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Abstract In this paper, we consider the sharp interface limit of a matrix-valued
Allen—Cahn equation, which takes the form:

IA = AA — e 2(AATA — A) with A:Q CR" — R™",

We show that the sharp interface system is a two-phases flow system: the
interface evolves according to the motion by mean curvature; in the two bulk
phase regions, the solution obeys the heat flow of harmonic maps with values
in O"(n) and O~ (n) (represent the sets of n x n orthogonal matrices with
determinant +1 and —1 respectively); on the interface, the phase matrices on
two sides satisfy a novel mixed boundary condition. The above result provides
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a solution to the Keller—Rubinstein—Sternberg’s problem in the O (n) setting.
Our proof relies on two key ingredients. First, in order to construct the approx-
imate solutions by matched asymptotic expansions, as the standard approach
does not seem to work, we introduce the notion of quasi-minimal connecting
orbits. They satisfy the usual leading order equations up to some small higher
order terms. In addition, the linearized systems around these quasi-minimal
orbits needs to be solvable up to some good remainders. These flexibilities are
needed for the possible “degenerations” and higher dimensional kernels for
the linearized operators on matrix-valued functions due to intriguing boundary
conditions at the sharp interface. The second key point is to establish a spectral
uniform lower bound estimate for the linearized operator around approximate
solutions. To this end, we introduce additional decompositions to reduce the
problem into the coercive estimates of several linearized operators for scalar
functions and some singular product estimates which are accomplished by
exploring special cancellation structures between eigenfunctions of these lin-
earized operators.

1 Introduction
1.1 Background and related results

The phase transition problem has drawn great interest in both analysis and
applications. The simplest model for the phase transition is the scalar Allen—
Cahn equation, which was introduced by Allen—Cahn [3] to model the motion
of antiphase boundaries in crystalline solids. Let # : Q € R™ — R, and F'(u)
is a potential function with two wells (e.g. F(u) = u?—1)>2 /4). The equation
reads as follows

1
ou = Au — —ZF/(u). (1.1)
)

As ¢ — 0, the domain 2 will be separated into two regions 21, where
u — =1 respectively. Moreover, the interface between these two regions
evolves according to the mean curvature flow. This sharp interface limit has
been rigorously justified in both static and dynamic cases by numerous authors
via different methods, see [30,31] for the static case, and [8,11,13,15,21,38]
for dynamical problems.

In [35,36], Rubinstein—Sternberg—Keller introduced a vector-valued system
for fast reaction and slow diffusion:

1
du = Au — — 0, F (u), (1.2)
€

whereu : Q CR™ — RV isa phase-indicator function, and the nonnegative,
smooth potential function F : RY — R vanishes exactly on two disjoint
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Matrix-valued Allen—Cahn equation... 3

connected sub-manifolds in R . By a formal asymptotic expansion, they found
that, when ¢ — 0, the interface moves by its mean curvature, while away from
the interface u tends to the heat flow of harmonic maps into the sub-manifolds
(potential wells).

There is a lack of rigorous analysis for the Keller—Rubinstein—Sternberg
problem (1.2) in general. A few studies are for some special situations and
the problem has remained largely open including the O (n)-model. In [26],
Lin—Pan—Wang analyzed the asymptotic behaviour as ¢ — 0 for the energy
minimizing static solutions to a class of the Keller—Rubinstein—Sternberg prob-
lem. One found a non-standard mixed Dirichlet—-Neumann boundary condition
for the phase field along the interface. A regularity theory for minimizing maps
of the limit problem was addressed in [27].

For asymptotics of the gradient flow (1.2), Bronsard—Stoth [9] stud-
ied the radially symmetric case for a special R?-valued problem, and a
Neumann-jump boundary condition for the limit system was derived. In
[16], without the radially symmetric assumption, Fei—-Wang—Zhang—Zhang
rigorously justified the asymptotic limit for a physical R3*3-valued model,
which describes the isotropic-nematic phase transition for liquid crystals
(the radially symmetric case is studied in [29]). For the latter problem, we
refer to [22,28] for more recent progress. There are several interesting stud-
ies for related problems, see for examples, [7,19,20,23,33], most of which
consider the case when the minimizing set of F' consists of finite isolated
points.

In this paper, through a careful and systematic analysis of the matrix-valued
Allen—Cahn equations, we obtain these intriguing boundary conditions for the
phase field along the sharp interface in evolution. In fact, a much clearer picture
emerges. The boundary conditions for the phase field (and also for the limit-
ing problem) are actually dictated by the geometric properties of the potential
energy wells and the so-called minimal connecting orbits. The existence and
geometric properties of these minimal-connecting-orbits (often infinitely many
if only one of the ends is fixed) will also show up in deriving matched asymp-
totic expansions and the construction of higher order approximate solutions
with drastic variations of analytic difficulties. It is something that does not
appear in the scalar case or several vector-valued cases, which has been stud-
ied by various authors before. It also illustrates why there are different types
of boundary conditions along the interface in earlier works [16,22,26-28], for
examples. Let us describe briefly our method below. Some related discussions
are in Sect. 3 of the paper.

Following [35,36] and [26], we consider the energy functional for @ C R™:

1
Ee(w) =/Q(|W|2+8—2F<u))dx,

@ Springer



4 M. Fei et al.

where the potential function F(u) is smooth for u € RV and satisfies the
properties that

c1d®(u, 3) < F(u) < Cod*(u, ¥)
for u € Xj, (the dp-neighborhood of %), and that F(u) > c3 whenever
du,%) > 8p. Here ¥ = ¥ N X_ is the union of two disjoint, smooth,

compact and connected submanifolds in R on which F vanishes. For any
two points py, p_ in RV, one can define the distance with weight /F/2:

ar(p*,p7) =int | [ (1EOF + F©)dr: 6 < 'R R,

£ (d00) = pi},
and let
¢ = inf _ dp(qgT.q7).
q+62+,q7627

Under some very nature assumptions, one has the following expansion for
the energy E.(u) for the so-called well-prepared data u:

F
E.(u) = %OH’"“(FM) + D) + 0:(1).

Here I',, is a sharp interface between the two phases ¥ and ¥_, and D(u) is
the Dirichlet energy of the map from Q4 (u) (the sub-regions of €2 which are
separated by ') into X .

If one considers energy minimizers (as in [26]), then it is intuitively clear
that I';, will be an area minimizing surface, and u : Qi (u) — X1 will be
energy minimizing maps. There will also be natural boundary conditions for
u on the two sides of the sharp interface.

The difficult point for the gradient flow for this type of energy func-
tional is that the sharp interface motion of {['(¢)} and the heat flow of
harmonic map in the bulk are in the same time scale (unlike the dynam-
ics of Ginzburg—Landau vortices [24]). These two motions may be coupled
in O(e) order terms (hence it does not show up in the first order formal
asymptotic expansions [35,36]); and due to the interfacial energy being of
order O(e~ 1), it may lead to undesired O(1) changes in motion of the
interface. This coupling occurs through the intriguing boundary conditions
for the maps at the sharp interface. As phases evolve in the bulk, bound-
ary values of uy at the sharp interface would change accordingly (and
even if they are of the size O(¢), they have to be counted as explained
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above). The latter may alter the weights in calculating of the (weighted)
surface area of the sharp interface, that is the dr distance between points
u4(x, t) from two sides of I'(¢). Of course, if the weighted distance between
any pair of points p+ € X4 is the same absolute minimum, then there
will be no such effect in coupling and the weight for the sharp inter-
face area will not change in the evolution. This is the case we shall
say that F(u) is fully minimally paired (see discussions in Sect. 3). The
case that u is a scalar function, and the cases that have been consid-
ered in many previous works for the vector-valued functions (including
[16,22,28]) are all so that F(u) being fully minimally paired. From this
point of view, [26] studied a class of problem which is only partially min-
imally paired, but in a very specific way. The O(n)-model we study in
this paper has a great generality for situations of partially minimally paired
F(u), and it is kind of a generic situation. We refer to the discussions in
Sect. 3.

In this paper we shall concentrate on the study of the evolution of
well-prepared initial data for the matrix-valued Allen—Cahn equations. The
construction of approximate solutions in this paper is based on a new mod-
ified matched asymptotic expansion method. It turns out to be one of the
most difficult points of this paper. The new method provides a great flexibility
and it improves substantially the earlier ones [1,2,13,16] in the study of the
sharp interface limit problems. On the other hand, we will use the setups in
Alikakos—Bates—Chen [2] as it fits better for a more geometric description of
our problem.

It is worth pointing out that though by now there are several elegant and
powerful approaches to sharp interface limit problems, to our best knowledge
along with many attempts, it remains unclear whether these arguments could
work in a general vector-valued setting (e.g., the Keller—Rubinstein—Sternberg
problem. Roughly speaking, the geometric measure theoretic approach via
varifold flows relies on the key monotonicity formula. The latter uses the
so-called “discrepancy function” in [21] and many improvements up to date
working only for the case that phase fields stay in a one-dimensional sub-
manifold in a neighborhood of the sharp interface. The recent approach using
the idea of relative entropy or modulated energy [18,22] (see also [25]) has been
applied to study sharp interface limit problems, but it is not clear also whether
it works for general partially minimally paired situations. Other geometric
measure theoretic approaches using energy concentrations such as that by
Ambrosio and Soner [4] will need both the so-called concentration energy
density lower bound and the energy equal partition (quantization). One meets
the similar challenges, whether any of these approaches can be modified to
work for the general sharp phase transition problems remain to be a fascinating
problem.
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6 M. Fei et al.

1.2 Presentation of the problem and main results

We consider a matrix-valued Allen—Cahn equation with a small parameter &
in the bounded domain Q = I} x I, --- x I, C R™ with periodic boundary
conditions, which was introduced in [34]:

HA° = AA® — 72 F(AP), (1.3)
where
f(A®) = A*(AF)TA® — A® (1.4)

with (A®)T denoting the transpose of A® € R"*" £ M,,. The system (1.3),
which was first introduced by [34], could be viewed as the gradient flow for
the energy functional

1 1
(SIVAIR+e72Fa))dx, FA) = ZIATA =12,
(1.5)

E(A,VA) = /

Q

where I is the identity matrix. In this paper, we are interested in the asymptotical
behavior of solutions to the system (1.3) when ¢ — 0.

Note that F(A) attains its minimum at the orthogonal group O(n) =
01 (n) U O~ (n), where O*(n) denotes the set of orthogonal matrices with
determinant £1. Formally, one has that, in the limit of ¢ — 0, the domain Q
can be divided into two disjoint parts ;" and Q; with the property that

Af(x,1) > AL(x,1) € OF(n), forx e QF.

Then we need to determine the evolution of the interface I'; = Q" N 9%,
the evolution of A+ in Q;JE, and the boundary conditions of Ay on I'. Indeed,
the limit sharp interface model of the system (1.3) takes the form:

m
a,Ai = AAi — Z a,'A:tAia,‘Ai (Aj: (S Oi(n)), n Q;E, (1.63)
i=1

V =k, onIy, (1.6b)
(A4, A_) is a minimal pair, onl;, (1.6¢c)
0A 0A _
o= onT,. (1.6d)
av v

Here V, k, and v are the normal velocity, the mean curvature and the unit
outward normal vector of I'; respectively. The condition (1.6c¢) is equivalent to
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Matrix-valued Allen—Cahn equation... 7

that for each x € T, there exists n(x, #) € S"~! such that Ay =A_(I-2nn);
see Definition 3.4 and Lemma 3.7.

The heat flow of harmonic maps (1.6a) and the mean curvature flow (1.6b)
for the interface are rather natural, which have been formally argued in [35,36].
The relation (1.6¢) has been obtained in [26] for minimizing equilibrium solu-
tions. The boundary condition (1.6d) is new and special for this matrix-valued
Allen—Cahn equation on O (n) due to the underlying geometric structure and
properties of minimal connecting orbits (see also [26] for different bound-
ary conditions in another geometric setting). We shall provide a derivation in
Appendix A.1.

In the case of n = 2, the minimal pair condition holds for any (A_, A}) €
0O~ (2) x O7(2). So, the condition (1.6¢) is redundant. The Neumann-jump
condition in this case (1.6d) is reduced to the usual Neumann boundary con-
dition for functions on both sides:

WA_ = d,A; = 0.

Indeed, in this case, we can write
cosoq sinog cosa_ sino_
Ay = . , A_=1[".
— sin o4 Cos o sino_ — Cosa_
(ot are the rotation angles), then (1.6d) becomes

doay = dya_ = 0. (1.7)

This boundary condition (1.7) for n = 2 has been observed in [39], in which
the asymptotic dynamics of (1.3) under different time scales are studied.

The main goal of this paper is to provide a rigorous justification of the limit
from the regularized system (1.3) to the sharp interface model (1.6), which is
also called the sharp interface limit. The proofs will follow the approach in
de Mottoni-Schatzman [13] and Alikakos-Bates-Chen [2]: we first construct
an approximate solution AX solving (1.3) up to sufficiently high order small
terms; and then we prove a spectral lower bound for the linearized operator
around AX; and finally we estimate the difference A® — AX,

Our main results are stated as follows. The first main result is concerned
with the existence of approximate solutions, whose proof turns out to be the
most difficult for this article.

Theorem 1.1 Assume that (I'y, Ay, A_) is a smooth solution on [0, T] to the
sharp interface system (1.6). Then for any K > 1, there exists AX such that

HAK = AAK — 72 F(AK) £ RET, (1.8)
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8 M. Fei et al.

where RE=1 ~ 0 (K1, and for any (x,t) with x € Qi, IAK (x, 1) —
Ar(x,t)|| > 0ase — 0.

Remark 1.2 The existence of smooth solutions to (1.6) is not a trivial issue
in general due to the complicated boundary conditions and we will address
it and some related issues in a forthcoming paper. But for this O(n) model,
the situation is very similar to that of problem studied in [27], and the well-
posedness has been established by the second author and Wang in [27].

The second main result is the spectral lower bound for the linearized operator
around the approximate solution AX. Compared with the proof in the scalar
case, the proof is much more involved, and several new ideas are introduced
to obtain the desired conclusions.

Theorem 1.3 Assume that AX(K > 1) is an approximate solution con-
structed as in Theorem 1.1. Then there exists Co > 0 such that, for any
A e HY(Q) andt € [0, T] it holds

1 1
/ (—||VA||2 + —HukA A)dx > —CO/ IA2dx,  (1.9)
Q \2 &2 Q
where
HgA = BBTA + AB'TB + BA'B — A (1.10)

is the linearized operator of f defined in (1.4).

With the help of Theorem 1.1 and Theorem 1.3, the following nonlinear
stability result follows easily via an energy method.

Theorem 1.4 Let L = 3([5]+2) and K = L + 1. Assume that AK isan
approximate solution constructed as in Theorem 1.1, and A® is a solution to
(1.3) with initial data A®(-, 0) satisfying

E(A°(,0) = AR (., 0) < Coe™,

where
(5141

EA) = > 86i/g2||ViA||2dx.
i=1

Then there exists constants gg, C1 > 0 such that for Ve < &g it holds

EA®C, ) — AKX, 1) <Cie?,  forvi €10, T]. (1.11)
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Matrix-valued Allen—Cahn equation... 9

1.3 Main difficulties, key ideas and outline of the proof

The proofs are based on two key ingredients: construction of approximate
solutions and the spectral lower bound estimate. Compared with the scalar
case (e.g. [2,13]) or the case that the potential function F () is fully minimally
paired (e.g. [16]), there exist several serious difficulties, for which we need to
introduce various new arguments to overcome them. Let us give a sketch here.

Assume (I';, Ay, A_) is a smooth solution of (1.6) on [0, T']. To proceed,
let d(x, I';) be the signed distance from x to I';, and v = Vd|r, be the unit
outer normal of €2,. We denote

I'é) =1{(x,1) e 2 x[0,T]:|d(x,I';)| <38},
O+ ={(x,1) e 2x[0,T]:d(x,I'y) 2 0}.

We also write I' = {(x,¢) € Q x [0, T'] : x € I';} for simplicity.
1.3.1 Construction of approximate solutions

As in [2], we construct approximate solutions via different expansions in the
two regions: outer region Q+\I"(6/2) and inner region I'(§).
In 04+\I"(8/2), we assume that the solution of (1.3) has the form:

—+00
A, ) = A0 =Y &AL (), (1.12)
i=0

where A(ii) (x, t) are smooth functions defined in Q4. Substituting the above
expansion into (1.3) and collecting the terms with same power of ¢, we can
obtain the equations for A(i) (x,1)(i = 0), where the leading order equation for
A 1’ (x,t) is actually the equation (1.6a). The boundary/jump conditions for
(') + (x, 1) on I'; will be determined to ensure the solvability of expansions in
inner regions (particularly on I';). Moreover, we will use the value of A(il) (x,1)

not only in the domain Q 4, butalsoin Q1+ UI'(§). Hence, we extend Ai) (x,1)
from Q4 to Q@+ U TI'(§) smoothly.
In the region near the interface, we try to find functions for (x, ) € I'(§)

Az x, =A@z, x, N+eAV @, x, ) +2AP @ x4, (1L13)
d¥(x, 1) = do(x, 1) +edi (x, 1) + e*da(x, 1) + - -, (1.14)
such that d®(x, ) is a signed distance function with respect to a surface I'®

and A (x, 1) = A% (¢7'd* (x, 1), x, 1) solves (1.3) in I'(8). Here A% (z, x, 1)
and di(x, t) (k = 0) are functions independent of ¢ and dy(x, t) = d(x, t).
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10 M. Fei et al.

To match the two expansions, we require that Agk) (z,x,t) tends to Ai{ ) (x,1)
exponentially asz — =+00. Then the approximate solution in the whole domain
Q2 can be constructed by gluing A, and A7 in the overlapped region I'(6) \
'(6/2).

Once we substitute the inner expansion (1.13) into (1.3), the leading order
(0(s72)) system is an ODE system in z, which reads as

—2AY + FAP) =0, AP (oo, x, ) = AL (x, 1) = Ax(x, 1),
(1.15)

for given (x, t) € I'(§). However, as the discussion in Sect. 3.2, the existence
of solution highly depends on the boundary data Ai) ). In particular, it has no

solution unless AI_A_ is symmetric. More importantly, only when (A, A_)
is a minimal pair, (1.15) can have a stable solution which takes the form

OA, A ;2 =sDA; +(1—s@)A_, s@)=1—(+eV>)"!
(1.16)

Sucha ®(A4, A_; z) with (A, A_) being a minimal pair is called a minimal
connecting orbit (see Definition 3.1 for the precise definition).

The boundary condition (1.6¢) gives us that (A4 (x, ), A_(x,t)) forms a
minimal pair for (x,7) € I'. As we have to perform expansion in I"(8), a
natural question is:

Whether Ay (x, t) can be smoothly extended to " (8) such that (A4 (x,t),
A_(x, t)) remains to be a minimal pair for every (x,t) € I'(6)?
Unfortunately, due to the partially minimally paired (cf. Definition 3.5) nature
of this problem, for general solutions of the system (1.6), such an extension
does not exist unless n = 2. [It partially explains difficulties for generalizing
the so-called relative entropy method to the Keller—Rubinstein—Sternberg prob-
lem]. Thus, for (x, ) € ['(§) \ I', one can not expect that (A (x, t), A_(x, 1))
is a minimal pair, and consequently one can not find a solution to (1.15) for
(x,t) e T \T.

More troublesomely, the equations of A(Ik) (z,x,t) (k > 1), whose main
part is the linearization of (1.15), take the form

c A(O)A“‘) —2A% +H N 0AY = F. (1.17)

This system may have no solutions, unless ASO) = O(A4, A_;7) with
(A4, A_) being a minimal pair. Therefore, for (x, t) € I'(§) \ I, the construc-
tion of Agk) (z,x,t) (k = 1) can not proceed either.

@ Springer



Matrix-valued Allen—Cahn equation... 11

The solvability of (1.15) and (1.17) have thus become a major obstacle
for the construction of approximate solutions. As a result, the traditional
matched asymptotic expansion method does not work for our problem. We
remark that, in several sharp interface problems such as the scalar Allen—
Cahn problem [13] or the isotropic-nematic interface problem [16], such
difficulties do not exist, because any pair of points from the two poten-
tial wells of F is a minimal pair (that is, F(u) is fully minimally paired,
see Definition 3.5). In such cases any smooth extension will work, and the
phase field equations on the two sides of the sharp interfaces are decou-
pled.

Now let us explain our main ideas.

To solve (1.15), a key idea is to construct a profile Ag(z, x, #) which fulfills
the boundary conditions and “almost” satisfies (1.15). Here “almost” means
the remainder

Ra,(z, x,1) = —32A0 + f(Ao)

is small and can be absorbed into the equations of the next orders by using the
relation of z = d®/¢. Precisely, we require that it has the form

Ra,(z, x, 1) = do(x,1)G(z, x, 1)
=e(z—d —edy — e2ds — - )G(z, x, 1),
with G(z, x, 1) smooth, and G(z, x, 1) = O (e~ 7))
as 7 — Zoo for some g > 0. (1.18)

Then it can be viewed as source terms for the systems of the next orders.

The requirement ensuring (1.17) to be solvable is much more restrictive.
Applying a similar idea as above, one may expect to find a minimal connecting
orbit @ (A, A_; z) such that the difference

k) A
ACASO)AI — LA,
can be absorbed into the expansions of the next orders. However, once
(A(IO) (—00), Ago) (+oo)) is not a minimal pair, it is hard, and in general impos-
sible, to find such a ® so that the difference decays exponentially to zero in z.

Our idea is to introduce a profile for (x, t) € I'(§):

Oz, x,1) = P(z,x,)Po(z, x, 1)
with Po(z, x, 1) =1 —2s(z)n(x, )n(x, 1),
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12 M. Fei et al.

where n(x, ) is smoothly extended from I' to I'(§) with d,n = 0 on I" and

O(—00,x,1) =A_(x,1),
D(4o00,x,1) =As(x, ) - 2n(x, t)n(x, 1)),
D(z,x,t) € O (n), P(z,x,t) > d(*oo, x,t)

exponentially as z — *£o0.

By choosing ®(z, x, t) suitably, we can obtain BZZCD, ;P = O(dge*‘)‘om).
Thus

Ro(z, x,1) = 320 — f(©) = 320P) + 29,3, Py
has the form in (1.18). A more crucial observation is that, if we write
Af,k)(z,x, 1) = ®(z,x, OHPi(z, x, 1),

then we have

LAl = &Lp Py — 92 DP; — 20,00, Py.

Since Py is a trivial minimal connecting orbit, Lp, can be explicitly inverted
by diagonalizing it into several differential operators £;(1 < i < 5) (cf.
(4.5)) acting on scalar parameter functions. Thus, Lg is solvable up to some
O(dge“’“)'Z') terms, which can also be absorbed into the next higher order
systems. These key properties enable us to construct solutions to the expansions
of each order. Such profiles ® are called quasi-minimal connecting orbits,
which play a crucial role in the whole construction of inner expansions. We
refer to Sect. 3 for details on motivation and construction of quasi-minimal
connecting orbits, and to Sect. 4 for diagonalizing of Lp,,.

The above procedure increases dramatically the complexity of the inner
expansions, and thus the process for solving the system in the expansion has
to be carefully examined. This will be accomplished in Sects. 5-6 with a
sketched illustration in Fig. 1.

1.3.2 Spectral lower bound estimate

Another key ingredient in our analysis is to prove a spectral lower bound
estimate for the linearized operator — A +H , k, which is clearly more difficult
than the scalar case. This is carried out in Sect. 7.

First, we restrict the inequality into the region near the interface (see (7.1)),
as it holds on regions away from the interface by direct estimation. Then we
introduce two transformations, one for coordinates and the other for matrix
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Matrix-valued Allen—Cahn equation... 13

fields, to reduce the problem into a matrix-valued inequality on a 1-D interval.
See (7.6) in Sect. 7.1.

By using a decomposition based on the diagonalization of Lp, along with
some further simplifications, a matrix-valued inequality can be reduced to
two scalar bilinear estimates for singular crossing terms and correction terms
respectively; see (7.15) and (7.17) in Sect. 7.2.

As these terms are both singular, they can not be estimated directly. To
overcome this issue, we have to introduce several decompositions based on
the eigenfunctions of the scalar linearized operators {£; (1 < i < 5)}. Then
the singularities can be removed by careful analysis on the weights and by
employing some delicate cancellation structures between these eigenfunc-
tions.

Furthermore, the above decompositions also lead us to develop some
weighted coercive estimates for the linearized operators. These coercive esti-
mates give new and elementary proofs for the spectral estimates of the operators
{L;}, which do not rely on the maximum/comparison principle or Harnack
inequalities, and that might have their own interest.

Finally, we would like to remark that, although the analysis in this paper is
carried out in the O (n)-setting, the ideas, on both construction of approximate
solutions and spectral analysis, are rather flexible to be applied to other partially
minimally paired Keller—Rubinstein—Sternberg problems.

1.4 Notations

e For any two matrices A and B, we denote A : B = A;;B;;, IAI2=A:A
and A L Bmeans A : B = 0.

e Forany two vectors m and n, we use mn to denote m®@n when no ambiguity
is possible.

e We use nA to denote the vector (n;A j;)1<i<n, and An to denote the vector
(A;jn;j)i1<i<n- Then Amnis understood as (A;xmyn;)|<; j<, and similarly
mnA = (m;ncAgj) 1<, j<n-

e M,: the space of n x n matrices.

e S,, A, the spaces of symmetric and asymmetric n X n matrices.

e O(n), 0% (n) : nxn orthogonal group, the set of n x n orthogonal matrices
with determinant 1.

o O(ekl) denotes the terms which can be bounded by C|z|¥e~%0ll for
some k > 0 as z — oo.

The following simple fact (Jacobi identity) will be constantly used:

forA,B,CeM,, (AB):C=A:(CB") =B:(ATC). (1.19)
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14 M. Fei et al.

2 Outer expansion
2.1 Formal outer expansion

We perform outer expansion in Q4 rather than Q4 \ I'(6/2) by using the
Hilbert expansion method as in [40,41]. Assume that

+00
A=Y AP (1), for(x,1) € Q. 2.1
i=0

Substituting it into (1.3), one can find the leading order 0(8%) equation reads
as

AQAOTAD _ 4O
which is satisfied by taking

AY = AL e 0F ). (2.2)
Now we assume that

—+00
Af(r, 1) = AsU(r, 1) = A Y UL (x.1),  for (x.1) € Q4.
i=0

Here Ui) ) = I A direct calculation yields that

AL (A% = f(U%)
— S(Ug:l) 4+ (Ug))T) + ng-i—l ((UE{:H-I) + (U$+l))T)

k>1
+BY + i), (2.3)
where
k i) UNTy+( k—1) j UNTy+(
BY= Y vQu)vl, = Yy u@ud) v
{i.j.1)=(0,1,k) i+j+H=k+1,

0<i, j1<k—1

2.4)

Here and in what follows we use the convention that Ui) = 0fori < 0. Note
that
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Matrix-valued Allen—Cahn equation... 15

c? =0, ¢ =vP UM v, (2.5)

and Ci(_l) only involves Ui) (1) . U(k b,
On the other hand, we define the hnear operator

Tev = AL (% (A£¥) — AALW))
=0,W — AW+ AL (AL — AALY —2ATVALVW. (2.6)

Then we have

AL (8,A° — AA®) = 7. U 2.7)

Substituting (2.3) and (2.7) into (1.3), and then equating the O Yk > =1)
system yields that

0" v + W) =0, 2.8)
0k >0): US4 (U = — 70 —BEY —cP. 29

In the sequel, we will use the decomposition
1 1
k k )\T k k JONT
M = —(Ui) + WPy ) €Sh. v = —(Ui) — W) ) € Ay,

and solve Mi‘ ), ng) separately.

2.2 The leading order equation

It yields from (2.8) that
MY =o. (2.10)

The equation (2.9) for k£ = 0 gives us that
2MP = - 7.uf —BY,

which leads to

J:UL +BY e5s,.

Since Mg) = 0, we have that U(i” = V;l) is antisymmetric, and thus from
(2.4):
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16 M. Fei et al.

BY =vPvIHT = (v es,, (2.11)
which implies
JoU e (2.12)
As Ui)) = I, we deduce from (2.7) that
AL(9AL — AAy) €Sy,

which is actually equivalent to the heat flow of harmonic maps to O~ (n)
given in (1.6a).

2.3 The next order equations

For general k, (2.9) can be equivalently written as

jiU(k) +B(k+1) +C$) €S, (2.13)
MED L (e B ed). e

Equation (2.14) implies that Mi) is uniquely determined from Ag )(O <Jj<
i—1)fori > 2.
From the definition (2.4) of Bi{) and (2.10), we have for k > 2

BY = v W)+ )V 2 goul. (2.15)
One can directly verify that
BLV eS,, forVeA,. (2.16)
Therefore, it follows from (2.13) and (2.16) that
JeUY + BMETY 1 P es,,

which further gives

1 _
JoUu® 5B (j v 4+ BP 4 ¢ ”) +cPes,. (2.17)
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Matrix-valued Allen—Cahn equation... 17

For k > 2, once {Ui)}ogigk_l is determined, the above equation indeed gives
a heat flow type evolution equation for Vi‘ ).

1
Jngf) _ 58 V(k) (k) s M(k)

1 _ _
~ 5B: (jiugf D4 gmMP ”) € Sy, (2.18)

since Mi( ) is already given by (2.14).

In addition, when k > 3, the equation (2.18) is linear for ng), since the
coefficients in the operator B+ (see (2.15)) and Ci() depend only on U(il ) and
vy,

For k = 1 or 2, (2.17) or (2.18) seems to be nonlinear at a first glance.
However, by a careful checking, we could find that it is also a linear equation
fork =1 or 2.

Indeed, for k = 1, from (2.11), (2.15) and (2.5) one has that

BB = VO BD)T 4 BTV = _oviD)? = oc).

Thus, the equation (2.17) for k = 1 is reduced to
1
JeVy — EBiJiUf) € Sp, (2.19)

which is apparently a linear equation for V$ ),

For k = 2, the only nonlinear (in Vg )) terms are contained in C;Ez ), which
can be written as

0 2NTy+(2 2 0\ T++(2 2 27\ T+ +(0
U0 (U2)TUP + 0P (U UP 4+ 0P (U2
= (V)Y VP + v (V)T + (v®)? + linear terms

= symmetric terms + linear terms .

Therefore, by eliminating symmetric terms, (2.18) for k = 2 is indeed a linear
equation of V(Z).

Note that for each Ags ) or Ui( ), the symmetric part Mg ) is solved explic-
itly from (2.14). Thus, we do not need boundary/jump conditions for Mgf)

on I';. While, the antisymmetric part Vi{ ) is solved from a linear heat-flow
type equation, thus their boundary/jump conditions on I'; are needed. These
conditions will be determined in the inner expansion to ensure that outer/inner
expansions match each other in the overlap region.
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18 M. Fei et al.

Once A+lg,, Mi los V(k) |o, are determined, we extend them to I'(6),
such that

AT UQs > 0Fm), MP:T@)UQL S,
v Tre)U Qs A,

are all smooth functions. Then A(k) (x,1) = At (M(k) (k)) are also smooth
in"'(6) U Q.

3 Minimal pair and quasi-minimal connecting orbits
3.1 Motivation

The aim of the inner expansion is to find a good approximation, up to any
order of ¢, to the exact solution in the region I'(§) near the interface. As
explained in Sect. 1.3, the main strategy used here is that, we try to find

functions Agk) (z,x,t)and di(x, t) (k > 0) such that
AS(x, 1) = A5 (e71d% (x, 1), x, 1)

solves the original equation (1.3) in (), with Aj (z, x, 1) defined in (1.13)
and d®(x, t) given by (1.14) which is a signed distance function with respect
to a surface I'Y . In addition, we require that, for (x, t) € I'(8), i, j, kK > 0 and
some «g > 0,

1000l (AP (2, x, 1) = AL (x, 1) = 01y as z > +o0. (3.1

Since we would like to approximate the sharp interface system (1.6), do(x, )
is naturally taken as the signed distance function to I';. Thus, Vdy - V on I';
is the normal derivative 9,. In addition, if ¢ is sufficiently small, ' should
be a good approximation of I';. As d® is a signed distance function, one has
|Vd?|> = 1, which gives

IVdo|> =1, Vdy-Vd; =0, (3.2)
2Vdy -V =— Y Vd;-Vdi_j, k=2 (3.3)
1<j<k—1

Substituting the expansions (1.13)—(1.14) into the following equation

HA° = AA® — 72 F(A®),
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Matrix-valued Allen—Cahn equation... 19

we find that, to eliminate the leading 0(8%) order terms, A = Ago) should
satisfy

A =fA), A(£oo) = As(x,1). (3.4)

In addition, the O (¢F=2) (k > 1) system gives that Agk) satisfies an equation
with the form

LAAY =F, AP (o0) = AP (x, 1), 3.5)

where F contains terms determined before, and L, is the linearized operator
of (3.4) around A defined by

LAWY = —32W + AATW + AUTA + WATA — 0. (3.6)

Therefore, the existence of solutions to the systems (3.4) and (3.5) are at
the heart of the inner expansion. As we will show in Sects. 3.2 and 4, when
(A4, A_) is a minimal pair, or equivalently, Ay = A_(I — 2nn) for some
n € $" ! one can find directly a solution A to (3.4) with (3.5) being solvable.

The boundary condition (1.6¢) gives us that (A4 (x,?), A_(x,t)) forms
a minimal pair for (x,7) € [I'. However, after a smooth extension,
(A4 (x,1), A_(x,t)) may not be a minimal pair in general for (x, t) € I'(§).
This is the main obstacle to the construction of approximated solutions in
the inner expansion. To overcome this difficulty, we construct a solution ©
which satisfies (3.4) up to some “good” remainders, which decay exponen-
tially fast in z-variable and vanish on I". More importantly, the corresponding
L is also solvable up to some “good” remainders. Such a solution is called
quasi-minimal connecting orbit (see Sect. 3.3).

3.2 Minimal pair and minimal connecting orbits

We start from a general nonnegative smooth potential function F : RV —
R>( which vanishes exactly on two disjoint, compact, connected, smooth
Riemannian submanifolds £* ¢ R without boundaries. A simple choice of
such potential function F (u) is giving by the square of the distance from u to
YT U X7, foru near 2T U X7, otherwise it could be a positive constant, see
for example [26]. Giving two points p+ € T, the solution of the following
ODE

Zu=9,F, u(£oo) = py, (3.7)

describes the way of phase transition from the state p_ to another state p.
The existence of solutions to (3.7) is so called the heteroclinic connection
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20 M. Fei et al.

problem, which has been studied extensively for the case of X1 = {p+}; see
[20,32,38,42] and the references therein for examples.

Definition 3.1 A solution of (3.7) is called a connecting orbit, and p are
called its ends.

In particular, we are interested in minimal connecting orbits, which is defined
as follows.

Definition 3.2 A solution of (3.7) is called a minimal connecting orbit [26],
if it minimizes the energy

1
e(u):/ —|u')> + F(u)dz (3.8)
R 2

among H), (R) :={u € H) (R) : lim; 100 u = ps}.

Remark 3.3 Let the trajectory of u be defined as Traj(u) = {u(z)| — o0 <
7 < +o00}. By using an argument as in [32,42], one can show that u(z) is a
minimal connecting orbit, only if:

(1) The closure of Traj(u) is a minimal geodesic curve connecting (p—, p+)
with the weight +/2F in RV;
(2) Traj(u) contains no other points in X_ U X

Indeed, for y = Traj(w) with w € C(I) N H!

1oc (1) (I 1s a interval in R), we
define

er(y) == /1 V2F@@) W' (2)]dz,

which is independent of the parametrization of . One can deduce that for u €
C! (2) with u(£o0) € ¥4, e(u) = er(Traj(u)), and the equality holds only if
%lazu | = F(u). This is a simple example of the so-called self-dual solutions.
If u solves (3.7), then d,(319.u|*> — F(u)) = 0 and hence 3|d.ul*> = F(u).
Thus er(Traj(u)) = e(u). As u minimizes ¢ with given ends (p_, p4), one
has that Traj(#) minimizes er with given ends (p_, p4). Otherwise one can
find another w with same ends p4 such that er(Traj(w)) < er(Traj(u)). By
suitably regularizing and reparametrizing w, we could assume w € H ; LR
and obtain that e(w) < e(u) which contradicts with the minimality of u.

In addition, if u is a solution to (3.7) and Traj(u) contains some other point
in £, we can assume u(z9) = po € 4+ U X_. Then (u(z), u'(2))(z > zo) is
solution to the ODE system

w) =wy, wj=dF(wy), forz >z
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with initial data w(z9) = po, w2(z0) = 0. However, this system obviously
admits a trivial solution w{(z) = pg, w2(z) = 0, which contradicts with the
uniqueness of solution (note that d,, F' is Lipschitz).

Conversely, for a minimizing geodesic (with weight ~/2F) connecting
(p—, p+) € X_ x X4 which does not visit some other point in ¥_ U X,
one can suitably reparametrize it to obtain a minimal connecting orbit, which
solves (3.7). We refer to the proof of [42, Theorem 3.1] or [32, Theorem 3] for
details.

With some mild assumptions on the potential function F, the existences
of minimal connecting orbits can be proved by variational methods as in [26,
32,42]. However, it is well-known that, for a general given pair (p_, p4) €
¥_ X X4, aminimal connecting orbit (and even a connecting orbit) with ends
P+ may not exist.

Definition 3.4 A pair (p_, p4) € X¥_ x X, connected by a minimal con-
necting orbit is called a minimal pair.

Definition 3.5 If any pair (p—, p4) € ¥_ x X is aminimal pair, we say that
F is fully minimally paired. Otherwise, i.e., if there exists (p_, p+) € T_xX X
which is not a minimal pair, we say that F' is partially minimally paired.

Most of classic models studied previously are fully minimally paired. For
example, for the scalar Allen—Cahn energy F = 31(1 —u?)? : R — R,
¥4 = {£1}. Obviously, F is fully minimally paired. For the isotropic-nematic
phase transition problem in liquid crystals [16,22,28], the energy F : Q — R
(Q denotes the space of 3 x 3 symmetric trace free matrices) takes the form:

b c
F(Q) = %|Q|2 _ 5trQ3 +71Q1% abe> 0,67 =2Tac.

One has

B b+vb2—24a6}

1 2
S =10}, == {s+<nn— 5I) ‘nes? s, -

As (0, Q) is a minimal pair for V Q, € ¥4, F is fully minimally paired.

Another geometric example is that X are the linked spheres S¥, S in
Sk—|—l+1 .

Fy = (i = 102+ ) (jur P+ (ual? = 1D?),

u= Uy, uy) € RAT x R,

Clearly, this problem is fully minimally paired. It seems hopeful to generalize
the relative entropy arguments [18] for the fully minimally paired case to
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obtain a short and elegant proof of the main result, see for example [22]. On
the other hand, the class of F(u) considered in [26] is at the exactly other
extreme. In the latter case, there are two compact, smooth sub-manifolds M4
of X4 respectively, such that there is a smooth diffeomorphism between points
P—, P+ in M4 so that the corresponding points p_, p4 form a minimal pair.

For the problem (1.3) considered in this paper, F = }t||AAT — 1|2, and the
equation (3.7) becomes

PZA=AATA—A, A(xoo) =AL € 0% (n), (3.9)

which is the Euler-Lagrange equation to the one dimensional energy func-
tional:

1 2 1 T 2
RillazAll +71AA" —T]"dz. (3.10)

In this case, we have an explicit characterization of minimal pairs, which
implies that this problem is partially minimally paired unless n = 2.

Lemma 3.6 For (A, A_) € O (n) x O (n), the following statements are
equivalent:

(i) 1A+ —A_| = min Byco+m)xo-m) 1A — BJ;
(ii) Ay —A_|| =2;
(iii) A_ = A, (I —2n ® n) for somen € S"~!;

Proof First, we show that, if B € O™ (n), thentr B < n—2, and equality holds
only when B = I—2n®n for some n € §”~!. For this, we assume B = RBRT
where R € O(n) and B = diag{A1, A2, -, Ak, J1, - L SiMk+2) =n)is
quasi-diagonal with A; € {£1}(1 < i < k), J; = (_C‘S’isneé'j Sf:) Seféj) (1<
j < D). As detB = detB = —1, at least one of X; equals to —1. Thus,
tr B < n — 2. Equality holds only if B = diag {A, A2, --- , A,,} and only one
of A; takes value —1, which implies B =1 — 2n ® n for some n € "~ 1.
From the above claim, as AEA_ € O~ (n), we have |A_ — A,|? =
tr (A-—ADTA_-A) =t QI-ATA_-ATA ) =2n—20wATA_ > 4.
In addition, equality holdsif andonly if ATA_ = I—2nn withsomen € §"~1,
which concludes the lemma. O

Lemma 3.7 A pair (A_,A;) € O~ (n) x OT(n) is a minimal pair, if and
only if |[Ay — A_|| =2.

Proof See Appendix A.2. m|
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Remark 3.8 Lemmas 3.6 and 3.7 imply that (A_, A;) € O~ (n) x O (n)isa
minimal pair if and only if A, —A_ = 2(A;n) ®n for somen € §"~!. This
implies that A and A _ are rank-one connected which is a crucial condition in
solid mechanics (e.g., the seminal work [6] of Ball-James). A good reason for
this to be the case may be because they all involve phase transitions between
two minimums of potential energies. For our problem, it implies formally that
(at the blow-up) tangent planes of the sharp interface are described by rank-
one connections. One of the difficulties in the Keller—Rubinstein—Sternberg’s
problem is that there are infinitely many such rank-one connections (if only
one 1of the two endpoints is given) which can be parametrized by the sphere
St

Let
s(2)=1—(1+ V21, (3.11)

which solves

s =2s(1—5)(1 —=25) forz € R; s(+o00) =1, s(—00) =0. (3.12)

Apparently, for k > 0, Bf(s(z) —s(*o0)) = O(e_ﬁm) as 7 — Zo0. In the
sequel, we will choose g € (0, \/5]. Note that all solutions of (3.11) are given
by {s:(z) =s(z+71):7 € R}

Lemma 3.9 All minimal connecting orbits are given by

O (AL, A7) :=s5: (DAL + (1 —s5:(2)A_, (3.13)
with (A4, A_) being a minimal pair and s(z) defined in (3.11).
Proof We defer the proof to Appendix A.2. O

Remark 3.10 We remark that, for any pair (A_, A;) € O~ (n) x O"(n) with
A_TFA, symmetric, @, (A, A_; z) defined in (3.13) are solutions to (3.9), i.e.,
connecting orbits. However, only if ATA_ = I — 2nn for some n € $"1,
O, (A4, A_; 7) are minimal connecting orbits. In this example, the dimension
of O(n) is n(n — 1)/2, its symmetric group is $”~!. Thus for every point p
in O (n) there is an embedded S” ! in O~ (n) which is minimum (and equal)
distance to p.. The similar statement is also true in the other way for points in
O™~ (n). This is a rather interesting (and also typical at least locally) partially
minimally paired situation, and leads to many mixed type boundary conditions.
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3.3 Quasi-minimal connecting orbit

As discussed at the beginning of this section, in general, for (x, ) € T'(§) \
I, one can not expect that (A_(x, t), Ay (x, t)) is a minimal pair. Thus, the
solution to (3.4) may not exist. To this end, we construct a profile ® which
approximately satisfies (3.4) for (x, t) € I'(3).

We assume that there exists a smooth vector field n(x, ) : I' — §”~! such
that A- = AL (I — 2nn) on I' (in general this assumption may be not true
and this issue will be discussed in Remark 6.1). Then we extend n(x, ¢) to be
a smooth $”!-valued function in I'(§) with 9,n = 0 on I". Define smooth
orthogonal matrices

D_(x,1) =A_(x,1), Pi(x,t) =Asf(x,)—2n(x, )n(x, 1)),
for (x, 1) € I'(3).

Itholds that @ (x, t) = ®_(x, t) onthe interface I'. Moreover, as d,n(x, t) =
0 on I', the boundary condition (1.6d) ensures that

0D y(x,t) =0,P_(x,t) for(x,t)erl,
which implies that
[Pf(x,t) —D_(x,0)| < Cdg(x, t) for (x,t) e I'(5).
This quadratical vanishing property near the interface is very important.
Let ®(x, t; 7)(tr € [0, 1] be a geodesic on O~ (n) connecting ®_(x, ¢) and

CD_|_(X, t):

D(x,1;0) = P_(x,1), D(x,151) = Dy(x, 1),
18; P (x,t; T)|| = const. for T € (0, 1).

Then we reparameterize the geodesic as

®(z,x,1) = D(x, 15 7(2)), (3.14)
where 7(z) is a monotonic increasing function which tends to 0 (or 1) expo-
nentially fast as z — —o0 (or 4+00). In particular, we can choose 7(z) = s(z).

Apparently, one has that for k > 0

185(® (2, x, 1) — @1 (x, )| = O™ g (x, 1)), as z — Foo, dy — 0.
(3.15)
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We define

Oz, x,1) = d(z,x,)Po(z, x,t) with Py=dA—2s(x)n(x, 1)n(x, 1)).
(3.16)

Thus, one has
f(O©) =000 — 0 =4s(s — 1)(1 — 25)P(z, x, /)nn,
which gives
320 — (@) = 32D (z, x, HP) + 28, D(z, x, 1)d.Py.
Moreover, the linearized operator around © can be written as
LoA = O(z,x,)Lp,P + 32D (z,x, P + 28, D(z, x, )3, P

for A = OP.

Due to the construction of @, 8§<I>(z, x,t),0,P(z, x,t) are of order
(0] (e‘o“”z‘dg (x, 1)). Therefore, ® satisfies (3.4) up to some terms which decay
exponentially fast in z-variable and quadratically vanish on I". More impor-
tantly, as ® € O~ (n) is invertible and Lp,, is solvable (see Sect. 4 below), L
is also solvable up to some small remainders. These crucial properties enable
us to modify the original equation and solve the expanding systems exactly.

The profile ® defined in (3.16) is called a quasi-minimal connecting orbit,
and we will use it as the leading order approximation in the inner region.

4 Diagonalization of the linearized operator

To solve the linearized ODE system
Lp,P := —3?P + PoP{P + PoP'P; + PP[P; — P =F.

with Po(z, x, 1) = I — 2s(z)n(x, 1)n(x, 1) and n(x, 1) € S"!, we need to
make a diagonalization to Lp,,. Here and in what follows, we simply write Lp,
as £ when no ambiguity is caused.
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4.1 An orthogonal decomposition of M,

For n = n(x, r) fixed, we introduce

Vi={im|ieR}, V,={m+)|l1-n=0,1€R"},
V3 ={@m —In)|[1-n=0,1€eR"},

4.1)
V4 =span {Im—ml)|l-m=1-n=m-n=0,1,meR"},

Vs =span {I, iIm+m)|l-m=1-n=m-n=0,1,m e R"},

all of which are dependent on n(x, ¢). Clearly, M,, = Gaf:]V,-, A, =V38Vy,
Sh = Vi@ Va® Vs and dim(Vy, Vy, V3, Vg, Vs) = (1, n — 1, n —
1, %(n — D —2), %n(n — 1)). Moreover, if (A_, Ay) is a minimal pair
with A_ = A, (I — 2nn), then

ALV, =A_V;(i =1,45), AV, =A_Vi3, A V3=A_V,.
Let P; : M,, — V; (1 <i < 5)be the projection operators. Then one has

P1A = nnAnn = nn(A : nn),
1

PrA = E[nn(A +AT)(T —nn) + (I — nn)(A + AT)nn],

P3A = l[nn(A —AT)I —nn) + I - nn)(A — A")nn]

=5 ’ 4.2)

1

PsA = E(I —nmn)(A — AT)(I - nn),

1 T
PsA = E(I — nn)(A + A )(I —nn).
One can directly check from (4.2) that

(I —2nn)P,A = — P3((I — 2nn)A),
(I —2nn)P3A = — P> ((I — 2nn)A), (4.3)
P4((I — 2nn)A) = (I — 2nn)P4A = P4A.

These projection operators play important roles throughout this paper. We
remark that for our later use, n and the corresponding decompositions (4.1)
may depend on (x, 7).
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4.2 Diagonalization
Now we solve the ODE system

LP(z,x,t) =F(z,x,1). 4.4)
A crucial observation is that the system (4.4) can be diagonalized into several

scalar ODE:s via the above orthogonal decomposition of M.
We denote

Ui(z) =PiP(z), Vi) =PF(z) forl<i<5.
From the fact
PoP) = PPy =1 —4s(1 — s)nn
and (4.2), we deduce that

PoPlP + PP/ Py = 2P — 45(1 — 5)(nnP + Pnn)
=2P — 8s(1 — s)nn(P : nn) — 4s(1 — )
X ((I — nn)Pnn + nnP(I — nn))
=2P — 8s(1 — s)U; —4s(1 — 5)(Us + Uy),
PoPTPy = (I — 2snn)PT(I — 2snn)
=PT 4 45°U; — 45U, — 25(U; — Uy).

Using the fact that Ul = U;(i = 1,2, 5) and UJT. = —U;(j = 3,4), we find
P;LP = L; PP forl <i <5,

where
Liu=— 8Z2u + ki ($)u,
with k1 (s) = 2(1 — 65 + 652), Ka(s) =2(1 —5)(1 — 25), (4.5)
Kk3(s) =25(2s — 1), ka(s) =0, «s5(s) =2.

Thus the system (4.4) can be reduced to

ﬁl‘Ui = V,‘ for 1 <i < 5. (46)
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Let
01(2) = 5'(2) = V2s5(1 —5), 6:(2) = 5(2),
(z) =1—-5(2), 64(2) =1. 4.7)

Then from (3.12), it is easy to see that

6/ (2)
6;(2)’

Thus, we obtain for 1 < i < 4 that:

1 2 u
Liu = —e—iaz(ei 8Z<9_i))'

It is direct to check that for a bounded function u € C%(R), £;u = 0 if and
only if u = A6;. Thus, if we define

ki(s(z)) =

1<i <4

Null £ = span{6; (2)E; (1 <i < 4) : for V constant E; € V;},

then for a bounded C? function ¥, £¥ = 0 if and only if ¥ € Null L.
Let ag € (0, /2]. Define the spaces:

Siao, k) ={feC’®): fF= lim f(z) exist,

and for ¥j € [0, J1, 18] (f(2) — f5) < lzlfe™ ! as 7 — +o00].
Sym(eo, k) ={fC x, 1) € Sylap, k) : forV (j, I, m) € [0, J]
x[0, L] x [0, M],

107010 (f (2, x, 1) — fE(x,D)| < lzlFe @] as z — +o0).
Lemma 4.1 Assume F(z, x,t) € Sy.1.m(xo, k) with
(B2): PaFt(x,1) =0; (B3): PsF (x,1) =0; (B4): PaF(x,1) =0,

and orthogonal conditions:
(0i) : / 0;(2D)F(z) : Eidz =0, VconstantE; € V;, 1 <i <4.
R

Then for (4.4), there exists a unique bounded solution P*(z,x,t) €
Sys2.0.m (a0, k + 1) satisfying 0,P*(0, x,t) : (mn)(x, 1) = 0 and

(S2): PaP*T(x, 1) =0, (S3):PsP* (x,t) =0, (S4): PsP**(x,1) = 0.
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In addition, all bounded solutions to (4.4) satisfying 9,P(0, x, t) : (nn)(x,t) =
0 are given by

P(z,x,1) = s(2)Qa(x, 1) + (1 — 5(2))Q3(x, 1) + Qa(x, 1) + P*(z, x, 1),
(4.8)

with (Q2, Q3, Q) € V3 x V3 x Vg

Remark 4.2 Conditions (B2)-(B4) ensure that the integrals in (O1)-(04) are
finite.

Remark 4.3 One can see that P*(z, x, t) shares the same regularity in (x, t)
with F(z, x, ).

Proof The results can be deduced from Lemma A.2. O

4.3 Cubic-null cancellation

For A, Ay, A3 € M, we define the trilinear form

TrAL A2 A= Y AATAL (4.9)
{i,7,k}={1,2,3}

Then T (A1, Az, A3) : Ay keeps the same if we exchange any A; and A ;
(1 < i, j <4). The following cancellation relation plays an important role in
closing the expansion system of each order.

Lemma 4.4 For Qp, Q>, Q3 € Null L, we have

/RTf(Po, Q1,Q2) : Q3dz =0,

where the integral is understood as limg_, 4 | _RR (-)dz if necessary.

Proof For the convenience, the left hand side is denoted by J(Pg, Q1, Q2, Q3).
It suffices to prove the case of Q2 = Q3 = B, since we have by (1.19) that

23(Po, Q1,Q2,Q3) =T (Po, Q1, Q2 + Q3, Q2 + Q3)
—J(Po, Q1,Q2,Q2) — I(Po, Q1, Q3, Q3).

Assuming B(z) = ZLl B;(z) with B;(z) € V;. When Q; = As'nn, we
have
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J(Po, Q1,B,B)
- 2x/ s’((l — 25)(IBnf? + mB[?) + [B? : nn|? — 25|B : nn|2)dz.
R

Itis easy to check that (B;B;) : nn = 0 for different i, j, and B4n = nB4 = 0.
Thus,

J(Po, Q1,B,B)

3
=22 Z/ s’<(1 — 25)[/B;n|*-+nB;|*]+[B? : nn|* — 25|B; : nn|2)dz
i=1 /R
3
= 3(P.Q1.B;.B)).
i=1
For B, = s(nl + In) with 1.Ln, we have
3(Po. Q1. B2, By) = A f (450 29 4 25/ 1Pt
R
= ,\/ (s3(1 = $)))1[*dz = 0.
R

Similarly, we can prove that J(Pg, Q1, B3, B3) = 0 for B3 = (1 — s)(nl — In)
with 1.Ln. For B; = us'nn, we have

3(Po, Q1. By, BY) = A’ / 6(s')°(1 — 25)dz = 0,
R

Therefore, J(Py, Q1, B, B) = 0 for Q; = As'nn and B € Null L.
For Q; = sE> 4+ (1 — s)E3 + E4 with E; € V;, by direct calculations (see
Lemma A.3), we get
J(Po, Q1, B, B)
= / { 2sEs : [(2s — 1)(B3B4 + B4B3) + (3 — 45)(B1B2 + ByB)) |
R
+2(1 — $)E3 : [(1 — 45)(B1B3 + B3B)) + (1 — 25)(B2B4 + B4By)|
+2(1 — 25)E4 : (BoBs3 + B3B2)}dz.
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By taking B;(z) = X;6; (z)I:]i with I:Ji € V;, we can show that all the integrals
vanish due to the following fact:

/ s2s — 1)(1 —s)dz = / 2s2(3 — 4s)s'dz
R R
= / 2(1 — 5)%(1 — 4s)s’dz = 0.
R
The proof is completed. O

5 Inner expansion
5.1 Formal inner expansion

Formally, we write the inner expansion as

AG(z,x, 1) = @(z,x, )P (z, x, 1)
= O(z,x,1)(Po + &P + &Py + -+ ) (2. x, 1),

where Po(z, x, t) = I-2s(z)n(x, )n(x, t) and P is given by (3.14). We should
keep in mind that Py has to satisfy the matching conditions for (x, t) € I'(§):

®LPi(+o0, x,1) =AY, orequivalently Py(+oo, x, 1) = PYUL.
(5.1)

Let P(x, 1) = P(d®/e, x,1), D(x,1) = ®(d°/e, x,1) and A5 = P°d.
Then we have

0 AS — AAS 4+ 2f(AS) = B0, P° — AP® + 721 (P))
+ (8, — A)DP® — 2VHVP?,

To ensure K§ solves (1.3) in I"(§), one has that
{8_2[ — 02P° + F(PF) — ®TO20P* — 2079, D). P¢]

+e (3,d° — Ad®)(3,PF + ®T3. D) — 20TV VI (OPF)]

+0T(5, — A)(@Pe)} =0 (5.2)

As in [2], we will regard z as an independent variable and (x, t) € I'(§) as
parameters. Then we will solve a series of ODE systems with respect to z for
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Pir(z,x,t) (k =0,1,2,---). Note that we can add any terms vanishing on
{d® = ez} on the left hand side, which does not change the equation (5.2).

Let G%(z, x, t) and H¥ (x, 1) be matrix-valued functions to be determined
later. We choose a fixed smooth and nonnegative function 7(z) satisfying:
n(z) =0ifz < —1,n(z) = 1ifz > 1, 7'(z) = 0. Let

ap = / )2z, a = / n'6idz (1 <i<3). (5.3)
R R
Consider the following modified system
8—2{ — 92P° + F(PF) — 0T920PF — 2070, 0, PF + (d° — sz)és}

teo! {(8td8 — Ad®)(3,P° + ©To. D) — 2d>T(Vd8V8Z(CDP5))}
+@T (3, — A (PP + HY*(x, )} () + HF(x, H)ny, (2) =0 (5.4)

for any (z, x,t) € R x I'(§). Following the idea in [2], we choose njf[ (z) =
n(—M = z) with

M = |dillcoer,y + 2.

Then one has n(—M £ d®(x,t)/e) = 0 for (x,1) € I'(§) N Q. H*¢(x, 1)
will be chosen as in (5.11) with (5.19) and (5.20), which imply H*¢(x,1) =0
for (x,t) € I'(6) N Q4. Thus, one has

HY (x, Ol ()+H " (x, 1)y, (2) =0, forany (x,1) € I'(8).

=ds(x,1)/s

As a result, all the modified terms vanish on {d® = ¢z}, and will not change
the system (5.2).

From the definition of ®, we can deduce that BZ(CDTBUQD) = 0onI', which
gives

79,0 =d19,6_ 2WeV, onT. (5.5)

Indeed, as & — ®_ = O(dj), we have 3.® = 0(d}) and 3,(®19,P) =
®79.9,® = 9,(®T9.P) = 0 on I'. See Appendix A.1 for the proof of W e
Vy4.

Moreover, since it holds ®T BZZCD =0and ®T9,® = 0 on I, we can assume
that

1920 = do(x, NP1(z,x,1), 2070, =do(x, P2(z, x,1),  (5.6)
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where on I the definitions are interpreted as
Dz, x, 1) = lim dy '®T92d = 9,(dT92 D),
1 (Z X ) dolino 0 Z v ( Z )

Do(z, x,1) = lim 2d; ' ®T9,d = 29,(0T8, ).
dp—0

It is direct to check that
Dy (z, x. 1), Doz, x,1) = O(e *ydy(x, ). (5.7)
Before going to the next steps, let us recall from (3.15) and (5.7) that

3. ® = 0(d}), @1, ®y, Vdy -V, ®, Vdy-Vn = O(dp)
for (x, 1) € I'(8), (5.8)

which will be repeatedly used in the sequel.
Now we take

G (z, x, 1) = (P1P° + D20.P°) + G (z, x, 1), (5.9)

with G(z,x,1) = ) " &* (Gk(x, N1 (2) + La(x, r)n”(z)), (5.10)
k>1

HS(x, 1) = Y e"H (x.1). (5.11)
k=0

Ateach (x, 1) € I'(8), we will choose

Gix, 1) e Vi@V, ®V30Vy, Li(x,1) € Vy,
H eV,@Vy, Hp € V3 Vy,

which will be precisely defined later.

Remark 5.1 Therole of (®1P*+®,0,P)in G¢ is to leave the small error terms
into the next orders. Otherwise, the obtained ODE systems are too complicated
to solve. The term Gy is used to ensure the orthogonal conditions (O1)-(04)
of F on I'(6) \ I, while Hf: is used to ensure the boundary conditions (B2)-

(B4), and L, is introduced to characterize the variation of “normal derivative”
of P4Pk.

Now we substitute the expansion into (5.4) and collect the terms of the same
order.

e The O(s72) system takes the form

—32Py + PoP{ Py — Py = 0, (5.12)
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which is satisfied by
Po(z, x,t) =1 —2s(z)n(x, t)n(x, 1). (5.13)
e The O(s~!) system reads as

— 32P; + PoP{P; + PoP{P) + PP P) — P,
= —(8;dy — Adp)(PT3. PPy + 9.Py)
+20TVdy - V9, (DP)
— (®1Py + 20, Po)(d1 — 2) + Gin'dy + Lin"dy
£F1 4+ Gin'dy + Lin"do. (5.14)

e The O(g5=2) (k > 2) system takes the form

— 32P + PoP{ Py + PoPP) + PP Py — Py
= —(,do — Ado)(@" 0. PP_y + 9. Py_) + 20" Vdp - V0, (PPr_1)
— @ydi—1 — Adi—1) (P10, PP + 9.Pp) + 28" Vg - V.0, (PPy)

- > (3 di — Adp) (DT, PP} + 3,P)
i+tj=k—1
1<i,j<k-2
+20T > Vd; - V9. (OP;)
i+j=k—1
1<i,j<k-=2
— T3 — A)(PPr2) — > PPIP +H iy +H oy
i+j+l=k
0<i,jl<k—1
- Yo (@R ®20.P)(d) — 8}2) + (®1P) + D20 Po)dy
i+j=k
1<i,j<k—1
+ (G + Lin")de—y + > (Gin' +Lin")(dj — §}2)
i+j=k

2<i, j<k—2
+ (G’ + Lyn")do
£ Fr + (Gen' + Ln")do. (5.15)
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5.2 Determination of H,f and Gy
The equation (5.14) — (5.15) can be written as
LPy + Lidon) = Fr + Gyn'dp. (5.16)

Now we determine H,:f and Gy, in order to ensure that the system for the inner
expansion is solvable. Let ch (x,1) = Pr(£o00, x, t). Firstly, we choose

H = -+ Po (010 - M@ P )+ Y BIPDTR),

i+j+l=k
0<i, jl<k—1
(5.17)
H ,=-Py+P) (010, - M@ P )+ Y P ®)TR),
i+j+l=k
0<i, jl<k—1
(5.18)

for all k > 2. Thus, we have
P> lim Fp=P3 lim F,=P4; lim F;, =0,
Z—>+00 7—>—00 z—>+00

which are necessary for solvability of Py; see (B2)-(B4) in Lemma 4.1.
From (5.1), one has & P} = A = A, UY and ®TA | = I—2nn. Thus,
we get

H ,=— P+ 7’4){(1 — 2nn) (Afr(at ~A)ALUE?)

R
+ 3 v U)mu?)}
i+j+l=k
0<i,jl<k—1

=0, forxe Q;NTQ). (5.19)

Similarly, one has

H,_,=0, forxeQ NI(). (5.20)
In particular, we have

HS ,=0onT,, fork>2. (5.21)
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From (5.14)—(5.15), we know that
Fi = Fu (D, {di, Pi, G, L 1 i <k — 1)) 4 (®1Pg 4+ ®20,P)ds,  (5.22)

where Fy is an explicitly given function, and the last term vanishes on I".
Once we have determined Fy on I'(§) by (5.22) with Fy|r satisfying (O1)-
(04), G can be uniquely defined as

Gy = { —dy! [ (3 a7 6P + Pa)Frdz, (x,1) € T(S)\ T,
—dy Jo (X7 a; ' 0P + Pa)Fedz,  (x,1) €T

i=1%

(5.23)

Here a; (i = 1, 2, 3) are constants defined in (5.3). One can directly check that
Fi + Gyn/dy satisfies (B2)—(B4) and (O1)—(04) in I"(§). Moreover, we have

Lemma 5.2 (G : nn)|r, is independent of d.

Proof From (5.22) and (5.23), it suffices to prove that

lim dy ' (®1Py + ®29,Pp) : nn = 0. (5.24)
do—0

We recall the definition (5.6) for ®; and ®;. Obviously, ®19,® is antisym-
metric in I'(§), and then so do ®; and limg,—0 d, ! ®,. Therefore,

®20,Pp:nn=—-25®, :nn=0  in ().
Moreover, we have
192D = 9,(T9,®) — 9,79, P.

The first term is antisymmetric, and the second term is of order O(d(‘)1 ). This
proves (5.24). O

We can also obtain the explicit expression for G : nn on I' from (5.23):
Gy :nn=—a;'a, / s'Fy : nndz, (5.25)
R

which only depends on ® and {d;, P;, G;, L; : i < k — 1}. In particular, (Gy :
nn)|r, only relies on ®, dy, Py. We will use these facts for the derivation of
the equations of dy and di (k > 2).
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6 Solving the systems for outer/inner expansion
In this section, we first solve the systems for the outer/inner expansions, and

then construct the approximate solutions by the gluing method.
Recall that Py, for £k > 1 solves

L(Py + Lydon) = F + Gyn'dy, (6.1)
together with the boundary condition
Py (00, x, 1) = PEUY. (6.2)
By Lemma 4.1, the solution Py of (6.1) can be written as

Pr =s(@)Pr2(x, 1) + (1 —s(2))Pr3(x, 1) + Py alx, 1)
_Lk(x7t)d0(xvt)n(z)+PZ(Z’~X’I)9 (63)

where Py ; (x, 1) € V; and P} (z, x, t) is uniquely solved by

LP;(z, x, 1) = Fr 4+ Ggn'do,

. \ \ (6.4)
PaP}(+00, x, 1) = P3P} (—00, x, 1) = PyP}(—00, x, 1) = 0.

Due to the matching condition (6.2), one has for (x, ¢) € I'(§) that

P4Pk(_oov X, t) = Pk,4(xv t)
= Pa(Pe(toc, x,1) = Pi(+00,x,0)) + Lidy,  (6.5)

and
Pio(x, 1) = PaPy(+00, x, 1) = Pa(I — 20n) U
=~ —20m)P;UY = —(1 — 20m)P3 VY, (6.6)
Py 3(x, 1) = PsPr(—00, x, 1) = PsUY = pyv®. (6.7)
Here we have used the relation 732((1 - 2nn)A) = —(I — 2nn)P3A in (4.3).
Moreover, by (6.2):
PaPy(—00, x,1) = PaUY = P,v®,
PaPi(+00, x,1) = Py(( - 20mUY) = PUL = PV,
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We then infer from (6.5) that

PVY =Py (VP .1 = Pi(+00,x,1), for(x.nel,  (68)

0, PVY = 0, Py(VP(x, 1) = P00, x,0)) + L, for (xr,1) €T
(6.9)

This gives two boundary conditions on I for v® and VS]_C). The determination

of L and other boundary conditions for v® and Vglf) will be derived from
conditions (02)-(04) for Fj 1, which will be explained in Sect. 6.3.3.

6.1 Solving the equation of Py

Since 3, P, 9. Py, @1, ©2, 1, 0" € Sy .m(xo, 0),0onehasFy € Sy 1 p(xo, 1)
and the boundary condition (B2)-(B4) for F; are automatically satisfied.

Firstly, one has 0,®, @, ®,, 9,0,P, dy,n = 0 on I'. In addition, it holds
that

20TVdy - V,9.(dPg) = 2079, 90.Pyg = —4s'Wnn = 0,
as W € V4. Thus, we get
F| = —(0;dy — Adp)9,Py onT. (6.10)
Therefore, the orthogonal condition (O1) for F| on I' is equivalent to
ao(9;dy — Adp) = 0, (6.11)
which means that I'; evolves according to the mean curvature flow. This in
turn gives that F; = 0 on I'. Then the orthogonal conditions (02)-(04) for F,
on I' are automatically satisfied.
Now we have F| = 0 on I". So we can define Fi and G in I'(8) by (5.14)
and (5.23) respectively. Note that d; has not been determined yet. However,
a remarkable consequence of Lemma 5.2 is that, as we will see in (6.17), d;

satisfies an equation, which only depends on the zeroth order terms (P, dp, n).
Therefore, from Lemma 4.1, we can write

P =s@P120x, 1) + (1 —s5@)P13(x, 1)
+ P a(x, 1) — Li(x, t)do(x, )n(z) + Pi(z, x, 1), (6.12)
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with P} (z, x, t) uniquely determined by (6.4). Note that P} (z, x, t) depends
only on the zeroth order terms (®, dy, n). Moreover,as F{|r = 0, one has
P7|r = 0 and hence P{|r € Null L.

6.2 Solving the equation of P,

Again, we yield from (5.8) and (5.21) thaton T",

Fr =20"Vdy - V,8.(®P)) — (8,d; — Ad)d-Py + 2dTVd,; - V,0.(PPy)
— @0, — Ay)(PPo) — (PoP[P; + P\PjP| + P P|Py)
+ (G +Lin")(di — 2). (6.13)

We can directly check that the right hand side exponentially tends to its values
at £o00.

6.2.1 The equation of d;

The orthogonal condition (O1) on I' gives us that

O=/F2 - 9,Podz.
R

The above equation gives an evolution equation for d; on I'. Surprisingly, it is
independent of the choice of P;. As we mentioned above, this in turn gives a
closed solution (5.23) (k = 1) for Gj.
Firstly, due to (5.8), we have 9, =0, 9,0, = 0 on I', and thus
20TVdy - V3. (®P;) = 2079, D9.P; + 20.(3,P1).

Again, as ®19,® = W e Vy, one has 19,93, P; : 8,Py = 0. From (6.12),
one has 9;0,P; : nn = 0 and thus 9,(9,P) : 9,P9 = 0. Therefore, we obtain

20TVdy - V3. (DP) : 3.Py = 0. (6.14)

As Pi|r € Null £, thus by Lemma 4.4 we have on I" that
/ (PoP{P; + P PP + PP Py) : 3, Podz = 0. (6.15)
R

Since 8, ® vanishes on I' quadratically in dy and ®T Vd, -V, ® is antisymmetric,
we have
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201Vd) - V9, (PP) = 2TVd, - V, @9, Py + 2Vd, - V,9,P
=25'®TVd; - V,dnn + 25'Vd, - Vo (nn)  (6.16)

which is orthogonal to nn. Therefore, combining the above conclusions we
obtain that

dag(0;d; — Ady) — / (d1 — 2)s'G1 : nndz = F(®, dy, n) onI, (6.17)
R

which is linear due to (5.25) with k = 1. Then we can extend d; from I" to
['(§) uniquely by Vdy - Vd; = 0.

6.2.2 Determining Fy, G, P} in T'(8)

After d is determined in I"(§), we define F;, G| in I'(§) as in (5.14) and
(5.23). Then P} can be determined from (6.4).

6.2.3 The equations for P1 ;2 <i <4),LyonT
The conditions (02)—(04) for F|r give us that
/ (2<I>T8u<1>3zP1 +20:(3,P1) — @7 (3 — Ay)(PPy)
R
+ G + L") —2) : Qdz =0, (6.18)

for Q(z, x, 1) = sE2, (1 —s)E3, E4 withE; € V;(j =2, 3,4). Here we have
used the fact that P|r, € Null £ and the cubic cancellation relation Lemma
4.4.

By (5.5), 79, ® is independent of z on I'. Thus, we have

/ 2079,99.P; : E4dz = 2c1>Tach>/ 3Py :E4dz=0 onT. (6.19)
R R
Noting that 9,n = 0 on I', we have 9, P 2(x, 1), 0,P1 3(x, t) L E4. Thus

/ <2az(avP1) + LIU//(dl - Z)) . E4dz
R

- / (Lm”(dl —— 2L1n’> “Eydz = —L; : E4. (6.20)
R
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Therefore, (6.18) with Q(z, x, t) = E4 gives us that
L, = —A;R;(CDT(& — A (PP — G 11/ (d) — z))dz. (6.21)

Recalling (2.12), we getlim,_, 400 T (8, — A ) (®Py) = AT (9, — A )AL LV},
which gives

734<<I>T(8t - Ax)(q)P0)> — 0 (exponentially), as z — Fo0. (6.22)

Thus, the integral in right side of (6.21) is well defined.
Since

3.0,P) : sEy = 5'8,P1 5 : sEy, ®T9,0P1,:E, =0,

we have

0 :/R <2<I>T8Vd>aZP1 +20.(3,P)) — T3, — Ay)(PPy)
+ (G’ + Lin)(di —2)) : sEadz
= [ (= WPLa) + (6 0P12 — T3 — A (@)
+G1n'(dy - Z)S) : Eadz,
which gives
P12 — P2(WP 3)
+ /Rspz( — @13 — A)(DPPY) + G i1/ (d) — z))dz =0. (6.23)
Similarly, we have on I" that

P13 — P3(WP; 2)

+ [ a= 5P~ 0T~ A(@P) + G/ - 2)dz =0,
R
(6.24)

Similar to (6.22), we have
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P, (ch(at _ Ax)(CDPO)) —5 0 (exponentially), as z — 00,

Ps (ch(at - Ax)(CI>P0)> — 0 (exponentially), as z — —oo,
which imply that the integrals in right side of (6.23) and (6.24) are well defined.

6.2.4 Solving Vg) in Q4

Using [0y, — 2nn] = 0, the equations (6.6)—(6.9), (6.21), (6.23)—(6.24)
together shows that for (x,7) e T’

PV = pv
3PV =8,V + Ly,

3,(P3VY) — P3(WPsV!) = (1 — 2nm) / st( — 0T, — A)(PPy)
R
+Gin'(dy — z))dz,
. PVY) + PAWPVY) = [ (1 =297 - a(@P0)
R

— Gy (dy — z))dz, (6.25)

which provide boundary conditions for VS) and V¥ on T. As Vg) =(P3+

734)V$) € A, these conditions are complete. So Vsrl) lo, and V(_l) |o_ can be
solved from a linear parabolic system.

6.2.5 Determining Py in I'(8)

We extend Vﬁ) and V" to be smooth antisymmetric matrix-valued functions
on I'(8), and let

Pio(x.1) = —(1—2nm)P3VY), (6.26)
Pis(x, 1) =PV, (6.27)
Li(x, 1) = dy 'Ps(VE = V) 4 Pf (o0, x, 1)), (6.28)
Pia(x, 1) = PV = Py (VY — Pi(doo, x, 1)) + Lidg.  (629)

In addition, we define Py (z, x, t) as in (6.12). Then it satisfies the matching
conditions (5.1).
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6.2.6 Determining ¥, G, P5 in I' ()

F; is determined by (5.22) with k = 2, and G is determined by (5.23) which
is derived from the orthogonal condition (O1)-(04) for F». Thus, we can solve
P} (z, x, t) from (6.4) and write P>(z, x, t) as in (6.3) with k = 2. We remark
that P3(z, x, t) depends only on (®, do, n, Py, dy).

6.3 Solving the equation of Py (k > 3)

Repeating the above procedure, we can solve (P, di) step by step. Assume
that in I"(8)
{di, Pi, Li, Gi|0 <i <k—1},
has been known. Then we solve dj, Py, Li, G in I'(8).
Firstly, we obtain Fi|r and P{|r from (5.22) and (6.4) respectively. One
can also determine (G : nn)|r, from (5.25). Note that all these terms are

independent of d.
On I', from (5.15), we can write

Fri1=—0rdi—Ady) 9. Po+2dTVdy - V0. (PPr)+2D Vdy - V, 0. (PP)
+ Y (- @di— Ad)LP; +207Vd; - V,0.(0P)))

i+j=k
1<i, j<k—1
— ) PPIP— 073 — A)(PPr1) + (Gin' + Lin")dy
i+ j+l=k+1
0<i, j,I<k
k—1
+ (Gen + L") di —2) + Y _(Gin' + Lin")dky1-i.
i=2

6.3.1 The equation for di

We use the condition (O1) for Fyy|r. Let P,;r = Py — P}. Similar to the
derivation of (6.14), we can obtain

20TVdy - V.0, (®P] ) : 3, Py = 0.
Moreover, similar to (6.15) and (6.16), we can obtain

f T/ (Py, Py, P}) : 8,Podz = 0,
R

20TVd; - V9. (PPp) : nn
= 25'(®"Vdy - Vi®nn + Vdy - V¢ (nn)) : nn = 0. (6.30)
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Therefore, the equation for di on I' reads as

dag(0;dy — Ady) + dk/ G :nny's'dz = f {ZCDTVdO . anz(CDPlf)
R R

= Y (0d-ad)aP;+20TVd; V0. (@P))- > PRI

ik i+j+H=k+1
1<i, j<k—1 0<i, j,I<k

k-1
— T3 — A)(PPr_1) + G’ (d1 — 2) + Zs/Gm'dkH_i} : nns’dz.
i=2
(6.31)

Note that, from (6.30), the right hand side is independent of Pj, and from
Lemma 5.2 or (5.25), it is also independent of dy.
After dy|r is determined, di can be extended to I"(8) by the ODE (cf. (3.3))

k—1
2Vdy - Vdi + Z Vd; - Vdi_; = 0. (6.32)
i=1

6.3.2 Determining ¥y, Gy, P} in I' ()

Fy, Gy and P} in I'(8) can be determined by (5.22), (5.23) and (6.4) accord-
ingly.

6.3.3 The equation for Py ;(2 <i <4),LyonT

We use the condition (02)—(04) for Fy; on I'. For Q(z, x,1) = sEo, (1 —
s)E3, E4 with E; € V;, we have

/ {2d>T8VCI>8ZP,;r + ZBZ(BUP,;F) +Lin"(d — z)} 1 Qdz
R

+ / [ > (- @di— ad)a.P; +207Vd; - V.0.(0P)))
R%ivj=k,
i>1
— Y PPTP +20TVdy - V.3, (PP)) — (3, — A)(OP_1)

i+ j+=k+1
0<i, j,I<k

k—1
(G + Ly )i+ Gan' (@ =)+ Y (G +Lin Yy |  Qz=0,
i=2
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We denote the last three lines by fR Ti(z, x,1) : Q(z, x, t)dz, in which all
terms are known functions due to fR TPy, Py, P,;r) :Qdz =0.

Taking Q = E4 and using the same argument as that in (6.19)—(6.20), one
has

/ {2c1>Tavc1>aZP,;r +20,(0,P)) + Lin (d) — z)} ‘Fudz = L : Ey.
R

Thus, we get

QPP — 0, PP = —Ly =Py / Tk (z, x, 1)dz. (6.33)
R
Similarly, we have

0P 2 — PQ(V_VPkg) + 772/ s(2)Ty(z, x,t)dz =0, (6.34)
R

3, Pr3 — P3(WP;2) + Ps / (I =5(2)T(z,x,t)dz =0. (6.35)
R

6.3.4 Solving V' and V% in 04
The equations (6.8)—(6.9), (6.33)—(6.35) together give that

PVE — PvY = PyPE (400, x, 1),

PVE) = 8,(PVY) =Py [ etz w.
R

i (6.36)
3,(P3VY) — s (w&v@) = (I—2nn) / sPaTi(z, x, 1)dz,

3, (P;VH) +P3<W733V(k) f (1 — $)P3T(z, x, t)dz,

which offer complete boundary conditions for VS]_‘) and V® on I'. Thus com-
bining (2.18) we can solve Vg’f) lo, and v® lo_.
6.3.5 Determining Py in T'(8)

Afterwards, as in Sect. 6.2.5, we extend Vg’f) and Vg{) to be smooth antisym-
metric matrix-valued functions in I"(§), and let

Pia(x, 1) = —(1—2nm) PV, (6.37)
Pes(x, 1) = P3VY, (6.38)
Li(r, 1) = dy (PaVE — v ), (6.39)
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Outer expansion Inner expansion

[2(2),0,Po(2),do in T(9) |

‘Fl(z),PT(z), G, :nnon F‘ [(5.22), (6.4), (5.25) on F]

&

[F1(), G1 in T(0)| ((5.22) and (5.23))

|Equations for V(il)|Qt: (2.19) | + |B0undary condition for V(il) on I': (6.25) |

P1i(:), L1, Pi(2) in T(6) | ((6:26)-(6.29),(6.12))

{M(ii),V(i"')\i <k —1} are solved " {di, Pi, L;, Gy|i <k — 1} are solved

[Fi(2),PE(2), G innon T| ((5.22), (64), (5.25) on T

o

[Fi(2), G in T(9)| ((5.22) and (5.23))

|Equations for Vg)\QQ (2.18) | + |B0undary conditions for V(ik) on I': (6.36) |

Py i(2), Ly, Py(2) in T(6) | ((6.37)-(6.40),(6.3)]

Mf>7Vf) are solved ) di, Pr, Li, Gy are solved

Fig. 1 The whole procedure to solve the outer and inner expansion systems

Pia(r, ) = PaVE = Py(V = (oo, x,0)) + Ledo.  (640)

Moreover, now we can define Px(z, x, t) as in (6.12) and the matching condi-
tions (5.1) are satisfied.

As aresult, we have solved d, Py, L, Gy in I'(6). Therefore, by repeating
the above steps, the expansion system can be solved from an induction argu-
ment. Note that, in each step, we only need to solve a linear system whose
well-posedness can be shown directly. The whole procedure is illustrated in
Fig. 1.

Remark 6.1 The minimal paired condition (1.6c) and Lemma 3.7 give us
that there exists a smooth map N(x,¢) : I' — {nn : n € $"~1} such that
A_(x,1) = Ay(x,1)(I —2N(x, 1)) for all (x, ) € I". For given (xg, tp) € I
and any neighbourhood U C I' of (xp, fp), there exists a smooth vector field
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n(x,7) : U — S$" ! such that N(x, 7) = (nn)(x, ). We have assumed that
such a lifting map, which keeps the regularity, exists globally in I". This
assumption is made just for simplicity and clarity of presentations, as our
previous analysis does not rely on the particular choice of n or —n. For exam-
ple, the condition d,n = 0 can be replaced by d,N = 0, which will not cause
any obstacles in our arguments, and the decomposition and projections in (4.1)
and (4.2) indeed depend only on N = nn.

6.4 Gluing the two expansions and the proof of Theorem 1.1

Now we glue the outer expansion and inner expansion to obtain the approxi-
mate solutions in the whole region 2. Let

K
A = e (AP xo, +A® o ) for (x,1) € 0.
k=0

Then it holds that for (x, ¢) € O+,

@ — MAE — 72 f(AK)

K-2

— Z gk{(at o A)Ag:() - Z A(l)(A(]))TAE{:)} 4 O(SK_I)
k=0 i+j+l=k+2

= 0K .

For (x,t) € I'(§), we define:
K
d¥ (e, 1) = " etdi(x, 1),
k=0

K
Af ey =0 'd5 x.0) Y e Pred" x. 1),
k=0

Zska(x 1, LK = ZekLk(x 1), H®K = ZekHi(x 1),

k=1 k=1 k=0

with di, @, Py, Gi, Ly, H defined in Sects. 5-6. Then

IVak 12 =1+ > £ IVd;Vd; =1+ 0K,
1<i,j<K,i+j>K+1
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and for (x, t) € I'(8), we have
(3 — A)AK — 72 F(AK)
= [e720(— 2P% + £(PF) — ©T020PK — 2075, 00.PF)
+e ' @[(3,d% — Ad®)(3,PF + T3, @) — 20TVdX Vi, (dPF)]
+ (0 = M) (@PF)] 0GR

=€
- {s—2<I>[ — 02PK 4 F(PK) + (4K — ez — do)(®PK + ©,0.PF)
+@" — ) (G ' + L5y
+ e ' @[(3,d% — Ad%)(3,PF + T8, 0) — 20TVdX Vi, (dPF)]
+ (8 — A)@PK) + OHT Kt 4+ @H—’Kn;lH L FOEEH

7=¢

= 0K,

Here in the last equality, we used the expansion systems (5.12)—(5.15), which
imply that all O (e¥)(k < K —2) terms are cancelled by each other. Moreover,
for (x, t) € I'(§), due to the matching condition (3.1), we have

10/9] 0 (AK — AK)| < Cem0ld" nlle < comeoldornle — (6.41)
Therefore, if we define
ARG, 1) = {1 = x(doCx, 5™ ) JAG (x, 1) + X (do(x, 8™ )AT (x, 1),

where x is a smooth nonnegative function satisfying supp x C (—1, 1) and
X (z) = 1 for |z| < 1/2, then it holds that

& — MAK — 72 F(AK) = jE-1 ~ 0K,

in the whole domain 2. Moreover, we have 8)’; RE-1 = 0K~ fori e N.
This finishes the proof of Theorem 1.1.

7 Spectral lower bound estimate for the linearized operator

This section is devoted to proving Theorem 1.3, i.e., inequality (1.9) for
A € H' (). Obviously, it suffices to consider & small enough. The proof
is accomplished by five steps, which are done in Sects. 7.1-7.5 respectively:

Step 1: reduce to 1-D interval. By introducing two transformations, one
for coordinates and the other for matrix fields, we reduce the problem into
inequalities on a 1-D interval.
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Step 2: decompose into scalar inequalities. We use a bases decomposition
to reduce a matrix-valued problem to two scalar bilinear estimates for cross
terms and correction terms respectively; see (7.15) and (7.17).

Step 3: coercive estimates and endpoints L°°-control. We develop the coer-
cive estimates for the scalar linearized operators £;(Lemmas 7.1 and 7.5),
L -control at endpoints (Lemmas 7.7 and 7.8).

Step 4: estimate the cross terms. The cross terms involving £4 or L5 can be
controlled directly as we have strong coercive estimates for these two oper-
ators; see Proposition 7.9. However, the coercive estimates for £1-L£3 are
relatively weak, thus the same method could not be applied to control the
corresponding cross terms, which becomes somewhat technical.

Motivated by [16], we observe that the weights in all cross terms involving
L are indeed small by using the homogeneous Neumann boundary condition
of n. This is the key that it enables us to remove the singularity of cross terms
involving L1; see Lemma 7.10 and Proposition 7.11.

The estimates for the cross terms involving £, and £3 are much more
involved, since neither do we have strong coercive estimates, nor the weights
are small. We accomplish it by a product estimate (see Proposition 7.13), which
is proved by applying a symmetric structure for the eigenfunctions of £, and
L3 (see Lemma 7.14).

Step 5: estimate the correction terms. We explicitly decompose the singular
correction terms. Then the inequality is reduced to some new product estimates
similar to Lemma 7.14. The proof of these product estimate also rely on the
important cancellation structures between the first eigenfunctions of £; (1 <
i <4);see Lemmas 7.15.

7.1 Reduction to inequalities on an interval

First of all, we choose ¢ small enough such that
I';(6/8) C FtK(8/4) = {x : [d¥(x,1)| < 8/4) Cc T,(8/2), fort e [0, T].

For x € ch, A© € 0, and AD € At A, or A_A,. For A € H'(Q), we
perform the decomposition:

A=K+]J withKeAiA,, JeALS,.
Then we have

HaoA 1A =Hy0d: T =2]J7%,
T/AP AV A) A =T, AP AD J): J+2T, AP, AD J): K,
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where T s is defined in (4.9). Thus, for x € Qi, one can find a constant C
such that

e Hy0A A+ ' T AP AV A) 1A > —CIK|? = —C|A|*.
In addition, in Q \ F,K (6/4), due to the matching condition (6.41), we have

AKX — A —eAD = 7(d/5)(AF — AE) + 0(e?)
= 0 )+ 0> = 0(D).

Thus, in © \ T'X(§/4), one has that

e HakA 1A = Ho0A : A+ 'TAQ, AV A) A+ 0(IA1P)
> —CJIA|*.

For x € F,K(6/4), we let
Ag = (OPo) (e 'd¥ (x, 1), x, 1), Ay = (OPy) (e 'dX (x, 1), x, ).
Then
AR = AK = Ag +eA1 + 0(?).

Therefore, it suffices to prove that
, 1 1
{||VA|| + —HaoA : A+ ~T;(Ag, AL A) : A}dx
rf@ € €

> —c/ IA%dx. (7.1)
rke)

By a standard density argument, we can assume that A € C ! (FtK (%)).
For givent € [0, T]and 0 € F,K, r € [—6/4,5/4], we define x (o, r) € Q
by x(0,0) =0 € F,K and

K

m [e] (x((f, l’),l‘).

oyx(o,r) =

Then {-(dX (x(o, 7)) —r) = 0. As d¥ (x (0, 0)) = 0, we have

d¥(x @, r), 1) =r. (7.2)
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Thus for small §, (o,r) +— x(o,r) is a bijective mapping from FtK X
(—8/4,8/4) to TX(8/4). Let J(0,r) = det(ag‘(f;’j))) be the Jacobian of the
mapping. Then

Jr=0o=1, J(o,r) =14+ O(r), dx = Jdodr, and

vk .vf
O f=0x-Vf= TIVakRE
Therefore, as [VdX|> = 14+ 0(eX*1), we have
vak 2
VAP > ‘de Vi z @t o hiveE a3

Let 1(§) = [—6/4, §/4]. The inequality (7.1) is equivalent to

/ f (||VA||2+8*2(HAOA CA)+e ! (Tr (Ao, Al A) : A))J(o, r)drdo
rkJi)

z—C/ / A2 J (o, r)drdo.
rk Jie)

(7.4)
Using (7.3), it suffices to prove that for each o € TK,
/I(a) <||8rA||2 + 8_2(HA0A : A) + g—l(Tf(AO, AlLA): A))Jdr
= —Cf A Jdr. (7.5)
1(8)

Let B(x, 1) = ®T(e7'd& (x, 1), x, 1)A(x, 1) or A(x, 1) = ®(s71dX (x, 1),
X, t)B(x, t). Then

I8-All* = [19,B]|* + |3, ®B||> + 209,B : 3, DB,
HAOA A= HPOB : B, Tf(A(), A1, A) A= Tf(P(), P], B) : B.

Therefore, (7.5) is reduced to
, 1 1
(||a,B|| +—5Hp,B : B+-T;(P. P. B) : B+2(09,B) : (a,ch)) Jdr
1(8)

> —c/ IB||?Jdr, (7.6)
1(5)

@ Springer



52 M. Fei et al.

which can be concluded from the following two inequalities:

| |
(03,B) : (3, PB)Jdr < Z/ (||3,B||2 + —Hp,B: B)Jdr
&

1) 1)
+C/ IB||%Jdr, (7.7)
1(8)
1 1 , 1
~ [ T;®o.P.B):BJdr < - (||a,B|| + —Hp,B: B)Jdr
€ J1) 4 )16 €
+C/ B2 dr. (7.8)
1(5)

In the sequel, without loss of generality, we will assume §/4 = 1 and let
I = [—1, 1] to simplify the notations.

7.2 Reduction to inequalities for scalar functions

Recall that V; is a finite dimensional space which only depends on n(x, 7).
So for given o € TX, we can choose {E, : « € A;} to be a set of complete
orthogonal bases of V; which are smooth in r. Let A = Ule A;. Then we can
write

B=>"puEq.

aeA
As Py = (I — 2s.(r)nn) with s.(-) = s((-)/¢), a direct calculation(see (4.5))
leads to
5
HeB:B =" ki(s:(r)pg. (7.9)

i=1 aeA;

where «; are defined in (4.5). Moreover,

1-BI=I1 D " (@ puEatpadrE)I* =D 18, pul*+2 Y _ 0r puppEe : 9-Eg
aeA o a#p

=Y 10rpal®+ D (Orpapp — padrpp)Ea : 9, Ep. (7.10)
« a#p
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Then we obtain

f(wAw2+eszB:B)Mr+C/]BVJm
1 1

5
2/;2 Z (|arpa|2+E%Ki(ss(r))pg,)]dr+C/;Z|pa|2jdr
. o

i=1 aeA;

4 [ X @pany = puth B s BT (7.11)
Tazp

Since fora € A;j(i =1,2,5),8 € Aj(j =3,4),onehas Ey € S;, 0,Eg €
A, which yields that E, : 9,Eg = 0. Thus, we only have to consider the case
a,Be AfUA UAsora, B € A3 U Ay,

Now we remove J via the endpoint estimates established in Lemmas 7.7
and 7.8. Let gy = J 2 Pa, and introduce the quadratic forms for ¢ € H'(I):

1
Qi(g) = / (18:91 + =i (5: (g% ) ar. (7.12)
I
which are related to the scaled linearized operators
1
Lie = =07 + —5Ki(se(r).

Then by using Lemmas 7.7 and 7.8 to control |gy(£1)|, we obtain for suffi-
ciently small ¢ that

1
f 13y pal?Jdr = / 18,(J S go) 2T dr
I 1
R X RO e it
1
_1 1 5l
o7 2J2qa‘1

1
> / 19, g |>dr — ~Qi(ge) — C / g2dr.
I 4 I

Thus, we get
> 1
f > (|arpa|2 + —zx,-<sg<r))p§)fdr +C f > Ipal*Jdr

I'ic1 aen; € L

3 5
2
>3 Zl ZA 0 (qa) +ch; o %dr. (7.13)
1=l o i
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Let W = ®T5,® which is antisymmetric. Notice that

(®9,B) : (6, PB) = 9,B : (WB) = Zpﬂ(arpaEa + Pad,Eq) 1 (WEp)

o.f
1
=3 2 OrPapp = Padrpp)Ea : (WE)
ap
+>  puppdrEq : (WEg),  (7.14)
o.p

as well as that
prap,sarEa - (WEg)Jdr < C / > lpaltJdr=C / > Igaldr.
1 o, B L Iy

Then combining (7.11), (7.13), (7.14) and

_1 1 _1 1
(Orpapp — Parpp)d = 0r(gad  2)gpJ2 — qudr (gt 2)J2
= 0rqaqp — GuOrqp,

the inequality (7.7) can be deduced from

5
| X et~ autrapaier < 3373 Qula + € /I S lguldr,

I wtp i=1 aeh;
(7.15)
fora(r) = Eq : 0,Eg or E, : (WEg).
To obtain (7.8), we introduce
B=J'"B=) g,FE,. (7.16)

aeA

Then (7.8) can be deduced from (7.15) and

5

O 1

—1m . - . 2

/18 T;(Po, Py, B):Bdr < 73 3 Q,(qa>+C/IZ|qa| dr.
i=1 aeA; o

(7.17)

The left hand side of (7.15) and (7.17) are called cross terms and correction

terms of the next order, which will be proved in Sects. 7.4 and 7.5 respectively.
Again, in the sequel, we will assume that ¢ is sufficiently small.
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7.3 Estimates for quadratic forms Q;

Here and in what follows, we write L2 = L2(I) = L*([—1, 1]). Moreover,
we will always assume the functions ¢, ¢; € H'(I).

7.3.1 Coercive estimates

As k4 = 0, k5 = 2, the following estimate is obvious:

19:q1172 = Qa(@). 13-qll32 + & 2llql7. < Qs(q). (7.18)

For 1 <i <3, welet6; (r) = 6;(r/e). Recalling the definition (4.7), we
have

(01,8’ 92,87 03,8)(”) = (0, Se, 1 —5¢)(1), (7.19)

where s.(r) = s(r/e) and 0,(r) = s'(r/e) = \/isg(l — 8¢). Then for
Qi(g)(1 <i < 3), we have

Lemma 7.1 Letq; = 6, .q; fori = 1,2, 3. Then there exists Co > 0 such that

1
1/1938(3@1‘) Qz(‘]z)+_€_/q2dr (7.20)

The above lemma is a direct corollary of Lemmas 7.2 and 7.3. It gives another
version of the first eigenvalue estimate for £; ., which has been proved in
[12] (for i = 1) and [16]. The method presented here uses only elementary
decompositions and does not rely on the maximum/comparison principle or
the Harnack inequality Note that no boundary condition is needed here and

Co

the lower bounds — for i = 2,3 is optimal. We can also deduce an

optimal lower bound —C—ge * for the first eigenvalue of £ , from Lemma

7.3.

Lemma 7.2 Let g; = 6; .q; for i = 2,3. Then for any vy > 0, there exists
Co(vo), C1(vg) > O such that

1 1
Qi(qi) = (E-i-e?a(vo)—vo)/I@ (3rqz) dr—;e‘ e Co(vo) eq,
(7.21)

Proof Using the fact that 828,258 = sgk2(Sg), we arrive at
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_ - 12 _ _
Q(q2) = / ([Brssqz+s88rqz] +e 2Kz(sa)S§61§)dr
1
1
:sgarsgcjzz‘ 1+/s§(3r6§2)2dr
- 1

> —(5e0,5:43) (— 1)+ / s2(8,g)*dr.
1

As so(r) = 1/(1 + e=V2/%), one can directly get

_ V2
N

g

(5e0r5e)(—1) = e 7 'W2s52(1 — 50)(—1) <

’

0
-2 2.2 ¢ —V2/e
f_l dr—/(l—l—e )dr—zﬁ(l—l—O( )).

Moreover, from the Gagliardo-Nirenberg inequality, we have

2

_ vt b
§2(0)* < ?1/ (0-g2)"dr +C(V1)/ gzdr
0 0
1 1
- \2 -
< 21112/0 (sgarqz) dr+C(v1)/0 sgzq%dr.
Thus choosing vi = vg/2 and ¢ sufficiently small, we obtain

(560r5:43)(—1)

0 2
< Getrs D (12001 +| [ a.daar])
—1
0 0
< 6edrs) (=D (97 DI P41+ w)| / s aarar| [ s r)
1
< Qe ZI(3V1/‘ (arq2) dr—|—C(U])/ 22(1}"
0

&

1+ _\2 _
(o s))/_lusarqz)%r

1 3 _ I 22 -
< (5 + v + O(e_T)> /sg(arqz)zdr + ge ¢ C1(vo) / Sszqur'
I I

Then (7.21) for i = 2 follows immediately. The case of i = 3 can be proved
in a similar way. O

@ Springer



Matrix-valued Allen—Cahn equation... 57

Lemma 7.3 Let q1 = 61 ¢q1. For any vy > 0, there exists Co(vp), C1(vg) > 0
such that

1 V2 _
Qi(q1) = <§+e_€2C1(Vo)—v0>/l912,8(3r611)2dr

1 2 _
- e Co(v0) / 07 .qidr. (7.22)
1

Remark 7.4 The constant % on the right hand side of (7.21) and (7.22) is
optimal.

Proof As 6, =06, = «/Esg(l — §g), one can get
_ - =12 -2 2-2
Qi(q1) = / <[3r98611 +0:9,q1] + ¢ Kl(se)es%)dr
I

=2 ! 2 =~ \2
= (983r95q1)‘ [ 02(0rg)7dr. (7.23)
- 1

It suffices to estimate (0.0, 6?55712)|1_1 . Direct calculations give that

2
|00, 0c) (£1)| = ils 21— 5)*(1 = 25| (£1) < f 2

1 1 Lﬁ
2y 1 2/2r/e —2\\ _¢ge ¢ _
./0 0, “dr = 2/0 e dr(l—l—O(e )) = <1+0(e ))

Moreover, from the Gagliardo-Nirenberg inequality and a scaling argument,
we have

- 2 Vi T N2 11,
171(0)]* < e | (0-q1) dr+COp- | gidr
100° ), .
&
< 21)128/ 6; (,ql) dr +e~ 1C(vl) gidr.
—¢

Thus choosing v; = vg/2 and ¢ sufficiently small, we obtain

|(0¢0-0:q7) ()]

< |(983r95)(1)|(|‘71(0)| + ‘ /01 arcjldrbz

1 1
< 16:0,6) (D117 DG O P+1+v)] /0 (00,4 | /0 6 ar )
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2 ¢ ‘
f = (3U18f Qg(ar(il)zerre_lC(vl) 9826712‘“)

—& —&

I1+v f
+( . Ly o(e ) f(earql)dr

1 Ve 1
< (54_‘,04_0(6—82))/;9 (,ql) dr+—e K C1(V0)f9 gid

(7.24)
The same estimate holds for the value at —1. Thus, (7.22) follows. O

The following lemma gives a new proof for the second eigenvalue estimate
of ﬁl, £

Lemma 7.5 Let g1 = 6, + g1 with u € R and f] 0.q1dr = 0. Then there
exists co > 0 such that for & small:

Q1(q1) + o(e?) / gidr > Z_‘; f Gidr. (7.25)
I I
Proof Let g1 = q1/0: — i = q1/0s. Then it follows from (7.22) that

1 _
Ql(q1)+0(82)/1q12dr > 1/103(8rQ1)2dr.

Now we prove that for fI 082cjldr = 0 and some cp > 0,

200 =2 €0 2-2 €0 [ A2
/;98 (qul) dr > g—zj;egqldr = E—Z/Iqldr.

1 1 1
A1:/ 62(1)g} (t)dr, 81:/ 62(3,41) dr, D1:/ 62(t)g1 (v)dr,
0 0 0

Let

0 0 0
o= / 02(0)G2()dr, Ba= f 62(3,31)%dr. Da= / 62(2)1 (2)dr.
—1 —1 —1

Assume that A; + A > 0. We have
1 1 T
/ 62 (1)1 (D)dr = f 0200 () (@1(0) + / 0,41dr)dz
0 0 0
1 T
= q10)D1 + / 020 (o) / 0,41dr)dz < G1(O)Dy
0 0
1 1 sl T 5 1
2,.=2 2 2 - 2
+(/0 62(r)q}(r)dr ) (/0 eg(r)(/o B,q1dr) dr)’.
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On the other hand, we have

/019§(I)<[)T8,éldr>2dt < /01962(r)<f01Qs(a,gl)Zdr)(/Or édr)dt

1
_ / 6. (3,31 To(r)dr
0
with
1 5 T 1
0oy = [ @@ [ o)
1 z
282/8 92(1)(f —(w)dw)dz C20,(r).
Thus

A1 < §1(0)D; + Ce A B,

Similarly, we have

Ay < 1(0)Dy + CeAY?B)2.

As D + D =0, we get

1/2 51 12 1/2

Al + Ay < CeAY?B* 4 CeA) < Ce(Ay + A)'V2(B) + By)'/2,

which concludes our lemma. O
As 0,0,] < %06, and |9,q1| < 19,0:q1| + 10:9,q1|, we have the following

Corollary 7.6 Let g1 = ub: + ¢ with u € R and fl 0:q1dr = 0. Then there
exists co > 0 such that:

Q1(g1) + 0(s?) / Fdr > ¢ / (3,d1)2dr. (7.26)
7.3.2 Endpoints L*° estimates

Again, we assume that ¢ is sufficiently small.
Lemma 7.7 (L control) Fori = 2,3,4,5, and any vy > 0, there exists
C(vg) such that

191~ < 209 @) + COou) [ gPar
1
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Proof The claims for i = 4, 5 are obvious, since k4 = 0, k5 > 0. Fori = 2,
let ¢ = s¢q. Then

1 1
1313 0.17) < Vo / 52(3-@)dr + C(v) / seg dr.
0 0

For r € [—1, 0], we have

lg()] = se(r)lg(r)| < se(r)(1g(0)] +/O |9 |dr)

1 i o N2 [T, \1/2
<301+ | “singlar) i)

1 1/2
<5130 + 0<f>(/ s210,q1%r)

Thus using Lemma 7.1, we obtain the claim for i = 2. The proof fori = 3 is
similar. O

The above lemma is not true for i = 1. However, we have the following
estimate.

Lemma 7.8 (Endpoints control) There exists C > 0 such that
lg&EDP < Cel Qi@ +/q2dr}.
I

Proof Let g = 6.q. Note that 962(:&1) < Ce|(6:0,6:)(£1)|, then we can get
the result from (7.24) and Lemma 7.3. |

7.4 Estimate for cross terms

Now the inequality (7.15) is a consequence of the following Propositions 7.9,
7.11,7.12 and 7.13 by letting a(r) = Ey : 0,Eg or E, : WEg.

Proposition 7.9 Assume i or j € {4,5}. Then for any vog > 0 there exists
Co = Co(vo, llallw1.e) > 0 such that

/1 (8,90qp — 4a0rqp)a(r)dr < vo(Qi(qa) + Qj(gp)) + CO/I (g2 + qj)dr.
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Proof Assume j =4 or 5. Then «; > 0 and Q;(gp) > [19,gpll3,. Thus

/qaarc]ﬁa(r)dr < VO/(arq/B)zdr+C(V0, IalLoo)fqédr,
I 1 1
1
/arqaqﬂa(r)dr < - f(QaarQﬁa + quqpora)dr + (‘]aQ,Ba)‘ |
1 1 -
< vof(arq,s)zdr+c(vo, llally1.)
1
2 2 1
x| (g4 +gp)dr+(qugpa) K
. _

Then the result follows from Lemmas 7.7 and 7.8. O

Now we turn to crossing terms involving elements in V. Assume Eg =
E; € V. The following lemma shows that the variation of E; and & along
the normal direction VdX is very small, which is key to bounding the crossing
terms involving elements in V7.

Lemma 7.10 There exists constant C1 such that for (x,t) € 'K(8), one has
that
0, E1| < C1d®(x,0)+¢), |70, PE | < C1(d" (x,1) + ).

Proof Recalling 3, = (14+0(eX*1))VdK .V, we canreplace 9, with VdX . V.
On the other hand, as ||dX — dollcrrk sy < Cé, one has

|(VdX - V)E | < |(Vdp - V)Ei| + Cie < [(Vdy - V)E| iy T Citdo+£)

= Ci(dy + ¢).

In the last equality, we have used the fact that d,n|4—0 = 0. Similarly, we
have

10T (VdK - V)OE,| = |®T(Vdy - V)PE|| + Cj e
< @7 (Vdy - V)PE|

+ Ci(do + &)
dp=0

= Ci(dp + ¢),

as it holds on I'g = {dp(x, t) = 0} that

=0.
dp=0

(®T(Vdy - V)DE)) o= (AT 9,A_nn)
0

due to the boundary condition (1.6d). The proof is finished. O
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Proposition 7.11 Assume thati or j = 1 and |a(r)| < Cu(r + ¢€). Then for
any vy > 0 there exists Co = Co(vo, Cq, llallw1.0) > 0 such that

/1 (9:9aqp — qadrgp)a(r)dr < VO(Qi(QaH‘Qj(‘]ﬁ))"‘CO/I (g2 + qp)dr.
(7.27)

Proof Assume j = 1. Firstly, we have
1
/ (9,9aqp—qadrqp)a(r)dr < qaqﬁa) - f (240 9-qpa(r)+qaqpdya(r))dr.
I - 1

From Lemmas 7.7 and 7.8, it suffices to estimate | 1 9a0rqpa(r)dr. Let
qp = nobs + gp, with uo € R and /98c}ﬂdr =0.
I
Then using the fact that 9,6, = @95(1 — 2s,), we get

/1 dadrapa()dr = o /[ Gadrea(r)dr + /] Gudrdpalr)dr
= 1oV fl a1 = 250" ar 4 /1 Gadrdpalrdr
< Cligallz2 (1mollle™6call 2 + 1o, dg 1 2)-
Asa(r) < C,(r +¢), we have
lwollle ™ Osall 2 < Caliol (1661l L24+-160s7 /1l 12) < Cluol1ell2 < Cligpl 2.

Moreover, due to Corollary 7.6, we can control ||9,Gg ||i2 by the right hand
side of (7.27). |

Proposition 7.12 Let i = 2 or 3. For any vo > 0 there exists Cy =
Co(vo, |lallL>) > 0 such that

/I (3:90qp — qudras)a(r)dr < vo(Q;(qa) + Qilgp)) + Co fl (4z + qj)dr.

Proof We assume i = 2, as the case i = 3 can be proved similarly. We use
the decompositions:

Ga(r) = 02, c(r)qa(r) = se(r)qq(r), ‘Iﬂ(r) = Ss(r)éﬂ(")-
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Then 8,9uqp —qadrqp = 52(3;Gudp —GudrGp)- Thus, using Cauchy-Schwartz
inequality, we get

/I (0o —dudrqs)a(r)dr < /1 $2[00((Br e+, 3p)?) +Co G2+ ]dr

which yields the conclusion by Lemma 7.1. O
The estimate of crossing terms for V, and V3 is more subtle.

Proposition 7.13 For any vg > 0 there exists Co = Co(vo, |alr>) > 0 such
that

/1 (30205 — @20rg3)a(dr < w0(Qa(@2) + Q3(g3)) + Co /I (43 + ¢2)dr.

(7.28)
Proof We use the decompositions:
q2(r) = 02,6(r)q2(r) =se(r)q2(r),
q3(r) = 03,6 (r)q3(r) =(1 — 5¢(r))q3(r). (7.29)

Using Lemma 7.1, it suffices to prove that the left side is bounded by

> [ & (w@ar + cod?)ar

i=2,3

One has
04293 — q20rq3 = (0r5:q2 + 5:0,q2) (1 — 5¢)q3
— seq2 — 9r5:q3 + (1 — 50)0,33]
= 0,5¢42q3 + 02,603 ¢ (30,3243 — G20,43).

Using Cauchy-Schwartz inequality, one gets

‘/92 603,6(0r3243—320,q3) a(r)dr < Z/ vo(0,qi) +C061,)

Then together with the next Lemma 7.14, we immediately obtain Proposition
7.13. O

Lemma 7.14 Let a(r) € L°°([—1, 1]). Then for any vy > O there exists
Co = Co(vo, |alp=) > 0 such that

Z / vo(0-Gi) +C061l) (7.30)

i=2,3

‘/3 seqaqza(r)dr| <
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Proof Recall 6 , = s. and 93 . = 1 — s;. Let

L=lse@l3s + 111 = 5)d3032.  L=lse(3:a2)117, + (1 — 50)(3,33)[17.

By the Gagliardo-Nirenberg inequality, one has that for any v; > 0, there
exists C(v1) > 0 such that

_ \}1 _ _ l l
lg21lL= 0,17 < E||3r512||L2[0,1] + COoDg20 210,17 = vily +Cw)Iy.

Similarly, it holds the same estimate for [|g3|| .o (—1,07)- Then

0 1 1
< c(/ ars£|E]2|dr)(v1122 +CIE).
1

0
‘ / 0rseqagza(r)dr
-

On the other hand, we have

0 0
/ drselgaldr < / Sel0rq2|dr + |(5¢G2)(0)] + [(seg2) (= 1)
1 1

1 1 1
< I} 4wl + CODIE + (a2 (=D, (731)
and
0
(e (DI = 50D (122000 + / 1 0 ldr
0 1 1 1
< 1320)] + / Seldrqaldr < viI7 + CODIE+ I, (1.32)
-1

With the help of (7.31)—(7.32), one has that for any vy > 0, there exists
Co > 0 such that

0
‘/ 0rseqaqza(r)dr| < volr + Coly.
—1

Similarly we can get the same estimate for the integral on [0, 1]. Then the
proof is completed. O

7.5 Estimate for correction terms

Now we prove (7.17). Recall from (6.12) that

@ Springer



Matrix-valued Allen—Cahn equation... 65

Py =s5.(r)Pra(x, 1) + (1 —s)Py3(x, 1) +Pra(x, 1)
—Li(x, t)do(x, t)n(r/s)-i—P (r/e,x,t).

Using the exponential decay in z of Pj(z,x,f), and the fact that
[P (2, x, )|dy(x,n=0 = 0, we have

1 do| _ ol
L R
& £

//\

In the last inequality, we have used dy = d¥ — ZlékéK ekdy =r + O(e) by
(7.2). Thus, the terms containing P} can be controlled by [ |B|?Jdr. Note that
Li(x, n)do(x, )n(%) € V4 and 9, (Li(x, t)do(x, t)n(%)) is bounded. Thus,
without the loss of generality, we only need to consider

Pi(r) = s:(rQa(r) + (1 —52)Q3(r) + Qa(r) with Q; € V;(i =2,3,4).

Now we calculate T ¢ (P, Py, ]~3) : B in (7.17). First of all, any term in
f e~IT r(Po, Py, ﬁ) Bdr containing Psﬁ can be bounded by the right hand
side of (7.8). So, we only need to consider the terms in V; (1 < i < 4).

Consider B = Zl 1 B; withB; € V;(1 <i <4).ByLemma A.3, we have

T;(Py,P;,B): B
= 25:(2s — 1)Q2 : (B3B4 + B4B3) + 25.(3 — 45:)Q2 : (B1B2 + B2By)
+2(1 — 5¢)(1 — 45:)Q3 : (B1B3 + B3By)
+2(1 = 5¢)(1 — 25:)Q3 : (B2B4 + B4B»)
+2(1 — 25:)Q4 : (B2B3 + B3B»)
2 L3g+ L1+ L3+ Log + Los.

Now using the decomposition (7.16), we can write:

Bi(r) = Y qu(Eu(r), i=1234

a€eN;

We use E; to denote an element in V; (1 < i < 4). Then the integral % f L3y
can be written as a summation of terms with form

1
: / 5 (25 — 1)q3q4Q2 : (E3E4 + E4E3)dr. (733)
1
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Letting ¢; = 0; ¢q; with 6; . defined in (7.19), and using (7.34) below and
Lemma 7.2, we bound (7.33) by

10(Q3(g3) + Qa(g)) + Cvo) /I (@2 +qD)dr, forYuy > 0.

Similarly, by using (7.35)—(7.37) below, Lemma 7.14 along with Lemma 7.1,

we can bound
1 1 1 1
— | Ly, - L2, — | L1z, — | Lo,
& Jr & Jr & Jr & Jr

by the right hand side of (7.8). Then (7.8) follows easily.

Lemma 7.15 For any vo > 0 there exists Co = Co(vo, ||ally1.e) > 0 such
that (04 = 1)

1 _ _ _
g‘ /sg(l — 5g) (2850 — 1)q3q4adr‘ < Z /Gfg[uo(arql.)Q + Coqiz]dr,
1 I

i=3,4
(7.34)
| /,“ =501 = 25 )sedadaadr| < 2 fl 02 [vo(3,30)* + Cog?]dr,
- (7.35)
é‘ /Is§(3 — 4sg)98q_1ézadr‘ < i_zlzzflefg[‘)o(aréi)z + Co?ldr. (7.36)
%‘ /,“ — 5021 = ds0)0: 1 Gaadr | < ;3 fI 07 [v0(8,G1)* + Cog}]dr.
- (7.37)

Proof The left side of (7.34) can be written as

' [ ol 1 = 50 Yasdsadr

1
(5 (1=s0)83q4a)|

< ‘/Se(l—Sa)[3r6?3674a+6733r674a+6]36?43ra]dr
i

Then (7.34) follows from Cauchy-Schwartz inequality and Lemma 7.7. (7.35)
can be obtained in a similar way.
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The left side of (7.36) can be estimated as

= ‘/ s Gg)qlqzadr

<

‘/ (1 —5¢)|q1G2adr | =

/58295[3r5116iza + q10,G2a + q1g29,a]dr
1

N
+ (359841920)‘_1-

Then the claim follows from the Cauchy-Schwartz inequality and Lemmas 7.7
and 7.8. As (1 — 5¢)?(1 — 4s,)6: /e = 3,((1 — 5¢)>s¢), we can prove (7.37)
similarly. m|

Remark 7.16 The proof of Lemma 7.15 relies heavily on the fact that, all the
weights can be written as derivatives of some good functions. These functions
have factors which consist of production of corresponding eigenfunctions, thus
enable us to use integrating by parts to remove the O (¢~!) singularities. The
mechanism behind such coincidence is the cubic null cancellation Lemma 4.4.

8 Uniform error estimates

Let A be a solution to (1.3) and AX be the approximate solution constructed
in Sect. 6. Define

1
= E—L(Ae — A%,

Then we have

L-2
0¥ = AW — e ¥ = T, (AN, W, @) + 2 2ww T - o,

(8.1)
where 2R¢ is independent of ¥ which satisfies 3'R* = O(eX~L=1=1) for

i >0.Wechoose L =3([5]+1)+3,and K > L + 1.
Let

(2141

Ewy= > 861‘/Q||a"\11||2dx.
i=0

Then one has

m — 1
el 2| Wl oo < DT W00 < Ce€(W)2.
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With the help of Theorem 1.3, standard energy estimates yield that
d 2 - 1 2& 2
@ [W]“dx < C(+eE(W)2 +e°EW)) | IW][°dx +C
Q Q
< C(14+EW) +2EW)?).
Applying 3 (0 < i < [5]1+ 1) on the equation (8.1), we get
30'W = AW — e P H k"W + £ [Hpx, 3110
1 : . .
—~ EgL—Zale(AK, W, W) + 27290 (e Tw) — 5ime,
where

e [Hpk, 30 = ¢72 > T (/AKX 9'AK o*w),
JH k=i k<i—1,j<I

whose LZ-norm can be bounded by
C8_2_j_l||3k\l’||L2 < e H—ImIR2812 () < ¢T3 EN2 (w),
Moreover

e I A P D DR VIC S A DT R
k=i k<l

< CelTVEW),
1625720 (W)l p2 < 22NN Wl < Ce2E2(W),

”al%i”Lz < EK—L—i—l‘

Therefore, we have
(%/Qg@'na’\pnzdx <O+ EW)? + eEW) + 2832w 87 W] ,»
< CU+EW) +2EW)).
Summing i from 0 to [7] + 1, we get
d s 5 25112
55(\11) <CA+EW) +e7EW)).
Then Theorem 1.4 can be concluded by a direct continuation argument.
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Appendix A
A.1l. Formal derivation of Neumann jump condition

Assume that

A® — Ay strongly in L*(Q5);
A® — 9,AL, VA® —~ VAL weakly in L*(Q}5).

The equation (1.3) yields that
(AHT(9,A% — AA®) — (8;(A®)T — A(A®)DHA® =0,
which gives
(A T9,A% — 5,(A)TA? = V- (A5)TVA? — V(A®)TA?).

Testing the above equation with a smooth matrix-valued function ¥ and taking
the limit ¢ — 0, one gets

/Q . ((AL},A+ — 4ATA )W + (ATVA, — VATA,). Vlll>dx

t

+/ ((AIatA, —3,ATA )W+ (ATVA_ —VATA ). w)dx —0.
o

t

As AL obeys the harmonic map heat flow to O*(n) on 4, one immediately
gets the boundary condition

ALa,A, —3,ATA, =AT3,A_ — 3 ATA_.
Similarly, we have

AL d,AL —3,A AT = A_9,AT —§,A_AT.
These two relations give (1.6d) under the minimal pair relation (1.6c¢).
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Assume that (A_, A;) is a minimal pair, i.e., AL = A_(I — 2nn) for
some n € S"~!. We prove that the following three boundary conditions are
equivalent:

0) - ATo,AL —9,ATAL =AT9,A_ —9,ATA_,
" Ay AL —0,ALAT = A_8,AT —9,A_AT;
(@) : WAL = 0d,A_;
(iii) : ALd,Ay =AT9,A_ =W, forsome W € Vy (cf. (4.1)).

(i) = (iii): As A’_l;_aUA_’_ and AT9,A_ are both antisymmetric, the first
equation gives

AToAL =AT)A_ =WeA,
Similarly, we have 3,A ;AT = 3,A_AT . Therefore, we get
A;WAL = 3,A AT = 9,A_AT = A_WAT,
which implies (I — 2nn)W(I — 2nn) = W. Thus, nW =0, i.e. W € V4.
(ii) = (iii): Assume that 9,AL = AL Wy with W € A,. Then we have
A;W, = A_W_, or equivalently (I — 2nn)W_ = W_. As W are both
antisymmetric, one has n - Wy = 0 and W = W_, which implies that

W_|_ =W_e¢e V4.
By reversing the above derivations, we immediately obtain (iii) = (i), (ii).

A.2. A sketch proof of Lemmas 3.7 and 3.9
We define for a matrix A € M,;:

p(A, O(n)) = min [A—B].
BeO(n)

Lemma A.1 For A € M, and p = p(A, O(n)), one has: (i) if p < 1, then
F(A) > 1p%(2 — p)% and equality holds if and only if A = B(I — pnn) for
some B € O(n) andn € S~ (ii)If p > 1, then F(A) > le

Proof We perform the singular value decomposition for A as A = UAVT
where U,V € O(n) and A = diag{A{, A2, - -+, A, } is diagonal with A; > 0.
Apparently,

F(A) = F(A) =th > -1
i=1
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PPA Om) =p*(A, 0m) = A —T|7 =) (i = ).

i=1

If p? = Yo — 1|? < 1, then for each i, A; > 1 — p, which implies

1
F(A) = Z(ﬁ—l) mm(x +1)° Zm 2> 22— prp?

k=1

Equality holds only if A; = 1 except one of them takes value 1 — p. This
implies A = B(I — pnn) for some B € O(n) andn € S"~ L If p?2 > 1, then

F(A)—4Zz 1()‘2_1)2 42, 1 (A — 1)2—4,0 >l- O

For any curve y = {B(2) : a < z < b} in M, the quantity
er(y) = f VF(B(2))/2|B'(2)lldz
¥

is independent of the parametrization of y. If A(z)(z € R) is a minimal
connecting orbit, then

er(Traj(A) = min_ ep(y).
y(EhHeZy

Define

1
i 22— PP ifp = pA 0m) <1
FA) =

1
7 if p(A, O(n)) = 1

Then by Lemma A.1, one get F(A) < F(A) for A € M,,. Note that F can be
viewed as a continuous function of p (A, O(n)). This enables us to apply the
arguments in [26, Theorem 2.1] to obtain that: A(z) is a minimal connecting
orbit with respect to F if and only if

A(R) =0:(A4, A7) '=5: (DAL + (1 = 5:(2)A,
with A+ € OF(n) and |[AL —A_|| = 2.

Here T € R is a constant and s; (z) = s(z 4 1) is a translation of s(z).
Then for a minimal connecting orbit A(z) with respect to F', we have

Traj(A)) > ez(Traj(A)) > i .
er(Traj(A)) > ep(Traj(A)) y(fll)nelziep(y)
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= ep(Traj(O: (A4, A_; 2))) = ep(Traj(O (A4, A_; 2))).
Thus all the inequalities hold as equalities which implies Traj(A) = {rA; +
(1 —t)A_ :t € (0,1)} for some (Ay,A_) € OF(n) x O (n) satisfying
Ay — A_|| = 2. This gives Lemma 3.7. In addition, if we write A(z) =

S(z)A4+ + (1 —5(2))A_ and substitute it into equation (3.9), then § has to be a
solution of (3.11) and thus 5§ = s; for some 7 € R, which yields Lemma 3.9.

A.3. Solvability of scalar ODEs
We collect the results on solving the ODEs (cf. (4.5)):
Eiui(Z,x,t)zﬁ(Z,x,t) (l=1925 95)’ (Al)

in R for (x, ¢) € I'(§), which have been proved in [2] (i = 1) and [17]. We
take g € (0, v21.

Lemma A.2 Assume f;(-,x,t) € Sy .m(ao, k) for 1 <i <5 with

L) =0, f;(x,0)=0, fifx,1=0,
and / fi(z,x,)0;(z)dz =0(1 < 4).

Then (A.1) has a unique bounded solution u’ (-, x,t) € Syy2,0,m (g, k + 1)
which satisfies

Wi, x,0) =0, wit(x,n =0, wi (x,1)=0, ul (x,1)=0.

Precisely, the solution can be written as

z 400
ui‘(z,x,t)=91(z)/0 0,%(s) Ji(z, x, )0 (r)drdg,
S

—+00 —+00
Wiz % 1) = —62(2) / 6;2(c) f fa(r, x, 02(x)dede,
Z S
Z S
Wiz %, 1) = —63(2) / 6:72(c) f F3(t, x, 03(r)dede,
uy(z, x, 1) = / (t — 2) fa(z, x, H)dr,

+00
us(z,x,t) = f/ fs(z—l—r x, 1)+ f5(z—1,x, t)]
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and we have

wE 1) = %fli(x, D, us (1) = %f{(x, 0,
Wit (x, 1) = %f;r(x, 0, ulE(x,n = %fsi(x, 1.
Moreover, all bounded solutions of (A.1) are given by:
ui(z, x, 1) = uj(z,x,t) +a;(x,1)6;(z), forl<i<4,

and u? is the only bounded solution to (A.1) for i = 5.

A.4. A key formula of trilinear form T ¢

We present a lemma, which was used in the proof of Lemma 4.4 and the
estimate for correction terms in Sect. 7.5. Recall from (4.9) that

T (A1, Az, A3) = (A1AT + Ao AD A3 + (AAT + A1ADA,
+(ATAs + A2ADA.

Lemma A3 Let Py = Y}, 0,E; and B = Y"}_, B; with E;, B; € V;. Then

TPy, P,B):B
=25(2s — 1)E; : (B3B4 + B4B3) + 25(3 — 4s5)E; : (B1B2 + B2By)
+2(1 — 5)(1 — 45)Es : (B;B3 + B3B))
+2(1 —5)(1 —25)E3 : (BoB4 +ByB»)
+2(1 — 25)E4 : (ByB3 + B3B)). (A.2)

Proof Through a direct calculation, we have

T;(Po,P;,B):B

= (PoP]+PPY) : BB+ (PIP1+P[Py) : (BTB) + 2(BTP)) : (PoB).
(A.3)

Moreover, one has

PoPT + P P] = (1 — )T + P)) + s((l —2nm)PT + P (1 - 2nn))
= 2s(1 — 5)(E2 — I — 2nn)E3).
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Here, we remark that (I — 2nn)E3 € V5 is symmetric. Similarly, we have
PP + P[Py = 2s5(1 — 5)(E2 + (I - 2nn)E3).

Therefore, if welet B =D+ W withD € S,, and W € A,,, the first two terms
in (A.3) read as

4s(1 — s)<E2 - (D? — W?) + (I — 2nn)E; : (DW — WD)).

The last term in (A.3) equals to
2P : (BPgB) = 2P; : (DPyD + DPyW + WPoD + WPyW)
= 2sE, : (DPyD + WPyW)
+2((1 — s)E3z + Eg) : (DPoW + WPyD).

AsD =B + By, W = B3 + B4, we have
D?> = B? + BB, + B,B; + B3,
W? = B3 + B4B; + B3B, + Bj,
DW — WD = (B;B; — B3B;) + (B2B3 — B3B»)
+ BB4 — B4Bo,
(I — 2nn)(DW — WD) = — (B B3 + B3B;) + (I — 2nn)(B,B; — B3B,)
— B2B4s — B4By,
DPoD = (B; + B,)(I — 2snn)(B; + B,)
= (1 —25)B{ + (1 — 25)(B1B, + BB))
+ B3 — 25B,nnB,,
WPyW = (B3 + B4)(I — 2snn)(B3 + By)
= B3 — 25B3nnB; + B4B; + B3B, + B3,
DPyW + WPoD = (B; + B2)(I — 2snn) (B3 + By)
+ (B3 +B4)I — 2snn)(B; + By)
= (1 —-2s)(B;B3 +B3B; + B,B3 + B3B))
+ B;B4 + B4B>.

Then (A.2) follows directly as we have
E,: Bl-2 =0, fori =1,2,3,4;, E,:(B;nnB;) =0, fori =2, 3;
E; : (BB3 + B3By) =0, Ej;:[(I—2nn)(B,B3 — B3B,)| = 0;
Es:BBs=E;:B3B; =E4 :B4sBy, =E4 : BBy = 0.
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A.5. Existence of solutions to the system for ng)

We give a sketch procedure to solve the system (2.19) with (6.25) for VE_LI) and
the system (2.18) with (6.36) for Vi(). For simplicity, we drop the superscript
k and write Vi = Vic ) for k > 1. Then the equation (2.18) can be written as

Ve —AVL+B1 0V +CLVL+Jr =0, inQq, (A4)

where B4 ;, J+ are known matrices and C4 : M, — M, is a known linear
map. Noticing that the equation (2.19) is linear for Vg ) ,it can also be rewritten
as the form (A.4). As for A € A,,, it holds that A = %(A — AT). Thus, one has

P3A =nnA(I —nn) + I —nn)Ann, P4A = (I —nn)Ad —nn). (A.5)

According to the fact that d,,(nn) = 0 on I', 0, commutes with P53 and Pj.
Thus, the interface jump conditions (6.25) or (6.36) can be written as

PaVy —PyV_ =Ky,
P40, V1) — Pa(3,V-) = Ko,

P30, V) = P3(WPV-) = Ks, (A6)

Py(0,V-) + P3(WPV. ) = K,

where K1, K> € V4, K3, K4 € V3 are given smooth functionson I' = U, >oI;.
The system (A.4)—-(A.6) is a parabolic transmission-like system with an inter-
face moving along the mean curvature flow. The transmission problem with
a fixed interface has been studied by many works; see [10,37] for the elliptic
case and [5, 14] for parabolic problems for example. To treat the moving inter-
face, we transform the problem into a parabolic transmission-like system with
a fixed interface via introducing time-dependent maps.

First, we consider the simpler case K; = 0. We can assume that there
is a smooth (in both space and time variables) map ®(-,¢) : I'g — [y for
t € [0, T]. Then one can extend it to €2, which is still denoted by ®(-, t),
such that &4 (-, 1) = P(., t)|9§ : Q(j)E — Q,i are smooth non-degenerate

diffeomorphism. Let W (y, 1) = Va (4 (y, 1), 1), Wil 1) : QF — QF be
the inverse of ®4 and Aii = 0;Wi jodyforl <i,j < m. We also use

: 9 TE s AT Ak 18 AT | with D hed :
the notations D; = 3 and N~ = vin’iAi,i/|vin| with v being the unit
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outer normal of Qg (the Einstein summation convention is used). By suitably
choosing @, one may assume that

a* 1= det(V®) = det(AT') € [0, A5 '] for some Ao > 0,

and (&jEAf|E l.A’; )1<j.k<m 1s uniformly elliptic in the sense of

/Qi a* Al A% DjWi: DW= 20 fgi IDW,|*> for some A; > 0.
0 0
(A7)

Then the system can be rewritten into a new system of the following type
in a fixed domain:

Wi — A% . Dp(AL ,DjW1) +Bo;DiWs + CoWy +J1 =0,
(v,0) € Q5 x [0, T], (A.8)
and the boundary conditions are reduced to
PsWy —PsW_ =0,
Ps(DjWy) —Pa(Dgy-W_) =Ky 0D,
Py(Dg W) — Ps (v‘v ° q>7>3w_) — K0, (A.9)
P3(Dgy-W_) +Ps3 <W ) CI>733W+> =K40 ®,
fory € I'pand ¢ > 0. Here P3, P4 are defined by (A.5) with n being replaced
byno ®.
By using a similar method as in [5,14], we can obtain the existence and
uniqueness of weak solutions to the above system. The regularity of solutions

can be deduced from the following a priori energy estimate. Here we omit the
details and left them to the interested readers.

Proposition A.4 When K| = 0, there exists Ly, C > 0 such that for smooth
solutions of (A.8)—(A.9), it holds

d
3 Bk + 2oFe() < CA + E (),

@ Springer



Matrix-valued Allen—Cahn equation... 77

with
1 k
_ == j 2
B =33 [ a0l WePay.
i=0 0
1 k
— _ ~t i 2
Futr) = 2,2_0:/9361 (. D13 W dy.

Here we use the notation fﬂf fr= f9+ f++ fQ_ f— for simplicity.

Proof We give the proof for k = 0. Direct calculations give us that

d . L.
—Eo(7) =/ (aiwi 0 Wx + —atai|wi|2)d)’
dt Q(ﬂ): 2

—_— /Qi atAl AL Wy : 9 Wady
0

A ey 1 ~ A A
+ /i ai( — B D;Wy + (Eatai —CoHW, — Ji> - Wady
Q

0
+ | (Dg Wy Wy — Dy W_: W_)at[p;Al|do (y).
Io
Here we should note that &i|ﬁin|da(y) = do(®(y)) for y € I'g and it is

independent of the symbol + or —. So one may denote 4= |9 [ Ail by a|b; A/
for y € I'y. We have

A - 1 a C j
2
< —C()/:t |IDW|* + C/;t IWal?,
Q 2

0

for some co, C > 0. Using the fact that DgW : W = P4DyW : P4W +
P3DNyW : P3W, we get

i (D Wi : Wy — Do W_: W_)ald; A/ |do ()

0

= | (P4Dgs W : P4Wo — P4D o W_ : PaW_)ald; A |do (y)
Co

+ | (P3Dy Wy : PsW, — P3Dg W_ : PsW_)ald; A’ |do (y)
To
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= [ Kyo®:PyWyL+K3z0d:P3W,
Lo

— Ko ®: PsW_)ald; Al |do (y).

Applying the trace theorem and interpolation inequalities for H'! (Q(jf) func-
tions, they can be bounded by

5/ |DWi|2dy+C5<l+/ IWilzdy>.
QF QF

0

Therefore, by (A.7) and choosing § sufficiently small, we have for some ¢y > 0
that

d .
B0+ f a*(y, NIDWPdy < CL + Eo(1).
QO

For general k > 1, the estimate can be obtained similarly by noticing that
i+1

10} W3,y < C(14+ /i 10/ Wl2dy), for0<i<k—1,
: Q
Jj=077%

and the boundary terms can be controlled by applying the trace theorem and
interpolation inequalities as before. |

For general K|, we can extend K to be a smooth A, -valued function in
Q_, which is denoted by K. Then let

V.(x, 1) = ¢ (do(x, 1) — nm)K; (I — nn),
where ¢ € C®°((—o0, 0]) satisfies ¢ = 1in[—68¢p/2, 0]and ¢ = Oforz < —&p.
Note that n is defined in I" (8¢) with d,n = 0. We obtain that V,, is well-defined
and smooth with

P4V* = Kl, P48VV* = 8vK*, PSV* =0, P38UV* =0.

By considering the new unknowns (\7+, \7,) = (V4, V_+V,),wecanreduce
the problem to the case of K; = 0.
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