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Centroidal Clustering of Noisy Observations
by Using rth Power Distortion Measures

Erdem Koyuncu

Abstract— We consider the problem of clustering a dataset through
multiple noisy observations of its members. The goal is to obtain a
clustering that is as faithful to the clustering of the original dataset as
possible. We propose a centroidal approach whose distortion measure is
the sum of rth powers of the distances between the cluster center and the
noisy observations. For r = 2, our scheme boils down to the well-known
approach of clustering the average of noisy samples. First, we provide
a mathematical analysis of our clustering scheme. In particular, we find
formulas for the average distortion and the spatial distribution of the
cluster centers in the asymptotic regime where the number of centers is
large. We then provide an algorithm to numerically optimize the cluster
centers in the finite regime. We extend our method to automatically assign
weights to noisy observations. Finally, we show that for various practical
noise models, with a suitable choice of r, our algorithms can outperform
several other existing techniques over various datasets.

Index Terms— Centroidal clustering, high-resolution theory,
noisy clustering, quantization.

I. INTRODUCTION
A. Ordinary Centroidal Clustering

The goal of clustering is to partition an unlabeled dataset into
disjoint sets or clusters such that each cluster only consists of similar
members of the dataset [1]-[3]. Of particular interest to this work
are center-based or centroidal clustering methods, as described in the
following. Let D = {y;;}7, C R’ be a dataset of d-dimensional
vectors, whose elements are drawn according to a random vector X;.
In classical k-means clustering [4]-[6], one is interested in finding
the optimal cluster centers uy,...,u, that minimize the average
distortion

I <& .
ey uy) > ;gmzn g = vl Q)

Distinct clusters can then be identified via the Voronoi cells {y € D :
ly —uill < lly—ujll, ¥j}, i =1,...,n (ties are broken arbitrarily).
Several variations to the basic formulation in (1) have been studied.
For example, the squared-error distortion measure (u,y) — |u —
y|* between the cluster center u; and the dataset sample y;; in (1)
can be replaced with the rth power distortion measure (u,y) —
lu — y|I” [7], a quadratic distortion (u, y) +— (u — )T A(u — ),
where A is a positive semidefinite matrix [8], [9] or Bregman
divergence [10], [11].

Finding a (globally) optimal solution to (1) is known to be an
NP-hard problem [12]. Nevertheless, locally optimal solutions can
be found using the k-means algorithm or its extensions such as the
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generalized Lloyd algorithm [6], [13]. Moreover, vector quantization
theory [14], [15] provides a precise description of the structure of
optimal solutions and the corresponding minimum average distortions
in the asymptotic regimes n, m — oo [16], [17].

B. Clustering Noisy Observations and Related Work

In this work, we will study the following practical variant of
the clustering problem. Consider a physical process that generates
a (noiseless) dataset D’ = {y/}/.,, and suppose that our goal is
cluster D'. In practice, we may only access a noisy version of D’
through, for example, sensor measurements. For any given sample
index i € {1, ..., m}, given that there are L sensors in total, sensor £
can provide a noisy version y.; of the true data sample y/. In such a
scenario, one only has the noisy dataset D = {[y;, ..., yril}ir, C
R?*L available and cannot access D’. We wish to find a clustering
of D that is as faithful to the clustering of D’ as possible.

The noisy clustering formulation above is very well studied, at least
for the case of a single observation L = 1 under many different for-
mulations [18]-[20]. The multiple observations case L > 1 appears
prominently in the area of bioinformatics [21]-[23]. In fact, many
types of biological data such as gene expressions are prone to random
measurement errors during the acquisition or measurement phase.
A commonly utilized technique is thus to measure the same biological
sample multiple times, thus resulting in multiple noisy versions of
the actual data. A notable feature of these measurements is that the
corresponding measurement noises are often observed to be heavy-
tailed, following, e.g., a (Student’s) z-distribution with a low degree
of freedom, rather than a Gaussian distribution [24], [25]. In fact,
heavy-tailed noise appears in a variety of practical phenomena and
thus has been the subject of many recent publications in the context
of machine learning [26], [27]. Another primary application area for
the case L > 1 is sensor networks, where each sensor observes a
different noisy version of the underlying process [28].

There have been many different proposed techniques to effec-
tively utilize the multiple observations for clustering purposes in
the aforementioned studies. A basic method is averaging, where
one simply clusters the dataset of averages {(1/L) Z{L:] Yeilit,
of noisy observations [22] using the k-means algorithm. In the
co-clustering approach, one instead clusters all 7 L noisy observations
Ule{yf,,»}}”zl together [23]. For every sample index i, a majority
vote is then cast among the clusters of {yf,,»}f=I to determine the
cluster of sample index i. Another approach is to merely concatenate
the L noisy observation vectors {y,,;}~, into one dL-dimensional
vector and cluster the resulting dataset {[y{,,...,y[ 1"}, of
dL-dimensional vectors. This becomes a special case of the mul-
timodal or multiview clustering [29], [30], where each noisy mea-
surement corresponds to one individual view. Ensemble methods can
also be utilized. In [23], each noisy dataset {y,;}i, is first clustered
individually, resulting in a co-occurrence matrix M,. The (i, j)th
entry of the sum Z{L:] M, then indicates for how many observations
the sample indices i and j belong to the same cluster. Agglomerative
hierarchical clustering is then applied to Z?=| M, to estimate the
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clustering of the noiseless dataset. In [28], a Kalman-type filter is
proposed for a scenario where each observation is corrupted by an
additive Gaussian noise whose variance is time-varying but known.

C. Main Contributions and Brief Organization

Despite various practical applications, some of which have been
mentioned above, the optimal method to combine multiple noisy
observations for clustering purposes remains a wide open problem.
Previous work has made significant progress by identifying various
combining methods and evaluating the performance of these methods
over various datasets. However, a mathematical analysis of the
available methods is generally not available. Another drawback of
the existing methods is that they may not be necessarily tailored
for practically relevant cases of noise, which may be heavy-tailed
or stem from outliers, as discussed in Section I-B. In this work,
we introduce a new centroid-based method for clustering noisy
observations. Through various numerical simulations over different
datasets, we show that our method outperforms various existing
methods. We also provide a mathematical analysis of our clustering
method by finding the corresponding optimal centroid distribution and
the asymptotic distortion. Beyond clustering, our analytical results
generalize some of the fundamental classical results of quantization
theory and also find applications in the area of facility location
optimization.

The rest of this brief is organized as follows. In Section II,
we introduce our new clustering method. In Section III, we introduce
some well-known results from quantization theory to aid in analyzing
the method. In Section IV, we provide a theoretical analysis of
our clustering scheme. In Section VI, we provide numerical results
over different datasets. In Section V, we describe an algorithm to
optimize observation weights. Finally, in Section VII, we draw our
main conclusions.

II. DESCRIPTION OF THE METHOD

In this section, we describe our new technique to cluster noisy
observations and discuss its motivations. A detailed analysis of the
scheme and numerical results will be provided in Section IV.

A. Formulation of the Distortion Measure

Our method is inspired by and generalizes the basic method of
averaging, which was described in Section I-B. In order to present
our method in full generality, we consider the generalized averaging
scheme [24], [31], which relies on clustering the dataset of a weighted
sum of observations {(1/c1)(A1y1; +- -+ Apir) e, Here, {5,
are the weights that govern the reliability of each observation set,
and ¢, = A; + --- + A,. Equivalently, one designs the clustering so
as to minimize the average distortion [c.f. (1)]
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A first step is to rewrite the mean-squared term as a sum of squares
through the equality
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Identity (3) can easily be verified by expanding the squared Euclidean
norms on both sides via the formula ||a+£|> = ||la|?+ 811> +2a” B,
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Algorithm 1 Algorithm for Clustering Noisy Observations

1: Initialize the cluster centers U = (uy, ..., u,) arbitrarily.

2: Iterate (6) and (7) until convergence of the cost (5).

3: Fori =1,...,m, set the final clustering ¢; = j, where i € V;.

where o and f are arbitrary vectors. Noting that the last two terms
in (3) are independent of k, the problem (2) is equivalent to finding
a clustering that minimizes the average distortion

m L

1 . ,
(W) E;m;n;wnuk—yf,inz. @

Our proposed method is to focus on a general power r > 1 of the
Euclidean norms |lu; — y¢;|| that appear in (4). In other words, we
propose to find a clustering that minimizes

m L
1 . r
s y) > ;Z}jnaklngj&f||uk—ym| ®)

where r > 1 is some real number. For the special case r = 2, our
formulation boils down to the averaging scheme. We shall shortly
discuss the motivation behind considering a general power r # 2 and
why such a generalization should help. Let us first describe the
solution to the minimization of (5) and the resulting overall clustering
algorithm.

B. Generalized Lloyd Algorithm

Since (5) generalizes the classical k-means problem (1), which
itself is NP-hard, finding the globally optimal solution to (5) is also a
hopeless problem in general. However, a locally optimal solution can
be found via the following variant of the generalized Lloyd algorithm.
First, one initializes some arbitrary U and then iterates between the
two steps of calculating the generalized Voronoi cells

L L
Vi i D el = yeill” <D dellwg — y[,,-n’Vk}
=1

=1

(6)
for j =1,...,n, and the generalized centroids
L
uj < argmin > dellu — vl )
ieV; (=1

It is easily seen that the resulting algorithm results in a nonincreasing
average distortion at every iteration and thus converges in a cost-
function sense. Moreover, the calculation of (7) can be accomplished
in a computationally efficient manner as it is convex for any r > 1
(also see [32] for fast gradient-based algorithms). In fact, for r = 1,
(7) reduces to the calculation of the so-called geometric median, and
Weiszfeld’s algorithm provides an efficient solution.

The overall algorithm for clustering a dataset of noisy observations
is provided in Algorithm 1. Note that we have allowed a different
weighting of observations to present the algorithm in full generality.
The weights Ay, ..., A, can all be set to the same value (e.g., unity)
when the observation noise statistics are known to be independent and
identically distributed. Another possibility is to optimize the weights
with respect to the statistics of observations; an automatic weighting
algorithm will be presented later in Section V. The power r should
typically be set depending on noise statistics; some guidelines are
provided in the following.
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C. Motivations for the Method

We conclude the description of our clustering scheme by providing
the main motivations behind its formulation. At first sight, replacing
the second power [}f|? in (4) with the rth power [i|” to transition from
the averaging scheme to our new method seems like an arbitrary
choice. Our key motivation is that in many practical applications,
as discussed in Section I-B, noisy observations are corrupted by
heavy-tailed noise, which creates many outliers. On the other hand,
it is a well-known fact that squared-error distortion typically overam-
plifies the effects of outliers. It may thus be more suitable for using
a smaller power r < 2 or even r = 1 for robustness in practical
applications. In addition, we expect r > 2 to be relevant for noise
distributions with lighter-than-exponential tails. This includes noises
with finite support.

We would also like to note that the objective function (5) can also
be interpreted in the context of facility location optimization, at least
for the special case L = 2 (and L = 1). In fact, many facility location
optimization problems can be formulated as clustering or quantization
problems [33], [34]. For our scenario, consider packages at locations
Yii>--->Yi.m>» Which are to be processed at one of the facilities
uy,...,u, and then conveyed to their destinations y»i,..., Yam,
respectively. The cost of conveying a package from one location to
another can be modeled to be proportional to the rth power of the
distance between the two locations [35]-[38]. Thus, the total cost
of conveying the ith package through the facility at u; is given by
ly1; — uill” + |lux—y2;|I". The minimum average cost of conveying
all packages is then given by (5) with L = 2 and 4, = 1, V(.
Minimizing (5) corresponds to optimizing the facility locations.

III. QUANTIZATION-THEORETICAL TOOLS

A commonly utilized technique in analyzing various centroidal
clustering schemes is to assume having m — oo observations from
the dataset D [11]. In particular, for the simple k-means scenario
in (1), this allows one to replace the empirical sum with the integral

Q) £ / min [y = x| fy, (x)dx ®)

where U = (uy, ..., u,) is the quantizer codebook and fy, represents
the probability density function (pdf) of X,. We omit the domain of
integration when it is clear from the context.

For n > 1, we have the asymptotic result [16], [39]

. _2 2
min 6,(U) = xan™ 7| fx, |l 12, +o(n"7) C)

where the constant x, depends only on the dimension d and || fx, I, =)
(J (fx, (x))Pdx)1/P is the p-norm of the density fy,. The sequence
of quantizer codebooks that achieve the performance in (9) has the
following property. There exists a continuous function A(x) such
that at the cube [x,x + dx], optimal quantizer codebooks contain
nA(x)dx points as n — oco. Hence, A(x) can be thought as a “point
density function” and obeys the normalization f A(x)dx = 1. For the
squared-error distortion, the optimal point density function depends
on the input distribution through
A A

i = 78 [ [ 5o, (10
Equivalently, we say that 4 is proportional to f;‘f/ @) The question
is now how the nA(x)dx quantization points are to be deployed
optimally inside each cube [x, x 4+ dx]. Since the underlying density
fx, is approximately uniform on [x, x4dx], the question is equivalent
to finding the structure of an optimal quantizer for a uniform
distribution. For one and two dimensions, the optimal quantizers
are known to be the uniform and the hexagonal lattice quantizers,
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respectively (thus, the nA(x)dx points should follow a hexagonal
lattice on the square [x, x + dx] in an optimal quantizer). We thus
have [blx; = (1/12) and x, = (5/(18+/3)), corresponding to the
normalized second moment of the interval and the regular hexagon,
respectively. For a set A C R? with [ 4 xdx = 0, the normalized
second moment is defined as x(A) £ [, [lx||*dx/( [, dx)@2/9)_ For
d > 3, the optimal quantizer and x, remain unknown.

IV. ANALYSIS OF THE CLUSTERING SCHEME

Let us now consider our problem of quantizing multiple sources to
a common cluster center, as formulated in (5). For each ¢, we assume
that {y.;}/., is drawn according to a random vector X,. Following
the formulation in Section III, we replace the empirical sum in (5)
with the integral

L
s(U) £ /mkin;iclluk = xe|l” fx(x)dx (11
where x = [xy, ..., x,] represents a realization of the random matrix
X =[X,...,X;] and fx(x) is the pdf of X.

A. Squared-Error Distortions

We first consider squared-error distortions » = 2, which allows a
simple characterization of the optimal clustering scheme. In fact, for
r = 2, the decomposition (3) leads to

6W) = ex-t v [ min e —2IP fr(e)dz (12)
where ¢; = Zf=| ¢ is defined in Section I-B, Z £ (1/¢)) Z?=| AeXo
is the average of noisy samples, and ¢, £ E[Z[L:l el Xe|? —
/el Z[L:l J¢X¢|I*] is a constant. We observe that the integral
in (12) is merely the average squared-error distortion of a quantizer
given a source with density Z. Therefore, when r = 2, the optimal
quantization of multiple sources to a common cluster center is
equivalent to the optimal quantization of the single source Z with the
usual squared-error distortion measure. It follows that the results of
Section III are directly applicable, and we have the following result.

Proposition 1: Let r =2. As n — 0o, we have

13)

Moreover, the optimal point density function that achieves (13) is
proportional to fz(d/ @)

Proof: Formula (13) follows immediately from (10) and (12).
The optimal point density function is given by (9). ]

This precisely characterizes the asymptotic average distortion for
r = 2. When L = 1, which corresponds to ordinary quantization
with squared-error distortion, the average distortion decays to zero
as the number of quantizer centers n grows to infinity. Proposition 1
demonstrates that when L > 1, the average distortion converges to c;,
which is in general nonzero. The reason is that when L > 1, a single
quantizer center is used to reproduce multiple sources, which makes
zero distortion impossible to achieve whenever the sources are not
identical.

We conclude this section with a few remarks on the asymptotic
nature of the analysis. We also discuss how to interpret and make
use of the asymptotic average distortion and point density function
formulas provided by the analysis. First, although the distortion
formula in (1) is asymptotic in nature, the first two terms in the
right-hand side of (13) can be used to approximate the performance
at any finite n. The numerical results in Section VI shall demonstrate
that even when n is as low as 4 or 8, this provides a very accurate
approximation of the average distortion. The average distortion
itself characterizes the representation accuracy of the clustering

. _2 _2
min o(U) = ¢y 4+ crreyn d||fz||di+2 +0(n d).

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on May 06,2024 at 06:02:07 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

process. The fact that the average distortion can never be made zero
(i.e., bounded below by ¢;) is a testament to the fact that finding
the true clustering is impossible in general. This is because the
observations have been corrupted by continuous noise. The optimal
point density fz(d/ @+2) provides important global importance about
the structure of the optimal clustering scheme as it indicates the
spatial location of the cluster centers. It can be directly used to
design optimal clustering schemes without going through the time-
consuming Lloyd-based numerical design process. An example will
be provided in Section VI.

B. Distortions With Arbitrary Powers of Errors

We now consider the achievable performance for a general r # 2.
We also consider the case of L = 2 observations. Without loss of
generality, let 4; = 1. In this case, the objective function in (11)
takes the form

6y = [ [ min (s =l + dalie = )

X le,Xz(xl, xp)dxidx,.  (14)

The main difficulty for r # 2 is that an algebraic manipulation of the
form (3) is not available. Nevertheless, it turns out that an analysis
in the high-resolution regime n — oo is still feasible. First, we need
the following basic lemma.

Lemma I: Let () = |xi — ull” + A2llxo — ul”. The
global minimizer of ¢ is z = ((xi +axx)/(1+a)),
where o £ /lél/ =) The corresponding global minimum is
@ = (@ '/(A+a) " Dlxi —xa]l".

Proof: Note that ¢ is convex in u so that it is has a global
minimum. Observe that this global minimum should be located on
the line / that connects x; and x,. In fact, suppose that the global
minimizer z does not belong to /. We can project z to / to come up
with a new point 7z’ that satisfies ||x; — 2’| < [lx; — z|| and |x; —
7|l < |lx2 — z||. This implies £(z’) < £(z) and thus contradicts the
optimality of z. Given that z should be on /, it can be written as
7= ((x; + axy)/(1 + a)) for some o € R. We have

r r

x|+ ax; . x| + axy
= |x; - ——=| + -
¢(2) X1 l+a A2 || X2 1 +o
iz-i-a’ ” ”r
= —|Ix; — x2|".
I+ a) ! ’

Let us now calculate (8&(2)/0a) = (r(1 + a) Hx; — x|/
((1 + a)*))(@"~" = A2). According to the derivative, &(z) is decreas-
ing for ¢"~' — 1, < 0 and increasing for "' — 1, > 0. The
global minimum is thus achieved for a = A5"/“~". Substituting this
optimum value for a, we obtain the same expression for £(z) as in

the statement of the lemma. This concludes the proof. (]
According to Lemma 1, given one data point at X; = x;, and
the other at X, = x,, the minimum cost can be achieved by

using a cluster center at z = ((x; + axz)/(1 + a)). Then, given a
hypothetically infinite number of cluster centers, one can achieve the
optimal performance by placing the centers at every possible location
imaginable. On the other hand, given only finitely many centers, one
has no choice but be content with choosing the center that is close to
the optimal location z. In such a scenario, it makes sense to analyze
the behavior of the function &(u) near its optimal value u = z. For
this purpose, we utilize the following lemma.

Lemma 2: Let v £ x; — x5, 0 = v/||v|l, and A(u, 2)
2)TA+ (r —2)o07)(u — 7). We have

ar—Zr ”l) I|r—2

2(1 +a)—3

L (u—

a’Holl”

= 0o A, 2) +o(lu = zI).

15)

$u)
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Proof: Let u = z 4+ €, where ||e|| is small. We have
x| +ox; " x| +ox; '
§(Z+€)— xl—ﬁ—e + A X2 1+a H
1 . l+al"
=——(a"|x1—x—¢€
1+ a) : ?

+ Alx —xz+e(1+a)||’>. (16)

Now, let V f(w) and V? f(w) denote the gradient and the Hessian of
a multivariate function f evaluated at w, respectively. We have the
generic multivariate Taylor series expansion

F0 €)= ) + €TV S ) + 37V Fw)e + olel?).
(7

In order to expand (16) for small €, we need to find the Taylor
expansion of the function w + |w|". For this purpose, for any
vector w, we let w = w/|lwl||. The gradient and the Hessian of
w +— |w|” can then be calculated as V|w|" = r|lw| " >w and
V0 w|" = rl|w| 2@+ (r — 2)ww"), respectively, where I is the
identity matrix. Substituting to (17), we obtain |w + €|" = ||w]||" +
rllwl™ 2w’ e+ ((rlwl=?)/2)e" A+ (r = 2) " )e +o(lle||*). Using
this expansion in (16) leads to &(z+€) = (o' /(1 + a) ") o |I" +
((ra”)/2( +a) )l 2e" X+ (r = 2)55")e + o([l€]*). Sub-
stituting u — z in place of € concludes the proof. O

Now, let ¢z = (ra’?)/QIL+a)3) and ¢ =
(a/(14+a))'E||X; — X,|". Substituting (15) into (14) and
using ming(¢r + o(¢y)) = ming ¢ + o(ming ) for arbitrary
functions ¢, yield

5()
= o [ [ min o1 2 A 2 (2 D + o

+ [ [ o{min s = 21P) g 1.3

According to (9), the last term is o(n~*/%)). For the second term,
a change of variables v = x; — x2, z = ((x; + axy)/(1 4+ a)) yields

(18)

o) = e tes / min (z = )’ B(:)(z — w)dz +o(n”7)

B(:) = / ol 2@+ (- — 2557) f,ms

av 0
xz4+——,z2— do
( 1 +a I+a )
Note that for any v and r > 1, the matrix I+ (r — 2)o0” is positive
semidefinite. This implies that the matrix B(z) is positive semidefinite
for every r > 1.

The function (z,u) +— (z — w)'B(z)(z — u) defines an
input-weighted quadratic distortion measure. The structure and dis-
tortion of the optimal quantizers corresponding to such distortion
measures have been studied in [9]. As discussed above, the matrix
B(z) is positive semidefinite for every z so that the results of [9] are
applicable. In particular, we have

19)

min / min (2 — u)" B@)( — u)dz

= zcdn_% (detB(z))é H E + o(n_%) (20)

a+

and the optimal point density that achieves (20) is
Zr> (detB(z))riz//(detB(z))ﬁdz. @1

For our specific problem, we obtain the following theorem.
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Theorem 1: Letr > 1 and L = 2. As n — 00, we have

ml;n o0U)=cs+ C3Kd}’l_% H (detB(z))ﬁ

2
i +0(n 3).
(22)

The optimal point density function that achieves (22) is proportional
to (detB(z))/@+2),
Proof: Formula (22) follows immediately via (19) and (20). The

optimal point density function is provided by (21). O

For ordinary center-based quantization with the rth power distor-
tion measure, classical results [7], [16] imply that the average distor-
tion decays as n~ /%), These results only consider the reproduction of
one source sample with one quantization point. Our analysis extends
the classical results to the case where a common reproduction point
is used to recover two sources simultaneously. It is interesting to note
that the average distortion in this case decays as n~?/%), independently
of r.

Let us now discuss certain special cases of the conclusions of
Theorem 1 above.

Example 1: For r = 2, we have «a = A, and
we can easily verify ¢ = ¢,¢c = c¢;. Moreover,
Bz) = [fux@ + (@/(1+a),z = 0/(14+a)d] =
(4 a)/a) [ fx,.x, 0, (0 +a) =v)/a))dol = fz(z)I. The
second equality follows from a change of variables

7 4+ (av/(1+a)) <« v, and the last equality follows once we
view the pdf of Z = ((X;+aX,)/(1+a)) as a convolution.
Substituting the derived equalities, we find that the conclusions of
Proposition 1 and Theorem 1 become identical. (]

Example 2: Let d =1, o > 1. Suppose X; and X, are indepen-
dent and uniform on [0, 1]. After some basic calculations, we obtain

1 1
71 +ll)r_1(1 + ar—l)’ z € |:0, m]
1+(X r—1
( - ) ((] _Z)rfl _,’_erl)
c 1 a
e T+a
1
(I_Z)r—l(1+a)r—l(1+ |)
a'"

o
ze|——,1
|:l+a ]

0, z¢I[0,1].

B(z) =

(23)

According to Theorem 1, the optimal point density at z is proportional
to the cube root of B(z). The normalizing constant can be calculated
to be

1
/ (B(2))dz
0

1

_ 6 (i LY
‘<r+2)<1+a)( +a’-')

1 5 T -1 =N
+ l+g /] (=27 +277)3dz.

T+a

(24)

The integral in (24) cannot be expressed in terms of elementary
functions but can easily be evaluated numerically. Also, for the
special case of @ = 1, the integral vanishes so that we have simply
[ (B()Pdz = (2193)/(r +2)). Also, when X; and X, are
independent and uniform on [0, 1], the random variable || X; — Xz| =
X1 — X,| has pdf fix,—x,(z) = 2(1 — z), z € [0, 1]. Therefore,
X1 —Xal" = [} & fix,—x,(2)dz = 2/((r + D +2))). A closed-
form asymptotic expression for the optimal asymptotic distortion
can then obtained via Theorem 1. One only needs to numerically

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 1, JANUARY 2024

Algorithm 2 Weighting Algorithm for Noisy Clustering

1: Initialize weights A, = L™ uniformly.

2: Initialize the cluster centers U = (uy, ..., u,) arbitrarily.

3: Iterate (6), (7), and (26) until convergence of (5).

4: Fori =1,...,m, set the final clustering ¢; = j, where i € V;.

evaluate the integral in (24). In particular, for « = 1, we obtain
S(U) = (27 /(r + 1) +2))) + (187 /(2 (r +2)")(1/n?) + o(1 /n?).
According to (23) and Theorem 1, the corresponding optimal point
density function is proportional to (I — [2z — 1])"~! on [0, 1] and
vanishes everywhere else. O

We leave a mathematical analysis for the general case of
L > 2 sources as future work. Note, however, that the numerical
design of the quantizer [i.e., a minimization of (11)] in the general
case is always possible via Algorithm 1.

V. AUTOMATIC WEIGHT OPTIMIZATION

We now describe an algorithm to optimize the weights 4,. When
the observation noises are independent and identically distributed,
one can use equal weights for samples. For the remaining cases,
we describe an automated weight update algorithm inspired by the
previous work [40]-[43]. The idea is to minimize the cost function (5)
over the clustering U as well as weights Ay, ..., A, that satisfy the
constraint Z[L:l /1}/ # =1, where f > 1 is some hyperparameter.
In the following, we discuss how to perform this minimization for a
fixed cluster assignment of samples. Letting V; denote the Voronoi
cell for clutter center j as in (6), we have

m L

1 ) . ,
0(U) = — > min > el = yeil

i=l1 =1

n L L
= %ZZZMH’M =yl = %;M&Z

j=1iev; (=1

where 0, £ >7'_ 3., lu; — yeill’. By reverse Hoélder’s
. ~ L BN oL p—(1/(B=1)
inequality, 5(U) > (1/m)C,_, 4" O, 6, y--h =
(1/m(r, 9[_('/(/3_1)))*(/"*1), with equality if and only if i}l/ﬂ) =
ct, W=D for some constant c¢. We can solve for ¢ using the
constraint on A, to find the optimal weights as

e :e[”%/(ieﬂl“)ﬂ.

One can now extend Algorithm 1 to alternate between the three stages
of Voronoi diagram assignments, centroid calculation, and weight
optimization. A naive implementation of such an algorithm leads
to convergence to undesirable to local minima, where more noisy
samples are assigned zero weights. We thus utilize a momentum
update for the weights. Specifically, given that the local distortions
0, are calculated using the “old” weights A,, let A, be as defined
in (25). Then, A, is updated using a momentum rule as

(25)

1 1\p
2o (il + = wily) . (26)

The full algorithm is summarized in Algorithm 2. For » = 2 and
without the momentum update, Algorithm 4 is essentially the same
as the algorithm presented in [40]. Also, if the noise statistics are
identical, the algorithm essentially boils down to Algorithm 1 as
uniform weights are optimal.
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Fig. 1. Performance of our method for r = 1 compared to different clustering methods for ¢-distributed noise with different degrees of freedom 7 over the

Iris dataset and n = 3 cluster centers. The leftmost, middle, and right figures represent the cases of L = 2, 4, and 8 observations, respectively. For each figure,

the horizontal axis represents 7, and the vertical axis represents the ARI.

VI. NUMERICAL RESULTS

In this section, we provide numerical experiments to show the
performance of our algorithms over various datasets and to verify
our analytical results.

A. Performance Evaluation Over Existing Datasets

In order to evaluate our clustering scheme, we conducted exper-
iments over UCI benchmark datasets [44] and the 32-D Gaussian
mixture dataset [45]. For more discussion on the size of clusters,
we refer to [46, Table I].

Let D' = {y;}{, be one of the (noiseless) datasets. We assume that
the observations are given by the additive perturbations y;; = y,; +
nei» ¢ =1,...,L,i =1,...,m, where #,;s are the noise terms.
Using only the resulting noisy dataset D = {[yi;,...,yil}in; C
R?*L_ we wish to obtain a clustering that is as close to the clustering
of D’ as possible. We have used the adjusted Rand index (ARI) [47]
to quantify the closeness of clusterings and thus to compare different
methods. Specifically, we utilize our clustering method for different
values of r and equal weighting across observations unless otherwise
specified. We compare our method with the benchmark methods of
averaging, co-clustering, concatenation, and hierarchical clustering,
as described in Section I-B. Note that averaging is equivalent to our
method when r = 2. We evaluate different methods by generating a
sufficiently large number of random observation instances and aver-
aging out the resulting ARI measures. We generate enough samples
so that a Monte Carlo similarity measure average y is accurate
within [y —0.01, y 4+ 0.01] with 95% confidence. Unless otherwise
specified, we consider independent and identically distributed noises
across observations. Therefore, the weights A, corresponding to each
observation can be set to unity without loss of optimality, and
Algorithm 1 can be utilized as the clustering algorithm.

In Fig. 1, we show the numerical results for the Iris dataset and
evaluate our method for the case r = 1. We consider ¢-distributed
noise samples with pdf x — ((C((1 +v)/2))/(Vvx L (©v/2)([1 +
@2 /v))~W2A0 x e R, where v > 0 is the degree of freedom
and I'(-) is the gamma function. Practical values for v include v €
[1,4] [25]. As mentioned in Section I-B, heavy-tailed distributions
create many observations that deviate significantly from the ground
truth observation. They can thus accurately model various real-life
phenomena that include outliers such as in biology. We also consider
Gaussian and uniformly distributed noise.

Fig. 1 shows the numerical results for the Iris dataset and the
comparison of our method for r = 1 with state-of-the-art competing
methods. We can observe that our method outperforms all existing
methods for all different values of the degree of freedom v and
number of observations L. In fact, the performance gain becomes

TABLE I

PERFORMANCE RESULTS FOR THE IRIS DATASET. OBSERVATION
COMPONENTS ARE EITHER PERTURBED BY ADDITIVE GAUSSIAN
NOISES WITH ZERO MEAN AND VARIANCE o2 (COLUMNS
CAPTIONED WITH 62S) OR ADDITIVE NOISES THAT ARE
UNIFORM ON [—¢, +¢] (COLUMNS CAPTIONED WITH €S)

L=2n=3 L=8n=6
02=025[0% = 1[e=0.25]€ = 1|02 =0.25[0% = 1fe=0.25]e = 1
Our Method, r=1| 0.868 [0.622]0.914(0.754| 0.734 | 0.497 [0.769 [0.633
Our Method, »=3| 0.909 | 0.621 |0.954(0.777| 0.728 | 0.502 [0.755|0.646
Averaging (r=2)| 0.897 [0.622(0.938|0.762|0.735 |0.508 |0.762 |0.634
Concatenation| 0.900 | 0.606 |0.947|0.762| 0.726 | 0.461 |0.765|0.606
Co-clustering| 0.844 | 0.501 |0.920|0.687| 0.713 | 0.364 |0.770{0.512

Hierarchical| 0.836 | 0.424 |0.908 |0.664 | 0.598 | 0.239 |0.696 |0.404

TABLE I
RESULTS FOR HANDWRITTEN DIGITS DATASET

L =2 L=1 L =38
v=1lvr=2lv=3|lvr=1|vr=2{v=3lr=1|v=2|v=
Our Method, r=1{0.000|0.060| 0.767 |0.164|0.727| 0.803 |0.114|0.732(0.814
Averaging (r=2)|0.000| 0.043 |0.773| 0.000 | 0.242 |0.804| 0.000 | 0.489 |0.814
Concatenation|0.000| 0.004 | 0.716 0.002 | 0.738 | 0.000 | 0.001
Co-clustering|0.000| 0.002 | 0.617 0.000 | 0.511 | 0.000 | 0.000

Hierarchical|0.000| 0.008 | 0.738 0.015]0.673 | 0.000 | 0.033

very significant as the noise becomes more heavy-tailed and severe
(lower values of v) when a large number of observations are available.
In fact, we can observe that the ARI with our method gradually
increases from 0 to 0.53 as one increases the number of observations
from 2 to 8, while the ARI with other methods remains zero. We can
also observe that as the noise becomes less severe, the performance of
averaging (which corresponds to r = 2 with our method) approaches
to the performance of our method.

In Table I, we provide the results for the Iris dataset for uniform
and Gaussian noises with different variances. We can observe that
the huge advantage of using our method with r = 1 over other
methods has largely disappeared. In fact, » = 2 outperforms r = 1 for
almost all the scenarios considered. This is expected as the considered
noises are light-tailed or even have finite support. For light-tailed
noises, with the intuition that the mean-squared error (r = 2)
should be optimized for the Gaussian distribution, our idea is to
increase r beyond r = 2 so that the quantizer is potentially better
“matched” to the noise. In fact, using » = 3 with our method can
still provide a modest gain compared with other methods, especially
for the case of uniform noise. This suggests that r can be optimized
further depending on the dataset and the noise statistics for better
performance. We leave such optimizations as future work.

Tables II and III show the results for Handwritten Digits and
Gaussian Mixture datasets, respectively. Similar to the results in
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TABLE IIT
RESULTS FOR THE GAUSSIAN MIXTURE DATASET

L=2 L =1 L =8
v=1lr=11llvr=12v=13|vr=2|v=1|lvr=11lr=12{r=13|v=2|v=1|lv=11lr=12[r=13|v =
Hierarchical | 0.002 | 0.031 | 0.311 | 0.722 |0.998| 0.007 | 0.070 | 0.597 | 0.916 |1.000|0.012 | 0.137 | 0.760 | 0.967 |1.000
Co-clustering | 0.001 | 0.001 | 0.008 | 0.105 | 0.969 | 0.000 | 0.000 | 0.000 | 0.007 |0.931 |0.000| 0.000 | 0.000 | 0.000 |0.087
Averaging (r=2)| 0.001 | . 0.020 | 0.193 | 0.487 |0.993|0.001 | 0.029 | 0.261 | 0.575 | 0.997 | 0.002 | 0.039 | 0.321 | 0.648 | 0.998
Our Method, » =1{0.003| 0.023 | 0.190 | 0.481 |0.993 |0.616| 0.575 | 0.653 | 0.780 | 0.997 |0.676| 0.625 | 0.700 | 0.815 | 0.998
Concatenation| 0.001 | 0.003 | 0.045 | 0.246 |0.984 | 0.000 | 0.001 | 0.010 | 0.128 | 0.982 | 0.000 | 0.000 | 0.000 | 0.052 |0.977
TABLE IV
RESULTS FOR THE BREAST CANCER DATASET
L= L =1 L=
V= v=11lv=12r=13|v = V= v=11lr=12{r=13|v=2|vr=1|lr=11{r=12|r=13|v =
Hierarchical | —0.005| 0.483 | 0.789 | 0.932 |1.000|—0.006| 0.733 | 0.930 | 0.932 | 0.998 | 0.405 | 0.903 | 0.995 | 0.998 |1.000
Co-clustering| 0.000 | 0.103 | 0.412 | 0.570 | 0.999 | 0.000 | 0.000 | 0.140 | 0.570 |1.000| 0.000 | 0.000 | 0.000 | 0.362 |1.000
Averaging (r=2)|—0.002| . 0.339 | 0.656 | 0.752 |0.999 | 0.001 | 0.334 | 0.643 | 0.752 |0.997|0.062 | 0.314 | 0.723 | 0.848 |1.000
Our Method, » = 1|—0.002| 0.338 | 0.669 | 0.718 | 0.940 | 0.938 | 0.939 | 0.940 | 0.940 | 0.940 [{0.940| 0.940 | 0.940 | 0.940 | 0.940
Concatenation | —0.002| 0.212 | 0.521 | 0.676 [ 0.999 | 0.001 | 0.135 | 0.418 | 0.676 |0.997|0.000| 0.007 | 0.248 | 0.662 |[1.000
‘ ‘ [ [ [ 0.8 ‘ 1
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Fig. 2. Results for the Glass dataset. Fig. 3. Results for the Thyroid dataset.
T T T
x r =1, Adaptive
Fig. 1 for the Iris dataset, our method for » = 1 is superior to 05 \ =1 1
.. . =G== =2, Adaptive
the existing methods, especially for small degrees of freedom v. For 04 N\ -2 |
the Gaussian mixture dataset, we provide results for a “condensed” \ . \
set of degrees of freedom v € {1.0, 1.1, 1.2, 1.3, 2} to demonstrate g 03 \.4
how quickly the performance can vary depending on v for certain
. 0.2
datasets. While our method performs the best for small v, as v §\
becomes larger, hierarchical clustering outperforms all centroid-based 01 N\ —
methods. This suggests hierarchical clustering as an alternative for x_
certain datasets with well-separated clusters. A similar phenomenon 0.0 = =
can be observed for the results for the Breast Cancer dataset, as shown N Ievell?('o 125 150

in Table IV. Also, for the Gaussian Mixture dataset, although it
is not shown in the table, for v = 3, all methods provide an
ARI of 1.

In Fig. 2, we show the numerical results for the Glass dataset.
The horizontal axis represents the number of observations, and the
vertical axis represents the ARI. Here, we only show the results
for r = 1 and r = 2 (averaging) as the other competitor methods
provided strictly inferior performance than either scheme under all
conditions considered. We can observe that improving the number of
observations generally improves the similarity measure. Moreover,
it is more appropriate to use r = 2 when the noise distribution has
lighter tail (increasing values of v). In fact, the choice r = 1 generally
outperforms r =2 if v € {1, 1.5}, while r = 2 outperforms r = 1 if
v = 2. We have observed similar behavior in the previous datasets
as well, for different cutoff values for v. In particular, the results for
the Thyroid dataset in Fig. 3 suggest that the cutoff value for v is
slightly above 3.

Fig. 4. Results for Algorithm 2.

We now validate the performance of our automatic weighting
scheme provided by Algorithm 2. For this purpose, we consider
the Iris dataset with four observations. We assume that all four
observations are perturbed by the z-distributed noise with parameter
v = 2. In addition, the second and the third observation noises are
scaled by a factor of y. We have applied Algorithm 4 with f = 2 and
the momentum parameter u = 0.5, for » € {1,2}. In Fig. 4, the
horizontal axis represents y, and the vertical axis denotes the resulting
ARI. We can observe that when y = 1 (all noise levels are the same),
both equal weighting and the adaptive weighting strategies provide
the same performance. This verifies that for equal noise levels, equal
weightings are optimal. As the noise level increases at the second
and third observations, the ARI performance generally decreases.
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Fig. 5. Analytical versus numerical cluster center locations and average distortions for the uniform sources in Example 2. (a) Cluster center locations for

n =4 and r = 3. (b) Cluster center locations for n = 8 and r = 4. (c) Average distortions of quantizers in (a) and (b).

TABLE V
EXECUTION TIMES IN MILLISECONDS OF DIFFERENT SCHEMES

Hier. [Maj. |r = 2|r = 1|Con.

v=1{79 (23| 14 | 245|112

vr=2[99 26| 1.8 [184 [ 12

Iris, L=4 [v=3[14.0]43] 2.1 [16.5] 1.7
v=4[163[52| 1.9 | 149 | 1.8
v=>5[176]53] 23 [14.0] 2.0
v=1(365|70| 20 |71.1 |44

v=243.0[ 81| 3.1 | 52145

Glass, L =8 |v=3[43.1|15.9| 3.1 | 384 | 5.1
v =4[45.5]17.4] 2.8 [33.6 | 5.1
v=>5[428|17.8| 2.8 | 29.1 | 4.7
v=1(49.6|59 | 1.7 | 49.2 | 2.7
v=2[522|6.1| 2.3 |50.1 |27

Thyroid, L = 32[v =3[65.0] 7.4 | 2.5 [46.4 ] 3.2
v =4[839(10.6| 2.5 | 45.3 | 3.5

v =5[91.0[13.0] 2.4 [45.6 | 3.6

However, we observe that the adaptive weighting strategies are more
robust to heterogeneous noises across observations compared to
equal weighting strategies. Also, strategies where » = 1 generally
outperform those with » = 2 as before.

In Table V, we show the execution times of different clustering
schemes for different datasets and parameters. We can observe that
r =1 is considerably slower than r = 2, with the main bottleneck
being the centroid calculation. In fact, for r = 2, the centroid
calculation is a mere average of noisy samples, while for » = 1,
one has to perform a computationally expensive gradient descent
step. Among clustering schemes with simple centroid calculation
(i.e., majority voting, averaging, and concatenation), majority voting
has the highest complexity. This is because it factors the effective
dataset size by L requiring more time for the Lloyd algorithm to
converge. Also, concatenation has slightly higher complexity than
averaging (r = 2) as it factors the effective dataset dimension by L,
again resulting in longer convergence times. Hierarchical clustering
and our method with » = 1 have comparable time complexity, with
our method often running faster. In general, we observe that if the
resulting ARI performance is high, our algorithm typically converges
faster. This can be verified by comparing with the corresponding ARI
results in Figs. 2 and 3. Hence, although our algorithm is somewhat
slower than the ordinary ¢,-norm-based clustering methods, the
performance gains justify the cost in execution time.

B. Validation of High-Resolution Analysis

We now provide numerical experiments that verify our high-
resolution analysis. We consider the same scenario as in Exam-

ple 2 for different values of r and n. We compare the cluster
centers obtained using our generalized Lloyd algorithm (labeled
“Numerical”) with those provided by Theorem 1 (labeled “Ana-
Iytical”) for n = 4 and r = 3 in Fig. 5(a) and n = 8 and
r = 4 in Fig. 5(b). The horizontal axis represents 4, and the
vertical axis represents the cluster center or the quantization point
locations. Note that Theorem 1 provides the optimal quantizer point
density function, not the individual quantization points or cluster
centers. We may use, however, inverse transform sampling to obtain
a sequence of quantization points that will be faithful to the quantizer
point density function. Namely, if the desired point density function is
A(x), we use the quantization points A~'((2i — 1)/2n), i =1,...,n,
where A(y) £ floo A(x)dx is the cumulative point density function.

Although the results of Theorem 1 are only valid asymptotically,
we can observe that they still provide a very accurate description
of the optimal quantizers for a number of cluster centers as low
as n = 4. There is only slight mismatch for centers that are
close to the boundaries 0 and 1. A similar phenomenon can be
observed in Fig. 5(b), but the amount of mismatch is lower. Also,
the theory can precisely predict very subtle changes in the optimal
quantization points, e.g., the movement of the optimal location for
the third quantization point from 0.4 from 0.38 as 1 grows from
1 to 5. In Fig. 5(c), we show the average distortion performances
corresponding to the cluster centers in Fig. 5. Again, the quantization
theory can precisely predict the average distortion performance even
when n is as small as 4. The difference between the analytical
and the numerical results becomes indistinguishable for the case of
n = 8 cluster centers.

VII. CONCLUSION

We have introduced a new centroid-based clustering method for
data with multiple noisy observations. Our method has performed
remarkably well in the case of heavy-tailed noise and outperformed
various existing methods in the literature. We have also analyzed
the asymptotic centroid distribution and the average distortion with
our clustering scheme. Future directions include the extension of our
analytical results to the case of more than two noisy observations.
Designing an automatic power optimization scheme, similar to an
automatic weighting scheme is also of great interest.
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