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Abstract In this paper,we consider the sharp interface limit of amatrix-valued
Allen–Cahn equation, which takes the form:

∂tA = �A− ε−2(AATA− A) with A : � ⊂ Rm → R
n×n.

We show that the sharp interface system is a two-phases flow system: the
interface evolves according to the motion by mean curvature; in the two bulk
phase regions, the solution obeys the heat flow of harmonic maps with values
in O+(n) and O−(n) (represent the sets of n × n orthogonal matrices with
determinant +1 and −1 respectively); on the interface, the phase matrices on
two sides satisfy a novel mixed boundary condition. The above result provides
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2 M. Fei et al.

a solution to the Keller–Rubinstein–Sternberg’s problem in the O(n) setting.
Our proof relies on two key ingredients. First, in order to construct the approx-
imate solutions by matched asymptotic expansions, as the standard approach
does not seem to work, we introduce the notion of quasi-minimal connecting
orbits. They satisfy the usual leading order equations up to some small higher
order terms. In addition, the linearized systems around these quasi-minimal
orbits needs to be solvable up to some good remainders. These flexibilities are
needed for the possible “degenerations” and higher dimensional kernels for
the linearized operators onmatrix-valued functions due to intriguing boundary
conditions at the sharp interface. The second key point is to establish a spectral
uniform lower bound estimate for the linearized operator around approximate
solutions. To this end, we introduce additional decompositions to reduce the
problem into the coercive estimates of several linearized operators for scalar
functions and some singular product estimates which are accomplished by
exploring special cancellation structures between eigenfunctions of these lin-
earized operators.

1 Introduction

1.1 Background and related results

The phase transition problem has drawn great interest in both analysis and
applications. The simplest model for the phase transition is the scalar Allen–
Cahn equation, which was introduced by Allen–Cahn [3] to model the motion
of antiphase boundaries in crystalline solids. Let u : � ⊆ Rm → R, and F(u)
is a potential function with two wells (e.g. F(u) = (u2−1)2/4). The equation
reads as follows

∂t u = �u − 1

ε2
F �(u). (1.1)

As ε → 0, the domain � will be separated into two regions �±, where
u → ±1 respectively. Moreover, the interface between these two regions
evolves according to the mean curvature flow. This sharp interface limit has
been rigorously justified in both static and dynamic cases by numerous authors
via different methods, see [30,31] for the static case, and [8,11,13,15,21,38]
for dynamical problems.
In [35,36], Rubinstein–Sternberg–Keller introduced a vector-valued system

for fast reaction and slow diffusion:

∂t u = �u − 1

ε2
∂u F(u), (1.2)

where u : � ⊆ Rm → R
N is a phase-indicator function, and the nonnegative,

smooth potential function F : RN → R vanishes exactly on two disjoint
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Matrix-valued Allen–Cahn equation… 3

connected sub-manifolds inRN . By a formal asymptotic expansion, they found
that, when ε→ 0, the interface moves by its mean curvature, while away from
the interface u tends to the heat flow of harmonic maps into the sub-manifolds
(potential wells).
There is a lack of rigorous analysis for the Keller–Rubinstein–Sternberg

problem (1.2) in general. A few studies are for some special situations and
the problem has remained largely open including the O(n)-model. In [26],
Lin–Pan–Wang analyzed the asymptotic behaviour as ε → 0 for the energy
minimizing static solutions to a class of theKeller–Rubinstein–Sternberg prob-
lem. One found a non-standardmixedDirichlet–Neumann boundary condition
for the phase field along the interface. A regularity theory for minimizingmaps
of the limit problem was addressed in [27].
For asymptotics of the gradient flow (1.2), Bronsard–Stoth [9] stud-

ied the radially symmetric case for a special R2-valued problem, and a
Neumann-jump boundary condition for the limit system was derived. In
[16], without the radially symmetric assumption, Fei–Wang–Zhang–Zhang
rigorously justified the asymptotic limit for a physical R3×3-valued model,
which describes the isotropic-nematic phase transition for liquid crystals
(the radially symmetric case is studied in [29]). For the latter problem, we
refer to [22,28] for more recent progress. There are several interesting stud-
ies for related problems, see for examples, [7,19,20,23,33], most of which
consider the case when the minimizing set of F consists of finite isolated
points.
In this paper, through a careful and systematic analysis of the matrix-valued

Allen–Cahn equations, we obtain these intriguing boundary conditions for the
phase field along the sharp interface in evolution. In fact, amuch clearer picture
emerges. The boundary conditions for the phase field (and also for the limit-
ing problem) are actually dictated by the geometric properties of the potential
energy wells and the so-called minimal connecting orbits. The existence and
geometric properties of theseminimal-connecting-orbits (often infinitelymany
if only one of the ends is fixed) will also show up in deriving matched asymp-
totic expansions and the construction of higher order approximate solutions
with drastic variations of analytic difficulties. It is something that does not
appear in the scalar case or several vector-valued cases, which has been stud-
ied by various authors before. It also illustrates why there are different types
of boundary conditions along the interface in earlier works [16,22,26–28], for
examples. Let us describe briefly our method below. Some related discussions
are in Sect. 3 of the paper.
Following [35,36] and [26], we consider the energy functional for� ⊂ Rm :

Eε(u) =
�
�

�
|∇u|2 + 1

ε2
F(u)

�
dx,
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where the potential function F(u) is smooth for u ∈ RN and satisfies the
properties that

c1d
2(u, �) � F(u) � C2d2(u, �)

for u ∈ �δ0 (the δ0-neighborhood of �), and that F(u) � c3 whenever
d(u, �) � δ0. Here � = �+ ∩ �− is the union of two disjoint, smooth,
compact and connected submanifolds in RN on which F vanishes. For any
two points p+, p− in RN , one can define the distance with weight

√
F/2:

dF (p
+, p−) = inf

� �
R

�
|ξ �(t)|2 + F(ξ)

�
dt : ξ ∈ H1(R,RN ),

ξ(±∞) = p±
�
,

and let

cF0 = inf
q+∈�+,q−∈�−

dF (q
+, q−).

Under some very nature assumptions, one has the following expansion for
the energy Eε(u) for the so-called well-prepared data u:

Eε(u) = c
F
0

ε
Hm−1(	u)+ D(u)+ Oε(1).

Here 	u is a sharp interface between the two phases �+ and �−, and D(u) is
the Dirichlet energy of the map from �±(u) (the sub-regions of � which are
separated by 	u) into �±.
If one considers energy minimizers (as in [26]), then it is intuitively clear

that 	u will be an area minimizing surface, and u : �±(u) → �± will be
energy minimizing maps. There will also be natural boundary conditions for
u on the two sides of the sharp interface.
The difficult point for the gradient flow for this type of energy func-

tional is that the sharp interface motion of {	(t)} and the heat flow of
harmonic map in the bulk are in the same time scale (unlike the dynam-
ics of Ginzburg–Landau vortices [24]). These two motions may be coupled
in O(ε) order terms (hence it does not show up in the first order formal
asymptotic expansions [35,36]); and due to the interfacial energy being of
order O(ε−1), it may lead to undesired O(1) changes in motion of the
interface. This coupling occurs through the intriguing boundary conditions
for the maps at the sharp interface. As phases evolve in the bulk, bound-
ary values of u± at the sharp interface would change accordingly (and
even if they are of the size O(ε), they have to be counted as explained
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Matrix-valued Allen–Cahn equation… 5

above). The latter may alter the weights in calculating of the (weighted)
surface area of the sharp interface, that is the dF distance between points
u±(x, t) from two sides of 	(t). Of course, if the weighted distance between
any pair of points p± ∈ �± is the same absolute minimum, then there
will be no such effect in coupling and the weight for the sharp inter-
face area will not change in the evolution. This is the case we shall
say that F(u) is fully minimally paired (see discussions in Sect. 3). The
case that u is a scalar function, and the cases that have been consid-
ered in many previous works for the vector-valued functions (including
[16,22,28]) are all so that F(u) being fully minimally paired. From this
point of view, [26] studied a class of problem which is only partially min-
imally paired, but in a very specific way. The O(n)-model we study in
this paper has a great generality for situations of partially minimally paired
F(u), and it is kind of a generic situation. We refer to the discussions in
Sect. 3.
In this paper we shall concentrate on the study of the evolution of

well-prepared initial data for the matrix-valued Allen–Cahn equations. The
construction of approximate solutions in this paper is based on a new mod-
ified matched asymptotic expansion method. It turns out to be one of the
most difficult points of this paper. The new method provides a great flexibility
and it improves substantially the earlier ones [1,2,13,16] in the study of the
sharp interface limit problems. On the other hand, we will use the setups in
Alikakos–Bates–Chen [2] as it fits better for a more geometric description of
our problem.
It is worth pointing out that though by now there are several elegant and

powerful approaches to sharp interface limit problems, to our best knowledge
along with many attempts, it remains unclear whether these arguments could
work in a general vector-valued setting (e.g., the Keller–Rubinstein–Sternberg
problem. Roughly speaking, the geometric measure theoretic approach via
varifold flows relies on the key monotonicity formula. The latter uses the
so-called “discrepancy function” in [21] and many improvements up to date
working only for the case that phase fields stay in a one-dimensional sub-
manifold in a neighborhood of the sharp interface. The recent approach using
the idea of relative entropyormodulated energy [18,22] (see also [25]) has been
applied to study sharp interface limit problems, but it is not clear also whether
it works for general partially minimally paired situations. Other geometric
measure theoretic approaches using energy concentrations such as that by
Ambrosio and Soner [4] will need both the so-called concentration energy
density lower bound and the energy equal partition (quantization). One meets
the similar challenges, whether any of these approaches can be modified to
work for the general sharp phase transition problems remain to be a fascinating
problem.
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1.2 Presentation of the problem and main results

We consider a matrix-valued Allen–Cahn equation with a small parameter ε
in the bounded domain � = I1 × I2 · · · × Im ⊂ Rm with periodic boundary
conditions, which was introduced in [34]:

∂tAε = �Aε − ε−2 f (Aε), (1.3)

where

f (Aε) = Aε(Aε)TAε − Aε (1.4)

with (Aε)T denoting the transpose of Aε ∈ Rn×n � Mn . The system (1.3),
which was first introduced by [34], could be viewed as the gradient flow for
the energy functional

E(A,∇A) =
�
�

�1
2
�∇A�2 + ε−2F(A)

�
dx, F(A) = 1

4
�ATA− I�2,

(1.5)

where I is the identitymatrix. In this paper,we are interested in the asymptotical
behavior of solutions to the system (1.3) when ε→ 0.
Note that F(A) attains its minimum at the orthogonal group O(n) =

O+(n) ∪ O−(n), where O±(n) denotes the set of orthogonal matrices with
determinant ±1. Formally, one has that, in the limit of ε → 0, the domain �
can be divided into two disjoint parts �+t and �−t with the property that

Aε(x, t)→ A±(x, t) ∈ O±(n), for x ∈ �±t .

Then we need to determine the evolution of the interface 	t = ∂�+t ∩ ∂�−t ,
the evolution of A± in �±t , and the boundary conditions of A± on 	. Indeed,
the limit sharp interface model of the system (1.3) takes the form:

∂tA± = �A± −
m�
i=1
∂iA±AT±∂iA± (A± ∈ O±(n)), in �±t , (1.6a)

V = κ, on 	t , (1.6b)

(A+,A−) is a minimal pair, on 	t , (1.6c)
∂A+
∂ν

= ∂A−
∂ν
, on 	t . (1.6d)

Here V , κ , and ν are the normal velocity, the mean curvature and the unit
outward normal vector of 	t respectively. The condition (1.6c) is equivalent to
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Matrix-valued Allen–Cahn equation… 7

that for each x ∈ 	t , there exists n(x, t) ∈ Sn−1 such thatA+ = A−(I−2nn);
see Definition 3.4 and Lemma 3.7.
The heat flow of harmonic maps (1.6a) and the mean curvature flow (1.6b)

for the interface are rather natural, which have been formally argued in [35,36].
The relation (1.6c) has been obtained in [26] for minimizing equilibrium solu-
tions. The boundary condition (1.6d) is new and special for this matrix-valued
Allen–Cahn equation on O(n) due to the underlying geometric structure and
properties of minimal connecting orbits (see also [26] for different bound-
ary conditions in another geometric setting). We shall provide a derivation in
Appendix A.1.
In the case of n = 2, the minimal pair condition holds for any (A−,A+) ∈

O−(2) × O+(2). So, the condition (1.6c) is redundant. The Neumann-jump
condition in this case (1.6d) is reduced to the usual Neumann boundary con-
dition for functions on both sides:

∂νA− = ∂νA+ = 0.
Indeed, in this case, we can write

A+ =
�
cosα+ sin α+
− sin α+ cosα+

	
, A− =

�
cosα− sin α−
sin α− − cosα−

	

(α± are the rotation angles), then (1.6d) becomes

∂να+ = ∂να− = 0. (1.7)

This boundary condition (1.7) for n = 2 has been observed in [39], in which
the asymptotic dynamics of (1.3) under different time scales are studied.
The main goal of this paper is to provide a rigorous justification of the limit

from the regularized system (1.3) to the sharp interface model (1.6), which is
also called the sharp interface limit. The proofs will follow the approach in
de Mottoni-Schatzman [13] and Alikakos-Bates-Chen [2]: we first construct
an approximate solution AK solving (1.3) up to sufficiently high order small
terms; and then we prove a spectral lower bound for the linearized operator
around AK ; and finally we estimate the difference Aε − AK .
Our main results are stated as follows. The first main result is concerned

with the existence of approximate solutions, whose proof turns out to be the
most difficult for this article.

Theorem 1.1 Assume that (	t ,A+,A−) is a smooth solution on [0, T ] to the
sharp interface system (1.6). Then for any K � 1, there exists AK such that

∂tAK = �AK − ε−2 f (AK )+RK−1, (1.8)
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8 M. Fei et al.

where RK−1 ∼ O(εK−1), and for any (x, t) with x ∈ �±t , �AK (x, t) −
A±(x, t)� → 0 as ε→ 0.

Remark 1.2 The existence of smooth solutions to (1.6) is not a trivial issue
in general due to the complicated boundary conditions and we will address
it and some related issues in a forthcoming paper. But for this O(n) model,
the situation is very similar to that of problem studied in [27], and the well-
posedness has been established by the second author and Wang in [27].

The second main result is the spectral lower bound for the linearized operator
around the approximate solution AK . Compared with the proof in the scalar
case, the proof is much more involved, and several new ideas are introduced
to obtain the desired conclusions.

Theorem 1.3 Assume that AK (K � 1) is an approximate solution con-
structed as in Theorem 1.1. Then there exists C0 > 0 such that, for any
A ∈ H1(�) and t ∈ [0, T ] it holds

�
�

�1
2
�∇A�2 + 1

ε2
HAKA : A

�
dx � −C0

�
�

�A�2dx, (1.9)

where

HBA = BBTA+ ABTB+ BATB− A (1.10)

is the linearized operator of f defined in (1.4).

With the help of Theorem 1.1 and Theorem 1.3, the following nonlinear
stability result follows easily via an energy method.

Theorem 1.4 Let L = 3([m2 ] + 2) and K = L + 1. Assume that AK is an
approximate solution constructed as in Theorem 1.1, and Aε is a solution to
(1.3) with initial data Aε(·, 0) satisfying

Ē(Aε(·, 0)− AK (·, 0)) � C0ε2L ,

where

Ē(A) =
[m2 ]+1�
i=1

ε6i
�
�

�∇ iA�2dx .

Then there exists constants ε0,C1 > 0 such that for ∀ε � ε0 it holds

Ē(Aε(·, t)− AK (·, t)) � C1ε2L , for ∀t ∈ [0, T ]. (1.11)
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1.3 Main difficulties, key ideas and outline of the proof

The proofs are based on two key ingredients: construction of approximate
solutions and the spectral lower bound estimate. Compared with the scalar
case (e.g. [2,13]) or the case that the potential function F(u) is fully minimally
paired (e.g. [16]), there exist several serious difficulties, for which we need to
introduce various new arguments to overcome them. Let us give a sketch here.
Assume (	t ,A+,A−) is a smooth solution of (1.6) on [0, T ]. To proceed,

let d(x, 	t ) be the signed distance from x to 	t , and ν = ∇d|	t be the unit
outer normal of �−t . We denote

	(δ) = {(x, t) ∈ �× [0, T ] : |d(x, 	t )| < δ},
Q± = {(x, t) ∈ �× [0, T ] : d(x, 	t ) ≷ 0}.

We also write 	 = {(x, t) ∈ �× [0, T ] : x ∈ 	t } for simplicity.
1.3.1 Construction of approximate solutions

As in [2], we construct approximate solutions via different expansions in the
two regions: outer region Q±\	(δ/2) and inner region 	(δ).
In Q±\	(δ/2), we assume that the solution of (1.3) has the form:

Aε(x, t) = AεO(x, t) :=
+∞�
i=0
εiA(i)± (x, t), (1.12)

where A(i)± (x, t) are smooth functions defined in Q±. Substituting the above
expansion into (1.3) and collecting the terms with same power of ε, we can
obtain the equations forA(i)± (x, t)(i � 0), where the leading order equation for
A(0)± (x, t) is actually the equation (1.6a). The boundary/jump conditions for
A(i)± (x, t) on 	t will be determined to ensure the solvability of expansions in
inner regions (particularly on	t ). Moreover, wewill use the value ofA

(i)
± (x, t)

not only in the domain Q±, but also in Q±∪	(δ). Hence, we extendA(i)± (x, t)
from Q± to Q± ∪ 	(δ) smoothly.
In the region near the interface, we try to find functions for (x, t) ∈ 	(δ)

AεI (z, x, t)=A(0)I (z, x, t)+εA(1)I (z, x, t)+ε2A(k)I (z, x, t)+ · · · , (1.13)

dε(x, t) = d0(x, t)+ εd1(x, t)+ ε2d2(x, t)+ · · · , (1.14)

such that dε(x, t) is a signed distance function with respect to a surface 	ε

and 
AεI (x, t) = AεI
�
ε−1dε(x, t), x, t

�
solves (1.3) in 	(δ). Here A(k)I (z, x, t)

and dk(x, t) (k � 0) are functions independent of ε and d0(x, t) = d(x, t).
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10 M. Fei et al.

To match the two expansions, we require that A(k)I (z, x, t) tends to A
(k)
± (x, t)

exponentially as z→±∞. Then the approximate solution in thewhole domain
� can be constructed by gluing AεO and 
AεI in the overlapped region 	(δ) \
	(δ/2).
Once we substitute the inner expansion (1.13) into (1.3), the leading order

(O(ε−2)) system is an ODE system in z, which reads as

−∂2zA(0)I + f (A(0)I ) = 0, A(0)I (±∞, x, t) = A(0)± (x, t) = A±(x, t),
(1.15)

for given (x, t) ∈ 	(δ). However, as the discussion in Sect. 3.2, the existence
of solution highly depends on the boundary data A(0)± . In particular, it has no
solution unless AT+A− is symmetric. More importantly, only when (A+,A−)
is a minimal pair, (1.15) can have a stable solution which takes the form

�(A+,A−; z) := s(z)A+ + (1− s(z))A−, s(z) = 1− (1+ e
√
2z)−1.
(1.16)

Such a�(A+,A−; z)with (A+,A−) being a minimal pair is called a minimal
connecting orbit (see Definition 3.1 for the precise definition).
The boundary condition (1.6c) gives us that (A+(x, t),A−(x, t)) forms a

minimal pair for (x, t) ∈ 	. As we have to perform expansion in 	(δ), a
natural question is:

Whether A±(x, t) can be smoothly extended to 	(δ) such that (A+(x, t),
A−(x, t)) remains to be a minimal pair for every (x, t) ∈ 	(δ)?
Unfortunately, due to the partially minimally paired (cf. Definition 3.5) nature
of this problem, for general solutions of the system (1.6), such an extension
does not exist unless n = 2. [It partially explains difficulties for generalizing
the so-called relative entropymethod to theKeller–Rubinstein–Sternbergprob-
lem]. Thus, for (x, t) ∈ 	(δ)\	, one can not expect that (A+(x, t),A−(x, t))
is a minimal pair, and consequently one can not find a solution to (1.15) for
(x, t) ∈ 	(δ) \ 	.
More troublesomely, the equations of A(k)I (z, x, t) (k � 1), whose main

part is the linearization of (1.15), take the form

LA(0)I A
(k)
I := −∂2zA(k)I +HA(0)I A

(k)
I = Fk . (1.17)

This system may have no solutions, unless A(0)I = �(A+,A−; z) with
(A+,A−) being a minimal pair. Therefore, for (x, t) ∈ 	(δ)\	, the construc-
tion of A(k)I (z, x, t) (k � 1) can not proceed either.
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The solvability of (1.15) and (1.17) have thus become a major obstacle
for the construction of approximate solutions. As a result, the traditional
matched asymptotic expansion method does not work for our problem. We
remark that, in several sharp interface problems such as the scalar Allen–
Cahn problem [13] or the isotropic-nematic interface problem [16], such
difficulties do not exist, because any pair of points from the two poten-
tial wells of F is a minimal pair (that is, F(u) is fully minimally paired,
see Definition 3.5). In such cases any smooth extension will work, and the
phase field equations on the two sides of the sharp interfaces are decou-
pled.
Now let us explain our main ideas.
To solve (1.15), a key idea is to construct a profile A0(z, x, t) which fulfills

the boundary conditions and “almost” satisfies (1.15). Here “almost” means
the remainder

RA0(z, x, t) = −∂2zA0 + f (A0)

is small and can be absorbed into the equations of the next orders by using the
relation of z = dε/ε. Precisely, we require that it has the form

RA0(z, x, t) = d0(x, t)G(z, x, t)
= ε(z − d1 − εd2 − ε2d3 − · · · )G(z, x, t),

with G(z, x, t) smooth, and G(z, x, t) = O(e−α0|z|)
as z→±∞ for some α0 > 0. (1.18)

Then it can be viewed as source terms for the systems of the next orders.
The requirement ensuring (1.17) to be solvable is much more restrictive.

Applying a similar idea as above, one may expect to find aminimal connecting
orbit 
�(
A+,
A−; z) such that the difference

LA(0)I A
(k)
I − L
�A(k)I

can be absorbed into the expansions of the next orders. However, once�
A(0)I (−∞),A(0)I (+∞)

�
is not a minimal pair, it is hard, and in general impos-

sible, to find such a 
� so that the difference decays exponentially to zero in z.
Our idea is to introduce a profile for (x, t) ∈ 	(δ):

�(z, x, t) = 
(z, x, t)P0(z, x, t)
with P0(z, x, t) = I− 2s(z)n(x, t)n(x, t),

123



12 M. Fei et al.

where n(x, t) is smoothly extended from 	 to 	(δ) with ∂νn = 0 on 	 and


(−∞, x, t) = A−(x, t),

(+∞, x, t) = A+(x, t)(I − 2n(x, t)n(x, t)),

(z, x, t) ∈ O−(n), 
(z, x, t)→ 
(±∞, x, t)
exponentially as z→±∞.

By choosing 
(z, x, t) suitably, we can obtain ∂2z
, ∂z
 = O(d20e
−α0|z|).

Thus

R�(z, x, t) = ∂2z�− f (�) = ∂2z
P0 + 2∂z
∂zP0
has the form in (1.18). A more crucial observation is that, if we write

A(k)I (z, x, t) = 
(z, x, t)Pk(z, x, t),

then we have

L�A(k)I = 
LP0Pk − ∂2z
Pk − 2∂z
∂zPk .

Since P0 is a trivial minimal connecting orbit, LP0 can be explicitly inverted
by diagonalizing it into several differential operators Li (1 � i � 5) (cf.
(4.5)) acting on scalar parameter functions. Thus, L� is solvable up to some
O(d20e

−α0|z|) terms, which can also be absorbed into the next higher order
systems.These keyproperties enable us to construct solutions to the expansions
of each order. Such profiles � are called quasi-minimal connecting orbits,
which play a crucial role in the whole construction of inner expansions. We
refer to Sect. 3 for details on motivation and construction of quasi-minimal
connecting orbits, and to Sect. 4 for diagonalizing of LP0 .
The above procedure increases dramatically the complexity of the inner

expansions, and thus the process for solving the system in the expansion has
to be carefully examined. This will be accomplished in Sects. 5–6 with a
sketched illustration in Fig. 1.

1.3.2 Spectral lower bound estimate

Another key ingredient in our analysis is to prove a spectral lower bound
estimate for the linearized operator−�+HAK , which is clearly more difficult
than the scalar case. This is carried out in Sect. 7.
First, we restrict the inequality into the region near the interface (see (7.1)),

as it holds on regions away from the interface by direct estimation. Then we
introduce two transformations, one for coordinates and the other for matrix
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Matrix-valued Allen–Cahn equation… 13

fields, to reduce the problem into a matrix-valued inequality on a 1-D interval.
See (7.6) in Sect. 7.1.
By using a decomposition based on the diagonalization of LP0 along with

some further simplifications, a matrix-valued inequality can be reduced to
two scalar bilinear estimates for singular crossing terms and correction terms
respectively; see (7.15) and (7.17) in Sect. 7.2.
As these terms are both singular, they can not be estimated directly. To

overcome this issue, we have to introduce several decompositions based on
the eigenfunctions of the scalar linearized operators {Li (1 � i � 5)}. Then
the singularities can be removed by careful analysis on the weights and by
employing some delicate cancellation structures between these eigenfunc-
tions.
Furthermore, the above decompositions also lead us to develop some

weighted coercive estimates for the linearized operators. These coercive esti-
mates givenewandelementaryproofs for the spectral estimates of the operators
{Li }, which do not rely on the maximum/comparison principle or Harnack
inequalities, and that might have their own interest.
Finally, we would like to remark that, although the analysis in this paper is

carried out in the O(n)-setting, the ideas, on both construction of approximate
solutions and spectral analysis, are rather flexible to be applied to other partially
minimally paired Keller–Rubinstein–Sternberg problems.

1.4 Notations

• For any two matrices A and B, we denote A : B = Ai jBi j , �A�2 = A : A
and A ⊥ B means A : B = 0.

• For any twovectorsm andn, we usemn to denotem⊗nwhen no ambiguity
is possible.

• We use nA to denote the vector (n jA j i )1�i�n , andAn to denote the vector
(Ai jn j )1�i�n . ThenAmn is understood as (Aikmkn j )1�i, j�n and similarly
mnA = (minkAk j )1�i, j�n .

• Mn: the space of n × n matrices.
• Sn , An: the spaces of symmetric and asymmetric n × n matrices.
• O(n), O±(n) : n×n orthogonal group, the set of n×n orthogonal matrices
with determinant ±1.

• O(e−α0|z|) denotes the terms which can be bounded by C |z|ke−α0|z| for
some k � 0 as z→∞.

The following simple fact (Jacobi identity) will be constantly used:

for A,B,C ∈Mn, (AB) : C = A : (CBT) = B : (ATC). (1.19)
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14 M. Fei et al.

2 Outer expansion

2.1 Formal outer expansion

We perform outer expansion in Q± rather than Q± \ 	(δ/2) by using the
Hilbert expansion method as in [40,41]. Assume that

Aε(x, t) =
+∞�
i=0
εiA(i)± (x, t), for (x, t) ∈ Q±. (2.1)

Substituting it into (1.3), one can find the leading order O( 1
ε2
) equation reads

as

A(0)± (A
(0)
± )TA

(0)
± = A(0)± ,

which is satisfied by taking

A(0)± = A± ∈ O±(n). (2.2)

Now we assume that

Aε(x, t) = A±Uε(x, t) = A±
+∞�
i=0
εiU(i)± (x, t), for (x, t) ∈ Q±.

Here U(0)± = I. A direct calculation yields that

AT± f (Aε) = f (Uε)

= ε�U(1)± + (U(1)± )T
�+�

k�1
εk+1

��
U(k+1)± + (U(k+1)± )T

�

+ B(k)± + C(k−1)±
�
, (2.3)

where

B(k)± =
�

{i, j,l}={0,1,k}
U(i)±

�
U( j)±

�TU(l)± , C(k−1)± =
�

i+ j+l=k+1,
0�i, j,l�k−1

U(i)±
�
U( j)±

�TU(l)± .

(2.4)

Here and in what follows we use the convention that U(i)± = 0 for i < 0. Note
that
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Matrix-valued Allen–Cahn equation… 15

C(0)± = 0, C(1)± = U(1)±
�
U(1)±

�TU(1)± , (2.5)

and C(k−1)± only involves U(0)± , U
(1)
± , ..., U

(k−1)
± .

On the other hand, we define the linear operator

J±� = AT±
�
∂t (A±�)−�(A±�)

�

= ∂t� −�� + AT±(∂tA± −�A±)� − 2AT±∇A±∇�. (2.6)

Then we have

AT±(∂tAε −�Aε) = J±Uε. (2.7)

Substituting (2.3) and (2.7) into (1.3), and then equating the O(εk)(k ≥ −1)
system yields that

O(ε−1) : U(1)± + �U(1)± �T = 0, (2.8)

O(εk)(k � 0) : U(k+2)± + �U(k+2)±
�T = −J±U(k)± − B(k+1)± − C(k)± . (2.9)

In the sequel, we will use the decomposition

M(k)± = 1
2

�
U(k)± + (U(k)± )T

� ∈ Sn, V(k)± = 1
2

�
U(k)± − (U(k)± )T

� ∈ An,

and solveM(k)± ,V
(k)
± separately.

2.2 The leading order equation

It yields from (2.8) that

M(1)± = 0. (2.10)

The equation (2.9) for k = 0 gives us that

2M(2)± = −J±U(0)± − B(1)± ,

which leads to

J±U(0)± + B(1)± ∈ Sn.

Since M(1)± = 0, we have that U(1)± = V(1)± is antisymmetric, and thus from
(2.4):
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16 M. Fei et al.

B(1)± = V(1)± (V(1)± )T = −(V(1)± )2 ∈ Sn, (2.11)

which implies

J±U(0)± ∈ Sn. (2.12)

As U(0)± = I, we deduce from (2.7) that

AT±(∂tA± −�A±) ∈ Sn,

which is actually equivalent to the heat flow of harmonic maps to O±(n)
given in (1.6a).

2.3 The next order equations

For general k, (2.9) can be equivalently written as

J±U(k)± + B(k+1)± + C(k)± ∈ Sn, (2.13)

M(k+2)± = −1
2

�
J±U(k)± + B(k+1)± + C(k)±

�
. (2.14)

Equation (2.14) implies thatM(i)± is uniquely determined from A( j)± (0 � j �
i − 1) for i � 2.
From the definition (2.4) of B(k)± and (2.10), we have for k � 2,

B(k)± = V(1)± (U(k)± )T + (U(k)± )TV(1)± � B±U(k)± . (2.15)

One can directly verify that

B±V ∈ Sn, for V ∈ An. (2.16)

Therefore, it follows from (2.13) and (2.16) that

J±U(k)± + B±M(k+1)± + C(k)± ∈ Sn,

which further gives

J±U(k)± − 1
2
B±
�
J±U(k−1)± + B(k)± + C(k−1)±

�
+ C(k)± ∈ Sn. (2.17)
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Matrix-valued Allen–Cahn equation… 17

For k � 2, once {U(i)± }0�i�k−1 is determined, the above equation indeed gives
a heat flow type evolution equation for V(k)± :

J±V(k)± − 1
2
B2±V(k)± + C(k)± + J±M(k)±

− 1
2
B±
�
J±U(k−1)± + B±M(k)± + C(k−1)±

�
∈ Sn, (2.18)

sinceM(k)± is already given by (2.14).

In addition, when k � 3, the equation (2.18) is linear for V(k)± , since the
coefficients in the operator B± (see (2.15)) and C(k)± depend only on U(1)± and

U(2)± .
For k = 1 or 2, (2.17) or (2.18) seems to be nonlinear at a first glance.

However, by a careful checking, we could find that it is also a linear equation
for k = 1 or 2.
Indeed, for k = 1, from (2.11), (2.15) and (2.5) one has that

B±B(1)± = V(1)± (B(1)± )T + (B(1)± )TV(1)± = −2(V(1)± )3 = 2C(1)± .

Thus, the equation (2.17) for k = 1 is reduced to

J±V(1)± − 1
2
B±J±U(0)± ∈ Sn, (2.19)

which is apparently a linear equation for V(1)± .
For k = 2, the only nonlinear (in V(2)± ) terms are contained in C(2)± , which

can be written as

U(0)±
�
U(2)±

�TU(2)± + U(2)±
�
U(0)±

�TU(2)± + U(2)±
�
U(2)±

�TU(0)±
= �V(2)± �TV(2)± + V(2)±

�
V(2)±

�T + (V(2)± )2 + linear terms

= symmetric terms + linear terms .

Therefore, by eliminating symmetric terms, (2.18) for k = 2 is indeed a linear
equation of V(2)± .
Note that for each A(k)± or U(k)± , the symmetric part M

(k)
± is solved explic-

itly from (2.14). Thus, we do not need boundary/jump conditions for M(k)±
on 	t . While, the antisymmetric part V

(k)
± is solved from a linear heat-flow

type equation, thus their boundary/jump conditions on 	t are needed. These
conditions will be determined in the inner expansion to ensure that outer/inner
expansions match each other in the overlap region.
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18 M. Fei et al.

Once A±|Q± , M(k)± |Q± , V(k)± |Q± are determined, we extend them to 	(δ),
such that

A± : 	(δ) ∪ Q± �→ O±(n), M(k)± : 	(δ) ∪ Q± �→ Sn,

V(k)± : 	(δ) ∪ Q± �→ An

are all smooth functions. ThenA(k)± (x, t) = A±(M(k)± +V(k)± ) are also smooth
in 	(δ) ∪ Q±.

3 Minimal pair and quasi-minimal connecting orbits

3.1 Motivation

The aim of the inner expansion is to find a good approximation, up to any
order of ε, to the exact solution in the region 	(δ) near the interface. As
explained in Sect. 1.3, the main strategy used here is that, we try to find
functions A(k)I (z, x, t) and dk(x, t) (k � 0) such that


AεI (x, t) = AεI �ε−1dε(x, t), x, t�

solves the original equation (1.3) in 	(δ), with AεI
�
z, x, t) defined in (1.13)

and dε(x, t) given by (1.14) which is a signed distance function with respect
to a surface 	εt . In addition, we require that, for (x, t) ∈ 	(δ), i, j, k � 0 and
some α0 > 0,

|∂ it ∂ jx ∂ lz(A(k)I (z, x, t)− A(k)± (x, t))| = O(e−α0|z|) as z→±∞. (3.1)

Sincewewould like to approximate the sharp interface system (1.6), d0(x, t)
is naturally taken as the signed distance function to 	t . Thus, ∇d0 · ∇ on 	t
is the normal derivative ∂ν . In addition, if ε is sufficiently small, 	εt should
be a good approximation of 	t . As dε is a signed distance function, one has
|∇dε|2 = 1, which gives

|∇d0|2 = 1, ∇d0 · ∇d1 = 0, (3.2)

2∇d0 · ∇dk = −
�

1� j�k−1
∇d j · ∇dk− j , k ≥ 2. (3.3)

Substituting the expansions (1.13)–(1.14) into the following equation

∂tAε = �Aε − ε−2 f (Aε),
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we find that, to eliminate the leading O( 1
ε2
) order terms, A = A(0)I should

satisfy

∂2zA = f (A), A(±∞) = A±(x, t). (3.4)

In addition, the O(εk−2) (k � 1) system gives that A(k)I satisfies an equation
with the form

LAA(k)I = F, A(k)I (±∞) = A(k)± (x, t), (3.5)

where F contains terms determined before, and LA is the linearized operator
of (3.4) around A defined by

LA� := −∂2z� + AAT� + A�TA+�ATA−�. (3.6)

Therefore, the existence of solutions to the systems (3.4) and (3.5) are at
the heart of the inner expansion. As we will show in Sects. 3.2 and 4, when
(A+,A−) is a minimal pair, or equivalently, A+ = A−(I − 2nn) for some
n ∈ Sn−1, one can find directly a solutionA to (3.4) with (3.5) being solvable.
The boundary condition (1.6c) gives us that (A+(x, t),A−(x, t)) forms

a minimal pair for (x, t) ∈ 	. However, after a smooth extension,
(A+(x, t),A−(x, t)) may not be a minimal pair in general for (x, t) ∈ 	(δ).
This is the main obstacle to the construction of approximated solutions in
the inner expansion. To overcome this difficulty, we construct a solution �
which satisfies (3.4) up to some “good” remainders, which decay exponen-
tially fast in z-variable and vanish on 	. More importantly, the corresponding
L� is also solvable up to some “good” remainders. Such a solution is called
quasi-minimal connecting orbit (see Sect. 3.3).

3.2 Minimal pair and minimal connecting orbits

We start from a general nonnegative smooth potential function F : RN →
R�0 which vanishes exactly on two disjoint, compact, connected, smooth
Riemannian submanifolds �± ⊂ RN without boundaries. A simple choice of
such potential function F(u) is giving by the square of the distance from u to
�+ ∪�−, for u near �+ ∪�−, otherwise it could be a positive constant, see
for example [26]. Giving two points p± ∈ �±, the solution of the following
ODE

∂2z u = ∂u F, u(±∞) = p±, (3.7)

describes the way of phase transition from the state p− to another state p+.
The existence of solutions to (3.7) is so called the heteroclinic connection
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problem, which has been studied extensively for the case of �± = {p±}; see
[20,32,38,42] and the references therein for examples.

Definition 3.1 A solution of (3.7) is called a connecting orbit, and p± are
called its ends.

In particular, we are interested in minimal connecting orbits, which is defined
as follows.

Definition 3.2 A solution of (3.7) is called a minimal connecting orbit [26],
if it minimizes the energy

e(u) =
�
R

1

2
|u�|2 + F(u)dz (3.8)

among H1p±(R) := {u ∈ H1loc(R) : limz→±∞ u = p±}.
Remark 3.3 Let the trajectory of u be defined as Traj(u) = {u(z)| − ∞ <

z < +∞}. By using an argument as in [32,42], one can show that u(z) is a
minimal connecting orbit, only if:

(1) The closure of Traj(u) is a minimal geodesic curve connecting (p−, p+)
with the weight

√
2F in RN ;

(2) Traj(u) contains no other points in �− ∪�+.
Indeed, for γ = Traj(w) with w ∈ C(I ) ∩ H1loc(I ) (I is a interval in R), we
define

eF (γ ) :=
�
I



2F(w(z))|w�(z)|dz,

which is independent of the parametrization of γ . One can deduce that for u ∈
C1(�)with u(±∞) ∈ �±, e(u) � eF (Traj(u)), and the equality holds only if
1
2 |∂zu|2 = F(u). This is a simple example of the so-called self-dual solutions.
If u solves (3.7), then ∂z(12 |∂zu|2 − F(u)) = 0 and hence 12 |∂zu|2 = F(u).
Thus eF (Traj(u)) = e(u). As u minimizes e with given ends (p−, p+), one
has that Traj(u) minimizes eF with given ends (p−, p+). Otherwise one can
find another w with same ends p± such that eF (Traj(w)) < eF (Traj(u)). By
suitably regularizing and reparametrizing w, we could assume w ∈ H1p±(R)
and obtain that e(w) < e(u) which contradicts with the minimality of u.
In addition, if u is a solution to (3.7) and Traj(u) contains some other point

in �±, we can assume u(z0) = p0 ∈ �+ ∪�−. Then (u(z), u�(z))(z � z0) is
solution to the ODE system

w�1 = w2, w�2 = ∂u F(w1), for z � z0
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with initial data w1(z0) = p0, w2(z0) = 0. However, this system obviously
admits a trivial solution w1(z) ≡ p0, w2(z) ≡ 0, which contradicts with the
uniqueness of solution (note that ∂u F is Lipschitz).
Conversely, for a minimizing geodesic (with weight

√
2F) connecting

(p−, p+) ∈ �− × �+ which does not visit some other point in �− ∪ �+,
one can suitably reparametrize it to obtain a minimal connecting orbit, which
solves (3.7). We refer to the proof of [42, Theorem 3.1] or [32, Theorem 3] for
details.

With some mild assumptions on the potential function F , the existences
of minimal connecting orbits can be proved by variational methods as in [26,
32,42]. However, it is well-known that, for a general given pair (p−, p+) ∈
�−×�+, a minimal connecting orbit (and even a connecting orbit) with ends
p± may not exist.
Definition 3.4 A pair (p−, p+) ∈ �− × �+ connected by a minimal con-
necting orbit is called a minimal pair.

Definition 3.5 If any pair (p−, p+) ∈ �−×�+ is a minimal pair, we say that
F is fullyminimally paired. Otherwise, i.e., if there exists (p−, p+) ∈ �−×�+
which is not a minimal pair, we say that F is partially minimally paired.

Most of classic models studied previously are fully minimally paired. For
example, for the scalar Allen–Cahn energy F = 1

4(1 − u2)2 : R → R�0,
�± = {±1}. Obviously, F is fully minimally paired. For the isotropic-nematic
phase transition problem in liquid crystals [16,22,28], the energy F : Q→ R

(Q denotes the space of 3× 3 symmetric trace free matrices) takes the form:

F(Q) = a
2
|Q|2 − b

3
trQ3 + c

4
|Q|4, a, b, c > 0, b2 = 27ac.

One has

�− = {0}, �+ =
�
s+
�
nn − 1

3
I
�
: n ∈ S2, s+ = b +

√
b2 − 24ac
4c

�
.

As (0,Q∗) is a minimal pair for ∀ Q∗ ∈ �+, F is fully minimally paired.
Another geometric example is that �± are the linked spheres Sk, Sl in

Sk+l+1:

F(u) =
�
(|u1|2 − 1)2 + |u2|2

��
|u1|2 + (|u2|2 − 1)2

�
,

u = (u1, u2) ∈ Rk+1 × Rl+1.
Clearly, this problem is fully minimally paired. It seems hopeful to generalize
the relative entropy arguments [18] for the fully minimally paired case to
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obtain a short and elegant proof of the main result, see for example [22]. On
the other hand, the class of F(u) considered in [26] is at the exactly other
extreme. In the latter case, there are two compact, smooth sub-manifolds M±
of�± respectively, such that there is a smooth diffeomorphism between points
p−, p+ in M± so that the corresponding points p−, p+ form a minimal pair.
For the problem (1.3) considered in this paper, F = 1

4�AAT − I�2, and the
equation (3.7) becomes

∂2zA = AATA− A, A(±∞) = A± ∈ O±(n), (3.9)

which is the Euler-Lagrange equation to the one dimensional energy func-
tional:

�
R

1

2
�∂zA�2 + 1

4
�AAT − I�2dz. (3.10)

In this case, we have an explicit characterization of minimal pairs, which
implies that this problem is partially minimally paired unless n = 2.
Lemma 3.6 For (A+,A−) ∈ O+(n)× O−(n), the following statements are
equivalent:

(i) �A+ − A−� = min(A,B)∈O+(n)×O−(n) �A− B�;
(ii) �A+ − A−� = 2;
(iii) A− = A+(I− 2n⊗ n) for some n ∈ Sn−1;
Proof First, we show that, ifB ∈ O−(n), then trB � n−2, and equality holds
only whenB = I−2n⊗n for some n ∈ Sn−1. For this, we assumeB = RB̃RT
where R ∈ O(n) and B̃ = diag {λ1, λ2, · · · , λk, J1, · · · , Jl}(k + 2 j = n) is
quasi-diagonal with λi ∈ {±1}(1 � i � k), J j =

�
cos θ j sin θ j
− sin θ j cos θ j

	
(1 �

j � l). As det B̃ = detB = −1, at least one of λi equals to −1. Thus,
trB � n − 2. Equality holds only if B̃ = diag {λ1, λ2, · · · , λn} and only one
of λi takes value −1, which implies B = I− 2n⊗ n for some n ∈ Sn−1.
From the above claim, as AT+A− ∈ O−(n), we have �A− − A+�2 =

tr ((A−−A+)T(A−−A+)) = tr (2I−AT+A−−AT−A+) = 2n−2trAT+A− � 4.
In addition, equality holds if and only ifAT+A− = I−2nnwith somen ∈ Sn−1,
which concludes the lemma. ��
Lemma 3.7 A pair (A−,A+) ∈ O−(n) × O+(n) is a minimal pair, if and
only if �A+ − A−� = 2.
Proof See Appendix A.2. ��
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Remark 3.8 Lemmas 3.6 and 3.7 imply that (A−,A+) ∈ O−(n)×O+(n) is a
minimal pair if and only if A+ −A− = 2(A+n)⊗ n for some n ∈ Sn−1. This
implies thatA+ andA− are rank-one connected which is a crucial condition in
solid mechanics (e.g., the seminal work [6] of Ball-James). A good reason for
this to be the case may be because they all involve phase transitions between
two minimums of potential energies. For our problem, it implies formally that
(at the blow-up) tangent planes of the sharp interface are described by rank-
one connections. One of the difficulties in the Keller–Rubinstein–Sternberg’s
problem is that there are infinitely many such rank-one connections (if only
one of the two endpoints is given) which can be parametrized by the sphere
Sn−1.

Let

s(z) = 1− (1+ e
√
2z)−1, (3.11)

which solves

s�� = 2s(1− s)(1− 2s) for z ∈ R; s(+∞) = 1, s(−∞) = 0. (3.12)

Apparently, for k � 0, ∂kz (s(z)− s(±∞)) = O(e−
√
2|z|) as z → ±∞. In the

sequel, we will choose α0 ∈ (0,
√
2]. Note that all solutions of (3.11) are given

by {sτ (z) = s(z + τ) : τ ∈ R}.

Lemma 3.9 All minimal connecting orbits are given by

�τ (A+,A−; z) := sτ (z)A+ + (1− sτ (z))A−, (3.13)

with (A+,A−) being a minimal pair and s(z) defined in (3.11).

Proof We defer the proof to Appendix A.2. ��

Remark 3.10 We remark that, for any pair (A−,A+) ∈ O−(n)× O+(n) with
AT+A− symmetric,�τ (A+,A−; z) defined in (3.13) are solutions to (3.9), i.e.,
connecting orbits. However, only if AT+A− = I − 2nn for some n ∈ Sn−1,
�τ (A+,A−; z) are minimal connecting orbits. In this example, the dimension
of O(n) is n(n − 1)/2, its symmetric group is Sn−1. Thus for every point p+
in O+(n) there is an embedded Sn−1 in O−(n)which is minimum (and equal)
distance to p+. The similar statement is also true in the other way for points in
O−(n). This is a rather interesting (and also typical at least locally) partially
minimally paired situation, and leads tomanymixed type boundary conditions.
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3.3 Quasi-minimal connecting orbit

As discussed at the beginning of this section, in general, for (x, t) ∈ 	(δ) \
	, one can not expect that (A−(x, t),A+(x, t)) is a minimal pair. Thus, the
solution to (3.4) may not exist. To this end, we construct a profile � which
approximately satisfies (3.4) for (x, t) ∈ 	(δ).
We assume that there exists a smooth vector field n(x, t) : 	→ Sn−1 such

that A− = A+(I − 2nn) on 	 (in general this assumption may be not true
and this issue will be discussed in Remark 6.1). Then we extend n(x, t) to be
a smooth Sn−1-valued function in 	(δ) with ∂νn = 0 on 	. Define smooth
orthogonal matrices


−(x, t) = A−(x, t), 
+(x, t) = A+(x, t)(I− 2n(x, t)n(x, t)),
for (x, t) ∈ 	(δ).

It holds that
+(x, t) = 
−(x, t) on the interface	.Moreover, as ∂νn(x, t) =
0 on 	, the boundary condition (1.6d) ensures that

∂ν
+(x, t) = ∂ν
−(x, t) for (x, t) ∈ 	,

which implies that

�
+(x, t)−
−(x, t)� � Cd20 (x, t) for (x, t) ∈ 	(δ).

This quadratical vanishing property near the interface is very important.
Let
(x, t; τ)(τ ∈ [0, 1] be a geodesic on O−(n) connecting
−(x, t) and


+(x, t):


(x, t; 0) = 
−(x, t), 
(x, t; 1) = 
+(x, t),
�∂τ
(x, t; τ)� = const. for τ ∈ (0, 1).

Then we reparameterize the geodesic as


(z, x, t) = 
(x, t; η̄(z)), (3.14)

where η̄(z) is a monotonic increasing function which tends to 0 (or 1) expo-
nentially fast as z→−∞ (or+∞). In particular, we can choose η̄(z) = s(z).
Apparently, one has that for k � 0

�∂kz (
(z, x, t)−
±(x, t))� = O(e−α0|z|d20 (x, t)), as z→±∞, d0→ 0.
(3.15)
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We define

�(z, x, t) = 
(z, x, t)P0(z, x, t) with P0 = (I− 2s(z)n(x, t)n(x, t)).
(3.16)

Thus, one has

f (�) = ��T�−� = 4s(s − 1)(1− 2s)
(z, x, t)nn,

which gives

∂2z�− f (�) = ∂2z
(z, x, t)P0 + 2∂z
(z, x, t)∂zP0.

Moreover, the linearized operator around� can be written as

L�A = 
(z, x, t)LP0P + ∂2z
(z, x, t)P + 2∂z
(z, x, t)∂zP

for A = 
P.
Due to the construction of 
, ∂2z
(z, x, t), ∂z
(z, x, t) are of order

O(e−α0|z|d20 (x, t)). Therefore,� satisfies (3.4) up to some terms which decay
exponentially fast in z-variable and quadratically vanish on 	. More impor-
tantly, as
 ∈ O−(n) is invertible and LP0 is solvable (see Sect. 4 below), L�
is also solvable up to some small remainders. These crucial properties enable
us to modify the original equation and solve the expanding systems exactly.

The profile� defined in (3.16) is called a quasi-minimal connecting orbit,
and we will use it as the leading order approximation in the inner region.

4 Diagonalization of the linearized operator

To solve the linearized ODE system

LP0P := −∂2z P + P0PT0P + P0PTP0 + PPT0P0 − P = F.

with P0(z, x, t) = I − 2s(z)n(x, t)n(x, t) and n(x, t) ∈ Sn−1, we need to
make a diagonalization toLP0 . Here and in what follows, we simply writeLP0
as L when no ambiguity is caused.

123



26 M. Fei et al.

4.1 An orthogonal decomposition ofMn

For n = n(x, t) fixed, we introduce

V1 =
�
λnn

�� λ ∈ R�, V2 = �(nl+ ln)�� l · n = 0, l ∈ Rn�,
V3 =

�
(nl− ln)�� l · n = 0, l ∈ Rn�,

V4 = span
�
(lm−ml)�� l ·m = l · n = m · n = 0, l,m ∈ Rn�,

V5 = span
�
ll, (lm+ml)�� l ·m = l · n = m · n = 0, l,m ∈ Rn�,

(4.1)

all of which are dependent on n(x, t). Clearly,Mn = ⊕5i=1Vi ,An = V3⊕V4,
Sn = V1 ⊕ V2 ⊕ V5 and dim(V1, V2, V3, V4, V5) =

�
1, n − 1, n −

1, 12 (n − 1)(n − 2), 12n(n − 1)
�
. Moreover, if (A−,A+) is a minimal pair

with A− = A+(I− 2nn), then

A+Vi = A−Vi (i = 1, 4, 5), A+V2 = A−V3, A+V3 = A−V2.

Let Pi :Mn → Vi (1 � i � 5) be the projection operators. Then one has

P1A = nnAnn = nn(A : nn),
P2A = 1

2

�
nn(A+ AT)(I− nn)+ (I− nn)(A+ AT)nn�,

P3A = 1
2

�
nn(A− AT)(I− nn)+ (I− nn)(A− AT)nn�,

P4A = 1
2
(I− nn)�A− AT�(I− nn),

P5A = 1
2
(I− nn)�A+ AT�(I− nn).

(4.2)

One can directly check from (4.2) that

(I− 2nn)P2A =− P3
�
(I− 2nn)A�,

(I− 2nn)P3A =− P2
�
(I− 2nn)A�,

P4((I− 2nn)A) = (I− 2nn)P4A = P4A.
(4.3)

These projection operators play important roles throughout this paper. We
remark that for our later use, n and the corresponding decompositions (4.1)
may depend on (x, t).
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4.2 Diagonalization

Now we solve the ODE system

LP(z, x, t) = F(z, x, t). (4.4)

A crucial observation is that the system (4.4) can be diagonalized into several
scalar ODEs via the above orthogonal decomposition ofMn .
We denote

Ui (z) = PiP(z), Vi (z) = PiF(z) for 1 � i � 5.

From the fact

P0PT0 = PT0P0 = I− 4s(1− s)nn

and (4.2), we deduce that

P0PT0P + PPT0P0 = 2P − 4s(1− s)(nnP + Pnn)
= 2P − 8s(1− s)nn(P : nn)− 4s(1− s)
× ((I− nn)Pnn + nnP(I− nn))
= 2P − 8s(1− s)U1 − 4s(1− s)(U2 + U3),

P0PTP0 = (I− 2snn)PT(I− 2snn)
= PT + 4s2U1 − 4sU1 − 2s(U2 − U3).

Using the fact that UTi = Ui (i = 1, 2, 5) and UTj = −U j ( j = 3, 4), we find

PiLP = LiPiP for 1 � i � 5,

where

Li u =− ∂2z u + κi (s)u,
with κ1(s) = 2(1− 6s + 6s2), κ2(s) = 2(1− s)(1− 2s),

κ3(s) = 2s(2s − 1), κ4(s) = 0, κ5(s) = 2.
(4.5)

Thus the system (4.4) can be reduced to

LiUi = Vi for 1 � i � 5. (4.6)
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Let

θ1(z) = s�(z) =
√
2s(1− s), θ2(z) = s(z),

θ3(z) = 1− s(z), θ4(z) ≡ 1. (4.7)

Then from (3.12), it is easy to see that

κi (s(z)) = θ
��
i (z)

θi (z)
, 1 � i � 4.

Thus, we obtain for 1 � i � 4 that:

Li u = − 1
θi
∂z

�
θ2i ∂z

� u
θi

��
.

It is direct to check that for a bounded function u ∈ C2(R), Li u = 0 if and
only if u = λθi . Thus, if we define

Null L = span�θi (z)Ei (1 � i � 4) : for ∀ constant Ei ∈ Vi�,
then for a bounded C2 function �, L� = 0 if and only if � ∈ Null L.
Let α0 ∈ (0,

√
2]. Define the spaces:

SJ (α0, k) =
�
f ∈ C J (R) : f ± = lim

z→±∞ f (z) exist,

and for ∀ j ∈ [0, J ], |∂ jz ( f (z)− f ±)| � |z|ke−α0|z|, as z→±∞�.
SJ,L ,M(α0, k) =

�
f (·, x, t) ∈ SJ (α0, k) : for ∀ ( j, l,m) ∈ [0, J ]

×[0, L]×[0,M],��∂ jz ∂ lx∂mt � f (z, x, t)− f ±(x, t)
��� � |z|ke−α0|z|, as z→±∞�.

Lemma 4.1 Assume F(z, x, t) ∈ SJ,L ,M(α0, k) with
(B2) : P2F+(x, t) = 0; (B3) : P3F−(x, t) = 0; (B4) : P4F±(x, t) = 0,
and orthogonal conditions:

(Oi) :
�
R

θi (z)F(z) : Eidz = 0, ∀ constant Ei ∈ Vi , 1 � i � 4.

Then for (4.4), there exists a unique bounded solution P∗(z, x, t) ∈
SJ+2,L ,M(α0, k + 1) satisfying ∂zP∗(0, x, t) : (nn)(x, t) = 0 and
(S2) : P2P∗+(x, t) = 0, (S3) : P3P∗−(x, t) = 0, (S4) : P4P∗±(x, t) = 0.
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In addition, all bounded solutions to (4.4) satisfying ∂zP(0, x, t) : (nn)(x, t) =
0 are given by

P(z, x, t) = s(z)Q2(x, t)+ (1− s(z))Q3(x, t)+Q4(x, t)+ P∗(z, x, t),
(4.8)

with (Q2,Q3,Q4) ∈ V2 × V3 × V4.
Remark 4.2 Conditions (B2)-(B4) ensure that the integrals in (O1)-(O4) are
finite.

Remark 4.3 One can see that P∗(z, x, t) shares the same regularity in (x, t)
with F(z, x, t).

Proof The results can be deduced from Lemma A.2. ��

4.3 Cubic-null cancellation

For A1,A2,A3 ∈Mn , we define the trilinear form

T f (A1,A2,A3) =
�

{i, j,k}={1,2,3}
AiATjAk . (4.9)

Then T f (A1,A2,A3) : A4 keeps the same if we exchange any Ai and A j
(1 � i, j � 4). The following cancellation relation plays an important role in
closing the expansion system of each order.

Lemma 4.4 For Q1,Q2,Q3 ∈ Null L, we have
�
R

T f (P0,Q1,Q2) : Q3dz = 0,

where the integral is understood as limR→+∞
� R
−R(·)dz if necessary.

Proof For the convenience, the left hand side is denoted by I(P0,Q1,Q2,Q3).
It suffices to prove the case of Q2 = Q3 = B, since we have by (1.19) that

2I(P0,Q1,Q2,Q3) = I(P0,Q1,Q2 +Q3,Q2 +Q3)
− I(P0,Q1,Q2,Q2)− I(P0,Q1,Q3,Q3).

Assuming B(z) = �4
i=1 Bi (z) with Bi (z) ∈ Vi . When Q1 = λs�nn, we

have

123



30 M. Fei et al.

I(P0,Q1,B,B)

= 2λ
�
R

s�
�
(1− 2s)(|Bn|2 + |nB|2)+ |B2 : nn|2 − 2s|B : nn|2

�
dz.

It is easy to check that (BiB j ) : nn = 0 for different i, j , andB4n = nB4 = 0.
Thus,

I(P0,Q1,B,B)

=2λ
3�
i=1

�
R

s�
�
(1− 2s)�|Bin|2+|nBi |2�+|B2i : nn|2 − 2s|Bi : nn|2

�
dz

=
3�
i=1
I(P0,Q1,Bi ,Bi ).

For B2 = s(nl+ ln) with l⊥n, we have

I(P0,Q1,B2,B2) = λ
�
R

�
4s�(1− 2s)s2 + 2s�s2

�
|l|2dz

= λ
�
R

(s3(1− s))�|l|2dz = 0.

Similarly, we can prove that I(P0,Q1,B3,B3) = 0 for B3 = (1− s)(nl− ln)
with l⊥n. For B1 = μs�nn, we have

I(P0,Q1,B1,B1) = λμ2
�
R

6(s�)3(1− 2s)dz = 0.

Therefore, I(P0,Q1,B,B) = 0 for Q1 = λs�nn and B ∈ Null L.
For Q1 = sE2 + (1− s)E3 + E4 with Ei ∈ Vi , by direct calculations (see

Lemma A.3), we get

I(P0,Q1,B,B)

=
�
R

�
2sE2 :

�
(2s − 1)(B3B4 + B4B3)+ (3− 4s)(B1B2 + B2B1)

�

+ 2(1− s)E3 :
�
(1− 4s)(B1B3 + B3B1)+ (1− 2s)(B2B4 + B4B2)

�
+ 2(1− 2s)E4 : (B2B3 + B3B2)

�
dz.
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By taking Bi (z) = λiθi (z)Ẽi with Ẽi ∈ Vi , we can show that all the integrals
vanish due to the following fact:

�
R

s(2s − 1)(1− s)dz =
�
R

2s2(3− 4s)s�dz

=
�
R

2(1− s)2(1− 4s)s�dz = 0.

The proof is completed. ��

5 Inner expansion

5.1 Formal inner expansion

Formally, we write the inner expansion as

AεI (z, x, t) = 
(z, x, t)Pε(z, x, t)
= 
(z, x, t)�P0 + εP1 + ε2P2 + · · · �(z, x, t),

whereP0(z, x, t) = I−2s(z)n(x, t)n(x, t) and
 is givenby (3.14).We should
keep in mind that Pk has to satisfy the matching conditions for (x, t) ∈ 	(δ):


±Pk(±∞, x, t) = A(k)± , or equivalently Pk(±∞, x, t) = P±0 U(k)± .
(5.1)

Let 
Pε(x, t) = Pε(dε/ε, x, t), 

(x, t) = 
(dε/ε, x, t) and 
AεI = 
Pε

.
Then we have

∂t
AεI −�
AεI + ε−2 f (
AεI ) = 

(∂t
Pε −�
Pε + ε−2 f (
Pε))
+ (∂t −�)


Pε − 2∇

∇
Pε.

To ensure 
AεI solves (1.3) in 	(δ), one has that
�
ε−2
�− ∂2z Pε + f (Pε)−
T∂2z
Pε − 2
T∂z
∂zPε

�
+ε−1�(∂t dε −�dε)(∂zPε +
T∂z
)− 2
T∇dε∇∂z(
Pε)�
+
T(∂t −�)(
Pε)

����
z=dε/ε = 0. (5.2)

As in [2], we will regard z as an independent variable and (x, t) ∈ 	(δ) as
parameters. Then we will solve a series of ODE systems with respect to z for
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Pk(z, x, t) (k = 0, 1, 2, · · · ). Note that we can add any terms vanishing on
{dε = εz} on the left hand side, which does not change the equation (5.2).
Let 
Gε(z, x, t) andH±,ε(x, t) be matrix-valued functions to be determined

later. We choose a fixed smooth and nonnegative function η(z) satisfying:
η(z) = 0 if z � −1, η(z) = 1 if z � 1, η�(z) � 0. Let

a0 =
�
R

(s�)2dz, ai =
�
R

η�θidz (1 � i � 3). (5.3)

Consider the following modified system

ε−2
�
− ∂2z Pε + f (Pε)−
T∂2z
Pε − 2
T∂z
∂zPε + (dε − εz)
Gε

�

+ε−1
�
(∂t d

ε −�dε)(∂zPε +
T∂z
)− 2
T
�∇dε∇∂z(
Pε))

�

+
T(∂t −�)(
Pε)+H+,ε(x, t)η+M(z)+H−,ε(x, t)η−M(z) = 0 (5.4)

for any (z, x, t) ∈ R × 	(δ). Following the idea in [2], we choose η±M(z) =
η(−M ± z) with

M = �d1�C0(	t ) + 2.

Then one has η(−M ± dε(x, t)/ε) = 0 for (x, t) ∈ 	(δ) ∩ Q∓. H±,ε(x, t)
will be chosen as in (5.11) with (5.19) and (5.20), which implyH±,ε(x, t) = 0
for (x, t) ∈ 	(δ) ∩ Q±. Thus, one has

H+,ε(x, t)η+M(z)+H−,ε(x, t)η−M(z)
���
z=dε(x,t)/ε=0, for any (x, t) ∈ 	(δ).

As a result, all the modified terms vanish on {dε = εz}, and will not change
the system (5.2).
From the definition of 
, we can deduce that ∂z(
T∂ν
) = 0 on 	, which

gives


T∂ν
 = 
T−∂ν
− �W ∈ V4 on 	. (5.5)

Indeed, as 
+ − 
− = O(d20 ), we have ∂z
 = O(d20 ) and ∂z(

T∂ν
) =


T∂z∂ν
 = ∂ν(
T∂z
) = 0 on 	. See Appendix A.1 for the proof ofW ∈
V4.
Moreover, since it holds
T∂2z
 = 0 and
T∂z
 = 0 on 	, we can assume

that


T∂2z
 = d0(x, t)
1(z, x, t), 2
T∂z
 = d0(x, t)
2(z, x, t), (5.6)
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where on 	 the definitions are interpreted as


1(z, x, t) = lim
d0→0

d−10 

T∂2z
 = ∂ν(
T∂2z
),


2(z, x, t) = lim
d0→0

2d−10 

T∂z
 = 2∂ν(
T∂z
).

It is direct to check that


1(z, x, t), 
2(z, x, t) = O(e−α0|z|)d0(x, t). (5.7)

Before going to the next steps, let us recall from (3.15) and (5.7) that

∂z
 = O(d20 ), 
1, 
2, ∇d0 · ∇∂z
, ∇d0 · ∇n = O(d0)
for (x, t) ∈ 	(δ), (5.8)

which will be repeatedly used in the sequel.
Now we take


Gε(z, x, t) = (
1Pε +
2∂zPε)+Gε(z, x, t), (5.9)

with G(z, x, t) =
�
k�1
εk
�
Gk(x, t)η�(z)+ Lk(x, t)η��(z)

�
, (5.10)

H±,ε(x, t) =
�
k�0
εkH±k (x, t). (5.11)

At each (x, t) ∈ 	(δ), we will choose
Gk(x, t) ∈ V1 ⊕ V2 ⊕ V3 ⊕ V4, Lk(x, t) ∈ V4,
H+k ∈ V2 ⊕ V4, H−k ∈ V3 ⊕ V4,

which will be precisely defined later.

Remark 5.1 The role of (
1Pε+
2∂zPε) in
Gε is to leave the small error terms
into the next orders. Otherwise, the obtainedODE systems are too complicated
to solve. The term Gk is used to ensure the orthogonal conditions (O1)-(O4)
of Fk on 	(δ) \ 	, while H±k is used to ensure the boundary conditions (B2)-
(B4), and Lk is introduced to characterize the variation of “normal derivative”
of P4Pk .
Nowwe substitute the expansion into (5.4) and collect the terms of the same

order.

• The O(ε−2) system takes the form
−∂2z P0 + P0PT0P0 − P0 = 0, (5.12)
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which is satisfied by

P0(z, x, t) = I− 2s(z)n(x, t)n(x, t). (5.13)

• The O(ε−1) system reads as

− ∂2z P1 + P0PT0P1 + P0PT1P0 + P1PT0P0 − P1
= −(∂t d0 −�d0)(
T∂z
P0 + ∂zP0)
+ 2
T∇d0 · ∇x∂z(
P0)
− (
1P0 +
2∂zP0)(d1 − z)+G1η�d0 + L1η��d0

� F1 +G1η�d0 + L1η��d0. (5.14)

• The O(εk−2) (k � 2) system takes the form

− ∂2z Pk + P0PT0Pk + P0PTkP0 + PkPT0P0 − Pk
= −(∂t d0 −�d0)(
T∂z
Pk−1 + ∂zPk−1)+ 2
T∇d0 · ∇x∂z(
Pk−1)
− (∂t dk−1 −�dk−1)(
T∂z
P0 + ∂zP0)+ 2
T∇dk−1 · ∇x∂z(
P0)
−

�
i + j = k − 1
1 � i, j � k − 2

(∂t di −�di )(
T∂z
P j + ∂zP j )

+ 2
T
�

i + j = k − 1
1 � i, j � k − 2

∇di · ∇x∂z(
P j )

−
T(∂t −�)(
Pk−2)−
�

i + j + l = k
0 � i, j, l � k − 1

PiPTjPl +H+k−2η+M +H−k−2η−M

−
�

i + j = k
1 � i, j � k − 1

(
1Pi +
2∂zPi )(d j − δ1j z)+ (
1P0 +
2∂zP0)dk

+ (G1η� + L1η��)dk−1 +
�

i + j = k
2 � i, j � k − 2

(Giη� + Liη��)(d j − δ1j z)

+ (Gkη� + Lkη��)d0
� Fk + (Gkη� + Lkη��)d0. (5.15)

123



Matrix-valued Allen–Cahn equation… 35

5.2 Determination of H±k and Gk

The equation (5.14) – (5.15) can be written as

L(Pk + Lkd0η) = Fk +Gkη�d0. (5.16)

Now we determineH±k andGk in order to ensure that the system for the inner
expansion is solvable. Let P±k (x, t) = Pk(±∞, x, t). Firstly, we choose

H+k−2 = −(P2 + P4)
�

T+(∂t −�)(
+P+k−2)+

�
i+ j+l=k
0�i, j,l�k−1

P+i (P
+
j )
TP+l

�
,

(5.17)

H−k−2 = −(P3 + P4)
�

T−(∂t −�)(
−P−k−2)+

�
i+ j+l=k
0�i, j,l�k−1

P−i (P
−
j )
TP−l

�
,

(5.18)

for all k � 2. Thus, we have

P2 lim
z→+∞Fk = P3 lim

z→−∞Fk = P4 lim
z→±∞Fk = 0,

which are necessary for solvability of Pk ; see (B2)-(B4) in Lemma 4.1.
From (5.1), one has
+P+k = A(k)+ = A+U(k)+ and
T+A+ = I−2nn. Thus,

we get

H+k−2 =− (P2 + P4)
�
(I− 2nn)

�
AT+(∂t −�)(A+U(k−2)+ )

+
�

i + j + l = k
0 � i, j, l � k − 1

U(i)+ (U
( j)
+ )TU

(l)
+
��

= (I− 2nn)(P3 + P4)
�
J+U(k−2)+ + B(k−1)+ + C(k−2)+

�

= 0, for x ∈ Q+ ∩ 	(δ). (5.19)

Similarly, one has

H−k−2 = 0, for x ∈ Q− ∩ 	(δ). (5.20)

In particular, we have

H±k−2 = 0 on 	t , for k � 2. (5.21)
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From (5.14)–(5.15), we know that

Fk =
Fk(
, {di ,Pi ,Gi ,Li : i � k − 1})+ (
1P0 +
2∂zP0)dk, (5.22)

where
Fk is an explicitly given function, and the last term vanishes on 	.
Once we have determined Fk on 	(δ) by (5.22) with Fk |	 satisfying (O1)-

(O4), Gk can be uniquely defined as

Gk =
�−d−10

�
R

��3
i=1 a

−1
i θiPi + P4

�
Fkdz, (x, t) ∈ 	(δ) \ 	,

−∂ν
�
R

��3
i=1 a

−1
i θiPi + P4

�
Fkdz, (x, t) ∈ 	.

(5.23)

Here ai (i = 1, 2, 3) are constants defined in (5.3). One can directly check that
Fk +Gkη�d0 satisfies (B2)–(B4) and (O1)–(O4) in 	(δ). Moreover, we have
Lemma 5.2 (Gk : nn)|	t is independent of dk.
Proof From (5.22) and (5.23), it suffices to prove that

lim
d0→0

d−10 (
1P0 +
2∂zP0) : nn = 0. (5.24)

We recall the definition (5.6) for 
1 and 
2. Obviously, 
T∂z
 is antisym-
metric in 	(δ), and then so do 
2 and limd0→0 d−10 
2. Therefore,


2∂zP0 : nn = −2s�
2 : nn = 0 in 	(δ).

Moreover, we have


T∂2z
 = ∂z(
T∂z
)− ∂z
T∂z
.

The first term is antisymmetric, and the second term is of order O(d40 ). This
proves (5.24). ��
We can also obtain the explicit expression for Gk : nn on 	 from (5.23):

Gk : nn =− a−11 ∂ν
�
R

s�
Fk : nndz, (5.25)

which only depends on
 and {di ,Pi ,Gi ,Li : i � k − 1}. In particular, (G1 :
nn)|	t only relies on 
, d0,P0. We will use these facts for the derivation of
the equations of d1 and dk(k � 2).
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6 Solving the systems for outer/inner expansion

In this section, we first solve the systems for the outer/inner expansions, and
then construct the approximate solutions by the gluing method.
Recall that Pk for k � 1 solves

L(Pk + Lkd0η) = Fk +Gkη�d0, (6.1)

together with the boundary condition

Pk(±∞, x, t) = P±0 U(k)± . (6.2)

By Lemma 4.1, the solution Pk of (6.1) can be written as

Pk = s(z)Pk,2(x, t)+ (1− s(z))Pk,3(x, t)+ Pk,4(x, t)
− Lk(x, t)d0(x, t)η(z)+ P∗k (z, x, t), (6.3)

where Pk,i (x, t) ∈ Vi and P∗k (z, x, t) is uniquely solved by

LP∗k (z, x, t) = Fk +Gkη�d0,
P2P∗k (+∞, x, t) = P3P∗k (−∞, x, t) = P4P∗k (−∞, x, t) = 0.

(6.4)

Due to the matching condition (6.2), one has for (x, t) ∈ 	(δ) that

P4Pk(−∞, x, t) = Pk,4(x, t)
= P4

�
Pk(+∞, x, t)− P∗k (+∞, x, t)

�
+ Lkd0, (6.5)

and

Pk,2(x, t) = P2Pk(+∞, x, t) = P2(I− 2nn)U(k)+
= −(I− 2nn)P3U(k)+ = −(I− 2nn)P3V(k)+ , (6.6)

Pk,3(x, t) = P3Pk(−∞, x, t) = P3U(k)− = P3V(k)− . (6.7)

Here we have used the relation P2
�
(I − 2nn)A� = −(I − 2nn)P3A in (4.3).

Moreover, by (6.2):

P4Pk(−∞, x, t) = P4U(k)− = P4V(k)− ,
P4Pk(+∞, x, t) = P4

�
(I− 2nn)U(k)+

�
= P4U(k)+ = P4V(k)+ .
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We then infer from (6.5) that

P4V(k)− = P4
�
V(k)+ (x, t)− P∗k (+∞, x, t)

�
, for (x, t) ∈ 	, (6.8)

∂νP4V(k)− = ∂νP4
�
V(k)+ (x, t)− P∗k (+∞, x, t)

�
+ Lk, for (x, t) ∈ 	.

(6.9)

This gives two boundary conditions on 	 forV(k)− andV(k)+ . The determination
of Lk and other boundary conditions for V

(k)
− and V(k)+ will be derived from

conditions (O2)–(O4) for Fk+1, which will be explained in Sect. 6.3.3.

6.1 Solving the equation of P1

Since ∂z
, ∂zP0,
1,
2, η�, η�� ∈ SJ,L ,M(α0, 0), one hasF1 ∈ SJ,L ,M(α0, 1)
and the boundary condition (B2)-(B4) for F1 are automatically satisfied.
Firstly, one has ∂z
, 
1, 
2, ∂ν∂z
, ∂νn = 0 on 	. In addition, it holds

that

2
T∇d0 · ∇x∂z(
P0) = 2
T∂ν
∂zP0 = −4s�Wnn = 0,

asW ∈ V4. Thus, we get

F1 = −(∂t d0 −�d0)∂zP0 on 	. (6.10)

Therefore, the orthogonal condition (O1) for F1 on 	 is equivalent to

a0(∂t d0 −�d0) = 0, (6.11)

which means that 	t evolves according to the mean curvature flow. This in
turn gives that F1 = 0 on 	. Then the orthogonal conditions (O2)–(O4) for F1
on 	 are automatically satisfied.
Now we have F1 = 0 on 	. So we can define F1 and G1 in 	(δ) by (5.14)

and (5.23) respectively. Note that d1 has not been determined yet. However,
a remarkable consequence of Lemma 5.2 is that, as we will see in (6.17), d1
satisfies an equation, which only depends on the zeroth order terms (
, d0,n).
Therefore, from Lemma 4.1, we can write

P1 = s(z)P1,2(x, t)+ (1− s(z))P1,3(x, t)
+ P1,4(x, t)− L1(x, t)d0(x, t)η(z)+ P∗1(z, x, t), (6.12)
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with P∗1(z, x, t) uniquely determined by (6.4). Note that P∗1(z, x, t) depends
only on the zeroth order terms (
, d0,n). Moreover,as F1|	 = 0, one has
P∗1|	 = 0 and hence P1|	 ∈ Null L.

6.2 Solving the equation of P2

Again, we yield from (5.8) and (5.21) that on 	,

F2 = 2
T∇d0 · ∇x∂z(
P1)− (∂t d1 −�d1)∂zP0 + 2
T∇d1 · ∇x∂z(
P0)
−
T(∂t −�x )(
P0)− (P0PT1P1 + P1PT0P1 + P1PT1P0)
+ (G1η� + L1η��)(d1 − z). (6.13)

We can directly check that the right hand side exponentially tends to its values
at ±∞.

6.2.1 The equation of d1

The orthogonal condition (O1) on 	 gives us that

0 =
�
R

F2 : ∂zP0dz.

The above equation gives an evolution equation for d1 on 	. Surprisingly, it is
independent of the choice of P1. As we mentioned above, this in turn gives a
closed solution (5.23) (k = 1) for G1.
Firstly, due to (5.8), we have ∂z
 = 0, ∂ν∂z
 = 0 on 	, and thus

2
T∇d0 · ∇x∂z(
P1) = 2
T∂ν
∂zP1 + 2∂z(∂νP1).

Again, as 
T∂ν
 =W ∈ V4, one has 
T∂ν
∂zP1 : ∂zP0 = 0. From (6.12),
one has ∂z∂νP1 : nn = 0 and thus ∂z(∂νP1) : ∂zP0 = 0. Therefore, we obtain

2
T∇d0 · ∇x∂z(
P1) : ∂zP0 = 0. (6.14)

As P1|	 ∈ Null L, thus by Lemma 4.4 we have on 	 that
�
R

(P0PT1P1 + P1PT0P1 + P1PT1P0) : ∂zP0dz = 0. (6.15)

Since ∂z
vanishes on	 quadratically ind0 and
T∇d1·∇x
 is antisymmetric,
we have
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2
T∇d1 · ∇x∂z(
P0) = 2
T∇d1 · ∇x
∂zP0 + 2∇d1 · ∇x∂zP0
= 2s�
T∇d1 · ∇x
nn + 2s�∇d1 · ∇x (nn) (6.16)

which is orthogonal to nn. Therefore, combining the above conclusions we
obtain that

4a0(∂t d1 −�d1)−
�
R

(d1 − z)s�G1 : nndz = F(
, d0,n) on 	, (6.17)

which is linear due to (5.25) with k = 1. Then we can extend d1 from 	 to
	(δ) uniquely by ∇d0 · ∇d1 = 0.

6.2.2 Determining F1,G1,P∗1 in 	(δ)

After d1 is determined in 	(δ), we define F1,G1 in 	(δ) as in (5.14) and
(5.23). Then P∗1 can be determined from (6.4).

6.2.3 The equations for P1,i (2 � i � 4),L1 on 	

The conditions (O2)–(O4) for F2|	 give us that
�
R

�
2
T∂ν
∂zP1 + 2∂z(∂νP1)−
T(∂t −�x )(
P0)

+ (G1η� + L1η��)(d1 − z)
�
: Qdz = 0, (6.18)

forQ(z, x, t) = sE2, (1− s)E3,E4 with E j ∈ V j ( j = 2, 3, 4). Here we have
used the fact that P1|	t ∈ Null L and the cubic cancellation relation Lemma
4.4.
By (5.5), 
T∂ν
 is independent of z on 	. Thus, we have

�
R

2
T∂ν
∂zP1 : E4dz = 2
T∂ν

�
R

∂zP1 : E4dz = 0 on 	. (6.19)

Noting that ∂νn = 0 on 	, we have ∂νP1,2(x, t), ∂νP1,3(x, t)⊥E4. Thus
�
R

�
2∂z(∂νP1)+ L1η��(d1 − z)

�
: E4dz

=
�
R

�
L1η��(d1 − z)− 2L1η�

�
: E4dz = −L1 : E4. (6.20)
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Therefore, (6.18) with Q(z, x, t) = E4 gives us that

L1 = −
�
R

P4
�

T(∂t −�x )(
P0)−G1η�(d1 − z)

�
dz. (6.21)

Recalling (2.12),weget limz→±∞
T(∂t−�x )(
P0) = AT−(∂t−�x )A±⊥V4,
which gives

P4
�

T(∂t −�x )(
P0)

�
→ 0 (exponentially), as z→±∞. (6.22)

Thus, the integral in right side of (6.21) is well defined.
Since

∂z∂νP1 : sE2 = s�∂νP1,2 : sE2, 
T∂ν
P1,2 : E2 = 0,

we have

0 =
�
R

�
2
T∂ν
∂zP1 + 2∂z(∂νP1)−
T(∂t −�x )(
P0)

+ (G1η� + L1η��)(d1 − z)
�
: sE2dz

=
�
R

�
−WP1,3(s2)� + (s2)�∂νP1,2 − s
T(∂t −�x )(
P0)

+G1η�(d1 − z)s
�
: E2dz,

which gives

∂νP1,2 − P2(WP1,3)
+
�
R

sP2
�
−
T(∂t −�x )(
P0)+G1η�(d1 − z)

�
dz = 0. (6.23)

Similarly, we have on 	 that

∂νP1,3 − P3(WP1,2)
+
�
R

(1− s)P3
�
−
T(∂t −�x )(
P0)+G1η�(d1 − z)

�
dz = 0.

(6.24)

Similar to (6.22), we have
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P2
�

T(∂t −�x )(
P0)

�
→ 0 (exponentially), as z→∞,

P3
�

T(∂t −�x )(
P0)

�
→ 0 (exponentially), as z→−∞,

which imply that the integrals in right side of (6.23) and (6.24) arewell defined.

6.2.4 Solving V(1)± in Q±

Using [∂ν, I − 2nn] = 0, the equations (6.6)–(6.9), (6.21), (6.23)–(6.24)
together shows that for (x, t) ∈ 	

P4V(1)− = P4V(1)+ ,
∂ν(P4V(1)− ) = ∂νP4V(1)+ + L1,

∂ν(P3V(1)+ )− P3
�
WP3V(1)−

� = (I− 2nn)
�
R

sP2
�
−
T(∂t −�x )(
P0)

+G1η�(d1 − z)
�
dz,

∂ν(P3V(1)− )+ P3
�
WP3V(1)+

� =
�
R

(1− s)P3
�

T(∂t −�x )(
P0)

−G1η�(d1 − z)
�
dz, (6.25)

which provide boundary conditions for V(1)+ and V(1)− on 	. As V(1)± = (P3 +
P4)V(1)± ∈ An , these conditions are complete. So V(1)+ |Q+ and V(1)− |Q− can be
solved from a linear parabolic system.

6.2.5 Determining P1 in 	(δ)

We extend V(1)+ and V(1)− to be smooth antisymmetric matrix-valued functions
on 	(δ), and let

P1,2(x, t) = −(I− 2nn)P3V(1)+ , (6.26)

P1,3(x, t) = P3V(1)− , (6.27)

L1(x, t) = d−10 P4
�
V(1)− − V(1)+ + P∗1(+∞, x, t)

�
, (6.28)

P1,4(x, t) = P4V(1)− = P4
�
V(1)+ − P∗1(+∞, x, t)

�+ L1d0. (6.29)

In addition, we define P1(z, x, t) as in (6.12). Then it satisfies the matching
conditions (5.1).

123



Matrix-valued Allen–Cahn equation… 43

6.2.6 Determining F2,G2,P∗2 in 	(δ)

F2 is determined by (5.22) with k = 2, and G2 is determined by (5.23) which
is derived from the orthogonal condition (O1)-(O4) for F2. Thus, we can solve
P∗2(z, x, t) from (6.4) and write P2(z, x, t) as in (6.3) with k = 2. We remark
that P∗2(z, x, t) depends only on (
, d0,n,P1, d1).

6.3 Solving the equation of Pk (k � 3)

Repeating the above procedure, we can solve (Pk, dk) step by step. Assume
that in 	(δ)

{di , Pi , Li , Gi |0 � i � k − 1},
has been known. Then we solve dk,Pk,Lk,Gk in 	(δ).
Firstly, we obtain Fk |	 and P∗k |	 from (5.22) and (6.4) respectively. One

can also determine (Gk : nn)|	t from (5.25). Note that all these terms are
independent of dk .
On 	, from (5.15), we can write

Fk+1=−(∂t dk−�dk)∂zP0+2
T∇d0 · ∇x∂z(
Pk)+2
T∇dk · ∇x∂z(
P0)
+

�
i+ j=k

1�i, j�k−1

�
− (∂t di −�di )∂zP j + 2
T∇di · ∇x∂z(
P j )

�

−
�

i+ j+l=k+1
0�i, j,l�k

PiPTj Pl −
T(∂t −�)(
Pk−1)+ (G1η� + L1η��)dk

+ (Gkη� + Lkη��)(d1 − z)+
k−1�
i=2
(Giη� + Liη��)dk+1−i .

6.3.1 The equation for dk

We use the condition (O1) for Fk+1|	 . Let P�k = Pk − P∗k . Similar to the
derivation of (6.14), we can obtain

2
T∇d0 · ∇x∂z(
P�k ) : ∂zP0 = 0.
Moreover, similar to (6.15) and (6.16), we can obtain

�
R

T f (P0,P1,P�k ) : ∂zP0dz = 0,
2
T∇dk · ∇x∂z(
P0) : nn
= 2s��
T∇dk · ∇x
nn + ∇dk · ∇x (nn)� : nn = 0. (6.30)
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Therefore, the equation for dk on 	 reads as

4a0(∂t dk −�dk)+ dk
�
R

G1 : nnη�s�dz =
�
R

�
2
T∇d0 · ∇x∂z(
P∗k )

−
�
i+ j=k

1�i, j�k−1

�
(∂t di−�di )∂zP j+2
T∇di · ∇x∂z(
P j )

�
−

�
i+ j+l=k+1
0�i, j,l�k

PiPTj Pl

−
T(∂t −�)(
Pk−1)+Gkη�(d1 − z)+
k−1�
i=2
s�Giη�dk+1−i

�
: nns�dz.

(6.31)

Note that, from (6.30), the right hand side is independent of Pk , and from
Lemma 5.2 or (5.25), it is also independent of dk .
After dk |	 is determined, dk can be extended to 	(δ) by the ODE (cf. (3.3))

2∇d0 · ∇dk +
k−1�
i=1
∇di · ∇dk−i = 0. (6.32)

6.3.2 Determining Fk,Gk,P∗k in 	(δ)

Fk , Gk and P∗k in 	(δ) can be determined by (5.22), (5.23) and (6.4) accord-
ingly.

6.3.3 The equation for Pk,i (2 � i � 4),Lk on 	

We use the condition (O2)–(O4) for Fk+1 on 	. For Q(z, x, t) = sE2, (1 −
s)E3,E4 with Ei ∈ Vi , we have
�
R

�
2
T∂ν
∂zP�k + 2∂z(∂νP�k )+ Lkη��(d1 − z)

�
: Qdz

+
�
R

� �
i+ j=k,
i�1

�
− (∂t di −�di )∂zP j + 2
T∇di · ∇x∂z(
P j )

�

−
�

i+ j+l=k+1
0�i, j,l�k

PiPTj Pl + 2
T∇d0 · ∇x∂z(
P∗k )−
T(∂t −�)(
Pk−1)

+(G1η� + L1η��)dk+Gkη�(d1−z)+
k−1�
i=2
(Giη�+Liη��)dk+1−i

�
: Qdz=0.
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We denote the last three lines by
�
R
Tk(z, x, t) : Q(z, x, t)dz, in which all

terms are known functions due to
�
R
T f (P0,P1,P�k ) : Qdz = 0.

Taking Q = E4 and using the same argument as that in (6.19)–(6.20), one
has�

R

�
2
T∂ν
∂zP�k + 2∂z(∂νP�k )+ Lkη��(d1 − z)

�
: E4dz = −Lk : E4.

Thus, we get

∂νP4P+k − ∂νP4P−k = −Lk = P4
�
R

Tk(z, x, t)dz. (6.33)

Similarly, we have

∂νPk,2 − P2(W̄Pk,3)+ P2
�
R

s(z)Tk(z, x, t)dz = 0, (6.34)

∂νPk,3 − P3(W̄Pk,2)+ P3
�
R

(1− s(z))Tk(z, x, t)dz = 0. (6.35)

6.3.4 Solving V(k)+ and V(k)− in Q±

The equations (6.8)–(6.9), (6.33)–(6.35) together give that

P4V(k)+ − P4V(k)− = P4P∗k (+∞, x, t),
∂ν(P4V(k)+ )− ∂ν(P4V(k)− ) = P4

�
R

Tk(z, x, t)dz,

∂ν(P3V(k)+ )− P3
�
W̄P3V(k)−

�
= (I− 2nn)

�
R

sP2Tk(z, x, t)dz,

∂ν(P3V(k)− )+ P3
�
W̄P3V(k)+

�
= −

�
R

(1− s)P3Tk(z, x, t)dz,

(6.36)

which offer complete boundary conditions for V(k)+ and V(k)− on 	. Thus com-

bining (2.18) we can solve V(k)+ |Q+ and V(k)− |Q− .
6.3.5 Determining Pk in 	(δ)

Afterwards, as in Sect. 6.2.5, we extend V(k)+ and V(k)− to be smooth antisym-
metric matrix-valued functions in 	(δ), and let

Pk,2(x, t) = −(I− 2nn)P3V(k)+ , (6.37)

Pk,3(x, t) = P3V(k)− , (6.38)

Lk(x, t) = d−10 (P4V(k)− − P4V(k)+ ), (6.39)
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Fig. 1 The whole procedure to solve the outer and inner expansion systems

Pk,4(x, t) = P4V(k)− = P4
�
V(k)+ − P∗k (+∞, x, t)

�
+ Lkd0. (6.40)

Moreover, now we can define Pk(z, x, t) as in (6.12) and the matching condi-
tions (5.1) are satisfied.
As a result, we have solved dk,Pk,Lk,Gk in 	(δ). Therefore, by repeating

the above steps, the expansion system can be solved from an induction argu-
ment. Note that, in each step, we only need to solve a linear system whose
well-posedness can be shown directly. The whole procedure is illustrated in
Fig. 1.

Remark 6.1 The minimal paired condition (1.6c) and Lemma 3.7 give us
that there exists a smooth map N(x, t) : 	 → {nn : n ∈ Sn−1} such that
A−(x, t) = A+(x, t)(I − 2N(x, t)) for all (x, t) ∈ 	. For given (x0, t0) ∈ 	
and any neighbourhood U ⊂ 	 of (x0, t0), there exists a smooth vector field
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n(x, t) : U → Sn−1 such that N(x, t) = (nn)(x, t). We have assumed that
such a lifting map, which keeps the regularity, exists globally in 	. This
assumption is made just for simplicity and clarity of presentations, as our
previous analysis does not rely on the particular choice of n or−n. For exam-
ple, the condition ∂νn = 0 can be replaced by ∂νN = 0, which will not cause
any obstacles in our arguments, and the decomposition and projections in (4.1)
and (4.2) indeed depend only on N = nn.

6.4 Gluing the two expansions and the proof of Theorem 1.1

Now we glue the outer expansion and inner expansion to obtain the approxi-
mate solutions in the whole region �. Let

AKO(x, t) =
K�
k=0
εk
�
A(k)+ χQ+ + A(k)− χQ−

�
for (x, t) ∈ Q±.

Then it holds that for (x, t) ∈ Q±,

(∂t −�)AKO − ε−2 f (AKO)

=
K−2�
k=0

εk
�
(∂t −�)A(k)± −

�
i+ j+l=k+2

A(i)± (A
( j)
± )TA

(l)
±
�
+ O(εK−1)

= O(εK−1).

For (x, t) ∈ 	(δ), we define:

dK (x, t) =
K�
k=0
εkdk(x, t),

AKI (x, t) = 
(ε−1dK , x, t)
K�
k=0
εkPk(ε−1dK , x, t),

GK =
K�
k=1
εkGk(x, t), LK =

K�
k=1
εkLk(x, t), H±,K =

K−2�
k=0

εkH±k (x, t),

with dk,
,Pk,Gk,Lk,H
±
k defined in Sects. 5–6. Then

|∇dK |2 = 1+
�

1�i, j�K ,i+ j�K+1
εi+ j∇di∇d j = 1+ O(εK+1),
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and for (x, t) ∈ 	(δ), we have
(∂t −�)AKI − ε−2 f (AKI )
=
�
ε−2


�− ∂2z PK + f (PK )−
T∂2z
PK − 2
T∂z
∂zPK
�

+ ε−1
�(∂t dK −�dK )(∂zPK +
T∂z
)− 2
T∇dK∇∂z(
PK )�
+ (∂t −�)(
PK )

����
z=ε−1dK + O(ε

K−1)

=
�
ε−2


�− ∂2z PK + f (PK )+ (dK − εz − d0)(
1PK +
2∂zPK )
+ (dK − εz)(GKη� + LKη��)�
+ ε−1
�(∂t dK −�dK )(∂zPK +
T∂z
)− 2
T∇dK∇∂z(
PK )�
+ (∂t −�)(
PK )+
H+,Kη+M +
H−,Kη−M

����
z=ε−1dK + O(ε

K−1)

= O(εK−1).
Here in the last equality, we used the expansion systems (5.12)–(5.15), which
imply that all O(εk)(k � K −2) terms are cancelled by each other. Moreover,
for (x, t) ∈ 	(δ), due to the matching condition (3.1), we have

|∂ it ∂ jx ∂ lz(AKI − AKO)| � Ce−α0|d
K (x,t)|/ε � Ce−α0|d0(x,t)|/ε. (6.41)

Therefore, if we define

AK (x, t) = �1− χ̃�d0(x, t)δ−1��AKO(x, t)+ χ̃�d0(x, t)δ−1�AKI (x, t),
where χ̃ is a smooth nonnegative function satisfying supp χ̃ ⊂ (−1, 1) and
χ̃ (z) = 1 for |z| � 1/2, then it holds that

(∂t −�)AK − ε−2 f (AK ) = RK−1 ∼ O(εK−1),

in the whole domain�. Moreover, we have ∂ ixR
K−1 = O(εK−1−i ) for i ∈ N.

This finishes the proof of Theorem 1.1.

7 Spectral lower bound estimate for the linearized operator

This section is devoted to proving Theorem 1.3, i.e., inequality (1.9) for
A ∈ H1(�). Obviously, it suffices to consider ε small enough. The proof
is accomplished by five steps, which are done in Sects. 7.1–7.5 respectively:
Step 1: reduce to 1-D interval. By introducing two transformations, one

for coordinates and the other for matrix fields, we reduce the problem into
inequalities on a 1-D interval.
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Step 2: decompose into scalar inequalities. We use a bases decomposition
to reduce a matrix-valued problem to two scalar bilinear estimates for cross
terms and correction terms respectively; see (7.15) and (7.17).
Step 3: coercive estimates and endpoints L∞-control. We develop the coer-

cive estimates for the scalar linearized operators Li (Lemmas 7.1 and 7.5),
L∞-control at endpoints (Lemmas 7.7 and 7.8).
Step 4: estimate the cross terms. The cross terms involving L4 or L5 can be

controlled directly as we have strong coercive estimates for these two oper-
ators; see Proposition 7.9. However, the coercive estimates for L1-L3 are
relatively weak, thus the same method could not be applied to control the
corresponding cross terms, which becomes somewhat technical.
Motivated by [16], we observe that the weights in all cross terms involving

L1 are indeed small by using the homogeneous Neumann boundary condition
of n. This is the key that it enables us to remove the singularity of cross terms
involving L1; see Lemma 7.10 and Proposition 7.11.
The estimates for the cross terms involving L2 and L3 are much more

involved, since neither do we have strong coercive estimates, nor the weights
are small.We accomplish it by a product estimate (see Proposition 7.13), which
is proved by applying a symmetric structure for the eigenfunctions of L2 and
L3 (see Lemma 7.14).
Step 5: estimate the correction terms. We explicitly decompose the singular

correction terms. Then the inequality is reduced to some new product estimates
similar to Lemma 7.14. The proof of these product estimate also rely on the
important cancellation structures between the first eigenfunctions of Li (1 �
i � 4); see Lemmas 7.15.

7.1 Reduction to inequalities on an interval

First of all, we choose ε small enough such that

	t (δ/8) ⊂ 	Kt (δ/4) := {x : |dK (x, t)| < δ/4} ⊂ 	t (δ/2), for t ∈ [0, T ].

For x ∈ �±t , A(0) ∈ On and A(1) ∈ A+An or A−An . For A ∈ H1(�), we
perform the decomposition:

A = K + J with K ∈ A±An, J ∈ A±Sn.

Then we have

HA(0)A : A = HA(0)J : J = 2|J|2,
T f (A(0),A(1),A) : A = T f (A(0),A(1), J) : J+ 2T f (A(0),A(1), J) : K,
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where T f is defined in (4.9). Thus, for x ∈ �±t , one can find a constant C
such that

ε−2HA(0)A : A+ ε−1T f (A(0),A(1),A) : A � −C�K�2 � −C�A�2.

In addition, in � \ 	Kt (δ/4), due to the matching condition (6.41), we have

AK − A(0) − εA(1) = χ̃�d/δ�(AKI − AKO)+ O(ε2)
= O(e− α0δ4ε )+ O(ε2) = O(ε2).

Thus, in � \ 	Kt (δ/4), one has that

ε−2HAKA : A = ε−2HA(0)A : A+ ε−1T f (A(0),A(1),A) : A+ O(�A�2)
� −C�A�2.

For x ∈ 	Kt (δ/4), we let

A0 =
�

P0

�
(ε−1dK (x, t), x, t), A1 =

�

P1

�
(ε−1dK (x, t), x, t).

Then

AK = AKI = A0 + εA1 + O(ε2).
Therefore, it suffices to prove that

�
	Kt (

δ
4 )

�
�∇A�2 + 1

ε2
HA0A : A+

1

ε
T f (A0,A1,A) : A

�
dx

≥ −C
�
	Kt (

δ
4 )

�A�2dx . (7.1)

By a standard density argument, we can assume that A ∈ C1(	Kt ( δ4)).
For given t ∈ [0, T ] and σ ∈ 	Kt , r ∈ [−δ/4, δ/4], we define x(σ, r) ∈ �

by x(σ, 0) = σ ∈ 	Kt and

∂r x(σ, r) = ∇dK
|∇dK |2 ◦ (x(σ, r), t).

Then d
dr (d

K (x(σ, r))− r) = 0. As dK (x(σ, 0)) = 0, we have

dK (x(σ, r), t) = r. (7.2)
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Thus for small δ, (σ, r) �→ x(σ, r) is a bijective mapping from 	Kt ×
(−δ/4, δ/4) to 	Kt (δ/4). Let J (σ, r) = det( ∂x(σ,r)

∂(σ,r) ) be the Jacobian of the
mapping. Then

J |r=0 = 1, J (σ, r) = 1+ O(r), dx = Jdσdr, and
∂r f = ∂r x · ∇ f = ∇d

K · ∇ f
|∇dK |2 .

Therefore, as |∇dK |2 = 1+ O(εK+1), we have

|∇ f |2 �
��� ∇d

K

|∇dK | · ∇ f
���2 � (∂r f )2 + O(εK+1)|∇ f |2. (7.3)

Let I (δ) = [−δ/4, δ/4]. The inequality (7.1) is equivalent to
�
	Kt

�
I (δ)

�
�∇A�2+ε−2�HA0A : A�+ε−1�T f (A0,A1,A) : A�

�
J (σ, r)drdσ

≥ −C
�
	Kt

�
I (δ)
�A�2 J (σ, r)drdσ.

(7.4)

Using (7.3), it suffices to prove that for each σ ∈ 	Kt ,
�
I (δ)

�
�∂rA�2 + ε−2

�HA0A : A�+ ε−1�T f (A0,A1,A) : A�
�
Jdr

≥ −C
�
I (δ)
�A�2 Jdr. (7.5)

Let B(x, t) = 
T�ε−1dK (x, t), x, t�A(x, t) or A(x, t) = 
�ε−1dK (x, t),
x, t
�
B(x, t). Then

�∂rA�2 = �∂rB�2 + �∂r
B�2 + 2
∂rB : ∂r
B,
HA0A : A = HP0B : B, T f (A0,A1,A) : A = T f (P0,P1,B) : B.

Therefore, (7.5) is reduced to

�
I (δ)

�
�∂rB�2+ 1

ε2
HP0B : B+

1

ε
T f (P0,P1,B) : B+2(
∂rB) : (∂r
B)

�
Jdr

≥ −C
�
I (δ)
�B�2 Jdr, (7.6)
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which can be concluded from the following two inequalities:

�
I (δ)
(
∂rB) : (∂r
B)Jdr � 1

4

�
I (δ)

�
�∂rB�2 + 1

ε2
HP0B : B

�
Jdr

+ C
�
I (δ)
�B�2 Jdr, (7.7)

1

ε

�
I (δ)
T f (P0,P1,B) : BJdr � 1

4

�
I (δ)

�
�∂rB�2 + 1

ε2
HP0B : B

�
Jdr

+ C
�
I (δ)
�B�2 Jdr. (7.8)

In the sequel, without loss of generality, we will assume δ/4 = 1 and let
I = [−1, 1] to simplify the notations.

7.2 Reduction to inequalities for scalar functions

Recall that Vi is a finite dimensional space which only depends on n(x, t).
So for given σ ∈ 	Kt , we can choose {Eα : α ∈ �i } to be a set of complete
orthogonal bases of Vi which are smooth in r . Let� = ∪5i=1�i . Then we can
write

B =
�
α∈�

pαEα.

As P0 = (I − 2sε(r)nn) with sε(·) = s((·)/ε), a direct calculation(see (4.5))
leads to

HP0B : B =
5�
i=1

�
α∈�i

κi (sε(r))p
2
α, (7.9)

where κi are defined in (4.5). Moreover,

�∂rB�2=�
�
α∈�
(∂r pαEα+pα∂rEα)�2 �

�
α

|∂r pα|2+2
�
α �=β

∂r pα pβEα : ∂rEβ

=
�
α

|∂r pα|2 +
�
α �=β
(∂r pα pβ − pα∂r pβ)Eα : ∂rEβ. (7.10)
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Then we obtain�
I

�
�∂rB�2 + ε−2HP0B : B

�
Jdr + C

�
I
�B�2 Jdr

�
�
I

5�
i=1

�
α∈�i

�
|∂r pα|2 + 1

ε2
κi (sε(r))p

2
α

�
Jdr + C

�
I

�
α

|pα|2 Jdr

+
�
I

�
α �=β
(∂r pα pβ − pα∂r pβ)Eα : ∂rEβ Jdr. (7.11)

Since for α ∈ �i (i = 1, 2, 5), β ∈ � j ( j = 3, 4), one has Eα ∈ Sn, ∂rEβ ∈
An which yields that Eα : ∂rEβ = 0. Thus, we only have to consider the case
α, β ∈ �1 ∪�2 ∪�5 or α, β ∈ �3 ∪�4.
Now we remove J via the endpoint estimates established in Lemmas 7.7

and 7.8. Let qα = J 12 pα , and introduce the quadratic forms for q ∈ H1(I ):

Qi (q) =
�
I

�
|∂rq|2 + 1

ε2
κi (sε(r))q

2
�
dr, (7.12)

which are related to the scaled linearized operators

Li,ε = −∂2r +
1

ε2
κi (sε(r)).

Then by using Lemmas 7.7 and 7.8 to control |qα(±1)|, we obtain for suffi-
ciently small ε that

�
I
|∂r pα|2 Jdr =

�
I
|∂r (J− 12 qα)|2 Jdr

=
�
I
|∂rqα|2+

�|∂r (J− 12 )|2 J−∂r (∂r J− 12 J 12 )�q2αdr
+ ∂r J− 12 J 12 q2α

���1−1
�
�
I
|∂rqα|2dr − 1

4
Qi (qα)− C

�
I
q2αdr.

Thus, we get

�
I

5�
i=1

�
α∈�i

�
|∂r pα|2 + 1

ε2
κi (sε(r))p

2
α

�
Jdr + C

�
I

�
α

|pα|2 Jdr

� 3
4

5�
i=1

�
α∈�i

Qi (qα)+ C
�
I

�
α

|qα|2dr. (7.13)
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LetW = 
T∂r
 which is antisymmetric. Notice that

(
∂rB) : (∂r
B) = ∂rB : (WB) =
�
α,β

pβ(∂r pαEα + pα∂rEα) : (WEβ)

= 1
2

�
α �=β
(∂r pα pβ − pα∂r pβ)Eα : (WEβ)

+
�
α,β

pα pβ∂rEα : (WEβ), (7.14)

as well as that
�
I

�
α,β

pα pβ∂rEα : (WEβ)Jdr � C
�
I

�
α

|pα|2 Jdr = C
�
I

�
α

|qα|2dr.

Then combining (7.11), (7.13), (7.14) and

(∂r pα pβ − pα∂r pβ)J = ∂r (qα J− 12 )qβ J 12 − qα∂r (qβ J− 12 )J 12
= ∂rqαqβ − qα∂rqβ,

the inequality (7.7) can be deduced from

�
I

�
α �=β
(∂rqαqβ − qα∂rqβ)a(r)dr � 1

4

5�
i=1

�
α∈�i

Qi (qα)+ C
�
I

�
α

|qα|2dr,

(7.15)

for a(r) = Eα : ∂rEβ or Eα : (WEβ).
To obtain (7.8), we introduce

B̃ = J 1/2B =
�
α∈�

qαEα. (7.16)

Then (7.8) can be deduced from (7.15) and

�
I
ε−1T f (P0,P1, B̃) : B̃dr � 1

4

5�
i=1

�
α∈�i

Qi (qα)+ C
�
I

�
α

|qα|2dr.

(7.17)

The left hand side of (7.15) and (7.17) are called cross terms and correction
terms of the next order, which will be proved in Sects. 7.4 and 7.5 respectively.
Again, in the sequel, we will assume that ε is sufficiently small.

123



Matrix-valued Allen–Cahn equation… 55

7.3 Estimates for quadratic formsQi

Here and in what follows, we write L2 = L2(I ) = L2([−1, 1]). Moreover,
we will always assume the functions q, qi ∈ H1(I ).

7.3.1 Coercive estimates

As κ4 = 0, κ5 = 2, the following estimate is obvious:

�∂rq�2L2 = Q4(q), �∂rq�2L2 + ε−2�q�2L2 � Q5(q). (7.18)

For 1 � i � 3, we let θi,ε(r) = θi (r/ε). Recalling the definition (4.7), we
have

(θ1,ε, θ2,ε, θ3,ε)(r) = (θε, sε, 1− sε)(r), (7.19)

where sε(r) = s(r/ε) and θε(r) = s�(r/ε) = √
2sε(1 − sε). Then for

Qi (q)(1 � i � 3), we have
Lemma 7.1 Let qi = θi,εq̄i for i = 1, 2, 3. Then there exists C0 > 0 such that

1

4

�
I
θ2i,ε
�
∂r q̄i

�2dr � Qi (qi )+ C0
ε
e−

2
√
2
ε

�
I
q2i dr. (7.20)

The above lemma is a direct corollary of Lemmas 7.2 and 7.3. It gives another
version of the first eigenvalue estimate for Li,ε, which has been proved in
[12] (for i = 1) and [16]. The method presented here uses only elementary
decompositions and does not rely on the maximum/comparison principle or
the Harnack inequality. Note that no boundary condition is needed here and

the lower bounds −C0
ε
e−

2
√
2
ε for i = 2, 3 is optimal. We can also deduce an

optimal lower bound −C0
ε2
e−

2
√
2
ε for the first eigenvalue of L1,ε from Lemma

7.3.

Lemma 7.2 Let qi = θi,εq̄i for i = 2, 3. Then for any ν0 > 0, there exists
C0(ν0),C1(ν0) > 0 such that

Qi (qi )�
�1
2
+e−

√
2
ε C1(ν0)−ν0

��
I
θ2i,ε
�
∂r q̄i

�2dr−1
ε
e−

2
√
2
ε C0(ν0)

�
I
θ2i,εq̄

2
i dr.

(7.21)

Proof Using the fact that ε2∂2r sε = sεκ2(sε), we arrive at
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Q2(q2) =
�
I

��
∂r sεq̄2 + sε∂r q̄2

�2 + ε−2κ2(sε)s2ε q̄22
�
dr

= sε∂r sεq̄22
���1−1+

�
I
s2ε (∂r q̄2)

2dr

� −(sε∂r sεq̄22 )(−1)+
�
I
s2ε (∂r q̄2)

2dr.

As sε(r) = 1/(1+ e−
√
2r/ε), one can directly get

(sε∂r sε)(−1) = ε−1
√
2s2ε (1− sε)(−1) �

√
2

ε
e−

2
√
2
ε ,

� 0

−1
s−2ε dr =

� 0

−1
(1+ e−

√
2
ε )2dr = εe

2
√
2
ε

2
√
2

�
1+ O�e−√2/ε��.

Moreover, from the Gagliardo-Nirenberg inequality, we have

q̄2(0)
2 ≤ ν

2
1

2

� 1

0

�
∂r q̄2

�2dr + C(ν1)
� 1

0
q̄22dr

≤ 2ν21
� 1

0

�
sε∂r q̄2

�2dr + C(ν1)
� 1

0
s2ε q̄

2
2dr.

Thus choosing ν1 = ν0/2 and ε sufficiently small, we obtain

(sε∂r sεq̄
2
2 )(−1)

� (sε∂r sε)(−1)
�
|q̄2(0)| +

���
� 0

−1
∂r q̄2dr

���
�2

�(sε∂r sε)(−1)
�
(1+ν−11 )|q̄2(0)|2+(1+ ν1)

���
� 0

−1
(sε∂r q̄2)

2dr
���
���
� 0

−1
s−2ε dr

���
�

�
√
2

ε
e−

2
√
2
ε

�
3ν1

� 1

0
s2ε
�
∂r q̄2

�2dr + C(ν1)
� 1

0
s2ε q̄

2
2dr
�

+
�1+ ν1

2
+ O�e−

√
2
ε
�� � 0

−1
(sε∂r q̄2)

2dr

�
�1
2
+ ν0 + O

�
e−

√
2
ε
�� �

I
s2ε
�
∂r q̄2

�2dr + 1
ε
e−

2
√
2
ε C1(ν0)

�
I
s2ε q̄

2
2dr.

Then (7.21) for i = 2 follows immediately. The case of i = 3 can be proved
in a similar way. ��
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Lemma 7.3 Let q1 = θ1,εq̄1. For any ν0 > 0, there exists C0(ν0),C1(ν0) > 0
such that

Q1(q1) �
�1
2
+e−

√
2
ε C1(ν0)−ν0

��
I
θ21,ε
�
∂r q̄1

�2dr
− 1

ε2
e−

2
√
2
ε C0(ν0)

�
I
θ21,εq̄

2
1dr. (7.22)

Remark 7.4 The constant 12 on the right hand side of (7.21) and (7.22) is
optimal.

Proof As θ1,ε = θε =
√
2sε(1− sε), one can get

Q1(q1) =
�
I

��
∂rθεq̄1 + θε∂r q̄1

�2 + ε−2κ1(sε)θ2ε q̄21
�
dr

= (θε∂rθεq̄21 )
���1−1 +

�
I
θ2ε (∂r q̄1)

2dr. (7.23)

It suffices to estimate (θε∂rθεq̄21 )|1−1. Direct calculations give that

|(θε∂rθε)(±1)| = 2
√
2

ε
|s2ε (1− sε)2(1− 2sε)|(±1) �

2
√
2

ε
e−

2
√
2
ε ,

� 1

0
θ−2ε dr =

1

2

� 1

0
e2
√
2r/εdr

�
1+ O�e−

√
2
ε
�� = εe

2
√
2
ε

4
√
2

�
1+ O�e−

√
2
ε
��
.

Moreover, from the Gagliardo-Nirenberg inequality and a scaling argument,
we have

|q̄1(0)|2 ≤ ν21

100
ε

� ε

−ε
�
∂r q̄1

�2dr + C(ν1)1
ε

� ε

−ε
q̄21dr

≤ 2ν21ε
� ε

−ε
θ2ε
�
∂r q̄1

�2dr + ε−1C(ν1)
� ε

−ε
θ2ε q̄

2
1dr.

Thus choosing ν1 = ν0/2 and ε sufficiently small, we obtain

|(θε∂rθεq̄21 )(1)|
� |(θε∂rθε)(1)|

�
|q̄1(0)| +

���
� 1

0
∂r q̄1dr

���
�2

� |(θε∂rθε)(1)|
�
(1+ν−11 )|q̄1(0)|2+(1+ν1)

� � 1

0
(θε∂r q̄1)

2dr
� � 1

0
θ−2ε dr

�
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� 2
√
2

ε
e−

2
√
2
ε

�
3ν1ε

� ε

−ε
θ2ε
�
∂r q̄1

�2dr + ε−1C(ν1)
� ε

−ε
θ2ε q̄

2
1dr
�

+
�1+ ν1

2
+ O�e−

√
2
ε
�� � 1

0
(θε∂r q̄1)

2dr

�
�1
2
+ ν0 + O

�
e−

√
2
ε
�� �

I
θ2ε
�
∂r q̄1

�2dr + 1

ε2
e−

2
√
2
ε C1(ν0)

�
I
θ2ε q̄

2
1dr.

(7.24)

The same estimate holds for the value at −1. Thus, (7.22) follows. ��
The following lemma gives a new proof for the second eigenvalue estimate

of L1,ε.
Lemma 7.5 Let q1 = μθε + q̂1 with μ ∈ R and

�
I θεq̂1dr = 0. Then there

exists c0 > 0 such that for ε small:

Q1(q1)+ o(ε2)
�
I
q21dr �

c0
ε2

�
I
q̂21dr. (7.25)

Proof Let q̄1 = q1/θε − μ = q̂1/θε. Then it follows from (7.22) that

Q1(q1)+ o(ε2)
�
I
q21dr �

1

4

�
I
θ2ε
�
∂r q̄1

�2dr.
Now we prove that for

�
I θ
2
ε q̄1dr = 0 and some c0 > 0,�

I
θ2ε
�
∂r q̄1

�2dr � c0
ε2

�
I
θ2ε q̄

2
1dr =

c0
ε2

�
I
q̂21dr.

Let

A1=
� 1

0
θ2ε (τ )q̄

2
1 (τ )dτ, B1=

� 1

0
θ2ε
�
∂r q̄1

�2dr, D1=
� 1

0
θ2ε (τ )q̄1(τ )dτ,

A2=
� 0

−1
θ2ε (τ )q̄

2
1 (τ )dτ, B2=

� 0

−1
θ2ε
�
∂r q̄1

�2dr, D2=
� 0

−1
θ2ε (τ )q̄1(τ )dτ.

Assume that A1 + A2 > 0. We have� 1

0
θ2ε (τ )q̄

2
1 (τ )dτ =

� 1

0
θ2ε (τ )q̄1(τ )

�
q̄1(0)+

� τ

0
∂r q̄1dr

�
dτ

= q̄1(0)D1 +
� 1

0
θ2ε (τ )q̄1(τ )

� � τ

0
∂r q̄1dr

�
dτ � q̄1(0)D1

+
� � 1

0
θ2ε (τ )q̄

2
1 (τ )dτ

� 1
2
�� 1

0
θ2ε (τ )

�� τ

0
∂r q̄1dr

�2
dτ
� 1
2
.
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On the other hand, we have

� 1

0
θ2ε (τ )

� � τ

0
∂r q̄1dr

�2
dτ �

� 1

0
θ2ε (τ )

� � τ

0
θε(∂r q̄1)

2dr
�� � τ

0

1

θε
dr
�
dτ

=
� 1

0
θε(∂r q̄1)

2 I0(r)dr

with

I0(r) =
� 1

r
θ2ε (τ )

� � τ

0

1

θε
(y)dy

�
dτ

= ε2
� 1

ε

r
ε

θ2(z)
� � z

0

1

θ
(w)dw

�
dz � Cε2θε(r).

Thus

A1 � q̄1(0)D1 + CεA1/21 B1/21 .

Similarly, we have

A2 � q̄1(0)D2 + CεA1/22 B1/22 .

As D1 + D2 = 0, we get

A1 + A2 � CεA1/21 B1/21 + CεA1/22 B1/22 � Cε(A1 + A2)1/2(B1 + B2)1/2,
which concludes our lemma. ��
As |∂rθε| � C

ε
θε, and |∂r q̂1| � |∂rθεq̄1| + |θε∂r q̄1|, we have the following

Corollary 7.6 Let q1 = μθε + q̂1 with μ ∈ R and
�
I θεq̂1dr = 0. Then there

exists c0 > 0 such that:

Q1(q1)+ o(ε2)
�
I
q21dr � c0

�
I
(∂r q̂1)

2dr. (7.26)

7.3.2 Endpoints L∞ estimates

Again, we assume that ε is sufficiently small.

Lemma 7.7 (L∞ control) For i = 2, 3, 4, 5, and any ν0 > 0, there exists
C(ν0) such that

�q�2L∞([−1,1]) � ν0Qi (q)+ C(ν0)
�
I
q2dr.
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Proof The claims for i = 4, 5 are obvious, since κ4 = 0, κ5 � 0. For i = 2,
let q = sεq̄. Then

�q̄�2L∞([0,1]) � ν0
� 1

0
s2ε (∂r q̄)

2dr + C(ν0)
� 1

0
s2ε q̄

2dr.

For r ∈ [−1, 0], we have

|q(r)| = sε(r)|q̄(r)| � sε(r)(|q̄(0)| +
� r

0
|∂r q̄|dr)

� 1
2
|q̄(0)| + sε(r)

� � r

0
s2ε |∂r q̄|2dr

�1/2� � r

0
s−2ε dr

�1/2

� 1
2
|q̄(0)| + O(√ε)

� � r

0
s2ε |∂r q̄|2dr

�1/2
.

Thus using Lemma 7.1, we obtain the claim for i = 2. The proof for i = 3 is
similar. ��

The above lemma is not true for i = 1. However, we have the following
estimate.

Lemma 7.8 (Endpoints control) There exists C > 0 such that

|q(±1)|2 � Cε
�
Q1(q)+

�
I
q2dr

�
.

Proof Let q = θεq̄. Note that θ2ε (±1) � Cε|(θε∂rθε)(±1)|, then we can get
the result from (7.24) and Lemma 7.3. ��

7.4 Estimate for cross terms

Now the inequality (7.15) is a consequence of the following Propositions 7.9,
7.11, 7.12 and 7.13 by letting a(r) = Eα : ∂rEβ or Eα :WEβ .

Proposition 7.9 Assume i or j ∈ {4, 5}. Then for any ν0 > 0 there exists
C0 = C0(ν0, �a�W 1,∞) > 0 such that
�
I

�
∂rqαqβ − qα∂rqβ

�
a(r)dr ≤ ν0

�Qi (qα)+Q j (qβ)�+ C0
�
I

�
q2α + q2β

�
dr.
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Proof Assume j = 4 or 5. Then κ j � 0 and Q j (qβ) � �∂rqβ�2L2 . Thus
�
I
qα∂rqβa(r)dr � ν0

�
I
(∂rqβ)

2dr + C(ν0, |a|L∞)
�
I
q2αdr,�

I
∂rqαqβa(r)dr � −

�
I
(qα∂rqβa + qαqβ∂ra)dr + (qαqβa)

���1−1
� ν0

�
I
(∂rqβ)

2dr+C(ν0, �a�W 1,∞)

×
�
I
(q2α + q2β)dr+(qαqβa)

���1−1.
Then the result follows from Lemmas 7.7 and 7.8. ��
Now we turn to crossing terms involving elements in V1. Assume Eβ =

E1 ∈ V1. The following lemma shows that the variation of E1 and 
 along
the normal direction∇dK is very small, which is key to bounding the crossing
terms involving elements in V1.

Lemma 7.10 There exists constant C1 such that for (x, t) ∈ 	K (δ), one has
that

|∂rE1| � C1(dK (x, t)+ ε), |
T∂r
E1| � C1(dK (x, t)+ ε).

Proof Recalling ∂r = (1+O(εK+1))∇dK ·∇, we can replace ∂r with∇dK ·∇.
On the other hand, as �dK − d0�C1(	K (δ)) � Cε, one has

|(∇dK · ∇)E1| � |(∇d0 · ∇)E1| + C1ε � |(∇d0 · ∇)E1|
���
d0=0

+ C1(d0 + ε)
= C1(d0 + ε).

In the last equality, we have used the fact that ∂νn|d0=0 = 0. Similarly, we
have

|
T(∇dK · ∇)
E1| = |
T(∇d0 · ∇)
E1| + C1ε
� |
T(∇d0 · ∇)
E1|

���
d0=0

+ C1(d0 + ε)
= C1(d0 + ε),

as it holds on 	0 = {d0(x, t) = 0} that

(
T(∇d0 · ∇)
E1)
���
d0=0

= (AT−∂νA−nn)
���
d0=0

= 0.

due to the boundary condition (1.6d). The proof is finished. ��
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Proposition 7.11 Assume that i or j = 1 and |a(r)| � Ca(r + ε). Then for
any ν0 > 0 there exists C0 = C0(ν0,Ca, �a�W 1,∞) > 0 such that
�
I

�
∂rqαqβ − qα∂rqβ

�
a(r)dr ≤ ν0

�Qi (qα)+Q j (qβ)�+C0
�
I

�
q2α + q2β

�
dr.

(7.27)

Proof Assume j = 1. Firstly, we have
�
I

�
∂rqαqβ−qα∂rqβ

�
a(r)dr � qαqβa

���1−1−
�
I

�
2qα∂rqβa(r)+qαqβ∂ra(r))dr.

From Lemmas 7.7 and 7.8, it suffices to estimate
�
I qα∂rqβa(r)dr . Let

qβ = μ0θε + q̂β, with μ0 ∈ R and
�
I
θεq̂βdr = 0.

Then using the fact that ∂rθε =
√
2
ε
θε(1− 2sε), we get

�
I
qα∂rqβa(r)dr = μ0

�
I
qα∂rθεa(r)dr +

�
I
qα∂r q̂βa(r)dr

= μ0
√
2
�
I
qαθε(1− 2sε)a(r)

ε
dr +

�
I
qα∂r q̂βa(r)dr

� C�qα�L2
�
|μ0|�ε−1θεa�L2 + �∂r q̂β�L2

�
.

As a(r) � Ca(r + ε), we have
|μ0|�ε−1θεa�L2 �Ca|μ0|

��θε�L2+�θεr/ε�L2� � C |μ0|�θε�L2 � C�qβ�L2 .
Moreover, due to Corollary 7.6, we can control �∂r q̂β�2L2 by the right hand
side of (7.27). ��
Proposition 7.12 Let i = 2 or 3. For any ν0 > 0 there exists C0 =
C0(ν0, �a�L∞) > 0 such that
�
I

�
∂rqαqβ − qα∂rqβ

�
a(r)dr ≤ ν0

�Qi (qα)+Qi (qβ)�+ C0
�
I

�
q2α + q2β

�
dr.

Proof We assume i = 2, as the case i = 3 can be proved similarly. We use
the decompositions:

qα(r) = θ2,ε(r)q̄α(r) = sε(r)q̄α(r), qβ(r) = sε(r)q̄β(r).
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Then ∂rqαqβ−qα∂rqβ = s2ε (∂r q̄αq̄β−q̄α∂r q̄β). Thus, usingCauchy-Schwartz
inequality, we get
�
I

�
∂rqαqβ−qα∂rqβ

�
a(r)dr ≤

�
I
s2ε
�
ν0
�
(∂r q̄α)

2+(∂r q̄β)2
�+C0(q̄2α+q̄2β)�dr.

which yields the conclusion by Lemma 7.1. ��
The estimate of crossing terms for V2 and V3 is more subtle.

Proposition 7.13 For any ν0 > 0 there exists C0 = C0(ν0, |a|L∞) > 0 such
that�
I

�
∂rq2q3 − q2∂rq3

�
a(r)dr � ν0

�Q2(q2)+Q3(q3)�+ C0
�
I

�
q22 + q23

�
dr.

(7.28)

Proof We use the decompositions:

q2(r) = θ2,ε(r)q̄2(r) =sε(r)q̄2(r),
q3(r) = θ3,ε(r)q̄3(r) =(1− sε(r))q̄3(r). (7.29)

Using Lemma 7.1, it suffices to prove that the left side is bounded by

�
i=2,3

�
I
θ2i,ε

�
ν0(∂r q̄i )

2 + C0q̄2i
�
dr.

One has

∂rq2q3 − q2∂rq3 =
�
∂r sεq̄2 + sε∂r q̄2

�
(1− sε)q̄3

− sεq̄2
�− ∂r sεq̄3 + (1− sε)∂r q̄3�

= ∂r sεq̄2q̄3 + θ2,εθ3,ε
�
∂r q̄2q̄3 − q̄2∂r q̄3

�
.

Using Cauchy-Schwartz inequality, one gets
���
�
I
θ2,εθ3,ε

�
∂r q̄2q̄3−q̄2∂r q̄3

�
a(r)dr

��� � 1
2

�
i=2,3

�
I
θ2i,ε

�
ν0(∂r q̄i )

2+C0q̄2i
�
dr.

Then together with the next Lemma 7.14, we immediately obtain Proposition
7.13. ��
Lemma 7.14 Let a(r) ∈ L∞([−1, 1]). Then for any ν0 > 0 there exists
C0 = C0(ν0, |a|L∞) > 0 such that

����
�
I
∂r sεq̄2q̄3a(r)dr

���� ≤
�
i=2,3

�
I
θ2i,ε

�
ν0(∂r q̄i )

2 + C0q̄2i
�
dr. (7.30)
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Proof Recall θ2,ε = sε and θ3,ε = 1− sε. Let

I1=�sεq̄2�2L2 + �(1− sε)q̄3�2L2, I2=�sε(∂r q̄2)�2L2 + �(1− sε)(∂r q̄3)�2L2 .

By the Gagliardo-Nirenberg inequality, one has that for any ν1 > 0, there
exists C(ν1) > 0 such that

�q̄2�L∞([0,1]) ≤ ν12 �∂r q̄2�L2[0,1] + C(ν1)�q̄2�L2[0,1] ≤ ν1 I
1
2
2 + C(ν1)I

1
2
1 .

Similarly, it holds the same estimate for �q̄3�L∞([−1,0]). Then
����
� 0

−1
∂r sεq̄2q̄3a(r)dr

���� ≤ C
� � 0

−1
∂r sε|q̄2|dr

��
ν1 I

1
2
2 + C(ν1)I

1
2
1

�
.

On the other hand, we have

� 0

−1
∂r sε|q̄2|dr ≤

� 0

−1
sε|∂r q̄2|dr + |(sεq̄2)(0)| + |(sεq̄2)(−1)|

≤ I
1
2
2 + ν1 I

1
2
2 + C(ν1)I

1
2
1 + |(sεq̄2)(−1)|, (7.31)

and

|(sεq̄2)(−1)| ≤ sε(−1)
�
|q̄2(0)| +

� 0

−1
|∂r q̄2|dr

�

≤ |q̄2(0)| +
� 0

−1
sε|∂r q̄2|dr ≤ ν1 I

1
2
2 + C(ν1)I

1
2
1 + I

1
2
2 . (7.32)

With the help of (7.31)–(7.32), one has that for any ν0 > 0, there exists
C0 > 0 such that

����
� 0

−1
∂r sεq̄2q̄3a(r)dr

���� ≤ ν0 I2 + C0 I1.

Similarly we can get the same estimate for the integral on [0, 1]. Then the
proof is completed. ��

7.5 Estimate for correction terms

Now we prove (7.17). Recall from (6.12) that
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P1 = sε(r)P1,2(x, t)+ (1− sε)P1,3(x, t)+ P1,4(x, t)
− L1(x, t)d0(x, t)η(r/ε)+ P∗1(r/ε, x, t).

Using the exponential decay in z of P∗1(z, x, t), and the fact that|P∗1(z, x, t)|d0(x,t)=0 = 0, we have
���1
ε
P∗1
�r
ε
, x, t

���� � C |d0|
ε
e−

α0|r |
ε � C.

In the last inequality, we have used d0 = dK −�1�k�K ε
kdk = r + O(ε) by

(7.2). Thus, the terms containing P∗1 can be controlled by
� |B|2 Jdr . Note that

L1(x, t)d0(x, t)η( rε ) ∈ V4 and ∂r
�
L1(x, t)d0(x, t)η( rε )

�
is bounded. Thus,

without the loss of generality, we only need to consider

P1(r) = sε(r)Q2(r)+ (1− sε)Q3(r)+Q4(r) with Qi ∈ Vi (i = 2, 3, 4).

Now we calculate T f (P0,P1, B̃) : B̃ in (7.17). First of all, any term in�
ε−1T f (P0,P1, B̃) : B̃dr containing P5B̃ can be bounded by the right hand

side of (7.8). So, we only need to consider the terms in Vi (1 � i � 4).
Consider B̃ =�4

i=1 Bi with Bi ∈ Vi (1 � i � 4). By Lemma A.3, we have

T f (P0,P1, B̃) : B̃
= 2sε(2sε − 1)Q2 : (B3B4 + B4B3)+ 2sε(3− 4sε)Q2 : (B1B2 + B2B1)
+ 2(1− sε)(1− 4sε)Q3 : (B1B3 + B3B1)
+ 2(1− sε)(1− 2sε)Q3 : (B2B4 + B4B2)
+ 2(1− 2sε)Q4 : (B2B3 + B3B2)
� L34 + L12 + L13 + L24 + L23.

Now using the decomposition (7.16), we can write:

Bi (r) =
�
α∈�i

qα(r)Eα(r), i = 1, 2, 3, 4.

We use Ei to denote an element in Vi (1 � i � 4). Then the integral 1ε
�
L34

can be written as a summation of terms with form

1

ε

�
I
sε(2sε − 1)q3q4Q2 : (E3E4 + E4E3)dr. (7.33)
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Letting qi = θi,εq̄i with θi,ε defined in (7.19), and using (7.34) below and
Lemma 7.2, we bound (7.33) by

ν0
�Q3(q3)+Q4(q4)�+ C(ν0)

�
I
(q23 + q24 )dr, for ∀ν0 > 0.

Similarly, by using (7.35)–(7.37) below, Lemma 7.14 along with Lemma 7.1,
we can bound

1

ε

�
I
L24,

1

ε

�
I
L12,

1

ε

�
I
L13,

1

ε

�
I
L23,

by the right hand side of (7.8). Then (7.8) follows easily.

Lemma 7.15 For any ν0 > 0 there exists C0 = C0(ν0, �a�W 1,∞) > 0 such
that (θ4,ε = 1)

1

ε

���
�
I
sε(1− sε)(2sε − 1)q̄3q̄4adr

��� ≤ �
i=3,4

�
I
θ2i,ε
�
ν0(∂r q̄i )

2 + C0q̄2i
�
dr,

(7.34)
1

ε

���
�
I
(1− sε)(1− 2sε)sεq̄2q̄4adr

��� ≤ �
i=2,4

�
I
θ2i,ε
�
ν0(∂r q̄i )

2 + C0q̄2i
�
dr,

(7.35)
1

ε

���
�
I
s2ε (3− 4sε)θεq̄1q̄2adr

��� ≤ �
i=1,2

�
I
θ2i,ε
�
ν0(∂r q̄i )

2 + C0q̄2i
�
dr, (7.36)

1

ε

���
�
I
(1− sε)2(1− 4sε)θεq̄1q̄3adr

��� ≤ �
i=1,3

�
I
θ2i,ε
�
ν0(∂r q̄i )

2 + C0q̄2i
�
dr.

(7.37)

Proof The left side of (7.34) can be written as

����
�
I
∂r
�
sε(1− sε)

�
q̄3q̄4adr

����
�
����
�
I
sε(1−sε)

�
∂r q̄3q̄4a+q̄3∂r q̄4a+q̄3q̄4∂ra

�
dr

����+
�
sε(1−sε)q̄3q̄4a

����1−1.

Then (7.34) follows from Cauchy-Schwartz inequality and Lemma 7.7. (7.35)
can be obtained in a similar way.
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The left side of (7.36) can be estimated as
����
�
I
∂r
�
s3ε (1− sε)

�
q̄1q̄2adr

���� =
����
�
I
∂r
�
s2ε θε

�
q̄1q̄2adr

����
�
����
�
I
s2ε θε

�
∂r q̄1q̄2a + q̄1∂r q̄2a + q̄1q̄2∂ra

�
dr

����
+
�
s2ε θεq̄1q̄2a

����1−1.
Then the claim follows from the Cauchy-Schwartz inequality and Lemmas 7.7
and 7.8. As (1 − sε)2(1 − 4sε)θε/ε = ∂r ((1 − sε)3sε), we can prove (7.37)
similarly. ��
Remark 7.16 The proof of Lemma 7.15 relies heavily on the fact that, all the
weights can be written as derivatives of some good functions. These functions
have factorswhich consist of production of corresponding eigenfunctions, thus
enable us to use integrating by parts to remove the O(ε−1) singularities. The
mechanism behind such coincidence is the cubic null cancellation Lemma 4.4.

8 Uniform error estimates

Let Aε be a solution to (1.3) and AK be the approximate solution constructed
in Sect. 6. Define

� = 1

εL
(Aε − AK ).

Then we have

∂t� = �� − ε−2HAK� −
εL−2

2
T f (AK , �,�)+ ε2L−2��T� −Rε,

(8.1)

where Rε is independent of � which satisfies ∂ iRε = O(εK−L−i−1) for
i � 0. We choose L = 3([m2 ] + 1)+ 3, and K � L + 1.
Let

Ē(�) =
[m2 ]+1�
i=0

ε6i
�
�

�∂ i��2dx .

Then one has

εL−2���L∞ � ε3([m2 ]+1)+1���L∞ � CεĒ(�) 12 .
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With the help of Theorem 1.3, standard energy estimates yield that

d

dt

�
�

���2dx � C(1+ εĒ(�) 12 + ε2Ē(�))
�
�

���2dx + C
� C

�
1+ Ē(�)+ ε2Ē(�)2�.

Applying ∂ i (0 � i � [m2 ] + 1) on the equation (8.1), we get

∂t∂
i� = �∂ i� − ε−2HAK ∂ i� + ε−2[HAK , ∂ i ]�

− 1
2
εL−2∂ iT f (AK , �,�)+ ε2L−2∂ i (��T�)− ∂ iRε,

where

ε−2[HAK , ∂ i ]� = ε−2
�

j+l+k=i,k�i−1, j�l
T f (∂ jAK , ∂ lAK , ∂k�),

whose L2-norm can be bounded by

Cε−2− j−l�∂k��L2 � ε−3k− j−l−2Ē1/2(�) � ε−3i Ē1/2(�).

Moreover

�εL−2∂ iT f (AK , �,�)�L2 = �εL−2
�

j+k+l=i,k�l
T f (∂ jAK , ∂k�, ∂ l�)�L2

� Cε1−3i Ē(�),
�ε2L−2∂ i (��T�)�L2 � ε2L−2���2H [m2 ]+1���Hi � Cε

2−3i Ē3/2(�),
�∂ iRεk�L2 � εK−L−i−1.

Therefore, we have

d

dt

�
�

ε6i�∂ i��2dx � C(1+ Ē(�) 12 + εĒ(�)+ ε2Ē3/2(�))�∂ i��L2
� C(1+ Ē(�)+ ε2Ē(�)2).

Summing i from 0 to [m2 ] + 1, we get
d

dt
Ē(�) � C(1+ Ē(�)+ ε2Ē(�)2).

Then Theorem 1.4 can be concluded by a direct continuation argument.

123



Matrix-valued Allen–Cahn equation… 69

Acknowledgements The authors are indebted to the anonymous referees for their careful read-
ing and helpful comments which considerably helped to improve the quality of the manuscript.
M. Fei is supported by NSF of China under Grant No. 11871075 and 11971357. F.H. Lin is sup-
ported by an NSF grant DMS1955249. W.Wang is supported by NSF of China under Grant No.
11922118 and 11871424. Z. Zhang is supported by NSF of China under Grant No. 12171010.

Appendix A

A.1. Formal derivation of Neumann jump condition

Assume that

Aε → A± strongly in L2(�±t );
∂tAε � ∂tA±, ∇Aε � ∇A± weakly in L2(�±t ).

The equation (1.3) yields that

(Aε)T(∂tAε −�Aε)− (∂t (Aε)T −�(Aε)T)Aε = 0,

which gives

(Aε)T∂tAε − ∂t (Aε)TAε = ∇ · ((Aε)T∇Aε − ∇(Aε)TAε).

Testing the above equationwith a smoothmatrix-valued function� and taking
the limit ε→ 0, one gets

�
�+t

�
(AT+∂tA+ − ∂tAT+A+)� + (AT+∇A+ − ∇AT+A+) · ∇�

�
dx

+
�
�−t

�
(AT−∂tA− − ∂tAT−A−)� + (AT−∇A− − ∇AT−A−) · ∇�

�
dx = 0.

As A± obeys the harmonic map heat flow to O±(n) on �±, one immediately
gets the boundary condition

AT+∂νA+ − ∂νAT+A+ = AT−∂νA− − ∂νAT−A−.

Similarly, we have

A+∂νAT+ − ∂νA+AT+ = A−∂νAT− − ∂νA−AT−.

These two relations give (1.6d) under the minimal pair relation (1.6c).
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Assume that (A−,A+) is a minimal pair, i.e., A+ = A−(I − 2nn) for
some n ∈ Sn−1. We prove that the following three boundary conditions are
equivalent:

(i) :
�
AT+∂νA+ − ∂νAT+A+ = AT−∂νA− − ∂νAT−A−,
A+∂νAT+ − ∂νA+AT+ = A−∂νAT− − ∂νA−AT−;

(i i) : ∂νA+ = ∂νA−;
(i i i) : AT+∂νA+ = AT−∂νA− =W, for someW ∈ V4 (cf. (4.1)).

(i) ⇒ (i i i): As AT+∂νA+ and AT−∂νA− are both antisymmetric, the first
equation gives

AT+∂νA+ = AT−∂νA− =W ∈ An.

Similarly, we have ∂νA+AT+ = ∂νA−AT−. Therefore, we get

A+WAT+ = ∂νA+AT+ = ∂νA−AT− = A−WAT−,
which implies (I− 2nn)W(I− 2nn) =W. Thus, nW = 0, i.e.W ∈ V4.
(i i)⇒ (i i i): Assume that ∂νA± = A±W± withW± ∈ An . Then we have

A+W+ = A−W−, or equivalently (I − 2nn)W+ = W−. As W± are both
antisymmetric, one has n · W+ = 0 and W+ = W−, which implies that
W+ =W− ∈ V4.
By reversing the above derivations, we immediately obtain (i i i)⇒ (i), (i i).

A.2. A sketch proof of Lemmas 3.7 and 3.9

We define for a matrix A ∈Mn:
ρ(A, O(n)) = min

B∈O(n) �A− B�.

Lemma A.1 For A ∈ Mn and ρ = ρ(A, O(n)), one has: (i) if ρ � 1, then
F(A) � 1

4ρ
2(2 − ρ)2, and equality holds if and only if A = B(I − ρnn) for

some B ∈ O(n) and n ∈ Sn−1; (ii) If ρ > 1, then F(A) > 1
4 .

Proof We perform the singular value decomposition for A as A = U�VT

where U,V ∈ O(n) and � = diag {λ1, λ2, · · · , λn} is diagonal with λi � 0.
Apparently,

F(A) = F(�) =1
4

n�
i=1
(λ2i − 1)2,
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ρ2(A, O(n)) =ρ2(�, O(n)) = ��− I�2 =
n�
i=1
(λi − 1)2.

If ρ2 =�n
i=1 |λi − 1|2 � 1, then for each i , λi � 1− ρ, which implies

F(A) = 1
4

n�
i=1
(λ2i − 1)2 �

1

4
min
i
(λi + 1)2

n�
k=1
|λk − 1|2 � 1

4
(2− ρ)2ρ2.

Equality holds only if λi ≡ 1 except one of them takes value 1 − ρ. This
implies A = B(I − ρnn) for some B ∈ O(n) and n ∈ Sn−1. If ρ2 > 1, then
F(A) = 1

4

�n
i=1(λ2i − 1)2 � 1

4

�n
i=1(λi − 1)2 = 1

4ρ
2 > 1

4 . ��
For any curve γ = {B(z) : a < z < b} inMn , the quantity

eF (γ ) =
�
γ



F(B(z))/2�B�(z)�dz

is independent of the parametrization of γ . If A(z)(z ∈ R) is a minimal
connecting orbit, then

eF (Traj(A)) = min
γ (±1)∈�±

eF (γ ).

Define

F̃(A) =

⎧⎪⎨
⎪⎩

1

4
ρ2(2− ρ)2, if ρ := ρ(A, O(n)) � 1;

1

4
, if ρ(A, O(n)) � 1.

Then by Lemma A.1, one get F̃(A) � F(A) for A ∈Mn . Note that F̃ can be
viewed as a continuous function of ρ(A, O(n)). This enables us to apply the
arguments in [26, Theorem 2.1] to obtain that: A(z) is a minimal connecting
orbit with respect to F̃ if and only if

A(z) = �τ(A+,A−; z) := sτ (z)A+ + (1− sτ (z))A−,
with A± ∈ O±(n) and �A+ − A−� = 2.

Here τ ∈ R is a constant and sτ (z) = s(z + τ) is a translation of s(z).
Then for a minimal connecting orbit A(z) with respect to F , we have

eF (Traj(A)) � eF̃ (Traj(A)) � min
γ (±1)∈�±

eF̃ (γ )
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= eF̃ (Traj(�τ (A+,A−; z))) = eF (Traj(�τ (A+,A−; z))).

Thus all the inequalities hold as equalities which implies Traj(A) = {tA+ +
(1 − t)A− : t ∈ (0, 1)} for some (A+,A−) ∈ O+(n) × O−(n) satisfying
�A+ − A−� = 2. This gives Lemma 3.7. In addition, if we write A(z) =
s̃(z)A+ + (1− s̃(z))A− and substitute it into equation (3.9), then s̃ has to be a
solution of (3.11) and thus s̃ = sτ for some τ ∈ R, which yields Lemma 3.9.

A.3. Solvability of scalar ODEs

We collect the results on solving the ODEs (cf. (4.5)):

Li ui (z, x, t) = fi (z, x, t) (i = 1, 2, · · · , 5), (A.1)

in R for (x, t) ∈ 	(δ), which have been proved in [2] (i = 1) and [17]. We
take α0 ∈ (0,

√
2].

Lemma A.2 Assume fi (·, x, t) ∈ SJ,L ,M(α0, k) for 1 � i � 5 with

f +2 (x, t) = 0, f −3 (x, t) = 0, f ±4 (x, t) = 0,
and

�
R

f j (z, x, t)θ j (z)dz = 0(1 � j � 4).

Then (A.1) has a unique bounded solution u∗i (·, x, t) ∈ SJ+2,L ,M(α0, k + 1)
which satisfies

u∗1(0, x, t) = 0, u∗+2 (x, t) = 0, u∗−3 (x, t) = 0, u∗−4 (x, t) = 0.

Precisely, the solution can be written as

u∗1(z, x, t) = θ1(z)
� z

0
θ−21 (ς)

� +∞

ς

f1(τ, x, t)θ1(τ )dτdς,

u∗2(z, x, t) = −θ2(z)
� +∞

z
θ−22 (ς)

� +∞

ς

f2(τ, x, t)θ2(τ )dτdς,

u∗3(z, x, t) = −θ3(z)
� z

−∞
θ−23 (ς)

� ς

−∞
f3(τ, x, t)θ3(τ )dτdς,

u∗4(z, x, t) =
� z

−∞
(τ − z) f4(τ, x, t)dτ,

u∗5(z, x, t) =
1

2
√
2

� +∞

0
e−
√
2τ � f5(z + τ, x, t)+ f5(z − τ, x, t)

�
dτ,
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and we have

u∗±1 (x, t) =
1

2
f ±1 (x, t), u

∗−
2 (x, t) =

1

2
f −2 (x, t),

u∗+3 (x, t) =
1

2
f +3 (x, t), u

∗±
5 (x, t) =

1

2
f ±5 (x, t).

Moreover, all bounded solutions of (A.1) are given by:

ui (z, x, t) = u∗i (z, x, t)+ ai (x, t)θi (z), for 1 � i � 4,

and u∗5 is the only bounded solution to (A.1) for i = 5.

A.4. A key formula of trilinear form T f

We present a lemma, which was used in the proof of Lemma 4.4 and the
estimate for correction terms in Sect. 7.5. Recall from (4.9) that

T f (A1,A2,A3) = (A1AT2 + A2AT1 )A3 + (A3AT1 + A1AT3 )A2
+(AT2A3 + A2AT3 )A1.

Lemma A.3 Let P1 =�4
i=2 θiEi and B =

�4
i=1 Bi with Ei ,Bi ∈ Vi . Then

T f (P0,P1,B) : B
= 2s(2s − 1)E2 : (B3B4 + B4B3)+ 2s(3− 4s)E2 : (B1B2 + B2B1)
+ 2(1− s)(1− 4s)E3 : (B1B3 + B3B1)
+ 2(1− s)(1− 2s)E3 : (B2B4 + B4B2)
+ 2(1− 2s)E4 : (B2B3 + B3B2). (A.2)

Proof Through a direct calculation, we have

T f (P0,P1,B) : B
= (P0PT1+P1PT0 ) : (BBT)+(PT0P1+PT1P0) : (BTB)+ 2(BTP1) : (P0B).

(A.3)

Moreover, one has

P0PT1 + P1PT0 = (1− s)(PT1 + P1)+ s
�
(I− 2nn)PT1 + P1(I− 2nn)

�

= 2s(1− s)�E2 − (I− 2nn)E3�.
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Here, we remark that (I− 2nn)E3 ∈ V2 is symmetric. Similarly, we have

PT0P1 + PT1P0 = 2s(1− s)
�
E2 + (I− 2nn)E3

�
.

Therefore, if we let B = D+W with D ∈ Sn andW ∈ An , the first two terms
in (A.3) read as

4s(1− s)
�
E2 : (D2 −W2)+ (I− 2nn)E3 : (DW −WD)

�
.

The last term in (A.3) equals to
2P1 : (BP0B) = 2P1 : (DP0D+ DP0W+WP0D+WP0W)

= 2sE2 : (DP0D+WP0W)
+ 2((1− s)E3 + E4) : (DP0W+WP0D).

As D = B1 + B2,W = B3 + B4, we have
D2 = B21 + B1B2 + B2B1 + B22,
W2 = B3 + B4B3 + B3B4 + B24,

DW−WD = (B1B3 − B3B1)+ (B2B3 − B3B2)
+ B2B4 − B4B2,

(I− 2nn)(DW−WD) = −(B1B3 + B3B1)+ (I− 2nn)(B2B3 − B3B2)
− B2B4 − B4B2,

DP0D = (B1 + B2)(I− 2snn)(B1 + B2)
= (1− 2s)B21 + (1− 2s)(B1B2 + B2B1)
+ B22 − 2sB2nnB2,

WP0W = (B3 + B4)(I− 2snn)(B3 + B4)
= B23 − 2sB3nnB3 + B4B3 + B3B4 + B24,

DP0W+WP0D = (B1 + B2)(I− 2snn)(B3 + B4)
+ (B3 + B4)(I− 2snn)(B1 + B2)
= (1− 2s)(B1B3 + B3B1 + B2B3 + B3B2)
+ B2B4 + B4B2.

Then (A.2) follows directly as we have
E2 : B2i = 0, for i = 1, 2, 3, 4; E2 : (BinnBi ) = 0, for i = 2, 3;
E3 : (B2B3 + B3B2) = 0, E3 :

�
(I− 2nn)(B2B3 − B3B2)

� = 0;
E4 : B1B3 = E4 : B3B1 = E4 : B4B2 = E4 : B2B4 = 0.

��
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A.5. Existence of solutions to the system for V(k)±

We give a sketch procedure to solve the system (2.19) with (6.25) forV(1)± and

the system (2.18) with (6.36) for V(k)± . For simplicity, we drop the superscript
k and write V± = V(k)± for k � 1. Then the equation (2.18) can be written as

∂tV± −�V± + B±,i∂iV± + C±V± + J± = 0, in Q±, (A.4)

where B±,i , J± are known matrices and C± : Mn → Mn is a known linear
map. Noticing that the equation (2.19) is linear forV(1)± , it can also be rewritten
as the form (A.4). As for A ∈ An , it holds thatA = 1

2 (A−AT). Thus, one has

P3A = nnA(I− nn)+ (I− nn)Ann, P4A = (I− nn)A(I− nn). (A.5)
According to the fact that ∂ν(nn) = 0 on 	, ∂ν commutes with P3 and P4.
Thus, the interface jump conditions (6.25) or (6.36) can be written as

P4V+ − P4V− = K1,
P4(∂νV+)− P4(∂νV−) = K2,
P3(∂νV+)− P3

�
W̄P3V−

�
= K3,

P3(∂νV−)+ P3
�
W̄P3V+

�
= K4,

(A.6)

whereK1,K2 ∈ V4,K3,K4 ∈ V3 are given smooth functions on	 = ∪t�0	t .
The system (A.4)–(A.6) is a parabolic transmission-like system with an inter-
face moving along the mean curvature flow. The transmission problem with
a fixed interface has been studied by many works; see [10,37] for the elliptic
case and [5,14] for parabolic problems for example. To treat the moving inter-
face, we transform the problem into a parabolic transmission-like system with
a fixed interface via introducing time-dependent maps.
First, we consider the simpler case K1 = 0. We can assume that there

is a smooth (in both space and time variables) map 
(·, t) : 	0 → 	t for
t ∈ [0, T ]. Then one can extend it to �, which is still denoted by 
(·, t),
such that 
±(·, t) = 
(·, t)|�±0 : �

±
0 → �±t are smooth non-degenerate

diffeomorphism. LetW±(y, t) = V±(
±(y, t), t), �±(·, t) : �±t → �±0 be
the inverse of 
± and A j±,i = ∂i�±, j ◦ 
± for 1 � i, j � m. We also use
the notations Di = ∂

∂yi
, and N̂±k = ν̂ j A j±,i Ak±,i/|ν̂ j A j±| with ν̂ being the unit
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outer normal of�+0 (the Einstein summation convention is used). By suitably
choosing 
, one may assume that

â± := det(∇
) = det(A−1± ) ∈ [λ0, λ−10 ] for some λ0 > 0,

and (â±A j±,i A
k
±,i )1� j,k�m is uniformly elliptic in the sense of

�
�±0
â±A j±,i A

k
±,i D jW± : DkW± � 2λ1

�
�±0
|DW±|2 for some λ1 > 0.

(A.7)

Then the system can be rewritten into a new system of the following type
in a fixed domain:

∂tW± − Ak±,i Dk(A j±,i D jW±)+ B̂±,i DiW± + Ĉ±W± + Ĵ± = 0,
(y, t) ∈ �±0 × [0, T ], (A.8)

and the boundary conditions are reduced to

P4W+ − P4W− = 0,
P4(DN̂+W+)− P4(DN̂−W−) = K2 ◦
,
P3(DN̂+W+)− P3

�
W̄ ◦
P3W−

�
= K3 ◦
,

P3(DN̂−W−)+ P3
�
W̄ ◦
P3W+

�
= K4 ◦
,

(A.9)

for y ∈ 	0 and t � 0. Here P3, P4 are defined by (A.5) with n being replaced
by n ◦
.
By using a similar method as in [5,14], we can obtain the existence and

uniqueness of weak solutions to the above system. The regularity of solutions
can be deduced from the following a priori energy estimate. Here we omit the
details and left them to the interested readers.

Proposition A.4 When K1 = 0, there exists λ0,C > 0 such that for smooth
solutions of (A.8)–(A.9), it holds

d

dt
Ek(t)+ λ0Fk(t) � C(1+ Ek(t)),
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with

Ek(t) = 1
2

k�
i=0

�
�±0
â±(y, t)|∂ itW±|2dy,

Fk(t) = 1
2

k�
i=0

�
�±0
â±(y, t)|D∂ itW±|2dy.

Here we use the notation
�
�±0
f± =

�
�+ f+ +

�
�− f− for simplicity.

Proof We give the proof for k = 0. Direct calculations give us that
d

dt
E0(t) =

�
�±0

�
â±W± : ∂tW± + 1

2
∂t â

±|W±|2
�
dy

=−
�
�±0
â±A j±,i A

k
±,i∂iW± : ∂kW±dy

+
�
�±0
â±
�
− B̂±,i DiW± + (1

2
∂t â

± − Ĉ±)W± − Ĵ±
�
:W±dy

+
�
	0

(DN̂+W+ :W+ − DN̂−W− :W−)â±|ν̂ j A j±|dσ(y).

Here we should note that â±|ν̂ j A j±|dσ(y) = dσ(
(y)) for y ∈ 	0 and it is
independent of the symbol + or −. So one may denote â±|ν̂ j A j±| by â|ν̂ j A j |
for y ∈ 	0. We have

�
�±0
â±
�
− B̂±,i DiW± + (1

2
∂t â

± − Ĉ±)W± − Ĵ±
�
:W±

� −c0
�
�±0
|DW±|2 + C

�
�±0
|W±|2,

for some c0,C > 0. Using the fact that DN̂W : W = P4DNW : P4W +
P3DNW : P3W, we get
�
	0

(DN̂+W+ :W+ − DN̂−W− :W−)â|ν̂ j A j |dσ(y)

=
�
	0

(P4DN̂+W+ : P4W+ − P4DN̂−W− : P4W−)â|ν̂ j A j |dσ(y)

+
�
	0

(P3DN̂+W+ : P3W+ − P3DN̂−W− : P3W−)â|ν̂ j A j |dσ(y)
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=
�
	0

(K2 ◦
 : P4W+ +K3 ◦
 : P3W+

−K4 ◦
 : P3W−)â|ν̂ j A j |dσ(y).

Applying the trace theorem and interpolation inequalities for H1(�±0 ) func-
tions, they can be bounded by

δ

�
�±0
|DW±|2dy + Cδ

�
1+

�
�±0
|W±|2dy

�
.

Therefore, by (A.7) and choosing δ sufficiently small, we have for some c1 > 0
that

d

dt
E0(t)+ c1

�
�±0
â±(y, t)|DW±|2dy � C(1+ E0(t)).

For general k � 1, the estimate can be obtained similarly by noticing that

�∂ itW±�2H2(�±) � C
�
1+

i+1�
j=0

�
�±0
|∂ jt W±|2dy

�
, for 0 � i � k − 1,

and the boundary terms can be controlled by applying the trace theorem and
interpolation inequalities as before. ��
For general K1, we can extend K1 to be a smooth An-valued function in

�−, which is denoted by K̃1. Then let

V∗(x, t) = ζ(d0(x, t))(I− nn)K̃1(I− nn),

where ζ ∈ C∞((−∞, 0]) satisfies ζ = 1 in [−δ0/2, 0] and ζ = 0 for z � −δ0.
Note that n is defined in	(δ0)with ∂νn = 0.We obtain thatV∗ is well-defined
and smooth with

P4V∗ = K1, P4∂νV∗ = ∂νK∗, P3V∗ = 0, P3∂νV∗ = 0.

By considering the newunknowns (Ṽ+, Ṽ−) = (V+,V−+V∗), we can reduce
the problem to the case of K1 = 0.
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