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ABSTRACT: Kohn−Sham density functional theory (KS-DFT) stands out among electronic
structure methods due to its balance of accuracy and computational efficiency. However, to
achieve chemically accurate energies, standard density functional approximations in KS-DFT
often need to break underlying symmetries, a long-standing “symmetry dilemma”. By
employing f ragment spin densities as the main variables in calculations (rather than total
molecular densities, as in KS-DFT), we present an embedding framework in which this
symmetry dilemma is understood and partially resolved. The spatial overlap between
fragment densities is used as the main ingredient to construct a simple, physically motivated
approximation to a universal functional of the fragment densities. This “overlap
approximation” is shown to significantly improve semilocal KS-DFT binding energies of
molecules without artificially breaking either charge or spin symmetries. The approach is
shown to be applicable to covalently bonded molecules and to systems of the “strongly
correlated” type.

Symmetry breaking occurs in the quantum-mechanical
simulation of molecules when the lowest-energy solutions

of the electronic Schrödinger equation (SE) do not exhibit the
same symmetries of the underlying Hamiltonian. An exact
solution of the SE or, equivalently, a solution of the Kohn−
Sham equations of Density Functional Theory (KS-DFT)1,2

with the exact exchange−correlation (XC) functional EXC[n↑,
n↓] yields spin densities {n↑, n↓} that retain the symmetry of
the molecular Hamiltonian. However, it is well-known that
spin and charge symmetries of stretched molecules are often
broken by density-functional approximations (DFAs) for the
XC functional. Attempts to prevent such symmetry breaking
often lead to qualitatively incorrect electric and magnetic
properties of molecules and materials as a consequence of
delocalization and static-correlation errors.3−8 Symmetry
breaking, when allowed, can provide insight into the
quantum-mechanical correlations that exist between fluctuat-
ing charges or spins in the constituent fragments. When these
fragments are separated by a large distance R → ∞, the correct
(symmetry unbroken) solution of the SE can be understood as
an infinite-time average over fluctuations among the possible
broken-symmetry solutions.9

Consider for example, the spin symmetry of a stretched
hydrogen molecule in its singlet ground state. The correct spin-
up density n↑(r) equals the spin-down density n↓(r) at every
point in space, but imposing this symmetry on the solution of
the KS-DFT equations with an approximate XC functional
(see “RPBE” in panel a of Figure 1 for the popular PBE10)
leads to unacceptably large energy errors as the molecule is
stretched beyond R ∼ 3 bohr. A broken-symmetry solution
exists with an energy that runs close to the exact one (“UPBE”

in panel a of Figure 1), with n↑(r) localized on one atom and
n↓(r) on the other. Although strictly incorrect, this set of spin
densities does reflect one of the two possible dissociation
channels observed when infinitesimal environmental perturba-
tions induce the collapse of the wave function and breaks the
chemical bond.11

Similarly, recent studies show that the SCAN meta-GGA
funcional12 can yield highly accurate binding energies for a
great number of systems including some of the “strongly
correlated” type,13−17 but only when spin-symmetry breaking
is allowed. A question then arises on the interpretation of such
broken-symmetry solutions for f inite R.18 These are useful,
among others, to calculate values of magnetic properties of
molecules such as exchange-coupling constants.19,20

Is it possible to calculate accurate energies without breaking
symmetries when employing standard (e.g., PBE, SCAN) XC
functionals? In this work we join others who have provided a
positive answer,21−27 but from an entirely different perspective.
We introduce a partitioning-based approach to address the
challenge, marking a systematic improvement on the model
initially proven successful in singly bonded systems.28 Our
method clarifies the underlying challenge by rectifying
violations of exact conditions of nonadditive functionals from
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KS-DFT, and showcases its success through the enforcement
of these conditions in more complex systems. The key is to use
a formulation of DFT in which (1) electronic f ragment spin
densities (as an alternative to total molecular densities) are
sharply defined for finite R and recover those of isolated atoms
as R → ∞, (2) each of those fragment spin densities is
described through a mixed-state ensemble that can place
fractional charges and spins on the fragments to guarantee the
correct symmetries, and (3) there exists a universal functional
of the set of fragment spin densities that describes the fragment
interaction and is amenable to simple yet accurate approx-
imations.
All three of these features are provided by Partition-DFT (P-

DFT),29,30 a formally exact density embedding method in
which a molecule, defined by a nuclear “external” potential v(r)
= ∑α

Nfragvα(r) and N electrons, is partitioned into Nfrag smaller
fragments (labeled by α). The features listed above are met in
the following way: (1) The fragment spin densities are
uniquely defined by the requirement that the sum of fragment
energies Ef be minimized under the constraint that the sum of
fragment spin densities nf,σ (r) ≡∑α

Nfragnα,σ(r) matches the
correct spin density nσ(r) of the molecule, i.e., the ground-state
spin density for N electrons in v(r). The Lagrange multiplier
that enforces this constraint is a unique partition potential
vp(r).

31 (2) Each of the fragment spin densities nα,σ(r) is a
ground-state ensemble density for a (possibly fractional)
number of electrons and spins in vα(r) + vp(r). (3) A universal
functional Q[n] of the set of fragment spin densities n ≡ {nα,σ}
is defined as

[ ] = [ ] +
{ }

Q F n n T Vn , min Tr( ( ))
N

n n,
ee

frag

, , (1)

with

[ ] = | + |
{ }

F n n T V, min
n n,

ee
(2)

as the spin-decomposed32 Levy−Lieb functional;33,34 T̂ and
V̂ee are the kinetic and electron−electron repulsion operators.
The search inside the sum in eq 1 is performed over fragment
density matrices ρ̂α yielding the preset pairs of fragment spin
densities {nα,↑, nα,↓} and the search in eq 2 is performed over
normalized, antisymmetric electronic N-electron wave func-
tions Ψ yielding the total spin densities n↑ and n↓. When
evaluated at the unique set n of fragment spin densities
minimizing Ef, the ground-state energy of the molecule is then
given by

= [ ] + [ ]E E En nf p (3)

where Ef is the fragment energy summation without the
contribution from the partition potential (Ef = ∑α

NfragEα) and
the partition energy Ep has been defined as the rest Ep[n] =
Q[n] + ∫ dr v(r) nf(r) − ∑α,σ

Nfrag∫ dr vα(r) nα,σ(r). It can be
proven30 that the partition potential vp(r) is the functional
derivative of Ep evaluated for a given set of fragment spin-
densities n.
It is useful to decompose Q[n] in terms of the usual Kohn−

Sham density functional quantities as the sum of three
nonadditive (nad) terms: Q[n] = Ts

nad[n] + EH
nad[n] + EXC

nad[n],
where, e.g., EXC

nad[n] = EXC[nf] − ∑α
NfragEXC[nα]. One can then

see that most of the PBE error for stretched H2, for example, is
contained in Ep (panel b of Figure 1) and, more specifically, in
EXC
nad (panel c). Various strategies for approximating the KS

kinetic term, Ts
nad[n], are being investigated35−37 but here we

compute this term exactly via density-to-potential inver-
sions.38−41 Thus, for a given approximation to EXC[n], the P-
DFT calculations simply reproduce the results of KS-DFT,
including all of their errors (purple lines in Figure 1). Here we
argue that almost all of the error of PBE at dissociation can be
attributed to the unphysical behavior of EXC

nad(R) and can be
suppressed through improved approximations for this term
alone. The gray line labeled OA-PBE in panel a of Figure 1, for
example, shows how a simple “overlap approximation” for
EXC
nad[n] (to be defined below) removes most of the PBE error

while preserving the correct spin symmetry as R → ∞.
We demonstrate that accurate binding energies for stretched

molecules can be obtained through physically motivated
approximations for EXC

nad[n] without symmetry breaking. We
begin with the simplest case of closed-shell molecules
partitioned into Nfrag = 2 fragments with spin-summed
fragment densities nA(r) and nB(r) using a standard GGA
funcional (PBE). For all such cases, like in H2, EXC,PBE

nad (R) goes
to an incorrect positive constant as R → ∞ rather than
satisfying the exact constraint: EXC

nad[n](R) → 0. We now build
this constraint into EXC

nad[n] through a simple model:

[ ] = [ ]E S En nXC,PBE
nad,OA

XC,PBE
nad

(4)
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The overlap integral ∫ dr (nA(r) nB(r))p in the error function is
found to capture a wide range of bond forming/breaking

Figure 1. (a) Binding energy of H2 calculated through (i) FCI
reference values (red), (ii) spin-unrestricted PBE (UPBE blue), (iii)
spin-restricted PBE (RPBE purple), and (iv) OA-PBE from eqs 4 and
5 (gray). (b) restricted-PBE energies (purple) decomposed: Fragment
relaxation energies are Ef − 2EHydrogen (green) and partition energy Ep
+ VNN (yellow). VNN is nuclear−nuclear repulsion. (c) Decomposition
of Ep (yellow) into nonadditive kinetic (blue), exchange−correlation
(orange), and all remaining contributions (pink). Note that the large
error of the restricted-PBE calculation as R → ∞ can be attributed
almost entirely to EXC

nad.
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scenarios. The prefactor
[ ]
C

D n
ensures that the density overlap is

scaled correctly to the domain of the error function. D[n] is
itself a functional of the set of fragment densities, offering the
flexibility needed for eq 4 to satisfy known exact conditions.43

In this work, we approximate D[n] not as an explicit functional
of n, but as a number that depends on the nature of the
chemical bond being stretched. When fixing C = 2, we find that
D[n] takes on especially suggestive values for single (A−B),
double (A�B), or triple (A�B) bonds:

[ ]

l
m
ooooo
n
ooooo

D

A B

A B

A B
n

1,

2,

3, (6)

Generally, p is also a functional of fragment densities p = p[n].
Under the constant-D approximation of eq 6, p is set to 1/2 to
ensure that S[n] is dimensionless. The constant-D approx-
imation is not fitted to particular systems but rather
approximates the valence electron densities. This simple
approximation preserves the description of PBE around
equilibrium while correcting the PBE errors as these build
up beyond the Coulson−Fisher point (see curve labeled “OA-
PBE” in Figure 1). Equations 4−6 perform extremely well for
singly bonded hydrocarbons, as well as doubly bonded diazene,
and triply bonded nitrogen molecules, systems that are
famously challenging for standard DFAs,4 and also for the
“gold standard” of quantum chemistry methods, CCSD(T)
(coupled-cluster with single and double and perturbative triple
excitations);44 see Figure 2. It should be noted in Figure 2 that
the energies sometimes approach the right dissociation limit
from the wrong direction (above). This is partly due to the
constant D approximation in eq 6 which overestimates the
bond strength as fragments are stretched apart.
The approximation defined by eq 6 is inadequate for

molecules that are even more “strongly correlated” than N2.
Consider the challenging case of the chromium dimer (Cr2). A
quantitative description of the electronic structure of Cr2 is a

stringent test for any theory that attempts to capture strong
correlations in molecules. Neither CASSCF nor CCSD(T)
yield quantitative agreement for the ground-state energy of Cr2
as a function of the internuclear separation. As is well-known,
standard DFAs in KS-DFT are utterly inadequate to capture
the multireference character of the ground state in stretched
Cr2.

46,47 Only very recently has a truly ab initio calculation
been reported for Cr2.

45 Unsurprisingly, Figure 3 shows that
the OA-PBE of eqs 4 and 5 for convalent bonds with D = 6 (C
= 2 fixed, see “OA-PBE” in panel b) does improve but not

Figure 2. Using PBE for the fragments, eqs 4 and 5 with C = 2 and p = 1/2 yield accurate binding energies (gray) when cutting through single (D =
1), double (D = 2), and triple (D = 3) bonds. Comparisons are made with spin-restricted PBE (purple), CCSD(T) (red), or reference values from
ref 42 (yellow). In panels a and b, 0 on the x-axis is defined as equilibrium.

Figure 3. (a) S(R) for Cr2 obtained from (i) numerically exact results
from ref 45 (red, exact), (ii) eq 5 with p = 1/2, and D = 6 (gray, OA-
PBE), and (iii) fitted with D = 1.15, p = 0.8 (yellow, fitted-OA-PBE).
(b) Corresponding binding energies, where pure restricted-PBE has
been included for comparison (purple).
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enough to match the ab initio results, as the interfragment
interaction in Cr2 is radically different than in the molecules of
Figure 2.
In order to further investigate our assumption that most XC

DFA errors originate from the EXC
nad, we calculate the exact

Sexact[n] = EXC, exact
nad [n]/EXC, DFA

nad [n], where EXC, DFA
nad [n] is the

nonadditive exchange correlation energy obtained through a
self-consistent P-DFT calculation that uses a DFA for the XC
energy functional. With access to accurate total energies,45 one
can extract EXC,exact

nad [n] by subtraction of the other components
available exactly from P-DFT calculations. The behavior of
Sexact(R) can then be examined as illustrated in panel a of
Figure 3. A fitted model “fitted-OA” in Figure 3, using p = 0.8
in the integrand of eq 5 and the value D = 1.15 in the
denominator leads to quantitative agreement between the OA
energies and the most accurate (but expensive) state-of-the-art
ab initio calculations for all internuclear separations (see yellow
lines in Figure 3). This fitted approximation for Cr2 is
oversimplified by fixing D[n] and p for a more complex
functional. Thus, it only agrees with the exact results for a
range of separations (as one can see, the disagreement starts
appearing at R = 5.5 Bohr), but it illustrates the potential of the
OA approach for systems that exhibit abnormally high electron
correlation effects. The simplicity of eqs 4−6 and smoothness
of Sexact(R) (see panel a of Figure 3), especially in regions
where E(R) varies quite rapidly with R (see panel b of Figure
3) illustrate the usefulness of correcting EXC

nad.
The obvious question is how the overlap functional should

be further improved to be more generally applicable and
predictive. So far, we have shown how our understanding of
the symmetry dilemma, as illustrated in Figure 1, can lead to a
physically sound approximation to the partition energy. The
general form of the overlap approximation (eqs 4 and 5)
together with further approximations for D[n] correct for
different types of bond breaking that regular XC DFAs are
unable to describe for different types of interactions. However,
even in the systems presented in this Letter there are regions in
the binding curves where the corrections are overestimated.
These together suggest that it should be possible and
worthwhile to derive a more general functional for S[n] from
first-principles and more exact conditions.
Before moving on to considering the case of charge

symmetry, we provide a proof-of-principle demonstration
that the same idea (eqs 4 and 5) can be extended to an
arbitrary number of fragments Nfrag > 2. When there are more
fragments and P-DFT yields a set of densities n = {n1(r), n2(r),
..., nNdfrag

(r)}, it is important to consider the pairwise interactions
between the fragments. To achieve this, we developed a nested
version of the OA (NOA) where eq 4 can be applied
recursively:

[ ] = [ ] [ ]

+ [ ] + [ ]

+ +

+

E S E

E E

n n n n n

n n

, ,m m N m m N

m m N

XC
nad,NOA

1 1 XC
nad

1 1

XC
nad,NOA

1 XC
nad,NOA

1

frag frag

frag

(7)

where na→d denotes the partial sum of fragment densities na(r)
+ ... + nd(r). In eq 7, D[n1→m, nm+1→N dfrag

] at each level could be
different, depending on the fragment densities of the two
branches. As for the case of binary fragmentation, this
prescription preserves the results of the parent DFA at
equilibrium separations and can improve the results when
bonds are stretched. We have tested eq 7 on hydrogen chains

with the overlap model of eq 5, which is a case of multiple
bonds (single bonds D[n] = 1) breaking simultaneously and
the results demonstrate that eq 7 corrects the errors of PBE as
R → ∞ (see Figure 4 for H10, a well-known test-bed for

strongly correlated systems48), although it underestimates the
corrections needed in the intermediate range 2.5 < R < 4 bohr.
More research into the form of eq 7 and its accompanying
overlap measure is clearly needed.
We now discuss charge symmetry, which is analogous to the

case of spin symmetry but with an extra challenge. First, the
analogy: As in the case of spin symmetry that we have just
discussed, the approximation chosen for EXC[n↑, n↓] will
typically lead to improved energies when charge symmetries
are broken. The extra challenge: The charge-symmetry-broken
solutions are typically higher in energy than the charge-
symmetric solutions and will therefore not be found when
searching for a minimum. In other words: The analogue of
spin-unrestricted calculations will not lead to improved
energies. Take, for example, the case of stretched H2

+ in Figure
5, where PBE underestimates the dissociation energy by 70%.
The PBE ground-state energy of an isolated hydrogen atom is
only off by 0.08%, so the dissociation energy error can be
attributed almost entirely in this case to the fact that the KS
equations not break the charge symmetry of the ground state.
How can one keep that symmetry and correct the energy?
Again, as before, we analyze the contributions to Q[n] from
the different KS components and find that, this time, the
problem is not fixed by simply quenching EXC

nad(R) for large R
because, for any given R, EXC

nad(R) does not cancel EH
nad(R) as it

should for a 1-electron system (see panel c of Figure 5). This
nonadditive self-interaction error can be corrected approximately
by adding a term to EXC

nad in eq 4:

[ ] = [ ] + [ ]E S E S En n n(1 ) HXC
nad,OA

XC,PBE
nad nad

(8)

=
| |

E g
n n

E
r r

r r
r r

( ) ( )
d d

i j
ij

i j
H
nad

,

ensemble
A, B,

H
nad

(9)

where gij = 1 when NAi,σ + NBj,σ = Nσ and gij = 0 otherwise,
implying the possible dissociation channels.
With this choice of gij, eq 8 reduces to eq 4 for closed-shell

systems but improves over eq 4 for open shells, as shown by
the gray line labeled “OA-PBE” in Figure 5 for H2

+ with D[n]
= 1 and in ref 28 for Li2+.

Figure 4. NOA of eq 7 corrects the PBE error for the binding energies
in hydrogen chains as R → ∞ (here H10, where the x-axis is the
distance R between neighboring nuclei). The reference is the
Multireference Configuration Interaction taken from ref 48.
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Equations 8 and 9, together with the model for S[n] of eqs 5
and 6 can even significantly improve the PBE binding energies
of He2+, a challenging molecule for reasons other than
delocalization and static correlation.49 The agreement between
OA-PBE and FCI in this case is not quantitative (panel b in
Figure 5), but P-DFT calculations indicate that the remaining
source of error belongs to Ts

nad(R), probably due to the
difficulties associated with finding a pure-state spin density for
such a stretched system,50−52 leading to a nonzero Ts

nad(R) as
R → ∞ (see panel d of Figure 5). However, the results labeled
by “kinOA-PBE” in panel b of Figure 5 demonstrate that this
error can be suppressed almost entirely by multiplying Ts

nad by
S[n] and approximating Q[n] as Q[n] ≈ S[n]Ts

nad[n] +
EHXC,PBE
nad, OA [n]. This is not as physically meaningful as for eq 4

and eq 8 but again proves the accuracy of the approximations
we made in eqs 5 and 6 describing covalent bond breaking.
By using molecular spin densities {n↑(r), n↓(r)} as the main

variables in calculations, XC approximations are hard-pressed
to describe the low-density internuclear regions of molecules
where correlation effects are relatively more important
(compared to kinetic effects), so the XC approximations are
in a sense blind to the formation of fragments when bonds are
stretched. Methods including symmetry-breaking,18,19 self-
interaction error corrections,32,53−56 range-separated func-
tionals,57−62 double hybrid functionals,63,64 and scaling
correction methods65 are all among approaches that have
been adopted to overcome such difficulties. Moreover,
methods relying on manual exact-condition enforcement
through neural-network training,21 the “on-top” pair den-
sity,22,23,66 complex orbitals,24 exact strong-interaction limit
functionals,25 and fractional-spin localized orbital scaling
corrections26,67 can improve the accuracy for systems of the
strongly correlated type. Recognizing that such strongly
correlated systems are often composed of weakly overlapping
fragments,68,69 the central result of our work is that, when
f ragment spin densities are used as the main variables, the
typical delocalization and static-correlation errors of approx-
imate EXC[n↑, n↓]

3−8 can be largely avoided without having to

abandon essential symmetries. This alternative strategy rests on
maintaining the use of the same approximate EXC[{nα,↑, nα,↓}]
within the fragments while introducing new interfragment
approximations for EXC

nad[n]. The latter is a functional of the set
of fragment spin densities n rigorously defined within P-
DFT.30

Two exact constraints satisfied by EXC
nad[n] were used in the

construction of eq 8: (1) EXC
nad[n] → 0 as R → ∞, where R

denotes the separation between fragments and (2) EXC
nad[n] →

−EH
nad[n] for single-electron bonds. Equation 8, and the

accompanying model for S[n] in eqs 5 and 6, should be seen as
initial attempts at approximating these quantities. Future
approximations of EXC

nad[n] should incorporate more exact
constraints. For example, how could eqs 4 and 5 be improved
to encompass van der Waals interactions?70,71 How could the
D[n] functional be improved beyond eq 6 to properly scale the
overlap integral while preserving the exact conditions obeyed
by the underlying XC functional?43

■ METHODS
All calculations were done using a P-DFT implementation in
Psi4.72 The cc-pVTZ basis set was used for all molecules in this
work except for the cases of H10 and Cr2, for which cc-pVDZ
and cc-pV5Z were used instead. P-DFT PBE calculations
(without the OA) converge to the same results as the direct
restricted-PBE KS-DFT (with the KS-inversion). The Wu−
Yang algorithm38 implemented on Gaussian basis sets in n2v40

was used to calculate all Ts[nf] components. The OA was
performed as a post-PDFT approximation, i.e., using the
fragment densities yielded by P-DFT.28 The details for the
numerical implementation as well as convergence can be found
in the Supporting Information. Functional-driven error
domination is assumed. Convergence of the partition potential
vp was achieved in each case by updating it iteratively
according to

= + [ ] [ ]+v v v n v n( )k k
p

1
p XC,PBE f XC,inv f (10)

Figure 5. (a) H2
+ binding energies were calculated with FCI (red), PBE (blue), and OA-PBE (gray). (b) He2+ binding energies, including a kinOA

calculation in which Q = STs
nad + EH

nad + EXC,PBE
nad, OA[n] (light blue). (c,d) Components of Ep showing that the PBE error can be attributed to a poor

cancellation of errors between EXC
nad and EH

nad.
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for the (k + 1)th step, where λ is the step size. vXC,PBE[nf] is the
XC potential for a choice of XC approximation (we use PBE in
this article). vxc,inv is the effective partition potential calculated
from inversion, as explained by eq 13 below. The derivation of
eq 10 is outlined next, omitting spin indices for simplicity. Start

from the definition of vp
30 as =v

E

np
p , where nα is the density

for fragment α. At convergence, the same vp is shared by all
fragments and is independent of the fragment index α. By
separating Ep as suggested in the main text, vp is decomposed
as

=
[ ] [ ]

+ + [ ]

[ ] + [ ] [ ]

v
T n
n

T n
n

v v v n

v n v n v n

r
r r

r r r

r r r

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

p
s f

f

s
H f

H XC,PBE f XC,PBE

(11)

Given that stationary condition for the fragments at each step k

[ ]
+ + [ ] + [ ] + =

T n
n

v v n v n v
r

r r r
( )

( ) ( ) ( )s
H XC,PBE p

(12)

as well as for the entire system through inversion

[ ] + + [ ] + [ ] =T n
n

v v n v n
r

r r r
( )

( ) ( ) ( )s f

f
H f XC,inv f

(13)

Equation 10 follows by omitting the chemical potentials since
μ provides no energy contribution to the total energy.
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