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ABSTRACT

Standard approximations for the exchange-correlation functional in Kohn-Sham density functional theory (KS-DFT) typically lead to
unacceptably large errors when applied to strongly correlated electronic systems. Partition-DFT (PDFT) is a formally exact reformula-
tion of KS-DFT in which the ground-state density and energy of a system are obtained through self-consistent calculations on isolated
fragments, with a partition energy representing inter-fragment interactions. Here, we show how typical errors of the local density approxima-
tion (LDA) in KS-DFT can be largely suppressed through a simple approximation, the multi-fragment overlap approximation (MFOA),
for the partition energy in PDFT. Our method is illustrated on simple models of one-dimensional strongly correlated linear hydro-
gen chains. The MFOA, when used in combination with the LDA for the fragments, improves LDA dissociation curves of hydrogen
chains and produces results that are comparable to those of spin-unrestricted LDA, but without breaking the spin symmetry. MFOA also
induces a correction to the LDA electron density that partially captures the correct density dimerization in strongly correlated hydrogen
chains. Moreover, with an additional correction to the partition energy that is specific to the one-dimensional LDA, the approximation
is shown to produce dissociation energies in quantitative agreement with calculations based on the density matrix renormalization group
method.
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I. INTRODUCTION

Perdew’s Jacob’s ladder of approximations to the
exchange-correlation (XC) energy functional Exc[n]' contin-
ues to guide the electronic-structure community in the search for
usefully accurate functionals for Kohn-Sham’ and Generalized
Kohn-Sham’ Density Functional Theory (DFT). One of the greatest
challenges at every step of the ladder is the description of strongly
correlated electronic systems. The local density approximation
(LDA), the first density functional approximation (DFA) to the
XC functional, typically fails when applied to strongly correlated
systems. A simple, representative case is that of a closed-shell
molecule stretched beyond its equilibrium bond length, when
its ground state wavefunction cannot be accurately represented
by a single Slater determinant. Near-degeneracies develop at the
stretched configuration and lead to large static-correlation errors
in LDA calculations.” ° The LDA may yield quantitatively correct
energies in the weakly correlated region near the equilibrium bond

length, but overestimates the energy significantly as the molecule
is stretched. DFAs at higher rungs of the ladder, including the
generalized gradient approximation (GGA),”" meta-GGA,”"
and hybrid functionals,’’ " suffer from similar problems. Those
DFAs do account for a certain fraction of correlation effects, but
they typically continue to fail in the presence of strong electron
correlation.' "

Strong electron correlation plays a central role in many
exotic properties of condensed matter, such as high-temperature
superconductivity, ”'” quantum Hall effects,’”'" and Mott-type
metal-insulator transitions.”’ Various methods that lie outside of
the KS-DFT framework have been developed for treating such
systems. Some of these lead to quantitatively correct results by
adding corrections to one-electron theories. For instance, in the
popular DFT+U method,”"”” a somewhat ad hoc parameter, Hub-
bard U, can be imposed on certain states of the system to fix the
errors caused by XC functionals in KS-DFT. Many-body methods
where the one-electron approximation is not applied, such as the
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dynamical mean field theory (DMFT)” " and the density matrix
renormalization group (DMRG)* " method, are also powerful
tools for strongly correlated systems, but they are typically much
more computationally expensive than DFT.

Linear chains of hydrogen atoms are among the simplest mod-
els that can reveal the effects of strong electron correlation. They
are computationally tractable and have been well investigated by
researchers from diverse areas.”” *° Despite their simplicity, linear
hydrogen chains embody richer chemical complexities than sim-
pler models, such as the Hubbard model, so they can be used as
step stones toward realistic materials of the strongly correlated type.
In particular, hydrogen chains display characteristics of strongly
correlated physics when the interatomic distances increase beyond
equilibrium separations. Here, we study simplified models in one
dimension (1D) that retain some of the essential properties of their
three-dimensional counterparts. We study 1D strongly correlated
hydrogen chains using a fragment-based DFT approach, Partition-
DFT (PDFT),”"" and demonstrate that a simple approximation to
the partition energy functional of PDFT* captures key signatures of
strongly correlated physics.

We begin by summarizing the essential background of
partition-DFT in Sec. 11, where we also introduce a multi-fragment
extension of a recent overlap approximation’ to the partition
energy (MFOA). After providing computational details in Sec. 111,
we illustrate in Sec. ['V how restricted LDA dissociation curves of 1D
hydrogen chains are corrected by the MFOA toward the unrestricted
LDA energies but without breaking the correct spin symmetry.
Another key signature of strongly correlated physics, the dimeriza-
tion of electron density, is discussed in Sec. V, where we demonstrate
numerically that the MFOA provides a dimerization measure lying
roughly in between the incorrect LDA values and those of exact
DMRG calculations. Finally, we discuss in Sec. VI a possible cor-
rection to the MFOA that brings LDA energies even closer to exact
DMRG results.

Il. PARTITION-DFT

PDFT’" is a formally exact reformulation of KS-DFT in
which a system of interacting fragments is mapped onto one of
the non-interacting fragments with the same total molecular density
ny(r). The fragments are defined through partitioning the external
nuclear potential v(r),

v(r) = 3 va(r). (1)

The ground state energies {E,} and densities {n.} of these
non-interacting fragments are obtained through self-consistent
KS-DFT calculations that minimize the sum of fragment energies
Ef = ¥, Eo[na] under the constraint,

ny(r) = 3 na(r) = nu(x), )

ensuring that the sum of fragment densities #n;(r) and the true
ground state density of the entire system ny(r) are equal. A one-
body local potential enforcing the constraint of Eq. (2), the partition
potential v, (r), acts as the Lagrange multiplier in this minimization.
The total energy in PDFT is calculated as
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E[{na}] = Ef[{na}] + Ep[{na}], 3)

where the partition energy E, is the contribution from v,(r) to
the total energy due to its presence in the fragment KS equa-
tions, accounting for the interaction between fragments. The par-
tition potential v,(r) is given by the functional derivative v, (r)
= 0E,[{na}]/0n«(r) at the minimizing densities. The partition
energy in PDFT can be decomposed into four non-additive KS
components,

Ep[{na}] = T [{na}] + ES [{na}] + B [{na}] + BXE [{na}),
(4)
where the non-additive functionals X™4 [{na}] (X stands for T, Eex,
En, or Exc) are given by

X[ {na}] = X[ngpnp,] = 3 fuXniat i (5)

In Eq. (5), fia are ensemble weights that are varied during
the search for the minimum of E;[{#.}], allowing each frag-
ment to acquire a possible non-integer number of electrons and/or
spins.”” " Each fragment density #a(r) = ¥;, fiattiao(r) is thus
described through an ensemble of integer-number density compo-
nents niqs (r) weighted by fis, which satisfy 3, fie = 1. With E; and
E, accounting for intra- and inter-fragment interactions, respec-
tively, PDFT is, in principle, exactly equivalent to KS-DFT, that is, it
produces the same results as KS-DFT for a given DFA (see, for exam-
ple, Fig. 1). However, PDFT offers additional flexibility as one can
construct unique approximations from fragment properties, mak-
ing it possible to go beyond approximate KS-DFT. In particular,
in the overlap approximation (OA) for binary fragmentation,” "’
the partition energy of Eq. (4) is approximated by multiplying its
XC-component by an overlap functional S°*[{#,}] of the fragment
densities,

OA d d d OA d
E," =T + Eoit +Eff +S "Exc. (6)

For a system partitioned into two fragments A and B, defining the
overlap as

SO, np] = erf{Zf nA(r)nB(r)dr} (7)

has been shown to yield quantitatively correct LDA and GGA
dissociation curves for singly bonded diatomic molecules.”” The
explanation is simple and physically sound: When applied in a
spin-restricted manner, standard DFAs, such as LDA, typically lead
to a static correlation error for stretched molecules. Consider H,:
The molecule remains a spin-singlet in the dissociation limit and,
with the exact condition that n4(r) = n;(r), fractional spins must
be assigned to the isolated atoms. As is well known, most DFAs
lead to incorrect energies for such fractional-spin calculations.* A
spin-unrestricted KS-DFT calculation will improve the description
of molecular dissociation beyond the Coulson-Fischer point,** but
good energies are obtained at the expense of breaking the symmetry
of the spin densities.”” "’ The static-correlation error of restricted
LDA for stretched H; is entirely contained in Exd[{n.}]," and
the overlap functional of Eq. (7), when used within Eq. (6), sup-
presses this error as the molecule is stretched while conserving the
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FIG. 1. (a) Dissociation curve (energy per atom) of H, calculated with KS-DFT (in
orange) and PDFT (in blue) in 1D using the same DFA (LDA) for the XC energy
functional. (b) Electron density of 1D H, obtained from KS-DFT (in orange) and
PDFT (in blue) calculations using LDA.

correct spin symmetry. As an error function of the density overlap,
S°A has a range between 0 and 1. For molecules with small bond
lengths near equilibrium, S°* stays close to 1 and has no noticeable
impact on the original E, in this range of bond lengths. When the
system is stretched, however, and it starts experiencing the effects of
strong correlation, $°* gradually descends so that the static corre-
lation error inherent in E;‘(acd is removed without breaking the spin
symmetry.

We strive to obtain similar results here for hydrogen chains, i.e.,
improving the energies without breaking the spin symmetry. The
OA is a malleable approximation in that its form can be tailored
to various situations.”” We define here the multi-fragment overlap
approximation (MFOA) as the expression of Eq. (6) but with $°4
replaced by

MFOA 2
S [{n.}] = erf{Nf - > /\ /na(r)nﬁ(r)dr}, (8)

(eB)
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where Ny denotes the number of fragments. The symbol («, )
means that the sum is over all nearest neighbors among the
fragments. We choose to test our approximation on 1D mod-
els of hydrogen chains where the term nearest neighbor is clearly
defined since each atom on the inside of the chain has only
two neighbors, each of which is considered as its own fragment.
Future work will be needed to find the most suitable definition
of “nearest neighbor” and accompanying form of SF°* for 3D
molecules and arbitrary partitions. Equation (6) with SOA replaced
by SMF* and Eq. (8) will be shown here to achieve the goal of
not only correcting the LDA energies without breaking symmetries
but also capturing other key signatures of the strongly correlated
physics that manifest when stretching bonds. It should be noted
that the MFOA can work in combination with any standard XC
approximation since it enforces the exact condition that the non-
additive XC energy must vanish as the fragments are taken far
apart.

lll. COMPUTATIONAL DETAILS

All calculations are done on 1D hydrogen chains under the
Born-Oppenheimer approximation. The nuclei (protons, in this
case) are evenly spaced at fixed coordinates in a 1D box with
open boundary conditions. The exact ground-state properties of
1D hydrogen chains are computed with DMRG using ITensor.*’
Atomic units are used throughout.

KS-DFT is implemented in MATLAB on a 1D real-space
grid"””" for comparison with DMRG. The kinetic energy in KS-DFT
is computed on the grid with a sixth-order finite-difference approx-
imation.”” The Hartree and external terms are integrated directly on
the grid. To avoid the complication resulting from divergences of
the bare Coulomb interaction in 1D, electrostatic interactions are
represented by a soft Coulomb potential,

Coulomb —  soft Coulomb,
zz' zz' )

- >
1+ e -

where x and x” are the positions of the two particles experiencing
the electrostatic interaction with their charges denoted by Z and Z'.
LDA is used here for the XC energy. The 1D LDA exchange and
correlation functionals are obtained based on the exact exchange
and correlation energy of a 1D homogeneous electron gas,”"”
respectively.

PDFT is implemented in 1D by self-consistently solving each
fragment with 1D KS-DFT. The fragment properties (e.g., fragment
energies {E,} and densities {#14}) are calculated through ensemble
averages’” ' as described in connection to Eq. (5). T in Eq. (4) is
calculated directly through a density-to-potential inversion,””* and
we use LDA again for both the fragment XC energies and Exs in
PDFT. As mentioned in Sec. I, the results of KS-DFT are reproduced
exactly by PDFT when the same DFA is used in both calculations.
This is verified with a numerical calculation on a 1D hydrogen
molecule (H;). Figure 1 shows (a) the dissociation curve (energy
per atom as a function of bond length R) of H» and (b) the ground-
state electron density of H, at R = 4 a.u,, calculated with KS-DFT and
PDFT using LDA as the DFA. In PDFT, the molecule is partitioned

e - x|
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as two fragments with one hydrogen atom in each. It is evident from
Fig. 1 that both the energy and the density from KS-DFT are exactly
reproduced by PDFT.

IV. DISSOCIATION CURVES

Analogous to the case of diatomic molecules, a linear chain
of atoms experiences effects of strong static correlation as the
inter-nuclear separations R are stretched beyond their equilibrium
values. When standard DFAs are used in KS-DFT to compute
the dissociation curves of hydrogen chains, static-correlation errors
emerge in the large R regions. A density functional method that
can be used for strongly correlated systems must, at least, provide
a quantitative treatment for these large-R regions of dissociation
curves.

We begin by testing the MFOA of Egs. (6) and (8) ona 1D H,
molecule. For H; in 3D, the LDA-OA of Egs. (6) and (7) has been

(a) -06
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Energy per atom (a.u.)
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FIG. 2. (a) Dissociation curve of H, calculated by combining LDA and MFOA (LDA-
MFOA, blue) in PDFT. LDA (orange solid line) and ULDA (orange dashed line)
curves are obtained through KS-DFT calculations for comparison. (b) Non-additive
components of £y, plotted as functions of R. LDA is used for E;gd, and MFOA is
not applied. The repulsion between nuclei Vyy is added to 729 + £ so that they

ext
are in the same order of magnitude with 772 and £527.
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shown to yield excellent agreement with unrestricted LDA ener-
gies, without breaking the spin symmetry.”” Since the MFOA of
Eq. (8) reduces to the OA of Eq. (7) for the case of only two frag-
ments, we expect to obtain similar results here, but it is important
to check this because 1D (with soft Coulomb interactions) differs
from 3D. Figure 2(a) shows the dissociation curve (energy per atom)
of 1D H; calculated by combining MFOA and LDA in PDFT, com-
pared with the KS-LDA (orange solid line) and unrestricted KS-LDA
(ULDA, orange dashed line). In the weakly correlated regime (R
near the equilibrium bond length), the three curves are almost the
same. Unrestricted KS-LDA does not break the spin symmetry in
that range of R. SMFO4 stays close to 1 and thus does not have a sig-
nificant impact on E,. When the molecule is stretched beyond the
Coulson-Fischer point (R = 3.4 a.u.), ULDA produces lower energy
by breaking the spin symmetry. As H, approaches the dissociation
limit, B2 (R=5) = -1.256 au. and Eir,,(R=5) = ~1.298 a.u.
The LDA-MFOA calculation yields E; 3, yroa (R =5) = —1.284a.u.
Although the LDA-MFOA does not reproduce the ULDA energy at
R = 5a.u. as closely as it does in 3D, it corrects about 70% of the LDA

(a) -0.6
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__-062f - .ULDA
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FIG. 3. (a) Dissociation curve of Hy calculated with three methods (LDA, ULDA,

and LDA-MFOA). (b) Dissociation curve of Hyy calculated with three methods
(LDA, ULDA, and LDA-MFOA).
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static-correlation error (as measured with respect to ULDA) without
breaking the spin symmetry.

Panel (b) of Fig. 2 shows the four non-additive components
of Ep, in Eq. (4) as functions of R, all extracted from bare LDA
PDFT calculations done without the MFOA. As R — oo, the only
term remaining positive is Exs, which contains a significant frac-
tion of the static correlation error. The sum of EX¢, E™ and the
inter-nuclear repulsion Vyy vanishes in the dissociation limit. The
non-additive kinetic energy T™® is negative when R = 5 a.u., but it
has also been shown to vanish asymptotically as R — co0.*

We now examine the performance of the MFOA on hydrogen
chains where, interestingly, the static-correlation error of the LDA
is suppressed even more significantly than in H, as the number of
hydrogen atoms increases. Dissociation curves are shown in panels
(a) and (b) of Fig. 3 for Hy and Hio, respectively. Similar to the case
of H,, the LDA-MFOA energies remain indistinguishable from LDA
and ULDA when R $ 3.6 a.u. (S"FO* ~ 1in those regions). For larger
separations (R 2 3.6 a.u.), SMFOA gradually decreases and removes
the error contained in E;’(aél. At R =5 a.u., the MFOA ends up recti-
fying about 74% and 78% of the error caused by the LDA for Hy and
Hio, respectively.

V. DIMERIZATION OF ELECTRON DENSITY

The resonating valence bond (RVB) state of quantum spin
chains has received constant attention since Anderson described a
copper oxide superconductor as such a state in 1987.° The idea is
based on the fact that adjacent spins in the lattice can form dimers
in multiple ways. The term “dimer” here refers to strong spin-spin
correlation between adjacent spins. A system in an RVB state is
considered to be resonating among all possible dimerized states.
Figure 4 shows an illustration of a linear spin chain resonating
between two dimerized states, in which strong spin-spin correlation
occurs between different pairs of adjacent spins. The ground state
of this chain is described by the average of these two states, so the
interactions between each two adjacent spins are equal throughout
the entire system.

For a chain with a finite length, this translational symmetry is
broken and spin dimerization occurs in the ground state. A measure
of spin dimerization can be defined as the difference between two
spin-spin correlation functions,*®

An(i) = [{Si - Siv1) = (Si-1 - Si)l, (10)
in which N is the number of sites/spins in the chain and index i

denotes the ith site in the lattice. This dimerization measure com-
pares the strengths of interactions between two pairs of adjacent

|
- 0—0 09

FIG. 4. lllustration of two dimerized states of a spin chain, where the solid and
dashed lines represent strong and weak interactions between spins, respectively.
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spins on the two sides of site i. The greater Ay is, the more dimer-
ized the chain becomes. In conformal field theory (CFT), it has been
shown that this measure decays as the number of sites grows in the
chain following a power law,” that is,

An(i) o [N sin(%i)]id, 11)

where the exponent d is a system-dependent parameter. For a spin-
1/2 Heisenberg model, CFT predicts d = 1/2.

Motta et al. discovered a similar dimerized state of three-
dimensional hydrogen chains and concluded that the decay of the
dimerization follows the same power-law order as spin chains do
while the number of atoms in the chain increases.’® For a finite-size
hydrogen chain with open boundary conditions, the dimerization
results from the open ends of chains, which can be viewed as a local
perturbation to the density. As the size of a chain grows, that per-
turbation has less and less influence on the atoms far away from the
ends. The definition of a dimerization measure is borrowed from
Eq. (10): the difference between the strengths of two adjacent H-H
bonds on both sides of the ith atom. The strength of a bond is usu-
ally represented by the electron density at the bond critical points
(BCP),T:‘S i.e., the local minima in electron density, and thus, the
dimerization measure can be simply represented by the difference
between two adjacent minima of the density on the two sides of the
ith atom,

An(i) = |mpcp " - mpdp'| (12)

We now explore the existence of such a power-law order in
1D hydrogen chains with PDFT. For simplicity, we studied the den-
sity dimerization in the center of the chains. Choosing i = N/2 in
Eq. (12) gives

AR = An(N/2) = [ — i

. (13)

For instance, as demonstrated in Fig. 5(a), nis and nih are the two
density minima on two different sides of the fifth atom in Hio. One
may conclude from Eq. (11) that

AR o N7O (14)
if the dimerization in hydrogen chains also decays as a power-law
order like spin chains.

Figure 5(b) plots the dimerization measure for a series of hydro-
gen chains with different sizes, calculated with DMRG at a fixed
interatomic distance R =3 a.u. To elucidate how the strength of
the electron-electron interaction (V) influences the presence of
dimerization, densities are calculated by tuning the strength of the
electron—electron interaction. The effective interaction, V7, is set
to be in 0, 25%, 50%, 75%, and 100% of the strength of the origi-
nal V... The linearity of those logarithm plots indicates the validity
of Eq. (14). The magnitude of Ay represents the extent of the den-
sity dimerization in hydrogen chains, and the slope corresponds to
the exponent d in Eq. (14), which measures the decay rate of the
dimerization as the size of the chain increases. Table I lists the slopes
and coefficients of determination for all data sets in Fig. 5(b). When
the electrons are non-interacting (V¢ = 0), the power law clearly
breaks down. As V, increases from 0% to 100% of V., we observe
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FIG. 5. (a) Dimerized electron density of Hyg, associated with the alternative
presence of strong and weak bonds along the chain. The difference between
the two dashed lines defines the dimerization measure A" (b) Dependence
of AW“’ on the size of hydrogen chains (R = 3 a.u.) computed with DMRG. The
electron—electron interaction Vee in DMRG is adjusted to study the effect of
interaction strength on dimerization order.

an increase in the linearity, verifying that the presence of the power-
law order in the decay of density dimerization is indeed a result of
the electron-electron interaction. The linearity emerges even when
the interaction is weak (V, = 0.25V,.). We also notice that differ-
ent interaction strengths lead to different values for d. According
to Table I, d increases as V., increases from 0 to 0.5V, where it
reaches a maximum of d »~ 0.724, but further increasing the interac-
tion strength above 50% leads to a decrease in the value of d. For the
fully interacting system, d ~ 0.566.

We now compare the density dimerization measure in hydro-
gen chains obtained via PDFT with and without the MFOA. As is
demonstrated in Fig. 6, all of the three methods (DMRG, LDA, and
LDA-MFOA) produce linear log AR — log(1/N) plots. According to

TABLE . Slopes d and coefficients of determination (Rz) of the plots in Fig. 5(b).

Ve,e/Vee Slope (d) (R2>

0.00 -0.101 0.0174
0.25 0.686 0.9784
0.50 0.724 0.9997
0.75 0.644 0.9997
1.00 0.566 0.9998
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FIG. 6. Dependence of Aﬁ“‘ on the size of hydrogen chains (R = 3 a.u.). Results
are calculated with DMRG (in green), LDA (in blue), and LDA-MFOA (in red).

Fig. 6, not only does the LDA underestimate the magnitude of AR
for all the hydrogen chains listed above, but it also overestimates d
by ~80%. The underestimation of the magnitude of AR by LDA
implies that it generally underestimates how dimerized the electron
density can be in hydrogen chains. Furthermore, the overestimation
of the slope indicates that the LDA causes the dimerization to decay
too rapidly as the hydrogen chain grows. By using the MFOA in
PDFT, both A% and d improve significantly over the LDA. The
magnitudes of ARY are closer to DMRG results for all hydrogen
chains, and the slope d is predicted to be 0.855, a 30% improvement.

This improvement can be mainly attributed to the density cor-
rection brought by the MFOA, which can also be seen from the
corresponding exchange-correlation potentials. Here, we first use
the simple example of H, to demonstrate this correction. Figure 7(a)
shows the ground-state density of a 1D hydrogen molecule (H,
R =5 au.) computed with the three methods: DMRG, LDA, and
LDA-MFOA. Panel (b) of Fig. 7 compares the exchange—correlation
potential vxc(x) obtained from inverting the three densities in panel
(a). Out of the three densities, the (exact) DMRG density is the most
localized around the nuclei, and the LDA density is the most delo-
calized; the MFOA-LDA density falls in between. The XC potential
inverted from the exact density [in green in panel (b)] exhibits sharp
valleys around the nuclei and a high barrier at the BCP of the H-H
bond, while the LDA potential only has two shallow valleys along
with a much lower barrier in between the nuclei. This contrast in the
potentials accounts for the differences in density localization seen in
panel (a). The MFOA-LDA potential shows a higher barrier than the
LDA at the BCP, whereas the valleys near the nuclei are almost the
same as those in the LDA potential.

Similar corrections to the electron densities and the corre-
sponding XC potentials occur in the case of the hydrogen chains.
Unlike the case of H,, we are now more interested in the extent
of density dimerization present in the chain. Figure 8(a) shows
the ground-state density of Hjo (R =3). DMRG produces a den-
sity in which electrons form stronger dimers than in the LDA. In
other words, LDA underestimates the difference between strong
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FIG. 7. (a) Ground-state density of H, (R =5 a.u.) computed from DMRG (in
green), LDA (in blue), and LDA-MFOA (in red). (b) The XC potential obtained from
inverting the three densities in panel (a).

and weak H-H bonds in the chain. The XC potential correspond-
ing to the DMRG density displays four high barriers and five low
barriers at the BCPs in panel (b) of Fig. 8, while the heights of
barriers in the LDA XC potential are considerably similar to each
other. The MFOA leads to a correction to the LDA density and
produces results closer to those of DMRG. For most of the dimers
(except for the two at the ends of the chain), the MFOA drives the
density to be more dimerized by increasing the heights of certain
barriers in vxc(x). Particularly, the two barriers near the center of
the chain are close to those of the DMRG potential. However, the
MFOA does not improve the other two barriers of the LDA XC
potential, leaving them almost unchanged. Clearly, a more elabo-
rate approximation for the partition energy is needed to achieve
this.

VI. TOWARD THE EXACT DISSOCIATION LIMIT

We showed in Sec. IV that the MFOA yields energies simi-
lar to those of ULDA calculations (but without breaking the spin

Bond axis (a.u.)
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FIG. 8. (a) Ground-state density of Hyg (R = 3 a.u.) computed from DMRG (in
green), LDA (in blue), and LDA-MFOA (in red). (b) The XC potential obtained from
inverting the three densities in panel (a).

symmetry). We now compare with numerically exact DMRG calcu-
lations. Unlike 1D-DFT, DMRG adopts an exponential interaction
in place of the soft Coulomb potential for Vyn.” To evaluate the
effects of such a difference on our calculations, we perform two
exact diagonalization (ED) calculations on 1D H, using exponen-
tial (exp) and soft Coulomb (SC) interaction potentials. Figure 9
shows the dissociation curve of 1D H, computed with DMRG
(green), ULDA (orange), and ED with the SC (red) and exponential
potential (blue). We see that the ED energies with the exponential
potential match exactly those of DMRG. Replacing the exponential
potential with the SC interaction in ED leads to a slightly different
dissociation curve, but the differences between the two are gener-
ally distributed around the small-R region around the equilibrium
separation. For the large-R region (when R > 3), the SC potential
does not have a significant impact on the energies. In contrast,
the ULDA results (which are computed with an SC interaction)
deviate significantly from the exact values for the entire range of
separations.

We now explore if PDFT can produce the correct dissocia-
tion limit E(R — c0) of a hydrogen chain in 1D, improving over
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FIG. 9. Dissociation curve of H, computed with DMRG (green), ULDA (orange),

and ED with SC (red) and exponential (blue) interactions. The dissociation limit
[E(H) = —0.670 a.u.] is marked by the black dashed line.

the LDA-MFOA (which approaches the incorrect ULDA limit). The
exact ground-state energy of a 1D hydrogen atom is predicted by
DMRG to be —0.670 a.u., while the 1D-ULDA yields —0.647 a.u.”’
As a result, there is a difference between ULDA and DMRG in
E(R — o0). To fix the error caused by 1D-ULDA in the dissocia-
tion limit, an additional correction to E, is made by modifying the
non-additive Hartree term,

1 _ GMFOA

cMFOA nad nad MFOA r-nad
E, =T, +Eext +S EXC+(1— N;

)E%ad, (15)

where the superscript cMFOA stands for corrected multi-fragment
overlap approximation. Figure 10(a) shows the dissociation curve
of Hig calculated with PDFT using the cMFOA for E,, compared
against the exact results obtained from DMRG, along with LDA
and LDA-MFOA. Focusing on the large-R region (R € [3.6,5.0]),
we see that the LDA-cMFOA calculation drives the curve to the
correct dissociation limit, whereas all the other calculations (LDA,
ULDA, and LDA-MFOA) do not converge to the correct energy
as R — co.

We further check the cMFOA by plotting the components of
the total energy in PDFT. Figure 10(b) depicts E, and Ej in the
large R region for Hio, in which —E, is plotted for convenience. The
three different E,’s are extracted from LDA, LDA-MFOA, and LDA-
cMFOA calculations. Ey is the sum of fragment energies calculated
using LDA for the XC energy, Vnn is the soft Coulomb inter-nuclear
repulsion, and E(H) is the DMRG energy of a hydrogen atom. The
total energy in PDFT reads E,(R) + E¢(R) + Van(R), so we con-
sider PDFT to produce the correct dissociation limit of the system
if Ep(00) + Ef(00) + Vnn(o0) — 10E(H) — 0, which means that the
magnitude of —~E, and E¢(R) + Van(R) — 10E(H) should match for
large R’s in Fig. 10(b). Now, we look at the energies at R =5 a.u.
Although R = 5 a.u. is not yet the dissociation limit, we know from
Fig. 10(a) that Eq(R =5) + VNN(R =5) » Eg(00). In Fig. 10(b),
the difference between the LDA —E, (orange stars) and E;(R)
+ Van(R) — 10E(H) (green squares) at R = 5 a.u. can be identified
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FIG. 10. (a) Dissociation curve of Hyo obtained with DMRG (green), LDA (orange
solid line), ULDA (orange dashed line), LDA-MFOA (blue), and LDA-cMFOA
(red) calculations. The dissociation limit [E(H) = —0.670 a.u.] is marked by the
black dashed line. (b) E¢ + Vv — 10E(H) compared with —E, calculated with
LDA (orange), LDA-MFOA (blue), and LDA-cMFOA (red) in the large R region.
E(H) = —0.670a.u. is the exact ground-state energy of a hydrogen atom obtained
with DMRG.

as the static correlation error. LDA-MFOA (blue circles) partly rec-
tifies this error since that energy difference is smaller but remains
non-zero at R = 5 a.u. In contrast, E, obtained with LDA-cMFOA
(red diamonds) exactly cancels off E;(R) + Van(R) — 10E(H) at
R = 5 and yields the correct dissociation limit of Hjo.

VIl. CONCLUSION

The overlap approximation of PDFT* has been generalized to
be applicable to multi-fragment systems (MFOA). When applied
to strongly correlated 1D hydrogen chains, we observed that using
the LDA for the fragments, PDFT with the MFOA produces dis-
sociation curves that are close to those of 1D unrestricted-LDA
calculations while retaining the correct spin symmetries. Further-
more, the MFOA improves upon the LDA electron densities of
hydrogen chains, leading to dimerization measures that approach
those of DMRG, partially capturing an important signature of
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strongly correlated physics. Moreover, with an additional correction
(cMFOA) to the non-additive Hartree component to make the par-
tition energy more negative as needed, LDA-cMFOA calculations in
PDFT produce the correct dissociation limit for Hyo.

We note that the density correction induced by the MFOA
addresses only part of the error in the LDA density, so it is insuf-
ficient to describe the full density dimerization observed from
DMRG calculations. Nevertheless, the MFOA represents a step in
the right direction. Looking ahead, it will be important to (1)
find more robust and generally applicable approximations to the
partition energy of PDFT, perhaps based on the foundation of
the MFOA, and (2) extend these calculations to 3D systems so
that PDFT can be applied to more realistic strongly correlated
materials.

The method described in this work does not abandon the
use of standard functionals for the fragments (here, the LDA),
suggesting that a promising density-functional route to strongly cor-
related physics consists in supplementing Perdew’s Jacob’s ladder of
approximations for the fragments with a smaller ladder of approxi-
mations for inter-fragment interactions. After all, as is well known,
to get up to heaven, one needs a big ladder: a big ladder and another
smaller one.®’
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