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NON-ISOMORPHIC SMOOTH COMPACTIFICATIONS OF THE
MODULI SPACE OF CUBIC SURFACES

SEBASTIAN CASALAINA-MARTIN®, SAMUEL GRUSHEVSKY®,
KLAUS HULEK® aAnD RADU LAZA

Abstract. The well-studied moduli space of complex cubic surfaces has three
different, but isomorphic, compact realizations: as a GIT quotient MY as a
Baily—Borel compactification of a ball quotient (B4/T")*, and as a compactified
K-moduli space. From all three perspectives, there is a unique boundary point
corresponding to non-stable surfaces. From the GIT point of view, to deal with
this point, it is natural to consider the Kirwan blowup M¥ — MYIT whereas
from the ball quotient point of view, it is natural to consider the toroidal
compactification B4/T' — (B4/T)*. The spaces M¥ and By/T have the same
cohomology, and it is therefore natural to ask whether they are isomorphic.

Here, we show that this is in fact not the case. Indeed, we show the more refined
statement that M¥ and By /I are equivalent in the Grothendieck ring, but not
K-equivalent. Along the way, we establish a number of results and techniques

for dealing with singularities and canonical classes of Kirwan blowups and
toroidal compactifications of ball quotients.

§1. Introduction

The four-dimensional moduli space M of smooth complex cubic surfaces is one of the
gems of classical algebraic geometry. As a moduli space of hypersurfaces, it comes with
a GIT model MCEIT, well-studied via the classical invariant theory (see [Dol 3, Chap. 9],
[DvG]). Through an auxiliary construction with cubic threefolds, there is a Hodge-theoretic
ball quotient model B4/T" of the moduli space M, and its Baily—Borel compactification
(B4/T)* [ACT] (see also [DvG+] for an alternative construction of the ball quotient model,
involving K3 surfaces instead, and [KR], [Zhe] for a construction via abelian varieties of
Picard type, which also gives information on the field of definition of the period map).
Finally, as cubic surfaces are Fano, there is a K-stable compactification [OSS]. These three
models of M, each of a totally different nature, turn out to be isomorphic; in particular,
MEIT = (B,/T)* by [ACT, Th. 3.17].

The moduli space M is open in MEIT, and the complement MSIT — M, which we refer
to as the boundary or, equivalently, the discriminant, is an irreducible divisor. All of the
points in the boundary, with the exception of one, parameterize cubic surfaces with Ay
singularities, which are GIT stable. The remaining point is the unique GIT boundary point
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Asa, € MCIT which, from the GIT (and also K-moduli) point of view, corresponds to
the unique strictly polystable orbit of cubic surfaces with 3A5 singularities. From the ball
quotient perspective, under the identification MG = (B,/I')*, A4, is the unique cusp
C3A4, of (B4/F)*

For the general GIT setup, in the case where one is taking a GIT quotient of a smooth
projective variety, Kirwan has introduced a procedure, usually called the Kirwan blowup
of the GIT moduli space, which we denote M¥ — MS™T in our case. The crucial point
is that in general a Kirwan blowup is always a desingularization in the sense that it
only has finite quotient singularities; alternatively, in the language of stacks, the natural
quotient stack structure for the Kirwan blowup gives a smooth Deligne-Mumford stack.
Similarly, to improve the singularities of the Baily—Borel compactification, one considers
toroidal compactifications. Additionally, in some cases, one can attach modular meaning
to some toroidal compactifications (e.g., [Ale2]). In general, a toroidal compactification
depends on some choice of a fan, but for the case of ball quotients, the choice is unique,
and we denote the toroidal compactification in our particular case by By/T — (B4/T')*. In
our particular situation, it is a coincidence that MSIT =2 (B,/T')* has only finite quotient
singularities. However, it still makes sense to consider the Kirwan blowup M and the
toroidal compactification m, respectively, in the sense that they have a better chance of
having modular interpretations (see, e.g., [Zha] for some related work) that would give rise
to natural Deligne-Mumford moduli stacks.

In our case, both M¥ and By/T are blowups of the same point Aza,(= c3a,) on
the same space M = (B,/T)*. In [CMG+1], we studied the cohomology of various
compactifications for moduli of cubic threefolds and cubic surfaces. In particular, we showed
that MX and m have the same cohomology, and we asked if M¥ and B,/T" were in
fact isomorphic. This seems very plausible especially in the context of the recent work

of Gallardo, Kerr, and Schaffler [GKS] on the moduli of marked cubic surfaces. Namely,
recall that the moduli space of cubic surfaces has a natural W (Eg)-cover M,,, obtained by
labeling the 27 lines on the cubic. Naruki [N] proved that this marked moduli space M,,
admits a smooth normal crossing compactification A/ (see also [HKT] for further modular
interpretations attached to A). On the other hand, Allcock, Carlson, and Toledo [ACT]
noticed that the ball quotient model (B4/I')* comes with a natural marked cover (B4/T',,)*
(with I, <T" and I'/T',,, = W (Eg) x {£1}) and that the associated toroidal compactification

B4/T,, behaves similarly to A. This was further clarified by Gallardo, Kerr, and Schaffler
[GKS] (see also Remark 4.7 for a quick alternative proof), who showed that in fact the

Naruki and the marked toroidal compactifications agree: N = B4/T',,,. Returning to the

unmarked case, the main result of our paper is that, surprisingly, M¥X and By/T' are
not isomorphic. Furthermore, we investigate and explain the geometry underlying this
phenomenon.

THEOREM 1.1. Neither the birational map f : MY --» By /T from the Kirwan blowup of
the GIT moduli space of cubic surfaces to the toroidal compactification of the ball quotient
model, which is the identity on the moduli space M of smooth cubic surfaces, nor its inverse
f~1, extends to a morphism of the compactifications.

We provide a quick proof of this theorem by showing that the strict transform in By /T’
of the discriminant divisor (the closure of the locus of cubics with an A; singularity) in
(By/I)* = MSIT meets the exceptional divisor in By/I" generically transversally, whereas
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this is not the case in MX. This shows a priori that the period map f does not extend
to an isomorphism. Using straightforward arguments from higher-dimensional birational
geometry, using that both M¥ and m are Q-factorial, one can deduce from this that
neither the period map f, nor its inverse f~!, extends to a morphism.

While Theorem 1.1 shows that the Kirwan and toroidal compactifications are not
naturally isomorphic, one could still wonder if the agreement of the Betti numbers, observed
in [CMG-+1], could be explained by an abstract isomorphism as complex projective varieties.
To this end, we strengthen Theorem 1.1 by showing that M and B, /T are not abstractly
isomorphic, and in fact not even K-equivalent.

Recall that two birational normal projective Q-Gorenstein varieties X and Y are said to
be K-equivalent if there exists a smooth variety Z dominating birationally both of them

N

Xe———-—- +Y

(1.1)

such that ¢g* K x ~g h* Ky . Two facts about K-equivalent varieties that motivate our interest
in this question are the following. First, it is known that smooth K-equivalent varieties
have the same Betti numbers [B, Th. 1.1] (see, e.g., [P, Chap. 4, Th. 3.1] for the case where
X and Y are not assumed to be Calabi—Yau). Second, birational normal projective Q-
Gorenstein varieties with canonical singularities, such that their canonical bundles are nef,
are known to be K-equivalent (see [Ka, Lem. 4.4]). We are, however, in neither of these
situations: first, the Kirwan and toroidal compactifications are singular (with finite quotient
singularities), and second, the canonical bundles of the compactifications are far from being
nef, as the spaces are birational to the Q-Fano variety MSIT. As it turns out, these two
compactifications are not K-equivalent.

THEOREM 1.2. The Kirwan compactification MX and the toroidal compactification
B4/T of the moduli space of smooth cubic surfaces M are not K-equivalent.

We prove Theorem 1.2 by showing that the top self-intersection numbers of the canonical
bundles of the two compactifications are different. Clearly, Theorem 1.2 implies Theorem 1.1
(since it implies that f does not extend to an isomorphism). However, we prefer first to
give an independent proof of Theorem 1.1 in §4, as this also helps elucidate the geometry
of the compactifications. This approach can also be used in other contexts such as cubic
threefolds or other Deligne-Mostow spaces. A further major ingredient of our proof is
an explicit geometric recipe for computing the canonical class of a Kirwan blowup of a
GIT quotient. This works in full generality, so long as the strictly semi-stable locus has
codimension at least 2, which we explain in §6, and which may be of independent interest
(see also Remark 6.6 regarding the singularities of these spaces).

In the absence of odd cohomology (as is the case here), another possible explanation
for the equality of Betti numbers of M¥ and (B4/T)* could be their L-equivalence in the
Grothendieck ring of varieties. We prove that in fact the classes of these compactifications
are equal in the Grothendieck ring of varieties.

THEOREM 1.3. The Kirwan compactification MX and the toroidal compactification
B4/T of the moduli space of smooth cubic surfaces M are equivalent in the Grothendieck
ring of varieties.
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The structure of the paper is as follows. We start in §2 by discussing a simple explicit
example, for motivation. This example is of two birational surfaces, which are equivalent
in the Grothendieck ring, but not K-equivalent. These are obtained as different blowups
of P? supported at one point. While this is not a GIT problem, the example demonstrates
some of the features similar to our case of the moduli of cubic surfaces, and serves as
motivation. In §3, we recall the constructions and the geometry of the compactifications of
the moduli space of cubic surfaces, and give the formulas for the discriminant and boundary
divisors in local coordinates, as well as the crucial computation of the finite stabilizers of
points on them. Some of the proofs are by detailed explicit computations, which are given
in the Appendix. In particular, in §3, we obtain the resulting non-transversality results
for the Kirwan blowup needed for proving Theorem 1.1. In §4, we discuss the geometry of
the ball quotient model in detail, obtain the resulting transversality results for the toroidal
compactification, and thereby give a direct proof of Theorem 1.1. In §5, we provide details
on the canonical bundles of the ball quotient models.

Going further, in §6, we develop the general machinery for relating the canonical bundle
of a GIT compactification and its Kirwan desingularization. We then specialize to our
case, and compute the canonical bundle of M¥. Finally, we prove our main results in §7,
where we establish the non-K-equivalence of the Kirwan blowup MX and the toroidal
compactification m, and in §8, where we show their equivalence in the Grothendieck
ring. The first requires a discussion of the top self-intersection numbers of canonical bundles
on these varieties, and the second relies on a concrete description of the boundary of the
Kirwan blowup as a quotient of a toric variety by a finite group. In the Appendix, we collect
a number of results whose proofs are based on explicit computations in the Luna slice.

REMARK 1.4. One of our motivations for this paper is our systematic investigation
of the moduli space of cubic threefolds and its compactifications (e.g., [CMG+1] and the
references within). In that case as well, there are a toroidal compactification of a ball
quotient model and a Kirwan blowup of the natural GIT quotient. Furthermore, as here,
the two models have the same cohomology. Methods similar to those used in the proof of
Theorem 1.1 show that for moduli of cubic threefolds, the natural period map does not
extend to an isomorphism, either. However, the more refined results (Theorems 1.2 and
1.3) seem at the moment out of reach for cubic threefolds.

We also note that there are other related moduli spaces where these techniques apply,
such as the moduli space of cubic surfaces with a line (see Remark 4.3). Again, we will not
pursue this here.

82. A motivating example

Before discussing the case of the moduli of cubic surfaces, we present an elementary
example that captures some of the essential aspects of our arguments. While we are not
aware of a global moduli interpretation of the example discussed here, the motivation and
the construction of the example comes from the local study of semi-stable reduction for
curves with an Ay singularity (see esp. [CML+2]), and it is at least morally related to the
moduli of cubic surfaces discussed here (see, e.g., [CMG+2, §1]).

Namely, consider the pair (M, D) consisting of M =2 P? together with a cuspidal cubic
D. Let o € D be the cusp point. Define M’ to be the (standard) blowup of M = P? at o,
with the exceptional divisor E/ C M’, and let M be the standard log resolution of the cusp,
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obtained by two further blowups of M’, with exceptional divisors F, Es, E5 over M. We
label the exceptional divisors on M in such a way that (F;)? =i —4; that is, E; is the
strict transform of E’. We contract F; and E5 on M and obtain M, which will have two
quotlent singularities of types 1(1,1) (or equivalently A1) and (1,1) (e.g., simply note that

—3, F2 = -2, and that E1 and Es do not intersect) and we denote by E C M the
exceptional divisor of the blowdown M — M, so that E is the image of F5 C M. We obtain
the following diagram:

Clearly, M is a blowup of M at o, and in fact it is a single weighted blowup of M at o.
In conclusion, both M’ and M are blowups of M at o. Both are Q-factorial with klt
singularities, but they are non-isomorphic (e.g., M’ is smooth, whereas M is singular).
More in line with our arguments, we note that the birational map f: M’ --» M does not
extend to an isomorphism, since the exceptional divisors E/ C M’ and E C M and the strict
transforms of D (denote them D’ C M’ and D C M) are non-transversal in M’, but are
transversal in M. In fact, note that (M,D+ E) is dlt, whereas (M’, D’ + E') is not. This
shows that even though M is singular, when accounting for the discriminant D, the correct
resolution of M is in fact M and not M’ (which is smooth!). Clearly, M’ and M have the
same Betti numbers, and are equal in the Grothendieck ring of varieties. On the other hand,
an elementary computation shows that M’ and M are not K- equivalent. Namely, K%, =8
(as M’ is a single regular blowup of P?), whereas KQ— = 6+ 3, since K = 7" Kq7 — %El
(as the discrepancy of a quotient singularity of type 5(1, 1)is =7).

We note that the weighted blowup M — M is motivated by [CML—&—Q], which discusses the
simultaneous semi-stable reduction for curves with certain singularities. Indeed, locally near
the cusp o, the pair (M, D) can be identified with the versal deformation for A, singularities,
with D being the discriminant. From this perspective, it is natural to consider (locally
near o) the W (Asy) cover M of M branched over D. On this cover, the discriminant D pulls

back to the Ay hyperplane arrangement. The standard blowup Matoe M (the preimage
of 0) leads to a normal crossing dlscrlmmant (see [CML+2] for the general constructlon and

discussion). Clearly, W (Az2) acts on M and M can be recovered as the quotient M M /W (As)
(again, the discussion is meant locally near o). The main point of this construction is that
it takes into account the monodromy around the discriminant divisor, and thus it leads to
a modular resolution M of the pair (M, D) (see [CML+2] for precise statements).
Similarly, returning to our setup in the current paper, the toroidal compactification of
the moduli space of cubic surfaces is a modular blowup of the Baily—Borel compactification,
which takes into account the monodromy around the discriminant divisor. In contrast, the
Kirwan resolution of the GIT quotient does not see the monodromy, and consequently the
Kirwan blowup behaves more like the standard blowup M’ — M. What we see is that
while the GIT compactification and the Baily—Borel compactification for the moduli of
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cubic surfaces are isomorphic as projective varieties, the natural stack structure (even at
certain stable points) is different. Namely, at the generic point of the discriminant divisor,
corresponding to a cubic with an A; singularity, on the GIT side, there are no extra
automorphisms (i.e., the stabilizer of the generic point of the discriminant is the diagonal
pa in SL(4,C), which induces the trivial automorphism of the cubic surface), whereas on
the Hodge theoretic side, there is an extra automorphism given by the Picard—Lefschetz
transformation corresponding to the nodal degenerations (cf. [O, p. 125]).

§3. The GIT models for the moduli of cubic surfaces

As is the case in general for hypersurfaces, the moduli of cubic surfaces has a natural
compact model: the GIT compactification MSC'™. For cubic surfaces, MCT is well
understood via classical invariant theory; in particular, MG = P(1,2,3,4,5). Here, we are
interested in the Kirwan blowup M¥ — MSEIT which is obtained by blowing up the unique
GIT strictly polystable boundary point A € MSIT according to a general procedure due to
Kirwan [Kil]. After reviewing M!T and M¥, we discuss the local structure of the Kirwan
blowup M¥ along the exceptional divisor D34,. We conclude in Proposition 3.9 that the
exceptional divisor D34, and the strict transform D 4, of the discriminant divisor do not
meet, even generically, transversally in MGIT,

3.1 Preliminaries on moduli of cubic surfaces

We denote by M = PH(P3,Ops(3))°/SL(4,C) the four-dimensional moduli space of
smooth (complex) cubic surfaces, where PH?(IP3, Ops(3))° denotes the locus of smooth
cubic surfaces embedded in P3. We denote by

M =PH°(P?,053(3)) // o(1) SL(4,C)
the GIT compactification, and by
7 ME — MEIT (3.1)

the Kirwan resolution of MST. The GIT stability for cubic surfaces has been completely
described (see, e.g., [Muk, §7.2(b)]). For a cubic surface S C P3:

e S is stable if and only if it has at worst A; singularities,

e S is semi-stable if and only if it is stable, or has at worst A, singularities, and does not
contain the axes of the Ay singularities,

e S is strictly polystable if and only if it is projectively equivalent to the so-called 345 cubic
surface

S3a, = {Tor129 + 23 = 0},
which has exactly three singular points, each of which is an A singularity.
It is a classical result (see [DvG+, (2.4)]) that the GIT compactification
MEIT =p(1,2.3.4,5)
is a weighted projective space. We will denote by
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the so-called discriminant divisor, that is, the closure of the locus of (stable) cubics with
an A; singularity. This divisor is irreducible, as the locus of corresponding cubics in
PHO(P3,0ps(3)) is irreducible; the general point is given by the orbit of the locus of cubics of
the form zoq(z1,22,23) + f(x1,22,23) with ¢(z1,z2,23) a smooth quadric, and f(x1,z2,23)
a cubic.

We denote by

the so-called Eckardt divisor, which generically parameterizes smooth cubic surfaces having
an Eckardt point—a point that lies on three lines contained in the cubic surface. This divisor
is also irreducible, as the corresponding locus in PH?(P3,Ops(3)) is irreducible; the locus
of smooth Eckardt cubics is the orbit of the locus of cubics of the form z3((x1,72,23) +
f(x1,29,23) with ¢(x1,29,23) a linear form and f(x1,z2,23) a cubic, with the line and
cubic meeting transversally. In the coordinates of the previous equation, the point (1:0:
0:0) is then an Eckardt point, and the three lines through the Eckardt point are the ones
determined by the Eckardt point and the intersection {¢ = f = 0} in the hyperplane at
infinity. Such an Eckardt cubic in these coordinates has an involution given by zg — —xy.
Note that a general smooth cubic surface with an Eckardt point has a unique Eckardt point,
and has automorphism group Z,, and moreover, the Eckardt divisor R contains the locus
of all smooth cubic surfaces that have any nontrivial automorphism (see, e.g., [DD, Table 1
and Fig. 1]).

From the description of stability given above, it follows that MSIT contains a unique
strictly polystable point Az4, € M corresponding to the orbit of the 345 cubic Ssa,,
and consequently the Kirwan resolution M¥ of MSEIT is a blowup with center supported
at Az, (see, e.g., [Ki2], [Zha]); we denote by

D34, C MK

the exceptional divisor, which is irreducible (as is the case for exceptional divisors in Kirwan
blowups, being the quotient of an open subset of the blowup of a smooth irreducible
subvariety of a smooth irreducible variety). Note that M¥ and D34, are, by construction,
smooth up to finite quotient singularities. We will denote by D 4, € M¥ the strict transform
of the discriminant divisor D4, C MEIT “and by R C MX the strict transform of the Eckardt
divisor R € MGIT,

3.2 Geometry of MSIT as a weighted projective space

In full generality, consider a weighted projective space P(qo,...,q,) = ProjClzy,...,z,] =
(C"+1 —{0})/C*, where the weight of z; (resp. the weight of the action of C* on ;) is ¢;
for i =0,...,n, where, without loss of generality, we assume that ged(qo,...,q,) =1 [Dol 1,
Prop. p. 37]. Denoting G = jiq, X - - - X g, , where pp is the multiplicative group of roots of
unity of order /, and letting the group G act diagonally on P", we can express the weighted
projective space as the quotient

P(qo,--.,qn) =P" /Gy, (3.2)
with quotient map

h:P" — P(qo,...,qn)- (3.3)

https://doi.org/10.1017/nmj.2023.27 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.27

322 S. CASALAINA-MARTIN, S. GRUSHEVSKY, K. HULEK, AND R. LAZA

This is the map of spaces associated with the identification of the graded ring C[zy,...,z,]
as the subring C[yd',...,y%"] C Clyo,...,yn] of the standard graded polynomial ring, which

can be viewed as the invariant ring for the group Gz acting diagonally.

While G4 need not be cyclic, the weighted projective space is locally a cyclic quotient. It
is covered by the open sets U; = Dy (z;) = {p € P(qo,...,qn) : x; ¢ p} (i.e., U; is the image
of {x; #0} CC"*! — {0} under the quotient map k), and one has

Us 2 C g, = C*/{(C20,..., (o1 (%1 CanY),

Qi ) >q; 15q;

where (4, is a primitive root of unity of order ¢;. This identification comes from the identifica-
tion U; = Spec(Clzo, ..., Tn](s,)), where Clzo,...,2n](s,) is the subring of elements of degree
0 in the localized ring C[xo, ..., Zs]s,, and the identification of the ring Clxzo, ..., 2y](z,) with

the subring of C[zg,...,2i—1,2i4+1s- -+ 2n|"% CClz0y...,2i—1,Zi4+1,---,2n] Of invariants for the

diagonal action of the cyclic group g, = ((¢%,...,¢q "¢ ™y, CIm)).

It is now straightforward to apply the Reid—Shepherd-Barron—Tai (RSBT) criterion to
MEIT by local computations in these charts.

LEMMA 3.1. The space MCIT =2 P(1,2,3,4,5) has canonical singularities.
Proof. We first note that Uy = C*. To explain the other charts, we first treat the chart
Us=C"/{ga),
where
91 := (5,63, €3, ¢5) -

There is only one fixed point of this finite group action, namely the origin. Here, the RSBT
criterion tells us that we have to check for all nontrivial powers g5 that the inequality

EIRARIRAE JESE J!

holds. Altogether we find one singularity in this chart, namely the point Py =(0:0:0:0:1),
that is, the image of the point (0,0,0,0,1) € C**! — {0} under the quotient map h. The
singularity at this point is canonical. The other open sets U; can be treated similarly. The
situation for U, is completely analogous, and we find one further canonical singularity,
namely P, =(0:0:1:0:0). For Us, we have to consider

Us=C*/{gy) =C*/(i,—1,—i,5).

Once again, we find one canonical singular point, namely P3 = (0:0:0:1:0). Finally, in
the chart

Up=C*/({g2) =C*/(~1,1,-1,-1),
we have a one-dimensional fixed locus, namely the line
L:={zg=x2=24=0}.

We also note that g2 = g and that P3 € L. Outside P3, we have a transversal singularity
along L of type C3/{(—1,—1,—1)). 0
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In the proof of the lemma, we have also verified that
Sing MST = (P yU{P,JUL,

as already stated in [DvG+, §6.9].

We note that the space MST =1P(1,2,3,4,5) is Q-factorial (since it only has finite
quotient singularities), and is thus Q-Gorenstein, but it is not Gorenstein. Indeed, the line
bundle Opr (1) descends under the cover h (3.3) to a Q-Cartier divisor on P(qo, ..., gy ), which
by abuse of notation we denote by Op(q,,...,q,)(1). The lowest multiple of Op(q, ... 4,)(1) which
is Cartier is then Op(qy. ... q,) (lcm(qo,...,qx)) (e.g., [F, Prop. p. 63] or [CLS, Exams. 4.1.5
and 4.2.11]). For the canonical bundle, using the fact that the weighted projective space is
a toric variety, and that the covering map h is ramified along the toric divisors, one obtains
the standard formula (e.g., [Dol 1, Th. 3.3.4])

Kgo,-an) = (= D) Or(an,. . (1)- (3.4)

-----

Thus, in our case,

Kp(1,2,34,5 = —150p1,2,3,4,5) (1), (3.5)

and its smallest multiple that is Cartier is 4Kp(1,2,3,4,5)-

Classical invariant theory for cubic surfaces explicitly identifies the geometric divisors
D4, (the nodal or discriminant) and R (the Eckardt) divisors inside MS™ 22 P(1,2,3,4,5).
For further use, we review this. By [DvG, 1.3 and 6.4], the discriminant D4, is given by
the equation

(12 —25116)2 = 2 (T30 + 23 g Ioy) (3.6)

where Ig, 16,124, 132, 140,1100 are the standard generators of the ring of invariants of the
action of SL(4,Z) on the space of cubics, and the subscripts denote their degrees. As I3y,
is a polynomial in the other invariants listed, these degrees show that we are working with
P(8,16,24,32,40) = P(1,2,3,4,5). Moreover, the Eckardt divisor is given by I, =0 (e.g.,
[DvG, §6.5]).

Pulling back the defining equation (3.6) of D4, to P* under the quotient map h given
by (3.3), we obtain

h*Da, = {(y5—2%n*)* =2"(ys + 2 %y0y3) } , (3.7)

where yo,...,y1 are homogeneous coordinates on P*. Furthermore, [DvG+] gives the
coordinates of the point Agy, € P(1,2,3,4,5) as

A3, =(8:1:0:0:0) € Dy, ,

which in particular is a smooth point of MG, Tt is also a smooth point of D, C
P(1,2,3,4,5), as in the local coordinates on the open chart Uy = C*?, the defining
equation (3.6) of the discriminant divisor becomes (1 —2%21)? = 21 (23 +27323), and Az,
corresponds to the point (1/82,0,0,0), so that taking partial derivatives of this equation at
the point As,4, gives smoothness of D4, at Asqa,.

We can perform a similar analysis for the Eckardt divisor. As mentioned above, the
Eckardt divisor R is defined by I%,,, which is an irreducible polynomial in Ig,...,I4. The
exact expression due to Salmon for 1%, in terms of Ig, ..., 4o no longer seems to be easily

https://doi.org/10.1017/nmj.2023.27 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.27

324 S. CASALAINA-MARTIN, S. GRUSHEVSKY, K. HULEK, AND R. LAZA

accessible in the literature. Dardanelli and van Geemen recently rederived it for their paper
[DvG], and provided us with the expression, which we have omitted to save space; for
reference, it is now available on S. Casalaina-Martin’s website. From that description, one
can easily see that

h*R = Opa(25). (3.8)

As already noted, MSIT has Picard number 1. For further reference, we collect here the
classes of various Weil divisors on MT =P(1,2,3,4,5):

K parr = Op(1,2,3,4,5)(—15),
Da, = Opa2,3,45)(4) (Discriminant divisor), (3.9)
R = Op(1,2,3,4,5)(25) (Eckardt divisor).

These come from (3.5), (3.7), and (3.8), respectively. In particular, we note that the following
relation holds in Pic(M%!T)q:
15

Kp(1,2,34,5 = —ZDAl . (3.10)

REMARK 3.2. There is an important subtle point that we emphasize here. The
divisor Opis(1) on (P'?)% descends as a Q-divisor to the divisor §Op(123.45)(1). The
discriminant in (P'?)% has degree 32 (the discriminant has degree (n+2)(d—1)"*! for
degree d hypersurfaces in P"*!) and descends to the Weil divisor Dy, = Op(1,2,3,4,5)(4)
on IP(1,2,3,4,5). Similarly, the Eckardt divisor on (P1?)** has degree 100 (see, e.g., [DvG,
§6.5], or [CPS, Th. 4.1] for an approach that works for more general Eckardt loci) and
descends as a Q-divisor to the divisor %Op(172737475)(25). However, this is not the Eckardt
divisor R on P(1,2,3,4,5), which, as explained above, has class Op(1,2,3.4,5)(25). In other
words, it is twice the Eckardt divisor on (P'?)** that descends to the Eckardt divisor R
on P(1,2,3,4,5). One can view this as a reflection of the fact that generic Eckardt cubic
surfaces have an extra automorphism, as opposed to the case of generic cubic surfaces with
an A; singularity, which do not have any extra automorphisms.

3.3 Local structure of the Kirwan blowup along the exceptional divisor

We recall some relevant computations from [CMG+1, App. C]. First, to employ the Luna
Slice Theorem, we will want to understand the stabilizer of the 345 cubic surface Ss4,, as
well as its action on a Luna slice.

To begin, given a cubic surface S C P3, we denote by Aut(S) the automorphisms of S
(which are automorphisms of S as a subvariety of P3, and therefore we naturally have
Aut(S) C PGL(4,C)). From our GIT setup, we are also interested in Stab(S) C SL(4,C),
the stabilizer subgroup, and, since it is sometimes easier to work with, we will also consider
the stabilizer GL(S) C GL(4,C). We recall from [CMG+1, App. C] that the former two
of these stabilizer groups for Ss4, are two-dimensional, but we also want to work out the
finite parts explicitly. To this end, we denote

D = {diag(Ao, A1, A2, A3) : AoAd1 A2 = A3} € GL(4,C)

an auxiliary group, and observe that there is an isomorphism T3 = D given by (A1, A2, A3) —
diag( A7 A5 1 A3, A1, A2, A3). We also want
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D' = DﬂSL(éL,(C) = {diag(Ao,Al,)\Q,)\g) : )\OAl)\Q — Ag, )\0)\1A2)\3 — 1} - SL(4,C),

and note the isomorphism T2 x j14 = D’ given by (A1, Ao, i/) — diag()\l_l)\z_li?’j, A1, Az2,37). To
see that this map is an isomorphism, note that this certainly gives an inclusion T? X juq < D’,
and given diag(\g, A1, A2,A3) € D', the two equations together give A3 = 1, so that A3 =i’
for some j. Finally, we denote

D" = {diag(Ao,; A1, A2, 1) 1 AoMiA2 =1} CSL(4,C),

and note the isomorphism T2 22 D" given by (A1, \2) — diag(A; A5 1, A1, Ag, 1).

We use the notation Sg for the group of matrices obtained from the group of invertible
diagonal 3 x 3 complex matrices by applying all possible permutations of the columns. The
determination of the relevant stabilizer groups is parallel to the case of the 3Dy cubic
threefold, treated in [CMG+1, Prop. B.6], and proceeds by an explicit computation, which
we put in Appendix A.1.

LEMMA 3.3 (3Ag-stabilizer). We have:

1. The group Stab(Ssa, is equal to

Stab(S34,) = { < Ss o > € SL(4,C) : oA Ao = )\g}, (3.11)
where the \; is the unique nonzero element in the ith row, and the group GL(S54,) is
equal to

S
GL(S34,)) = {( 3 & ) € GL(4,C) : A\ghi Ay = Ag}. (3.12)
2. There are central extensions
1 — pgq — Stab(S34,) — Aut(S34,) — 1, (3.13)
1 — C" — GL(S34,) — Aut(S34,) — 1. (3.14)

3. There are short exact sequences

1—— D' —— Stab(S34,) —— S3 —— 1 (3.15)

1—— D —— GL(S34,) —— S5 —— 1
with the second being split, so that there is an isomorphism
GL(S34,) = D % S3, (3.16)

where the action of Ss on D is to permute the first three entries Ao, A1, Aa.
4. The connected components of the groups above are Stab(S34,)° = D" 2T? GL(S34,)° =
D =T3, and Aut(S3a,)° = T?. There is a short ezact sequence

1— g — Stab(S:),Az)/Stab(SgAz)o — Sg — 1, (317)
and we have GL(S54,)/ GL(S54,)° = Aut(S34,)/ Aut(S34,)° = Ss.
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We now describe the action of the stabilizer of the Ss34, cubic on the Luna slice. The
description of the Luna slice appears in [Zha, p. 52|, but for clarity, particularly for the
action of the stabilizer, we include a discussion here as well.

LEMMA 3.4 (3Az-Luna slice). A Luna slice for Ssa,, normal to the orbit SL(4,C) -
[S54,] C P, is isomorphic to C®, spanned by the siz monomials

3 3 3 2 2 2
xo, ml, 1‘2, $0$3, xlxg, 1'2.%3

in the tangent space H°(IP3, Ops(3)).
The Luna slice can be projectively completed to give a PO:

6 3 3 3 2 2 2 3
P® = {apxy + a1x] + axh + agrirs + aq212s + 05523 + aza, (Tox 122 +23) }

CPHO(P?,0ps(3)) = P17,

The action of Stab(S34,) and GL(S342) on the projectively completed Luna slice is given by
their inclusion into the groups SL(4,C) and GL(4,C), respectively, with the given actions
of those groups on H°(P3 Ops(3)) from the GIT setup.

The action of Stab(Ss4,) and GL(S342) on the Luna slice is the natural induced
action. In terms of Lemma 3.3(8) and the description in (3.15), the action of an element
diag(Ao, A1, A2,A3) in D or D' is given by

()\Oa)‘l,AQa)\S) : (a0;a15a2aaaaaiaa§) =
- )\3 0 )\3 1, )\3 2 )\3 0’ Ag 1) )\3 2]
(3.18)
and the action of o € S3 C GL(S34,) is given by
ag- (04070417042704670@7045) = (aU(O)aaa(l)aa(r(2)7aa/(6)7aﬁ)7ag/(5))' (319)

Proof. For Ssa, ={F54, =0}, the matrix DF34,, whose entries span the tangent space
to the orbit of the 345 cubic, is given by (see [CMG+1, §4.2.3] for similar computations
for the 3D, cubic threefold)

ToL1T2 :L‘%JL'Q :le% T1X2X3
DF . 1'31'2 ToL1T2 1’0.%% ToL2x3
342 = 27 2
071 ToTy  ToT1T2 ToT1T3
2 2 2 3
3rory  3wi1wy 31273 3r3

Since all entries of this matrix are monomial, the only possible linear relations are pairwise
equalities, up to a constant factor. One sees that the only monomial that repeats more than
once is xox1x2, and thus all linear relations satisfied by the entries of DFs 4, are

(DF34,)00 = (DF34,)11 = (DF34,)22.

This means that the normal space to the orbit (dimP® —dim orbit =19— (16 —3) =6)
is spanned by the six monomials

3 3 3 2 2 2
xo, l‘l, 112, 1101‘3, $1x3, .’E2.’E3.
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The given action of the stabilizer on the Luna slice can be seen, for instance, from taking
the Luna slice to be the affine space

aoxg + alm:{’ + agwg’ + aﬁxg:rg + aix%xg + 0451:%353 + (zox122 + x%) C HY(P3, Ops (3)),

then using the fact that A\gA; A2 = A3, and dividing through the natural action by A3, to fix
the cubic form zgxizo —I—x% in the affine space. U

We now turn to the Eckardt divisor whose generic point parameterizes smooth cubics
with a nontrivial automorphism, and determine the multiplicity with which it contains
S34,. The proof is by an elaborate lengthy explicit computation using the explicit form of
the action on the Luna slice, and is given in Appendix A.2.

LEMMA 3.5. The Eckardt divisor R C PHO(P3,0ps(3)) = P19 contains the 3Ay orbit
SL(4,C) - [S3a,] with multiplicity p = 15; that is, if 7 : Blgpa,0).[s54,] ()% — (P*)** is

the blowup of the 3Ay orbit, with exceptional divisor Dsa,, then TR = R+ 15D34,, where
R C By/T is the strict transform of R.

One can see from the above that for the action of Stab(S54,) on the normal space, the
stabilizer of a general line will be trivial. In fact, when we blow up (P!?)** along the orbit
SL(4,C)-[S34,] in the Kirwan blowup process, then in the Luna slice, we are blowing up the
origin in C, with exceptional divisor P°. The lemma above gives the action of the stabilizer
on this P5.

For future use, we first describe the semi-stable locus for this action of the stabilizer
on P°.

LEMMA 3.6. Denoting by (To : Ty : Ty : T : T : T5) the homogeneous coordinates on the
exceptional divisor P° of the Kirwan blowup BlyC® — C® of the Luna slice described above,

the unstable locus of the action of GL(S34,) is the union of the three codimension two loci
{Ih=T5=0}, {T1 =T; =0}, {TL =T5 =0} in P°.

Proof. The action on the Luna slice given by (3.18) gives the following action of T? ~
D" = Aut(S54,)° on the C° with coordinates T, of which the exceptional divisor is the
projectivization:

(To, T1, o, T5, T3, T5) — (AN3To, N3 T1, A3 T, N T5, AT T3, A3 T5)

3.20
= (AP To, AT, AT, A2 AS 2 Ty, AT T, AST5) (3:20)

(here we are acting by diag(Ag, A1, A2,1) with A\gA; A2 =1, and thus expressing Ao = A;lAgl).
The action is by multiplying each coordinate by a monomial in Ay, Az, and thus CS is
decomposed into a direct sum of six one-dimensional torus representations. Plotting the
weights of each monomial in R?, a point in C° is stable if and only if the convex hull of the
set of weights corresponding to nonzero coordinates contains the origin in R? (e.g., [All,
Lem. 3.10] or [Dol 2, Th. 12.2]). The weight diagram consists of two points on each of three
rays from the origin. Thus, a convex hull of some subset of these six weights contains the
origin if and only if this subset contains at least one weight from each ray. This is to say, a
point is stable if and only if at least one of its two coordinates Ty and 7§ is nonzero, and so
forth. Thus, the unstable points in C* C C® are precisely those given by a pair of equations
T; =T> = 0 for some i. U
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We note that, as is the case for any Kirwan desingularization, there are no strictly
semi-stable points on this exceptional divisor. We now describe the finite stabilizers along
the exceptional divisor. This is another detailed explicit computation using the stabilizer
computed in Lemma 3.3, and we give it in Appendix A.3. We note that the proof actually
allows us to determine all possible stabilizers, but we will not need this information.

PROPOSITION 3.7 (Stabilizers along the exceptional divisor). Let x € D3a, C M¥ be a
point in the exceptional divisor, and let S, C Stab(S34,) C SL(4,C) be its stabilizer, that
18, the stabilizer of a point in the exceptional divisor of BlSL(47C).[53A2](IP’19)SS with orbit
corresponding to .

1. For x € D3a, general, S, = 4 (the diagonal subgroup of SL(4,C)).
2. For any x € D3g4,, the order of S, is not divisible by 5.

REMARK 3.8. The proof of Proposition 3.9, given in Appendix A.4, will provide another
proof of the claim (1) of Proposition 3.7 above. There, we will even show that this assertion
holds for a general point of the intersection of the strict transform D 4, of the discriminant
with the exceptional divisor D34,. We note also that part (2) above is what will enable us

to argue that the top self-intersection numbers of the canonical class on M¥ and B,/T" are
different.

We conclude the section with the following non-transversality result.

PRrROPOSITION 3.9. At a generic point of the intersection ]_N)A1 NDsa, C MY these two
divisors do not meet transversally.

Qutline of the proof. The proof of this is by a detailed computation in local coordinates
in charts of the blowup. To help the reader and the flow of the paper, we only summarize
the key steps of the arguments here, postponing further details until Appendix A.4, where
the proof will also benefit from building upon the explicit setup developed in the Appendix
prior to that proof.

We first observe that the three As singularities can be deformed independently. In
the Luna slice, the deformation space of each of the Aj singularities is C2, within which the
discriminant divisor D 4, is a cuspidal curve. Thus, altogether in the C% Luna slice near the
Ss4, cubic surface, the discriminant divisor is the product of the three equations of cubics,
in three disjoint pairs of coordinates, one of which has the form 27a3 +4ag =0.

To determine the local structure of the Kirwan blowup, one considers the blowup Bl C®
of the origin in the Luna slice, and then studies the action of T? (the connected component
of the stabilizer of S34, on this blowup). Identifying the explicit four-dimensional Luna slice
for this action, one writes down the equation of the discriminant divisor in this Luna slice
explicitly, in charts on the projective space. In a suitable chart, this discriminant divisor
(i.e., of D 4, € M) is locally a union of a number of hypersurfaces, one of which has the
form 27t3 +4ag, where ag = 0 is the local equation of the exceptional divisor of the blowup,
that is, of Dsy4,. This intersection is manifestly non-transverse, except that extra care is
needed to take care of the finite part of the stabilizer. Indeed, in principle, a quotient of a
non-transverse intersection under a finite group may become transverse, and thus we need
to ensure that the finite part of the stabilizer of Ss4, does not influence this (this is a local
computation weaker than what is needed for the proof of Proposition 3.7). O
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84. The ball quotient model and the first proof of Theorem 1.1

Allcock, Carlson, and Toledo [ACT] have constructed a ball quotient model B,/I" for
the moduli of cubic surfaces. They proved that the Baily-Borel compactification (B,4/I")*
is isomorphic to the GIT model ME!T and that under this identification the unique cusp
of (B4/T)* corresponds to the GIT boundary point Aszs, € MST. By the general theory,
one has a toroidal compactification By/T of By/T, unique in this situation, which can be
described as a blowup of (B4/T")* at the unique cusp. Similarly to the previous section, we
study the intersection of the exceptional divisor T54, of the blowup By/I' — (B4/I')* with
the strict transform D,, C By/T" of the discriminant (Heegner) divisor D,, C (B,4/T)*. Here,
in contrast with the Kirwan blowup where Proposition 3.9 gives non-transversality, we show

in Proposition 4.10 that T34, and D,, meet generically transversally. We thus obtain a first
proof of Theorem 1.1 that the isomorphism M —{A34,} 2 B, /T does not extend to an
isomorphism of the compactifications M¥ and B/, despite both spaces being the blowup
of the same point in M = (B, /T)*.

One key differentiating aspect of the ball quotient model (vs. the GIT model) is the
functorial behavior with respect to marking all the lines on the cubic surfaces (i.e.,
with respect to the natural W(Eg) cover M,, — M). This allows us to use Naruki’s
compactification N [N], which is a smooth normal crossing model for the marked moduli

space, in order to understand the structure of B,/T, by applying the isomorphism N =2
B./T,, previously established by [GIKS].

4.1 Preliminaries on the ball quotient model

We will now describe the compactifications of the ball quotient model of the moduli
space of cubic surfaces. Before delving into the specifics for cubic surfaces, we first recall
the compactification of ball quotients in general, referring to [AMR+] for the general details
of the constructions. Let

B, = {zGC”:Z]Zi\Q <1}

be an n-dimensional ball. Alternatively, we can realize B,, as follows. Let O be the ring
of integers of an imaginary quadratic field Q(\/&), and let A be a free O-module equipped
with a Hermitian form A of signature (1,n). Then

B, ={[z] e P(A®C): h(z) >0} .

For an arithmetic subgroup I' C SU(1,n), there is a quotient quasi-projective analytic
space B,,/I", which by construction has at worst finite quotient singularities. This quotient
admits a projective Baily—Borel compactification (B,,/T")* defined as the Proj of the ring of
automorphic forms with respect to I'. Geometrically, the boundary (B,,/I")* —B,,/T' = ¢p, U
---Ucp, consists of a finite number of points, called cusps. These are in 1-to-1 correspondence
with the I-orbits of isotropic lines in AQ( Vi) There are no higher-dimensional cusps since
the signature is (1,n), implying that no other isotropic subspaces exist.

In the case of ball quotients, there exists a unique toroidal compactification m
Uniqueness follows since all tori involved have rank 1. More precisely, after dividing by
the unipotent radical of the parabolic subgroup that stabilizes a given cusp, the quotient
locally looks like an open set in D* x C"~! C C* x C*~! that contains {0} x C"~! in
its closure, where here D* is the punctured unit disk. The toroidal compactification
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is then simply obtained by adding the divisor {0} x C"~!. As a result, the boundary
B,/T =B, /T =Tg U---UTg consists of a finite disjoint union of smooth (up to finite
quotient singularities) irreducible divisors, each of which is in fact a finite quotient of an
abelian variety. The natural map p: B, /T — (B,,/T)* simply contracts each divisor Tr, to
the cusp cp, (see Theorem 4.6 for a detailed discussion of the case relevant in this paper).

With this setup, we return to the case of cubic surfaces, and describe the period map
to the ball quotient. Specifically, considering the triple cover of P2 branched along a cubic
surface, one obtains a cubic threefold, and via the period map for cubic threefolds, taking
the Zs action into account, one obtains a period map to a four-dimensional ball quotient,
M — B, /T (see [ACT]). This is an open embedding, and the complement of the image is the
Heegner divisor D,, =D,,/T' C B4/I'. It turns out that in this case the rational period map
MEIT 5 (B4/T)* to the Baily-Borel compactification extends to an isomorphism, taking
the discriminant divisor D4, € MS!T to the (closure of the) Heegner divisor D,, C (B4/T)*
(which is denoted this way for nodal). Under this isomorphism, the unique strictly polystable
point Az4, € MS!T corresponding to the 34, cubic is identified with the sole cusp ¢z, =
d(B4/T)*. The natural map p: B,/T — (B4/T)* contracts the irreducible boundary divisor
T54, to c34,. From now on, we will write D 4, = D,, for the discriminant divisor, where we
use D4, when we are thinking of it from the GIT point of view, and D,, when thinking of
the ball quotient—to emphasize the context we are in.

In summary, for the case of cubic surfaces, we have a diagram

MK~ L BT (4.1)
WJ/ J/p
MGIT _~ (B4/F)*
where f is a birational map that restricts to an isomorphism
foME —D3g, 2By T —Tsa,. (4.2)
In [Ki2] and [Zha], the (intersection) Betti numbers of the spaces MS™ 2 (B,/T')* and

MY were computed. In [CMG+1, §C.2], the Betti numbers of B;/T" were computed, and
they turned out to be the same as for MX, which served as motivation for our query as

to whether these two compactifications are isomorphic, which is the main subject of the
current paper.

4.2 The toroidal compactification via marked cubic surfaces

An indispensable tool in the study of cubic surfaces is the group W (FEs), which is the
automorphism group for the configuration of the 27 lines on a smooth cubic. The moduli
space of cubic surfaces M admits a natural W (Es) cover M,, parameterizing marked
smooth cubic surfaces, that is, cubics together with a labeling of the 27 lines. Since the
automorphism group of a smooth cubic surface acts faithfully on the primitive cohomology,
it follows that M,, is in fact smooth. Furthermore, Naruki [N] constructed a smooth normal
crossing compactification N of M,,,, which admits various geometric interpretations (see,
e.g., [HKT]). In this section, we use the geometry of the Naruki model N to get a good
hold on the space of interest in our paper, By /T
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By construction, the marked moduli space M,, is a Galois cover of M with Galois group
W (Es). This cover is compatible with the ball quotient construction of Allcock, Carlson,
and Toledo [ACT]. Specifically, the monodromy group I for cubic surfaces contains a normal
subgroup I',,, <T" with

T /Ty, 22 W (Eg) x {£1} (4.3)

(see [ACT, (3.12)]). We observe that —1 acts trivially on the ball B,. This leads to a W (Eg)
cover By/T', — B, /T". Furthermore, this cover extends to the Baily-Borel compactifications
(cf. [ACT, Th. 3.17]), and then also to the toroidal compactifications—essentially because
in the ball quotient case, the toroidal compactification is canonical, and thus there is an
automatic extension. In summary, the following holds:

PROPOSITION 4.1.  With notation as above, we have the following diagram:

/

\

ll%

M 15’4/1“% (By/T)* <— B4/F

where all the spaces in the top row admit a W (Eg) action, and the morphisms are W (Eg)-
equivariant, whereas the spaces in the bottom row are the quotients with respect to this
W (Es) action.

REMARK 4.2. The GIT construction does not admit a natural W (Eg) cover (e.g., it
involves taking a quotient by PGL(4,C), which has no natural connection to W (Es)).

REMARK 4.3. We note that there is another very natural moduli space M, parameter-
izing smooth cubics together with a chosen line. It is a degree 27 non-Galois cover My — M,
which is in turn covered via M,, — M. This moduli of cubics with a line is of particular
interest as it has a model as a Deligne-Mostow moduli space DM (2°,12) of points on a line.
As such, My has both a GIT compactification, and the corresponding Kirwan blowup, as of
a configuration of points, and a toroidal compactification covering By /I'. It seems likely that
our methods from this and previous works would make it possible to determine whether
the corresponding Kirwan blowup and toroidal compactification are naturally isomorphic,

but we will not pursue it here.
It was shown recently that the marked toroidal and Naruki compactifications coincide.

THEOREM 4.4 [GKS] The Naruki compactification N is isomorphic to the toroidal
compactification By /T,,. More precisely, there is a W (Eg)-equivariant commutative diagram

My, —— By/T,,

N —=5B,)T,,

NoOTATION 4.5. In what follows, we use freely the identification given by Theorem 4.4.
Motivated by the compatibility given by diagram (4.4), we will use for B4/I',, and its
compactifications the same notation as for B4/T', simply adding the subscript m. In

particular, we will consider the divisors D,, ,,, and T34, ., on By/I',,. We will informally
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refer to D,, (and Enm) as the nodal divisor, to R (and R,, on By/T,,) as the Eckardt
divisor, and to T34, (and T34,.,) as the (toroidal) boundary divisor. Note that while D,
and R are irreducible divisors in By /T, the corresponding divisors in the marked case have
several irreducible components transitively permuted by the natural W (Eg) action.

The Naruki compactification has a well-understood structure, mostly due to Naruki [N],
with some further later clarifications by other authors.

THEOREM 4.6 (Naruki). The spaces and maps above have the following descriptions:

(0) B4/, (2 N) is smooth, and the complement of the locus M., of smooth marked cubic

surfaces is the simple normal crossing divisor T34, m Uﬁn,m.

1. (a) The Baily-Borel compactification (Bs/T'y)* has 40 cusps, permuted transitively by
the W (Eg) action, each of which lies over the unique cusp c3a, € (B4/T)*. Near each
of the 40 cusps, (B4/Tm)* is locally isomorphic to the cone over (P1)*3 embedded
in P7 via O(1,1,1).

(b) The boundary divisor T3, m C Ba/T'y, has 40 disjoint irreducible components, each
isomorphic to (P1)*3. The deck transformation group W (Es) of the cover By/T,, —
B4/T acts transitively on the set of these irreducible components.

2. (a) The W(Eg) cover (By/T'ym)* — (By/T)* is branched along the discriminant divisor
Dy, and the Eckardt divisor R, with ramification index 2 along each.

(b) The W (Es)cover Ba/T'y, = Ba/I is generically étale along the toroidal boundary
dwvisors T34, m.-
3. The stabilizer S3a, m C W (Eg) of an irreducible component of the divisor Tsa, m fits in

an extension
1— (S3)™® — S34,m — S3— 1.

Under the identification of the irreducible component with (P1)*3, the stabilizer S3a, m
acts as follows: the normal subgroup (S3)*3 acts diagonally on (P')*3, whereas the
residual Sz acts on the quotient (P1)*3/(S3)*3 = (P(2,3))*3 = (P1)*3 by permuting the
factors.

Proof. Item (0) is the main result of Naruki [N, Th. 1]. Naruki also proved that the
toroidal boundary T34, ,,, consists of 40 irreducible components (permuted transitively by
W (Es)), each isomorphic to (P*)*3. The stabilizer of a boundary component and its action
are discussed in [N, p. 22]. In particular, items (1b), (2b), and (3) follow. As an aside, we note
that each of the 40 components corresponds to a choice of embedding of the Ay x Ay x Agy
lattice into the Es lattice, and that intrinsically Ssa, ., is the normalizer Ny (gg)(342)
of such an embedding (recall that Ny, (g, (3Az2) is the unique, up to conjugacy, index 40
subgroup of W (Eg); cf. [C, Table 9]).

The ramification statement (2a) is clear for geometric reasons: the branch divisor consists
of the nodal locus (the Picard-Lefschetz transformations act as reflections in W (Fjs)), and
the locus of smooth cubics with extra automorphisms, which coincides with the Eckardt
divisor. While the occurrence of nodal degenerations is quite general, the presence of the
Eckardt component is special to cubic surfaces: it is rare for the locus of objects with extra
automorphisms to form a divisor in the moduli space, and second it reflects the fact that the
automorphism group of a cubic surface embeds into W (Ejg). The ramification statement is
also worked out in detail (from the ball quotient perspective) in [ACT, Ths. 2.14 and 7.26]
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for the nodal locus, and [ACT, §11 and Lem. 11.4] for the Eckardt locus. For the interested
reader, we point out that these two types of ramification are associated, respectively, to
short and long roots in the Eisenstein lattice used to construct the ball quotient model of
[ACT].

Finally, it remains to discuss the structure at the boundary of the Baily—Borel
compactification and the relation to the toroidal compactification. First, the Baily—Borel
compactification is a contraction of the toroidal boundary T54, , in By/T'), (= N). Thus,
(1b) implies that (B4/I',,)* has 40 cusps (see also [DvG+, §8.16], where this fact is proved
without reference to the toroidal compactification). Since (B4/T")* has a unique cusp, and
the two Baily-Borel compactifications are compatible as in (4.4), the first part of (1la)
follows. It remains to determine the local structure near the cusps of (B4/I'),)*. Naruki
[N, §11] constructed a contraction N'— N'* of the 40 irreducible components of T4, ., to
40 singularities of the type described in (1a). It was then noted in [DvG+, §2.9] that N*
coincides with (B4/I';,)*; this completes the proof. 0

REMARK 4.7. The paper [GKS] proves a stronger statement than Theorem 4.4, namely
that both N and B4/T,,, are isomorphic to an appropriate Hassett moduli space of weighted
stable rational curves. However, we note that in fact, Naruki’s [N] results regarding the

Naruki compactification N as explained in Theorem 4.6 are enough to provide a short
proof of the result of [GKS| stated in Theorem 4.4. Indeed, as explained in the proof
of Theorem 4.6(0) and (1.b), the union of the discriminant and Naruki boundary in N
is a simple normal crossing divisor, and so the rational map A --» B, /T, extends to a
morphism (see [AMR+]). From [ACT, Th. 3.17], the morphism is an isomorphism over
the generic points of the discriminant divisor in A/, mapping the discriminant in A to the
discriminant in B4/T,,. By [AF, Prop. 2.1}, we know the Satake compactification (B4/T",)*
has 40 cusps and thus the toroidal boundary consists of 40 disjoint irreducible components.
Since Naruki has shown that the Naruki boundary also consists of 40 disjoint irreducible

components (see Theorem 4.6(1.b)), the morphism N — B,/T',, cannot be a divisorial
contraction. At the same time, since the target is Q-factorial, the morphism cannot be a
small contraction. Hence, it is an isomorphism. Note that the reason this type of argument
fails in the unmarked case, that is, the reason this type of argument does not imply that
MX and m are isomorphic, is that we cannot apply the Borel extension theorem since
MH¥ does not have a normal crossing boundary (cf. Proposition 3.9).

With these preliminaries, we can extract a series of immediate consequences on the
boundary of M C B4/T'. First, Proposition 4.1 and Theorem 4.6(0) together show that this
is a normal crossing compactification in a stack sense.

COROLLARY 4.8. The boundary l~)nUTgA2 in B4/T is a normal crossings divisor, up to
finite quotients.

For further reference, we also record the structure of the toroidal boundary divisor.
COROLLARY 4.9. The toroidal boundary divisor Tsa, C By/T' is isomorphic to P3.

Proof. The boundary divisor T34, is the quotient of a fixed component of T34, m

by the relevant stabilizer group. Using Theorem 4.6, we get T4, = (P1)*3/S34, m =
Sym?® P! = P3, [
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4.3 Proof of Theorem 1.1

At this point, we are able to establish one of our main results, namely that the period
map does not extend to an isomorphism between the Kirwan compactification and the
toroidal compactification of the ball quotient model. We have seen by Proposition 3.9 that
the nodal and boundary divisors do not meet transversally, even generically, in the Kirwan
model, whereas an immediate consequence of the above discussion is that they do so in the
toroidal model.

PROPOSITION 4.10. The discriminant ]_N)n and boundary Ts4, divisors in By/T meet
generically transversally along an irreducible surface.

Proof. This follows easily from the geometry explicitly described in Theorem 4.6 for
the marked case. We first observe that the intersection of ﬁn and T34, is irreducible and
hence it will be enough to consider a generic point P of some component of the intersection
lN)n,m NT54, m- To see this, we recall that, by Theorem 4.6 (1.b), the Weyl group W (Ej) acts
transitively on the cups and hence the toroidal boundary components. We fix a component
T of Ts4,m. We claim that the stabilizer Sp(= S34,,m see Theorem 4.6 (3)) of T in
W (Es) permutes all components of TN D,, ,,,. For this, we recall that 7' (P')*3 and use
the description of the action of the stabilizer St given in Theorem 4.6(3). This stabilizer
contains a normal subgroup isomorphic to (S3)*3 acting independently on each P! factor.
There is also a residual S3 factor, which acts by permuting the three copies of P! in T. The
three copies of (S3)*3 each act on one of the copies of (P!)*3 by the projectivization of the
standard action of S3 on C?, or more intrinsically here, the projectivization of the action of
W(As) on Ay ®7C, and trivially on the other two factors. Choosing suitable coordinates,
we can assume that S3 permutes the points 0,1,00. By [N, Prop. 11.2’], the intersection
Tﬂﬁmm consists of nine components, namely the surfaces {0} x (P1)*2 {1} x (P!)*2, and
{oo} x (P1)*2 and their translates under the group S interchanging the three factors of
(P1)*3. Clearly, these components are permuted under St-.

We can now work with the component {0} x (P!)*? and recall that in By/T',,, the divisor
ﬁn,m UT54,.m has simple normal crossings. The stabilizer of a point P = (0,%;,*2) with
x; 7 0,1,00 and %1 # %2 has order 2; its nontrivial element is the involution in the first
factor of (S3)*3 which fixes 0 and interchanges 1 and oo. This defines a reflection in W (Es)
whose fixed locus is the component of 1~)n7m passing through P. This involution also fixes
the component T of T34, (as a set, not pointwise). leus, we can choose local analytic

coordinates (z1,z2,73,24) on By/I'y, near P such that D,, ,,, and T34, ., are the zero loci
of coordinates x; and xo, respectively, and such that the stabilizer acts by x; — —ux1,
leaving all other coordinates fixed. On the quotient, we can therefore take local analytic
coordinates y; = z7,y; = x;,i = 2,3,4. Then locally l~?n and T34, are given by y; =0 and
yo = 0, respectively, and the claim follows. U

REMARK 4.11. In Remark 5.5, we shall provide a different proof for the fact that W (£s)
acts transitively on the components of Dy, ,,, UT54, m.-

Proof of Theorem 1.1. This follows immediately from Propositions 3.9 and 4.10. Indeed,
these propositions show a prior: that the period map does not extend to an isomorphism.
However, this is enough to show that the period map does not extend to a morphism in either

direction. Indeed, since f gives an isomorphism MY — D34, = B, /T’ —T3a,, if f extended
to a morphism, it would have to send the irreducible divisor D34, to the irreducible divisor
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T54,. Thus, if f were to extend to a morphism, which was not an isomorphism, it would have
to be a small contraction. For a small contraction of complex varieties f:Y — X, if YV is
quasi-projective and X is normal, then X is not Q-factorial (see, e.g., [KM, Cor. 2.63]). This
would contradict the fact that m is Q-factorial, having only finite quotient singularities.
A similar argument holds for the rational map f~', since MX is also Q-factorial. 0

As a corollary of Theorem 1.1, we have the following result, which contrasts with
Corollary 4.8 for the toroidal compactification, and strengthens Proposition 3.9 (which
was itself used in the proof of Theorem 1.1) for the Kirwan compactification.

COROLLARY 4.12. The boundary l~?A1 UDs3a, in M¥ is not a normal crossings divisor,
even up to finite quotients.

Proof. If the boundary ZNDAl UDsa, in M¥X were a normal crossings divisor, up
to finite quotients, then the standard extension theorems for period maps to toroidal
compactifications [AMR+] would imply that the period map f: MX --s B4/T extended
to a morphism, contradicting Theorem 1.1. U

REMARK 4.13. We emphasize that Corollary 4.12 depends on Theorem 1.1, which in
turn depends on Proposition 3.9, so that the proof of Corollary 4.12 does not provide
an alternate proof of Proposition 3.9. On the other hand, Theorem 1.1 follows from
Theorem 1.2, whose proof is independent of Proposition 3.9. In other words, one can give an
alternate proof of Proposition 3.9 by first proving Theorem 1.2, which implies Theorem 1.1,
and then proving Corollary 4.12.

85. The canonical bundles of the ball quotient models

While Theorem 1.1 says that the period map does not extend to an isomorphism between
M and By/T, a priori it is possible that M¥ and B4/T" might be abstractly isomorphic.
To distinguish them, we study their canonical classes. We start with a fairly complete

discussion of divisor classes (in particular the canonical class) on the ball quotient side.
Similar computations occur in [CML+-1, §7] for the ball quotient model for cubic threefolds.
However, due to the simpler structure of the moduli of cubic surfaces, we are able to obtain
sharper results here.

5.1 Divisors and relations in (B./T')*

The ball quotients come equipped with a natural Q-line bundle A, the so-called Hodge line
bundle, that gives the polarization for the Baily—Borel compactification (and pulls back to a
big and nef bundle on the toroidal compactification). Since (By/I')* = MSIT =P(1,2,3,4,5)
has Picard rank 1, the divisors A, D,, and R must all be proportional. It turns out that
one can express the classes of these divisors in terms of A\ as a consequence of the work of
Borcherds. Specifically, the following holds.

THEOREM 5.1 [AF, Th. 4.7]. There is an automorphic form x4 of weight 4 whose
divisor in By is the sum of all short mirrors, each with multiplicity 1. Similarly, there
is an automorphic form xrs of weight 75 whose divisor in By is the sum of all long mirrors,
each with multiplicity 1.

Taking into account the ramification orders 6 for the discriminant divisor, which
corresponds to the sum of all short mirrors, and 2 for the Eckardt divisor, which corresponds
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to the sum of all long mirrors (see esp. [ACT, §11]), we obtain the following equalities in
Picq((B1/T)"):

1 1
AN=—-D,; A=-R. 1
5 75 2R (5.1)

Similarly, in the marked case, where the map By — (B4/I',,)* is only ramified along the
nodal locus with index 3 (e.g., [ACT, Th. 7.26]), the following holds in Picg((B4/T,,)*):

1
D=3 Dnmi  T5Am = R

Under the identification (B4/I")* = P(1,2,3,4,5), we have seen (3.9) that D, =
Op(1,2,3,4,5)(4) and R = Op(12,3,4,5)(25) (which gives R = %Dn, agreeing with (5.1)), either
of which combined with (5.1) give the following relation between the natural polarizations

on (By4/T)* and P(1,2,3,4,5):
Op(1,2,3.4,5)(1) =6A. (5.2)

We now turn to the canonical divisor. By the general theory of ball quotients (e.g., [Mum,
Prop. 3.4]), this is given by a multiple of the Hodge line bundle A, adjusted by a contribution
due to the ramification (see, e.g., [Ale 1, Th. 3.4]). The relevant multiple of A is “dim+1.”
We also note that A is given by the canonical automorphy factor given by the Jacobian, and
that modular forms of weight k are exactly the sections of A**. The ramification divisor in
our case is the union of the discriminant divisor D,, and the Eckardt divisor R, which have
branch orders 6 and 2, respectively. Thus, we obtain

)
6
By (5.2), we see that K3, /1)« = Op(1,2,3,4,5)(—15), which agrees with the canonical bundle
of P(1,2,3,4,5) (e.g., (3.9)). In the marked case, as the map By — (B4/I';,)* is only ramified
along the nodal locus with index 3, we thus obtain

1
e e (5.3)

2
K(B4/Fm)* - 5)\—§Dn7m (54)

The same general considerations give the formulas for the canonical bundles of the
toroidal compactifications.

PROPOSITION 5.2. The following hold:

L. Kg =5 \—¢Dp—5R~Tsa, .

2. Kgr=5\m— 3Dnm—Tsasm -
Proof. This is a standard computation, a consequence of Mumford’s Hirzebruch

proportionality theorem (see, e.g., [Ale 1, Th. 3.4]). O

5.2 Computations of discrepancies

In order to enable us to compute the top self-intersection of the canonical class, in this
section, we compute how divisors on the Baily—Borel compactifications compare to divisors
on the toroidal compactifications.

COROLLARY 5.3. In the notation above, the canonical class is given by

K, = P im0+ Taasm- (5.5)
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Proof. By Theorem 4.6, locally near a cusp of (B4/T',,)*, the map By/T',, — (B4/I'y,)*
is the standard blowup of the cone over (P!)*3 < P7. The claim then follows by a standard
computation for the blowup. 0

To descend to the unmarked case, we need to understand the intersection of the boundary
divisor T34, with the two ramification divisors D,, ,, and R,,.

PROPOSITION 5.4.

1. The normal bundle to the marked toroidal boundary divisor T34, m, restricted to each
irreducible boundary component, is equal to Opryxs(—1,—1,—1).

2. The restriction ]_N)n,m|;r’3A2,m of the marked discriminant divisor to each trreducible
component of the marked toroidal boundary divisor is isomorphic to Op1yxs(3,3,3).

3. The restriction Em|T3A2,m of the marked Eckardt divisor to each irreducible component
of the marked toroidal boundary divisor is isomorphic to Op1yxs(12,12,12).

Proof. The same argument as in Corollary 5.3 gives the first item. As discussed in
Theorem 4.6, the divisors l~)n7m and T34, intersect transversely, and [N, Th. 11.2’]
describes this intersection precisely. For a fixed irreducible component T of T A,, Which we
have seen is isomorphic to (IP’l) X3 the intersection of En,m with it consists of nine irreducible
components of type {pt} x P! x P! C P! x P! x P!, and thus of class Op1y=3(1,0,0) (up to
permuting the coordinates). The claim (2) thus follows.

The stabilizer S34, m € W(Eg) of Ty was identified in Theorem 4.6. Taking U, to be a

suitable invariant neighborhood of Tp, locally near Ty, the map By /I, — B4/T is simply
the quotient U, — U, /S34,.m = U, with U a neighborhood of the toroidal boundary
T54, C m. Since S34,,m,m contains a normal subgroup (S3) X3 we can take the intermediate
quotient U’ = U, /(S3)*3 and obtain a diagram

/(S3)*®
[e%

ur /5

J B
(P*)

X3 T3A2 gIP)?)

U

Un

o

compatible with Theorem 4.6(3) and Corollary 4.9. Let 7' C U’ be the quotient
To/((S5)"%) = (P(2,3))*° = (P1)*?.

To describe R,,, NTy, first recall that U,,, — U is ramified along the FEckardt and nodal loci,

with order 2 along each. The factorization U,, = U’ LN U has the property that « is ramified
along the nodal locus, whereas 5 is ramified along the Eckardt locus. Indeed, in the language
of [ACT], the subgroup (S3)*3 C Ss4, m is generated by short roots (corresponding to the
nine nodal components meeting Tp), and the residual S5 = S34,.,/(53)*3 is generated by

—

classes of long roots (corresponding to the Eckardt locus, and geometrically to cubics with
an extra involution). In this description, it is clear that the restriction of the Eckardt locus
to 1" is simply the sum of the three small diagonals (each of type Ogp1yx3(1,1,0), up to
permutation), and thus of class Op1)xs(2,2,2). The pullback via oz, of this class will be
of type Op1yx3(12,12,12). Since « is not ramified along the Eckardt locus, this will be also

the class of the reduced divisor ﬁfm|TO. 0

REMARK 5.5. The last two claims in Proposition 5.4 can be obtained also by a purely
arithmetic argument. As alluded to in the proofs above, they follow by counting the short
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and long roots incident to a fixed cusp in (B4/I',,)*. To explain this, we consider the vector
space 3, equipped with the standard orthogonal form of signature (4,1). It is well known
that the orthogonal group can then be identified as

O(F3) = W (FEg) x {£1}.

An element [w] € P(F3) is called isotropic, short, or long, depending on whether the norm
of w equals 0,1, or 2 (this does not depend on the chosen representative in F3). By [AF,
§2] (also [ACT]), these elements enumerate the cusps, the components of the discriminant
divisor 15n,m, and of the Eckardt divisor Em, respectively. We further know from [AF, Prop.
2.1] that there are 40 isotropic, 36 short, and 45 long elements in P(F3), and that the Weyl
group W (Ejg) acts transitively on each of these three sets.

Counting the number of components of the discriminant divisor 5nm and of the Eckardt
divisor ]Aém intersecting an irreducible component Ty of T34, ,,, as above is then an easy
enumeration. Indeed, the choice of the cusp, and of Tj, means fixing an isotropic element
h € P(F3), and a straightforward count shows that there are 9 short and 18 long vectors
orthogonal to h, which counts the number of irreducible components of 5n,m and R,, that
intersect Tp.

To describe the intersection of these components of ﬁn,m and Em with Ty, note that
since the stabilizer subgroup of h in W (Es) acts transitively on the set of all sort (and also
on the set of all long) vectors orthogonal to h, by symmetry it is enough to understand
the intersection with Ty of only one component of l~?nm and one component of ]:’;m with
Ty, which can be seen, for example, from the standard local coordinates near a boundary
component. All we need is then to understand the involutions which account for the degree
2 ramification along D,, and R. In the case of the nodal divisor, this is, up to symmetry,
an involution on a factor P! which fixes some point p € P', and then the restriction of
the component of Enm to Tp, fixed under this involution, is p x (P')*2, which gives the
divisor class O(p1)x3(1,0,0). Adding up all nine components of l~?n,m that meet T, we obtain
Op1yx3(3,3,3). In the case of the Eckardt divisor, the involution is given by interchanging
two of the factors of (P*)*3, while fixing the third factor. In the case of interchanging the
first two factors, the fixed locus is then equal to Az 4, 12 X P!, and has class Opryxs(1,1,0).

Summing over all 18 components of ]:ém which meet Ty, we obtain O(p1yxs(12,12,12).

We can now compare the discrepancies in the pullbacks of the discriminant and Eckardt
divisors for the moduli of marked cubic surfaces.

COROLLARY 5.6. Let p}, : B4/T'y, — (Bs/T'p,)* be the natural map. The following hold:

1. p:fLDn,m iﬁn,m + 3T3A2,m-
2. P R = R+ 12T5 4y .

Proof. 'This follows immediately from Proposition 5.4, by restricting to T34, . Indeed,
a priori we have py, Dy, = l~)n7m +al34,,m for some a, and restricting to the component
Ty of Tsa,m gives 0 = En,mm + aT54,,m|1,, which gives a =3 by parts (1) and (2)
of Proposition 5.4. The computation for the Eckardt divisor is identical using parts (1)

and (3). 0

REMARK 5.7. It is interesting to note that the formulas above are compatible with
those of Proposition 5.2 that were obtained by general considerations. Specifically, using
(5.4) and Corollaries 5.3 and 5.6, we get
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K m = P K Bur,)* T 1345.m
2 ~
= 5A — g(Dn,m =+ 3T3A2,m) +T3A2,m
2 ~
=b\— gDn,m —T345.m»

agreeing indeed with Proposition 5.2(2).

The main result of this section is the computation of the discrepancy of p* : By/T" —
(B4/T)* in the unmarked case, as this coefficient will be crucial for computing the top
self-intersection number of Km.

PRrROPOSITION 5.8. The canonical bundle of the toroidal compactification of the ball
quotient model of the moduli space of cubic surfaces is given by the formula:

Km:p*K(BZ;/F)* + 16754, .

Proof. Since in (4.4) we computed the discrepancy for the finite cover By/T',, —
(B4/T1,)*, a standard computation (see, e.g., [Ko 2, 2.3]) gives

Km :p*K(B4/F)* —|—aT3A2

for

ol
0= (Lt pp, +ug,)+1) -1,
(Tsny.m) ( KD, IURM) )

where 7(T54, m) = 1 is the ramification index for the cover By/T',, — Bs/T" along the
toroidal boundary divisor (Theorem 4.6(4)), and pp =3 and pg = 12 are defined so

that p¥ Dy, = ﬁnm +up  T3a,m and pp, Ry = R,, +ug T3a,m (Corollary 5.6). We
conclude that a = ((14+3+12)+1) —1 =16 as claimed. 0

REMARK 5.9. For completeness, we note that the analog of Corollary 5.6 in the
unmarked case is

p*Dn — ﬁn +6T3A2 5

p*R=R+24T;3,, .

Similarly to Remark 5.7, these formulas are compatible with Propositions 5.8 and 5.2(1)
and (5.3), giving a double check of our computations.

5.3 Self-intersection numbers for the toroidal compactification
Using the fact that the Baily—Borel compactification is a weighted projective space
(By/T)* =2 M = P(1,2,3,4,5), and (5.2), we conclude the following.

COROLLARY 5.10. On (B4/I')*, the following holds:

4 (—15)* 153 3,375
(K(B4/F)*) = 5! = ? = ]

4 1 1 _ 1
and A* = grer = 7355 = 155,520 °

Using the description of toroidal boundary given by Theorem 4.6, we obtain the following.
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LEMMA 5.11. The self-intersection numbers of the toroidal boundary divisors are

(T3.4,.m)* = —240 (on By/Tp), (5.6)

(Tsa) =5 (on BafD). (57)

Proof. By Theorem 4.6, each component of T34, ., is the exceptional divisor of the
standard blowup of the cone over the Segre embedding (P!)*3 — P7. It follows that the
self-intersection of each such component in B, /T, is —6. Taking into account that there are
40 disjoint such components, the first item follows. The degree of the map By/T';,, — By/T
is 51,840 = |W(Es)|, and since this covering map is unramified along T3 4,, the second claim
follows. O

Finally, we can compute the top degree self-intersection of the canonical class on the
toroidal compactification.
THEOREM 5.12.  The top self-intersection number of the canonical class on By/T' is

25,589 25,589
4 ) _ bl
(Kgm)' = Sha = 516 (5.8)

Proof. From Proposition 5.8, we get
(Kgm)' = (Ks,/r)-)* +16%(T34,)"
Substituting the numbers from Corollary 5.10 and Lemma 5.11, the conclusion follows. []

86. The canonical bundle of Kirwan desingularizations

For addressing the issue of K-equivalence of the compactifications, we now need to
perform the computations on the GIT side parallel to the ball quotient computations in
the previous section. These turn out to be more involved, and we devote this section to
the general setup and results on computing the canonical bundle of the Kirwan resolution
of a GIT quotient. This does not seem to be available in the literature, and may be of
independent interest. After discussing the general case, we specialize to the case of cubic
surfaces in §6.4.

6.1 Setup

We start with the general setup of a GIT triple (X, L,G), where X is a scheme of finite
type (we will continue to work over C to simplify notation, but the argument works over
any algebraically closed field of characteristic zero, and, with minor adjustments, in positive
characteristic, as well), L is an ample line bundle on X, and G is a connected reductive linear
algebraic group acting on X, with L being G-linearized. We will also make the following
assumptions that put us into the setup for Kirwan’s work:

e X is a smooth quasi-projective variety.
e X% £ (), that is, the stable locus is nonempty.

Note that from the second condition, and say the Luna Slice Theorem, it follows that
there are a Zariski dense open subvariety U C X* and a finite group Gx such that for all
x € U the stabilizer G, C G is isomorphic (although not necessarily equal) to G x; that is,
G x is the stabilizer of some general point of X.
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We denote by
¢: X —Y =X//1G
the GIT quotient.

6.2 Canonical classes for GIT quotients

Since X*®° is normal, so is Y (e.g, [Dol 2, Prop. 3.1, p. 45]), and so canonical classes
Kxss and Ky are defined. Note that while K xss is Cartier, recall that there are elementary
examples of quotients of smooth varieties by reductive groups that are not Q-Gorenstein
(e.g., [BGL+, Exam.7.1]); in other words, Ky need not be Q-Cartier.

6.2.1. The stable locus

Now, let Y*:= X*/G CY = X//1G be the stable locus, and to fix notation, we have the
map

¢ X — Y =X/G.

Note that since X is smooth, the Luna Slice Theorem implies that Y* is étale locally the
quotient of a smooth variety U by some finite group G;. In particular, Y* is Q-factorial,
and there is a well-defined pullback ¢** for Q-Weil divisor classes.

In this situation, we have the following Riemann—Hurwitz lemma.

LEMMA 6.1 (Riemann-Hurwitz for the stable locus). Let R*® be the divisorial locus in
X? that has a stabilizer strictly containing Gx (i.e., the union of codimension 1 irreducible
components of the locus of points in X° where the stabilizer is not isomorphic to Gx ), let
R* =JR; be its decomposition into irreducible components, and let G, be the stabilizer of
a general point of R;. Then

Kx:=¢"Ky:+» (|Gr,

Proof. It suffices to check étale locally. The Luna Slice Theorem implies that, up to a
smooth factor, the quotient ¢* : X* — Y® is étale locally equivalent to the quotient U — U/G;
for a smooth scheme U and some finite group G;. Computing the canonical bundles is then
a standard computation for the ramified cover U — U/G; (see, e.g., [Ko 2, pp. 63-64]). [

/Gx[=1)R;.

6.2.2. Strictly semi-stable locus of codimension at least 2

The computations for the stable locus carry over immediately to the general case, as
long as the strictly semi-stable locus is of codimension at least 2. From now on, we will
thus assume that X°°* —X* C X and Y —Y* CY are codimension at least 2. Under this
assumption, one can define a pullback ¢* on Q-Weil divisor classes by restricting to the stable
locus Y*® (which, as noted above, is Q-factorial), pulling back to X*®, and then extending
over the boundary, which is assumed to be of codimension at least 2. This immediately
yields the following.

COROLLARY 6.2 (Riemann-Hurwitz). Assume that X*°—X* C X** and Y —Y* CY
have codimension at least 2. Then the same conclusion as in Lemma 6.1 holds:

Kxe =q"Ky+Y (IGr|/|Gx|-1)R;,

where R; is the closure of R; in X°°.
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REMARK 6.3. The codimension at least 2 hypothesis above does rule out some standard
GIT constructions. For instance, Corollary 6.2 is not applicable in the case of the GIT
moduli space of cubic curves MSIT " as the locus of strictly semi-stable cubic curves is
the locus of A; cubic curves, which is a codimension 1 locus in the semi-stable locus in
the Hilbert scheme P = PHO (P2, Op:(3)). Of course, MSIT is simply equal to P!, so this
particular situation is trivial.

6.3 Canonical bundle of the Kirwan blowup
Here, we consider a step in the Kirwan blowup process:

F( )?ss i X 58

| | |

B Y =X//;G—"—Y =X//1G

We refer the reader to Kirwan’s various papers on the topic for the details on Kirwan
blowups, or to our paper [CMG+1] for a summary. For the convenience of the reader, recall
that this includes the data of Stab® < G, a maximal dimensional connected component of
a stabilizer, and the associated locus

Z&tane = {x € X°°: Stab® fixes z},

which is a smooth closed subvariety of X*°. Note that in Kirwan’s papers and in [CMG+1],
Stab® is denoted by “R”; this would conflict with our notation here, that R is the Eckardt
(ramification) divisor, and so we use the (possibly) more transparent Stab® in the current

paper.

LEMMA 6.4. Assume that X°°* —X°C X% and Y —Y* CY are codimension at least 2.
Let x € Z& - be a general point, let N be the fiber of the normal bundle to G-Z§5 . in
X*5 at z, let £, C N, be a general line through the origin, and let ¢ = codimy (G- Z55,,0).
Denote by ﬁl the strict transform of the ramification divisor R; in X°°, denote by
Gr C G, the stabilizer of the general line ., and denote by p; the coefficient defined by
#*R; = R; + w; F. In terms of these invariants, the canonical bundles admit the following
ETPTessions:

Kg..=qKg+) (IGr,|/IGx| - D)Ri+(|Grl/|Gx| - 1)F =7 Kxe: +(c—1)F, (6.1)

c+ > (|IGr|/IGx| =D
|GFrl/|Gx|

Ky ="Ky + ( — 1) E, ifY is Q-Gorenstein. (6.2)

Proof. The first equality in (6.1) just follows from Corollary 6.2, using that F' is the
projectivized normal bundle to the orbit G- Zg;, . € X°°, and the stabilizer of a generic
point of F' is therefore the stabilizer of the projectivized normal space at a generic point.
The second equality in (6.1) is just the formula for the canonical bundle of the blowup of
a smooth variety along a smooth subvariety.

For (6.2), we use (6.1). Indeed, substituting the expressions Ky = 7*Ky +a(E,Y,0)E
and Kxs« = ¢*Ky + > (|Gr,|/|Gx|—1)R;, we obtain
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Kg..=qm Ky +a(E,Y,0)(|Grl/|Gx)F+Y (IGr,|/|Gx|-1)Ri + (|GF|/|Gx| - 1)F
=§m Ky +> (IGr|/|Gx|—-1)R;+ ((a(E,Y,0)+1)|Gp|/|Gx| - 1) F,
Kg.=7"q"Ky+Y _(IGr|/|Gx|-1DRi+Y (IGr|/|Gx|-D)piF + (c—1)F
= 7°¢" Ky + Y _(|Gr,|/|Gx|~ 1)Ri + (c—1+Z(IGRi|/|GX|—1)W>F.

Solving for a(E,Y,0) gives the result. [

REMARK 6.5. In order to effectively compute invariants on a Kirwan blowup (e.g.,
cohomology and canonical bundles), it is useful to be able to make computations directly
on X, where one in principle has good control of the geometry and group action (as opposed
to on the blowups of X ). The invariants u; and |G| in Lemma 6.4 are chosen for this reason;
note that these can be computed at general points of the strata in X in Kirwan’s setup for
the Kirwan blowup.

REMARK 6.6. From (6.2), one can see that Q-Gorenstein GIT quotients, in our
restricted setup, have klt singularities. This is a special case of a much more general result
due to Schoutens [S, Th. 2, p. 358]. We also note that one can conclude from this that
certain moduli spaces of K-stable Fano manifolds are klt; this is again a special case of
much deeper results of Braun et al. [BGL+] and [LWX].

REMARK 6.7 (Kirwan blowups with boundary). Still under the assumption that X*° —
X5 C X*® and Y —Y*® CY are codimension at least 2, if we consider the case of a boundary
(Y,Ay) and assume that Ky + Ay is Q-Cartier, then setting Axs: = ¢*Ay, and letting
Ay be the strict transform of Ay in 17, we have

a(F, X% Axas) +14 3 (|GR|/[Gx| = 1) p
|Grl/|Gx]
Indeed, setting A .. to be the strict transform of Axss in )Z'SS, we have *Ay = Ag..; in

our situation, both the strict transform and pullback are defined by restricting to the locus
where the morphisms are either isomorphisms or étale, and then taking closures, and so the

K?-I-A?:W*(Ky-f-Ay)-i-( —1)E. (6.3)

strict transform and pullback commute. Then the same analysis as above using

K)N/ +A}~/ = W*(KY +AY) +a(E7Y7AY)Ea

K “I’A :ﬁ*(KXss+AX55)+CL(F7XSS7AXSS)F7

)}SS )}ss

gives (6.3). Note that from (6.3), it follows that if (X*%, Axs: = ¢*Ay) is klt, then so is
(Y,Ay); we emphasize that we started by assuming Ky + Ay was Q-Cartier.

/IGx|—1)R;

6.4 Computation of K x

We now specialize the general discussion of the previous section to the particular case of
the moduli of cubic surfaces. We want to apply Corollary 6.2 to compute K p cir, and then
K p<. To do this for MS!T | recall that the locus of unstable points in P! has codimension
> 2, and the locus of strictly semi-stable points has codimension > 2 in the semi-stable
locus, both in (P'?)** as well as in MSIT. Similarly, for MX, the locus of unstable points
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in the blowup of (P'?)%¢ has codimension > 2, and the locus of strictly semi-stable points
has codimension > 2 within the semi-stable locus, both in the blowup of (P1?)% as well as
in MX (see [CMG+1]). We are thus in the setup of the previous section.

Recall from §3 that the locus of cubics in MSE!T with nontrivial stabilizers is the
irreducible Eckardt divisor R, and the cubic surface parameterized by a general point of R
has automorphism group Zs. Thus, the Riemann—Hurwitz formula (Corollary 6.2) in this
case gives

K(Plg)ss = q*KMGIT +R.

The class of the Eckardt divisor is known (see Remark 3.2).
R = Op19(100), where Opis(1) is the restriction to (P!?)%¢ of the hyperplane section in
P!, Thus, we have

—Op1s (20) = q*KMGIT + Op1so (100) ,
giving
q*KMGIT = —Op19(120) .

Recall also (e.g., Remark 3.2) that the discriminant has class Op19(32) in our situation. In
other words, as the discriminant in (P'?)®¢ descends to give the Weil divisor D4, on MSIT,
the divisor Op1s (1) descends to ME!T (as a Q-divisor) to give the Q-Cartier divisor 55D, .
This finally gives

120 15
KMGIT :—372DA1 = —ZDAI, (64)

agreeing with the computation in (3.10).
We now compute Kk using the same general machinery. Recall that the Kirwan
desingularization for the case of cubic surfaces is obtained by a single blowup, supported

at the point Azq, € MSIT corresponding to the orbit of the 34y cubic surface S34,.
COROLLARY 6.8.
Kuyx = F*KMGIT +20D3A2 .

Proof. As discussed above, we are in a situation where we can employ Lemma 6.4
to compute the canonical bundle of K« via the blowup of (P'9)% along the orbit of

the 345 cubic surface. The formula (6.2) of Lemma 6.4 states that K x = 7*K et +

(c+|GR|/|Gx|—1>u 1
|G3a,|/1G x|

Gr is the stabilizer of a general point of the Eckardt divisor, G34, is the stabilizer of a

)Dg A, where Gx = py4 is the stabilizer of a general point of P19,

general point of the exceptional divisor, ¢ is the codimension of the 3A5 orbit, and u is
the multiplicity of the Eckardt locus along the 3As orbit in the sense of Lemma 6.4. As a
general Eckardt cubic surface has a Zy automorphism group, we have that |Gg|/|Gx| = 2.
Proposition 3.7(1) states that G342 = G x = p4. In other words, we have K x = 7% K yqcrr +
(c+p—1)D34,. Since we also have ¢ =6 (e.g., Lemma 3.4) and g =15 by Lemma 3.5, the
result follows. O

REMARK 6.9. The coefficient 20 for D34, (or at least the fact that the coefficient is
divisible by 5) is crucial for our computation and proof of non-K-equivalence. Note that
it follows immediately that while 7 : MX — MGIT is a blowup supported at the smooth
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point Aga, € MEIT it is not the standard blowup of the point, since otherwise K yx would
equal 7 K yqcir +3D34,.

6.5 Intersection numbers for divisors on DM stacks

On DM stacks, the top self-intersection numbers of canonical classes are rational numbers.
We need the following statement regarding the denominators that may appear, which is
essentially [AGV, Prop. 2.1.1].

PROPOSITION 6.10. Let X be a smooth proper DM stack over a field K of characteristic
0 with coarse moduli space ® : X — X of dimension d. For each geometric point
p:SpecK — X, denote by e, the exponent of the automorphism group of p, and denote
by e the least common multiple of the numbers e, for all geometric points of X. For any
divisor classes Dy,...,D4g € CHy_1(X), we have

1
Dy--Dye L.
(&

Proof. We first recall that for line bundles M;y,...,My; on X, with divisor classes
[Mi],...,[Mg] € CHg—1(X), we have by definition

[My]---[Mg] = /Xcl(Ml)mcl(Md)ﬂ[X] €.
Using the fact that X is Q-factorial, this allows us to define the intersection number Dy --- Dy
as a rational number for any divisor classes Dy,..., D4 € CHy_1(X).

To prove the bound on the denominators, we argue as follows. For any divisor D €
CHg4-1(X), the pullback ®*D is the divisor class associated with some line bundle £ on X
(given an étale presentation P :U — X, the pullback P*®*D is the class of a line bundle
on U, which descends to X). The fact that £2¢ descends to a line bundle M on X is [AGV,
Lem. 2.1.2]. Thus, we have (eD1)---(eDy) € Z, completing the proof. a

87. Proof of the non- K-equivalence

We can now conclude that M¥ and By/T are not K-equivalent, which is one of our
main results. All the work for this proof has been already done, and we just gather the
pieces here. We recall that the top self-intersection numbers of the canonical class on K-
equivalent varieties are equal—this follows from say [Ko 1, Chap. IV, App., Prop. 2.11, p.
296], which implies that if f:Y — X is a morphism of schemes of dimension d over a field,
such that f,(Oy)=0Ox, and D; are Q-Cartier divisors on X, then f*Dy--- f*Dg= Dy --- Dy.
Consequently, given two K-equivalent birational normal projective Q-Gorenstein varieties
X and Y of dimension d, one has from the definition of K-equivalence that, in the notation
of diagram (1.1), K¢ =¢* K¢ = K =h*K& = K.

We will thus prove Theorem 1.2 by showing that the top self-intersection numbers of
the canonical classes on the Kirwan and toroidal compactifications are not equal to each
other. Showing that the top self-intersection numbers of K x and of Km are not equal
to each other is greatly simplified by the fact that both of these spaces admit blowdown
maps (m and p, respectively) to the same space (B4/T')* = MSIT  with the exceptional
divisors of m and p both contracted to a single point As4,. Thus, as computed above,
the canonical class in each case is the pullback of the canonical bundle K cir plus the
exceptional divisor of the blowup with a suitable multiplicity. Since the exceptional divisors
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of m and p are both contracted to a point, the top self-intersection numbers of K x and
Km will each equal to the top self-intersection number of Ky cir plus a suitable multiple
of the top self-intersection number of the corresponding exceptional divisor.

Proof of Theorem 1.2. By the above discussion, it suffices to show that Kjlv(K % K;T.
4
To this end, recall from Corollary 6.8 and Proposition 5.8 that
Kyx = W*KMGIT +20D3 49,

Km = p*KMGIT + 16T3A2 .
The top self-intersection number for the latter is then

4 _ 14 164
Km— KMGIT - 63

by Lemma 5.11. We then compute
Kjlle = KjL\/IGIT + 204D§A2 = K;L%GIT + 5428D§A2 . (71)

By Proposition 6.10 we have Dj A, € éZ for some e that is not divisible by 5; indeed,
D3y, = (D34, D4, )%, Where we are using that MX¥ is Q-factorial to define the restriction.
By Proposition 3.7, no stabilizers along D34, have order divisible by 5. Consequently, the
two intersection numbers K} x and K& —— cannot be the same since if we write 5'2%D5

M By /T
as a product of nonzero powers of distinct primes, 5 will appear with positive exponent,
4 13
while it does not appear with positive exponent in —16% = —23—3. U

88. Proof of equality in the Grothendieck ring of varieties

In this section, we show that MX and By/T have the same class in the Grothendieck
ring of varieties, which is our last main result to be proven. Due to the fact that moduli
spaces of cubic surfaces have no odd degree cohomology, this will turn out to give another,
conceptual rather than computational, proof that these two compactifications have the same
cohomology (Corollary 8.5).

Proof of Theorem 1.5. Since MX — D34, = By/T — T54,, by additivity of the class of the
disjoint union of varieties in the Grothendieck ring, it suffices to show that the exceptional
divisors D34, and T34,, as varieties, are equivalent in the Grothendieck ring. Since we have
seen that T34, is isomorphic to P3, it thus suffices to show that Dsga, is equivalent to P3
in the Grothendieck ring. This is accomplished below in Lemma 8.1 (for an alternative
approach and proof, see Lemma 8.2 and Remark 8.4). O

We now describe explicitly the geometry of the exceptional divisor Dss, C MX, by
thinking of it as the GIT quotient of the exceptional divisor P° of the blowup of the Luna
slice by the group Aut(Ssa,). Recall that Aut(S34,) is the semidirect product of T? and
Ss3, as described in Lemma 3.3. Furthermore, the C® Luna slice is described in Lemma
3.4, and the action of Aut(Ss4,) on it is given by (3.18). We are interested in the action
of Aut(S34,) on the exceptional divisor of the blowup BlyC® — C° of the Luna slice at
the origin. Recall that the action of S3 on the exceptional P® is simply by permuting the
homogeneous coordinates (Tp : Ty : Ty : T : 15 : T5) pairwise. Our goal is to describe all
semi-stable orbits, up to the action of S3. Recall that the set of unstable orbits has already
been determined in Lemma 3.6.
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Table 1. Stable T? orbits on P°

Number To T1 TQ Ta T’i T§ Contribution to [D3A2]
(1) * * * * * * preserved setwise by Ss, so [(C*)3/S3]
(2) 0 * * * * * preserved setwise by 1 < 2, so [(C*)2/S,]
(3) * * * 0 * * preserved setwise by 1 < 2, so [(C*)2/S,]
(4) 0 0 * * * * [C*] (preserved setwise by 0 <> 1)
(5) 0 * * * 0 * [C]
(6) * * * 0 0 * [C*] (preserved setwise by 0 <> 1)
(7) 0 0 0 * * * [CY]
(8) 0 0 * * * 0 [CO]
(9) 0 0 * * * 0 [CO]
(10) * * * 0 0 0 [CO]

We will describe sets of various orbits of the same type, where by type we will simply
mean which of the homogeneous coordinates 7" vanish (and we will write 0 for them), and
which of the coordinates T do not vanish (and we will write % for an arbitrary nonzero
complex number). For such a given type of an orbit, we will parameterize the orbits of
such a type by a number of copies of C*, for the nonzero coordinates, quotiented by a
finite group. Indeed, for all orbits of a given type, we can set one of the nonzero (labeled )
homogeneous coordinates T to be equal to 1 by projectivizing, and then set two more of the
nonzero homogeneous coordinates to be equal to 1 by acting by T? C Aut(S34,). However,
a given T? orbit may contain more than one point where these three chosen coordinates are
equal to 1, due to finite stabilizers that we will describe in detail in Lemma 8.1.

To enumerate possible types of orbits, up to the S5 action, we will always permute the
coordinates Ty, 11,75 in such a way that all zeros precede all nonzero coordinates. If possible
to do so while keeping this condition for Tp, T, T3, we will further permute T5, T3, T5 to also
put all zeros before all the nonzero coordinates. Recalling from Lemma 3.6 that semi-stable
points on P are those where T; # 0 or T # 0, for each i =0,1,2, we thus enumerate the
types of semi-stable (in fact all of them stable) T? orbits on P°, and their contributions
to the class [D34,] in the Grothendieck ring of varieties in Table 1 (where we number the
types of orbits, for easy reference).

Here, we note that the quotient of C* by any finite subgroup is still a C*, so that
contributions from (4) and (6) are equal to [C*]. Thus, to compute the class of D34, in the
Grothendieck ring of varieties, it remains to compute the classes of the higher-dimensional
quotients, for which we need to understand the actions of S5 and S5 appearing in the orbits
of types (1)—(3) above.

LEMMA 8.1. The divisor Dza, C MX is equivalent to P? in the Grothendieck ring of
varieties.

Proof. From the table of contributions (Table 1), and referring to the types of orbits by
those numbers, we compute the class in the Grothendieck ring to be

[D3a,] = (1] +[(2)] +[(3)] +3[C*] +4[C7],

where the first three summands denote the classes in the Grothendieck ring of varieties of
the orbits of the corresponding types from Table 1. We start with locus (1), noticing first
that any T? orbit of any such point contains a point whose homogeneous coordinates are
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(x:#:x:1:1:1) (i.e,, such that T = T; = T5 = 1). Moreover, looking at the explicit action
of diag(Ag, A1, A2) € D" ~T? (with AgA1 A2 = 1) given by (3.20), if (Tp: Ty :To:1:1:1) and
(T§:T{:T4:1:1:1) lie on the same T? orbit, it means that there must exist (Ao, A1, A2) € T?
such that A3 = A7 = A% and such that T; = A3T} for ¢ = 0,1,2. This means that each of the
three \; must be equal to some o; = £1, subject to the condition that the product of the
three signs is equal to +1, and the values of T; and T must then differ by the corresponding
signs. Thus, the set of orbits of this form is equal to

(C)*/a,

where G is the subgroup of po X s X s given by the condition ggo102 =1, and the action
is by diagonal multiplication. The action of Ss on (C*)3/G is induced by permuting the
coordinates on (C*)3, and we note that it does not commute with the action of G. For
example, acting by signs (—1,1,—1) maps Ty : T} : T to =Ty : Ty : —T3, and then permuting
0+ 1 gives Ty : =Ty : —T%», while first permuting and then acting by signs gives =711 : Ty : —T5.

By taking the squares of the coordinates, we observe that the quotient (C*)3/(ug X g X
p2), where the action is by multiplication by three independent signs, is isomorphic to (C*)3.
Furthermore, recall that the quotient C3/Ss, under the action that permutes coordinates,
is identified with C3 by taking elementary symmetric polynomials, that is, the bijection
C3/8S3 ~ C? is given in coordinates by

(1,2, 23) — (T122X3, T1T2+Tox3+T123, T1+ T2+ T3).
By inspection, the image of (C*)? C C® under this bijection is C* x C? ~ (C*)3/S;.
Altogether, this means that the map
(y1,92,y3) = (yTY3Y5 . yivs +yay3s +yivs, vi +y3 +3)

identifies the quotient (C*)3/(uy?) x Ss with C* x C2. The contribution [(1)] to the class
[D3a4,] is [(C*)3/G x S3]. We now claim that the double cover

(C*)?/G %S5 — (C*)? /5™ xS

is étale. Indeed, to prove this, we need to check that no element of ((u2)*3 x S3) — (G % S3)
stabilizes any point in the domain of this map. Indeed, up to renumbering the coordinates,
we need to worry about the permutation being the identity, an involution 0 <+ 1 or the cycle
0+ 1+ 2+ 0, and the signs can either all be minus, or just one sign can be minus. We
thus check case by case that there are no fixed points:

(To, Ty, 1) = (—To,T1,T3) =1Tp =0,
(To, Ty, 1) = (—To,—T1,—T3) =>Ty=T1 =T5=0,
(To, 11, T2) = (=T, Ty, T2) =>Ty=-T1=-Ty=Ty=1T1 =0,
(To, Ty, 1) = (11, Ty, —T3) =15 =0,
(To, 11, T2) = (=T, —Tp,—T2) =15 =0,
(To, Ty, 1) = (=11, T5,Tp) =>Ty=-T1=-Ty=-Ty=T, =0,
(To, 11, T2) = (=T, —T»,—Tp) =>Ty=-"T1=T,=-Ty=Tp=0,

so that in each case we deduce that some coordinate must be zero, and thus the fixed point
set in (C*)? is empty. Since the only connected étale double cover of C* x C? is topologically
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itself (covering along the C* factor), it follows that [(1)] = [C* x C?] in the Grothendieck
ring.

The contributions to the class in the Grothendieck ring of the orbits of types (2) and
(3) are simpler. For (2), similarly to the previous case, we can always find a representative
with homogeneous coordinates of the form (7p:77:0:1:1:1), and such a point lies on the
same T2 orbit as (T3 : 77 :0:1:1:1) if and only if Ty = +T}, and Ty = +£T7, with the signs
chosen independently (as the signs can be compensated by choosing the suitable sign for
A2, multiplying by which fixes the zero coordinate Ty anyway). Thus, the set of such orbits
is (C*/p2)? ~ (C*)?2, where the explicit isomorphism is given by squaring each coordinate.
Then the action of the coordinate interchange involution 0 <+ 1 in these coordinates, as an
action on (C*)2, is simply the interchange of the two coordinates, that is, the restriction to
(C*)? C C? of the usual action of S interchanging the two coordinates. Under the bijection
C?%/8Sy +» C? given explicitly by

(331,332) = (331372,1171 —I—CCQ),

the image of (C*)? is equal to C* x C, and thus [(2)] = [C* x C].

Finally, for orbits of type (3), each orbit has a representative of the form (7 :1:75:1:0:
1) (we choose this form as it is preserved by the involution 0+ 2), and such a point lies on
the same T2 orbit as (T,: 1:T4:1:0:1) if and only if they are mapped to each other by the
action of diag(Ag, A1, A2), which means we must have AgA\1 A2 =1 and A=\ = )\? =1. This
is to say A\g = Ao =0 = +1 and \; = 1, and thus the set of such orbits is (C*)?/uz, where the
action is by multiplying both coordinates by —1 simultaneously. Similarly to orbits of type
(2), this action of s commutes with the action of the coordinate interchange involution, and
thus the contribution to the Grothendieck ring of varieties is [(C*)?/ug x Sa]. To determine
this class, we first identify, as above, (C*)?/S; ~ C* x C by using the elementary symmetric
functions. Then us action (x1,z2) — (—z1, —x2) acts on elementary symmetric polynomials
via (z122,21 +x2) — (T122,—21 — x2), and thus finally

[(3)] = [(C*)?/ 2 x S2] = [C* x (C/u2)] = [C* x C],

where po acts on C by sign, and the quotient is readily identified with C by taking the
square of the coordinate.
Altogether, we thus compute

[D3a,] = [(1)]+[(2)] +[(3)] +3[C*] +4[C°] = [C* x C*] +2[C* x C] 4 3[C*] +4[C"]
=[C*]- ([C*]* +2[C*] +[C°]) +2[C*] - ([C*] +[C°]) + 3[C*] +4[C"]
= [C*]® +4[C*]? + 6[C*] +4[C"],

which is equal to the class [P3], as can be seen by decomposing P? in the usual toric way,
as it is the toric variety associated with a tetrahedron, which has one highest-dimensional
cell, four faces, six edges, and four vertices. U

One can interpret the computations above as giving a description of the exceptional
divisor D34, as the quotient of a toric threefold by the action of S3. Rather than going into
the geometry of this action in detail, we sketch an alternative direct toric approach. Using
this alternative approach, we can in fact identify the polytope of this toric threefold and
the action of S3 explicitly. This gives us the added information that the toric threefold is
simplicial, and provides an alternate proof of Theorem 1.3 (see Remark 8.4).
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We first note that by general theory the GIT quotient P°//T? is itself a toric variety (see
[CLS, Chap. 14]). We now describe the polytope giving us this toric variety, and the S5
action on it.

LEMMA 8.2 (Toric polytope). Let P, be the polytope in Z3 @z R defined by the columns
of the following matrix:

3 3 3 3
I I G
P, +— 1 g 0 Al 0 1 (8.1)
2 = 402 = 2 3 2
and consider the action of S3 on Z3 given by the transposition T and the 3-cycle o:
-1 0 0 -8 -3 0
T= 5 1 0|, o= 19 7 0 |. (8.2)
-2 01 -16 —6 1

The polytope P, is a combinatorial cube, the associated toric variety Xp, is simplicial, and
the quotient of Xp, by the induced action of S3 is isomorphic to D3y, ; that is,

D3y, = Xp, /Ss.

REMARK 8.3. Strictly speaking, to define Xp,, we must first clear denominators to
obtain a convex lattice polytope, but scaling the polytope does not affect the abstract
variety, it only affects the polarization.

Proof. From the Kirwan construction, and the Luna Slice Theorem, identifying the
exceptional divisor in the blowup of the Luna slice at the origin with P° gives D3y, =
P°// 0,5(1) Stab(S3a4,) (see Lemmas 3.4 and 3.3). Note that in principle, from the Kirwan
construction, one only has that the action of the stabilizer lifts to give a linearization on
some positive tensor power of Ops (1), but the lift of the action to Ops(1) is evident from
the given explicit formula for the action, and of course which positive tensor power one uses
will not change the GIT quotient. From the description of the stabilizer in Lemma 3.3, we
can conclude that D3, = (P°//o_, (1)(C*)?)/Ss. In order to keep track of the Ss action, we
prefer to use the linearization on Ops(3).

Our first goal therefore is to describe the toric variety 5 // 0.5(3) (C*)2. To start, we claim
that the action of (C*)? on P? is induced by the natural action on the Luna slice C®, so
that fixing the inclusion of tori C* x (C*)? — (C*)® given by the matrix

111 111
v=[ -3 30 -2 2 0],
303 -2 0 2

and the character x : C* x (C*)2 — C* defined by x(#,A1,A\2) = t3, one has an identification
of GIT quotients C®//, (C* x (C*)*) =P°// o, (3)(C*)? (invariant sections of tensor powers
of the trivial line bundle C® x C over C5 with respect to the character y are canonically
identified with the invariant sections of tensor powers of Ops(3); see, e.g., [CLS, Lem.
14.1.1(b)]). Using the technique in [CLS, Chap. 14], one sees that C%//, (C* x (C*)?) is the
toric variety associated to a three-dimensional polytope obtained in the following way.
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One defines a lattice M by the exact sequence

0 M 76 2,73,

Then, considering the composition C* x (C*)? — (C*)% — C*, where the first map is the
inclusion of tori determined by =y, and the second map of tori is determined by the matrix

a=(-2 -2 -2 3 3 3),

one sees that the composition is the character y given above. From [CLS, Chap. 14], one
sees that the quotient C°//, (C* x (C*)?) is the toric variety associated with the lattice M
and the polytope

P, ={meM®zR:e;(m)>—a;, i=1,...,6},

where e; is the standard dual coordinate and the a; are the entries of the vector a. The S;3
action on C® (see Lemma 3.4) induces the S3 action on (C*)%, and therefore on Z%, and in
turn determines an S5 action on M.

The columns of the following matrix give an integral basis of M:

0 O 1
-2 0 1
—-16 —6 1
-3 -1 -1
0 -1 -1
21 8§ —1

and therefore, identifying M with Z3 using this basis, we may identify P, as the set of
(a,b,c) € R3 such that

c > 2,

—2a + ¢ > 2,
—16a — 60 + ¢ > 2,
—3a - b — ¢ > =3,
b — ¢ > -3,

2la + 8 — ¢ > -3.

From this, one can identify P, with the convex hull of eight vertices, given by the columns
of the matrix given in (8.1).!

The polytope P, is combinatorially a cube; for instance, the first four columns and
last four columns give top and bottom faces of the combinatorial cube, respectively, and
the vectors with last coordinate equal to 2 give a side face of the cube. Considering the
dictionary between polytopes and fans (e.g., [CLS, p. 75]), it is elementary to check that
the toric variety associated with P,, being a combinatorial cube, is simplicial.

Finally, in these coordinates, the S3 action on M, identified with Z32, is given by the
transposition 7 and 3-cycle o given in (8.2). 0

REMARK 8.4 (Class in the Grothendieck ring). In the terminology of Lemma 8.2, we
note that the vectors (0,1,—1), (3,—8,—1), and (—3,7,—7) define a rank 3, index 27

1 We thank Mathieu Dutour Sikiri¢ for computing this for us.
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sublattice of Z3 on which Ss acts via 7 and o by the standard permutation of vectors.
Moreover, one can check directly that the action of S3 on the vertices of the combinatorial
cube defining P, corresponds to the standard action of S3 on a cube, fixing two antipodal
vertices, and in particular acts by toric automorphisms. In this situation, it is the antipodal
vertices (0,0,3) and (0,0,2) of P, that are fixed. At the same time, taking the basis (0,0, 1),
(—1,3,0), (1,—2,2) for Z3, we have that the action of S3 in these coordinates is given by
the matrices

010 0 10
r=(100], o= -1 -1 0
00 1 0 01

From this, using the dictionary between faces of polytopes and torus orbits, one can easily
work out the action of S5 on all the torus orbits of Xp , as well as their quotients, and
consequently, re-derive the class of Xp, /S5 2 D3y, in the Grothendieck ring. For instance,
it is immediate from the action of the matrices above that the quotient of the maximal torus
(C*)3/83 is C? x C*, and similarly, that the two-dimensional tori contribute (C*)2/Ss with
quotient C x C*, and that the one-dimensional tori contribute quotients of C* by subgroups,
each giving C*. Adding up all of the contributions in the Grothendieck ring gives the same
class as P3. This gives an alternate proof of Lemma 8.1, and therefore of Theorem 1.3.

It turns out that one can use Theorem 1.3 and Lemma 8.2 to recover the fact that the
Betti numbers of MX and m are equal. Of course, the Betti numbers of M¥ were already
computed in [Ki2] and [Zha] (see also [CMG+1, (C.2)] to reconcile the numbers in those
two papers), and the Betti numbers of m were computed in our paper [CMG+1, Th.
C.1], but the proof of the following corollary helps to give a more intuitive reason for the
agreement of the Betti numbers.

COROLLARY 8.5. The Kirwan compactification MX and the toroidal compactification
B4 /T of the moduli space of smooth cubic surfaces M have the same Betti numbers.

Proof. First, we claim that M¥ and m have no odd cohomology. This follows from
the fact that MST has no odd cohomology, together with the decomposition theorem
and the fact that the exceptional divisors for 7 : M¥ — MCIT and p: m — MCIT
are quotients of simplicial toric varieties by finite groups [CLS, Th. 12.3.11] (for M¥X,
Lemma 8.2 shows that the exceptional divisor D34, is a finite quotient of a simplicial
toric variety, whereas for m, the exceptional divisor T34, is simply equal to P3, by
Corollary 4.9). The decomposition theorem also gives dim H2(M¥) = dim H2(MCEIT) +
1 = dim H?(B,/T). Finally, it remains to determine the cohomology in the middle degree
4, and the agreement dim H*(M¥X) = dim H*(B4/T') then follows from the fact that the
topological Euler characteristic for cohomology with compact supports is well-defined on
the Grothendieck ring. []

REMARK 8.6. Note that this also gives a short method of computing the rational
cohomology of By/T' and MX. Indeed, MS!T is a weighted projective space, and so has
the rational cohomology of P*. From the decomposition theorem, and the fact that m —
MEIT has exceptional divisor equal to P?, it follows that dim H%(By/T) = dim H®(B,/T') =
1, dim H?(B,/T) = dim H%(B,/T) = 2, and dim H*(B4/T) = 2. This determines the coho-
mology of M¥ via Corollary 8.5.
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Appendix A. Luna slice computations for the GIT model for cubic surfaces
In this appendix, we give the detailed proofs of some of the statements from §3. While
the results of these computations are crucial for our argument, the method is by explicit
computations in local charts on the exceptional divisors, and we have put the calculations
here in order not to interrupt the line of thought of our arguments in §3.

A.1 Proof of Lemma 3.3

While this proof is parallel to the case of the 3D, cubic threefold, which was treated in
[CMG+1, Prop. B.6], we still give the complete details, as the careful identification of the
finite groups involved is essential in our argument.

We first determine the stabilizer group GL(S34,) C GL(4,C). To begin, it is clear that
the group

{( S & ) : AoA Ao = Ag} C GL(4,C) (A.1)

stabilizes S34,. We wish to show that the stabilizer is equal to this group. For this, we
observe that any symmetry must permute the three singularities of the cubic Ss4,, that is,
the points (1:0:0:0), (0:1:0:0), and (0:0:1:0). This forces a matrix stabilizing Ss4,

to be of the form
Sg k
0| Xg /°

Such a transformation sends the monomial zgzixs to (Ao + *x3) - (121 +*x3) - (A2x2 +
xr3), where all the \’s are nonzero, and * are the entries of the unknown 1 x 3 block of the
matrix. Furthermore, x3 is sent to A3x3. Thus, all entries * must be equal to zero; otherwise
applying this transformation to S34, would give a cubic with nonzero coefficient of some
monomial z,xpx3 with 0 < a < b < 2. Thus, we have deduced that the matrix stabilizing

Ss4, must actually be of the form
Ss | 0
0|3 /)~

Finally, it is obvious that any element of the stabilizer satisfies the condition AgA;Ag = A3.
This completes the proof that the stabilizer group GL(S34,) € GL(4,C) is as claimed. The
description of Stab(Ss54,) C SL(4,C) follows immediately.

(2) This is immediate since Aut(S34,) is naturally a subgroup of PGL(4,C).

(3) We now want to describe the structure of the stabilizer group GL(S34,) C GL(4,C)
more precisely. There is clearly a short exact sequence

1— D — GL(S34,) = S3 — 1,

where D is the subgroup of diagonal matrices in GL(S34,), and the map to Ss is the one
taking a generalized permutation matrix to the associated permutation. There is an obvious
section S3 — GL(S34,), viewing S5 as block diagonal permutation matrices. This gives the
identification

GL(SgAQ) = DxSs3,

where the action of S5 on D is to permute the first three entries. The surjection of Stab(Ss34,)
onto S3 can be seen by the matrices

https://doi.org/10.1017/nmj.2023.27 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.27

354 S. CASALAINA-MARTIN, S. GRUSHEVSKY, K. HULEK, AND R. LAZA

01 0 O 0 010
10 0 O 1 000
00 ¢ 0 0100 [’
0 0 0 (s 0 0 01

where (g is a primitive 8th root of unity.

(4) The identification GL(S34,)° = D comes from (3.15) and the identification D = T3.
We then obtain the isomorphism GL(S34,)/GL(S34,)° = S5 from (3.15), as well.

The isomorphism Aut(S34,)/Aut(S54,)° = S5 then comes from (3.14). Indeed, taking
connected components of the identity, we have

1 —— C* —— GL(S34,)° —— Aut(S34,)° —— 1

| |

1 —— C* —— GL(S34,) —— Aut(S34,) —— 1

The surjection on the right in the top row is standard (say coming from looking at the

dimensions of the connected components), and the identification of the kernels of the two

rows is elementary in this case since C* is connected. Then one applies the Snake Lemma.
The short exact sequence (3.17) follows from (3.15) and the description D’ 22 T? x py.

A.2 Proof of Lemma 3.5

The Luna Slice Theorem implies that we can compute in the Luna slice. More precisely,
we mean the following. First, in order to have shorter, more standard notation (e.g., to
match the discussion of the Luna Slice Theorem in [MFK, p. 198]), let us set X = P9,
G :=8SL(4,C), z € X the point corresponding to the 345 cubic S34,, G, == Stab(S34,), and
W C X the Luna slice. Then there is an open affine neighborhood U C X of z such that U is
étale equivalent to (G x W)/Gy, and since G x W — (G x W)/G,, is a principal G,-bundle
(e.g., [MFK, Cor. p. 199]), it follows that, up to a smooth factor, U is étale equivalent to
G x W. In other words, we have a diagram

GxW

smooth

Gl.—bundlel

(GxW)/Gy 25U C X

Since the Eckardt divisor R C X is an irreducible effective divisor, preserved by the action of
G, it is elementary to check that R|y is the image of G x (RNW) under the map GxW — U,
where we take the reduced induced scheme structure on RNW. In other words, up to a
smooth factor, R|y is étale equivalent to G x (RNW). Then, since G x (RNW) is, up to a
smooth factor, étale equivalent to RNW, we conclude that u is the multiplicity of RNW
at the origin.

We shall now apply this to the Luna slice in our case. We recall from our discussion
in §3.1 that the Eckardt divisor is the divisorial locus containing all smooth cubics with
an extra automorphism, smooth cubic surfaces with extra automorphisms, so it suffices to
describe the locus of cubic surfaces in the Luna slice that have extra automorphisms.

Translating into the action of SL(4,C), it suffices to describe the locus of cubic surfaces
in the Luna slice with stabilizer group strictly containing the diagonal 4. Since we are only
interested in this locus in a neighborhood of the 345 cubic surface, we can use the fact
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from the Luna Slice Theorem that in a neighborhood of the origin in the Luna slice, the
stabilizer groups must be subgroups of Stab(Ss4,).

Since the general point of the Eckardt divisor parameterizes cubic surfaces with a Zo
automorphism group, we will first describe all subgroups of Stab(S34,) whose image in
PGL(4,C) is of order 2. Given such a subgroup, there is a matrix A in the group such that
the image of A in PGL(4,C) has order 2. Let us classify these matrices. First, considering
the sequence

0 — pg — Stab(S34,) — PGL(4,C),
we have (A) Ny is one of {Id}, {Id,—Id}, or g, so that

|A| =2,4,8.
Then, considering the diagram
(AY—— Stab(S54,)
1 D GL(S34,) —— S5 —— 1

we see that A must map to an element of S3 of order a power of 2, that is, either the identity
or a transposition.
Thus, there are two cases. We have

Mo 0 0 0
0 M 0 O
Casel  A=| | 01 N 0 oA da = A2, AoAidods =1
0 0 0 X
and, up to changing indices for the transposition,
0 M 0 O
N 0 0 0
Case II. A= 00 0 2 0 oAt da = A3, AoAidgds = —1.
0 0 0 X

We will first consider Case L. In this case, combining the two equations for the \;, we see
that A\3 = 1. Now, let us further subdivide Case I by the order |A| of A; we will denote by
(n & primitive nth root of unity. If |A| = 2, we have (recalling that we are always assuming
that A generates a subgroup of PGL(4,C) of order 2)

+1 0 0 0

|A|=2 = A= 8 :l(:)l :i?l 8 two entries 1 and two entries —1,
0 0 0 =1
i 0 0 0

|[Al=4 = A= 8 i;l iBi:s—Oio—il 8 not all entries ¢ or all —4, not all indices even,
0 0 0 7
& 0 0 0

|A|=8 = A= 8 Cél CS“’O%’“ 8 i0 and 41 not both even.
0 0 0 ¢
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In Case II, combining the two equations for the \;, we see that A3 = —1, so that A3 must
be a primitive 8th root of unity. Consequently, we can rule out the cases |A| =2 and |A| =4,
since then A3 = 1. Thus, we must have |A| = 8, and we start by observing

0 A 0 0 0 A 0 0 XM 0 0 0
X 0 0 0 o 0 0 0 | | 0 XA 0 0
0 0 X 0 | 0 0 Xx 0| 0 0 X 0
0 0 0 A 0 0 0 A 0 0 0 A

We know that A3 = (g is a primitive 8th root of unity. The above shows that A\gA; is a 4th
root of unity, so we must have A\ = 82” for some n. Combining this with AgA1 Ao = )\g,
we see that A must be of the form

0 XN 0 0
2n/xo O 0 0
0 0 G 0
0 0 0 (s

A=

Concretely, we have four options (recalling that we are always assuming that A generates
a subgroup of PGL(4,C) of order 2):

I1(i)
0 A O O
| /% 0 0 o
A= 0 0 ¢ o |’
0 0 0 (s
I1(ii)
0 A 0 0
A | G/ 0 00
0 0 ¢ O ’
0 0 0 (s
T1(iii)
0 A O 0
/X O 0 0
A: —1 )
0 0 ¢! o
0 0 0 (s
II(iv)
0 A O 0
¢§/x 0 0 0
A: -3
0 0 ¢° 0

0 0 0 s

We now consider when there can be a divisor with generic point fixed by any family of
the matrices above. In Case I, the matrices A form discrete families and so we must just
show that each such A has fixed locus of codimension 2 or more. This is a case-by-case
analysis. We recall that the action is given by (3.18).
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For the case |A| =2, in the notation of (3.18) where the action of A is described, the last
three coordinates are fixed for the action of A, and because exactly two of the A\;/\3 are
equal to —1, we see that the fixed locus is the intersection of the two coordinate hyperplanes
given by those «; being set to zero (where the a; are the coordinates used in (3.18)), thus
of codimension at least two. For the case |A| =4, we have a matrix

i 0 0 0
0 " 0 0

A = 0 O i3i3 7i0 77:1 0 ?
0 0 0 i’

where exactly two of the entries are real, and two are imaginary. Again, looking at the
action, we see that the fixed locus is contained in intersections of more than two coordinate
hyperplanes and we are done. The case |A| = 8 is similar. Indeed, suppose without loss of
generality that ig is odd. Then 2ig Z0 mod 4, and 3ig Z0 mod 2, and thus since A3 is a
power of the fourth (not eighths) root of unity, both (A\o/A3)? and (\g/)3)® are not equal
to identity, so this means the fixed locus must have ap = ai = 0. In other words, there are
no divisors in the Luna slice that have a general point fixed by a matrix A in the form of

Case L
We now consider Case II. Recall that in this case the action (similar to (3.18)) is given
by

s A e R o T 2 S 2 A o
(a0,01,02,05,a1,05) = oW a1, o™ o, oW az, oW og, ™ ag, oW a5 | .

Now, assume that we have a general point (ay,...,as) of some divisor, fixed by a matrix
A in one of the four subcases of Case II. We see that «g = 0 if and only if a; = 0. Since this
is codimension 2 (and could not sweep out a divisor while moving \g), we can assume that
oo and o are nonzero. Then, looking in the first coordinate, we have ag/ay = (A\1/)3)3,

Az
that (AgA1)3 = A§. Looking at the list of cases, Case II(i)—(iv), the only option is Case
I1(ii). Now, focusing on Case II(ii), we see that Ay/A3 = 1. Note that one also sees that
ag/az = (A1/A3)?, and a5/ag = (Ao/A3)?, which would imply that (AgA1)? = A3, which also
holds for Case II(ii).
In other words, if we have a general point (vo,...,as) of some divisor that is fixed by a
matrix A in the form of Case II, then we must be in Case II(ii), and we must have

3
and in the second coordinate, ay/ag = (Ao/A3)%. Multiplying gives us (i—; : @) =1, so

ao/ar = (A/X3)°, a1/ag = (Ao/A3)°, and ag/ag = (A1/As)?, ag/ag=(Xo/Xs)”.
Since in Case II(ii) we have (A1/A3) = (Ao/A3)™!, we see that the above only constitutes
two conditions, and cuts out a codimension 2 locus. As we vary Ag, this indeed sweeps out
a divisor.

More precisely, consider the following divisor:

{a%ag - oz%a% =0},
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2 3
that is, (Z—é) = <%> . Then the general point (a,o1,2,05,a5,a35) of this divisor is
0

stabilized by a matrix of the form

0 Xo 0

&g 0

A)\O g )\OO 0 CS O E Stab(S3A2),
0 0 0 (s

&)2 o
(s’ — ag
two choices of Ao, and one is also free to choose another primitive 8th root of unity, but

these matrices generate the same subgroup of Stab(S54,); note that since the cyclic group
(Ax,) contains the diagonal pu4, the image of (A,,) in PGL(4,C) is isomorphic to Zs. In
other words, the generic point of the divisor above corresponds to a cubic surface with
automorphism group isomorphic to Zs.

Permuting the indices, this gives three divisors of the same type. Each has degree 5, and

where (g is a primitive 8th root of unity, and A\ is chosen so that ( . There are

is a cone through the origin, and so has multiplicity 5 at the origin. There are no other
divisors in a neighborhood of 0 in the Luna slice parameterizing cubic surfaces with extra
automorphisms. This implies that the multiplicity of the restriction of the Eckardt divisor
to the Luna slice, as a reduced variety, is 15. This completes the proof.

Some of the computations below will use related notation to the above. Specifically,
we will perform computations in charts on the blowup BlygC® — C® of a Luna slice as
above. Recall that the blowup is embedded in C® x P°, with coordinates o on the C® and
homogeneous coordinates T on the P°. By using the S3 action on C® and its extension to
the blowup, it will be enough to work only with two charts on BlyCS. The first chart is the
chart Uy where Ty # 0, and the local coordinates in this chart are then

(Oéo,tl,tg,ta,ti,t’i) where t; = Ti/T(), = CPZT/To, Q; = Ot()ti, az = Ot()t’i‘, (AQ)
and similarly for the chart Uz where Tj # 0.

A.3 Proof of Proposition 3.7
Let © € D34, € MX be a point in the exceptional divisor. We want to compute the
stabilizer S, C Stab(Ss54,) C SL(4,C), that is, the stabilizer of a point in the exceptional

divisor of Blgr,4,c).| (P19)%s with orbit corresponding to x. By construction, it suffices

Ssa
to compute the stabilizze]zrs of points in the exceptional divisor of the blowup of the Luna
slice, with respect to the action of Stab(S34,). Indeed, the SL(4,C) orbit of each point in
the exceptional divisor of Blsy,4,c).[s, 5] (P19)#s intersects the blowup of the Luna slice, and
since the blowups are equivariant, one can check that the stabilizer for the SL(4,C) action
on Blsy,4,c).[s; AZ}(]P’lg)SS is just the stabilizer for a corresponding point on the Luna slice,
with respect to the action of Stab(Ss34,).

Therefore, we work with the six-dimensional Luna slice from Lemma 3.4. In order to
obtain the Kirwan blowup, we have to blow up the Luna slice at the origin, and we denote
the exceptional P° by E. The group Stab(S34,) acts on the blowup, and we have to analyze
the stabilizers of the action of Stab(S54,) on the semi-stable locus E*°. For this, we recall
that the connected component of Stab(S54,) is the torus given by diag(A1, A2, A3,1) with
A1A2A3 = 1. From Lemma 3.3, we have an exact sequence

1 — T? — Stab(Ss54,) — G(343) — 1, (A.3)

https://doi.org/10.1017/nmj.2023.27 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.27

COMPACTIFICATIONS OF MODULI OF CUBIC SURFACES 359
where G(3A3) is a finite group which is an extension of the form
1—pg — G(BAy) = S3— 1, (A4)

where S5 acts by permuting the coordinates z,x1,22. We shall now analyze the stabilizers
of the action of Stab(S34,) on E*%.

(1) This claim follows from Lemma 3.5. Indeed, E is the projectivization of the Luna
slice, and in Lemma 3.5 it is shown that the general point of the Luna slice has stabilizer pq
(more precisely, it is trivial that every point of the Luna slice has stabilizer containing the
diagonal 4, and in Lemma 3.5 it is shown that there is a neighborhood of the origin so that
the points with stabilizer group strictly containing y4 form a divisor in this neighborhood).

(2) Since the order of the group G(3As) is 23 -3, which is not divisible by 5, it is enough
to analyze the stabilizers of the connected component D" = T? acting on E, with the action
as given in (3.18). There the action is on the Luna slice, but of course this gives the action

on the projectivized Luna slice.

Since it will be convenient in the next proof in this appendix, we prefer to describe the
action of the connected component Stab(S34,)° = D” 22 T? on affine charts for the blowup
of C® at the origin. Using the S3 symmetry, we can assume that either Ty # 0 or 15 #0,
and thus only deal with the two charts Uy and Uz on the blowup. We shall start with the
chart Uy, with coordinates (A.2), and focus on the exceptional divisor g =0 within it. In
the chart Uy, the action (3.18) is given by

(Ao, A1, A2,A3) - (o, t1, b2, t5, 15, t5) =

(20 M2 A2\ s A A3 A3\ ,
_<<>\3> ao,(A—O) t1, oW t2, " L5, N i3, 3 ts (for D)

— (Agao,AgBXi’tl,AgGA;?’tQ,Aglta,xg%?ti,xgsx;?t@) (for D",
(A.5)

where in the last equality we are using that in Stab(S34,)° = D” = T? we have A3 =1, and
A2 = Ay 1)\1_1. We note in passing that this chart for the blowup is not equivariant with
respect to the full stabilizer group Stab(Ss4,), as any element of S3 that does not fix 0
would not preserve it.

The proof of (1) now becomes a case-by-case check, determining the group of (Ag, A1) C T?
that stabilizes a given point on the exceptional divisor, that is, with coordinate ag = 0.
Recall that Lemma 3.6 described the unstable locus on this exceptional divisor, and we are
only interested in semi-stable (which are in fact all stable, as this is the Kirwan blowup)
orbits.

First, we consider the locus where ¢35 # 0. Such a point can only be stabilized if Ay T—1.
If all four coordinates t1,t2,t7,t5 are nonzero, then the stabilizer is trivial. If ¢; =t =0,
then stabilizer consists of A\; such that \? = /\1_2 =1, that is, is the group Z,. If t =t5 =0,
then the stabilizer is Zs.

We now deal with the points where the coordinate t5 = 0. For such a point to be stable,
Lemma 3.6 implies that one of the following pairs of coordinates must both be nonzero:
(t1,t2), (t1,t5), (t3,t2), or (t7,t5). For any pair of nonzero coordinates, the action of T? on
this pair of coordinates is given by multiplying them by (AgA8, ASAS). If t1to # 0 = ty =13,
then the stabilizer must satisfy )\63)\‘% =1 and Aa6)\f3 = 1. Thus, A\g = A1p from the first
equation, for p a third root of unity, and then the second equation gives )\1_6)\1_3 =1, so
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that A1 can then be an arbitrary ninth root of unity. Altogether the stabilizer group is then
Z3 X Zg.

For the other three cases, the powers (a,b) and (c¢,d) are linearly independent, and at
least one of them is a primitive integral vector. Thus, in each of these cases, the stabilizer
of the pair where these are the only two coordinates is a cyclic group of order |ad — bc|.
For tit5 # 0 =ty = t3, the powers are (—3,3) and (—5,—2), and thus we obtain Zs;. For
tita # 0 =t; = t5, the powers are (—6,—3) and (—3,2), and thus we again obtain Zs; (as
we should, since the coordinate interchange (ti,t7) <+ (t7,t5) interchanges this with the
previous case). Finally, for t7t5 # 0 =t; = t5, the powers are (—3,2) and (—5,—2), and thus
we obtain Zig. The stabilizers for any case where more than two of the coordinates are
nonzero is a subgroup of one of these listed groups, and thus also has order not divisible
by 5.

It remains to consider the chart Uy where Ty # 0, so that the coordinates on this chart
are (to,t1,t2,05,t3,t5) with o; = t;05. Writing down the action (3.18) in these coordinates
gives

(Aos A1, A2, A3) - (to, t1, T2, o, B9, t5) =
A A3 ¥ A2 A2, a2
= (Jeto 53kt 7255 t2, 305, 337, 33t ) (for D) (A.6)
= (Aoto, Ag PATt1, Ag PAT e, M ag, Ag 2ATt, Ag *AT P ts)  (for D).

The only points in the exceptional divisor in the chart Uz whose S3 orbit is disjoint from
the chart Uy are those where ty =t; = t5 = 0. For such a point to be stable, we must then
have t:t5 # 0. In this case, the action is by A\g2A\? and Ay *A; 2. From \;?)\? = 1, it then
follows that A\g = A1o for some o € 1, and then from the second equation A; is a 6th root
of unity, so we obtain the stabilizer Zs X Zg.

A.4 Proof of Proposition 3.9

We will work in the Luna slice identified in Lemma 3.4, with the action of the toric part
of the stabilizer on the affine space C® with coordinates ag, a1, as, ag,aq, a5 given by (3.18),
and S3 permuting pairs of coordinates with the same index.

We first claim that in this Luna slice, the discriminant divisor D 4, locally near the origin
is given by the equation

(2705 +4a2) - (2707 +403) - (2703 +4a3) = 0. (A7)

More precisely, it is known [dPW] that the global deformations of the 3As cubic surfaces
versally (and independently) unfold the three A, singularities (i.e., the global-to-local
restriction of deformations is surjective). Since the Luna slice is smooth of dimension 6,
it follows that locally analytically (or étale locally) the Luna slice is just a product of three
copies of the standard deformation space for the As singularity (see, e.g., [CMG+2, §3.4,
esp. Fact 3.13]). In particular, it follows that the divisor D4, in the Luna slice is locally
the union of three (divisorial) components, and we denote it H := HoU H; U Ho, with S3
permuting the components. This shows that locally analytically there are some coordinates
for the Luna slice so that (A.7) is the equation of the discriminant. We claim that (A.7)
is in fact the local equation of the discriminant in our given coordinates from Lemma 3.4.
By the discussion above, it suffices to show that the hypersurface in the Luna slice given
by the equation 2702 —|—4oz% =0 in our coordinates is contained in the discriminant. Taking
partial derivatives of our family of cubics parameterized by the Luna slice in Lemma 3.4
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3 3 3 2 2 2 3
Qoxy + 0127 + aoTh + agryrs + 07T T3 + a5rx3 4 (ToT1 22 + 25),

one can check that if 2703 —1—404% =0, then the associated cubic has a singularity at the
point (1:0:0: —%), unless o = 0, in which case ap =0, and the associated cubic has a
singularity at (1:0 20 0), establishing the claim.

The Kirwan desingularization proceeds by blowing up the origin of this Luna slice C°,
and then taking the GIT quotient of the blowup by the stabilizer Stab(Ss4,) given by
(3.11). We will determine the strict transform of H in the coordinate charts on the blowup
BlyCS C C° x P°. As in the previous proof, by symmetry it is enough to work in the chart
Up given by (A.2), and in the chart Uy where t5 # 0.

We start with the chart Uy, and use (A.2) to express the proper transform of the divisor
H on it as

af - (27 +4agtd) - (2717 + dagtd) - (2715 + dapt3) = 0.

In this chart, the exceptional divisor of the blowup is given by ag =0, and thus the strict
transform of the divisor H just omits the a§ factor above. To compute the local structure of
the Kirwan blowup, we now need the Luna slice for the action of the torus T? C Stab(S54,)
given by diagonal matrices with A\gA;A\a =1 = A3 in the chart Uy, which is given in (A.5).
One can check directly that the C* given by the two equations ¢; = t; =1 is the Luna slice
for the action of T? in this chart. Thus, the intersection of the strict transform of the divisor
H with this Luna slice is given by

(27 +4at) - (27 +4aq) - (2715 + 4aot3) =0,

which intersects the exceptional divisor oy = 0 non-transversally. Indeed, the last factor in
this strict transform intersects the exceptional divisor as the intersection of the loci ag =0
and 27t3 +4040t% =0, which is non-transversal: they intersect along the codimension 2 space
ag =to =0, but with multiplicity 2. To ascertain the non-transversality in the moduli space,
one needs to further check that taking the quotient by T? and by S3; does not cause the
intersection to become transverse. For completeness, and as a cross-check, we will perform
this computation in full detail in the chart Uj.

We now work in the chart Uy with coordinates to,?1,%2, 05,153,135, and express a; = agt;.
Thus, the proper transform of the discriminant divisor H becomes

af - (2715 + dag) - (2715 + dagtd) - (2785 + dagt?) .

In this chart, the exceptional divisor of the blowup is given by ag =0, and thus the strict
transform of the divisor H again just omits the ag factor. To compute the local structure
of the Kirwan blowup, we need the Luna slice for the action of the torus T? C Stab(S34,)
given by diagonal matrices with A\gA1 A2 =1 = A3 in the chart U, where the action is given
by (A.6). We claim that the C* given by the two equations t; = t5 =1 is a Luna slice for this
action of T? on Us = CS. Indeed, for any point to,t1,t2, 05,13, t5 € Uy with tqt5 # 0, there
exist \g,A\; such that \j2\? = ti_l and \y*A[% = %—1’ and thus acting by these (Ag, A1)
shows that the orbit contains a point with ¢3 =?5 = 1. The same computation also shows
that the stabilizer within T? of any point on this C* slice is at most finite.
Restricting the strict transform of the divisor H to this Luna slice for the T? gives

(2765 +4ag) - (2787 +dag) - (2765 + 4ag) = 0.
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The intersection of the first factor with the exceptional locus ag = 0 is along the codimension
two locus to = ag = 0, along which the first factor intersects the exceptional divisor non-
transversally (we observe that by Lemma 3.6 a generic point in the chart Uy with coordinates
to = ag = 0 is stable, as indeed T # 0).

What remains to check non-transversality is to handle the finite part of the stabilizer
Stab(Ss4,), as in principle the quotient of a non-transversal intersection by a finite group
may be transversal. We will thus verify that the subgroup of Stab(S34,) that fixes a generic
point of the intersection of the strict transform of H in chart Uy with the exceptional divisor
ag =0 is trivial.

Indeed, such a generic point of intersection has coordinates (to = 0,t1,t2,a5 = 0,17,t3),
as discussed above. If an element of the group Stab(Ss34,) as described in (3.11) fixes this
point, then we claim that the image of this element in S35 must be either the identity or
the involution 1 <+ 2, which permutes coordinates (t1,%3) <+ (t2,t5) (this statement also
appears in the proof of Lemma 3.5). To see this, note that at a generic point, the only zero
coordinate in P is g, and thus the image in S5 of an element of a stabilizer fixing a generic
point must fix 0 € {0,1,2}. For an element of D’ C Stab(S54,) (so that its image in Ss is
the identity), the action (A.6) on the locus ag = to = 0 restricts to

(1t b1, t5) = (ATAG 205 11, ASAG 2A5 o, ATAG %13, A3 1)

If a general point ¢,2,%7,t5 is mapped to itself, then from ¢7 coordinate being preserved it
follows that Ay = 01 Ao for some o € {£1}, and then from the preservation of ¢; coordinate
it follows that A; = A3. Similarly from the preservation of the 5 coordinate, it follows that
A2 = 03¢ with o9 € {£1}, and then from the preservation of the t5 coordinate, it follows
that Ao = A3. Thus, finally, \; = Ay = A3 = 01 \g. Furthermore, equation AgA1 Ay = )\g in the
description of Stab(S54,) in (3.11) gives o1 = 1, so that finally \g = A\; = Ay = A3, and since
the matrix is in SL(4,C), they must all be equal to the same fourth root of unity, so that
as an element of PGL(4,C) the matrix is equal to the identity.

Finally, for an element of Stab(S54,) whose image in S is the involution 1 < 2, the
action is

(t1,t2,t,t5) > (ASAG 2A5 o, AIAG 2A5 11, A3 23, AT A 1)

If this action preserves a point, then from the coordinate ¢; being preserved we see that
Mt5 = A3t;. Fix a square root = (t7/t3)'/2, so that then Ay = g2 Aoz for some o9 € {+1}.
From the coordinate t3 being preserved, we obtain Ny ZtT = t5 and thus we see that
A1 =01 oz~ ! for some 0 € {#£1}. From the product of coordinates t1¢2 being preserved, we
see that ASATAG 4)\3_2 = 1. Substituting here our expressions for A\; and s yields 10223 = A3,
so that A3 = y3\g with 42 = 0105. Furthermore substituting the expressions for all \’s in
terms of A\ in the condition AgA1 g = )\g yields then o109 = fyg’ = 010973, so that y3 =1 and
thus o109 = 1. Finally, computing the determinant, the condition for the matrix to lie in
SL(4,C) gives A\gA1A2A3 = A\§(0102) = —1. (Note that this is indeed a minus, as the matrix
is not diagonal, but includes a transposition! Recall furthermore that we are thinking about
the action of S3, and the involution 1 <+ 2 interchanges two pairs of coordinates, t1 <> to
and t7 < t5.) Thus, finally, \g = A3 must be some eighth roots of unity, but in this case t;
is mapped to some eighth root of unity times 23 times t,. Since t1,t2,t7,t5, and thus also
x, were general, t; cannot be equal to such a product, and thus there is no stabilizer of this
form.
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