mask. The DSC for each image is displayed in the bottom. Note
that the result of PIRATE+ is more consistent with the fixed mask comparing with other baselines.
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Figure 8: The visual results of warped grid from OASIS (top) and CANDI (bottom) of PIRATE+
and different baselines. The gradient loss is shown at the bottom of each image.

PIRATE(Fixed y)

PIRATE(Dynamic y) Fixed Image

DICE SCORE

Figure 9: The visual results of warped images (top) and correlated warped segmentation masks
(bottom) from PIRATE(fixed ) and PIRATE(dynamic ) on the OASIS dataset. The regions of
interest are highlighted within a red box. The DSC for each image is displayed in the bottom row.
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Table 5: Numerical results of DSC, Jacobian determinant, and inference time for PIRATE with total
variation (TV) denoiser and DnCNN denoiser on OASIS and CANDI datasets. The variances are
shown in parentheses. Note that the optimal results are highlighted in red.

OASIS CANDI
Avg. DSC 1 D | Avg. DSC 1 D |
PIRATE(TV)  0.7617 (0.054) 0.1281 (0.002)  0.7481 (0.049) 0.0992 (0.001)  118.20
PIRATE(DnCNN) 0.7948 (0.033) 0.0567 (0.002)  0.7624 (0.020) 0.0833 (0.002)  32.01

Method

Time (s)

Fixed Image

PIRATE(TV) PIRATE(DNCNN)

DICE SCORE

Figure 10: The visual results of warped images (top) and correlated warped segmentation masks
(bottom) from PIRATE(TV) and PIRATE(DnCNN) on the OASIS dataset. The regions of interest
are highlighted within a red box. The DSC for each image is displayed in the bottom row.
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Figure 11: The illustrations of memory cost and inference time of PIRATE and PIRATE+ with
different size of inputs. This figure shows that PIRATE and PIRATE+ have similar scalability.

19



Published as a conference paper at ICLR 2024

Table 6: Numerical results of memory cost, running time in training and inference for PIRATE,
PIRATE+, and benchmarks on OASIS and CANDI datasets. This table shows that PIRATE and
PIRATE+ has lower memory complexity compared to other DL baselines.

Method Inference Training
Memory (MB) | Running time (s) | Memory (MB) | Running time (s/epoch) |
SyN 2252 42.52 \ \
VoxelMorph 7642 0.17 12846 78
SYMNet 5976 0.32 16448 185
GraDIRN 4386 0.49 11642 112
Log-Demons 2709 46.72 \ \
NODEO 5534 89.01 \ \
PIRATE 3090 32.01 5408 30.02
PIRATE+ 3314 49.47 8866 1821.90
Table 7: Acronyms and corresponding full names in this paper.
Acronyms Full name Acronyms Full name
DIR deformable image registration DL deep learning
CNN convolutional neural network PIRATE plug-and-play image registration network
DEQ deep equilibrium models MBDL model-based deep learning
PnP plug-and-play NCC normalized cross-correlation
GCC global cross-correlation DSC Dice similarity coefficient
JD Jacobian determinant MSE mean squared error
STN spatial transform network FCN fully convolutional network
DU deep unfolding SD-RED  steepest descent regularization by denoising
AWGN additive white Gaussian noise NODE neural ordinary differential equations
ASM adjoint sensitivity method MMSE minimum mean squared error
JFB Jacobian-Free deep equilibrium models ROI region of interest
TV total variation
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VoxelMorph GraDIRN Log-Demons PIRATE+ Fixed Image
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Figure 12: The visual results of warped images (top) and correlated warped segmentation masks
(bottom) from the corner case of PIRATE+ (with the least improvement (not absolute value) in Dice)
compared with results from other benchmarks on this case. The regions of interest are highlighted
within a red box. The DSC for each image is displayed in the bottom row. Note that the result of
PIRATEH+ is still more consistent with the fixed image on this corner case.
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Figure 13: The plot for NFE along with the training iterations of PIRATE+. The results show a
convergence behaviour.
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