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Constrained Regularization by Denoising With
Automatic Parameter Selection

Pasquale Cascarano”, Alessandro Benfenati

Abstract—Regularization by Denoising (RED) is a well-known
method for solving image restoration problems by using learned
image denoisers as priors. Since the regularization parameter in
the traditional RED does not have any physical interpretation, it
does not provide an approach for automatic parameter selection.
This letter addresses this issue by introducing the Constrained
Regularization by Denoising (CRED) method that reformulates
RED as a constrained optimization problem where the regulariza-
tion parameter corresponds directly to the amount of noise in the
measurements. The solution to the constrained problem is solved
by designing an efficient method based on alternating direction
method of multipliers (ADMM). Our experiments show that CRED
outperforms the competing methods in terms of stability and ro-
bustness, while also achieving competitive performances in terms
of image quality.

Index Terms—Image restoration, plug-and-play priors,
regularization by denoising, discrepancy principle.

I. INTRODUCTION

HE problem of recovering an image x € R™ from its de-
graded measurement b € R"™ can be cast as the following
linear inverse problem

find x € R™ suchthat b= Ax+ 7, (1

where A € R™*" is aknown measurement operatorandn € R"
is random noise with standard deviation o,.

Linear inverse problems are at the core of many applica-
tions [1], [2], [3], [4], [S]. However, since most inverse problems
are ill-posed, it is common to formulate the solution x* € R"

Manuscript received 1 November 2023; revised 11 January 2024; accepted
20 January 2024. Date of publication 29 January 2024; date of current version
8 February 2024. This work was supported in part by NSF CAREER Award
under Grant CCF-2043134, in part by INJAM.Gruppo Nazionale per il Calcolo
Scientifico, in part by Made in Italy. Circular and Sustainable (MICS) Extended
Partnership, and in part by European Union Next-GenerationEU through Piano
Nazionale di ripresa e resilienza (PNRR). Missione 4 Componente 2, Inves-
timento 1.3 - D.D.1551.11-10-2022, under Grant PEO0000004. The associate
editor coordinating the review of this manuscript and approving it for publication
was Dr. Chengpeng Hao. (Corresponding author: Pasquale Cascarano.)

Pasquale Cascarano is with the Department of the Arts, University of Bologna,
40123 Bologna, Italy (e-mail: pasquale.cascarano2 @unibo.it).

Alessandro Benfenati is with the Department of Environmental Science
and Policy, University of Milan, 20133 Milan, Italy (e-mail: alessandro.
benfenati @unimi.it).

Ulugbek S. Kamilov is with the Department of Computer Science and En-
gineering and Department of Electrical and System Engineering, Washington
University in St. Louis, St. Louis, MO 63130 USA (e-mail: kamilov@wustl.edu).

Xiaojian Xu is with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
Xjxu@umich.edu).

Digital Object Identifier 10.1109/LSP.2024.3359569

, Ulugbek S. Kamilov

, Senior Member, IEEE, and Xiaojian Xu

of (1) as a minimizer of a regularized objective function

x* = argmin £(x; b) + Ap(x). 2)
xR
The data-fidelity term ¢(x;b) encodes information on the
noise statistics, e.g. additive white Gaussian noise (AWGN)
assumptions entail £(x; b) = $||Ax — b||3. The regularization
parameter A > 0 is often hand-tuned to obtain optimal restored
images. Alternatively, it can be estimated using well estab-
lished methods such as the discrepancy principle, L-curve, or
cross-validation [6]. However, the primary challenge consists in
designing the regularization functional p(x) in order to capture
the intricate image features.

Plug-and-Play (PnP) Priors framework has recently emerged
as a powerful tool for exploiting sophisticated denoisers as reg-
ularizers without explicitly defining p(x) [7], [8], [9], [10], [11],
[12], [13]. However, the lack of an explicit objective function
complicates the analysis of PnP methods in terms of theoretical
understanding and convergence guarantees. Regularization by
denoising (RED) [14] is a variant of PnP based on formulating
an explicit regularization functional

preo() 1= 5 (<7 (= fx) @

where f(-) denotes a denoiser. When the denoiser is differen-
tiable, locally homogeneous, and has a symmetric Jacobian [14],
[15], prep is convex and its gradient can be efficiently computed
as Vpgep(x) = x — f(x). The interpretation with an explicit
regularizer simplifies the theoretical analysis of RED algorithms
as methods for computing global minimizers of convex objective
functions. These conditions are often not satisfied for many
practical denoisers [15], however, the RED algorithms achieve
state-of-the-art performances in many imaging applications.

RED was recently reformulated as a constrained optimization
problem by projecting the least square minimum onto the fixed-
point sets of demicontractive denoisers, which are proven to be
convex sets [16]. Ideally, an image denoiser f should satisfy
the condition M C Fix(f), where M denotes the manifold
of natural images. In practice, denoisers are often far from
being ideal, and their fixed-point sets may not correspond to the
set of natural images, leading to suboptimal recovery results.
Additionally, even if any non-expansive denoiser is demicon-
tractive, determining whether a given denoiser is non-expansive
or demicontractive is a challenge.

In this letter, we present a constrained RED (CRED) approach
inspired by the discrepancy principle [17], [18] solved via the
alternating direction method of multipliers (ADMM). In order
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to overcome the limits regarding Fix(f), we reverse the RED-
PRO [16] formulation by considering the RED regularization
functional subject to the discrepancy between the measured
data and the reconstruction being below a given threshold. This
threshold represents the strength of the regularization and has
a precise physical significance since it reflects the standard
deviation of the noise affecting the data. Different from the
regularization parameter of the original unconstrained RED for-
mulation [14], which must be hand-tuned, the threshold can be
estimated by using well-established techniques [19]. Therefore,
our approach avoids any parameter tuning which may be limiting
in real applications. Our formulation and the corresponding
ADMM scheme are presented in Section II. In Section III, we
underline the quality of CRED in terms of image quality metrics
and robusteness, with respect to the choice of the denoiser and
the ADMM parameters, through several comparisons with RED
and RED-PRO.

II. CONSTRAINED RED

Upon AWGN assumptions, CRED seeks to compute a solu-
tion of (1) by solving the constrained problem
argmin pgpep(x) subjectto ||Ax — b||§ <94, 4)
xeR™
where 0 := 7 /n o, with 7 € [0, 1], n number of pixels in the
image and o, is the noise level, which is assumed to be known.
Since pgep (+) is continuous and the constraint set is also bounded,
the problem (4) has at least one solution by the Weierstrass
theorem. The problem (4) can be equivalently reformulated into
the following form
argmin peep(t) + s (r), st r=Ax—b,x=t, (5
x,t,reR”
where Bs := {r € R" | ||r||3 < §} and ¢, denotes the indi-
cator function of the set Bs. The corresponding Augmented
Lagrangian function is given by
L(x,r,t;1¢,Ar) = preo(t) +ips(r)
r A’I‘
e

Be
+2

DV T I
x—t+ 50 72 Aells = SlAell2,  (©
where A, and A are the Lagrange multipliers, and 3, and S
are real positive penalties. The optimization problem involving
the Augmented Lagrangian can then solved via the Alternating
Direction Method of Multipliers (ADMM) [20], [21], [22].
Algorithm 1 summarizes the ADMM method.

Remark 1: 1t is worth highlighting the following points rel-
ative to Algorithm 1. In Line 1 the definition of § requires the
knowledge of oy,. This is not limiting since a good estimation
of the noise standard deviation can often be obtained [19]. In
lines 3—4 the optimality conditions on the /5 — {5 subproblem
are used. This subproblem can often be solved using FFT by
imposing periodic boundary conditions. In line 5: we adopt the
fixed-point strategy, by zeroing the derivative as in [23]. In line
6: projp, refers to the projection onto Bj. In the implementation,

Algorithm 1: Constrained RED Approach (CRED).
1: Setd,x°,t" =0andr® = b — Ax?, select
Bu, Br > 0 and initialise AV, A
2: fork=0,1,... do

)‘k Xk
ht1/2 = Dr o7 (b +rh - ‘") + <t’“ - t>
Bt 51‘ Bt

-1
4: xFtl (grATA—i—I) xkt1/2

¢
Be ( k41 Xf)
=+ b
1+ B Bt
kk
r* 1 = projg, (Ax’“1 —b+ ﬂr)

6
7o AL AR 4 B (P — AXFTL 4+ D)
8.
9

(O8]

. k1L k
S ()

AT A+ B(—xPFL 4t
end for

we adopt the variable change A ~ % for simplifying the notation.
Moreover, due to the convexity of pgep, the algorithm converges
to the minimum of (4).

III. NUMERICAL RESULTS
A. Settings, Evaluation Metrics, and Baseline Methods

We focus on the task of image deblurring with AWGN.
Therefore, A in (1) is a Gaussian blurring operator of standard
deviation 0. We simulate blurry and noisy data by applying
the image formation model (1) to the images from Set5 [24] and
Set24 [25] referred to as ground truths (GTs). We compare our
method with two baselines: the original RED formulation [14]
solved using ADMM and its more recent variant RED-PRO [16]
solved via gradient-descent. We investigate their behaviour with
respect to the choice of some hyperparameters: we focus on
the role of A and («, p) for RED and RED-PRO, respectively.
The former is the regularization parameter, the couple (c, 1)
represent the strength of the denoiser and the starting steplength,
respectively. Concerning CRED, we consider penalties such that
BEFT1 = 4 gk and BFFT = ~ BE. In the following, we comment
about the choice of v and 4.

For all the methods, we consider the relative difference of the
iterates with tolerance equals 10~ as the stopping criterion. We
set the maximum number of iterations to 200.

We consider the set of CNN based denoisers introduced
in [26]. In order to evaluate the influence of the strength of
the denoiser, we choose the ones trained for removing Gaussian
noise of standard deviation equal to 16 and 30, which are referred
to as D; and Do, respectively.

To assess the quality of the restored images we consider
the PSNR and SSIM metrics. Moreover, we point out that
from a theoretical perspective, given a ground truth image x
and its blurred and noisy simulated data b, oy := %
represents the unbiased estimator of o,,. For this reason we
consider as valuable metric the comparison between the real
noise standard deviation o, and oy where x* refers to the
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(a) Plot of o4+ (7). (b) Plot of PSNR(7).
Fig. 1. Distribution of ox+ (a) and PSNR (b) by varying 7 for idealized and

realistic scenarios on the whole Set5.

TABLE I
MEAN RELATIVE ERRORS BETWEEN 0+ AND Oqn FOR ALL THE IMAGES IN
SET5
Metric | o =15 | 0y =25 | 0y =35 | 05y =50
RE(0r, 0%-) | 00050 | 00045 | 00044 | 0.0043

output of the algorithms. The codes of our CRED can be found
at https://github.com/AleBenfe/CRED.

B. On the Choice of the Threshold

In this section, we consider Set5, set 0o = 1, 0y = 25, v =
1.01, and use only D; as the denoiser. We inspect the influence
of 0 =7+/noy,, with 7 €[0,1] on the restored images. We
consider two different scenarios: in the first we assume o, is
known (idealized scenario), whereas in the second we assume
only an estimate 7, is provided (realistic scenario). The latter is
computed as in [19].

In Fig. 1(a) and (b) the continuous lines show the mean of
the distribution of o4+ and PSNR as function of 7. Moreover,
we shade the region spanned by the standard deviation of their
distributions. The orange and blue lines represent the idealized
and realistic scenarios, respectively. The yellow dashed line rep-
resents the noise standard deviation o, affecting the simulated
data.

Asexpected, in the idealized scenario, we can observe that oy
approximates o, when 7 = 1 for all images in Set5. Conversely,
when only an estimate 7, is given we observe that the best
approximation of o4, is reached when 7 = 0.98. We hypothesize
that this is due to the fact that the algorithm in [19] tends to
overestimate the noise level in the simulated data b. Moreover,
Fig. 1(a) shows that small values of 7 underestimate, whereas
large values of 7 overestimate o,,. In Fig. 1(b) we show the be-
haviour of the PSNR metric by varying 7. We obtain comparable
performances in terms of PSNR for both scenarios. Fig. 1(b)
shows the best PSNR is reached when setting 7 < 1.

For all the following experiments we set 7 = 0.98 and we
estimate oy, by [19]. In Table I we consider different level of
degradations (oa = 1,0, = 15,25,35,50) and we report the
mean of the relative errors (RE) between o+ and o, for all the
images in Set5. We observe that the mean of the relative errors is
small (less than 0.5%) while changing the level of degradation.
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TABLE II
MEAN VALUES OF PSNR AND SSIM DISTRIBUTIONS OVER DIFFERENT
CONFIGURATIONS OF (32, 3) FOR DIFFERENT y

| Metric | v=1 | y=101 | v=1.05 |
| PSNR | 24.6605 | 247312 | 244178 |

| SSIM | 09342 | 09324 | 09219 |
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Fig.2. PSNR behaviour by varying A for RED (a), (o, pt) and p for RED-PRO

(b), (Br, Bt) for CRED (c). In (b) for each o we present the PSNR distribution
(average + std) wrt u; in (c) for each 5, we present the PSNR distribution
(average =+ std) wrt S¢.

C. On the Choice of the ADMM Penalties and Denoiser

In this section we consider the sole Butterfly image by setting
oa = 1.2 and o, = 30. We investigate the stability of CRED
with respect to the choice of 7, 80 and 3{. We point out that in
the experiments we did not observe any significant difference
when choosing different images.

In Table I we report the mean values of the distribu-
tion of PSNR and SSIM obtained by choosing (82, 3)) €
{0.2,0.4,0.6,0.8,1}2 for different +. In this experiment we
consider Dy as denoiser. As a general comment, we observe
that we can reach similar performances in terms of PSNR and
SSIM for the considered values of ~.

Fig. 2(c) depicts the distribution of the PSNR values when
setting v = 1.01 for the CNN denoisers D; (orange) and D,
(blue). CRED appears stable regardless the considered choices
of 82 and 3, and moreover, it seems that the selection of CNN
denoisers has a minimal impact on the overall performances. In
the following experiments we fix 80 = 1, 8 = 1 and vy = 1.01.

D. Comparisons With RED and RED-PRO

In this section, we compare CRED, RED and RED-PRO in
terms of stability with respect to their hyperparameters and
reconstruction metric on the Set5 and Set24.
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TABLE III
MEAN VALUES OF PSNR AND SSIM FOR THE IMAGES IN SET5 AND SET24 BY
VARYING THE DEGRADATION LEVELS

| Set5 (oA = 1,0, =15) | Set24 (oa = 1.2,0, = 25)

Metric ‘RED-PRO RED CRED ‘RED—PRO RED CRED
PSNR ‘ 30.04 29.61 30.05 ‘ 26.70 26.29 26.95
SSIM ‘ 0.91 0.90 0.91 ‘ 0.77 0.76 0.77

o
-

GT

o
-

RED

o
-

RED-PRO

o
-

CRED

Degraded

Fig. 3. Restoration of the Baby image. From left to right: two close-ups of
ground truth, degraded image, RED, RED-PRO, and CRED.

In order to compare the stability of RED and RED-PRO with
respect to CRED, we consider the simulated Butterfly image
used in the Section III-C. For the original RED algorithm, we
sample 25 different values of % € [0.5,5]. Concerning RED-
PRO, we consider these 25 different configurations (a, u) €
{0.3,0.4,0.5,0.6,0.7}2.

In Fig. 2(a) we plot the PSNR behaviour of RED by varying
A, whereas in Fig. 2(b) we report the PSNR distribution of RED-
PRO for different configurations (c, 1t). The blue lines represent
the case where the denoiser D, is used, whereas the orange lines
represent the case where the denoiser Dy is used.

By comparing these results with the ones reported in Fig. 2(c),
itis evident how our CRED looks more stable with respect to the
choice of his hyperparameters. Finally, we observe that for RED
and RED-PRO the configuration of parameters maximising the
PSNR changes when considering different denoisers. We stress
that the same conclusions apply when considering different
images.

In order to compare the reconstruction metric performances
we consider all the images from Set5 and Set24 for different
degradation levels. In Table III we report the mean PSNR and
SSIM values. For the competing methods RED and RED-PRO
the hyperparameters have been estimated in order to minimize
the difference between o, and ox-. We notice that in terms of
the considered metrics CRED performs as well as RED and
RED-PRO. However, we remark that it does not require any
parameter tuning.

In Fig. 3(a) and (b) we report the GT and the degraded
close-ups of Baby from Set5. Moreover, in Fig. 3(c)—(e)
we depict the restored close-ups by RED, RED-PRO and
CRED. In terms of visual quality there are no relevant differ-
ences between the restored images however CRED seems to
slightly reproduce more clearly image details than RED and
RED-PRO.

IV. CONCLUSION

This letter presents a novel constrained formulation of the
popular RED method that forces the minimum of the regulariza-
tion functional to satisfy a discrepancy-based bound for a given
threshold serving as regularization parameter. Our formulation
is then solved within the ADMM framework and the overall
approach results in a simple yet effective method for image
restoration, which is called CRED through the letter. Defining
the threshold requires an estimate of the standard deviation of
the noise affecting the data which can be provided as described
in [19] thus eliminating the need for extensive parameter es-
timation. The key point of CRED is its superior stability and
robustness with respect to both model and algorithm hyperpa-
rameters which is assessed through several comparisons with the
original RED and its variant RED-PRO methods. Furthermore,
the experiments conducted show that in terms of PSNR and
SSIM metrics CRED performs as well as, if not better, when
compared to both original RED and RED-PRO. Finally, per-
formances, stability and robusteness make CRED a promising
choice for image restoration.
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