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Abstract—Deep learning-based methods deliver state-of-the-art
performance for solving inverse problems that arise in computa-
tional imaging. These methods can be broadly divided into two
groups: (1) learn a network to map measurements to the signal
estimate, which is known to be fragile; (2) learn a prior for the signal
to use in an optimization-based recovery. Despite the impressive
results from the latter approach, many of these methods also lack
robustness to shifts in data distribution, measurements, and noise
levels. Such domain shifts result in a performance gap and in
some cases introduce undesired artifacts in the estimated signal.
In this paper, we explore the qualitative and quantitative effects
of various domain shifts and propose a flexible and parameter
efficient framework that adapts pretrained networks to such shifts.
We demonstrate the effectiveness of our method for a number of
reconstruction tasks that involve natural image, MRI, and CT
imaging domains under distribution, measurement model, and
noise level shifts. Our experiments demonstrate that our method
achieves competitive performance compared to independently fully
trained networks, while requiring significantly fewer additional pa-
rameters, and outperforms several domain adaptation techniques.

Index Terms—Inverse problems, image recovery, domain
adaptation, unrolled networks.

I. INTRODUCTION

L INEAR inverse problems arise in many real-world appli-
cations. For instance, image enhancement and restoration

tasks in denoising, deblurring, and super-resolution or medical
image reconstruction from indirect measurements in computed
tomography (CT) and magnetic resonance imaging (MRI). We
can model such inverse problems as the recovery of an unknown
signal x from a set of measurements:

y = Ax+ η, (1)

where y represents measurements, A represents an m× n mea-
surement matrix or forward operator, and η represents noise. The
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unknown signal and measurements can be real- or complex-
valued. To recover x, we can solve an optimization problem of
the following form:

min
x

g(x) + hθ(x), (2)

where g(x) is a data fidelity term (e.g., g(x) = 1
2‖y −Ax‖22),

hθ(·) denotes a regularization function that enforces some prior
constraint on the unknown signal, and θ denotes the regulariza-
tion function parameters [1], [2].

In the deep learning era, we can recover x by either training a
deep (reconstruction) network that maps measurements to the
signal estimate or solving an iterative optimization problem
(similar to the one in (2)) that can also be represented as an
unrolled network [3]. While training a reconstruction network
in an end-to-end manner is possible, it usually requires a large
set of input-output training pairs (y,x). Furthermore, since
these networks do not explicitly use the forward model in (1),
they are known to be sensitive to small changes in the data
distribution, measurement operators, and noise [4], [5]. Solving
the optimization problem in (2) with an appropriate choice of
regularization function h(·) is often considered a flexible and
relatively robust option.

In recent years, deep networks are often used to represent
h(·) instead of hand-designed functions (e.g., #1 norm or total
variation). For instance, deep unrolling [6], [7], [8] and plug-
and-play (PnP) [1], [9] methods use artifact removal (AR) or
image denoising networks that are trained to map a noisy or
corrupted estimate of an image onto a clean image manifold [3],
[7], [8]. Despite recent success of deep learning-based methods,
they are sensitive to shifts in the data distribution [10].

Fig. 1 illustrates this effect for deep unrolling with artifact
removal (AR) networks under domain and forward model shifts.
The fastMRI AR is trained while solving (2) for MR image
reconstruction from radially under-sampled simulated k-space
measurements. CelebA AR is trained while solving (2) to re-
construct face images from measurements obtained using a
Gaussian sampling matrix. Note that reconstructing MR images
using the CelebA AR and vice versa results in a significant
performance degradation.

In this paper, we propose a parameter-efficient method to
adapt pretrained networks to multiple domains, measurement
models, and noise levels with little to no drop in performance. In
particular, we propose a domain-specific modulation of network
weights using low-rank (or rank-one) factors.
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Fig. 1. Artifact removal (AR) networks trained on MRI scans (fastMRI AR) and face images (celebA AR) suffer from performance degradation under domain
shifts, resulting in poor reconstruction quality (as indicated by PSNR and SSIM values under each image). Our proposed network (Modulated AR) adapts fastMRI
AR for face image reconstruction by learning rank-one factors (modulations). The network stores shared and domain-specific modulations separately. During
inference, it applies the correct modulation according to the specified domain. Our proposed network retains the performance of fastMRI AR on MR images and
achieves competitive reconstruction quality with celebA AR on face images.

Given a single deep unrolled network, we learn a compact set
of modulation parameters for each domain/measurement/noise
setting in a supervised manner. At inference time, we apply
the learned modulations to adapt the network weights to the
specific target problem. In the remainder of the paper, we
use the term domain shift and domain adaptation to refer to
changes in data/measurement/noise distributions. We present
a set of experiments to demonstrate the effectiveness of our
method in adapting the deep unrolled network for shifts in data
distribution/domain (x), forward models (A), and noise levels
(η). The modulated AR in Fig. 1 shows an application of our
method, where we adapt a pretrained fastMRI AR to celebA.
It applies the learned modulations when recovering celebA
images and will use the pretrained weights when reconstructing
MRI scans. This network recovers images that qualitatively and
quantitatively resemble results of the networks trained for the
correct domains. The number of parameters needed to adapt
the pretrained network is less than 0.5% of the parameters
in the pretrained network.

Our method can be viewed as an example of domain adapta-
tion or domain expansion technique, where we update a network
trained for a source domain to perform well on several target
domains. Fine-tuning pre-trained networks is a widely used
method for domain adaptation but suffers from catastrophic
forgetting [11] and requires a large number of parameters for
every new domain [12]. Several parameter efficient domain
adaptation techniques have been proposed in [13], [14]. Our
method resembles some of these methods in spirit and sep-
arates the network into shared and domain-specific modules.

By limiting the number of parameters for the domain-specific
modules, our method provides a parameter-efficient method
to learn multiple tasks and domains. Furthermore, conditional
computation is efficient during training and inference compared
to independent networks [15].

Contributions: We summarize the contributions of this paper
as follows.! We proposed a simple parameter-efficient domain expan-

sion technique to modulate weights of a pretrained network
with rank-one factors. Our method expands the domain of
the networks and adapts to a variety of data/model shifts
that arise in inverse problems.! Our method requires a small number of domain-specific
parameters (less than 0.5% of a single network) that can
be stored separately from the shared network weights. This
enables the network to continuously adapt to new domains
without forgetting previous knowledge; therefore, we call
it domain expansion.! We present a detailed set of experiments that analyze the
effects of domain, forward model, and noise-level shifts in
natural and medical image recovery problems using deep
unrolled methods.

II. RELATED WORK

A. Deep Networks for Inverse Problems

Generative models, which learn to map a low-dimensional
code into an image, have become increasingly prominent in
various inverse problems. Following [16], several methods have

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 06,2024 at 04:33:54 UTC from IEEE Xplore.  Restrictions apply. 



YISMAW et al.: DOMAIN EXPANSION VIA NETWORK ADAPTATION FOR SOLVING INVERSE PROBLEMS 551

successfully applied generative networks as priors when solv-
ing inverse problems including MRI compressed sensing [17],
super-resolution [18], blind image deconvolution [19], and phase
retrieval [20], [21].

End-to-end methods in imaging inverse problems are typ-
ically trained in a supervised manner using training data. In
this training process, the model learns to map input data, of-
ten representing measurements or corrupted images, to their
corresponding ground truth or a high-quality representation.
AUTOMAP [22] proposed a framework that learns a direct
mapping from the measurement space to the image space using
a set of training data. Noise2Noise [23] proposed a method
that learns to directly map corrupted images to clean images.
The method was applied to MRI measurements captured under
different acquisition setups. Other approaches such as [24], [25]
use end-to-end networks to estimate artifact free signals from
initial states.

Plug-and-play (PnP) methods are at the intersection of data
driven and model based methods that alternatively minimize
data consistency and regularization terms. PnP-ADMM [1] was
the first plug-and-play iterative algorithm that used pre-trained
denoisers as priors. This method is based on the ADMM al-
gorithm [2]. PnP-FISTA [26] is a PnP variant that replaces the
proximal operator [2] of the data fidelity with the gradient. These
methods have been applied to solve inverse problems [27], [28]

Deep unrolled networks learn the denoiser network in PnP
algorithms in a supervised manner [7], [8], [29]. These methods
truncate the PnP algorithm for a fixed number of iterations and
share the same network through the iterations. They perform
updates using the reconstruction output of the final iteration.
ISTA-Net [29] introduced a learnable deep network designed to
perform ISTA [30] updates for compressive sensing reconstruc-
tion tasks involving natural images and MRI. A deep unrolled
artifact removal (AR) network that performs PnP iterations was
proposed in [8]. The proposed method demonstrated remarkable
recovery performance across various image reconstruction tasks.
Overall, deep unrolled methods show remarkable results in
several inverse problems such as super-resolution [31], image
restoration [32], MRI [33] and CT [34] reconstruction.

B. Domain Expansion and Adaptation

Developing a single network that can handle multiple domains
as well as adapt to new target domains has been an active area of
research. Deep neural networks can learn transferable features
and fine-tuning to a new dataset improves generalization perfor-
mance [35], [36]. Despite its success, fine-tuning a network or
parts of it force the network to lose previously learned domain or
task, which requires storing multiple networks per domain and
task. Parameter-efficient fine-tuning methods [37], [38], [39]
propose networks that can achieve competitive performance to
fully-tuned networks while requiring few number of additional
parameters. Adapter-based techniques that learn efficient mod-
ules have been proposed in [40], [41], [42]. These modules are
added to a pretrained network and enable it to adapt to new tasks.

Domain specific sub-network selection using binary masks
was proposed in [12], [43]. Supsup [43] starts from a fixed base

network that is randomly initialized and finds a sub-network that
can perform well on a specific task. It learns task-specific binary
masks sequentially without interference. The binary mask has
the same number of parameters as the network weights and is
applied using an element-wise product. In scenarios where task
identity is given during training and inference, the binary masks
are the only learned parameters during training time and will be
applied to the base network parameters during test time.

A continual learning technique that utilizes modular task
relatedness for sequential task learning was proposed in [44].
The proposed method was successfully applied to a rehearsal-
based continual learning method. Such methods, however, re-
quire a replay buffer, which is a subset of training samples
from previous tasks. A modular-network for continuous task
adaptation that does not require replay buffers was proposed
in [45]. Up on arrival of a new task/domain, the method creates
trainable modules at every layer and finds the optimal way to
add them to a frozen backbone network. These added modules
are required to match the base-network in terms of parameters.
After training, modules that are not part of the optimal path way
will be discarded. This method is computationally demanding
and parameter inefficient. Later, we will show that modules with
significantly fewer parameters compared to the base-network
modules can perform successful task/domain adaptation.

Tuning specific layers such as the BatchNorm [46], the final
classification head [47], and LayerNorm [48] are proven to be
effective adaptation techniques. A related approach that scales
and shifts features to achieve the performance of full-tuning was
proposed in [49]. A technique that parameterizes a network into
learnable shared and task-specific modules, enabling a single
network to adapt to various settings, was proposed in [14], [50].
RCM [14] proposed to reparametrize a standard convolution
layer into a shared module that is non-trainable and a train-
able task-specific module (modulator). The number of trainable
parameters in the modulator is a fraction of the parameters
of the shared layers. The proposed convolution operation is
implemented as a stack of two 2D convolutional layers. The first
stack refers to convolution with the shared modules. The second
stack, which uses task-specific modulators, performs a 1× 1
convolution by keeping the number of output feature channels
fixed. Since the convolution filter size of these modulators is one,
the number of trainable parameters in this stack is significantly
less than the parameters in the first (shared) stack. Hyperdomain
Networks [13] use modulated convolution to adapt generator
networks to new domains. This approach introduces an inter-
mediate domain modulation step to the original convolution
modulation and demodulation operations proposed in Style-
GAN2 [51]. The Hyperdomain modulation operation utilizes
a domain-specific vector per layer to scale each input feature
map independently. At each convolution layer, the number of
trainable parameters is equal to the number of input features.

An adaptation method for shifts in domain and forward-
models when solving inverse problems was proposed in [52].
The method proposes a fine-tuning and regularization technique
adopted from RED [53]. Domain-specific batch normalization
layers were proposed in [54] for a segmentation network that can
handle brain MR scans across different scanners and protocols.
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Unlike R&R [53], the method proposed in [54] can adapt to new
domains without forgetting previous domains. Several test-time
adaptation techniques have been proposed to close performance
gaps resulting from domain shifts [55], [56], [57]. While many
of these methods are proposed for purely data drive approaches,
we focus on methods that fuse data-driven and model based
techniques. In addition, our aim is to find parameter efficient
domain adaptation techniques without introducing catastrophic
forgetting.

III. METHODS

In this section, we present details of our proposed domain
expansion method for deep unrolling-based reconstruction. We
first briefly discuss deep unrolled networks (readers may refer
to [58] for further details). Then we discuss how we adapt
the network weights using rank-one factors to perform domain
expansion/adaptation.

A. Deep Unrolled Network

A deep unrolled network in its simplest form represents a fixed
number of iterations for solving the optimization problem in (2).
Plug and play (PnP) methods based on accelerated proximal
gradients [1], [58], [59] offer a flexible and efficient framework
for solving such problems. Key steps of PnP with a deep denoiser
at iteration k can be described as follows.

zk = xk−1 − γ∇g(xk−1) (3)

sk = D(zk; θ) (4)

xk = sk + βk(s
k − sk−1), (5)

where γ is the step size, superscript k = 1, . . . ,K denotes
iteration number, ∇g(·) denotes gradient of data fidelity with
respect to x, D(·; θ) denotes a denoiser or artifact removal net-
work with weights θ, βk = (qk−1 − 1)/qk, and qk = (1/2)(1 +√
1 + 4q2k−1). We can initialize the estimate as x0 = AHy,

where AH denotes Hermitian transpose of the measurement
operator. Similar to [8], we implement D as an artifact removal
network: D(x; θ) = x− f(x; θ), where f is a DnCNN-based
residual network [60].

We can view each iteration of PnP as one layer of the unrolled
network with predefined parameters. The output of an unrolled
network with denoiser D(·, θ) and K iterations can be denoted
as xK(θ). Since all operations are differentiable, we can further
improve the performance by minimizing the reconstruction error
on some training images with respect to θ. We can define such
an optimization problem as

min
θ

∑

x∈X
L(x,xK(θ)), (6)

where X denotes the set of training images.

B. Factorized Network Adaptation

Our method primarily adapts the prior in the unrolled net-
work using domain/task-specific rank-one factors as the data,

Algorithm 1: Factorized Network Adaptation.
Input: Training images x ∈ Xd with measurements y, and

operator A for domain indicator d
Base network parameters θ, {βk}k≥0, γ, α

Output: Domain-specific Md

1: Md ← initialModulation(d)
2: repeat
3: for every x ∈ Xd and y

initialize x0 ← AHy
4: for k ∈ {1, . . . ,K} do
5: zk ← xk−1 − γ∇g(xk−1)
6: sk ← D(zk; θ,Md)
7: xk ← sk + βk(sk − sk−1)
8: end for
9: Calculate loss for all training samples in a minibatch

and compute gradient w.r.t. Md;
10: Md ←Md − α∇Md

∑
x∈Xd

L(xK ,x);
11: until Convergence of Md

12: return Md

measurement, or noise distribution changes. We start with a
pretrained network D(·; θ) with parameters θ. Then we learn
domain-specific modulations denoted as {Md}Dd=1 for D do-
mains. Each Md represents a set of domain-specific modulation
parameters that we use to adapt base network parameters to
θ (Md, where ( represents element-wise multiplication. In
order for this multiplication to be defined, we require θ and
Md to have identical number of elements. In practice, we do
not create a new set of modulated weights; instead we keep
the Md and θ separate. This allows us to fix the base network
and adapt to multiple new domains without forgetting previous
domains. We represent the domain-specific network for dth
domain as D(·, θ,Md) and the output of the unrolled network as
xK(θ,Md). To learn the modulation parameters for dth domain,
we keep θ unchanged and solve the following optimization
problem for Mi:

min
Md

∑

x∈Xd

L(x,xK(θ,Md)), (7)

where Xd denotes the set of training images for the dth domain.
Even though we do not explicitly discuss measurement op-

erator A and noise η in the unrolled network, any mismatch
between training and test time settings of domain, measure-
ments, and noise can cause performance degradation. We can
consider any variation in data, measurements, or noise as a new
domain and use the same procedure described above to learn the
domain-specific modulations.

Rank-one factorization: Inspired by [37], [61], we assume the
intrinsic dimension of the objective in (7) is small. We parame-
terize Md such that its trainable parameters remain significantly
smaller than the number of parameters in the base network.

To achieve the goal of parameter efficiency, we represent
modulation weights for each layer as a rank-one tensor. Let us
assume lth convolution layer has weightsW l with kernels of size
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Fig. 2. Overview of our factorized network that uses modulated convolutions
for domain adaptation. Our network follows the DNCNN [60] architecture that
leverages modulated convolution for domain adaptation. After trained on the
source domain, the network learns low-rank modulations for each domain while
keeping the base network parameters frozen. Using a domain identifier, the
network selects the appropriate low-rank factors during inference and applies
them to the pretrained network through element-wise multiplication.

k × k with Cin input and Cout output channels. We represent
the modulation weights for dth domain and lth layer as an outer
product of four vectors as

M l
d = M1,l

d ⊗M2,l
d ⊗M3,l

d ⊗M4,l
d , (8)

where M1,l
d ∈ Rk,M2,l

d ∈ Rk,M3,l
d ∈ RCin ,M4,l

d ∈ RCout .
Thus, we need k + k + Cin + Cout parameters to adapt a
layer with k2CinCout parameters. We apply the rank-one
factorization and modulation on the convolution layers as
follows. For an input U with Cin channels, we can represent ith
output channel of the convolution layer as

V (:, :, i) =
Cin∑

j=1

W l(:, :, j, i) ∗ U(:, :, j), (9)

where ∗ represents 2D convolution. Modulated weights for
domain d and layer l can be represented as W l

d = W l (M l
d.

We can represent the convolution operation as

V (:, :, i) = M4,l
d (i)




Cin∑

j=1

W̃ l(:, :, j, i) ∗ Ũ(:, :, j)



 , (10)

where W̃ l(:, :, j, i) = W l(:, :, j, i)( (M1,l
d ⊗M2,l

d ) represents
a modulated version of (j, i) slice of weight tensor and Ũ(:, :
, j) = U(:, :, j)(M3,l

d represents a modulated version of the
jth input channel. In summary, even though we represent mod-
ulation weights as a rank-one tensor, we do not need to modulate
the weights of the base network. We can implement the same
procedure by modulating input channels, 2D filters, and output
channels.

Fig. 2 illustrates how our proposed unrolled multi-domain
network applies low-rank factors to the pretrained network.
We implement (10) by first combining the low-rank factors as
formulated in (8) and applying them to the base convolution
weights using an element-wise product. We then use these up-
dated weights to perform regular convolution during the forward
pass. When performing backward propagation, we compute

Fig. 3. Comparison of our modulated AR, fully-tuned AR, and the Base AR
networks in terms of accuracy and number of additional parameters they require.
Base AR requires no additional parameter and provides worst performance.
Fully-tune AR provides best performance using a large number of parameters.
Our proposed method, Modulated AR, shows performance comparable to Fully-
tuned AR with a fraction of additional parameters.

gradients with respect to the low-rank factors and update them
while keeping the remaining parameters of the network frozen.

A pseudocode for factorized adaptation with the unrolled net-
work is provided in Algorithm 1. The algorithm begins by initial-
izing domain-specific modulations using an outer product of the
low-rank factors. These low-rank factors are real-valued and ran-
domly initialized. After computing the initial estimates x0, we
perform K unrolled iterations containing data-consistency and
artificial-removal updates. Finally, we use the output from the
last iteration,xK , to compute the reconstruction loss. This loss is
used to compute gradients with respect to the low-rank factors
and to perform updates. Further details and hyper-parameter
setups are provided in the supplementary material.

IV. EXPERIMENTS AND RESULTS

We performed a number of experiments to analyse the effects
of shifts in different parts of the inverse problem in (1). The
shifts can occur in the data distribution x, the forward model A,
and the measurement noise η. We test our proposed adaptation
technique for all these shifts. In all our experiments, we start with
a fixed base network, which we refer to as Base AR, and learn
domain-specific rank-one modulations. Base AR is trained to
reconstruct MR images from 4× radially sub-sampled simulated
Fourier measurements without any additional measurement
noise.

Base AR uses spectral normalization proposed in [62] along
with the ReLU activation functions. We implement our AR
network using a 12-layer DnCNN [60] network. We provide
details on training and dataset preparation, along with the hy-
perparameters used in our experiments, in the supplementary
material.

A. Parameter Efficiency for Adaptation

Fig. 3 compares the performance of a base network, full
training, and our proposed modulation-based adaptation for
shifts in data distribution/domain, forward model, and noise
level. Base network does not require any additional parameter
for different domains, but it provides the worst performance.
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TABLE I
AVERAGE PSNR OF ARTIFACT REMOVAL (AR) NETWORKS UNDER DOMAIN SHIFT

Full training learns a new network for every domain/distribution
shifts and provides the best performance, but at the expense of a
large number of parameters per domain. Our proposed network
adaptation approach requires a small number of parameters
(nearly 1.6 K additional parameters) and achieves performance
close to full training method. The additional parameters are
unique for each domain and are stored separately from the
base network. In this manner, the pre-trained model can be
adapted to learn new domains while retaining previously learned
knowledge.

B. Domain Shift

For experiments with domain/data distribution shifts in x, we
consider natural image, MRI, and CT scans. We use CelebA
dataset [63] for natural images, NYU fastMRI dataset for [64]
knee MRI scans, and a subset of TCGA-LUAD dataset [65]
for CT scans. In this experiment, we independently train artifact
removal (AR) networks on each dataset to reconstruct the ground
truth images from radially sub-sampled simulated Fourier mea-
surements. We refer to these networks as single domain (domain
specific) AR networks. To asses the effects of domain shift, we
test each of these networks on samples obtained from datasets
that were not used to train them. The first three columns of Table I
show the performance of the single domain AR networks. We
present the reconstruction PSNR of these AR networks evaluated
under the domain shifts. The last column shows the performance
of our modulated network that uses weights of the Base AR
trained on MRI and learned modulations for each target domain.
Quantitatively we observe that performance drops as domains
change (off-diagonal entries in columns 2,3,4). Our proposed
method for modulated AR offers best overall performance. Fig. 4
shows example reconstructed images for our domain shift ex-
periments. Our modulated network effectively removes artifacts
introduced by fastMRI AR and CT AR on CelebA images.

Comparison with existing domain adaptation methods: We
compare our proposed approach with the following related
domain adaptation techniques: Supsup [43], RCM [14], Hyper-
domain Modulation [13], and Full-tuning. We evaluate these
methods using the same training and testing procedure as our
proposed approach. Supsup [43] learns binary masks to find
domain specific sub-networks. RCM [14] reparameterizes con-
volutions using domain-specific feature transformations. Hy-
perdomain [13] learns domain-specific modulation for input
channel of every convolution operation. Full-tuning retrains the

Fig. 4. We present sample ground truth images in the first column and
reconstruction of these images using three AR networks trained on Face, MR,
and CT images in the subsequent three columns. Our modulated AR, shown in
the last column effectively removes artifacts from the face images and improves
the reconstruction performance on the CT images.

entire network for each target domain and is considered as an
upper-bound. Table II shows comparison of these methods and
our proposed method outperforms other adaptation techniques.
In addition, it requires fewer additional parameters than Sup-
sup [43] and RCM [14].

C. Forward Model Shifts

To evaluate the performance with shifts in the forward model,
A, we consider sampling types, ratio, and patterns as domains
that can induce shifts. The sampling type can be either Fourier
or Gaussian sampling. In the case of Fourier sampling, we
can have Cartesian, Radial, Gaussian, or Spiral patterns. The
sampling ratio determines the rate at which measurements are
captured. We consider reconstruction from 4×, 8× and 10×
under-sampled measurements. We will now examine the effects
of each of these shifts and utilize our proposed method to adapt
our Base AR.
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TABLE II
COMPARISON OF OUR METHOD WITH EXISTING DOMAIN ADAPTATION TECHNIQUES

TABLE III
SAMPLING PATTERN SHIFT ADAPTATION RESULTS

Fig. 5. Reconstruction results under sampling pattern shifts. AR trained on
radial pattern performs poorly when tested on Cartesian sampled patterns. Our
Modulated AR applies low-rank modulations to adapt Radial AR to Cartesian
samples.

Sampling pattern shifts: Table III shows the performance of
AR networks trained on single sampling patterns when tested on
all available patterns in the first four columns. The last column
shows the performance of our modulated AR. We observed a
significant performance drop when our Base AR was tested on
samples from Cartesian samples. This drop is also evident qual-
itatively in Fig. 5, where visible artifacts appear in the output.
Our modulated AR successfully eliminates these artifacts and
bridges the performance gap. Moreover, our method provides
overall superior performance compared to networks trained for
individual patterns.

Sampling ratio shifts: We compared the performance of
different AR networks trained on three sampling ratios and

TABLE IV
SAMPLING RATIO SHIFT ADAPTATION RESULTS

presented the results in Table IV. The 4× AR network ex-
hibits poor performance when tested with 8× and 10× radially
subsampled measurements. Additionally, the AR network
trained on the 8× ratio did not perform well with 10× ratio. To
address this, we applied our modulation technique to adapt the
Base AR model to 8× and 10× sampling ratios. On average, the
modulated network outperforms AR networks trained on spe-
cific sampling ratios. Fig. 6 illustrates the reconstruction results
of the networks trained at various sampling ratios, including
our modulated network. On average, the modulated network
outperforms AR networks trained on specific sampling ratios.

Comparison with existing domain adaptation methods: We
now compare our method with some of the existing domain
adaptation techniques under the forward model shifts discussed
above. We report the average PSNR along with the number of
trainable parameters with in each method in Table V. Our pro-
posed method outperforms all domain adaptation techniques and
is only one dB less than full-tuning, which requires significantly
larger number of parameters.

D. Noise-Level Shifts

Noise-level shifts can also cause significant performance
degradation in AR networks. We model the noise as an addi-
tive Gaussian noise η ∼ N (0,σ2) and analyze the effects of
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TABLE V
COMPARISON OF DOMAIN ADAPTATION METHODS UNDER FORWARD MODEL SHIFTS

Fig. 6. Examples of image reconstruction under sampling ratio shifts. Our
Modulated AR shows an average superior performance when compared to the
4×, 8×, and 10× AR networks.

Fig. 7. Visual results of models trained at specific noise levels and our modu-
lated network under measurement level. The last row shows the 20×amplified
residual of the reconstructed image under no measurement noise.

different noise levels on the performance. Fig. 7 shows sample
reconstructed images with the Base AR, our Modulated AR, and
AR networks trained for 10, 20, and 30 dB SNR. We observed
that the Base AR is unable to reconstruct the MRI scans from
the noisy measurements. This is also shown quantitatively in
Table VI, where the performance of the Base AR is severely
degraded in the presence of noise. The AR network trained on
10 dB SNR performs well on higher noise settings but fails to
recover fine details when tested with noise-free or low noise
measurements. The last row of Fig. 7 shows the 20× ampli-
fied reconstruction residual of each model when reconstructing
noise-free measurements. From this row, we can infer that AR
networks trained on higher noise-levels fail to recover fine
details when tested with lower noise-levels. To the contrary,
our Modulated AR has the ability to reconstruct fine details
when the measurement noise is low and maintains comparable
performance to noise-specific ARs as the noise level increases.

Comparison with existing domain adaptation methods: Ta-
ble VII reports comparison of our proposed method with re-
lated domain adaptation techniques. Although Full-tuning and
Supsup [43] show slight performance improvement (less than
1 dB), they require a significant number of trainable parameters.
Furthermore, Full-tuning does not have the ability to retrain
previously learned knowledge. Our method achieves compet-
itive performance to RCM [14] while requiring a fraction of the
additional trainable parameters.

V. LIMITATIONS

While our proposed method is able to continuously adapt
to new domains, it requires domain selectors/identifiers during
inference to apply the correct modulations. In some cases, this
is not a major limitation since we can partially infer the domain
from the available measurements or context. In principle, we can
parameterize the network modulations as a function of the input
and construct a multi-domain network that can infer the domain
without the need for explicit identifiers. Another limitation of our
current method and experiments is the incremental adaptation
to target domains. We start from a fixed base network and
subsequently adapt it to multiple domains independently. We
can further improve the efficiency of our method by adapting
the network to multiple domains jointly. Achieving rapid and
generalized multi-domain adaptation is feasible following meta-
learning techniques as outlined in [66]. We believe that these
limitations will serve as inspiration for several future studies.
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TABLE VI
NOISE LEVEL SHIFT ADAPTATION RESULTS

TABLE VII
COMPARISON OF VARIOUS DOMAIN ADAPTATION METHODS UNDER NOISE LEVEL SHIFTS

VI. CONCLUSION

We proposed a simple and parameter-efficient method for
domain adaptation and expansion. Our method uses a fixed
base network and learns separate (domain-specific) rank-one
modulation parameters. This capability allows our method to
continually learn new domains while retaining previously ac-
quired knowledge. We focused on shifts that arise in solving
inverse problems for imaging, including shifts in data distri-
bution, forward model, and noise level. We demonstrated the
effectiveness of our approach in adapting to all these shifts.
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