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A B S T R AC T

Federated self-supervised learning (FedSSL) methods
have proven to be very useful in learning unlabeled data
that is distributed to multiple clients, possibly heteroge-
neously. However, there is still a lot of room for improve-
ment for FedSSL methods, especially for the case of
highly heterogeneous data and a large number of classes.
In this paper, we introduce a new way of thinking to ap-
proach the FedSSL problems. Specifically, we propose
optimizing the representations through the more difficult
task of clustering. The resulting federated representation
learning through clustering (FedRLC) scheme utilizes
i) a crossed K L  divergence loss with a data selection
strategy during local training and ii) a dynamic upload
on local cluster centers during communication updates.
Experimental results show that FedRLC achieves state-
of-the-art results on widely used benchmarks even with
highly heterogeneous settings and datasets with a large
number of classes such as CIFAR-100.

Index Terms— Federated learning, self-supervised
representation learning, clustering, K L  divergence.

1. INTRODUCTION

By considering information security and accommodat-
ing low-resource computing devices, federated learning
(FL) provides a means to train a neural network model
over distributed data across multiple machines. However,
most existing F L  methods [1–4] rely on labeled data for
supervised learning. Recently, self-supervised learning
(SSL) methods have been proposed for learning repre-
sentations on unlabeled data. Unfortunately, most S S L
paradigms [5–11] assume that the data is centralized.

Recently, Federated S S L  (FedSSL) [12–16] methods
have been developed to learn representations of unla-
beled data that is distributed to several local machines.
For example, FedU [13] and FedEMA [12] directly adapt
a fundamental centralized S S L  model that is referred to
as “Bootstrap Your Own Latent (BYOL) [6]” to federated
learning. The key idea of B YO L  is utilizing two views of
the same data under augmentation and training an online

This work was supported in part by the Army Research Lab (ARL)
under Grant W911NF-21-2-0272, and in part by the National Science
Foundation (NSF) under Grant CNS-2148182.

network to predict the features extracted from a target
network. However, the existing approaches [12, 13]
measure the difference between model parameters and
emphasize on managing the model upload during com-
munication. Gradient-based local training steps are still
performed using the B YO L  loss functions. Besides,
combining B YO L  and F L  directly can raise challenges:
When the number of classes are large, the learned rep-
resentations from B YO L  are typically non-uniformly
distributed over the representation space, leading to sub-
optimal performance.

BYOL-like methods are typically referred to as non-
contrastive methods as learning is accomplished through
two augmented versions, or positive samples, of the same
input. Contrastive methods [5], which rely on compar-
ing the input with many negative samples have also been
utilized for FedSSL. A  recent notable example is [16],
which also utilizes the novel idea of clustering clients for
“FL in groups.” We note that there have been several
works on clustering centralized data [17–20], which are
not immediately applicable to our distributed setting.

In this paper, we aim to address the challenges of
FedSSL via our proposed Federated Representation
Learning through Clustering (FedRLC) framework. A
key idea of FedRLC is to solve the clustering task to
aid in finding accurate representations. We do this by
introducing a novel crossed K L  divergence loss with a
data selection strategy to optimize the cluster centers
and the B YO L  neural networks simultaneously. Intu-
itively, well-learned cluster centers are beneficial to ex-
tract more distinct information between different classes.
Experimental results show that FedRLC improves the
performance of existing FedSSL methods by a consid-
erable margin and achieves state-of-the-art results on
benchmark datasets such as CIFAR-100.

The rest of this paper is organized as follows: We
introduce the FedSSL problem and the B YO L  approach
in Section 2. In Section 3, we introduce our proposed
FedRLC scheme. Numerical results are provided in Sec-
tion 4. We draw our main conclusions in Section 5.

2. PR E L I M I NA R I E S

The general goal of FedSSL is to learn a machine model
for unlabeled data distributed over multiple clients. Typ-
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ically, a central server is utilized to aggregate the client
local models, each of which is trained via local data.
Contrastive learning and non-contrastive learning are two
main directions in S S L  learning. In this work, we fo-
cus on a non-contrastive approach based on the B YO L
scheme. In fact, the existence of a large number of nega-
tive samples in contrastive learning causes class collision
issues. The non-contrastive nature of B YO L  circumvents
this problem and typically provides a better performance;
see also FedEMA [12] that follows a similar approach.

In the following, we provide an overview of B YO L  [6],
and its straightforward federated generalization that we
shall refer to as FedBYOL. Let D k  denote the local un-
labeled dataset on Client k. Given some data x i  � Dk ,
where i  represents the data index, two samples x a  �
ta (x i )  and xb � tb (xi ) are generated through the aug-
mentations ta and tb, respectively. The augmented data
tα (x i ),  α � {a, b} are then processed by the so-called
online and target networks. The online network consists
of an online encoder f O  and an online predictor gO ,
which are trained by gradient descent.1 The target net-
work only consists of a target encoder f T  . The weights
of f T  are updated via the exponential moving average
(EMA) of the online encoder f O ,  as will be explained in
the following. Now, let z α , O  � g O     f O ( tα (x i ) )  , α �
{a, b} and z α , T  � f T  (tα (x i )),  α � {a, b} denote the d-
dimensional representations that one would obtain
from the online and the target networks, respectively.
Defining the scaled cosine similarity loss function as
δ(x, y) � 2 − 2 �x��y�, B YO L  uses the symmetrized loss

x i  → L ( x i )  � δ(za,O , zb,T )  +  δ(zb,O , za,T ).
The local objective of user k is then given by

(f O , g O ) → L I N S  � 
P

x i �D k  
L (x i ) , (1)

which signifies that only the online networks f O , g O  are
updated via gradient descent. The subscript “INS” means
that we consider the instance-level loss without any con-
sideration about the clusters. The target network param-
eters are instead updated through the EMA

f T  ← σ f T  +  (1 −  σ )f O , (2)

where σ � [0, 1].
As we have mentioned, FedSSL aims to learn a

global model over the dataset D  � K        Dk .  For ex-
ample, one can aggregate the B YO L  loss functions of all
clients in order to attain the objective

m i n
P

k = 1  
|D 

|
| P

x i �D k  
L (x i ) . (3)

(FedAvg) [1]. However, simply extending the loss (1)
to F L  leads to suboptimal performance as the learned
features from B YO L  are not uniform between distinct
classes, especially for heterogeneous data. In this paper,
we propose FedRLC as a new alternative for FedSSL.
FedRLC learns accurate representations through updat-
ing and keeping track of the centroids of each class.

3. T H E  F E D R L C  F R A M E WOR K

In this section, we will introduce the proposed FedRLC
framework. Our scheme relies on clustering to achieve
good representations.     The clustering is center-based.
Hence, at each client, we keep track of M cluster cen-
ters, where the number of clusters M is assumed to be
known a-priori. We start by introducing a novel crossed
K L  divergence loss with data selection for optimizing
cluster centers to improve the quality of learned repre-
sentations during local training. We will then present a
dynamic rule to update the local cluster centers as well
as the local neural networks during training.

The block diagram of the FedRLC framework is il-
lustrated in Fig. 1 for local training at a certain Client k.
In the following, we shall describe each stage in the fig-
ure in detail. The first stages to obtain the instance repre-
sentations (until L I N S )  apply verbatim from the B YO L
scheme. Namely, samples x  pass through the online and
target networks to provide representations zα ,ν . Note
that we have similarly omitted to indicate the dependence
of the representations on the client index for brevity. We
now describe the next steps.

3.1. Crossed K L  divergence loss

In FedRLC, we define a novel crossed K L  divergence
loss (CKL)  to learn a well-separated representation. C K L
aims at optimizing M cluster centers by a crossed diver-
gence between probabilities calculated from the online
network and the target distribution from the target net-
work. Specifically, let µ1, . . . , µM � Rd  denote clus-ter
centers at a certain Client k . In practice, the clus-
ter centers are initialized randomly. Given α � {a, b}
and ν � {O, T }, let qα ,ν  denote the probability that the
representation zα ,ν  belongs to cluster m with center µm .
Following DEC [17], we model these cluster assignment
probabilities with a student t-distribution with one degree
of freedom

∆m (z , {µ n } n = 1 )  �
(1 +  �z −  µm�2) 

)

1  

2  
. (4)

The objective (3) can be solved by using numerous F L
algorithms [1–3] such as the classic federated averaging

1We refer to the composition of the encoder and the projector in the
original B YO L  paper as simply the “encoder” in this paper.

Specifically, we set

qα ,ν  =  ∆m (z α , ν , {µn } n = 1 ) ,  m � {1, . . . , M },

α � {a, b}, ν � {O, T }, �i.     (5)
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Fig. 1. The FedRLC framework during local training. sg means stop gradient. In the figure, we illustrate the construc-
tion of the first terms of the symmetric loss function in (9); the second terms are similar.

Effectively, each representation is assigned a probability
distribution. According to (4), the closer the representa-
tion to a cluster center with index (say) m, the higher the
belief/probability that the corresponding sample should
belong to Cluster m.

To facilitate SSL,  we now define a target distribution
of the probabilities qα ,T  that originate from the target
networks described in Section 2. Following [17], we set

a , T P      a , T
α , T i , m i      i , m
i , m                               a , T                         a , T

n i , n i      i , n

The target distribution is computed by squaring the prob-
ability and normalizing it by the frequency of each class.
The motivation of squaring is to “harden” the soft as-
signments, while frequency normalization penalizes im-
balanced clusters.

We can now compare the probabilities qα , O  induced
by the online networks with the probabilities pα , T  of the
target networks. In this work, we utilize the K L  diver-
gence to compare the probability distributions. Letting

KL(p||q) � 
P

m  pm log p m  , (7)

the crossed K L  divergence objective can be defined as

L C K L 0  � N  
P

KL(pb , T||q a , O )  +  KL(pa,T||qb,O ), (8)

where N  represents the batch size. The crossed K L  ob-
jective (8) intends to optimize the local cluster centers by
incorporating information from both augmented views of
the input. The two augmented samples are supposed to
share similar probabilities because they are created from
the same data under different transformations.

3.2. Data Selection

Another novelty that we incorporate in FedRLC is to
make sure that the augmentations that are involved in the
crossed K L  objective in (8) are not too far. Indeed, intu-
itively, completely irrelevant augmentations would harm,
instead of benefit the overall performance. This is why
we only incorporate pairs whose hard decisions match in
the K L  divergence losses. Let lα ,ν  =  argmax (qα ,ν ) de-
note the hard clustering decisions of the online and target

networks with different augmentations. Ties are broken
in favor of the smallest index.

The data is chosen to contribute to the crossed K L
divergence loss only when the predicted label from the
online and the target networks are the same. We thus
modify the loss in (8) to work with

L C K L  �  1  P K L ( p b , T  ||qa,O) : lb,T =  l a , O      +

N  
P  

K L ( p a , T  ||qb,O) : l a , T  =  lb,O     .     (9)

3.3. Local Training

As shown in Fig. 1, we jointly optimize the cluster cen-
ters and the online/target networks during local training.
Therefore, the overall loss function is given by

L k  =  L C K L  +  L I N S , (10)

where L I N S      recalls the classical instance-level non-
contrastive loss defined in (1). Usually, a hyperparameter
can be incorporated to the loss function to control the
relative weight of the losses L C K L  and L I N S .  In our ex-
periments, equal weights on the losses already provided
a good performance. We thus leave a detailed study on
hyperparameter tuning as future work.

3.4. Updates After Server-to-Client Communications

In this part, we describe the cluster center and online
network update mechanisms during the server-to-client
communications. We use subscript � to denote the global
models, the subscript k to be the local model, and the su-
perscript O to be the online networks. Let r  represent the
current training round. During the communication up-
date, only the cluster centers and the online network are
updated. We introduce a novel rule to update the centers
and apply the specific EMA rule in [12] to update the
online networks.

Specifically, given centers {µ r − 1  � R d } M in local
user k with local data D k  at round r  −  1, global centers
µr at round r, the centers of Client k at round r  are
updated according to

µm , k  =  1+ϵ µm , k  +  
 

1 −  1+ϵ µm,�, (11)
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where ϵ is updated progressively by the K L  divergence
between the probability generated from the local and
global centers. Specifically, letting f r  and f O , r − 1  de-
note the global encoder in round r  and the local encoder
in round r  −  1 at Client k, respectively, we define

z�, i ,k � 1 (f� (x i , k )  +  f� (x i , k )) ,                          (12)

zi ,k  � 1 ( f O , r −1 (x i , k )  +  f O , r −1 (x i , k ) )           (13)

as the mean representations of data x i , k  under different
augmentations and with global and local networks. We
now evaluate the soft class probabilities for the data of
Client k according to the global model at Round r  as

q�, i ,m,k  � ∆m (z�, i , k , {µn ,�}n = 1 ). (14)

Likewise, we can evaluate the class probabilities accord-
ing the local model at Round r  −  1 as

qi , m , k  � ∆m (z i , k , {µ r −1 } n = 1 ) . (15)

We can now compute the momentum parameter ϵ via

ϵ =  |D
 

|
P

i = 1
|  K L

 
{q�, i , m , k } m = 1�{q i , m , k } m = 1 .  (16)

When ϵ is large, the divergence between probabilities
generated from global and local networks is large, so that
the cluster centers inherit more local knowledge. Other-
wise, a smaller ϵ gathers more information from global
cluster centers. Finally, we discuss how to update the on-
line networks of the client. For this purpose, we follow
the EMA scheme [12]. Specifically, the online networks
at Round r  are updated as

(f O , r , g O , r )  ← γ ( f O , r −1 , g O , r −1 )+

(1 −  γ )(f O , r , g O , r ).      (17)

In (17), the parameter γ is used to control the weight
between the global model and the local model. An ex-
plicit formula for γ is given by [12] γ =  min(λk||f r −
f O,r−1||, 1) where λ k  =  | | f 1 − f

 
|| is a customized mag-

nitude, τ is a tuned hyperparameter, and f  is the encoder.
In EMA [12], λ k  is only measured once at the first round.

Algorithm 1 shows the overall FedRLC scheme.

4. E XPE R I M E N T S

Baselines and Datasets: We evaluate FedRLC on linear
evaluation and semi-supervised learning tasks. Our base-
lines include FedU [13] and FedEMA [12], which are
current state-of-the-art FedSSL methods. We also evalu-
ate FedBYOL, which refers to combining B YO L  [6] with
federated averaging as in (3). Single-Training refers to
training each client independently, and the accuracy is
calculated by the average of all clients.

Algorithm 1 FedRLC
Input: Number of communication rounds R ,  Number of

clients K ,  Number of local epochs E .
Output: Global encoder f� and predictor g�.

1: Server executes: Initialize server’s network param-
eters f�, g�, and µ�,m. Have the clients initialize
local parameters f O ,  gO , and µk , m

2: for r  =  1, . . . , R do
3: for k =  1, 2, . . . , K in parallel do
4: Send global encoder f�, predictor g�, and clus-

ter centers µ�,m to client k.
5: f O ,  gO , µm , k  ← ClientTraining(f�, g�, µ�,m).
6: end for
7: FedAvg: (f� , g� , µ�,m)← k

|D 
|

| (fk
 , gk , µm,k ).

8: end for
9: Return global encoder f� and predictor g�.

10: ClientTraining(f O , gO , µk ,m )
11: Update the online networks and cluster centers via

global parameters by (17) and (11), respectively.
12: for epochs =  1, . . . , E and size-N batch learning

within each epoch over dataset D k  do
13: Update online networks and cluster centers via

global parameters by descending the gradient of
the local cost function in (10).

14: Update the target network parameters f T  via (2).
15: end for
16: Return the online networks f O  and gO .

Data Heterogeneity: We follow the exact settings
of FedU [13] and FedEMA [12] for a fair compari-
son. Namely, to simulate data heterogeneity in federated
learning, each user only consists of samples from M / K
classes, where M is the number of classes, and K  is the
number of clients. This is referred to as the data-split sce-
nario. For independent and identically distributed (IID)
data, each user has the same number of samples from M
classes. In addition to the data-split non-IID scenario,
to evaluate on different non-IID scenarios, we sample a
specific proportion of the data from class m to client k,
where the proportion is followed by the Dirichlet dis-
tribution with parameter β, which is also a widely-used
method to simulate non-IID data distribution. A  smaller
β indicates a more heterogeneous distribution.

Implementation Details: For federated training, we
adopt the SGD optimizer with a 0.032 initial learning
rate. The learning rate is decayed by cosine annealing.
The batch size is 128, and the input size is 32 ×  32.
We use ResNet18 to be the encoder, and the predictor is
a two-layer multiplayer perceptron (MLP) with the out-
put dimension 2048. The σ of EMA is 0.99, and the
τ =  0.7 is directly followed by [12] without tuning. We
set both the number of local clients and the number of
local epochs to 5. The total communication rounds are
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100 in federated learning, which are the same as recent
FedSSL approaches [12, 13] for a fair comparison. Table 1. Linear Evaluation: IID & Data-Split Non-IID.

Dataset C IFA R -10 CIFAR-100
Method                             I ID Non-IID              I ID Non-IID

Single-Training

FedBYOL

FedU

82.42         74.95

84.29         79.44

83.96 80.52

53.88         52.37

54.24         57.51

54.82 57.21

(a) IID FedBYOL (b) IID FedRLC

Fig. 2. t-SNE data visualization on CIFAR-10.

FedEMA

FedRLC

B Y O L  (Centralized)

86.26         83.34

87.06         84.08

90.46

58.55         61.78

61.32         63.40

65.54

Table 2. Linear Evaluation: Dirichlet Non-IID.
Dataset
β

CIFA R-10
0.5 0.1

CIFAR-100
0.5           0.1

(a) Non-IID FedBYOL (b) Non-IID FedRLC

Fig. 3. t-SNE data visualization on CIFAR-10.

Single-Training 83.42 83.08

FedBYOL 85.44 84.69

58.45 57.20

59.14 59.93

Visualization of Representations: To analyze the
data features visually, we plot the t-SNE visualization
of the CIFAR-10 learned from FedBYOL and FedRLC
in Fig 2 and Fig 3, where different colors indicate dif-
ferent classes. From the comparison between FedBYOL
and FedRLC, we observe that the data representations
obtained from FedRLC are separated more clearly. The
following linear and semi-supervised evaluations further
verify the effectiveness of FedRLC.

Linear Evaluation: To validate the quality of
learned representations, a linear classifier is trained on
top of the frozen representations learned from differ-
ent FedSSL methods.     For linear evaluation training,
the AdamW optimizer is adopted with a learning rate
of 0.022. The results are shown in Table 1 and 2. Fe-
dRLC constantly outperforms other methods, especially
for CIFAR-100 with a large number of classes, where
it improves by 2.77% and 1.62% on IID and non-IID
data, respectively. FeatARC, which was announced re-
cently and developed independently of the current study,
provides experiments in the same setup as in Table 1
for the CIFAR-10 dataset. It achieves an accuracy of
86.74% and 84.63% for the IID and non-IID settings,
respectively. FedRLC outperforms FeatARC in the IID
case, while it is worse in the non-IID case. We note that
FeatARC relies on the significantly more memory and
computationally-intensive contrastive-learning methods,
and do not provide numerical results for the CIFAR-100
dataset with a large number of classes. Also, the data
clustering methodology of FedRLC can be combined
with the client clustering method of FeatARC to poten-
tially improve the performance of either method, as will
be discussed in a future work.

Semi-supervised Learning: We compare our model
with state-of-the-art works on semi-supervised learning
tasks. A  new MLP is added on the top of the encoder

FedU 85.62 85.33 59.10 58.06

FedEMA 86.12 86.00 60.26 61.46

FedRLC 86.89 86.69 62.39 63.21

Table 3. Semi-Supervised Learning: IID & Data-Split
Non-IID.

Dataset CIFAR-10 CIFAR-100
Method                    IID Non-IID             IID Non-IID

Single-Training 78.08 69.06 43.50 39.99

FedBYOL 83.24 76.95 49.20 47.07

FedU 82.61 77.06 47.64 46.67

FedEMA 83.38 79.49 49.26 50.48

FedRLC 83.99 79.52 49.67 52.16

Table 4. Semi-Supervised Learning: Dirichlet Non-IID.
Dataset                        C IFA R-10                  C IFAR-100
β                                0.5             0.1                0.5           0.1

Single-Training 81.72 79.89 48.53 49.41

FedBYOL 82.84 82.20 50.00 50.12

FedU 81.33 81.66 49.25 49.31

FedEMA 83.18 82.06 50.11 51.07

FedRLC 83.41 82.73 50.41 51.19

in semi-supervised learning, and we fine-tune the entire
model with 10% labeled data. We compare different
federated representation learning methods under IID and
Non-IID setting for CIFAR-10 and CIFAR-100 datasets.
Tables 3 and 4 demonstrate that our scheme achieves the
best results in all cases. In particular, FedRLC improves
the performance of CIFAR-100 by 1.68% under a highly
heterogeneous scenario.
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5. CONCLUSIONS

We have proposed FedRLC, a federated self-supervised
representation learning scheme. A  key idea of FedRLC
is to achieve good representations through the aid of
clustering. In particular, FedRLC optimized a crossed
K L  divergence loss between two augmented data with
a data selection mechanism and updated several cluster
centers dynamically during communication. Evaluation
on the learned image features demonstrated that our ap-
proach learned better semantic knowledge of the data
compared with other existing FedSSL methods. More-
over, FedRLC has achieved state-of-the-art results on
benchmark downstream tasks including linear evaluation
and semi-supervised learning.
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