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ABSTRACT

Federated learning (FL) provides a global model over data

distributed to multiple clients. However, most recent work on

FL focuses on supervised learning, and a fully unsupervised

federated clustering scheme has remained an open problem.

In this context, Contrastive learning (CL) trains distinguish-

able instance embeddings without labels. However, most CL

techniques are restricted to centralized data. In this work, we

consider the problem of clustering data that is distributed to

multiple clients using FL and CL. We propose a federated clus-

tering framework with a novel past negatives pool (PNP) for

intelligently selecting positive and negative samples for CL.

PNP benefits FL and CL simultaneously, specifically, allevi-

ating class collision for CL and reducing client-drift in FL.

PNP thus provides a higher accuracy for a given constraint on

the communication rounds, which makes it suitable for net-

works with limited communication and computation resources.

Numerical results show that the resulting FedPNP scheme

achieves superior performance in solving federated cluster-

ing problems on benchmark datasets including CIFAR-10 and

CIFAR-100, especially in non-iid settings.

Index Terms— Federated learning, unsupervised cluster-

ing, contrastive learning, negative sample selection.

1. INTRODUCTION

Federated learning (FL) has shown tremendous success in train-

ing distributed data while preserving user privacy [1–3]. How-

ever, most previous work on FL focus on supervised learning.

Meanwhile, there has been many studies on the classical clus-

tering problem in the centralized setting [4–7]. Nevertheless,

obtaining large centralized labeled data is not always practical

as labeling data is expensive and some data is sensitive. Exist-

ing methods [8–10] explore FL with unlabeled data, but they

are primarily designed for linear evaluation or semi-supervised

learning with fully or partially labeled data, thus not suitable for

clustering tasks. Although some algorithms are introduced for

federated clustering, they are only effective on specific datasets

such as medical datasets [11] and have difficulties with clus-

tering complex data features [12–15]. Hence, training a more

generic deep clustering model with FL is still an open research

direction that has received little attention in the literature.

One major concern in FL is that heterogeneous data over

multiple users may push the local models far from the global

average, resulting in the so-called client drift problem during
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local training. To address this issue, many supervised FL al-

gorithms are developed to minimize divergence between the

local and global models [1, 2]. Besides, in recent years, self-

supervised representation learning has been applied to FL [9,

10, 16]. The FedEMA [10] scheme shows that retaining lo-

cal information is crucial for federated self-supervised learning

(FedSSL) as well, and proposes a divergence-aware dynamic

update during communication. In fact, reducing the effect of

local-global model divergence and retaining more local knowl-

edge during local client training are two contradictory goals,

although both are crucial for the ultimate performance of the

FL model. In this paper, we design a fully-unsupervised fed-

erated clustering framework that can be developed over limited

communication resources based on contrastive learning (CL).

In centralized settings, contrastive learning (CL) has been

well-studied in self-supervised representation learning [17–19]

and deep clustering [5,20,21], but it suffers from class collision,

where positive samples from the same class with the given in-

put are still viewed as negatives in contrastive loss. Two main

directions of study are designed to resolve this problem: Sam-

pling positives [5, 20] and selecting negatives [22, 23]. For ex-

ample, GCC [20] and WCL [21] expand positive samples by

building graphs. MoCHi [23] chooses the hardest negatives by

sorting the instance similarity with the given query based on

the dot product similarity. However, sorting high dimensional

instance embeddings and constructing graphs [20,24] consume

time and computational resources. Moreover, these strategies

assume that the data is centrally available, and they are thus not

suitable for IoT devices.

In this work, we propose a federated clustering scheme

with a novel past negatives pool (PNP) to overcome the above

limitations. We refer to the resulting framework as FedPNP.

The PNP, which is generated via the past representations, de-

termines the indices of the positive and negative samples for

the current representations. Specifically, we calculate the Gaus-

sian similarity between pseudo labels learned from the past lo-

cal model in last communication round. We select negatives

and positives by using a threshold for contrastive clustering.

As mentioned before, local training causes weight divergence,

but FedSSL requires local knowledge. The proposed PNP uses

the previous cluster features to avoid the drift during current

local updates and effectively incorporate more local informa-

tion required by FedSSL. The negatives selection technique

helps for class collision issue in CL by comparing the simi-

larity between soft labels and removing positives from nega-

tives when conducting the contrastive loss, which differs from

existing strategies only handling instance representation with

centralizing data.

In summary, FedPNP develops a deep clustering model that

can be trained over distributed networks without sharing the
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private data. To emphasize our points, existing deep clustering

methods can only be used under the assumption that the data

is collected centrally. Our goal is to learn a clustering model

in a federated manner, which is more challenging and practi-

cal when the data is distributed on edge computing devices.

Our experiments show that the proposed FedPNP has signifi-

cantly more stable and accurate performance on CIFAR-10 and

CIFAR-100 compared to other methods in federated clustering

in both IID and Non-IID settings. Since FedPNP can achieve

superior performance in fewer rounds of training, it is espe-

cially suitable for edge devices that may be limited in terms of

computation power and communication rates.

The rest of the paper is organized as follows: In Section 2,

we start with stating the problem and then introduce the pro-

posed FedPNP. In Section 3, we show our numerical results.

Finally, we state our main conclusions in Section 4.

2. MODEL

In this part, we first define the problem, and then we present the

proposed FedPNP to address the problem.

2.1. Contrastive Clustering (CC)

We begin with an overview of CC [6]; a detailed description

can be found in [6] as well as Section 2.3. Two augmented

views from the same sample pass through the same encoder to

generate two representation vectors. An instance-level multi-

layer perceptron (MLP) and a cluster-level MLP process these

two representation features simultaneously to provide a pair of

instance-level projections and a pair of cluster-level projections,

where the contrastive loss is applied jointly. Once well-trained,

the cluster representations directly correspond to soft cluster

assignments or labels. However, under the concerns of data

privacy and limited computation resources, it is not practical to

always assume that the data is centrally available. As a result,

clients cannot send their local data to a central sever to train a

model in federated learning.

2.2. The FedPNP Framework
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Fig. 1: The federated clustering scheme. At the client k, fk,

gI,k, gC,k represent base encoder, instance-level projector, and

cluster-level projector, respectively.

We aim at addressing the above issue by building on the CC

scheme with a novel PNP in the federated setting. We aggregate

several local models trained in a fully unsupervised federated

way to obtain a global model that outputs the cluster informa-

tion directly. In particular, suppose there are K clients, where

client k has its local unlabeled data Dk. Our goal is to learn a

machine model over the dataset D ≜
⋃K

k=1
Dk on the central

server that can cluster a group of unlabeled data automatically.

The overall block diagram of the FedPNP architecture is shown

in Fig. 1. The central server contains global networks f⋆, gI,⋆,

and gC,⋆, representing a base encoder, an instance-level projec-

tor, and a cluster-level projector, respectively. Let fk, gC,k, gI,k
denote the network elements at user k. In each communication

round, the central server sends global networks to local clients.

Each local device updates the local model using its own local

data and sends the updated model to the sever. The server up-

dates the global networks by weighted averaging. Finally, the

clustering assignments can be obtained from the global cluster-

level projector.

2.3. PNP and PNP-Contrastive Loss

The proposed FedPNP relies on contrastive representation

learning [6, 17, 19], and specifically CC [6], as outlined in

Section 2.1. Simply extending the CC scheme to federated

setting results in poor performance we show in Section 3. This

is because: 1) The Non-IID data over multiple users causes

the client-drift during local training. 2) FedSSL needs to store

more local information that may lose during fast aggregation in

FL, which leads to poor representations. 3) Negative samples

in contrastive loss causes class collision. Hence, we introduce

the PNP for intelligently selecting negative samples in CL.

Intuitively, in terms of the above issue 1) and 2), reducing

client-drift contradicts with keeping more local data features.

The PNP is designed to optimize the trade-off between these

two demands. The idea is we remove the potential positive

samples by comparing soft labels produced from the past local

models. We utilize features learned from the past to remain

more local knowledge and avoid the client-drift during the

current local training. Moreover, we compare the similar-

ity between soft labels to select potential positives with the

given input image and remove it from the large negatives in

contrastive loss to alleviate class collision issue.

In detail, let Dk ≜ {x1,k, . . . , x|Dk|,k}, k = 1, . . . ,K
represent the local datasets of the users. For each user k ∈
{1, . . . ,K}, given a local data xi,k ∈ Dk, two samples xa

i,k ≜

ta(xi,k) and xb
i,k ≜ tb(xi,k) are first created through transfor-

mations ta and tb, respectively. We use the variable σ ∈ {a, b}
to represent the sample index so that the transformations are

succinctly expressed as xÃ
i,k ≜ tÃ(xi,k), σ ∈ {a, b}. The

transformations are sampled uniformly at random from a fam-

ily T of augmentations, which may include rotations, noise,

etc. In FedPNP, two augmented samples pass through not only

local models in current communication but also local models in

the previous round as shown in Fig 2. From local networks

consisting of a base encoder fk, a instance-level MLP gI,k,

and a cluster-level MLP gC,k, we can obtain instance-level and

cluster-level representations learned from current local models

in communication round r as

zÃ,ri,k ≜ grI,k(f
r
k (t

Ã
k(xi,k))) ∈ R

d1 , (1)

yÃ,r

i,k ≜ grC,k(f
r
k (t

Ã
k(xi,k))) ∈ R

d2 , σ∈{a, b}. (2)

The output dimensionality d2 of the cluster-level represen-

tations is chosen to be equal to the number of clusters one
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Fig. 2: The local training at client k for FedPNP

wishes to find in the dataset. In many cases, the instance-level

output dimensionality d1 is chosen to be much larger than d2.

Specifically, zÃ,ri,k represents the instance features of xi,k, and

yÃ,r

i,k is considered as the soft labels of xi,k. In a determinis-

tic assignment of inputs to clusters, yÃ,r

i,k would be one-hot en-

coded vectors. To construct the PNP, we compute the Gaussian

similarity between the soft labels extracted from the past local

model in communication round r − 1. The Gaussian similarity

measure is defined as s(u, v) ≜ exp (u v). Then, the PNP for

a given augmented data xa
i,k is created by

Pi = {j ̸= i : s(ya,r−1

i,k , yÃ,r−1

j,k ) < µ, ∀σ ∈ {a, b}}, (3)

where µ is the threshold to select negative and positive samples,

yÃ,r−1

i,k represents the soft label extracted from the cluster-level

MLP in the previous round r−1. Hence, sufficiently close sam-

ples form positive pairs while far samples are negatives. The

key idea is that the indices Pi for negative pairs are obtained

from the past model in FedPNP. This allows preserving local

information, a key requirement in FedSSL.

Given batch size n, matrices u = [u1 · · ·un] ∈ R
d×n and

v = [v1 · · · vn] ∈ R
d×n constructed via the indicated column

vectors, the ordinary contrastive loss [17] is defined by

L(u,v; τ)≜
1

n

n∑

i=1

−log
sÄ (ui, vi)∑n

j=1

j ̸=i

[sÄ (ui, uj)+sÄ (ui, vj)]
, (4)

where sÄ (u, v) ≜ exp( 1

Ä
u v/(∥u∥∥v∥)) is a normalized

Gaussian similarity measure, and τ > 0 is a temperature pa-

rameter. In (4), given an augmented input image xa
i,k, we

consider the xb
i,k as its positive pair, and all other augmented

samples from the batch are negatives. In particular, the de-

cision whether a given sample is positive or negative is done

according to the current model weights. To preserve more local

information, we use the idea of PNP, and choose the negative

samples over the indices described by the set (3) instead. This

results in the PNP-contrastive loss

LPNP(u,v; τ)≜
1

n

n∑

i=1

−log
sÄ (ui, vi)∑

j∈Pi

[sÄ (ui, uj)+sÄ (ui, vj)]
.(5)

For FedSSL, the PNP selects negatives from the past local

models, which alleviates the client-drift during the current local

update and maintains more local knowledge that is forgotten

during the model aggregation. For contrastive representation

learning, the PNP computes similarity between soft labels ex-

tracted from the past and removes samples that may have the

same class category with the given input, which alleviates the

class collision issue in traditional contrastive loss. In short, the

PNP is beneficial in three aspects. 1) It avoids the large diver-

gence of Non-IID networks updated locally in current commu-

nication round. 2) It keeps more local knowledge, which can be

lost during model aggregation, benefiting FedSSL. 3) It helps

the class collision issue in traditional CL by removing potential

positives from negative samples.

2.4. Local Training

We now describe the training procedure at each client. We min-

imize the PNP-contrastive loss (5) on instance representation

and ordinary contrastive loss (4) on both past and current clus-

ter features. Formally, given a batch size n, the instance-level

PNP-contrastive loss at user k is defined via the instance-level

representations z
Ã,r

k ≜ [zÃ,r
1,k · · · zÃ,rn,k] ∈ R

d1×n, σ ∈ {a, b} as

LPNP

I,k ≜ LPNP(za,rk , zb,rk ; τI), (6)

where τI > 0 is the instance-level temperature. On the other

hand, given c
Ã,r

k ≜ [yÃ,r

1,k · · · yÃ,r

n,k]
 ∈ R

n×d2 , σ ∈ {a, b}, we

define the cluster-level contrastive loss at round r via (4) as

Lr
C,k ≜ L(ca,rk , cb,rk ; τC) +H(ca,rk ) +H(cb,rk ), (7)

where τC > 0 is the cluster-level temperature parameter, and

for any matrix u = [u1 · · ·ud] ∈ R
n×d, the entropy H(u) is

defined as H(u) ≜ −
∑d

i=1

∥ui∥1
∥u∥1

log ∥ui∥1
∥u∥1

. As discussed in

[6], entropy regularization helps avoid the trivial solution where

all samples are assigned to the same cluster. The cluster-level

contrastive loss differentiates clusters. Specifically, columns of

c
a,r

k and c
b,r

k represents individual clusters.

We combine the different performance measures described

above into the overall loss function

Lk ≜ LPNP

I,k + αLr
C,k, (8)

where α is the hyperparameter used to control the weight of

the loss. The dependencies between the different losses are il-

lustrated in Fig. 2. Note that the first term in (8) depends on

the parameters of both the current and the past network, while

the second term depends only on the current parameters. To

minimize the loss (8) in practice, we select the negatives from

the current models only for r = 1 as there is no previous mod-

els in the first round. In the first round, the PNP is defined as

Pi = {j ̸= i : s(ya,r

i,k , y
Ã,r

j,k ) < µ, r = 1, ∀σ ∈ {a, b}}.

3. EXPERIMENTS

3.1. Experiment Setup

Datasets and Settings: For fair comparisons, we follow the re-

cent clustering works [5,6,25] to evaluate our clustering perfor-

mance in terms of clustering accuracy (ACC), normalized mu-

tual information (NMI), and adjusted rand index (ARI). We per-

form different federated clustering algorithms on datasets in-

cluding CIFAR-10 and CIFAR-100. CIFAR-10 has 10 classes,

and CIFAR-100 has 100 classes. We use the 50,000 training

set for training and all the images for testing clustering perfor-

mance on CIFAR-10 and CIFAR-100.
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Table 1: Clustering accuracy (%) on CIFAR-10 and CIFAR-100 datasets. (In NCC, only 20 super-classes for CIFAT-100 is used.)

IID Non-IID (β = 0.5) Non-IID (β = 0.1)

Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Method NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

Single-Training 45.7 56.1 33.1 34.1 16.3 8.6 40.6 46.4 25.7 33.9 16.2 8.4 34.8 40.4 20.1 33.8 15.2 7.3

FedBYOLCC 53.8 62.7 44.9 33.2 15.7 7.9 41.3 45.7 28.3 33.9 16.3 8.3 35.5 40.4 22.9 31.9 14.9 7.2

FedCC 54.9 64.9 46.3 34.1 16.3 8.4 41.2 44.7 27.5 34.4 16.5 8.9 33.2 38.0 20.3 33.0 15.0 7.3

FedPNP (ours) 56.8 66.5 47.1 34.7 17.1 9.0 42.7 49.5 30.5 34.5 17.0 8.9 36.4 43.7 24.2 34.1 16.0 7.9

NCC [5] (Centralized) 88.6 94.3 88.4 - - - 88.6 94.3 88.4 - - - 88.6 94.3 88.4 - - -

For simulating Non-IID data in federated learning, we fol-

low previous studies [8–10] to allocate the instances of class

j to client k in a proportion of pj,k followed by the Dirichlet

distribution DirN (β) (β = 0.5 by default). A larger β causes

more balanced distributions. For IID cases, each client has the

same number of samples for all classes, which is also the same

as the recent works [8–10, 26]

Implementation Details: In our experiments, we use

ResNet-18 [27] as the base encoder. We use Adam opti-

mizer [28] with an initial learning rate of 0.0003 and without

weight decay. All input images are resized to 224 × 224, and

the batch size n is set to 128. The output dimension of the

instance-level MLP is set to 128, and the feature dimension of

the cluster-level MLP is equal to the number of clusters. The

instance-level temperature is τI = 0.5, and the cluster-level

temperature is τC = 1.0. In FedPNP, µ is set to 0.999 for

selecting negatives. We set the hyper-parameters α = 2 for the

first round r = 1 and α = 0.1 starting from the second round.

Baselines: We compare the FedPNP with several existing

representation learning methods for clustering training on dis-

tributed data. 1) Single-Training: each client is trained locally

by performing the popular scheme SimCLR [17] without feder-

ated averaging. 2) FedBYOLCC: we combine BYOL [18] and

CC [6] to train the model by minimizing MSE loss in BYOL

and cluster-level contrastive loss in CC. 3) FedCC: we simply

extend the CC to federated settings. Also, we consider the cen-

tralized clustering scheme NCC [5] as an upper bound.

Evaluation: For all experiments trained in federated learn-

ing, we train the model for 100 communication rounds for K =
5 clients. For each communication round, each client is trained

for E = 5 local epochs. For the Single-Training experiment,

we train each client 300 epochs and report the mean clustering

accuracy among all 5 clients by K-means. For all other feder-

ated clustering methods, we show the performance based on the

cluster assignment from the global cluster-level MLP.

3.2. Federated Clustering Results

Table 1 shows the proposed FedPNP constantly outperforms

other methods and achieves the best clustering performance

in all data distribution settings. In IID cases, we improve the

clustering accuracy by 10.4%, 3.7%, and 2% when compar-

ing with baselines on CIFAR-10. Compared to simply doing a

CC framework in Non-IID setting, we improve the clustering

accuracy by 4.6% and 5.7 % for β = 0.5 and β = 0.1, respec-

tively. For CIFAR-100 with 100 clusters, FedPNP is still the

best approach for dealing with such large number of classes.

Figs. 3, 4 show the overall clustering performance during com-

munication rounds for β = 0.5 and β = 0.1, respectively.

FedPNP outperforms all other methods, achieving higher ac-

curacy in fewer communication rounds. We note that fewer

rounds translate to fewer amount of computations, which is

an important gain for resource-limited edge devices. Another

byproduct of fewer rounds is reduced communication latency,

especially when the client-to-server communication rates are

low [29,30]. FedPNP thus offers significant advantages for both

power and communication-limited edge devices.
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Fig. 3: The FedPNP for β = 0.5
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Fig. 4: The FedPNP for β = 0.1

4. CONCLUSION

In this work, we aim to solve the challenging task on cluster-

ing unlabeled data in federated learning. Our focus is on fed-

erated learning at the edge, which may be limited in terms of

communication capabilities as well as computation power. We

propose FedPNP, a fully unsupervised federated deep cluster-

ing model that is more suitable and robust for clustering in

resources-limited devices. A novel past negatives pool is in-

troduced in FedPNP to reduce client-drift in federated learning

and alleviate class collision in contrastive learning.
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