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RESOURCE-EFFICIENT FEDERATED CLUSTERING WITH PAST NEGATIVES
POOL

Runxuan Miao and Erdem Koyuncu
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ABSTRACT

Federated learning (FL) provides a global model over data
distributed to multiple clients. However, most recent work on
FL focuses on supervised learning, and a fully unsupervised
federated clustering scheme has remained an open problem.
In this context, Contrastive learning (CL) trains distinguish-
able instance embeddings without labels. However, most CL
techniques are restricted to centralized data. In this work, we
consider the problem of clustering data that is distributed to
multiple clients using FL. and CL. We propose a federated clus-
tering framework with a novel past negatives pool (PNP) for
intelligently selecting positive and negative samples for CL.
PNP benefits FL. and CL simultaneously, specifically, allevi-
ating class collision for CL and reducing client-drift in FL.
PNP thus provides a higher accuracy for a given constraint on
the communication rounds, which makes it suitable for net-
works with limited communication and computation resources.
Numerical results show that the resulting FedPNP scheme
achieves superior performance in solving federated cluster-
ing problems on benchmark datasets including CIFAR-10 and
CIFAR-100, especially in non-iid settings.

Index Terms— Federated learning, unsupervised cluster-
ing, contrastive learning, negative sample selection.

1. INTRODUCTION

Federated learning (FL) has shown tremendous success in train-
ing distributed data while preserving user privacy [1-3]. How-
ever, most previous work on FL focus on supervised learning.
Meanwhile, there has been many studies on the classical clus-
tering problem in the centralized setting [4-7]. Nevertheless,
obtaining large centralized labeled data is not always practical
as labeling data is expensive and some data is sensitive. Exist-
ing methods [8-10] explore FL with unlabeled data, but they
are primarily designed for linear evaluation or semi-supervised
learning with fully or partially labeled data, thus not suitable for
clustering tasks. Although some algorithms are introduced for
federated clustering, they are only effective on specific datasets
such as medical datasets [11] and have difficulties with clus-
tering complex data features [12—15]. Hence, training a more
generic deep clustering model with FL is still an open research
direction that has received little attention in the literature.

One major concern in FL is that heterogeneous data over
multiple users may push the local models far from the global
average, resulting in the so-called client drift problem during
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local training. To address this issue, many supervised FL al-
gorithms are developed to minimize divergence between the
local and global models [1, 2]. Besides, in recent years, self-
supervised representation learning has been applied to FL [9,
10, 16]. The FedEMA [10] scheme shows that retaining lo-
cal information is crucial for federated self-supervised learning
(FedSSL) as well, and proposes a divergence-aware dynamic
update during communication. In fact, reducing the effect of
local-global model divergence and retaining more local knowl-
edge during local client training are two contradictory goals,
although both are crucial for the ultimate performance of the
FL model. In this paper, we design a fully-unsupervised fed-
erated clustering framework that can be developed over limited
communication resources based on contrastive learning (CL).

In centralized settings, contrastive learning (CL) has been
well-studied in self-supervised representation learning [17-19]
and deep clustering [5,20,21], but it suffers from class collision,
where positive samples from the same class with the given in-
put are still viewed as negatives in contrastive loss. Two main
directions of study are designed to resolve this problem: Sam-
pling positives [5,20] and selecting negatives [22,23]. For ex-
ample, GCC [20] and WCL [21] expand positive samples by
building graphs. MoCHi [23] chooses the hardest negatives by
sorting the instance similarity with the given query based on
the dot product similarity. However, sorting high dimensional
instance embeddings and constructing graphs [20, 24] consume
time and computational resources. Moreover, these strategies
assume that the data is centrally available, and they are thus not
suitable for IoT devices.

In this work, we propose a federated clustering scheme
with a novel past negatives pool (PNP) to overcome the above
limitations. We refer to the resulting framework as FedPNP.
The PNP, which is generated via the past representations, de-
termines the indices of the positive and negative samples for
the current representations. Specifically, we calculate the Gaus-
sian similarity between pseudo labels learned from the past lo-
cal model in last communication round. We select negatives
and positives by using a threshold for contrastive clustering.
As mentioned before, local training causes weight divergence,
but FedSSL requires local knowledge. The proposed PNP uses
the previous cluster features to avoid the drift during current
local updates and effectively incorporate more local informa-
tion required by FedSSL. The negatives selection technique
helps for class collision issue in CL by comparing the simi-
larity between soft labels and removing positives from nega-
tives when conducting the contrastive loss, which differs from
existing strategies only handling instance representation with
centralizing data.

In summary, FedPNP develops a deep clustering model that
can be trained over distributed networks without sharing the
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private data. To emphasize our points, existing deep clustering
methods can only be used under the assumption that the data
is collected centrally. Our goal is to learn a clustering model
in a federated manner, which is more challenging and practi-
cal when the data is distributed on edge computing devices.
Our experiments show that the proposed FedPNP has signifi-
cantly more stable and accurate performance on CIFAR-10 and
CIFAR-100 compared to other methods in federated clustering
in both IID and Non-IID settings. Since FedPNP can achieve
superior performance in fewer rounds of training, it is espe-
cially suitable for edge devices that may be limited in terms of
computation power and communication rates.

The rest of the paper is organized as follows: In Section 2,
we start with stating the problem and then introduce the pro-
posed FedPNP. In Section 3, we show our numerical results.
Finally, we state our main conclusions in Section 4.

2. MODEL

In this part, we first define the problem, and then we present the
proposed FedPNP to address the problem.

2.1. Contrastive Clustering (CC)

We begin with an overview of CC [6]; a detailed description
can be found in [6] as well as Section 2.3. Two augmented
views from the same sample pass through the same encoder to
generate two representation vectors. An instance-level multi-
layer perceptron (MLP) and a cluster-level MLP process these
two representation features simultaneously to provide a pair of
instance-level projections and a pair of cluster-level projections,
where the contrastive loss is applied jointly. Once well-trained,
the cluster representations directly correspond to soft cluster
assignments or labels. However, under the concerns of data
privacy and limited computation resources, it is not practical to
always assume that the data is centrally available. As a result,
clients cannot send their local data to a central sever to train a
model in federated learning.

2.2. The FedPNP Framework
— 3 Server (9)Model Aggregation

Fx

(®)Model Upload

Cluster
91,4 |oc, .
A ‘ o Assignment
(DModel Updy l \
Client 1 | Client2 } Client K

Fig. 1: The federated clustering scheme. At the client k, f%,
g1,k. gc,k represent base encoder, instance-level projector, and
cluster-level projector, respectively.

We aim at addressing the above issue by building on the CC
scheme with a novel PNP in the federated setting. We aggregate
several local models trained in a fully unsupervised federated

way to obtain a global model that outputs the cluster informa-
tion directly. In particular, suppose there are K clients, where
client k has its local unlabeled data Dj. Our goal is to learn a
machine model over the dataset D £ Ule Dy, on the central
server that can cluster a group of unlabeled data automatically.
The overall block diagram of the FedPNP architecture is shown
in Fig. 1. The central server contains global networks f., gr,«,
and gc,«, representing a base encoder, an instance-level projec-
tor, and a cluster-level projector, respectively. Let fx, gc .k, 91,k
denote the network elements at user k. In each communication
round, the central server sends global networks to local clients.
Each local device updates the local model using its own local
data and sends the updated model to the sever. The server up-
dates the global networks by weighted averaging. Finally, the
clustering assignments can be obtained from the global cluster-
level projector.

2.3. PNP and PNP-Contrastive Loss

The proposed FedPNP relies on contrastive representation
learning [6, 17, 19], and specifically CC [6], as outlined in
Section 2.1. Simply extending the CC scheme to federated
setting results in poor performance we show in Section 3. This
is because: 1) The Non-IID data over multiple users causes
the client-drift during local training. 2) FedSSL needs to store
more local information that may lose during fast aggregation in
FL, which leads to poor representations. 3) Negative samples
in contrastive loss causes class collision. Hence, we introduce
the PNP for intelligently selecting negative samples in CL.
Intuitively, in terms of the above issue 1) and 2), reducing
client-drift contradicts with keeping more local data features.
The PNP is designed to optimize the trade-off between these
two demands. The idea is we remove the potential positive
samples by comparing soft labels produced from the past local
models. We utilize features learned from the past to remain
more local knowledge and avoid the client-drift during the
current local training. Moreover, we compare the similar-
ity between soft labels to select potential positives with the
given input image and remove it from the large negatives in
contrastive loss to alleviate class collision issue.

In detail, let Dy & {1‘1,k7 e ‘rle\yk}W k=1...,K
represent the local datasets of the users. For each user k €
{1,..., K}, given alocal data x; », € Dy, two samples 7 =3
t*(x;1) and xi’yk £
mations t* and ¢, respectively. We use the variable o € {a,b}
to represent the sample index so that the transformations are
succinctly expressed as 7, = t°(zix), 0 € {a,b}. The
transformations are sampled uniformly at random from a fam-
ily 7 of augmentations, which may include rotations, noise,
etc. In FedPNP, two augmented samples pass through not only
local models in current communication but also local models in
the previous round as shown in Fig 2. From local networks
consisting of a base encoder fi, a instance-level MLP gy x,
and a cluster-level MLP g¢ 1, we can obtain instance-level and
cluster-level representations learned from current local models
in communication round 7 as

270 2 gt w(frtR(zik))) € R%, (1)
D2 gon (R (k) ERZ oe{a k). (2)

The output dimensionality da of the cluster-level represen-
tations is chosen to be equal to the number of clusters one

®(x;1) are first created through transfor-
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Fig. 2: The local training at client k£ for FedPNP

wishes to find in the dataset. In many cases, the instance-level
output dimensionality d; is chosen to be much larger than d».

Speciﬁcally, o %, represents the instance features of x; j, and
Yy s conﬂdered as the soft labels of Ti k- In a determinis-
tic assignment of inputs to clusters, y " would be one-hot en-
coded vectors. To construct the PNP, we compute the Gaussian
similarity between the soft labels extracted from the past local
model in communication round r» — 1. The Gaussian similarity
measure is defined as s(u,v) £ exp (uv). Then, the PNP for
a given augmented data z7', is created by

Po={j#i: syl Lyl ) <p Vo €{a,b}}, (3)

where s the threshold to select negative and positive samples,
yf”,:*l represents the soft label extracted from the cluster-level
MLP in the previous round — 1. Hence, sufficiently close sam-
ples form positive pairs while far samples are negatives. The
key idea is that the indices P; for negative pairs are obtained
from the past model in FedPNP. This allows preserving local
information, a key requirement in FedSSL.

Given batch size n, matrices u = [u1 - - - upn] € R*"™ and
v = [v1---vs] € RY™ constructed via the indicated column
vectors, the ordinary contrastive loss [17] is defined by

Sr(us, vi)

L(u,v;T) lo
Z S e (e, wy) s (ui )]
J#i
where s;(u,v) 2 exp(Luv/(|[u||v]))) is a normalized

Gaussian similarity measure, and 7 > 0 is a temperature pa-
rameter. In (4), given an augmented input image z7, we
consider the wfk as its positive pair, and all other augmented
samples from the batch are negatives. In particular, the de-
cision whether a given sample is positive or negative is done
according to the current model weights. To preserve more local
information, we use the idea of PNP, and choose the negative
samples over the indices described by the set (3) instead. This
results in the PNP-contrastive loss

Al sr(ui, vi)
B . 2221 log

[PNP
[s7 (uis uj) +s7 (i, v5)]

.(5)

For FedSSL, the PNP selects negatives from the past local
models, which alleviates the client-drift during the current local
update and maintains more local knowledge that is forgotten
during the model aggregation. For contrastive representation

learning, the PNP computes similarity between soft labels ex-
tracted from the past and removes samples that may have the
same class category with the given input, which alleviates the
class collision issue in traditional contrastive loss. In short, the
PNP is beneficial in three aspects. 1) It avoids the large diver-
gence of Non-1ID networks updated locally in current commu-
nication round. 2) It keeps more local knowledge, which can be
lost during model aggregation, benefiting FedSSL. 3) It helps
the class collision issue in traditional CL by removing potential
positives from negative samples.

2.4. Local Training

We now describe the training procedure at each client. We min-
imize the PNP-contrastive loss (5) on instance representation
and ordinary contrastive loss (4) on both past and current clus-
ter features. Formally, given a batch size n, the instance-level
PNP-contrastive loss at user & is defined via the instance-level

A
representations z; " = [277 - -+ 2,71 ] € R%X" 5 € {a,b} as

LR & L 2y ), ©)
where 77 > 0 is the instance-level temperature. On the other
hand, given ¢;"" £ [y77 - yZ;]T € R o ¢ {a,b}, we
define the cluster-level contrastive loss at round r via (4) as

L 2 Ley” ey s m0) + H(cp") + H(ey"), (1)
where 7¢ > 0 is the cluster-level temperature parameter, and
for any matrix u = [u; - - - ug] € R™*%, the entropy H (u) is
defined as H(u) 2 — >0, H\sz;\}‘ll log ”H’fju“ll. As discussed in
[6], entropy regularization helps avoid the trivial solution where
all samples are assigned to the same cluster. The cluster-level
contrastive loss differentiates clusters. Specifically, columns of

" and c?'" represents individual clusters.
We combine the different performance measures described
above into the overall loss function

Ly 2 L73" + aLg, ®)

where « is the hyperparameter used to control the weight of
the loss. The dependencies between the different losses are il-
lustrated in Fig. 2. Note that the first term in (8) depends on
the parameters of both the current and the past network, while
the second term depends only on the current parameters. To
minimize the loss (8) in practice, we select the negatives from
the current models only for » = 1 as there is no previous mod-
els in the first round. In the first round, the PNP is defined as

Pi={j#i:s(y;n,yin) <u r=1,Vo€{a,b}}.
3. EXPERIMENTS

3.1. Experiment Setup

Datasets and Settings: For fair comparisons, we follow the re-
cent clustering works [5,6,25] to evaluate our clustering perfor-
mance in terms of clustering accuracy (ACC), normalized mu-
tual information (NMI), and adjusted rand index (ARI). We per-
form different federated clustering algorithms on datasets in-
cluding CIFAR-10 and CIFAR-100. CIFAR-10 has 10 classes,
and CIFAR-100 has 100 classes. We use the 50,000 training
set for training and all the images for testing clustering perfor-
mance on CIFAR-10 and CIFAR-100.
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Table 1: Clustering accuracy (%) on CIFAR-10 and CIFAR-100 datasets. (In NCC, only 20 super-classes for CIFAT-100 is used.)

1D Non-IID (3 = 0.5) Non-IID (3 = 0.1)

Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Method NMI ACC ARI NMI ACC ARI | NMI ACC ARI NMI ACC ARI | NMI ACC ARl NMI ACC ARI
Single-Training 457 561 331 341 163 86 | 406 464 257 339 162 84 |348 404 201 338 152 73
FedBYOLCC 538 627 449 332 157 79 | 413 457 283 339 163 83 | 355 404 229 319 149 72
FedCC 549 649 463 341 163 84 | 412 447 275 344 165 89 | 332 380 203 330 150 73
FedPNP (ours) 568 665 471 347 171 9.0 | 427 495 305 345 170 89 |364 437 242 341 160 79
NCC [5] (Centralized) 88.6 943 884 - - - | 886 943 884 - - - | 886 943 884 - - -

For simulating Non-1ID data in federated learning, we fol-
low previous studies [8—10] to allocate the instances of class
j to client k in a proportion of p; ; followed by the Dirichlet
distribution Dirn (8) (8 = 0.5 by default). A larger 8 causes
more balanced distributions. For IID cases, each client has the
same number of samples for all classes, which is also the same
as the recent works [8-10,26]

Implementation Details: In our experiments, we use
ResNet-18 [27] as the base encoder. We use Adam opti-
mizer [28] with an initial learning rate of 0.0003 and without
weight decay. All input images are resized to 224 x 224, and
the batch size n is set to 128. The output dimension of the
instance-level MLP is set to 128, and the feature dimension of
the cluster-level MLP is equal to the number of clusters. The
instance-level temperature is 77 0.5, and the cluster-level
temperature is 7¢ = 1.0. In FedPNP, p is set to 0.999 for
selecting negatives. We set the hyper-parameters o = 2 for the
first round » = 1 and o = 0.1 starting from the second round.

Baselines: We compare the FedPNP with several existing
representation learning methods for clustering training on dis-
tributed data. 1) Single-Training: each client is trained locally
by performing the popular scheme SimCLR [17] without feder-
ated averaging. 2) FedBYOLCC: we combine BYOL [18] and
CC [6] to train the model by minimizing MSE loss in BYOL
and cluster-level contrastive loss in CC. 3) FedCC: we simply
extend the CC to federated settings. Also, we consider the cen-
tralized clustering scheme NCC [5] as an upper bound.

Evaluation: For all experiments trained in federated learn-
ing, we train the model for 100 communication rounds for K =
5 clients. For each communication round, each client is trained
for £ = 5 local epochs. For the Single-Training experiment,
we train each client 300 epochs and report the mean clustering
accuracy among all 5 clients by K-means. For all other feder-
ated clustering methods, we show the performance based on the
cluster assignment from the global cluster-level MLP.

3.2. Federated Clustering Results

Table 1 shows the proposed FedPNP constantly outperforms
other methods and achieves the best clustering performance
in all data distribution settings. In IID cases, we improve the
clustering accuracy by 10.4%, 3.7%, and 2% when compar-
ing with baselines on CIFAR-10. Compared to simply doing a
CC framework in Non-IID setting, we improve the clustering
accuracy by 4.6% and 5.7 % for § = 0.5 and 8 = 0.1, respec-
tively. For CIFAR-100 with 100 clusters, FedPNP is still the
best approach for dealing with such large number of classes.
Figs. 3, 4 show the overall clustering performance during com-
munication rounds for 8 = 0.5 and 8 = 0.1, respectively.
FedPNP outperforms all other methods, achieving higher ac-

curacy in fewer communication rounds. We note that fewer
rounds translate to fewer amount of computations, which is
an important gain for resource-limited edge devices. Another
byproduct of fewer rounds is reduced communication latency,
especially when the client-to-server communication rates are
low [29,30]. FedPNP thus offers significant advantages for both
power and communication-limited edge devices.

0.50 -
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<
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E—;
@ 0.30 1
(s}
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Fig. 3: The FedPNP for 8 = 0.5
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g 0.351
<
o
c
'S 0.30 1
E
s}
0.25 1
—e— FedBYOLCC
020 —— FedCC
—s=— FedPNP
6 2'0 4'0 éO 8'0 160
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Fig. 4: The FedPNP for 8 = 0.1

4. CONCLUSION

In this work, we aim to solve the challenging task on cluster-
ing unlabeled data in federated learning. Our focus is on fed-
erated learning at the edge, which may be limited in terms of
communication capabilities as well as computation power. We
propose FedPNP, a fully unsupervised federated deep cluster-
ing model that is more suitable and robust for clustering in
resources-limited devices. A novel past negatives pool is in-
troduced in FedPNP to reduce client-drift in federated learning
and alleviate class collision in contrastive learning.
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