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ABSTRACT

Posterior sampling has been shown to be a powerful Bayesian approach for solv-
ing imaging inverse problems. The recent plug-and-play unadjusted Langevin
algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sam-
pling and minimum mean squared error (MMSE) estimation by combining phys-
ical measurement models with deep-learning priors specified using image denois-
ers. However, the intricate relationship between the sampling distribution of PnP-
ULA and the mismatched data-fidelity and denoiser has not been theoretically an-
alyzed. We address this gap by proposing a posterior-L2 pseudometric and using it
to quantify an explicit error bound for PnP-ULA under mismatched posterior dis-
tribution. We numerically validate our theory on several inverse problems such as
sampling from Gaussian mixture models and image deblurring. Our results sug-
gest that the sensitivity of the sampling distribution of PnP-ULA to a mismatch in
the measurement model and the denoiser can be precisely characterized.

1 INTRODUCTION

Many imaging problems can be formulated as inverse problems seeking to recover high-quality
images from their low-quality observations. Such problems arise across the fields of biomedical
imaging (McCann et al., 2017a), computer vision (Pizlo, 2001), and computational imaging (Ongie
et al., 2020). Since imaging inverse problems are generally ill-posed, it is common to apply prior
models on the desired images. There has been significant progress in developing Deep Learning
(DL) based image priors, where a deep model is trained to directly map degraded observations to
images (McCann et al., 2017b; Jin et al., 2017; Li et al., 2020).

Model-based DL (MBDL) is an alternative to traditional DL that explicitly uses knowledge of
the forward model by integrating DL denoisers as implicit priors into model-based optimization
algorithms (Venkatakrishnan et al., 2013; Romano et al., 2017). It has been generally observed
that learned denoisers are essential for achieving the state-of-the-art results in many imaging con-
texts (Metzler et al., 2018; Ulondu-Mendes et al., 2023; Ryu et al., 2019; Hurault et al., 2022; Wu
et al., 2020). However, most prior work in the area has focused on methods that can only produce
point estimates without any quantification of the reconstruction uncertainty (Belhasin et al., 2023),
which can be essential in critical applications such as healthcare or security (Liu et al., 2023).

In recent years, the exploration of strategies for sampling from the posterior probability has emerged
as a focal point in the field of inverse problem in imaging (Pereyra et al., 2015; Bouman & Buzzard,
2023; Chung et al., 2023; Song et al., 2022). This pursuit has given rise to a plethora of techniques,
encompassing well-established methods such as Gibbs sampling (Coeurdoux et al., 2023), the Un-
adjusted Langevin Algorithm (ULA) (Roberts & Tweedie, 1996; Durmus et al., 2018), and more
contemporary innovations like conditional diffusion models (Chung et al., 2023; Kazerouni et al.,
2022; Kawar et al., 2022; Song et al., 2023), and Schrödinger bridges (Shi et al., 2022).
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Among these sampling methods, ULA, characterized by its Markov chain-based framework, has
gained prominence owing to its ease of implementation and recent versions (Cai et al., 2023; Klatzer
et al., 2023; Ehrhardt et al., 2023). Plug-and-Play-ULA (PnP-ULA) (Laumont et al., 2022) is a spe-
cific variant that incorporates the prior knowledge into the dynamics of the Markov chain through
a denoiser. While this technique stands out for its simplicity and its ability to approximate the pos-
terior law effectively, it is not immune to challenges, including computational time and distribution
shifts between the mathematical formulations and practical experiments. These distribution shifts
arise due to several factors. First, there is a distribution shift in the prior distribution (Jalal et al.,
2021; Chung & Ye, 2022), attributed to the approximation of the minimum mean squared error
(MMSE) denoiser. Second, a distribution shift emerges in the data-fidelity term due to the inherent
uncertainty in the forward model (Wirgin, 2004; Guerquin-Kern et al., 2012; Blanke et al., 2020).
The impact of these shifts on the efficacy of the sampling method presents an intriguing gap in the
current theoretical understanding.

Contributions. (a) Bayesian posterior sampling relies on two operators: a data-fidelity term and a
denoising term. This paper stresses that in the case of mismatched operators, errors do not accu-
mulate indefinitely. Moreover, with mismatched operators, the shift in the sampling distribution can
be quantified by a unified formulation, as presented in Theorem 1. (b) Furthermore, we provide a
generalized convergence result for PnP-ULA (Laumont et al., 2022) in Corollary 1.2. A new proof
strategy based on Girsanov theory allows us to relax assumptions on the denoiser accuracy. These
insights are substantiated by a series of experiments conducted on both a 2D Gaussian Mixture prior
and image deblurring scenarios.

2 BACKGROUND

Inverse Problem. Many problems can be formulated as an inverse problem involving the estimation
of an unknown vector x 2 Rd from its degraded observation y = Ax+ n , where A 2 Rm⇥d is a
measurement operator and n ⇠ N (0,�2Im) is usually the Gaussian noise.

Posterior Sampling. When the estimation task is ill-posed, it becomes essential to include ad-
ditional assumptions on the unknown x in the estimation process. In the Bayesian framework,
one can utilize p(x) as the prior to regularize such estimation problems, and samples from the
posterior distribution p(x|y). The relationship is then established formally using Bayes’s rule
p(x|y) / p(y|x)p(x), where p(y|x) denoted as the likelihood function.

In this paper, we focus on the task of sampling the posterior distribution based on Langevin stochas-
tic differential equation (SDE) (xt)t2R+ (Roberts & Tweedie, 1996; Durmus et al., 2018) as

dxt = r log p(xt|y) +
p
2dzt = r log p(y|xt) +r log p(xt) +

p
2dzt, (1)

where (zt)t2R+ is a d-dimensional Wiener process. A posterior sampling approach produces mul-
tiple solutions for the same degradation (more details in Appendix C.1). When p(x|y) is proper
and smooth, with r log p(x|y) Lipschitz continuous, it has been proven that the stochastic process
defined in equation 1 has a unique strong solution which admits the posterior p(x|y) as unique sta-
tionary distribution (Roberts & Tweedie, 1996). In practice, an Euler-Maruyama discretization of
Equation 1 define the Unadjusted Langevin algorithm (ULA) Markov chain for all k 2 N as

xk+1 = xk + �r log p(y|xk) + �r log p(xk) +
p
2�zk+1, (2)

where zk ⇠ N (0, 1) and � > 0 is a step size controlling a trade-off between asymptotic accuracy
and convergence speed (Dalalyan, 2017). The likelihood score r log p(y|x) can be computed using
the measurement model1. However, the prior score r log p(x) cannot be computed explicitly and
needs to be approximate.

Score approximation using PnP Priors. Score approximation is a key problem in machine learn-
ing which can be solved in various ways such as Moreau-Yosida envelope (Durmus et al., 2018),
normalizing flows (Cai et al., 2023) or score-matching (Nichol & Dhariwal, 2021). In this work, we
approximate to the prior score r log p(x) through a MMSE denoiser D?

✏ denoted as

D?
✏ (z) := E[x|z] =

Z

Rd

xpx|z(x|z)dx, (3)

1In this paper, we will assume that the measurement model is known, even though it can be inexact.
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where z = x+n with x ⇠ p(x),n ⇠ N (0, ✏2Id), z ⇠ p✏(z) . Since the exact MMSE denoiser D?
✏

is generally intractable in practice, one can approximate it by a deep neural network (DNN) denoiser
D✏ 6= D?

✏ . This DNN denoiser is trained by minimizing the mean squared error (MSE) loss (Xu
et al., 2020). It gives a link between the intractable prior distribution and the MMSE denoiser which
can be approximated through Tweedie’s formula (Efron, 2011)

r log p(x) ⇡ r log p✏(x) =
1

✏
(D?

✏ (x)� x) ⇡ 1

✏
(D✏(x)� x) . (4)

The right-hand side of equation 4 is then plugged in the ULA Markov chain to obtain the PnP-ULA

xk+1 = xk + b✏(xk) +
p
2�zk+1, (5)

where the deterministic term of the process b✏ corresponds to the drift function defined as

b✏(x) = r log p(y|x) + 1

✏
(D✏(x)� x) +

1

�
(⇧S(x)� x) ,

with ⇧S is the orthogonal projection on the convex-compact S. This term is added for theoretical
purposes (ensures that the Markov chain is bounded) but it is rarely activated in practice. The
drift b✏(x) of this Markov chain (5) also corresponds the approximation of the posterior score
r log p(x|y).
Despite all the approximations made by PnP-ULA, it has been shown by (Laumont et al., 2022) that,
under certain relevant assumptions, this Markov chain (5) possesses a unique invariant measure ⇡✏,�

and converges exponentially fast to it. This means that ⇡✏,� is the sampling distribution limit of the
Markov chain (5). In practice, a significant number of step (hundred of thousands) is computed to
ensure the convergence. So, we will refer to ⇡✏,� as the sampling distribution. This has an impact
on the computational time required by PnP-ULA which exceeds that of alternative methods, such
as diffusion model or flow matching model (Delbracio & Milanfar, 2023). Note that the difference
between ⇡✏,�(x) and p(x|y) has been quantified in total variation (TV ) distance (Laumont et al.,
2022, Proposition 6).

3 PNP-ULA SENSITIVITY ANALYSIS

In this section we study the impact of a drift shift on the invariant distribution of the PnP-ULA
Markov chain. Such a shift can be observed in both a denoiser shift or a forward model shift. Most
of the introduced assumptions are reminiscent of previous work on PnP-ULA analysis (Laumont
et al., 2022).

With two different drifts b1✏ and b2✏ , we define the two corresponding Markov chains for i 2 {1, 2}

xi
k+1 = xi

k + �bi✏(x
i
k) +

p
2�zi

k+1. (6)

Hence, the variables subject to modification in the expression of bi✏ are only the forward model Ai

and the denoiser Di
✏ :

bi✏(x) = � 1

2�2
rky �Aixk2 + 1

✏

�
Di

✏(x)� x
�
+

1

�
(⇧S(x)� x) ,

With k · k the Euclidean norm on Rd. The forward model Ai and the denoiser Di
✏ can be viewed as

parameters of the PnP-ULA Markov chain. Our goal is to study the sensitivity of the sampling dis-
tribution ⇡i

✏,� to these parameters. For simplicity in this paper, we will designate b1✏ as the reference
drift and b2✏ as the mismatched drift. The proposed analysis of a drift shift is based on the following
assumptions.
Assumption 1. The prior distributions p1(x) and p2(x), denoted as target and mismatched priors,
have a finite second moment, 8i 2 {1, 2},

R
Rd ||x||2pi(x)dx < +1.

This assumption is a reasonable assumption since many images have bounded pixel values, for
example [0, 255] or [0, 1].
Assumption 2. The forward model has a bounded density, 8y 2 Rm, supx2Rd p(y|x) < +1.
Moreover, the forward model is smooth with Lipschitz gradient, p(y|.) 2 C1(Rd, ]0,+1[) and
there exists L > 0 such that, 8y 2 Rd, r log (p(y|·)) is L-lipschitz.
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Assumption 2 is true if the forward problem is linear, which will be the case in our applications.
Assumption 3. There exists ✏0 > 0, M � 0 such that for any ✏ 2]0, ✏0],x1,x2 2 Rd :

||D✏(x1)�D✏(x2)||  M ||x1 � x2||.

Assumption 3 holds if the activation functions of the DNN denoiser are Lipschitz (e.g., ReLU). The
constant M is independent of ✏, when the denoisers are blind denoisers.
Assumption 4. There exists m 2 R such that for any x1,x2 2 Rd, 8i 2 {1, 2} :

hr log pi(y|x2)�r log pi(y|x1),x2 � x1i  �m||x2 � x1||2.

Note that if Assumption 4 is satisfied with m > 0, then the likelihood x 7! log p(y|x) is m-concave.
If the forward model A is not invertible, such as deblurring, then m < 0. If Assumption 2 holds,
then Assumption 4 holds with m = �L. However, it is possible that m > �L which leads to
better convergence rates for PnP-ULA. To ensure the stability of PnP-ULA in the case of m < 0,
the projection on S has been added.

We introduce metrics which will be used to quantify the difference between the sampling distri-
butions ⇡1

✏,� and ⇡2
✏,� . The first one is the TV distance which quantifies the point-wise distance

between the densities of the probability distributions. The TV distance is the distance induced by
the TV norm defined for a probability density ⇡ by :

k⇡kTV = sup
kfk11

����
Z

Rd

f(x)d⇡(x)

���� . (7)

The second one is the Wasserstein distance which is the cost of optimal transport from one distribu-
tion to the other (Villani et al., 2009). Formally, The Wasserstein-1 distance between two distribution
⇡1,⇡2 can be defined as :

W1(⇡1,⇡2) = inf
µ2�(⇡1,⇡2)

Z

Rd⇥Rd

kx1 � x2kdµ(x1,x2), (8)

Where �(⇡1,⇡2) denoted all transport plans having ⇡1 and ⇡2 as marginals.

4 MAIN RESULT

To present our theoretical analysis, we first define a new pseudometric between two functions taking
values in Rd

Definition 4.1 (Posterior-L2 pseudometric). The posterior-L2 pseudometric between f1 and f2 :
Rd 7! Rd is defined by :

d1(f1, f2) =
q

EX⇠⇡1
✏,�

(kf1(X)� f2(X)k2). (9)

The properties of the posterior-L2 pseudometric are studied in Supplement A. For simplicity, we
shall call it posterior-L2. This metric can be computed in practice because ⇡1

✏,� is sampling distribu-
tion of PnP-ULA run with the drift b1✏ .

We can now state our main result on PnP-ULA sensitivity to a drift shift.
Theorem 1. Let Assumptions 1-4 hold true. There exists A0, B0, A1, B1 2 R+, such that for
� 2]0, �̄] :

k⇡1
✏,� � ⇡2

✏,�kTV  A0d1(b
1
✏ , b

2
✏) +B0�

1
4 ,

W1(⇡
1
✏,�,⇡

2
✏,�)  A1

�
d1(b

1
✏ , b

2
✏)
� 1

2 +B1�
1
8 ,

With �̄ = 1
3 (L+ M+1

✏ + 1
� )

�1. The proof is provided in Supplement D.

Theorem 1 establishes that a drift shift implies a bounded shift in the sampling distribution. Both
the total variation (TV ) and Wasserstein distance bounds consist of two different terms. The first
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term depends on the posterior-L2 distance d1(b1✏ , b
2
✏), which represents the drift shift error. The

second term is a discretization error term that depends on the step-size �. The Wasserstein distance
bound seems suboptimal, since it has been derived directly from the TV bound. A similar bound in
Wasserstein distance, analogous to the TV -distance, could potentially be demonstrated. However,
we leave this for future work. Constants A0, B0, A1, B1 have a polynomial dimension dependence
(Appendix D.1.6).

The pseudometric d1 also appears in the analysis of diffusion models. For example in (Chen et al.,
2023; Benton et al., 2023; Conforti et al., 2023) the convergence bounds are expressed in terms ofR

Rd kr log qt(xt)�s✓(t, xt)k2qt(xt)dxt, where qt is the density of the forward process and s✓ is the
approximated score. This quantity also corresponds to the difference of the drifts between the ideal
backward diffusion process and the approximated backward diffusion used in practice. Similar tools,
namely Girsanov theory, are used in both our analysis and the error bounds of diffusion models.

Our analysis is backward-compatible with the previous theoretical results (Laumont et al., 2022,
Proposition 6) on PnP-ULA. In addition, our result provides a reformulation of (Laumont et al.,
2022, Proposition 6) if denoisers Di

✏ are close to the exact MMSE denoiser D?
✏ in the infinite norm.

However, it is worth to note that our result is more general because no assumptions are made on
the quality of denoiser Di

✏. Another key difference lies in the posterior-L2 pseudometric, which is
relevant to characterize the Wasserstein distance, as we can see in our experiments (see Section 5).

4.1 IMPLICATIONS AND CONSEQUENCES

In this section, we will present three consequences of Theorem 1 in different application cases. All
these results are presented in TV -distance for simplicity, but can also be easily derived in Wasser-
stein distance. A demonstration of these results can be found in Supplement E.

4.1.1 DENOISER SHIFT

Theorem 1 has an interesting consequence in case of a denoiser shift. The posterior-L2 appears to
be a relevant metric to compare different denoisers efficiencies to provide a high-quality sampling.
Corollary 1.1. Let Assumptions 1-4 hold true. There exists A2, B2 2 R+, such that 8� 2]0, �̄] and
for all denoisers D1

✏ and D2
✏ :

k⇡1
✏,� � ⇡2

✏,�kTV  A2d1(D
1
✏ , D

2
✏ ) +B2�

1
4 .

Similar to Theorem 1, there are two terms: the first one quantifying the denoiser shift, and the
second one is the discretization error. The proof of this corollary can be found in Supplement E.1.
It provides a quantification of the sensitivity of the invariant law of PnP-ULA to the denoiser, which
is a key component of the process. This can be viewed as the process’s sensitivity to regularization,
or in a Bayesian paradigm, to prior knowledge.

4.1.2 REFORMULATION OF PNP-ULA CONVERGENCE GUARANTIES

Another consequence is the reformulation of PnP-ULA’s previous convergence result (Laumont
et al., 2022, Proposition 6), which previously required the denoiser to be close to the exact MMSE
denoiser D?

✏ (see equation 3). We have demonstrated a similar convergence result without this as-
sumption.

More precisely, by naming p✏(·|y) the posterior distribution with p✏ (see equation 2) as a prior
distribution, the following result holds.
Corollary 1.2. Let Assumptions 1-5 hold true. Let � > 0 such that 2�(L+ M+1

✏ �min (m, 0))  1
and ✏  ✏0. There exists C3 � 0 such that for RC > 0 such that B̄(0, RC) ⇢ S there exist
A3, B3,2 R+ such that 8� 2]0, �̄] :

kp✏(·|y)� ⇡2
✏,�kTV  A3d1(D

?
✏ , D

2
✏ ) +B3�

1
4 + C3R

�1
C .

A demonstration can be found in Supplement E.2. This result requires another technical assumption
5 which is nothing more than some regularity on the exact MMSE denoiser D?

✏ .
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Figure 1: Illustration of Theorem 1’s bound by visualizing the strong correlation between the
Wasserstein distance between sampling distributions and the posterior-L2 distance between denois-
ers. Left plot: Distances, for the GMM experiment in 2D, computed between sampling generated by
mismatch denoisers and the exact MMSE denoiser. Note how the posterior-L2 is more correlated to
the Wasserstein distance than the prior-L2. Right plot: Distances, for the gray-scale images experi-
ment, compute between DnCNN denoisers with 5⇥ 105 weights and other DnCNN denoisers with
fewer weights. Note how the posterior-L2 and the Wasserstein distance are highly correlated with
correlation r = 0.9909 in average and r > 0.97 for each image.

4.1.3 FORWARD MODEL SHIFT

Another consequence of Theorem 1 is in case of a forward model mismatch (Wirgin, 2004; Blanke
et al., 2020), a high-stakes subject especially in medical imaging (Guerquin-Kern et al., 2012). It
implies that if the shift of the forward model is limited, then the shift on the sampling distribution is
limited.
Corollary 1.3. Let Assumptions 1-4 hold true. There exist A3, B3 2 R+, such as 8� 2]0, �̄] :

k⇡1
✏,� � ⇡2

✏,�kTV  A4kA1 �A2k+B4�
1
4 .

A demonstration can be found in E.3. The spectral norm is used here, but this result holds true for
any norm in the matrix space because all norms are equivalent in finite-dimensional space. Thus the
stability of PnP-ULA with respect with the measurement model has been proved.

5 NUMERICAL EXPERIMENTS

Our main result in Theorem 1 provides error bounds for the distance between two sampling dis-
tributions ⇡1

✏,� and ⇡2
✏,� , as a function of the corresponding posterior-L2. We provide numerical

validations of this bound by exploring the behavior of the Wasserstein distance between sampling
distributions and the corresponding posterior L2 pseudometric defined Eq 4.1. We use the correla-
tion between these two distances to validate our theoretical results and show that the posterior-L2

pseudometric can characterize the Wasserstein distance.

The three experiments illustrate the usefulness of the three different corollaries in the previous sec-
tion. Our first experiment (section 5.1) illustrates sampling distribution error (Corollary 1.2) for
a GMM in 2D. The second experiment (section 5.2) illustrates denoiser shift (Corollary 1.1) for
an gray-scale image deblurring. The third example in section 5.3 illustrates forward model shift
(Corollary 1.3) on color image deblurring.

More results of PnP-ULA on images can be found in Supplement C. More technical details about
experiments can be found in Supplement B. The code used in these experiments can be found in PnP
ULA posterior law sensivity code.

5.1 DENOISER SHIFT ON GAUSSIAN MIXTURE MODEL IN 2D

In general, computing the exact MMSE denoiser D?
✏ is a challenging task. However, if we assume

that the prior distribution p(x) follows a Gaussian Mixture Model (GMM), then a closed-form ex-
pression for D?

✏ becomes available. This allows us to evaluate Corollary 1.2 in a simplified scenario
involving a 2D GMM. We emphasize the ability of the posterior-L2 pseudometric between denoisers
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Figure 2: Illustration of denoisers with ✏ = 0.05 used for the 2D Gaussian Mixture experiment.
The prior distribution, a Gaussian Mixture, is represented in light blue. Denoisers, D✏ : R2 ! R2,
are represented by there outputs (in dark blue) on a set of inputs (in orange) linked together (by
orange lines). Rightmost: Exact MMSE denoiser. Leftmost: Three mismatch denoisers with various
c parameter.

to explain variations in the Wasserstein distance between sampling distributions. Notably, denoisers
are trained based on the prior distribution, which might lead one to expect that the prior-L2 norm
would provide a more accurate measure. However, we will illustrate that this is not the case.

The algorithm is run for a denoising problem (A = I2, �2 = 1) and the observation y = (0, 8).
With PnP-ULA parameters : ✏ = 0.05, � = 0.05 and N = 100000. The initialization of the Markov
chain is taken at x = 0. Samples, s? = (s?k)k2[1,N ], generated by the exact MMSE denoiser D?

✏

provide a reference sampling distribution ⇡? = 1
N

PN
k=1 �s?k .

We introduce a novel class of denoising operators referred to as mismatched denoisers, denoted as
Dc

✏ . These operators are defined to be equal to the exact MMSE denoiser when the horizental
coordinate x1 exceeds a threshold c and 0 otherwise.

Dc
✏(x1, x2) :=

⇢
D?

✏ (x1, x2) if x1 > c
0 otherwise

(10)

It becomes evident that limc!�1 Dc
✏ = D?

✏ and conversely limc!+1 Dc
✏ = 0. In Figure 2, we

visualize denoisers used in the experiment. A total of 50 distinct mismatched denoisers are system-
atically generated, spanning the parameter range c 2 [�5, 5]. Concomitant with each of these de-
noisers Dc

✏ , a corresponding sample sc = (sck)k2[1,N ] and sampling distribution ⇡c = 1
N

PN
k=1 �sck

is generated.

In Figure 1, we present the Wasserstein distance, denoted as W1(⇡?,⇡c), between the refer-
ence sampling distribution ⇡? and the mismatched sampling distribution ⇡c. Concurrently, we

compute the prior-L2 pseudometric between denoisers,
q

1
N

PN
k=1 kD?

✏ (xk)�Dc
✏(xk)k2, with

(xk)k2[1,N ] a sample of the prior distribution. Furthermore, we display the posterior-L2 pseudo-

metric, d1(D?
✏ , D

c
✏) =

q
1
N

PN
k=1 kD?

✏ (s
?
k)�Dc

✏(s
?
k)k2. The relation between these metrics is

explained in Corollary 1.2. Upon a closer examination of Figure 1, it becomes evident that the
posterior-L2 pseudometric exhibits a stronger correlation with the Wasserstein distance, r = 0.98,
when compared to the prior-L2 pseudometric, r = 0.89. This experiment shows the relevance of the
posterior-L2 pseudometric (at the basis of Theorem 1) to reflect the accuracy of a posterior sampling
method.

5.2 DENOISER SHIFT ON GRAY-SCALE IMAGES

In practical applications, the learned denoising model does not equate to the exact MMSE denoiser.
Furthermore, the testing distribution rarely aligns perfectly with the training distribution, giving rise
to a distributional mismatch that can be understood as a form of incorrect training for the denoiser.
In this context, it becomes imperative to understand the sensitivity of the invariant distribution of
PnP-ULA concerning the denoiser. This sensitivity is elucidated by Equation 1.1.

In order to validate empirically this result, the deblurring task is addressed using a uniform blur
kernel with dimensions of 9⇥ 9 and a noise level of � = 1

255 . This degradation is applied to natural
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Figure 3: Illustration of MMSE estimators computed by PnP-ULA run on 105 steps with various
DnCNN denoisers. The quantities in the top-left corner of each image provide PSNR and SSIM
values for each reconstructed images. Denoisers have a different number of weights, but are all
trained in the same way. Note that a shift between the reference denoiser (5 ⇥ 105 weights) and
mismatched denoisers using less weights (103 or 105 weights) implies a shift in the MMSE estimator
quality.

images (from CBSD68 dataset (Martin et al., 2001)) of size 256 ⇥ 256 in grayscale. A total of 17
distinct DnCNN denoising models (Ryu et al., 2019) were trained, each varying in the number of
layers, ranging from a single layer to a maximum of 17 layers. PnP-ULA was runned for a duration
of 104 steps using each of these denoising models across 15 different images (see Supplement B).
Parameters are chosen following the recommendation of (Laumont et al., 2022). The initialization
of PnP-ULA was performed using the observation vector y, and a total of N = 1000 images were
saved as samples, with one image being saved every 10 steps in the sampling process.

We denote by si = (sik)1kN the samples generated using the denoiser Di
✏ with i layers and

⇡i = 1
N

PN
k=1 �sik the corresponding sampling distribution. ⇡17 is our reference sampling dis-

tribution. Figure 1 illustrates the Wasserstein distance between sampling distributions denoted as
W1(⇡17,⇡i), in comparison to the posterior-L2 between denoisers, defined as d1(D17

✏ , Di
✏) =q

1
N

PN
k=1 kD17

✏ (s17k )�Di
✏(s

17
k )k2. Results on images are depicted in Figure 3 to provide em-

pirical evidence that a more powerful denoiser results in a more precise reconstruction.

The figures display both the mean and the range of results across the 15 images. For each image
(note that constants of Theorem 1 are problem-specific), we compute the correlation, and the average
correlation is computed to be r = 0.9909, with the correlation between the two distances for each
image r > 0.97.

It is important to note that the Wasserstein distance does not tend to zero because of a bias in this
scenario. A sample of 1000 images in a space of dimension 256 ⇥ 256 = 65, 536 is insufficient.
Therefore, two samples from the same distribution should not be expected to have a Wasserstein
distance of zero.

Evidently, the two distances exhibit a significant correlation, showing a link between these two
distances. Consequently, the objective of this experiment is achieved. Furthermore, it is apparent
that the samples generated by the denoiser with only 105 weights closely resemble those produced
by the denoiser 5 ⇥ 105 weights. In this context, it appears relevant to train a denoiser with only 5
layers (105 weights), as it is easier to train and less computationally intensive to deploy.

5.3 FORWARD MODEL SHIFT ON COLOR IMAGES

Theorem 1 has another implication when dealing with uncertainty in the forward model. This arises,
for instance, in medical imaging when the exact parameterization of the measuring instrument is not

8
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Figure 4: Illustration of the PnP-ULA stability to a mismatch forward model. Leftmost six plots:
MMSE estimators computed with PnP-ULA run on 30, 000 steps on Gaussian blur of standard
deviation �1. Rightmost: Evolution of the Wasserstein distance between sampling distributions
computed with a mismatched blur kernel, �1 2 [0, 3[ and sampling with the exact forward model
�? = 3. Note that the image reconstruction quality improves as �1 gets closer to �? = 3, used to
degrade the image. In addition, in the case of Gaussian blur, the pseudometric is given by |�1 � �?|
which justifies qualitatively the observed linear decrease of the Wasserstein distance.

well-defined (Guerquin-Kern et al., 2012). Corollary 1.3 elaborates on how the sampling distribution
is sensitive to shifts in the forward model.

In our experimental setup, we address the deblurring inverse problem using the CelebA validation
set, which consists exclusively of images of women’s faces resized to RGB dimensions of 256⇥256
pixels. A Gaussian blur kernel is applied to the images, with a standard deviation �1 being subject
to modification. The denoiser is implemented using the DRUNet architecture (Zhang et al., 2021)
and has been trained on the CelebA dataset (Liu et al., 2015). Other parameters of PnP-ULA are
chosen following the recommendation of (Laumont et al., 2022).

The image is initially degraded using a Gaussian blur kernel with a standard deviation of �? = 3.
This reference sampling distribution is denoted ⇡?. Multiple Markov chains are then computed, each
spanning 30, 000 steps, under the assumption of mismatched forward models with varying standard
deviations, �1 2 [0, 3[. At every 30 steps of these chains, we select N = 1, 000 samples, resulting
in distinct sampling distributions ⇡�1 . We subsequently compute the Wasserstein distance, denoted
as W1(⇡?,⇡�1), to quantify the discrepancy between the reference sampling distribution ⇡? and the
mismatched sampling distribution ⇡�1 .

This procedure is applied to two images presented in Figure 4. The distance between the blur matri-
ces with a Gaussian kernel is directly the difference between the standard deviation of these kernels.
The observed trend aligns precisely with the expected behavior: as the assumed standard deviation
of the blur kernel, denoted as �1, approaches 3, the exact kernel of blur, the Wasserstein distance
W1(⇡?,⇡�1) decrease and the quality of the reconstruction improves. It’s notable that when �1 = 0,
we essentially have a denoising scenario with minimal noise, resulting in a reconstructed image that
closely resembles the observed image. This experiment clearly illustrates the corollary 1.3 in context
of a forward model mismatch.

6 CONCLUSION

In conclusion, our comprehensive analysis of the PnP-ULA algorithm has provided us with insights
into the intricacies of this posterior sampling technique. Through rigorous examination, we’ve suc-
cessfully unified the understanding of denoiser shifts and variations in the forward model, encap-
sulating these phenomena in a singular and novel result, denoted as Theorem 1. Importantly, our
error bounds are expressed in terms of a posterior-L2 pseudometric, which we show to be more
relevant than the previously used bound between denoisers (Laumont et al., 2022). Future work will
investigate how to extend our results to other Langevin based dynamics (Klatzer et al., 2023), with
a particular focus on annealing and exploring the broader applications of our results in addressing
various inverse problems.
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7 REPRODUCIBILITY STATEMENT

Source code used in our experiments can be found in PnP ULA posterior law sensivity code. It
contains a README.md file that explains step by step how to run the algorithm and replicate the
results of the paper. In Section 5 it is precisely detailed how all the hyper-parameters are chosen
and, for each experiment, which dataset is used. As for the theoretical results presented in Section 4,
complete proofs are given in the Supplements.
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SUPPLEMENTARY MATERIAL

Our unified analysis of PnP-ULA is based on stochastic equation theory. In Supplement A, we first
analyse the properties of the posterior-L2 pseudometric. In Supplement B, we include additional
technical details on experiments. In Supplement C, more result of PnP-ULA on various images are
presented. In Supplement D, we demonstrated the Theorem 1. In Supplement E, we derive from the
main result the different corollaries.

A POSTERIOR-L2 PSEUDOMETRIC

We define the distance which has been naturally introduce 4.1, the posterior-L2 pseudometric :

d1(b
1
✏ , b

2
✏) =

q
EX⇠⇡1

✏,�
(||b1✏(X)� b2✏(X)||2).

It is clear that this function of (b1✏ , b2✏) is positive, symmetric and is verifies the triangular inequality.
However it is not a distance, because the separability is not to be ensured. If d1(b1✏ , b2✏) = 0, then
b1✏ = b2✏ on the domain where ⇡1

✏,� > 0. Thus, d1 will be named posterior-L2 pseudometric.

However, in our case of evaluation it will have the same behavior as a distance. Let’s suppose that
⇡1
✏,� equals p(·|y) (no approximation errors). But the support of p(·|y) is the support of the prior

p(x) because of the Gaussian noise. Thus, the two functions are equal if their support are included
on the support of the distribution of data. This is totally acceptable because the area of interest is the
space of images, i.e. the support of p(x).

We use the notation d1 for this metric to emphasize that it involves integrating the L2 norm over the
reference sampling distribution ⇡1

✏,� . While it is possible to perform integration over the mismatched
sampling distribution ⇡2

✏,� or even taking the minimum of these two values. We have chosen to retain
the expectation only on ⇡1

✏,� to make it easier to compute in practice. In this work, the convention
has been made that b1✏ is closer to p✏(·|y) than b2✏ (for instance, with the infinite norm on the space
of images). This situation occurs if D1

✏ is trained better than D2
✏ or if the measurement model A1

is more relevant than A2. With this convention, we have observed in practice that the distance
computed with ⇡1

✏,� is more correlated to the Wasserstein distance between the samples than the
distance computed with ⇡2

✏,� . This empirical evidence reinforces our choice.

B ADDITIONAL TECHNICAL DETAILS

This section presents several technical details that were omitted from the main paper for space.
There are three parts for each of the experiments.

B.1 TECHNICAL DETAILS OF GMM IN 2D

Following the experimental setup of Laumont et al. (2022), a regularization weight ↵ > 0 is added
to the process. So, the Markov chain, which is computed, is defined by 5 with a drift:

b✏(x) = r log p(y|x) + ↵

✏
(D✏(x)� x) +

1

�
(⇧S(x)� x) .

This parameter allows for the balancing of weights between the prior score and the data-fidelity
score. This ↵ parameter is useful in practice to obtain a better convergence. For GMM in 2D,
↵ = 0.3. For experiment on images, ↵ = 1.

The prior is a Gaussian Mixture Model if

p(x) =
pX

i=1

wiN (x;µi,⌃i),

With wi � 0,
Pp

i=1 wi = 1 weights between the Gaussian and N (x;µi,⌃i) the Gaussian distribu-
tion of mean µi and covariance matrix ⌃i evaluate in x.
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Figure 5: Illustration of the images used in the gray-scale images experiment 5.2

In this case, the posterior distribution has a closed form

p(x|y) =
pX

i=1

aiN (x;mi,S
�1
i ),

With :

• Si = ⌃�1
i + ATA

�2

• mi =
⇣
⌃�1

i + ATA
�2

⌘�1 �
⌃�1

i µi +
A
�2y

�

• ai =
wi exp

⇣
1
2m

T
i Simi� 1

2µ
T
i ⌃�1

i µi�yT y

2�2

⌘

p(y)

s

(2⇡)n det

✓
�2In+⌃

1
2
i ATA⌃

1
2
i

◆

Similarly the exact MMSE denoiser D?
✏ has a closed form

D?
✏ (x) =

Pp
i=1 wici(x)ni(x)Pp

i=1 wici(x)
,

With :

• ni =
�
⌃�1

i + 1
✏Id
��1 �

⌃�1
i µi +

x
✏

�

• ci =
1p

2⇡ det (⌃i+✏Id)
exp

⇣
� 1

2 (µi � x)T (⌃i + ✏Id)
�1 (µi � x)

⌘

In our experiment, parameters of the GMM are p = 2, µ1 = µ2 = 0, ⌃1 =

✓
2 0.5
0.5 0.15

◆
,

⌃2 =

✓
0.15 0.5
0.5 2

◆
, w1 = w2 = 0.5.
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Figure 6: Illustration of images used in the color images experiment 5.3

B.2 TECHNICAL DETAILS FOR DENOISER SHIFT ON GRAY-SCALE IMAGES

The 15 images used for the gray-scale images experiment 5.2 can be found in the Figure 5. These
images are been took from a classical validation set, crop if necessary to be of size 256 ⇤ 256 and
normalized within the range of 0 to 1.

A total of 17 distinct DnCNN denoising models (Ryu et al., 2019) were trained, each varying in the
number of layers, ranging from a single layer to a maximum of 17 layers. Each of these denoiser is
trained on the CBSD68 dataset composed of 400 natural images of size 256 ⇤ 256 for 50 epochs and
a learning rate of 1.10�3. The noise level is fixed at 5

255 and the Lipschitz constant of the network
is not constraint. It has been test to constraint the Lipschitz constant but the network with this
constraint perform worst. The computational time required for training one denoiser an NVIDIA
GeForce RTX 2080 GPU was approximately 2 hours. So a total of 34 hours of computation was
needed to train the gray-scale image denoisers.

The computational time required for one PnP-ULA sampling on an NVIDIA GeForce RTX 2080
GPU was approximately 40 seconds per image. This equates to approximately 3 hours of compu-
tational time for the entire experimental procedure. The PnP-ULA is run on in-distribution image
(from CBSD68 dataset) and on out-of-distribution images (from BreCaHAD dataset (Aksac et al.,
2019) and RxRx1 (Sypetkowski et al., 2023), resized to be 256*256 in gray-scale).

B.3 TECHNICAL DETAILS FOR DENOISER SHIFT ON COLOR IMAGES

A pretrained denoiser with the DRUNet architecture (Zhang et al., 2021) on CelebA dataset was
used. This denoiser was trained with images from CelebA (only women faces) resized to be 256⇤256
and with a noise level choose uniformly in the range [0, 75

255 ].

The computational time required for one PnP-ULA sampling of 30, 000 steps on an NVIDIA
GeForce RTX 2080 GPU was approximately 15 minutes per image. This procedure is applied to a set
of 10 images presented in Figure 6. This equates to approximately 15 hours of computational time
for the entire experimental procedure. The PnP-ULA is applied on in-distribution images (woman
faces from CelebA dataset) and on out-of-distribution dataset (from BreCaHAD dataset, RxRx1
dataset and MetFaces dataset (Karras et al., 2020), resized to be 256*256 color images).

In section 5.3 is only presented result of this experiment on two images but we can compute the
mean of the Wasserstein distance W1(⇡�1 ,⇡

?) between a sampling with a mismatched measure-
ment model �1 2 [0, 3[ and the exact measurement model �1 = 3. This result is presented in
Table B.3.

Standard deviation of blur kernel 0 1 1.5 2 2.5
Wasserstein distance 640 642 585 471 341
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Figure 7: Result of PnP-ULA on different gray scale images for 100, 000 steps with DnCNN. The
five top images are in-distribution and the bottom two images are out-of-distribution images.

One can see the same conclusion on this table, the Wasserstein distance decrease when �1 ! 3,
showing experimentally the result of Corollary 1.3.

C PNP-ULA RESULTS ON IMAGES

In this section, we provide more result of the PnP-ULA sampling algorithm on gray-scale and color
images.

General setting Parameters choose for running the PnP-ULA have been taken following the anal-
ysis of (Laumont et al., 2022) with ↵ = 1, ✏ = 5

255 , � = 1
2( 2

�2 + ↵
✏2

)
and � = 1

3( 1
�2 + 1

�+ ↵
✏2

)
. C has

been choose to take a projection on the image space C = [0, 1]d because it gives a little better result
in practice than the advice of (Laumont et al., 2022).

The PnP-ULA algorithm is run for deblurring with a uniform blur of 9 ⇤ 9 and a noise level of
� = 1

255 . The convergence of the algorithm can be observed in a number of step of order 10, 000 -
100, 000.

Results on gray-scale images The DnCNN denoiser is trained on CBSD68 dataset (natural im-
ages of size 256 ⇤ 256 on gray-scale normalized between 0 and 1) with 17 layers and 50 epochs of
training.
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In Figure 7, the result on various images can be seen. The image is well reconstruct with the MMSE
estimator, especially, looking at the Structural Similarity Index Measure (SSIM), the gap between
the observation and the reconstruct image is huge. The algorithm is able to reconstruct more fine
structure. By looking at the sample themselves, it is clear that they have a worst quality, this is due
to the stochastic term which imply on the sample a residual noise which disappear in the MMSE.
By looking at the Standard deviation of the sample, one can remark that it is close to the error map
between the MMSE estimator and the ground truth. The outstanding result is that PnP-ULA gives
still good result on out-of-distribution data. The MMSE is still relevant but the uncertainty map
given by the Standard deviation is not anymore relevant for that kind of data.

One can also remark artefacts on the reconstruction in the roof area of the second image. In fact
for this image, if the Markov chain is running for more steps, these artefacts get worse. There is
an instability of the algorithm. This might be explain by the fact that the denoiser is not able to
constraint the Markov chain for some frequencies who are zeros of the blur kernel (so not constraint
also by the data fidelity term). So in these direction in the frequency domain, the Markov chain is
free and still discover the space leading artefacts like aliasing.

Results on color scale The DRUNet denoiser is trained on RGB woman faces images of size
256 ⇤ 256 from the dataset celabA. The studied inverse problem and the parameter of the algorithm
are the same than for gray scale images. The only modify parameter is the number of step, take at
30, 000, for faster computation.

We have similar result than previously. However the algorithm performance is more visible on the
SSIM metric. In this case, the algorithm is also less powerful on out-of-distribution data. Especially
on the image of cells, the reconstruction is not good. But the PnP-ULA still gives good results on
other out-of-distribution images, which are very different from a woman face. One can remark that
the convergence is also a bit weaker. Especially in the different between the MMSE estimator and
the ground-truth, artefacts as described before are more visible.

C.1 DO WE CAPTURE MULTIMODALITY WITH PNP-ULA ?

The problem of capturing the multimodality of the posterior distribution is the key problem of sam-
pling methods (Cohen et al., 2023). Because the inverse problem is ill-posed, multiple proper solu-
tions can correspond to a unique observation. With multiple samples of the posterior law p(·|y), we
aim to capture the different possibility of reconstruction.

Looking at the eyebrow in Figure 9, we can see that different modes are discovered during the
Markov chain process with different number of eyebrows. The posterior distribution seems to be
well discovered because this detail is ambiguous in the blurred image implying multimodality of the
posterior distribution.

D DEMONSTRATION OF THEOREM 1

The proof is based on a decomposition of k⇡1
✏,� �⇡2

✏,�kTV detailed in Equation 11. Then, each term
is controlled independently by the exponential convergence of the Markov Chain (Equation 23) and
by a consequence of Girsanov’s theorem (Equation 15). Finally, the demonstration in Wasserstein
distance is deduced from the inequality in the TV -norm. Note that the bound in Wasserstein distance
might be demonstrated with a similar proof as the one in the TV -norm, leading to a more refined
inequality.

D.1 CONTROL OF k⇡1
✏,� � ⇡2

✏,�kTV

Definition D.1 (The V -norm for distributions). The V -norm (for V : Rd 7! [1,+1[) of a distribu-
tion is defined by

k⇡kV = sup
kf/V k11

����
Z

Rd

f(x)d⇡(x)

���� .

The TV -norm is the V -norm with V = 1. For every distribution ⇡ on Rd, k⇡kTV  k⇡kV .
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Figure 8: Result of PnP-ULA on different color images for 30, 000 steps with Drunet. Top four
images are in-distribution and bottom fouor images are out-of-distribution images.

D.1.1 FIRST DECOMPOSITION

The Markov kernel of the Markov chain is defined by, for i 2 {1, 2} :

Ri
✏,�(x,A) =

1

(2⇡)
d
2

Z

Rd

1A

⇣
x+ �bi✏(x) +

p
2�z
⌘
exp

✓
�kzk2

2

◆
dz.

Ri
✏,�(x,A) is the probability that the Markov Chain in x go in the set A at next iteration. The Markov

Kernel is the transition matrix of the Markov Chain if the number of state is finite. Here the space
of state is Rd, leading to this continuous definition.

By definition of the invariant law, because the Markov chain (xi
k)k2N converges in law to ⇡i

✏,� , we

gets 8N 2 N, ⇡i
✏,�

⇣
Ri

✏,�

⌘N
= ⇡i

✏,� .

The first step of the bounding of k⇡1
✏,� � ⇡2

✏,�kTV is to remark that, 8N 2 N, 8x 2 Rd :

k⇡1
✏,� � ⇡2

✏,�kTV  k�x(R1
✏,�)

N � ⇡1
✏,�kTV + k�x(R1

✏,�)
N � �x(R

2
✏,�)

NkTV + k�x(R2
✏,�)

N � ⇡2
✏,�kTV .

(11)
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Figure 9: Patches of different sample from one PnP-ULA Markov chain run on image Simpson

�x(R1
✏,�)

N is the probability density of the N iterate of the Markov chain which begin in x (so with
the distribution �x).

We will first bound separately k�x(Ri
✏,�)

N�⇡i
✏,�kTV and k�x(R1

✏,�)
N��x(R2

✏,�)
NkTV , then deduce

a bound on the target quantity.

D.1.2 BOUND OF k�x(Ri
✏,�)

N � ⇡i
✏,�kTV

By (Laumont et al., 2022, Proposition 5), 8x 2 Rd, there exists a1, a2 2 R+ and ⇢1, ⇢2 2]0, 1[, such
that, for i 2 {1, 2} :

k�x(Ri
✏,�)

N � ⇡i
✏,�kTV  k�x(Ri

✏,�)
N � ⇡i

✏,�kV  ai⇢
N�
i

✓
V 2(x) +

Z

Rd

V 2(x̃)⇡i
✏,�(dx̃)

◆
,

with the V -norm defined in Definition D.1.

D.1.3 BOUND OF k�x(R1
✏,�)

N � �x(R2
✏,�)

NkTV

We will suppose that � = 1
m and control the quantity defined for k 2 N by

k�x(R1
✏,�)

km � �x(R
2
✏,�)

kmkTV .

We can make the decomposition

k�x(R1
✏, 1

m
)km � �x(R

2
✏, 1

m
)kmkTV = k

k�1X

j=0

�x(R
1
✏, 1

m
)(k�j�1)m

⇣
(R1

✏, 1
m
)m � (R2

✏, 1
m
)m
⌘
(R2

✏, 1
m
)jmkTV .

(12)

We introduce the continuous Markov processes, (x̃i
t)t2[0,m�] for i 2 {1, 2}, defined to be the strong

solution of :

dx̃i
t = b̃i✏(t, (x̃

i
t)t2[0,m�]) +

p
2db̃it, (13)
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With x̃i
0 ⇠ �x, b̃i✏(t, (x̃i

t)t2[0,m�]) =
Pm�1

j=0 1[j�,(j+1)�[(t)b
i
✏(x̃

i
j�) and b̃it a continuous Wiener

process. For simplicity of notation, in the following computation we will write b̃i✏(x̃
i
t) instead of

b̃i✏(t, (x̃
i
t)t2[0,m�]).

From this definition, x̃i
k� = xi

k for k 2 [0,m� 1]. And one can remark, that m� = 1.

Moment control First we control the moment of x̃i
t. The moment bound, 8j 2 N⇤, with for

i 2 {0, 1} is defined by

mj = max

 
sup

t2[0,+1[

⇣
Ex⇠�xP 1

t
[kxkj ]

⌘
, sup
t2[0,+1[

⇣
Ey⇠�xP 2

t
[kykj ]

⌘!
,

with (P i
t )t2[0,+1[ the Markov kernels associated with process 13.

For Wj(x) = 1 + kxkj . By (Laumont et al., 2022, Lemma 17), with �̄ = 1
3

�
L+ M+1

✏ + 1
�

��1,
9� 2 [0, 1[, such that 9 Cj � 0, such that 8i 2 {1, 2}, 8� 2]0, �̄], 8x 2 Rd, 8k 2 N⇤:

P i
tWj  CjWj

�xP
i
tWj  Ci�xWj

1 + Ex⇠�xP 1
t
[kxkj ]  CjWj(x)

Ex⇠�xP i
t
[kxkj ]  CjWj(x)

sup
t2[0,+1[

⇣
Ex⇠�xP i

t
[kxkj ]

⌘
 CjWj(x).

Note that CjWj(x) is independent of �. It has been shown that : 9Mj � 0 independent of � such as
8� 2]0, �̄] :

mj  MjWj(x). (14)

Control of k�x(R1
✏, 1

m
)m � �x(R2

✏, 1
m
)mkV

For any i 2 {1, 2}, we have

k�x(R1
✏, 1

m
)m � �x(R

2
✏, 1

m
)mkV = k�xP 1

1 � �xP
2
1 kV ,

with (P i
t )t2[0,+1[ the Markov kernels associated with process 13.

Using (Laumont et al., 2022, Lemma 19), which is a direct consequence of the Girsanov’s theorem
(Shiryayev, 1977, Theorem 7.7), we get the bound

k�x(R1
✏, 1

m
)m � �x(R

2
✏, 1

m
)mkV 

p
2

✓Z 1

0
E
⇣
||b̃1✏(x̃1

t )� b̃2✏(x̃
1
t )||2

⌘
dt

◆ 1
2

. (15)

Estimation of
rR 1

0 E
⇣
||b̃1✏(x̃1

t )� b̃2✏(x̃
1
t )||2

⌘
dt

For t 2 [0, 1], thank to the form of b̃✏, x̃b t
� c� has the same law that xb t

� c.

we can deduce from the previous property an estimation of the error
���E
⇣
||b̃1✏(x̃1

t )� b̃2✏(x̃
1
t )||2

⌘
� E

⇣
||b1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)||2
⌘��� (16)

=
���E
⇣
kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k
⌘
� E

⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k
⌘���
���E
⇣
kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k
⌘
+ E

⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k
⌘��� .

(17)
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The first term can be control by the fact that b1✏ and b2✏ are Lb = M+1
✏ + L + 1

� -Lipschitz, which
immediately follows from the Assumptions 1 and 3

���E
⇣
kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k
⌘
� E

⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k
⌘���

 E
⇣���kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k � kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k
���
⌘

 E
⇣���kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k � kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k
���
⌘

 E
⇣
kb̃1✏(x̃1

t )� b1✏(x̃
1
b t
� c�

) + b2✏(x̃
1
b t
� c�

)� b̃2✏(x̃
1
t )k
⌘

 2LbE
⇣
kx̃1

t � x̃1
b t
� c�

k
⌘
.

bi✏ is Lipschitz, so there exists D✏  0, such that 8x 2 Rd, 8i 2 {1, 2},

bi✏(x)  D✏(1 + kxk). (18)

By the Itô’s isometry, Equation 18 and Equation 14, we get

E
⇣
kx̃1

t � x̃1
b t
� c�

k2
⌘
 E

0

@k
Z x̃1

t

x̃1
b t
�
c�

b̃1✏(u)duk2
1

A+ 2E

0

@k
Z x̃1

t

x̃1
b t
�
c�

db̃1tk2
1

A

 (2d+ 2D✏(1 +M2W2(x)))�.

The previous inequality gives that
���E
⇣
kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k
⌘
� E

⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k
⌘���  2Lb

p
(2d+ 2D✏(1 +M2W2(x)))�.

(19)

Now we control the second term of the error estimation
���E
⇣
kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k
⌘
+ E

⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k
⌘���

 E
⇣
kb̃1✏(x̃1

t )k
⌘
+ E

⇣
kb̃2✏(x̃1

t )k
⌘
+ E

⇣
kb1✏(x̃1

b t
� c�

)k
⌘
+ E

⇣
kb2✏(x̃1

b t
� c�

)k
⌘

 2D✏

⇣
2 + kx̃1

tk+ kx̃1
b t
� c�

k
⌘

 4D✏ (1 +M1W1(x)) .

Thus the second part of the error estimation is bounded by
���E
⇣
kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k
⌘
+ E

⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k
⌘���  4D✏ (1 +M1W1(x)) . (20)

Using Equation 16, Equation 19 and Equation 20 we obtain the error estimation
���E
⇣
kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k2

⌘
� E

⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k2
⌘���  8D✏LbG(x)

p
�,

With G(x) =
p
(2d+ 2D✏(1 +M2W2(x)))(1 +M1W1(x)).

Hence, we get an estimation of the integral in Equation 15
������

sZ 1

0
E
⇣
kb̃1✏(x̃1

t )� b̃2✏(x̃
1
t )k2

⌘
dt�

sZ 1

0
E
⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k2
⌘
dt

������

p

8D✏LbG(x)�
1
4 .

(21)
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Control of k�x(R1
✏, 1

m
)m � �x(R2

✏, 1
m
)mkV

Now we will deduce from the previous paragraph a bound on k�x(R1
✏, 1

m
)m��x(R2

✏, 1
m
)mkTV . Using

Equation 21 and that x̃b t
� c� has the same law that xb t

� c

k�x(R1
✏, 1

m
)m � �x(R

2
✏, 1

m
)mkV 

p
2

sZ 1

0
E
⇣
kb1✏(x̃1

b t
� c�

)� b2✏(x̃
1
b t
� c�

)k2
⌘
dt+

p
16D✏LbG(x)�

1
4


p
2

sZ 1

0
E
⇣
kb1✏(x1

b t
� c
)� b2✏(x

1
b t
� c
)k2
⌘
dt+

p
16D✏LbG(x)�

1
4


p
2

vuut 1

m

m�1X

l=0

E (||b1✏(x1
l )� b2✏(x

1
l )||2) +

p
16D✏LbG(x)�

1
4 .

Hence, we denote D0 =
p
16D✏Lb and it gives

k�x(R1
✏, 1

m
)m � �x(R

2
✏, 1

m
)mkV 

p
2

vuut 1

m

m�1X

l=0

E (||b1✏(x1
l )� b2✏(x

1
l )||2) +D0

p
G(x)�

1
4 . (22)

Control of k�x(R1
✏, 1

m
)km � �x(R2

✏, 1
m
)kmkV

Using Laumont et al. (2022, Proposition 10), there exist AC � 0 and ⇢C 2 [0, 1[ such that for any
x,y 2 Rd, N 2 N and i 2 {1, 2}:

k�x(Ri
✏, 1

m
)N � �y(R

i
✏, 1

m
)NkV  AC⇢

N
C

�
V 2(x) + V 2(y)

�
.

For f : Rd 7! R measurable such as 8x 2 Rd, |f(x)|  V (x). This result combine with (Laumont
et al., 2022, Lemma 17), shows that there exists Ba  0 such that 8x 2 Rd, 8N 2 N, 8m 2 N and
8i 2 {1, 2}: ����x(Ri

✏, 1
m
)N [f ]� ⇡i

✏, 1
m
[f ]
���  Ba⇢

N
C V 2(x). (23)

Using Equation 22 and Equation 23, we have :����x
⇣
(R1

✏, 1
m
)m � (R2

✏, 1
m
)m
⌘
(R2
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)jm[f ]
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⇣
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m
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⌘���
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
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1
4 .

In the last inequality, the Markov chain x1
l has be initialized with the distribution �x. In the follow-

ing, we will denote x1
l,k the Markov chain defined in 13 with the initial distribution �x(R1

✏, 1
m
)k. By

using the decomposition in Equation 12 and the previous computation, we get
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By the Jensen inequality, the inequality E(X) 
p

E(X2) and the moment control (Equation 14),
there exists g(x) < +1 such that :
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(2d+ 2D✏(1 +M2W2(x)))(1 +M1W1(x))

◆


r

Ex⇠�x(R1
✏, 1

m

)(k�j�1)m

⇣p
(2d+ 2D✏(1 +M2W2(x)))(1 +M1W1(x))

⌘


✓

Ex⇠�x(R1
✏, 1

m

)(k�j�1)m

�
(2d+ 2D✏(1 +M2W2(x)))(1 +M1W1(x))

2
�◆ 1

4


✓
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�
2(2d+ 2D✏(1 +M2W2(x)))(1 +M2

1W1(x)
2)
�◆ 1

4


�
4d+ 4dM2

1 E(W1(x)
2) + 4D✏(1 +M2E(W2(x))) + 4D✏M

2
1 E((1 +M2W2(x))W1(x)

2)
� 1

4


�
4d+ 8dM2

1 (1 +M2W2(x)) + 4D✏(1 +M2(1 +M2W2(x))) + 4D✏M
2
1 (2 + 2M2W2(x) + 4M2(1 +M4W4(x)))

� 1
4

 g(x),

with g(x)4 = 4d + 8dM2
1 (1 + M2W2(x)) + 4D✏(1 + M2(1 + M2W2(x))) + 4D✏M2

1 (2 +
2M2W2(x) + 4M2(1 +M4W4(x))).

By summing the previous inequality, we have

k�1X

j=0

D0Ba⇢
jm
C �

1
4V (x)Ex⇠�x(R1

✏, 1
m

)(k�j�1)m
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G(x)
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 g(x)V (x)D0Ba

1� ⇢mC
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1
4

 g(x)V (x)D0Ba

1� ⇢
1
�̄
C

�
1
4 .

We denote D1 = g(x)V (x)D0Ba

1�⇢
1
�̄
C

. We have prove that

k�1X

j=0

D0Ba⇢
jm
C �

1
4V (x)Ex⇠�x(R1

✏, 1
m

)(k�j�1)m

⇣p
G(x)

⌘
 D1�

1
4 . (24)

Then we study the convergence of the term 1
m

Pm�1
l=0 E

⇣
||b1✏(x1

l,(k�j�1)m)� b2✏(x
1
l,(k�j�1)m)||2

⌘
.

We denote y ⇠ ⇡1
✏,� a random variable. By a similar computation than in paragraph D.1.3, we have

�����
1

m

m�1X

l=0

E
⇣
||b1✏(x1

l,(k�j�1)m)� b2✏(x
1
l,(k�j�1)m)||2

⌘
� E

�
||b1✏(y)� b2✏(y)||2

�
�����

 1

m

m�1X

l=0

8DLb(1 +M1W1(x))E
⇣
||x1

l,(k�j�1)m � y||2
⌘
.

Moreover, using Equation 23 :

E
⇣
||x1
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⌘
 E

⇣
||x1

l,(k�j�1)m � y||21x1
l,(k�j�1)m

6=y

⌘

 E
⇣
||x1
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⌘ 1

2
E
⇣
1x1
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6=y

⌘ 1
2

 E
⇣
||x1

l,(k�j�1)m � y||2
⌘ 1

2 ||⇡1
✏,� � �s(R

1
✏,�)

(k�j�1)m+l||
1
2
TV

 2M1W1(x)Ba⇢
(k�j�1)m+l

2
C V 2(x).
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By using the two previous computations, we obtain
�����
1

m

m�1X

l=0

E
⇣
||b1✏(x1

l,(k�j�1)m)� b2✏(x
1
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�����
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m

m�1X
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 16DLbM1Ba

1�p
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2(x)⇢

(k�j�1)m
2

C .

Then looking at the accumulation of these errors, we have
������
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1�p
⇢C

p
(1 +M1W1(x))W1(x)V

2(x)
k�1X

j=0

⇢jmC ⇢
(k�j�1)m

4
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 4
p
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1�p
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p
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4
C .

We denote D2 = 4
p
2DLbM1BaBap

1�p
⇢C

p
(1 +M1W1(x))W1(x)V 2(x), we have demonstrated that the

accumulation of error is controlled by
������
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p
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⌘
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(25)

Hence, we have
k�1X

j=0

p
2Ba⇢

jm
C V (x)

p
E (||b1✏(y)� b2✏(y)||2) =

p
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q
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
p
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1� ⇢
1
�̄
C

q
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✏,�
(||b1✏(y)� b2✏(y)||2).

By denoting D3 =
p
2BaV (x)

1�⇢
1
�̄
C

, we get

k�1X
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p
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p
E (||b1✏(y)� b2✏(y)||2)  D3

q
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✏,�
(||b1✏(y)� b2✏(y)||2). (26)

Combining Equation 24, Equation 25 and Equation 26, we get

k�x(R1
✏, 1

m
)km � �x(R

2
✏, 1

m
)kmkV  D1�

1
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(k�1)m
2
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q
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✏,�
(||b1✏(y)� b2✏(y)||2).

(27)

D.1.4 DEMONSTRATION OF TV -DISTANCE BOUND OF THEOREM 1

We go back in the initial decomposition (Equation 11). By taking a = max(a1, a2) 2 R+ and
⇢ = max(⇢1, ⇢2) 2]0, 1[ in Equation D.1.2, and using Equation 27, for k 2 N and � = 1

m , we get
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q
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By taking, k 7! +1, we have for � = 1
m < �̄ :

||⇡1
✏,� � ⇡2

✏,�||TV  D3

q
Ey⇠⇡1

✏,�
(||b1✏(y)� b2✏(y)||2) +D1�

1
4 .

The parameter x (appear inside the constants) is free in the last inequality. We choose x = 0. It
gives that there exist two constants A0, B0 � 0 defined by :

• A0 = D3

• B0 = D1

such as for � = 1
m < �̄ = 1

3

�
L+ M+1

✏ + 1
�

��1 :

||⇡1
✏,� � ⇡2

✏,�||TV  A0d1(b
1
✏ , b

2
✏) +B0�

1
4 .

With the posterior-L2 defined in 4.1. This demonstrated the Theorem 1.

D.1.5 DEMONSTRATION OF W1-DISTANCE BOUND OF THEOREM 1

Let x and y be two random variable of laws x ⇠ ⇡1
✏,� and y ⇠ ⇡2

✏,� .

By the definition of the Wasserstein distance (Equation 8) and the Cauchy-Schwarz inequality

W1(⇡
1
✏,�,⇡

2
✏,�)  E[kx� yk]

 E[kx� yk1x 6=y]
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 E[(kxk+ kyk)2]1/2E[1x 6=y]
1/2


p
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1/2


p
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✏,� � ⇡2
✏,�||

1/2
TV .

Using Cauchy-Schwarz inequality and the moment bound (Equation 14)

W1(⇡
1
✏,�,⇡

2
✏,�)  E[kx� yk]

 2
p
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✏,� � ⇡2
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1/2
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A0d1(b

1
✏ , b

2
✏) +B0�

1
4

⌘ 1
2

 2
p

M2

p
A0

�
d1(b

1
✏ , b

2
✏)
� 1

2 + 2
p
M2

p
B0�

1
8 .

By the first part of Theorem 1, the total variation distance between the two invariant distributions
can be bound. We denote the constant A1 = 2

p
M2

p
A0 and B1 = 2

p
M2

p
B0. The following

theorem have been prove, which shows the second part of the Theorem 1.

D.1.6 ANALYSIS OF THE CONSTANT A0 , B0 , A1 AND B1

In this section, we analyse the dependency of the constant A0 and B0. first of all by construction,
these constants are independent of � 2]0, �̄], with �̄ = 1

3

�
L+ M+1

✏ + 1
�

��1. Also these constant
are dependent of the inverse problem observation y, in fact they depend of the targeted posterior
distribution (through the constant Ba, ⇢C).

Study of A0

The definition of A0 is

A0 = D3 =

p
2Ba

1� ⇢
1
�̄
C

Where Ba and ⇢C are the constant defined in the Equation 23. Bortoli & Durmus (2020) has proved
that ⇢C is independent of the dimension d and moreover this rate is closed to the optimal rate thank
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to Eberle (2016, Lemma 2). However Bortoli & Durmus (2020) has also prove that the constant Ba

has a polynomial dependent on the dimension. So there exists r � 0 and Cr > 0 such that

Ba ⇠
d!+1

Crd
r. (28)

Thus A0 has a polynomial dependency on the dimension

A0 ⇠
d!+1

p
2Cr

1� ⇢
1
�̄
C

dr. (29)

Study of B0

The definition of B0 is

B0 = D1 =
g(0)D0Ba

1� ⇢
1
�̄
C

= (1� ⇢
1
�̄
C)

�1
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2
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� 1
4
p

16D✏LbBa

⌘
.

Thanks to the dependency of Ba to the dimension in Equation 28, B0 has the dependency

B0 ⇠
d!+1

(1� ⇢
1
�̄
C)

�1
�
4 + 8M2

1 (1 +M2)
� 1

4
p
16D✏LbCrd

r+ 1
4 . (30)

Recall that M1 and M2 are the moment upper-bound, Lb a Lipschitz constant of bi✏ and D✏ =
Lb + kb✏(0)k. These quantity has no dependency on the dimension.

Study of A1

The definition of A1 is

A1 = 2
p
M2

p
A0.

Using Equation 29, A1 has the dimension dependence

A1 ⇠
d!+1

2
p

M2

vuut
p
2Cr

1� ⇢
1
�̄
C

d
r
2 .

Study of B1

The definition of B1 is

B1 = 2
p
M2

p
B0.

Using Equation 30, B1 has the following dimension dependence

B1 ⇠
d!+1

2
p
M2

q
(1� ⇢

1
�̄
C)

�1 (4 + 8M2
1 (1 +M2))

1
4
p
16D✏LbCrd

r
2+

1
8 .

D.1.7 ADDITIONAL RESULTS

With a similar demonstration than before, we can obtain bound on the MMSE estimator or the
standard deviation of the Markov chain instead of the distribution. In fact, in practice, we mainly
look at the MMSE (mean of the Markov chain) and the standard deviation of the Markov chain (as
a confidence map).
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MMSE error bound With the same x and y random variable than above :

kE[x]� E[y]k  E[kx� yk]

 2
p

M2||⇡1
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✏,�||
1/2
TV .

The expectation of ⇡1
✏,� is the MMSE estimator of the inverse problem with the prior defined by the

first denoiser. If we name, for i 2 {1, 2}, x̂MMSE,i = Ex⇠⇡i
✏,�
[x]. The following proposition has

been prove (with A5 = A1, B5 = B1).
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� 1

2 +B5�
1
8 . (31)

Standard deviation error bound To control the difference between variance of the samples

|Var[x]�Var[y]| =
��E[kxk2]� kE[x]k2 � E[kyk2] + kE[y]k2

��


��E[kxk2]� E[kyk2]+

��+
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��

 E[
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��1x 6=y] + E[kx� yk] (kE[x]k+ kE[y]k)

 (
p
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p
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1/2
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We denote A6 = (
p
2M4 + 2

p
2M2M1)

p
A0 and B6 = B0, the following proposition has been

proved.
Proposition 1.2. There exist A6, B6 2 R+, , such that for � 2]0, �̄] :

��Var[⇡1
✏,�]�Var[⇡2

✏,�]
��  A6

�
d1(b

1
✏ , b

2
✏)
� 1

2 +B6�
1
8 . (32)

E COROLLARY DEMONSTRATIONS

E.1 DEMONSTRATION OF COROLLARY 1.1

If the forward problem is the same for the two Markov chain, the only shift is on the denoiser. Then,
the distance between the two drift is

d1(b
1
✏ , b

2
✏) =

1

✏

q
EX⇠⇡1

✏,�
(kD1

✏ (X)�D2
✏ (X)k2) = 1

✏
d1(D

1
✏ , D

2
✏ ).

Hence we have

k⇡1
✏,� � ⇡2

✏,�kTV  A0

✏
d1(D

1
✏ , D

2
✏ ) +B0�

1
4 .

So the result 1.1 has been demonstrated with A2 = A0
✏ and B2 = B0.

E.2 DEMONSTRATION OF COROLLARY 1.2

If D1
✏ = D?

✏ , the exact MMSE denoiser. Some more assumption are needed on the prior. We defi,e

g✏(x1|x2) = p?(x1) exp

✓
�kx2 � x1k2

2✏

◆
/

Z

Rd

p?(x̃) exp

✓
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◆
dx̃.

Assumption 5. For any ✏ > 0, there exists K✏ � 0 such that 8x 2 Rd,
Z

Rd

kx̃�
Z

Rd

x̃0g✏(x̃
0|x)dx̃0k2g✏(x̃|x)dx̃  K✏.

And Z

Rd

(1 + kx̃k4)p?✏ (x̃)dx̃ < +1.

28



Published as a conference paper at ICLR 2024

Using Assumptions 1-5 and (Laumont et al., 2022, Proposition 6), applied with the exact MMSE
denoiser (MR = 0 and R = +1). If V (x) = 1 + kxk2, for ✏  ✏0, and � > 0 such that
2�(Ly + L

✏ � min (m, 0))  1 and �̄ = 1
3 (Ly + L

✏ + 1
� )

�1. There exists D4 � 0 such that for
RC > 0 such that B̄(0, RC) ⇢ S, there exists D5,C � 0 such that 8� 2]0, �̄] :
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Using the triangular inequality and Corollary 1.1, for 0 < � < min
�
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�

kp✏(·|y)� ⇡2
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Finally, the corollary 1.2 has been demonstrated with A3 = A1, B3 = (B2 +D5,C) and C3 = D4.

E.3 DEMONSTRATION OF COROLLARY 1.3

In this case, the denoiser is fix but there is a shift on the forward problem.
D1

✏ = D2
✏

r log p1(y|·) 6= r log p2(y|·).
Because of the forward model 2, the likelihood has the form
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inequality holds
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If A1 and A1 are in a bound domain. There exists M such that M � max (kA1k, kA2k), it gives :
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Using the moment bound (Equation 14),
q

Ex⇠⇡1
✏,�
(kxk2) 

p
M2.

Then Theorem 1 gives, that 8� 2]0, �̄] :
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Therefore with A4 =
p
2A0

�
kyk+ 2M

p
M2

�
� 0 and B4 = B0, corollary 1.3 has been proved.
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