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Abstract. Surface Stokes and Navier—Stokes equations are used to model fluid flow on surfaces.
They have attracted significant recent attention in the numerical analysis literature because approx-
imation of their solutions poses significant challenges not encountered in the Euclidean context. One
challenge comes from the need to simultaneously enforce tangentiality and H' conformity (continuity)
of discrete vector fields used to approximate solutions in the velocity-pressure formulation. Existing
methods in the literature all enforce one of these two constraints weakly either by penalization or by
use of Lagrange multipliers. Missing so far is a robust and systematic construction of surface Stokes
finite element spaces which employ nodal degrees of freedom, including MINI, Taylor—-Hood, Scott—
Vogelius, and other composite elements which can lead to divergence-conforming or pressure-robust
discretizations. In this paper we construct surface MINI spaces whose velocity fields are tangen-
tial. They are not H'-conforming, but do lie in H(div) and do not require penalization to achieve
optimal convergence rates. We prove stability and optimal-order energy-norm convergence of the
method and demonstrate optimal-order convergence of the velocity field in Lo via numerical experi-
ments. The core advance in the paper is the construction of nodal degrees of freedom for the velocity
field. This technique also may be used to construct surface counterparts to many other standard
Euclidean Stokes spaces, and we accordingly present numerical experiments indicating optimal-order
convergence of nonconforming tangential surface Taylor-Hood P2 — P! elements.
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1. Introduction. In this paper, we consider the surface Stokes problem:

(1.1a) —IIdiv,Def,u+ V. p+u=f on 7,
(1.1b) div,u=0 on 7.

Here, v C R? is a smooth and connected two-dimensional surface with outward unit
normal v, II=1—v ®v is the orthogonal projection onto the tangent space of v, and
V, and div, are the surface gradient and surface divergence operators, respectively.
Furthermore, Def., is the tangential deformation operator, and the forcing function
f is assumed to be tangential to the surface to ensure well-posedness. Further as-
sumptions and notation are given in section 2; cf. [20] for derivation of the surface
Stokes problem and related models and further discussion of their properties. The
system of equations (1.1) is subject to the tangential velocity constraint w-v =0. To
address degeneracies related to Killing fields, i.e., nontrivial tangential vector fields in
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the kernel of Def.,, we include a zeroth-order mass term in the momentum equations
(1.1a) (cf. Remark 4.1).

We consider surface finite element methods (SFEMs), a natural methodology
mimicking the variational formulation and built upon classical Galerkin principles. In
this approach the domain « is approximated by a polyhedral (or higher-order) surface
I'y, whose faces constitute the finite element mesh. Similar to the Euclidean setting,
SFEMs for the surface Stokes problem based on the standard velocity-pressure formu-
lation must use compatible discrete spaces. Specifically, a discrete inf-sup condition
must be satisfied. Given that SFEMs utilize the same framework as their Euclidean
counterparts, employing mappings via affine or polynomial diffeomorphisms, one may
anticipate that numerous classical inf-sup stable Stokes pairs can be adapted to their
surface analogues, readily enabling the construction of stable SFEMs for (1.1).

However, the tangential velocity constraint poses a significant hurdle to construct-
ing stable and convergent SFEMs. As I'j, is merely Lipschitz continuous, its outward
unit normal is discontinuous at mesh edges and vertices. As a result, the tangential
projection of continuous, piecewise smooth functions does not lead to H '-conforming
functions. Moreover, there do not exist canonical, degree-of-freedom-preserving pull-
backs for tangential H' vector fields, in particular, the Piola transform preserves
tangentiality and in-plane normal continuity, but not in-plane tangential continuity.
Finally, a continuous, tangential, and piecewise smooth vector field on I';, must neces-
sarily vanish on mesh corners except in exceptional cases where all incident triangles
are coplanar. Indeed, at a mesh corner there are at least three faces emanating from a
common vertex, whose outward unit normal vectors span R3. Therefore tangentiality
of a continuous vector field with respect to each of the three planes implies that it
vanishes at the vertex. Thus any piecewise polynomial space simultaneously satisfy-
ing both tangentiality and continuity exhibits a locking-type phenomenon with poor
approximation properties.

There is a substantial recent literature on numerical approximation of the surface
Stokes and related problems such as the surface vector Laplace equation. Most of
these circumvent the difficulties described above in one of three ways: by relaxing
the pointwise tangential constraint, by relaxing H'-conformity of the finite element
space, or by using a different formulation of the surface Stokes problem. For the
former, one can weakly impose the tangential constraint via penalization or Lagrange
multipliers [16, 17, 25, 26, 18, 21, 4]. In principle, this allows one to use inf-sup sta-
ble Euclidean Stokes pairs to solve the analogous surface problem. However, this
methodology requires superfluous degrees of freedom (DOFSs), as the velocity space
is approximated by arbitrary vectors in R? rather than tangential vectors. In addi-
tion an unnatural high-order geometric approximation of the unit normal of the true
surface is needed to obtain optimal-order approximations. Therefore for problems
in which full information of the exact surface is unknown (e.g., the free-boundary
problem), these penalization schemes lead to SFEMs with suboptimal convergence
properties. However, it was shown recently in [19] that the tangential component of
the solution converges optimally for a standard isoparametric geometry approximation
in most cases assuming a correct choice of penalty parameters. The only exception
is the case where tangential Lo errors are considered along with affine (polyhedral)
surface approximations. Alternatively, one may relax H'-conformity and use finite
element trial and test functions that are not continuous on the discrete surface I'y,.
In this direction, SFEMs utilizing tangentially and H (div)-conforming finite element
spaces such as Raviart-Thomas and Brezzi-Douglas-Marini combined with discon-
tinuous Galerkin techniques are proposed and analyzed in [3, 23]; cf. [10] for similar
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methods for Euclidean Stokes equations. Here, additional consistency, symmetry,
and stability terms are added to the method. These terms add some complexity to
the implementation, especially for higher-order surface approximations, but are stan-
dard in the context of discontinuous Galerkin methods. Optimal-order convergence
is observed experimentally for a standard SFEM formulation that does not require
higher-order approximations of any geometric information. Discretizations of stream
function formulations of the surface Stokes equations have also appeared in the lit-
erature [24, 28, 5, 4]. However, as with methods weakly enforcing tangentiality, they
require higher-order approximation to the surface normal and in addition require com-
putation of curvature information which can in and of itself be a challenging problem.
These methods are also restricted to simply connected surfaces. As a final note,
trace SFEMs, in which discretizations of surface PDE are formulated with respect
to a background three-dimensional mesh and a corresponding three-dimensional fi-
nite element space, are especially important in the context of dynamic surface fluid
computations. Trace formulations are well-developed for H' conforming/tangentially
nonconforming methods and stream function formulations, but have not yet appeared
for H (div)-conforming methods.

In this paper, we design an SFEM for the surface Stokes problem (1.1) using a
strongly tangential finite element space that is based on a conforming, inf-sup stable
Euclidean pair. The method is based on the standard variational formulation for
the Stokes problem and does not require additional consistency terms or extrinsic
penalization. As far as we are aware, this is the first SFEM for the surface Stokes
problem with these properties. The key issue that we address is the assignment of
DOFs of tangential vector fields at Lagrange nodes, in particular, at vertices of the
surface triangulation.

To expand on this last point and to describe our proposed approach, consider a
vertex/DOF, call it a, of the triangulation of the discrete geometry approximation
I'y,, and let T, denote the set of faces in the triangulation that have a as a vertex. We
wish to interpret and define the values of tangential vector fields forming our finite
element space at this vertex in a way that ensures the resulting discrete spaces have
desirable approximation and weak-continuity properties. As the mesh elements in T},
generally lie in different planes, it is immediate that such vector fields are generally
multivalued at a.

Let p=p., denote the closest point projection onto v, and note that, because 7 is
smooth, continuous and tangential vector fields are well-defined and single-valued at
p(a). Thus, as the Piola transform preserves tangentiality, a natural assignment is to
construct finite element functions v with the property v| g (a) = ?p—lﬁ}p(K) for all K €
T, for some vector field ¥ tangent at p(a), where Pp,-1 is the Piola transform of the in-
verse mapping p~ ! : v — I'j; see Figure 1. Imposing this condition on Lagrange finite
element DOFs likely leads to the sought out approximation and weak-continuity prop-
erties and thus conceptually may lead to convergent SFEMs for (1.1). However, the
implementation of the resulting finite element method requires explicit information
about the exact surface v and its closest point projection. Therefore this construction
is of little practical value.

Instead of this idealized construction, we fix an arbitrary face K, € 7,. Given the
value v| g, (a) and K € T,, we then assign v|x(a) = P v|k, (a), the Piola transform

of v|g, (a) with respect to the inverse of the closest poaint projection onto the plane
containing K,; see Figure 2. This transform is linear with a relatively simple formula
(cf. Definition 2.3), and it only uses geometric information from T'j,. Moreover, we
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F1c. 1. A pictorial description of an idealized assignment of nodal values on a one-dimensional
surface. Here, a tangential vector ¥ at the point p(a) is mapped to each element K wvia the Piola
transform with respect to the inverse mapping p~ |k .

vk, (a) __--
s e

F1G. 2. A pictorial description of our construction on a one-dimensional surface. The value of
a vector field v at vertex a restricted to K, is mapped to K via the Piola transform with respect to
the inverse of the closest point projection onto the plane containing K, .

show that this construction is only an O(h?) perturbation from the idealized setting.
As a result, the constructed finite element spaces possess sufficient weak continuity
properties to ensure that the resulting scheme is convergent for the surface Stokes
problem (1.1).

To clearly communicate the main ideas and to keep technicalities at minimum, we
focus on a polyhedral approximation to vy and on the lowest-order MINI pair, which in
the Euclidean setting takes the discrete velocity space to be the (vector-valued) linear
Lagrange space enriched with cubic bubbles and the discrete pressure space to be the
(scalar) Lagrange space. We expect the main ideas to be applicable to other finite
element pairs (e.g., Taylor—-Hood, Scott—Vogelius [29, 22, 31, 2]), although the stabil-
ity must be shown on a case-by-case basis. Below we present numerical experiments
demonstrating the viability of our approach for P? surface approximations paired with
a P2 — P! Taylor-Hood finite element space and plan to address generalizations of our
approach more fully in future works.

The rest of the paper is organized as follows. In the next section, we introduce
the notation and provide some preliminary results. In section 3, we define the surface
finite element spaces based on the classical MINI pair. Here, we show that the spaces
have optimal-order approximation properties and are inf-sup stable. We also estab-
lish weak continuity properties of the discrete velocity space via an H'-conforming
relative on the true surface. In section 4, we define the finite element space and prove
optimal-order estimates in the energy norm. Finally in section 5 we provide numerical
experiments which support the theoretical results.
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2. Notation and preliminaries. We assume v C R? is a smooth, connected,
and orientable two-dimensional surface without boundary. The signed distance func-
tion of ~ is denoted by d, which satisfies d < 0 in the interior of v and d > 0 in the
exterior. We set v(z) = Vd(z) to be the outward-pointing unit normal (where the
gradient is understood as a column vector) and H(z) = D?d(z) the Weingarten map.
The tangential projection operator is I = I — v ® v, where I is the 3 x 3 identity
matrix, and the outer product of two vectors a and b satisfies (a ® b); ; = a;b;. The
smoothness of v ensures the existence of § > 0 sufficiently small such that the closest
point projection

p(a) =z — d(a)v(x)

is well-defined in the tubular region U = {z € R*: dist(x,v) <4}.

For a scalar function g : vy — R we define its extension ¢¢: U — R via ¢ =qo p.
Likewise, for v = (v1,v9,v3)T : v — R? its extension v¢ : U — R? satisfies (v¢); = v¢
for i = 1,2,3. Define the surface gradient V,¢ = IIV¢®, and for a (column) vector
field v = (v1,v2,v3)T : 7 = R®, we let Vo© = (Vof, Vos, Vus)T denote the Jacobian
matrix of v®. We then see (Vv°II);. = ((Vo§)TII) = (IIVY)T = (V,v;)T, ie., the
ith row of Vv°II coincides with (V,v;)T. The tangential surface gradient (covariant
derivative) of v is defined by V.,v =IIVv°II, and the surface divergence operator of
v is divyv = tr(V,v). The deformation of a tangential vector field is defined as the
symmetric part of its surface gradient, i.e.,

Def v = %(V,Y’U +(V,0)T).

For a matrix field A : R**3, the divergence div, A is understood to act rowwise.

Let Lo(7) denote the space of square-integrable functions on « and let IQ/Q('y)
be the subspace of Lo(y) consisting of La-functions with vanishing mean. We let
W () be the Sobolev space of order m and exponent p on 7 with corresponding
norm || - [[wy (). We use the notation H™ () = W3"(y) with [| - [[gmy) = | - [lwy4),
and the convention |-|go = |||/, |-[wo = -[|z,. Analogous vector-valued spaces are
denoted in boldface (e.g., La(vy) = (La(7))? and H'(y) = (H(7))%). We let H(7)
be the subspace of H* (v) whose members are tangent to 7, and set

H(divy;y) ={v € La(vy) : div,v € Lao(7)}.

Let T'y, be a polyhedral surface approximation of v with triangular faces. We
assume that ', is an O(h?) approximation in the sense that d(z) = O(h?) for all
x € I',. We further assume h is sufficiently small to ensure I';, C U, in particular,
the closest point projection is well-defined on I'y,. We denote by T}, the set of faces
of I', and assume this triangulation is shape-regular (i.e., the ratio of the diameters
of the inscribed and circumscribed circles of each face is uniformly bounded). For
simplicity and to ease the presentation, we further assume that 7} is quasi-uniform,
i.e., h:=max, s diam(K") ~ diam(K) for all K € T,. The image of the mesh elements
and the resulting set on the exact surface are given, respectively, by

K =p(K), T ={p(K): KcT}.

We use the notation a <b (resp., a 2 b) if there exists a constant C' > 0 indepen-
dent of the mesh parameter h such that a < Cb (resp., a > Cb). The statement a ~b
means a S b and a 2 b.
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Set V}, to be the set of vertices in T3, and for each K € T}, let Vi denote the set
of three vertices of K. For each a € Vj, let T, C T} denote the set of faces having a
as a vertex. For K € T}, we define the patches

o= U K we= U K
K'eT), K'eT,
K'nEK#0 K @ £0

so that wx C wh CI'y. The patches wi~ and Wi, associated with K7 = p(K) are
defined analogously.

The (piecewise constant) outward unit normal of I'y, is denoted by vy, and we
shall use the notation v = v,|k € R?’, its restriction to K € 7;. We assume that
|vop —vp| S h. The tangential projection with respect to I'y is I, =1 — vy, @ vp,
and we assume there exists ¢ > 0 independent of h such that v-vy >c¢>0on I'),. We
let pp(z) satisfy ppdop(x) = do(p(z)), where do and doy, are surface measures of
and T'j, respectively. In particular,

/Fh(qop)uh:/vq Vg € Li(7).

From [11, Proposition 2.5, we have

(2.1) L (2) :V(x)-Vh(x)H(l—d(x)/-@i(x)), z €Ty,
and
(2.2) 11— pn ()| S B2,

where {k1, Ko} are the eigenvalues of H, whose corresponding eigenvectors are orthog-
onal to v. We set ux = pup|x to be the restriction of py, to K € Tp,.

Surface differential operators with respect to I', are denoted and defined analo-
gously to those on v. We also set (m € N)

H}'(Ty) ={v € Ly(Th): vl e H"(K) VK €Tn},  ollipey = D I0lFm)
KeTy,

to be the piecewise H™ Sobolev space and norm, respectively. Likewise, H}'(7) is
the piecewise Sobolev space with respect to T with corresponding norm ||v||%1}:n ()=
Yker, Ivl3m (rcv)» and Def, , denotes the piecewise deformation operator with re-
spect to T

We end this section by stating a well-known characterization of H (divr,;I') =
{ve Ly(Ty): divp,v € La(T'y,) }. For each edge e of the mesh, denote by K7, K§ € T},
the two triangles in the mesh such that e = K7 NOKS. Let n§ denote the outward
in-plane normal to 0K, and note that in general, n # —nf§ on e. Then a vector field

v € Hj (T},) satisfies v € H(divr, ;) if and only if [23]
(2.3) vy -nf|e +v2-n5l. =0 for all edges e,

where v; = v|gke.
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2.1. Extensions and lifts. For the rest of the paper, we view the closest point
projection as a mapping from the discrete surface approximation to the true surface,
ie., p:T'y, — . Restricted to I'y, the projection is a bijection and in particular has a
well-defined inverse: p~!:~ — T',. Recall that for a scalar or vector-valued function
q on 7, its extension (now to I'y) is ¢¢ = gop. For a scalar or vector-valued function ¢
defined on T, we define its lift via ¢* = gop™!. Note that (¢*)¢ = q on vy and likewise,
(¢®)* =q on T,. For g€ H(vy) (m=0,1,2), there holds

(2.4) lall zm vy = gl am k) VK € Tp,

which follows from a change of variables, the chain rule, and the smoothness assump-
tions of v (cf. [13]).

2.2. Surface Piola transforms. Following [30, 9, 3] we summarize the
divergence-conforming Piola transform with respect to a mapping between surfaces.
Let 8¢ and 87 be two sufficiently smooth surfaces, and let ® : 85 — 81 be a diffeomor-
phism with inverse @' : 8; — 8. Let do; be the surface measure of 8;, and let p
formally satisfy pdog = doy. Then the Piola transform of a vector field v : 85 — R®
with respect to ® is given by

(Pav) 0 ® = p ' Ddv.
Likewise, for v : 81 — R? its Piola transform with respect to &1 is
(Pop-1v) 0o ® ' = (o ®d DI 1w,
Similar to the Euclidean setting, there holds
(2.5) divg,v = pdivs, Pyv Vv € H(div;8p),

in particular, Pg : H(divs,;80) — H(divs,;81) and Pe-1 : H(divs,;81) — H (divg,;
8y) are bounded mappings. Moreover, as D® and D®~! are tangent maps, the Piola
transform yields tangential vector fields: if v; is the unit normal of the surface §;,
then (Ppv)-v1=0o0n 8 and (Pg-1v)-vo=0 on 8.

In the case ® = p, 8¢ =Ty, and 81 = (so that u = uy), the Piola transform of
v:T}, » R? with v = is [9, 3]

1
2.6 vop:=P,v=—|I1 —dH|v,
(2.6) Dop i~ Mh[ Jv

1

whereas the Piola transform of v:v — R? with respect to the inverse p~—! is given by

vV QUp
V- -UVp

(2.7) 0:=Pp1v=py [I— }[I—dH]_l('uop).

Note that ® = v on v and ¥ = v on I',. Moreover, it follows from (2.5) that for all
K e ‘Th,

(2.8a) / (divyw)g :/ (divr, 0)q° Vv e H(div,; K7), g€ Lo(K7),
K~ K

and

(2.8b) / (divp, v)q = / (div,@)¢* Vo€ H(divr,; K), q€ Ly(K).
K K~

The following lemma states the equivalence of norms of vector fields and their
Piola transforms.
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LEMMA 2.1. For K € Tp,, let v: K7 — R? and v = Pp1v: K — R? be related
by (2.7) restricted to K. Then if v € H™(K?) for some m € {0,1,2}, there holds
v € H™(K). Moreover,

(2.9) ]|z () = 10| 5 () -

Proof. The proof for the cases m = 0,1 is found in [3, Lemma 4.1]. The case
m = 2 follows from similar arguments and is therefore omitted. O

We also need a similar result that relates the Lo norm of the deformation tensors
of v and its Piola transform ©. The proof of the following result is given in the
appendix.

LEMMA 2.2. For K € Ty, letv € Hy(K) and® € Hy(K") be related via © = Ppv.
Then

(2.10) [Def, @ — (Defr,v) o p~ [ S A(|(Vr,v) op™ |+ [vop™H)).
Consequently, by a change of variables,

(2.11) et Ly (x0v) S IDefr, vy x) + A (Ve vl Loy + 10l ax0)) -

We now apply the above definitions of Piola transforms to mappings between
planes (surface triangles), which is critical to our construction of vertex DOFs for
vector fields on I'y,.

DEFINITION 2.3. For each vertex a € Vy, in the triangulation, we arbitrarily choose
a single (fived) face K, € T,. For K € T,, we define MX ‘R* = R? by
(2.12) Mfw:(uKa-VK[I—MDw,
Vi, VK

where we recall vk, and vk are the outward unit normals of K, and K, respectively.
In particular, MEx is the Piola transform of x with respect to the inverse of the
closest point projection onto the plane containing K, (cf. (2.7)).

Remark 2.4. By properties of the Piola transform, MXz is tangential to K, i.e.,
(MEz) - v =0 for all z € R3.

We next show that the “ideal” and “practical” interpretations of vectors at ver-
tices discussed in the introduction (cf. Figures 1 and 2) do not differ by too much.

LEMMA 2.5. Fiz a € V), and let w lie in the tangent plane of v at p(a). For
K €T,, let ug = Pp-1u|x be the Piola transform of w to K wia the inverse of the
closest point projection (cf. (2.7)). Then

(2.13) lar — MEag | <h?uk, | < h?|ul.

Proof. Using Hv = V|v[? = 0, we have HII = H. Note in addition that
[I — Y2YK[] = [I — ¥22£] Therefore by (2.7), (2.6), and (2.1) we have

178374 °¢ VVK
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e = purc |[T— 2225 (1 — amy
L VK |
[ | 1 1
=K - ZEVK [I—dH]™' — [TI— dH] i,
L V-viK | HEK,
[ | 1 1
— e [1- YOV r - gE) ™t (1 dH]TIa
L V- VK | KK,
_vovk [I—V®VK:|H1ULKQ
V-Vk, V- Vg
V- Vg VRUVUEK | .
= I— ’U,Ka.
V-Vk, V- Vg

Now [v—vi|+|vk, —vik|Sh, 1-v-vg|=3v—vk[? Sh? and |[1-vk, vi| S
h?. Thus employing (2.12) and the identity vk, - @, =0 we have

(e [ o - 5]
_VKQ‘VK 1—7 ’U,Ka

lag — MEag |

V- Vi V- Vi Vi, VK

A

I V®I/K [I—I/K ®VK]]ﬁKa|+h2|ﬁKa|

(v —vk,) Quiugk, |+h |tk |
(v —

K.) ® (Vi —vi, )ik, |+ hP|ik,|

A

h |'LLKQ|
Finally noting that |k, | = |Tp\;1 u| Su| (cf. (2.7)) completes the proof. O

Remark 2.6. In SFEMs it is common to use a higher-order surface approximation
I to v of polynomial degree k (here we consider k =1). In that case vk is no longer
constant on K, and we have |v(a) — vi(a)| < h*. The results of Lemma 2.5 easily
generalize to this situation with h2* replacing h? on the right-hand side of (2.13).

3. Finite element spaces and inf-sup stability. By utilizing Lemma 2.5, we
can construct tangential finite element spaces on the surface approximation I'y, using
nodal (Lagrange) basis functions. The essential idea is to enforce continuity at nodal
DOFs in a weak sense through the mapping MX given in Definition 2.3. Although
this procedure does not yield a globally continuous finite element space, it preserves
in-plane normal continuity and exhibits weak continuity properties. These properties
are generally sufficient for achieving convergence in second-order elliptic problems.

In the following discussion, we focus on the construction of the lowest-order MINI
Stokes pair for simplicity [1]. However, we expect that Definition 2.3 and Lemma 2.5
provide a general framework for constructing convergent finite element schemes based
on classical and conforming finite element pairs such as Taylor-Hood and Scott—
Vogelius [2].

3.1. Surface MINI space and approximation properties. Let K be the
reference triangle with vertices (0,0), (1,0),(0,1), and for K € Ty, let Fx : K — K
be an affine diffeomorphism. The constant Jacobian matrix of Fx is denoted by
DFy € R¥*2. Note that the columns of DFy span the tangential space of K. For a
vector-valued function @ : K — R?, its Piola transform with respect to Fi is given by

(3.1) v(z) = (Pr ) (z) = %DFKﬁ(j), v = F(2),

and J =/det(DF}DFf).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/06/24 to 136.142.159.53 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

NODAL FEM FOR SURFACE STOKES 257

Let bg be the standard cubic bubble function on K, i.e., the product of the three
barycentric coordinates of K. The local MINI space defined on the reference triangle
is given by V := P (K) @b Po(K), where Px(D) is the space of polynomials of degree
<k with domain D, and Py (D) = [Px(D)]?. We then define the surface finite element
spaces on I'y, as

Vi={veLyT}):VKeT,IeV,
v =Pr, 0 ; vi(a) =ME (v, (a)) VK € To, Ya €V},
Qrn={qe H'Ty)NLa(T}): qx € P1(K) VK € Tp,},

where v = v|k is the restriction of v to K € Tp, MaK is defined in Definition 2.3,
and we recall V}, is the set of vertices in T5.

For v € V,, we let vy denote the linear portion of v, i.e., vy is the unique
tangential and piecewise linear vector in V', satisfying (vi)k, (a) = vk, (a) for all
a € Vi,. We then have the following identity on each K € Tj:

(3.2) v=UL+60bK][ (v—wp) Yv € Vi,
K
where we have used the fact [, bx =|K|/60 for all K € Tj,.

Because the columns of D Fx span the tangential space of K, we see that functions
in the discrete velocity space V', are tangential, i.e., v-v, =0 for all v € V. In
addition, due to the normal-preserving properties of the transform MZX | the space is
H (div)-conforming, as the next result shows.

PROPOSITION 3.1. There holds Vi, C H(divr, ;T;).

Proof. Due to the properties of the cubic bubble, it is sufficient to show that the
linear component of v € V', satisfies the in-plane normal continuity condition (2.3)
across all edges in Tp,.

Let a € V;, be a vertex of T, and let Ky, K> € T, be two elements that have a
as a vertex and share a common edge e = 9K N 0K>. Denote by n§ the in-plane
outward unit normal vector with respect to 0K restricted to e.

Using the definitions of the finite element space and the operator MX | along with
the Binet—Cauchy identity, there holds for any v € Vi,

vj(a) - n§ =M (vk, (a) - n§
= (vk, " Vk;)(vk,(a) -nj) — (Vk, - nf)(VK, vk, (a))

= (vk, X vk,(a) - (Vk,; xnj),
where v; = vk, = v|k,. Therefore,
vi(a)-n§ +va(a) -n5 = (v, x vk, (a)) - (Vk, x n7) + (v, x n3)) =0.

Because v; is a linear polynomial on e, we conclude that (2.3) is satisfied on all edges.
This implies the desired result V'), C H(divr, ;). O

LEMMA 3.2. For each w € C(v) N HL.(y) N H7(v), there exists I € V', such
that

W — T3 | ) S B2 [w] gz VK eTh, m=0,1,

WKY)

with = Pp1w.
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Proof. Given w € C(v) N Hy(vy) N Hi(v), we uniquely define v := Iib € V7,
such that each component of v is a piecewise linear polynomial and satisfies

(33) VK, (a) = ﬁ)KQ (a) VYa € Vy,.

Let w; be the elementwise (discontinuous), linear interpolant of w with respect
to the vertices in Ty, i.e., (Wr)x € P1(K) with (W) k(a) = wk(a) for all K € T and
a € Vi. By Lemma 2.5 (with u =w(a)), (3.3), and the definition of V', we have for

each vertex a € Vp,
(wr —v) i (a)| = [(wr — M vk,)(a)|
= (g — MEwg )(a)| Shwg, (a))] VK ET,.

Consequently, by standard inverse estimates,
R [wr —vllgm )y S llwr — vl Lok
< hllw;, — —h by —
Shllwr = vl o) =h max |(or —v)x(a)l
<h? 1 =0,1.
~ anel%); ‘wKa (a)|’ m )
Using inverse estimates once again and applying standard interpolation results yields
o < Ilai
max |, (a)] < [[Wr]] 2w
Sh w1 )
S]] g (o) + 11 = 1| 25 o))
5 h_l(”ﬁ)HLz(wx) + h2 |11"H,2L(wx))
Therefore,
W™ [wr =l gm ) SH2 0] 12 (0 m=0,1,
and so by (2.9),
hmH’lb — UHH"L(K) g hm”’lj} — ib[”H'nL(K) + hmH’li}I — v”H’NL(K)

S wll 2 e - 0

LEMMA 3.3. There exists a constant o > 0 independent of h such that

Jp, (divp,v)q
(3.4) sup " >allgllr,r, Vg€ Qn
vevi\{0y  [[vllm )

Proof. Fix q € Qy, and let w € HX.(v) satisfy [20, 14, 11]

(35)  divow=(u;"0) € La(y), and  Jlwllmiy) SN, @) o) S llallzarn)s

where we used (2.4) and (2.2) in the last step. Let I3Zw® be the Scott-Zhang
interpolant of the extension w® € H*(T,) onto the space of continuous piecewise
linear polynomials with respect to T3 [7, 12], and set w;, = II(I3Zw®)t € HL(v).
From (2.4), w — wy, = II(w — Ifzwe), and approximation properties of the Scott—
Zhang interpolant, there holds on each K € Ty,

(3.6)
wnll iy + ™ Hlw=whl o0y S NEIRZw) sy + B w— (I3 7 w) | o
SR we | ey + 7w — I w1y )

Slwlla wr) S 1wl g @i
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Noting wy, € C(y) N Hy(y) N H7(7), we define v € V', such that
’UK:(Ihﬁ)h)K'i‘GObK][ (’LVU—Ih’&)h) VK € Ty,

K

where I,wy, is given in Lemma 3.2. We then have [, v = [, @, and by (3.6) and
Lemma 3.2,

lvll g1y < N nwhllm(x) + |v = Tnn | g x)
Sllwll g ory + [ — Thtbp | g iy + B[ — Tawn]| 1y k)
S| g gy + | W — Wp | g () + 100 — Tnwa|| g x)
+h7 (| — Wl g (x) + [Wn — Tntnl| o))
Sl + hllwnll g2 e

By (2.4), a standard inverse estimate, and the H!-stability properties of the Scott—
Zhang interpolant,

sz sz
hlwll iz ey S PIARZw) | 12 ey S BITR w0 N b12 )

SR w8 | 11 () S w1 )
and so by (3.5),
B7) vl S vl ) YE €T = ol S lwllime) S lalizawn)-

Next, we recall from Proposition 3.1 that v € H(divr, ;') and therefore (2.3) is
satisfied. Thus, by integration by parts, the identity [, v = [, w, and applying (2.8)
yields

/ (divp,v)q= —/ v-Vp,g=— w-Vr,qg= / (divp,w)q = /(divvw)qz.
'y 'y 'y I'p Y

We then use (3.5), (2.2), and (2.4) to obtain

/ (dive,v)g Z llall 7, (r,)-

Iy
This identity combined with (3.7) completes the proof. d

3.2. H}-conforming approximations to discrete functions. While the fi-
nite element space V', is merely H (divr, ;T )-conforming (cf. Proposition 3.1), the
following lemma shows that functions in this space are “close” to an H*-conforming
relative.

LEMMA 3.4. Given v € V', denote by v = Ppv its Piola transform via the closest
point projection to . Then there exists U, € H%«(v) such that
(3.8) ||f) - i’\cHLz(KV) + h|6 - aC|H1(K7) < h2H6||L2(K’Y) VK7 € ‘J'Z

h
Proof. On an element K € T}, we first write v =v + abg, where vy, is compo-
nentwise affine on K, and o € R? is tangent to K (cf. (3.2)). Likewise, ¥ =9, + abl
is the Piola transform of v to 7. We next let w be the unique continuous piecewise
linear polynomial with respect to T}, satisfying w(a) = vk, (a) for each vertex a € V.
We then set
. II-dH
Ve = dry)(1 — dra)

w' + abl = p; v vy (T — dH)w' + abl.
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Note that . € H(7), and
V—v.=01 — u;lu vy (I — dH)we.

Fixing K € T3, by norm equivalence (cf. (2.9)) we prove (3.8) by establishing that

lor = py v - vp (I = dH)w" || () + hlor — v - v (T — dH)w' | g1 (i)

S P vll, 0,

where #;, V- vp(II— dH)w' = :Pp\;}lluf:l” (I = dH)w’, We show (3.9) in three
steps.

(i) Employing (2.7), (2.1), and I (v - vy, —v @up) Il =v - vy — v @ vp, we have
that

,uglu v (II — dH)wZ =g (v vg)l—vvk)w.

Here we interchangeably write v, = vg=wy|x and II;, = Il in order to better
distinguish dependence on the element K. Using vy, - v =0 and IIgvy = v, we
then have

(3.10)
v — ,uglu cvp(T — dH)w’ = Tg[v, — (v -vi)l — v @ vg) w)

=[(1-v vk)v]+ v vgllg(v, —w)|+ [vk - (w—vp) k(v — vi))
= I+ 1I+1II.

, (ii) We next bound the terms I, I1, and I11 in Ly. Using [1-v-vg|=Slv—vkg|* <
h* yields

(3.11) 120y S B2 oLl o)

Next we use (2.12) and recall that vy, (a) - vk, =0 to compute that for each vertex
ac K
(3.12)
Mk (ve —w)(a)| = Mk (Mg ~Dv, ()l
= Mk[(vk, v -vi, ©@vk) —Tvk,(a)|
=|(vk, vk — DlIgvk, (a) — (vk —vk,) vk, (a)llg(Vk, —VK)|
Sh vk, (@)l Sh? vk (a)l.

1

Ik
VK VK, a
vi(a)| S |vi(a)|. We then use the fact that IIx (v, — w) and vy, are affine, along

with inverse inequalities, to obtain

In the last step we have employed (2.6) and (2.7) to obtain |vk, (a)| = |

I7 < |ITI _ <h I _
(313 1| Loy S Mk (v — w) ||, x) S 52%)5(' x(vp —w)(a)|

SEvLlln. k) S PvLl s x)-

In order to bound I1I, we first proceed similarly as in (3.12) to obtain

(v —w)(a)| =|(Vk, vk — Dvk,(a) — (VK —VE,) vk, (0)Vk,| S hlvk(a)l.
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Using |[TIx (v — v )| S b, we thus have similarly to above that

(3.14) [IT|| ) S hllve = wll a0 S P2 IlvLl o)

Recalling that v = vy + abg and bx(a) = 0 at vertices a, we again use inverse
inequalities to obtain

(3.15) lvellr,) Shllvello. ) = hf@%}é lvr(a)| < hlv|L. ) SVl )

Collecting the inequalities (3.11), (3.13)~(3.15) yields |0 — || 1, (k~) S P10 £, (k-
(iii) In order to bound ||V, (vr, — pj; v - vy (I — dH)w®) || 1, (), we recall (3.10)
and consider first Vp, I. First note that |V(1 —v-vg)|=|Hvk|=|H vk —v)| S h.
Thus using an inverse inequality and |1 — v - vg| < h?, we obtain
IVe | o) S = v villow o)lIVe, oLl + IV —v-vi)loo aollvol. )
Shllvelz.r)-
Employing inverse inequalities, |V(v - vi)| S h, and (3.13) also yields
IV | Ly S IV v ) Mk (v — w) [ 1, (k)
v -vil.uollVe, Mk (v —w)]l| L, x)
Sk (vr —w)lz,x) +h 7k (vr — )] 1, x)
Shllvelle, -
We finally compute using inverse inequalities and (3.14) that
Ve, I | oy ) S IV (v —vi)|l| Lo (o) llve — wll Ly k)
+ Mk (v = vi) L0V, (v — W)Ly )
S+ hh™ Y lor —wl L, 0) Shllvrllz, i)
Collecting the above inequalities and employing (3.15) yields
IV, (I + 11+ )| 1, 0) S PllvellLa ) S Plvlle, ),
which completes the proof. 0

3.3. Discrete Korn-type inequalities. From Lemma 3.4, we immediately ob-
tain a discrete Korn-type inequality on the exact surface ~.

LEMMA 3.5. Given v € V', there holds
(3.16) 1172 () S 101l () + [IDefy 10 Lo ).

where v = Ppv.

Proof. Given v € V', let . € H(7) satisfy (3.8). A continuous Korn inequality
holds for v, so using (3.8) we have

1112 (1) S el 27y + 1B = Bll iz ()
(3.17) SBell o) + IDefs el Loy + 11De = Dl )
S ||6HL2(7) + ||Def%h5HL2(’Y) +[ve - 6”H}L(v)
S (14 W3] L) + [IDefy 1Bl 2 (r)- 0

From this result, we obtain a discrete Korn inequality for V'j, on ['j.
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LEMMA 3.6. There holds

(3.18) ol o) SlllLoce, + IDefr, vllyw,) VO EVH.
Proof. We apply Lemma 3.5, (2.11), and an inverse estimate:

ol rn) S 101 mg )
S Pl (y) + [Defy w0 1, ()
S ||'U||L2(Fh) + ||DethvHLz(Fh) + hH’UHH}L(Fh)
S vllzyn) + IDefr, vl L,y () O

4. Finite element method and convergence analysis. For piecewise smooth
w,v with v € H(div,;v) and ¢ € Ly(7), we define the bilinear forms

av(w,v):/Def%hw:Def%thr/wm,
gl v

b (v,4) = — / (div,v)q.

The variational formulation for the Stokes problem (1.1) seeks (wu, p) € Hx(v) x La(7)
satisfying

aw(u,v)—i—bv(v,p):/j‘-v V'UEH%«('y),
¥

b (1,q) =0 Vg € La(v).

(4.1)

Remark 4.1. In order to ensure the well-posedness of (4.1) and avoid technical
complications associated with Killing fields, we include the zeroth-order mass term
in the momentum equations, as mentioned earlier in the introduction. A method for
incorporating Killing fields into SFEMs for the Stokes problem is presented in [3], and
the main ideas presented there are applicable to the proposed discretization below.

We define the analogous bilinear forms with respect to the discrete surface I'y:

ar, ('w,v):/ Defr,w:Defr,v+ [ w-v,
'n T'n

th ('U, q) = _/ (din‘h'U)q,
Fh

where the differential operator Defr, is understood to act piecewise with respect to
Th. Then the finite element method seeks (up,pr) € Vi, X @, such that

ar, (up,v) +br, (v,pn) = | f-v Yv e Vy,
I'n

br, (un,q) =0 Vg € Qp,

(4.2)

where f;, is some approximation of f that is defined on I'y,.

By the inf-sup condition (3.4), the discrete Korn-like inequality (3.18), and stan-
dard theory of saddle-point problems, there exists a unique solution (4.2). To derive
error estimates, we restrict (4.2) to the discretely divergence-free subspace X, =
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{veVvy: fF (divp,v)g =0 for all ¢ € Qp}. Then up € X}, is uniquely determined
by the problem

(4.3) ar, (up,v)= [ f5-v YveXy.
Fh
Now set uj, = Ppusp, v =Ppv, and note that
fh-v: fh~‘Pp—16:/Fh~6
In T'n ol
where Fj, = (MTf,)¢, and

vV QUp
V-V

(4.4) M = [I - } 1 - dH)~!

is the matrix arising in the definition of P,-1. Therefore (4.3) is equivalent to the
statement

(4.5) a. (iin, ) /Fh B+ Gh(un,v) VoeXn,

where the bilinear form Gy, : H,(T';) x H}(I',) = R given by
Gn(w,v) = ay(w,v) — ar, (w, v)

encodes geometric error.

LEMMA 4.2. There holds
(4.6) |Gr(w, v)| S hllw] gy ) ]l )
for all tangential w,v € H} (T}).

Proof. We write

/ Def, pw : Def., v — / Defr, w : Defr, v
v

Tn
= / Def., pw : Def, pv — /(,u,:lDefphw) op~!:(Defp,v)op!
v g
:/ (Def%hfv - (,U,;lDeth’w) Op_l) :Def%hﬁ
2l
- /(,u,:lDefph'w) op~':((Defr,v) op~! — Def, ,0).
.

Applying (2.10), (2.2), and Lemma 2.1, we obtain

(4.7)

/Def%hfu:Def%hﬁ—/ Defr, w: Defr, | < bl s () 81l 111 (o
Y Iy )

Next, we use the formula of the Piola transform involving M to obtain

/w v — 'wv—/'w ’U—/(uhop D T™MTMB
Ty

/ 1o p~ YMTMI5.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/06/24 to 136.142.159.53 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

264 ALAN DEMLOW AND MICHAEL NEILAN

A short computation using (2.2) yields [II — (up op ) )M™M| < |(v — 2 ) @ (v —

v-Vp
)+ h? < h%. Thus
(4.9 Jo5- [ weo SRl ol
vy Tn
The result (4.6) follows from (4.7)—(4.8). o

The next lemma states the approximation properties of the discretely divergence-
free subspace X,. The result essentially follows from the inf-sup condition (3.4) and
the arguments in [6, Theorem 12.5.17]. For completeness we provide the proof.

LEMMA 4.3. Let u € H'(v) satisfy div,u=0. Then there holds

Jint w8l S inf =l

Proof. Fix v € Vy,. The inf—sup condition (3.4) implies there exists w € V', such
that br, (w,q) = b, (u —v,q%) for all ¢ € Qp,, and lwllz: @, < lw =g (y). Then
w+v € Xy and [lu— (W +)|| g1 () < [u—2] g (7)+||WHH 1(y) S llw =2l g1 (). This
implies the desired result. ad

THEOREM 4.4. Let (up,pp) € Vi, X Qy, satisfy the finite element method (4.2).
Let uy, = Ppuy, denote the Piola transform of wy, with respect to the closest point
projection p, and let pfl =ppop L. Then there holds

(4.9a)
. f _/\ o [
le—@nllme S ik (=Bl + 1P = dleae)
+ P2 F o) + 1 = Frllna e
+ (1Pl o) + 1l e () + 1 Fnllacrny) s
(4.9b)

o — thL2<~y>< lnf 1P = ¢l Loy + 1 = @l 13 () + B2 Fl Loy + 1F = FallLacy

+ h(llpllem +llullmry) + 1 FpllLawn)-
Therefore, by Lemma 3.2, if (w,p) € H?(y) x H'(v), there holds

(420)  fw =l ) + I = Pl S hllwll a2+l ) + 1 Fallan))
+1f = Frlla)-

Proof. For v € X}, we denote by ¥, € HY.() the conforming relative of & = Ppv
satisfying (3.8). Using (4.1), (4.5), and (2.8), we write

ay(u—ﬁh,ﬁ):av(u,ﬁc)+a7(u,§—ﬁc)—/Fh-ﬁ—Gh(uh,v)
/f Ve — /Fh 0 —by(V¢,p) + ay(u, 0 — ;) — Gp(up,v)
= [ £ @D [(Fup) B b @ d) b )

v
+ay(u,v —0.) — Gp(up,v) Yq € Q.
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Applying continuity estimates of the bilinear forms, (3.8), and (4.6) yield

a (=i, ) S (21 fllbaty + 1F = Full iy + Ip = ' llae)
o hllpll gty + Bl s o + lanl g ) ) 181 -

The estimate [[Unl| g1y < lwnllmi,) S [ Fallro@,), and standard arguments then
yield /
_n 1 < inf _a 1 w4 h2
lw—wnlliy) < e (Il =Bl 2 () + l2 = @l o)) + 22N Fll o)
FIF = FallLoe + 0Pl o + el zr ey + 1 Fllan)-
The estimate (4.9a) then follows by applying Lemma 4.3.

For the pressure error, we similarly apply (2.8), (4.5), (3.8), and (4.5)—(4.6) to
obtain for all v € V}, and q € Qp,

br,(v,pn—q)= | fi-v—ar, (us,v) — by (D,q")
Ty
:/Fh-a—%(ah,a)—b7<a,q4)+eh(uh,v)
g

[ £G4 [(Fa-p) 5+ ar(und) + b Ep - a)
—:Gh(uh,v) - av(:’Z,ﬁ —v.) — by (v —v,,p)

S (hQIIfIILm) F1F = Frllooe) + e =8l ) + 1P = all 2o
+ h(”ah”H}L('y) + [l g1 q) + Hp”Lz("/))) ||3||H,g(y)-

We conclude from the inf-sup condition (3.4) and the estimates [|@n|| 71 (1) < [ Fallzo(rn)s
[Vl ) S 0l mp (ry,) that

1P = Dl o) < 1P = @ Nl Lay) + 1Ph = @l o)
Slp— q€||L2(7) +llpn = all Loy
SP2 Sl Loy + 1F = FallLo) + 1w =8l ) + lp = ¢l Lo
+h(llwll gy + 1Pl ae) + 1 Fullzae)-

By taking the infimum over ¢ € ), we obtain (4.9b). d

Remark 4.5. In order to obtain a final O(h) energy error bound from (4.10) we
must choose f, so that || f —F4[1,(y) < h. A short calculation shows that f), = Pp-1 f
yields || f — Fill1,(y) S h?; a variety of other choices also yield optimal convergence.

Remark 4.6. Analysis of Ly errors in the velocity is the subject of ongoing work.
Numerical experiments presented below indicate that ||& — wsl/r,r,) S h?, as ex-
pected. However, the conforming approximation error estimate given in Lemma 3.4
seems insufficient to obtain an O(h?) convergence rate in Ly. In addition, the O(h)
geometric error estimate in Lemma 2.2 is sufficient to establish optimal O(h) conver-
gence in the energy norm, but not an optimal O(h?) Lo convergence rate. Obtaining
O(h?) geometric error estimates sufficient to achieve optimal Ly convergence is likely
possible using techniques introduced in [18] but is significantly more technical than
the energy case analyzed here.
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5. Numerical experiments. In this section we briefly comment on the imple-
mentation of the finite element method (4.2) and then present numerical experiments
demonstrating optimal convergence rates in the energy and Lo norms for both MINI
and lowest-order Taylor—-Hood elements.

5.1. Implementation notes. The main additional complication in the imple-
mentation of the surface MINI method as compared to the Euclidean case arises in
choosing two individual DOFs at each vertex and interpreting them on each inci-
dent element. In the Euclidean case it is natural to choose individual DOFs to align
with the canonical Euclidean basis vectors. Thus natural global basis functions corre-
sponding to a vertex a are (¢,,0) " and (0,¢,) ", with ¢, the usual affine hat function
corresponding to a. In the surface case there is no such natural choice, so at each
vertex a € Vj, one must first fix the master element K, along with two arbitrary but
mutually orthogonal unit vectors vy 4,x, and va 4 k, tangent to K,. The two global
DOFs corresponding to a are then wy |k, (a) - v1,4,k, and up|k, (@) - V2,4, K, -

Once K,, v14.k,, and vy 4 k, are fixed, the Piola transform formula (2.12) is
used to interpret these quantities appropriately on each element K > a. These book-
keeping steps are naturally implemented as a precomputation in which the necessary
information is encoded into a DOF handler structure. The precomputation step costs
O(#V},) and does not add significantly to the overall computational cost. Once this
step is completed the rest of the FEM is implemented in a standard way, but using
the DOF handler to correctly compute basis functions on each element.

We now describe more precisely some elements of the precomputation step. Con-
sider the reference element K with associated natural DOFs for the MINT element
(cf. Figure 3). Given a vertex 2; € K, let ‘;51,3' and (Asz be the basis functions corre-

sponding to the vertex DOFs in Figure 3, i.e., ¢ ;(%;) = (56j) and qZ)Q’j (%) = (5?]. ).
We translate vertex DOF's from the reference element to physical elements as follows.
Do the following for each vertex a € Vj:
1. Specify a master element K, 3 a.
2. Choose arbitrary unit orthogonal vectors vi q4,k,, V2,4, lying in the plane
containing K.
. For each triangle K € T,, compute v; 4 x = Mf'vi’a,Ka, i=1,2.
. For each K € T,, let jx € {1,2,3} be the local numbering of a in K.
5. For each K € T, let Pr, be as in (3.1). Solve for a;q,x, i,¢ € {1,2}, such
that ai,l,a,KTFK (],’)LJ—K (éjK) +ai,2,a,K(PFK ¢2,jx (2jK) =VaK- With DOF's as
pictured in Figure 3, this expression reduces to the linear system

=~

L

21 2

Fic. 3. DOFs for the reference MINI element.
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. 5. 1,a,K
PreCiak =Viax With oo x= .
5.2 a,K

This system is solved by application of the Moore—Penrose psuedoinverse
(L, Pr) P,

The coefficients «; ¢4,k serve as a “Rosetta stone” (or DOF handler) to translate
the individual reference basis functions ‘%u elementwise to global basis functions.
On the element K the global basis functions corresponding to the vertex a € K
are concretely given by ¢, (€)Pr, a1 4.k and p,(x)Pp, 24 K, With ¢, the standard
scalar affine hat function corresponding to a. Recall that in the Euclidean case natural
global basis functions corresponding to a are @q(x)(1,0)T and ¢, (2)(0,1)T. Thus
in both the Euclidean and surface cases, the global MINI basis functions may be
expressed as the product of a scalar hat function and a vector specifying direction.
However, in the surface case the vectors Pr, av; o x in question are piecewise constant
rather than globally constant in order to reflect variation of the tangent plane from
element to element. Once these expressions for global basis functions are in hand, the
other aspects of the finite element code are essentially standard. Note that sparsity
patterns for the resulting system matrices are also similar to the Euclidean case, and
the system solve generally has similar expense.

5.2. Numerical results. We take v to be the ellipsoid given by ¥(z,y,z) :=
% + % + % = 1. The test solution is u = II(—22,z,y)T; cf. Figure 4. Note
that II=1—v ® v with v = % on v, so u is componentwise a rational function
and not a polynomial. The pressure is p = zy> + z. The incompressibility condition
div,u = 0 does not hold, so the Stokes system must be solved with nonzero divergence
constraint. We employed a MATLAB code built on top of the iFEM library [8].

The left plot in Figure 5 depicts the convergence history for the MINI element on a
sequence of uniformly refined meshes. Optimal convergence is clearly observed in both
the energy and Lo norms, in particular O(h) for the energy norm [[& — wal| gy (r,) +
|p® = phllLy(r,) along with O(h?) for the error ||& — w1, r,). Recall also that the
pressure is approximated by affine functions, which can in theory approximate to order
h? in L,. Convergence is generally restricted instead to order h because the pressure
is coupled to the velocity H' norm in the error analysis, but superconvergence of
order h3/2 may occur on sufficiently structured meshes [15]. We observe an initial
superconvergent decrease of order h3/2 or higher, but the expected asymptotic rate of

1] N
- :;%,é//'/_—-“\\\\
05 Yy T U St O AR
<N VAl el r
0. Yy /// s = n
_\x\\\\\ 1 ,// . AR
-0.5. 2NN Y / Voo
05 \Q\Q:\\{x SO AN
1 RN Y
-1 A N I B Y
\ YRl
SN MY S| [ R 1RYs
> SN Y
T TSR — ,/‘////
05 ™ = S
005\ o5 !
T a7 s °

Fic. 4. Test solution w.
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error

error

2

=[Py " — u| )
~|lp° ;PhHLm
+\7’§ u-— uh\H,{(r)

4 [Py — |,y
~[Ip° = PallL,m)
$|P§lu - u/v\Iz,{(r)
. - h?

--h? A -—h3

100 10° 102 10° 10’ 102
1/h 1/h

F1G. 5. Convergence for the MINI element (left) and P2 — P! Taylor—Hood element (right).

order h is eventually seen; cf. [27] for discussion of similar phenomena in the Euclidean
context.

We also approximated (u,p) using a P2 — P! Taylor--Hood method. The discrete
surface I'j, was taken to be a quadratic rather than affine approximation to ~ in order
to obtain a geometric error commensurate with the expected order of convergence for
this element. Vertex DOFs were defined as above, additionally taking into account
the fact that the surface normal on a piecewise quadratic surface is, in contrast to the
case of an affine surface, not elementwise constant. Quadratic Taylor—Hood vector
fields have DOFs at edge midpoints in addition to at vertices, and these were defined
in a manner completely analogous to the vertex DOFs. Because the Piola transform
preserves normal continuity, this construction guarantees normal continuity at three
points on each (closed) edge, thus ensuring H (divr, ;' )-conformity (cf. Proposi-
tion 3.1). The right plot in Figure 5 exhibits the expected O(h?) convergence in the
energy norm and O(h?) convergence for the Lo error in the velocity. This confirms
that our methodology has applicability beyond the MINI element; error analysis and
extension to other stable Stokes element pairs employing nodal DOFs will be the
subject of future work.

Appendix A. Proof of Lemma 2.2.
Proof. We divide the proof of Lemma 2.2 into three steps.
Step 1: For a scalar function ¢ defined on I'},, we have the identity [12, (2.2.19)]

Vhp QU
h-V

Vy(gop™') = ([I— dH] ™! [I } Vrhq> op™!  onn.

Consequently, for v = (vy,v9,v3)T € H%F(K)7
(V(v Op_l)H)z}: = (Vv(vi Op_l))T
- ( ([I s {I e ”} vphvi) op*l)T
vy -V

= ((Vrhvi)T [I - I;ZQ@:} ' [I— dH]‘T> op~?
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”®”h} [I—dH]*l) op!
V- -Vp

vV QUp
V-V

- ((vphvi)T {I -

= ((VoIL,);, [I - } - dH] ") op~.

Here, with an abuse of notation, we have suppressed the superscript for the extension

v°. Thus, we have the identity

vV QKU
V- -UVp

(A.1) Vwop HII= (Vth [I }[IdH}l) op L.

Since v is tangential, there holds Vv = V(IIpv) = I1, Vv, because Il is constant on
K. Thus,

Vv
V- -Vp

(A.2) V(vop HII= (VF,L’U {I— } [I—dH]fl) op L.

Step 2: Write © = Ppv = (Lv) o p~! with L = p, '[II — dH]. We then have by
(A.2),
V.6 =MVaI =TIV (Lvop " )II
=TILV(vop HII +MIVLvop 'TI

—TIL <vp,;u {I _vev

] [I—dH]1> op ' +TMIVLvop I

V- -Vp
L (vphv [I - ”®”h] - dH]1> op ! +IIV(Lop t)vop I,
V- -Vp
where
2oL,

A3 VLv); ; = L i, j=1,2,3.

(43) (VLo =3 Grtu i
We conclude, by adding and subtracting terms, that

V,0=(Vr,v)op ' +[L-IL])(Vr,v)op™" [I - I;j®;h] I —dn]™

"V

VQUp
V-V

+(Vp,v)op~ ! ([I— } [T—dH]™! —Hh) +TIV(Lop Hvop '

Using |v — vy| S h, |d| S k2, and (2.2), we have |[L —II,| < h and |[I— ’;ﬁ—?}:’][l -
dH])~! —II,,| < h. Therefore there holds

(A.4) |Def,v — (Defr, v) op 1< h|(Vr,v) op '+ |IIV(Lop Hvop II|.

Step 3: In the final step of the proof, we bound the last term in (A.4).
Let £7) = L., denote the rth column of L. Then (A.3) and a short calculation
yields

3
IV(Lop Yvop 'TI=) (MV(E op " ))v, 0p™",

r=1

and so, by (A.1),
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3
IV(Lop vop M=) 1I (vemnh P [I—dH]lvr) op!
V-Vp
(A.5) r=1
-1 <VLth {1 "®”h} [IdH]1> op.
V-V

Taking the derivative of L; , = ugl[l'[@k — dH; 1] yields

8Li k —1 8;% 81_[1 k od 8H1 k
v *Lz ~mh R 7H7. _ d )
axj luh ( - al‘j + (9.Tj axj ok al‘j
_ Opn aHi,k
:,Mhl <Li’k81‘j +I/Z'Hk7j +l/kHi,j +VjHi1k+d a.’L‘j .

Thus by (2.2) and (A.3), there holds

VLv = —p;, [(Lv) ® Vi, +v @ (Ho) + (Ho) @ v + (v - v)H + dVHu|

(A.6)
=—[(Lv) ® Vup, + v @ (Hv) + (Hv) @ v] + O(h|v|).

Write pp, =v - vip(1 — dk1)(1 — dre) =v - vy det(I — dH). Because vy, is constant
on K and Hy =0, there holds 25 — v, - 22 = (Hu,);, = (H(v), — v))), = O(h).
Also by Jacobi’s formula and |d| < k2,

ai det(I — dH) = det(I — dH)tr ((I - dH)—lai (I- dH)) = —utr(H) + O(h?).

g o
We then conclude using |1 — v - v| < h? that
(A7) Vup =—w-vp)vtr(H) + O(h) = —vtr(H) + O(h).
Combining (A.6)—(A.7) yields
(A.8) VLv = [tr(H)(Lv) ® v — v ® (Hv) — (Hv) ® v] + O(h|v]).

We apply (A.8) to (A.5) along with the identity IIv =IITv =0 and [II-II,;| S h
to obtain

IV (Lop™vop T Shlvop™'|.
Combining this with (A.4) yields the desired estimate

|Def & — (Defr,v) o p™' | S A(|(Vr,v) op~ |+ |vop™!]). U
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