

Constrained Regularization by Denoising With Automatic Parameter Selection

Pasquale Cascarano , Alessandro Benfenati , Ulugbek S. Kamilov , Senior Member, IEEE, and Xiaojian Xu

Abstract—Regularization by Denoising (RED) is a well-known method for solving image restoration problems by using learned image denoisers as priors. Since the regularization parameter in the traditional RED does not have any physical interpretation, it does not provide an approach for automatic parameter selection. This letter addresses this issue by introducing the Constrained Regularization by Denoising (CRED) method that reformulates RED as a constrained optimization problem where the regularization parameter corresponds directly to the amount of noise in the measurements. The solution to the constrained problem is solved by designing an efficient method based on alternating direction method of multipliers (ADMM). Our experiments show that CRED outperforms the competing methods in terms of stability and robustness, while also achieving competitive performances in terms of image quality.

Index Terms—Image restoration, plug-and-play priors, regularization by denoising, discrepancy principle.

I. INTRODUCTION

THE problem of recovering an image $\mathbf{x} \in \mathbb{R}^n$ from its degraded measurement $\mathbf{b} \in \mathbb{R}^n$ can be cast as the following linear inverse problem

$$\text{find } \mathbf{x} \in \mathbb{R}^n \text{ such that } \mathbf{b} = \mathbf{A}\mathbf{x} + \boldsymbol{\eta}, \quad (1)$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a known measurement operator and $\boldsymbol{\eta} \in \mathbb{R}^n$ is random noise with standard deviation σ_η .

Linear inverse problems are at the core of many applications [1], [2], [3], [4], [5]. However, since most inverse problems are ill-posed, it is common to formulate the solution $\mathbf{x}^* \in \mathbb{R}^n$

Manuscript received 1 November 2023; revised 11 January 2024; accepted 20 January 2024. Date of publication 29 January 2024; date of current version 8 February 2024. This work was supported in part by NSF CAREER Award under Grant CCF-2043134, in part by INdAM, Gruppo Nazionale per il Calcolo Scientifico, in part by Made in Italy, Circular and Sustainable (MICS) Extended Partnership, and in part by European Union Next-GenerationEU through Piano Nazionale di ripresa e resilienza (PNRR). Missione 4 Componente 2, Investimento 1.3 - D.D.1551.11-10-2022, under Grant PE00000004. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Chengpeng Hao. (Corresponding author: Pasquale Cascarano.)

Pasquale Cascarano is with the Department of the Arts, University of Bologna, 40123 Bologna, Italy (e-mail: pasquale.cascarano2@unibo.it).

Alessandro Benfenati is with the Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy (e-mail: alessandro.benfenati@unimi.it).

Ulugbek S. Kamilov is with the Department of Computer Science and Engineering and Department of Electrical and System Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA (e-mail: kamilov@wustl.edu).

Xiaojian Xu is with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail: xjxu@umich.edu).

Digital Object Identifier 10.1109/LSP.2024.3359569

of (1) as a minimizer of a regularized objective function

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \ell(\mathbf{x}; \mathbf{b}) + \lambda \rho(\mathbf{x}). \quad (2)$$

The data-fidelity term $\ell(\mathbf{x}; \mathbf{b})$ encodes information on the noise statistics, e.g. additive white Gaussian noise (AWGN) assumptions entail $\ell(\mathbf{x}; \mathbf{b}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. The regularization parameter $\lambda > 0$ is often hand-tuned to obtain optimal restored images. Alternatively, it can be estimated using well established methods such as the discrepancy principle, L-curve, or cross-validation [6]. However, the primary challenge consists in designing the regularization functional $\rho(\mathbf{x})$ in order to capture the intricate image features.

Plug-and-Play (PnP) Priors framework has recently emerged as a powerful tool for exploiting sophisticated denoisers as regularizers without explicitly defining $\rho(\mathbf{x})$ [7], [8], [9], [10], [11], [12], [13]. However, the lack of an explicit objective function complicates the analysis of PnP methods in terms of theoretical understanding and convergence guarantees. Regularization by denoising (RED) [14] is a variant of PnP based on formulating an explicit regularization functional

$$\rho_{\text{RED}}(\mathbf{x}) := \frac{1}{2} (\mathbf{x}^T (\mathbf{x} - f(\mathbf{x}))), \quad (3)$$

where $f(\cdot)$ denotes a denoiser. When the denoiser is differentiable, locally homogeneous, and has a symmetric Jacobian [14], [15], ρ_{RED} is convex and its gradient can be efficiently computed as $\nabla \rho_{\text{RED}}(\mathbf{x}) = \mathbf{x} - f(\mathbf{x})$. The interpretation with an explicit regularizer simplifies the theoretical analysis of RED algorithms as methods for computing global minimizers of convex objective functions. These conditions are often not satisfied for many practical denoisers [15], however, the RED algorithms achieve state-of-the-art performances in many imaging applications.

RED was recently reformulated as a constrained optimization problem by projecting the least square minimum onto the fixed-point sets of demicontractive denoisers, which are proven to be convex sets [16]. Ideally, an image denoiser f should satisfy the condition $\mathcal{M} \subset \text{Fix}(f)$, where \mathcal{M} denotes the manifold of natural images. In practice, denoisers are often far from being ideal, and their fixed-point sets may not correspond to the set of natural images, leading to suboptimal recovery results. Additionally, even if any non-expansive denoiser is demicontractive, determining whether a given denoiser is non-expansive or demicontractive is a challenge.

In this letter, we present a constrained RED (CRED) approach inspired by the discrepancy principle [17], [18] solved via the alternating direction method of multipliers (ADMM). In order

to overcome the limits regarding $\text{Fix}(f)$, we reverse the RED-PRO [16] formulation by considering the RED regularization functional subject to the discrepancy between the measured data and the reconstruction being below a given threshold. This threshold represents the strength of the regularization and has a precise physical significance since it reflects the standard deviation of the noise affecting the data. Different from the regularization parameter of the original unconstrained RED formulation [14], which must be hand-tuned, the threshold can be estimated by using well-established techniques [19]. Therefore, our approach avoids any parameter tuning which may be limiting in real applications. Our formulation and the corresponding ADMM scheme are presented in Section II. In Section III, we underline the quality of CRED in terms of image quality metrics and robustness, with respect to the choice of the denoiser and the ADMM parameters, through several comparisons with RED and RED-PRO.

II. CONSTRAINED RED

Upon AWGN assumptions, CRED seeks to compute a solution of (1) by solving the constrained problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \rho_{\text{RED}}(\mathbf{x}) \text{ subject to } \|\mathbf{Ax} - \mathbf{b}\|_2^2 \leq \delta, \quad (4)$$

where $\delta := \tau \sqrt{n} \sigma_\eta$ with $\tau \in [0, 1]$, n number of pixels in the image and σ_η is the noise level, which is assumed to be known. Since $\rho_{\text{RED}}(\cdot)$ is continuous and the constraint set is also bounded, the problem (4) has at least one solution by the Weierstrass theorem. The problem (4) can be equivalently reformulated into the following form

$$\underset{\mathbf{x}, \mathbf{t}, \mathbf{r} \in \mathbb{R}^n}{\operatorname{argmin}} \rho_{\text{RED}}(\mathbf{t}) + \iota_{B_\delta}(\mathbf{r}), \text{ s.t. } \mathbf{r} = \mathbf{Ax} - \mathbf{b}, \mathbf{x} = \mathbf{t}, \quad (5)$$

where $B_\delta := \{\mathbf{r} \in \mathbb{R}^n \mid \|\mathbf{r}\|_2^2 \leq \delta\}$ and ι_{B_δ} denotes the indicator function of the set B_δ . The corresponding Augmented Lagrangian function is given by

$$\begin{aligned} L(\mathbf{x}, \mathbf{r}, \mathbf{t}; \boldsymbol{\lambda}_t, \boldsymbol{\lambda}_r) &= \rho_{\text{RED}}(\mathbf{t}) + i_{B_\delta}(\mathbf{r}) \\ &+ \frac{\beta_r}{2} \|\mathbf{Ax} - \mathbf{b} - \mathbf{r} + \frac{\boldsymbol{\lambda}_r}{\beta_r}\|_2^2 \\ &+ \frac{\beta_t}{2} \left\| \mathbf{x} - \mathbf{t} + \frac{\boldsymbol{\lambda}_t}{\beta_t} \right\|_2^2 - \frac{1}{2} \|\boldsymbol{\lambda}_r\|_2^2 - \frac{1}{2} \|\boldsymbol{\lambda}_t\|_2^2, \end{aligned} \quad (6)$$

where $\boldsymbol{\lambda}_r$ and $\boldsymbol{\lambda}_t$ are the Lagrange multipliers, and β_r and β_t are real positive penalties. The optimization problem involving the Augmented Lagrangian can then be solved via the Alternating Direction Method of Multipliers (ADMM) [20], [21], [22]. Algorithm 1 summarizes the ADMM method.

Remark 1: It is worth highlighting the following points relative to Algorithm 1. In Line 1 the definition of δ requires the knowledge of σ_η . This is not limiting since a good estimation of the noise standard deviation can often be obtained [19]. In lines 3–4 the optimality conditions on the $\ell_2 - \ell_2$ subproblem are used. This subproblem can often be solved using FFT by imposing periodic boundary conditions. In line 5: we adopt the fixed-point strategy, by zeroing the derivative as in [23]. In line 6: proj_{B_δ} refers to the projection onto B_δ . In the implementation,

Algorithm 1: Constrained RED Approach (CRED).

```

1: Set  $\delta, \mathbf{x}^0, \mathbf{t}^0 = 0$  and  $\mathbf{r}^0 = \mathbf{b} - \mathbf{Ax}^0$ , select
    $\beta_u, \beta_r > 0$  and initialise  $\boldsymbol{\lambda}_r^0, \boldsymbol{\lambda}_t^0$ 
2: for  $k = 0, 1, \dots$  do
3:    $\mathbf{x}^{k+1/2} = \frac{\beta_r}{\beta_t} \mathbf{A}^\top \left( \mathbf{b} + \mathbf{r}^k - \frac{\boldsymbol{\lambda}_r^k}{\beta_r} \right) + \left( \mathbf{t}^k - \frac{\boldsymbol{\lambda}_t^k}{\beta_t} \right)$ 
4:    $\mathbf{x}^{k+1} \leftarrow \left( \frac{\beta_r}{\beta_t} \mathbf{A}^\top \mathbf{A} + \mathbf{I} \right)^{-1} \mathbf{x}^{k+1/2}$ 
5:    $\mathbf{t}^{k+1} = \frac{1}{1 + \beta_t} f(\mathbf{t}^k) + \frac{\beta_t}{1 + \beta_t} \left( \mathbf{x}^{k+1} + \frac{\boldsymbol{\lambda}_t^k}{\beta_t} \right)$ 
6:    $\mathbf{r}^{k+1} = \text{proj}_{B_\delta} \left( \mathbf{Ax}^{k+1} - \mathbf{b} + \frac{\boldsymbol{\lambda}_r^k}{\beta_r} \right)$ 
7:    $\boldsymbol{\lambda}_r^{k+1} \leftarrow \boldsymbol{\lambda}_r^k + \beta_r (\mathbf{r}^{k+1} - \mathbf{Ax}^{k+1} + \mathbf{b})$ 
8:    $\boldsymbol{\lambda}_t^{k+1} \leftarrow \boldsymbol{\lambda}_t^k + \beta_t (-\mathbf{x}^{k+1} + \mathbf{t}^{k+1})$ 
9: end for

```

we adopt the variable change $\lambda \sim \frac{\lambda}{\beta}$ for simplifying the notation. Moreover, due to the convexity of ρ_{RED} , the algorithm converges to the minimum of (4).

III. NUMERICAL RESULTS

A. Settings, Evaluation Metrics, and Baseline Methods

We focus on the task of image deblurring with AWGN. Therefore, \mathbf{A} in (1) is a Gaussian blurring operator of standard deviation σ_A . We simulate blurry and noisy data by applying the image formation model (1) to the images from Set5 [24] and Set24 [25] referred to as ground truths (GTs). We compare our method with two baselines: the original RED formulation [14] solved using ADMM and its more recent variant RED-PRO [16] solved via gradient-descent. We investigate their behaviour with respect to the choice of some hyperparameters: we focus on the role of λ and (α, μ) for RED and RED-PRO, respectively. The former is the regularization parameter, the couple (α, μ) represent the strength of the denoiser and the starting steplength, respectively. Concerning CRED, we consider penalties such that $\beta_r^{k+1} = \gamma \beta_r^k$ and $\beta_t^{k+1} = \gamma \beta_t^k$. In the following, we comment about the choice of γ and δ .

For all the methods, we consider the relative difference of the iterates with tolerance equals 10^{-4} as the stopping criterion. We set the maximum number of iterations to 200.

We consider the set of CNN based denoisers introduced in [26]. In order to evaluate the influence of the strength of the denoiser, we choose the ones trained for removing Gaussian noise of standard deviation equal to 16 and 30, which are referred to as \mathbf{D}_1 and \mathbf{D}_2 , respectively.

To assess the quality of the restored images we consider the PSNR and SSIM metrics. Moreover, we point out that from a theoretical perspective, given a ground truth image \mathbf{x} and its blurred and noisy simulated data \mathbf{b} , $\sigma_x := \frac{\|\mathbf{Ax} - \mathbf{b}\|_2}{\sqrt{n-1}}$ represents the unbiased estimator of σ_η . For this reason we consider as valuable metric the comparison between the real noise standard deviation σ_η and $\sigma_{\mathbf{x}^*}$ where \mathbf{x}^* refers to the

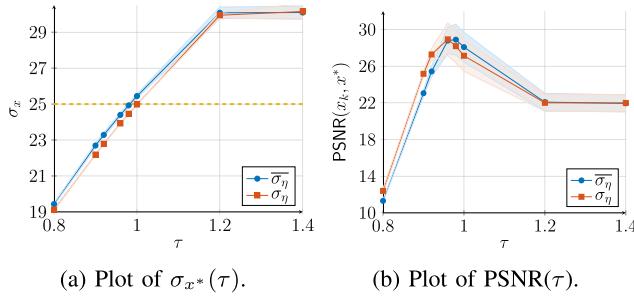


Fig. 1. Distribution of σ_{x^*} (a) and PSNR (b) by varying τ for idealized and realistic scenarios on the whole Set5.

TABLE I
MEAN RELATIVE ERRORS BETWEEN σ_{x^*} AND σ_η FOR ALL THE IMAGES IN SET5

Metric	$\sigma_\eta = 15$	$\sigma_\eta = 25$	$\sigma_\eta = 35$	$\sigma_\eta = 50$
RE($\sigma_\eta, \sigma_{x^*}$)	0.0050	0.0045	0.0044	0.0043

output of the algorithms. The codes of our CRED can be found at <https://github.com/AleBenfe/CRED>.

B. On the Choice of the Threshold

In this section, we consider Set5, set $\sigma_A = 1$, $\sigma_\eta = 25$, $\gamma = 1.01$, and use only \mathbf{D}_1 as the denoiser. We inspect the influence of $\delta = \tau \sqrt{n} \sigma_\eta$, with $\tau \in [0, 1]$ on the restored images. We consider two different scenarios: in the first we assume σ_η is known (idealized scenario), whereas in the second we assume only an estimate $\bar{\sigma}_\eta$ is provided (realistic scenario). The latter is computed as in [19].

In Fig. 1(a) and (b) the continuous lines show the mean of the distribution of σ_{x^*} and PSNR as function of τ . Moreover, we shade the region spanned by the standard deviation of their distributions. The orange and blue lines represent the idealized and realistic scenarios, respectively. The yellow dashed line represents the noise standard deviation σ_η affecting the simulated data b.

As expected, in the idealized scenario, we can observe that σ_{x^*} approximates σ_η when $\tau = 1$ for all images in Set5. Conversely, when only an estimate $\bar{\sigma}_\eta$ is given we observe that the best approximation of σ_η is reached when $\tau = 0.98$. We hypothesize that this is due to the fact that the algorithm in [19] tends to overestimate the noise level in the simulated data b. Moreover, Fig. 1(a) shows that small values of τ underestimate, whereas large values of τ overestimate σ_η . In Fig. 1(b) we show the behaviour of the PSNR metric by varying τ . We obtain comparable performances in terms of PSNR for both scenarios. Fig. 1(b) shows the best PSNR is reached when setting $\tau < 1$.

For all the following experiments we set $\tau = 0.98$ and we estimate σ_η by [19]. In Table I we consider different level of degradations ($\sigma_A = 1$, $\sigma_\eta = 15, 25, 35, 50$) and we report the mean of the relative errors (RE) between σ_{x^*} and σ_η for all the images in Set5. We observe that the mean of the relative errors is small (less than 0.5%) while changing the level of degradation.

TABLE II
MEAN VALUES OF PSNR AND SSIM DISTRIBUTIONS OVER DIFFERENT CONFIGURATIONS OF (β_r^0, β_t^0) FOR DIFFERENT γ

Metric	$\gamma = 1$	$\gamma = 1.01$	$\gamma = 1.05$
PSNR	24.6605	24.7312	24.4178
SSIM	0.9342	0.9324	0.9219

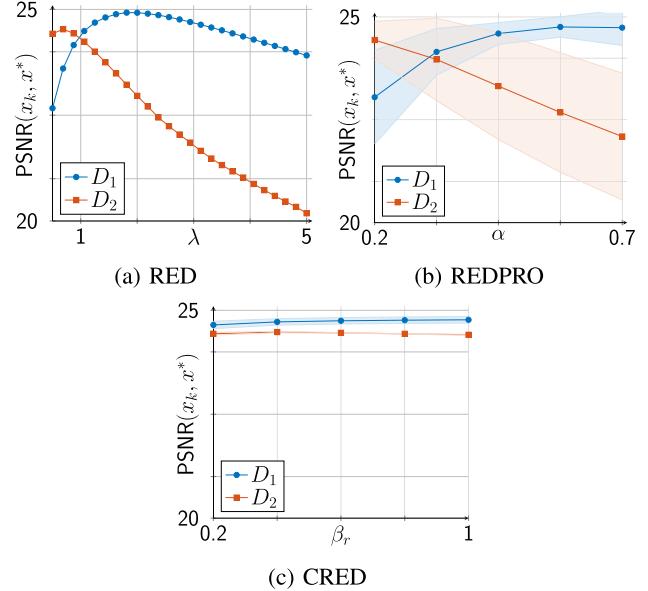


Fig. 2. PSNR behaviour by varying λ for RED (a), (α, μ) and μ for RED-PRO (b), (β_r, β_t) for CRED (c). In (b) for each α we present the PSNR distribution (average \pm std) wrt μ ; in (c) for each β_r we present the PSNR distribution (average \pm std) wrt β_t .

C. On the Choice of the ADMM Penalties and Denoiser

In this section we consider the sole *Butterfly* image by setting $\sigma_A = 1.2$ and $\sigma_\eta = 30$. We investigate the stability of CRED with respect to the choice of γ , β_r^0 and β_t^0 . We point out that in the experiments we did not observe any significant difference when choosing different images.

In Table II we report the mean values of the distribution of PSNR and SSIM obtained by choosing $(\beta_r^0, \beta_t^0) \in \{0.2, 0.4, 0.6, 0.8, 1\}^2$ for different γ . In this experiment we consider \mathbf{D}_1 as denoiser. As a general comment, we observe that we can reach similar performances in terms of PSNR and SSIM for the considered values of γ .

Fig. 2(c) depicts the distribution of the PSNR values when setting $\gamma = 1.01$ for the CNN denoisers \mathbf{D}_1 (orange) and \mathbf{D}_2 (blue). CRED appears stable regardless the considered choices of β_r^0 and β_t^0 , and moreover, it seems that the selection of CNN denoisers has a minimal impact on the overall performances. In the following experiments we fix $\beta_r^0 = 1$, $\beta_t^0 = 1$ and $\gamma = 1.01$.

D. Comparisons With RED and RED-PRO

In this section, we compare CRED, RED and RED-PRO in terms of stability with respect to their hyperparameters and reconstruction metric on the Set5 and Set24.

TABLE III
MEAN VALUES OF PSNR AND SSIM FOR THE IMAGES IN SET5 AND SET24 BY VARYING THE DEGRADATION LEVELS

Metric	Set5 ($\sigma_A = 1, \sigma_\eta = 15$)			Set24 ($\sigma_A = 1.2, \sigma_\eta = 25$)		
	RED-PRO	RED	CRED	RED-PRO	RED	CRED
PSNR	30.04	29.61	30.05	26.70	26.29	26.95
SSIM	0.91	0.90	0.91	0.77	0.76	0.77

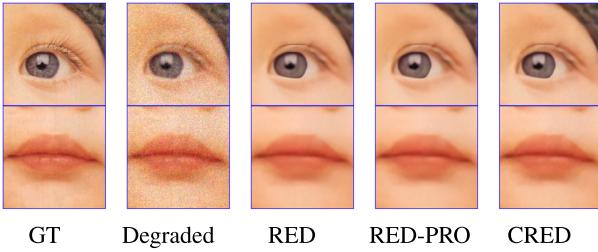


Fig. 3. Restoration of the *Baby* image. From left to right: two close-ups of ground truth, degraded image, RED, RED-PRO, and CRED.

In order to compare the stability of RED and RED-PRO with respect to CRED, we consider the simulated *Butterfly* image used in the Section III-C. For the original RED algorithm, we sample 25 different values of $\lambda \in [0.5, 5]$. Concerning RED-PRO, we consider these 25 different configurations $(\alpha, \mu) \in \{0.3, 0.4, 0.5, 0.6, 0.7\}^2$.

In Fig. 2(a) we plot the PSNR behaviour of RED by varying λ , whereas in Fig. 2(b) we report the PSNR distribution of RED-PRO for different configurations (α, μ) . The blue lines represent the case where the denoiser \mathbf{D}_1 is used, whereas the orange lines represent the case where the denoiser \mathbf{D}_2 is used.

By comparing these results with the ones reported in Fig. 2(c), it is evident how our CRED looks more stable with respect to the choice of his hyperparameters. Finally, we observe that for RED and RED-PRO the configuration of parameters maximising the PSNR changes when considering different denoisers. We stress that the same conclusions apply when considering different images.

In order to compare the reconstruction metric performances we consider all the images from Set5 and Set24 for different degradation levels. In Table III we report the mean PSNR and SSIM values. For the competing methods RED and RED-PRO the hyperparameters have been estimated in order to minimize the difference between σ_η and $\sigma_{\mathbf{x}^*}$. We notice that in terms of the considered metrics CRED performs as well as RED and RED-PRO. However, we remark that it does not require any parameter tuning.

In Fig. 3(a) and (b) we report the GT and the degraded close-ups of *Baby* from Set5. Moreover, in Fig. 3(c)–(e) we depict the restored close-ups by RED, RED-PRO and CRED. In terms of visual quality there are no relevant differences between the restored images however CRED seems to slightly reproduce more clearly image details than RED and RED-PRO.

IV. CONCLUSION

This letter presents a novel constrained formulation of the popular RED method that forces the minimum of the regularization functional to satisfy a discrepancy-based bound for a given threshold serving as regularization parameter. Our formulation is then solved within the ADMM framework and the overall approach results in a simple yet effective method for image restoration, which is called CRED through the letter. Defining the threshold requires an estimate of the standard deviation of the noise affecting the data which can be provided as described in [19] thus eliminating the need for extensive parameter estimation. The key point of CRED is its superior stability and robustness with respect to both model and algorithm hyperparameters which is assessed through several comparisons with the original RED and its variant RED-PRO methods. Furthermore, the experiments conducted show that in terms of PSNR and SSIM metrics CRED performs as well as, if not better, when compared to both original RED and RED-PRO. Finally, performances, stability and robustness make CRED a promising choice for image restoration.

REFERENCES

- [1] P. Cascarano et al., “Super-resolution of thermal images using an automatic total variation based method,” *Remote Sens.*, vol. 12, no. 10, 2020, Art. no. 1642.
- [2] P. Cascarano, M. C. Comes, A. Sebastiani, A. Mencattini, E. Loli Piccolomini, and E. Martinelli, “Deepcel0 for 2D single-molecule localization in fluorescence microscopy,” *Bioinformatics*, vol. 38, no. 5, pp. 1411–1419, 2022.
- [3] A. M. Teodoro, J. M. Bioucas-Dias, and M. A. Figueiredo, “A convergent image fusion algorithm using scene-adapted Gaussian-mixture-based denoising,” *IEEE Trans. Image Process.*, vol. 28, no. 1, pp. 451–463, Jan. 2018.
- [4] D. Mylonopoulos, P. Cascarano, L. Calatroni, and E. L. Piccolomini, “Constrained and unconstrained inverse Potts modelling for joint image super-resolution and segmentation,” *Image Process. On Line*, vol. 12, pp. 92–110, 2022.
- [5] A. Benfenati and V. Ruggiero, “Image regularization for poisson data,” *J. Phys.: Conf. Ser.*, vol. 657, no. 1, 2015, Art. no. 012011.
- [6] M. Bertero, “Regularization Methods for Linear Inverse Problems,” in *Inverse Problems: Lectures given at the 1st 1986 Session of the Centro Internazionale Matematico Estivo (CIME) held at Montecatini*. Terme, Italy: Springer, 2006, pp. 52–112.
- [7] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in *Proc. IEEE Glob. Conf. Signal Inf. Process.*, 2013, pp. 945–948.
- [8] P. Cascarano, E. L. Piccolomini, E. Morotti, and A. Sebastiani, “Plug-and-play gradient-based denoisers applied to CT image enhancement,” *Appl. Math. Computation*, vol. 422, 2022, Art. no. 126967.
- [9] Y. Sun, Z. Wu, X. Xu, B. Wohlberg, and U. S. Kamilov, “Scalable plug-and-play ADMM with convergence guarantees,” *IEEE Trans. Comput. Imag.*, vol. 7, pp. 849–863, 2021.
- [10] U. S. Kamilov, C. A. Bouman, G. T. Buzzard, and B. Wohlberg, “Plug-and-play methods for integrating physical and learned models in computational imaging: Theory, algorithms, and applications,” *IEEE Signal Process. Mag.*, vol. 40, no. 1, pp. 85–97, Jan. 2023.
- [11] U. S. Kamilov, H. Mansour, and B. Wohlberg, “A plug-and-play priors approach for solving nonlinear imaging inverse problems,” *IEEE Signal Process. Lett.*, vol. 24, no. 12, pp. 1872–1876, Dec. 2017.
- [12] Y. Sun, B. Wohlberg, and U. S. Kamilov, “An online plug-and-play algorithm for regularized image reconstruction,” *IEEE Trans. Comput. Imag.*, vol. 5, no. 3, pp. 395–408, Sep. 2019.
- [13] X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov, “Provable convergence of plug-and-play priors with MMSE denoisers,” *IEEE Signal Process. Lett.*, vol. 27, pp. 1280–1284, 2020.

- [14] Y. Romano, M. Elad, and P. Milanfar, "The little engine that could: Regularization by denoising (RED)," *SIAM J. Imag. Sci.*, vol. 10, no. 4, pp. 1804–1844, 2017.
- [15] E. T. Reehorst and P. Schniter, "Regularization by denoising: Clarifications and new interpretations," *IEEE Trans. Comput. Imag.*, vol. 5, no. 1, pp. 52–67, Mar. 2019.
- [16] R. Cohen, M. Elad, and P. Milanfar, "Regularization by denoising via fixed-point projection (RED-PRO)," *SIAM J. Imag. Sci.*, vol. 14, no. 3, pp. 1374–1406, 2021.
- [17] H. W. Engl, "Discrepancy principles for tikhonov regularization of ill-posed problems leading to optimal convergence rates," *J. Optim. theory Appl.*, vol. 52, pp. 209–215, 1987.
- [18] L. Zanni, A. Benfenati, M. Bertero, and V. Ruggiero, "Numerical methods for parameter estimation in poisson data inversion," *J. Math. Imag. Vis.*, vol. 52, no. 3, pp. 397–413, 2015.
- [19] J. Immerkaer, "Fast noise variance estimation," *Comput. Vis. Image Understanding*, vol. 64, no. 2, pp. 300–302, 1996.
- [20] S. Magnússon, P. C. Weeraddana, M. G. Rabbat, and C. Fischione, "On the convergence of alternating direction lagrangian methods for nonconvex structured optimization problems," *IEEE Trans. Control Netw. Syst.*, vol. 3, no. 3, pp. 296–309, Sep. 2016.
- [21] Y. Wang, W. Yin, and J. Zeng, "Global convergence of ADMM in non-convex nonsmooth optimization," *J. Sci. Comput.*, vol. 78, pp. 29–63, 2019.
- [22] P. Cascarano, A. Sebastiani, M. C. Comes, G. Franchini, and F. Porta, "Combining weighted total variation and deep image prior for natural and medical image restoration via ADMM," in *Proc. 21st Int. Conf. Comput. Sci. Appl.*, 2021, pp. 39–46.
- [23] G. Mataev, P. Milanfar, and M. Elad, "DeepRED: Deep image prior powered by RED," in *Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops*, 2019.
- [24] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, "Low-complexity single-image super-resolution based on nonnegative neighbor embedding," in *Proc. 23rd Brit. Mach. Vis. Conf.*, 2012.
- [25] "Kodak lossless true color image suite." [Online]. Available: <https://r0k.us/graphics/kodak/>
- [26] K. Zhang, W. Zuo, S. Gu, and L. Zhang, "Learning deep CNN denoiser prior for image restoration," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2017, pp. 2808–2817.