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Abstract

The NASA Planetary Data System (PDS) hosts millions of
images of planets, moons, and other bodies collected through-
out many missions. The ever-expanding nature of data and
user engagement demands an interpretable content classifi-
cation system to support scientific discovery and individual
curiosity. In this paper, we leverage a prototype-based archi-
tecture to enable users to understand and validate the evi-
dence used by a classifier trained on images from the Mars
Science Laboratory (MSL) Curiosity rover mission. In addi-
tion to providing explanations, we investigate the diversity
and correctness of evidence used by the content-based classi-
fier. The work presented in this paper will be deployed on the
PDS Image Atlas, replacing its non-interpretable counterpart.

Introduction

The PDS Cartography and Imaging Sciences Node is the cu-
rator of NASA’s primary digital image collection spanning
past, present, and future planetary missions. The PDS Imag-
ing Node provides access to this data archive via the PDS
Image Atlas. Due to the data archive’s ever-growing nature,
manually searching through tens of millions of images to
find data products of interest is infeasible. With an ever-
growing list of missions, future releases of the Atlas will
accommodate a reliable, interpretable content-based classi-
fication system that aims to provide a three-fold benefit.

Firstly, an interpretable content-based classification sys-
tem will validate the evidence used by the content-based
classifier and ensure the right visual cues are being used
by the classifier. Secondly, such an interpretable model will
help bridge the gap between the mental model of Atlas users
and planetary image classifiers. Finally, identifying erro-
neous evidence through user adjudications can establish a
feedback loop from Atlas users to data scientists regarding
the quality of evidence used by the planetary image classi-
fiers. Users searching Atlas will have the ability to interac-
tively identify relevant images. Establishing such a feedback
loop is vital for improving classifier performance while en-
abling users to play an active role, increasing user engage-
ment and understanding.

In this paper, we employ explanations from case-based
reasoning approaches that identify the evidence from the
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training set used to classify a test image.

We demonstrate an interpretable content-based image
search system by leveraging the prototypical architecture
proposed by Chen et al. (2019). In addition to building upon
the existing work, we extend it by evaluating the diver-
sity and correctness of prototypes resulting from a classifier
trained on imagery from Mars. Based on observations we
made during the evaluation, our contribution was the incor-
poration of a diversity-enhancing term to the original work
by Chen et al. (2019), which notably amplified the diver-
sity of evidence utilized and subsequently enhanced perfor-
mance. We describe our plan to deploy the system by re-
placing the non-interpretable counterpart currently hosted
on the Atlas with the interpretable content-based classifier
proposed in this paper. The MSL surface dataset ! used in
this paper was published by Wagstaff et al. (2021).

Related Work

Interpretable content-based classification has appeared in
the literature multiple times based on the classifier under
investigation for content classification (Nauck and Kruse
1999; Rui et al. 1998; Vasu et al. 2021). Further improve-
ments in the wider field of interpreting machine learning
decisions were achieved with the introduction of increas-
ingly complicated and opaque classifiers. Explanations gen-
erally appear under different taxonomies such as white-box
vs. black-box, inherently interpretable vs. post-hoc, and neu-
ron vs. primary vs. layer attribution methods (Lucas et al.
2022). White vs. black-box categorizes methods based on
whether they leverage internal classifier structure to gener-
ate explanations. Inherently interpretable vs. post-hoc cate-
gorizes them based on the model naturally providing expla-
nations vs. using an explanation method after model devel-
opment.

The introduction of deep models sacrificed interpretabil-
ity in favor of improved performance and automatic feature
extraction. Interpreting deep models has gained traction in
recent years due to the large-scale deployment of deep mod-
els. One of the first works to interpret deep convolution neu-
ral network (CNN), proposed by Zeiler and Fergus (2014),
deals with understanding activations and the internal opera-
tions of CNNs by looking for patches that maximize a neu-
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ron activation. Zhou et al. (2016) leveraged the presence of
a global average pooling layer to backtrack and combine ac-
tivations with the strongest connection to a particular class
to produce local explanations in the form of saliency maps.

Several works were also inspired by the gradient-based
approach known as GradCAM proposed by Selvaraju et al.
(2017). More recently Khorram, Lawson, and Fuxin (2021)
used integrated gradient and an optimization paradigm to
obtain explanations. Interpretability can also come in the
form of attention mechanisms. Zheng et al. (2017); Zhang
et al. (2014); Petsiuk, Das, and Saenko (2018) offer some
insight into regions of the image attended, indicating the
“where” but fails to address “why” a region of the image
was paid attention to.

Despite the vast body of work in post-hoc explanations
(Selvaraju et al. 2017; Petsiuk, Das, and Saenko 2018;
Zheng et al. 2017), we primarily focus on leveraging an in-
herently interpretable deep model such as ProtoPNet (Chen
et al. 2019) due to shortcomings of post-hoc approaches
highlighted by Adebayo et al. (2018), Rudin (2019), and
Lakkaraju and Bastani (2020). Methods by Selvaraju et al.
(2017) are unreliable in the presence of repetitive patterns
spread across a larger portion of the image, such as rocks
or terrain on Mars. More importantly, we chose ProtoP-
Net because we expected its explanations to be more in-
tuitive for users of the Atlas who may not be ML experts.
Case-based reasoning work by Kolodner (1992) uses previ-
ously created prototypes, limiting adaptivity, while the work
by Aamodt and Plaza (1994) enhances adaptability through
a four-phase approach involving both past and new proto-
types. In contrast, the Prototypical Part Network (ProtoP-
Net) proposed by Chen et al. (2019) creates new prototypes
by optimizing network weights, focusing on minimizing the
distance between prototypes and class instances in a high-
dimensional space. This paper leverages the architecture and
training routine proposed by Chen et al. (2019). We quantify
the evidence learned by the deep models in terms of diver-
sity and correctness of evidence as opposed to quantifying
them through agreement (Bau et al. 2017, 2019) with a re-
gion of the image as the latter requires a large volume of
fine-grained annotations.

Prototypical Part Network

The ProtoPNet architecture proposed by Chen et al. (2019)
uses a standard deep network for feature extraction and in-
troduces a prototypical layer that learns a pre-defined num-
ber of prototypes or exemplars that best represent each im-
age class. The fully connected layer after the prototypical
layer represents the contribution of each learned prototype
to the final decision. Therefore, the network avoids prob-
lems such as unreliability due to inaccuracies in understand-
ing a model’s decision-making process, described by Rudin
(2019) by only allowing information to flow to the final
classification layer through the prototypical layer. Once re-
gions of images most similar to the learned prototypes are
found through similarity matching, they can be visualized as
a bounding box by using a threshold at 95% of maximum
similarity. The similarity score represents the strength of the
prototype match, while the weights of the fully connected
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Figure 1: Qualitative example of the top-4 most visually
similar prototypes for class Mastcam cal target from the
MSL surface dataset. Column (a) is the test image, (b) shows
the same image overlayed with a heatmap showing regions
most activated by the prototype learned during training fol-
lowed by (c) showing a cropped version of the heatmap after
threshold with the similarity score. (d) shows the cropped re-
gions of heatmaps from Column (e). Column (e) shows the
training images overlayed with regions obtained after proto-
types projection on the training set and . The evidence looks
coherent across both training and testing prototypes i.e., col-
umn (c) and (d) when the weights are positive.

layer represent its contribution to a class during training.
Above all the highlighted benefits, ProtoPNet learns part-
based associations with no additional region-based annota-
tion, which allows the developer to define a finer subclass.

In the following sections, we present results for both
a VGGI19 and ResNetl8 backbone on the MSL surface
dataset. The MSL surface dataset contains visual features
observed on the surface of Mars by the Curiosity rover. Fig-
ure 1 (discussed in more detail later) shows an example Pro-
toPNet output for the MSL surface dataset image belonging
to class Mastcam cal target used for calibrating the Mast-
cam instrument on board the rover. We use ten prototypes
per class for all experiments in the rest of the paper. We use
the weights pre-trained from ImageNet (Russakovsky et al.
2015) data set to initialize all our feature extractor back-
bones.

Proto-MSLNet

In this section, we elucidate the training process of the
content-based classifier utilizing the MSL surface dataset,
herein referred to as MSLNet. The currently deployed ver-
sion of MSLNet on the Atlas classifies imagery received
from the MSL Curiosity rover. We plan to replace MSLNet
with an interpretable version we call Proto-MSLNet, which
is constructed by training a prototypical and fully connected
layer on top of an off-the-shelf feature extractor backbone.
Due to the benefits of interpretable models outlined in the



earlier sections, we plan to deploy Proto-MSLNet in spite
of a slight drop in test accuracy. Based on our observations
while using current approaches, we noticed a lack of diver-
sity among prototypes, i.e., prototypes often look visually
similar or come from the same training image. Therefore,
we modified the ProtoPNet training procedure to incorpo-
rate a diversity factor:

n
Div = - z:l minimize max(z — p; — margin, 0)
r=
subject to z € patches(f(z;))
J:pj € Py,
where n represents the total number of images under consid-
eration. The image z; denotes the i*” image in the dataset,
and its corresponding feature representation is captured by
f(x;) while patches(f(z;)) constitutes all potential patches
derived from f(x;). p; represents learned feature prototype
corresponding to the class y; and P, is the complete set of
prototypes for class y;. Lastly, the margin term is a prede-
fined threshold to eliminate trivial differences among proto-
types. The total loss L used to train Proto-MSLNet is
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where the cross entropy loss (CrsEnt) penalizes misclassi-
fication on the training data. The clustering cost (Clst) pro-
motes the presence of a latent patch in each training image
that is proximate to at least one prototype from its class.
Conversely, by minimizing the separation cost (Sep), it is
encouraged that every latent patch of a training image re-
mains distant from prototypes that do not belong to its class.
While Clst brings together prototypes of the same class and
Sep promotes inter-class separation in prototypes, there is
no condition promoting intra-class diversity in prototypes.
To address this issue, we introduce the diversity cost (Div).
Note, A1, A2, and A3 are hyperparameters used to control the
influence of each cost term, gp is the prototype layer, and h
is a fully connected layer. To visualize the prototypes as im-
ages we project the prototypes onto the training set as shown
below:

pj < arg grelizrillz —pill2

Where Z; represents the set of all training patches and p; is
the prototypes found while computing L. Similarly, we can
also visualize the test prototypes by replacing Z; with the
test set.

Data Set

The MSL surface dataset was collected by the Mast Camera
(Mastcam) and Mars Hand Lens Imager (MAHLI) instru-
ments on the MSL Curiosity rover spanning 19 classes of
interest such as Dust Removal Tool (DRT), Sun, Night Sky,
Wheels, Wheel joints, and Wheel tracks. We augment the
dataset according to the realistic variations for each instru-
ment: the images from the rotatable platform MAHLI are
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Figure 2: Figure showing representative examples from
eight classes of the MSL surface Data Set. DRT refers to
the Dust Removal Tool aboard the Curiosity rover.

rotated by 90, 180, and 270 degrees with horizontal and ver-
tical flipping, and the images from the fixed platform Mast-
cam are only horizontally flipped. Figure 2 shows represen-
tative images from eight different classes along with the re-
sult of data augmentation on an image from class Wheel ac-
quired using MAHLI.

Experimental Setup

During training, we use a learning rate of le-4 for the first
100 epochs followed by a learning rate of le-5 for 100
epochs and select the model with the best validation accu-
racy. Note the training process is split into a gradient up-
date at each epoch and a projection stage every 5 epochs.
The hyperparameters A1, A2, and A3 are assigned values of
0.8,0.08,and 0.04 respectively. These values were deter-
mined through an empirical evaluation across five distinct
trials. A more rigorous parameter search will be undertaken
in preparation for deployment. We employ a sol-based split
as proposed by Wagstaff et al. (2021) to evaluate general-
ization in a realistic setting, wherein training occurs on past
data and validation/testing on future data. The term “sol”
here refers to a measure of one Mars day. Note that the sol-
based split reveals the temporal label shift between train and
validation/test set, reflected in the gap between their accu-
racy across both deep CNNs reported in Table 1. Wagstaff
et al. (2021) provide a full description of the dataset gen-
eration process with detailed class distributions. A batch
size of 80 was used in combination with an Adam opti-
mizer (Kingma and Ba 2015) to train all the classifiers. All
classifiers were trained on a single V100 GPU facilitated by
the Texas Advanced Computing Center (TACC).

Results and Analysis

We will discuss our quantitative comparison, followed by a
discussion on qualitative results and an analysis of the cor-
rectness and diversity of prototypes.

Quantitative Analysis

Table 1 reports train, validation, and test set accuracy on the
MSL surface data set with and without a prototypical layer.
Note, that the number of images in each dataset split is in-
dicated in the heading. In Table 1, we also report the train,
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Figure 3: Explanation for two images from class Sun showing the difference between evidence when the image is misclassified
as Night Sky (red, left) vs. when it is classified correctly as Sun (green, right) from a VGG19 backbone. The meaning of the
columns is identical to Figure 1 where (a - e) represents output for the test image in (a) and (f - j) represents output for the test
image in (f). Note the prototypes are ordered from most similar to least.

validation, and test set accuracy of all classifiers for only im-
ages that were classified with a confidence higher than 90%
under column “Acc(0.9)” and the percentage of examples
under the 90% confidence threshold (omitted from the Atlas
display) listed as “Abst Rate”. This is crucial as only classi-
fication results with a confidence level of 0.9 or greater are
delivered to the Atlas. We also report the baseline accuracy
when predicting the majority class under “Most Common”,
due to the imbalanced nature of our dataset. At an absten-
tion rate less than 20%, the ResNet18 architecture fine-tuned
on the MSL surface dataset yields the highest “Acc(0.9)” of
86.39% with an abstention rate of 15.5%. We observe a drop
of ~ 2.5% in “Acc(0.9)” and a 9 percentage points rise (from
15.5% to 24.5%) in abstention rate compared to its uninter-
pretable counterpart. A slight drop in accuracy is expected
as the addition of the prototypical layer constraints the infor-
mation passed on to the final layers to be the prototypes. The
work by Chen et al. (2019) suggests an ensemble of differ-
ent backbone networks to further close the performance gap
between a network with and without a prototypical layer.
Furthermore, in future research endeavors, we intend to sys-
tematically examine the impact of employing a prototypical
layer on the abstention rate, particularly following the appli-
cation of model calibration techniques(Guo et al. 2017).

Qualitative Analysis

Figure 1 displays results for a sample image from the Mast-
cam cal target class. The calibration target, as seen in col-

umn (d), rows 1 and 3, emerges as the predominant proto-
type for classification. In contrast, the prototypes represent-
ing the background, located in column (d), rows 2 and 4,
are secondary in influence. Notably, a significant portion of
training images from the Mastcam cal target class, captured
by the rover’s integrated cameras, showcased a rocky back-
drop surrounding the calibration target. This observation in-
dicates that both the calibration target and its background
contribute as evidence. Specifically, the background oper-
ates as negative evidence, evidenced by its negative weights
of -0.45 and -0.44 in column (d), rows 2 and 4, respectively,
guiding the accurate classification of the Mastcam cal target.

To demonstrate the agreement between the correctness
of prototypes and classification results, we present proto-
types from two different test images from class Sun in Fig-
ure 3. The evidence set marked in red(left) explains what
led to misclassifying the image as class Night Sky while
green(right) indicates a true positive. The top-3 prototypes
in the incorrect classification focus on the emptiness of the
night sky. This behavior might be a result of some train-
ing images from class Night Sky having similar features as
class Sun, with both classes sharing visual attributes like the
empty sky. On the other hand, when the image was classified
correctly, the top evidence highly correlates to what a human
might consider salient of the Sun, i.e., a bright, round shape.
Therefore, using an interpretable content classification sys-
tem can provide a deeper insight into the classifier’s decision
when compared to its un-interpretable counterpart.



Train (n=5920) Validation (n=300) Test (n=600)
Acc  Acc(09) AbstRate | Acc  Acc(0.9) AbstRate | Acc  Acc(0.9) AbstRate
Most common (baseline) 26.3% - - 24.7% - - 31.2% - -
VGG19 (MSLNet) 99.4% 99.8% 1.5% 81.6% 85.6% 14.3% 81.3% 85.6% 12%

VGG19 + P-MSLNet 99.3% 99.8% 4.8% 77.3% 83.1% 21% 75.1% 82.5% 19.83%
VGG19 + P-MSLNet - TempCal 99.3% 99.7% 2.5% 77.3%  80.07% 14.6% 75.1% 94.5% 63.3%
VGG19 + P-MSLNet - VectorCal | 99.3% 99.8% 2.4% 81.3% 94.8% 55% 79.6% 94.9% 53.8%
ResNet18 (MSLNet) 100% 100% 0% 83% 87.6% 21.6% 79.5% 86.3% 15.5%
ResNet18 + P-MSLNet 96.4% 98.6% 7.3% 76% 84.5% 24.3% 74.8% 83% 24.5%
ResNet18 + P-MSLNet - TempCal | 96.4% 98.9% 10.6% 76% 94.9% 60.6% 74.8%  91.63% 66.1%
ResNet18 + P-MSLNet - VectorCal | 96.5% 98.8% 10.4% 77.6% 95.2% 57.66% | 76.8% 92.2% 61.1%

Table 1: Table showing train, validation and test accuracy along with threshold accuracy and abstention rate of different deep
networks trained on the MSL surface dataset. MSLNet is a regular deep CNN, P-MSLNet is its Prototypical version. Note the
performance metrics reported in this table do not incorporate the diversity loss; they solely aim to elucidate the influence of

employing a prototypical layer.
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Figure 4: Comparison of the average prototype diversity
over 100 prototypes for the most and least diverse classes,
plotted against the position of the prototype based on the
order of evidence (sorted based on importance), denoted as
k, used for classifying MSL surface data. Class Night Sky
sees significant improvement while class Float Rock has no
improvement in diversity from the inclusion of the diversity
loss term.

Diversity and In-class Prototypes

To understand the nature of evidence used globally across
classes, we present a quantitative evaluation of prototypes
for their correctness and diversity. Evaluating the correct-
ness of a prototype will help us to identify classes that use
evidence from other classes, i.e., classes sharing visual at-
tributes. In evaluating the diversity of prototypes learned
during training, we aim to understand the generalizability
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Figure 5: Average number of In-class prototypes for top-3
(square) and bottom-3 (triangle) most correct classes vs po-
sition of prototype in the order of evidence used & for clas-
sifying MSL surface test data by the VGG19 version of Pro-
toPNet.

of each class from the deep network’s perspective. This is
based on the assumption that a more diverse set of proto-
types for a class enhances its ability to generalize. With our
experimental setup, we noticed a 2 percentage point rise in
test accuracy and no significant drop in train accuracy by
introducing the diversity loss. Figure 4 shows a plot of the
average number of unique training images from which the
most similar prototypes for correctly classified test images
come vs. the position of prototype k € [1, 5]. Ideally, we ex-
pect a linear growth rate when every prototype comes from
a different image. Figure 4 reports the results obtained us-
ing the VGG19 version of the ProtoPNet for the top-1 and
bottom-1 most diverse classes. Class Night Sky has the least
diverse set of prototypes learned during training, with at
most ~ 4 unique prototypes among ten prototypes. Class



Night Sky sees significant improvement in diversity from the
inclusion of the diversity loss term proposed in this paper.
Note there is no change in diversity for class Float Rock with
the most diverse set of prototypes.

Finally, in Figure 5, we report the average number of in-
class prototypes present in top-k most similar prototypes,
i.e., the evidence used for classification that comes from an
image that is the same class as the test image. Examining in-
class prototypes provides insights into how much an image
class depends on other classes. From Figure 5, it is evident
that class Night Sky seems to have the most in-class pro-
totypes on average across all classes, with almost 80% of
the images having top-1 evidence coming from class Night
Sky. Similarly, classes Float Rock and Layered Rock seems
to have the least number of in-class prototypes with only
10% - 15% images containing in-class evidence indicating
the lack of enough evidence during training between the two
classes or the two classes have a lower inter-class variance.

Deployment Plan

The interpretable content based classification system studied
in this paper will be evaluated for deployment in place of
its un-interpretable counterpart currently in operation on the
PDS Image Atlas®. Our deployment plan is as follows:

1. We plan to create a comprehensive user study with differ-
ent levels of information being displayed to the user to
assess their relative merits. Some questions we hope to
answer are: How many prototypes should be displayed
to the user? How much feedback is the user willing to
provide?

2. Deploy the Proto-MSLNet classifier on MSL archives
at the PDS Imaging Node after calibrating the poste-
rior probabilities to inform decisions about which (high-
confidence) images will be shown.

3. Driven by prior research in explanation visualization
(Gunning et al. 2021; Vasu et al. 2021), we plan to mod-
ularize the cost of computing explanations to maintain
user engagement while only providing explanations on-
demand as explanations for simple decisions do not help
the user. We plan to work with our software develop-
ment and User Interface (UI)/User Experience (UX) de-
sign teams at the PDS Imaging Node to integrate the UX
design shown in Figure 6 on the Atlas.

4. In addition to providing explanations, we would like to
close the loop by allowing user to report misclassified
images or erroneous evidence as shown in Figure 6. We
would like to quantify and investigate methods to incor-
porate user feedback into model development. Our model
refinement protocol incorporates a tripartite feedback in-
tegration strategy: (1) Database consolidation of misclas-
sification feedback; (2) Analytical review to ascertain er-
ror causes; (3) Model enhancement based on prevalent
error causes, including label rectification or training set
expansion, prior to model retraining.

*https://pds-imaging.jpl.nasa.gov/search/
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Figure 6: An illustration of user experience being considered
for explanation visualization.

Conclusion

In this paper, we present our plans to deploy an interpretable
content-based search on the Planetary Data System (PDS)
Image Atlas. Building upon prior research on prototypical
networks, we introduced a novel enhancement through the
integration of a diversity cost. We report the results for clas-
sifiers trained on Mars images acquired from instruments
on the Curiosity rover. Firstly, we demonstrated that an in-
herently interpretable network could be trained for imagery
from Mars with a minimal performance drop of 2.5 percent-
age points with a 9 percentage points rise in abstention rate
compared to its non-interpretable counterpart. In addition to
highlighting the benefits of having an interpretable system
through qualitative examples, we also report quantitative
metrics that help us judge the quality of evidence learned
for an image class. The ability to provide evidence used for
content classification lets us debug spurious evidence used
by the classifier and paves the way for a feedback mecha-
nism from its users to improve model performance. In fu-
ture work, we plan to investigate the effect of such reporting
mechanisms on overall system improvement. We also plan
to investigate different visualizations of prototypes to under-
stand user preferences. While this paper focused on results
from classifiers trained on the MSL surface dataset, we in-
tend to broaden our research to include other classifiers such
as the Mars Reconnaissance Orbiter and Mars Exploration
Rover present on the Atlas. Overall, the work presented in
this paper aims to render content classification across all
missions on the NASA PDS system transparent and inter-
pretable accelerating scientific discovery and aiding individ-
ual curiosity.
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