10

11

12

Title: Quantifying uncertainty in land-use land-cover classification using conformal statistics

Denis Valle'", Rafael Izbicki?, Rodrigo Leite?

!'School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville,
Florida, USA.
2 Department of Statistics, Federal University of Sao Carlos, Sao Paulo, Brazil.

3 Department of Forestry, Federal University of Vicosa, Vicosa, Brazil

*Corresponding author: Tel: (352) 392-3806; Email: drvalle@ufl.edu

Target Journal: Full article for Remote Sensing of Environment (max. 15,000 words)



13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Abstract

Land-use land-cover (LULC) change is one of the most important anthropogenic threats to biodiversity
and ecosystems integrity. As a result, the systematic generation of annual regional, national, and global
LULC map products derived from the classification of satellite imagery data have become critical inputs
for multiple scientific disciplines. The importance of quantifying pixel-level uncertainty to improve the
robustness of downstream analyses has long been acknowledged but this practice is still not widely
adopted in the generation of these LULC products. The lack of uncertainty quantification is likely due to
the fact that most approaches that have been put forward for this task are too computationally
intensive for large-scale analysis (e.g., bootstrapping). In this article, we describe how conformal
statistics can be used to quantify pixel-level uncertainty in a way that is not computationally intensive, is
statistically rigorous despite relying on few assumptions, and can be used together with any
classification algorithm that produces class probabilities. Our simulation results show how the size of the
predictive sets created by conformal statistics can be used as an indicator of classification uncertainty at
the pixel level. Our analysis based on data from the Brazilian Amazon reveals that both forest and water
have high certainty whereas pasture and the “natural (other)” category have substantial uncertainty.
This information can guide additional ground-truth data collection and the resulting raster combining
the LULC classification with the uncertainty results can be used to communicate in a transparent way to
downstream users which classified pixels have high or low uncertainty. Given the importance of
systematic LULC maps and uncertainty quantification, we believe that this approach will find wide use in

the remote sensing community.

Keywords: conformal statistics, land-use land-cover, LULC, uncertainty quantification, image

classification
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1. Introduction

There has been an increasing trend towards the systematic creation of large-scale (regional, national,
and global) land-use land-cover (LULC) map products (Stehman and Foody 2019). Prominent products
include annual national (e.g., Mapbiomas (mapbiomas.org; Souza et al. 2020)) and global LULC maps
(e.g., Buchhorn et al. 2020; Potapov et al. 2022). Because LULC change is the main driver of terrestrial
and freshwater biodiversity and ecosystems integrity loss across the world (Diaz et al. 2019; Tilman et al.
2017), these LULC products have become increasingly foundational for a wide range of downstream
scientific applications (Canibe et al. 2022; Jain 2020; Lyons et al. 2018; Stehman and Foody 2019). For
example, these maps have been used to generate global estimates of market and non-market value of
ecosystem service (Sutton and Costanza 2002), to assess LULC changes associated with large-scale
projects such as hydroelectric dams (Guerrero et al. 2020), the potential large-scale benefits as well as
opportunity costs of conservation initiatives (e.g., integrated crop-livestock systems with soybeans and
Amazon soy moratorium) (Nepstad et al. 2019; Rausch and Gibbs 2021), and to determine how the
expanding footprint of human activities (greatly influenced by LULC changes) have impacted wildlife

movement (Tucker et al. 2018).

The need for accuracy and uncertainty quantification for these LULC maps has long been acknowledged
(Congalton et al. 2014; Foody 2002; Gao et al. 2020; Khatami et al. 2017; Stehman and Foody 2019). For
example, it has been shown that the spatial and temporal predictions of species distribution models are
strongly affected by uncertainty in LULC maps (Canibe et al. 2022). Similarly, a recent review has
highlighted the impact that errors in LULC classification can have for causal inference in the field of
environmental economics (Jain 2020). Nevertheless, uncertainty quantification associated with these

large-scale LULC products is rare (Lyons et al. 2018). We believe that one of the main reasons for this
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refers to the fact that the great majority of the approaches put forth to quantify classification
uncertainty have relied on re-sampling approaches such as bootstrapping (Cheng et al. 2021; Hsiao and
Cheng 2016; Lyons et al. 2018; Weber and Langille 2007). This is unfortunate because these resampling
approaches are often too computationally intensive for large-scale products and bootstrapping is only
able to capture the uncertainty associated with variability in the input dataset whereas LULC
classification includes numerous other sources of uncertainty (e.g., the ability of these classifiers to

make accurate predictions) (Canibe et al. 2022).

Earlier approaches have focused on quantifying uncertainty for population-level parameters such as
parameters within, or derived from, confusion matrices (e.g., kappa coefficient, user and producer
accuracy statistics; Cheng et al. 2021; Foody 2004; Stehman 1997; Weber and Langille 2007). However,
more emphasis has recently been placed on creating spatially explicit uncertainty estimates as these are
likely to be more useful to end users (Foody 2002; Gao et al. 2020; Khatami et al. 2017; Stehman and
Foody 2019). In this regard, multiple studies have proposed the use of summary statistics based on class
probabilities (e.g., maximum class probability, difference between the largest and the second largest
probabilities, and Shannon entropy) to quantify classification uncertainty at the pixel level (D'Urso and
Menenti 1996; Hsiao and Cheng 2016; Park et al. 2016). Unfortunately, determining which pixels are too
uncertain to be used for downstream analysis based on these summary statistics is challenging. For
instance, a pixel with a maximum class probability of 0.5 might have very little uncertainty if all the
remaining classes have substantially smaller probabilities or might indicate greater uncertainty if
another class has probability of 0.5. It is even more challenging to make this type of determination
based on more abstract summary statistics such as Shannon entropy. Importantly, some increasingly
common classification algorithms (e.g., random forest and deep learning models) can sometimes

produce poorly calibrated probability estimates (i.e., the estimated probabilities associated with each
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class label overestimate the likelihood that those class labels are actually correct) (Guo et al. 2017,
Mukhoti et al. 2020; Niculescu-Mizil and Caruana 2005), potentially resulting in classifiers confidently

mis-classifying certain cases.

In this article, we introduce conformal statistics as a straight-forward but rigorous approach to quantify
uncertainty in LULC classification that holds great promise for three main reasons. First, it does not rely
on resampling approaches and, as a result, it is not as computationally intensive as bootstrapping.
Second, it can work with any classification algorithm (e.g., machine learning algorithms) that can
generate estimates of the probability associated with each class, an important characteristic given that
machine learning classifiers tend to outperform their parametric counterparts (Maxwell et al. 2018).
Third, conformal statistics rely on minimal assumptions to generate predictive sets with the desired
empirical coverage. Given that conformal statistics is, to our knowledge, new to the field of remote
sensing, we start this article by providing a brief overview of conformal statistics. We then show how
this approach compares favorably against other alternative approaches using simulated data and
illustrate the insights that can be obtained using empirical data from the Amazon region. Finally, we end

this article with a discussion on remaining challenges and future research.

2. Conformal statistics

Conformal statistics (also known as distribution-free uncertainty quantification) is focused on creating
predictive sets or regions [ that have the desired empirical coverage C (Angelopoulos and Bates 2021;
Shafer and Vovk 2008). For example, a 95% predictive set/region is valid if it contains the truth 95% of
the time. While conformal approaches have also been developed for continuous response variables (i.e.,

regression setting) (Izbicki et al. 2022; Lei et al. 2018; Romano et al. 2019), here we focus on its use for
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classification problems. In this case, the response variable y; consists of the class label (y;=1,2,..., K,
where K is the overall number of classes) for unit i (e.g., pixel, image, or individual tree) and therefore
the predictive set generated by conformal statistics refers to a subset of class labels (e.g., [ = {1,2,4} in

a 5-class classification problem). More formally, conformal statistics is focused in creating [- such that:

p(y; €ET) =C

where p() stands for probability. As a result, the number of classes in the subset [ (the cardinality of I';)
is a natural measure of the amount of uncertainty. For example, if the subset ['- only contains class label
2, this is an indication of very low uncertainty in our predictions. On the other hand, if the subset I';
contains class labels 1, 2, and 4, this indicates higher uncertainty because it suggests that any of these
classes are likely to be the true class. Interestingly, it is also possible for the subset I'; to be empty. This
can happen if none of the classes are likely to be the true one according to our predictive algorithm.

Therefore, empty subsets also indicate high uncertainty.

Note that conformal statistics is focused on creating predictive sets that include the true (reference)
class C x 100 percent of the times. As a result, differently from earlier approaches that only took into
account accuracy metrics (i.e., how well the map labels matched the true (reference) classes; Cheng et
al. 2021; Foody 2004; Stehman 1997; Weber and Langille 2007) or approaches that only took into
account the distribution of the estimated class probabilities (D'Urso and Menenti 1996; Hsiao and Cheng
2016; Park et al. 2016), the uncertainty quantification from conformal statistics relies on both the

distribution of class probabilities and how likely the map labels agree with the true classes.
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There are a variety of conformal statistics approaches. In this article, we focus on inductive (also known
as split) conformal prediction, one of the most widely used conformal approaches. In this approach, we
start by splitting the data into two sets called the training and the calibration datasets. We fit the
classification algorithm to the training data and use this algorithm to output the probability for each
class f(xi) € [0,1]%, where K is the total number of classes and x; is the vector containing the predictor
variables associated with the observation within the calibration set that we wish to classify. In the next
step, we define the score s; as the class probability associated with the true class y; (i.e., s; = f(xl-)yl.).
Assuming that the calibration dataset contains n observations, we calculate the score for all
observations within this dataset (i.e., sy, ..., S,). Table 1 illustrates these calculations for 4 observations

in the calibration dataset.

Table 1. Example of the calculation of the scores for 4 hypothetical observations in the calibration

dataset. Cells with bold numbers correspond to the probabilities associated with the true classes.

Observations | True class Class probabilities f(x;) Score s;
Vi 1 2 3 4 5

1 3 0.10 | 0.10 | 0.80 | 0.00 | 0.00 | 0.80

2 3 0.00 |0.10 | 0.30 | 0.30 | 0.30 | 0.30

3 1 0.25 | 0.25 | 0.10 | 0.40 | 0.00 | 0.25

4 4 0.00 |0.00 |0.05 |0.90 | 0.05 |0.90

The next step consists of using the conformal scores sy, ..., s, in the calibration dataset (i.e., rightmost
column in Table 1) to calculate §;_c, the 1 — Ct" empirical quantile of these scores. For instance, if
predictive sets that have 90% coverage are desired, then C=0.9 and §,_. is the 10% quantile. This

quantity can be readily calculated by ordering the conformal scores sy, ..., s;, and picking the value for
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which 10% of the s, ..., s, scores are below it. Finally, we create a predictive set for each pixel in the
area of interest. This predictive set is defined as the subset containing all the classes for which
f(xtest)y = §1_c, Where x4 is @ vector containing the predictor variables for the test pixel. Table 2
illustrates the resulting 90% predictive sets for five new observations, assuming that g, ; (the 10%
quantile of the conformal scores sy, ..., s, from the calibration dataset) was calculated to be equal to
0.21. Notice that the predictive set for observation 2 contains 4 labels because all of these labels have
probability higher than our §, ; threshold of 0.21. On the other hand, observation 5 has an empty
predictive set because none of the labels have high enough probability. In other words, none of the 5

labels is likely to be the true label.

Uncertainty is quantified by assessing the size of these predictive sets. More specifically, uncertainty is
smallest when the predictive set contains only a single class and increases with the number of classes
within the predictive set. For example, observations 3, 4, and 2 in Table 2 have increasingly higher
classification uncertainty because their predictive sets are increasingly larger. However, uncertainty is

also high when the predictive set is empty (e.g., observation 5 in Table 2).

Table 2. Example of creating 90% predictive sets for new observations, assuming that §,; = 0.21. Cells

with bold numbers correspond to labels y that satisfy the inequality f(xtest)y > qo1-

Observations Class probabilities f (X;est) 90% Predictive
1 2 3 4 5 sets

1 0.85 0.05 0.00 0.10 0.00 {1}

2 0.25 0.25 0.25 0.24 0.01 {1,2,3,4}

3 0.10 0.10 0.40 0.40 0.00 {3,4}
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4 0.30 0.00 0.25 0.05 0.40 {1,3,5}

5 0.20 0.20 0.20 0.20 0.20 it

One of the most attractive features of conformal statistics is that it does not rely on parametric
assumptions. The only required assumption is that observations are exchangeable (or the slightly stricter
assumption that the observations are independent and identically distributed), a common assumption
across the great majority of the machine learning methods (Shafer and Vovk 2008). Although we refrain
from providing a mathematical proof, an intuitive explanation of why this approach works is that,
because of the exchangeability assumption, the coverage result for the calibration dataset should be the
same as the coverage result for the dataset for which we want predictions (i.e., test data) if the same
method is applied to both datasets. In our example, if 90% of the true classes have an estimated
probability greater than 0.21 in the calibration dataset, then predictive sets defined by all classes with

probability greater than 0.21 for the test data should also encompass the true class 90% of the times.

The inductive/split conformal prediction should feel familiar to remote sensing experts that have
performed cross-validation due to the process of splitting the data into multiple sets. The major
difference is that conformal statistics fits the model only once to the training dataset and this approach
“learns” how to generate predictive sets with the desired coverage using the left-out calibration data. A
very well written introduction to conformal statistics can be found in Angelopoulos and Bates (2021)
while a comprehensive treatment of this topic can be found in Vovk et al. (2005). Note that the
conformal score s; is typically defined in such a way that higher scores imply lower confidence in
predictions. However, we have defined the conformal score differently (i.e., higher score values indicate
greater confidence in the prediction) because we believe that it is easier to understand conformal

predictions this way. We also note that other conformal scores can be used and these may lead to
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different predictive sets. However, this article focuses on a single score to simplify the presentation of
the methodology. Readers interested in learning about other scores can find additional information in
the articles from Angelopoulos and Bates (2021), Chernozhukov et al. (2021), Izbicki et al. (2020), Izbicki
et al. (2022), and Romano et al. (2020) and the references therein. Finally, to facilitate the adoption of
this methodology, we provide a short tutorial to illustrate how to generate predictive sets in R using

conformal statistics (Appendix 1).

3. Simulations

While any classification method could have been used, we rely on the random forest classifier for all
simulated data examples as this is a very popular method for LULC classification (see review in Belgiu
and Dragut 2016). We relied on the 'randomforest' R package (Liaw and Wiener 2002) with its default
settings. Furthermore, we rely on external test datasets (i.e., datasets not used to fit the model or used
to learn how to generate predictive sets) to assess the performance of this method. More specifically,
we determine empirical coverage by calculating the proportion of times that the true classes in the test

dataset were contained in the corresponding predictive sets.

3.1. Simulation set 1.

The goal of simulation set 1 is to show how conformal prediction can generate predictive sets that vary
in size according to how challenging the prediction is. To this end, we created two simulated data sets.
The first one contained 3 groups while the second one had 5 groups. The probabilities associated with
these groups varied smoothly as a function of a single predictor variable x. This variable x was generated

by creating a sequence of evenly spaced numbers between -3 and 3. We simulated a total of 50,000

10
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observations and 88%, 2%, and 10% of these observations were randomly allocated to the training,
calibration, and test datasets, respectively. We set the desired coverage level of the predictive sets to

C=0.8.

3.2. Simulation set 2.

The goal of simulation set 2 is to compare conformal methods to other methods used to quantify

uncertainty. We start by simulating the predictor variables x;, x5, and x5 in the following way:

x,~Unif (=3,3) for p € {1,2,3}

We assume that the response variable y can only belong to one of three classes, with probability for

. exp(xi1+x exp(x1—Xx exp(x,+x
classes 1, 2, and 3, given by p(D1 2), p(D1 2),and p(xz+3)

, respectively. In this expression, D is the

normalizing constant that ensures that these numbers sum to one (i.e., D = exp(x; + x3) +

exp(x; — x3) + exp(x, + x3)).

We simulated 10 datasets. Each dataset contained 5,000 observations; 4,000 were used for training, 500
were used for calibration, and 500 were used for test purposes. Our classification algorithm was trained
under two different scenarios. In the first scenario, all three predictor variables (i.e., x4, x5, and x3) were
available to the classifier. In the second scenario, we make classification more challenging by excluding
the predictor variable x5 (i.e., the model was trained using only predictor variables x; and x,). Similar to
simulation set 1, we train a random forest classifier and set the desired coverage level of the predictive

sets to C=0.8.

11
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We compare the conformal statistics approach to two other methods used to quantify uncertainty. The
first method (onwards the conventional approach) starts by predicting the class probabilities for each
observation in the test dataset. We create the smallest set that encompasses the true class 80% of the
time in the following way. We first order these probabilities from greatest to smallest and then we
include classes until the sum of their probabilities just exceeds 80%. For example, if the predicted
probabilities are [0.1,0.7,0.2] for classes 1, 2, and 3, respectively, then only classes 2 and 3 would be
part of our 80% predictive set. The second method to quantifying uncertainty is similar to the approach
adopted by Hsiao and Cheng (2016). In this bootstrap approach, we resample the training data with
replacement 100 times and make 100 predictions for each observation in the test dataset. Then, we
calculate the proportion of times that the different classes are predicted for each observation, yielding a
vector of proportions. Finally, we use the same approach as the conventional approach to calculate

predictive sets that encompass the true class 80% of the time.

4. Case study

To illustrate the use of conformal statistics based on a real example, we train a random forest classifier
to the data used by Mapbiomas to validate their annual LULC classification products for Brazil (freely

available at https://mapbiomas.org/pontos-de-validacao). These data were created by visually

inspecting satellite imagery for each year between 1985 and 2018. Pixels were selected for inspection
based on stratified random sampling and each pixel was evaluated by 3 independent analysts (Souza et
al. 2020). For our purposes, we only used pixels for which the 3 analysts agreed on the LULC class to

avoid introducing additional uncertainty associated with inconsistent reference class labels.
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Our study region consisted of an area of approximately 80,000 km? in the Amazon region in Brazil that is
traversed by the Transamazon highway (Fig. 1). To avoid using observations from very different
ecosystems within Brazil, we selected Mapbiomas observations that were within approximately 200 km
of this highway. We focused solely on 2018 LULC classes and we dropped LULC classes that were not
observed (labeled as “non-observed” by Mapbiomas) or were too infrequently observed (i.e., temporary
crops, urban area, and other non-vegetated areas). We also combined 3 natural classes that are likely to
have similar spectral signatures and that were also relatively rare (e.g., savanna, grassland, other non-
forest formations (natural)). Ultimately, this process resulted in 4,346 observations with 4 LULC classes

(forest, pasture, water, and natural (others)).

A) Brazilian Amazon B) Study region

56.4°W 56.2°W 56.0°W 55.8°W 556°W 554°W 55%°
LON

C) Zoom within 4.99°5-
study region 4.24°S-
|E4.26°S-
1 4.28°S-
4.30°S-
4.32°S-
434°S-, ! ! : == !
55.95°W 55.90°W 55.85°W 55.80°W 55.75°W 55.70°W
LON
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Fig. 1. Study region. Panel A displays the Brazilian Amazon (green polygon) and the study region (red
rectangle). Panel B shows a false-color Landsat 8 mosaic (bands 4,3, and 2 were assigned to red, green,
and blue, respectively) of the study region, created by calculating the median value per band of several
2018 images after removing pixels classified as cloud or shadow. Panel C zooms to a portion of the study
region, shown with cyan rectangle in panel B. In all panels, the road network (obtained from Carrero

2022) is shown with black lines.

Spectral information for each ground-truth observation from Mapbiomas and for the overall study
region was acquired from 2018 Landsat 8 imagery using Google Earth Engine (Gorelick et al. 2017). We
trained a random forest algorithm on 80% of the observations, chosen completely at random, reserving
20% for calibration of our conformal statistics procedure. We used this classifier to make point

predictions of LULC and to calculate the size of predictive sets with C=0.9 for the entire study region.

To evaluate the accuracy of our classification and how well this conformal methodology was able to
qguantify uncertainty, we relied on a 10-fold spatial cross-validation. More specifically, we divided our
ground-truth observations into 10 non-overlapping spatial blocks. For each cross-validation fold, we use
observations from 9 of these blocks to train and calibrate the model (with the training/calibration split
being 80%/20%) to then predict the classes and create predictive sets for the observations in the left-out
block. We use these out-of-sample predictions and predictive sets to create a confusion matrix and to

determine empirical coverage.

5. Results

5.1. Simulation set 1

14
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We find an empirical coverage of 80.64% and 79.92% for the simulated test datasets with 3 and 5
classes, respectively, values close to the desired coverage of C=0.8. Furthermore, we find that the mean
predictive set size tends to be close to 1 whenever the class probabilities peak, indicating higher
certainty in the predicted label (Fig. 2). On the other hand, for the dataset with 3 classes, the mean
predictive set size tends to dip below 1 (indicating the presence of several empty predictive sets and
therefore higher uncertainty) whenever the true class probabilities are small and prediction is more
challenging (Fig. 2C). For the dataset with 5 classes, the mean predictive set size tends to rise above 1
(indicating the presence of several predictive sets with more than one class and therefore higher

uncertainty) whenever the true class probabilities are small and prediction is more challenging (Fig. 2D).

Note that a mean predictive set size close to one is not the result of averaging predictive sets of size 0
(i.e., empty sets) and size 2 because the analysis of the dataset with 3 classes yielded only empty sets
and sets of size 1 whereas the analysis for the dataset with 5 classes did not yield any empty predictive
set. Ultimately, these simulated data results indicate that the predictive set size can be used as a
measure of prediction difficulty and uncertainty as long as one remembers that both empty and large

predictive sets correspond to high uncertainty.
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Fig. 2. Mean predictive set sizes that are greater or smaller than one indicate greater classification

uncertainty. Panels A and B show how the probability associated with each class (used to simulate the

data) changes as a function of the covariate x. Each line represents a different class. Panels Cand D

show the conformal statistics results, revealing how the mean size of the predictive sets (calculated by

discretizing the covariate x into bins of width of 0.5) changes as a function of x. In all panels, the vertical
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grey lines show where the probability for each class peaks. Left and right panels show class probabilities

and conformal statistics results for datasets with 3 and 5 classes, respectively.

5.2. Simulation set 2

Recall that we rely on a classification problem with three predictor variables x4, x,, and x3. While this is
a straight-forward problem when these three variables are known, there is much greater uncertainty if
X3 is not available for the classification algorithm. Our simulation results reveal that the conformal
approach was able to retain the desired coverage of C=0.8 for the test dataset regardless of the variable
x5 being available for the classifier or not (Fig. 3). In contrast, the conventional approach showed a
larger empirical coverage than desired regardless of the presence or absence of x3. The bootstrap
approach performed better than the conventional approach but still suffered from larger empirical

coverage when X3 was present.
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Fig. 3. The conformal approach outperforms the conventional and the bootstrapping approaches.
Empirical coverage is shown for 2 classification scenarios in which the x5 predictor variable was either

absent or present. The horizontal dashed line is the 80% desired coverage.

We emphasize that the conformal approach can generate predictive sets with any desired coverage. To
illustrate this, we use the same datasets as before but now we systematically vary the desired coverage
from 0.5 to 0.9. Our results show that the conformal predictive sets generally have the desired coverage
(Figs. 4). A comparison of these conformal results to those from the conventional and bootstrap
approaches reveals that the predictive sets created by these latter approaches in general had empirical
coverage that did not match the desired coverage. Part of the reason for this pattern is that both the
conventional and the bootstrap approaches cannot generate empty sets. As a result, the smallest
predictive set size is 1 for these methods and consequently empirical coverage for the bootstrap and
conventional methods never declines below a given threshold. Finally, we note that the conformal
approach yields better uncertainty quantification despite relying on fewer observations for model
training (due to the data splitting procedure) when compared to the conventional and bootstrap

approaches.
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Fig. 4. The conformal approach performs well irrespective of the desired coverage (x-axes). These panels

compare the conformal, conventional, and bootstrapping approaches regarding their empirical coverage

(1:1 line is shown with diagonal dashed line). Panels A and B show the results for the classification

scenario in which the predictor variable x5 is absent and present, respectively.

5.3. Empirical results

We find that the LULC classes predicted by the random forest classifier display the expected spatial

pattern of pastures close to the road network whereas forests are typically far away from roads (Fig.

5A). Furthermore, the river seems to be well delineated in this landscape.
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account (panels C). Panels C distinguish pixels with high level of uncertainty (i.e., empty predictive sets)
as a separate “uncertain” class. Panels B show the size of the predictive set for each pixel. In all panels,
the road network close to the Transamazon highway is displayed with black lines. Right panels show

zoomed regions, depicted with cyan rectangles in left panels.
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We calculate the confusion matrix based on our 10-fold spatial cross-validation (Table 3). These results
reveal that the random forest algorithm resulted in 96% of correctly classified observations.
Furthermore, we find that the classes, when ranked from best to worst (regardless if based on user or
producer accuracy), were forest, water, pasture, and the natural (other) category. Our 10-fold spatial
cross-validation also revealed that the empirical coverage of the 90% predictive sets generated by
conformal statistics was on average equal to 95% whereas, when using 80% predictive sets, the
empirical coverage was on average equal to 82% (Appendix 2). These results suggest that the conformal

statistics approach is able to quantify uncertainty well when out-of-sample predictions are made.

Actual LULC class User
Forest | Natural (other) | Pasture | Water | Total acc. (%)
Forest 3792 28 43 8 3871 98
Predicted | Natural (other) 6 43 20 4 73 59
LULC Pasture 18 20 230 0 268 86
class Water 2 4 0 125 131 95
Total 3818 95 293 137 4343

Table 3. Confusion matrix calculated based on the 10-fold spatial cross-validation exercise.

Interestingly, when applied to this dataset, conformal statistics generated either empty predictive sets

or predictive sets with only a single LULC class (Fig. 5B). Furthermore, differently from the accuracy

results in the confusion matrix, we find that water was the LULC class with the least classification

uncertainty (i.e., the class with smallest proportion of pixels with empty predictive sets), followed by

forest (Table 4). Importantly, although there is almost an equal number of uncertain pixels in forests and

pastures, these pixels represent over half of the pasture pixels (Table 4 and Fig. 5C). These results

suggest that there is substantial heterogeneity in pastures within the region, likely reflecting the

gradient from well-maintained pastures without many trees or shrubs to abandoned pastures with over-
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grown vegetation. Finally, both the confusion matrix and the conformal statistics results suggest that the

class “natural (other)” had the most uncertainty.

LULC classes Proportion of uncertain pixels | # uncertain pixels | # of pixels

Forest 0.13 1297073 9699045
Natural (other) 1.00 208573 208659
Pasture 0.54 1368957 2515110
Water 0.06 28350 458336

Table 4. Summary of the conformal statistics results across the landscape for each LULC class. Pixels

deemed to be uncertain are those for which the predictive set is empty.

6. Discussion

In this article, we have introduced conformal statistics as a straightforward yet powerful approach to
guantify pixel-level uncertainty in LULC classification. Using simulated data, we have shown that the size
of the predictive set can be used as a measure of uncertainty. More specifically, pixels for which the
predictive set is either empty or large (i.e., sets containing multiple classes) are uncertain pixels. We
have also shown that this approach works better than bootstrapping both in terms of its simplicity (i.e.,
it does not require multiple model fits) and the ability to create predictive sets that have the desired
coverage. Using an empirical dataset from the Amazon region, we show how this approach can generate
insights regarding which LULC classes have low or high uncertainty (e.g., water and “natural (other)”
class, respectively). These insights may or may not match those from a standard confusion matrix given
that conformal statistics relies on both how likely the map labels agree with the true class and the
estimated class probabilities. Finally, making these results available as a raster (either by directly

incorporating into the LULC map as in Fig. 5C or as an additional uncertainty “band”) can enable
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downstream users of LULC map products to consider which pixels to discard due to the presence of too

much uncertainty.

Several approaches already exist to determine pixel-level uncertainty. For example, Hsiao and Cheng
(2016) proposed a bootstrapping methodology to identify pixels with high classification uncertainty. In
their approach, the bootstrap approach generates probability vectors for each pixel and pixels are
deemed as unclassified if the maximum of these probabilities is below a user-determined threshold. This
approach is computationally intensive and, as a result, might be challenging to implement for large-scale
LULC products. Furthermore, the bootstrap approach only accounts for uncertainty in the input data
(i.e., the fact that different training samples can potentially yield different predictions), failing to
consider other sources of uncertainty (e.g., how well the model is able to predict individual LULC
classes). The conformal statistics approach, on the other hand, is not computationally intensive and,
despite not taking into account uncertainty in the input data, captures well the proportion of times that

the predictive sets encompass the true (reference) classes.

The most similar approaches that we found in the literature were proposed by Park et al. (2016) and
Khatami et al. (2017). They proposed to create an accuracy map by first labeling each pixel in the
calibration dataset as O (if misclassified) and 1 (if correctly classified) and then using spatial and/or
spectral information to interpolate these results in order to generate an accuracy map. One limitation of
this approach relative to conformal statistics is that it does not provide information regarding which
other classes are likely for the pixels with high probability of misclassification. Another limitation is that,
because these approaches rely on models trained on the calibration data to create the accuracy map, it
is possible that these models might fail to generalize well for out-of-sample data due to under or over-

fitting. The conformal approach, on the other hand, has theoretical guarantees regarding the coverage
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of the generated predictive sets (if the exchangeability assumption holds) because the model is only

fitted to the training data whereas the calibration dataset is comprised of truly out-of-sample data.

A major benefit of conformal statistics is that it can be used to quantify uncertainty associated with any
algorithm. By algorithm, we mean not only machine learning black-box classifiers (e.g., deep learning,
random forests, and support vector machines) but also algorithms that rely on these classifiers and post-
hoc rules. For example, post-hoc rules used in Mapbiomas include taking into account the local
neighborhood of a pixel to avoid isolated pixels and pixel-specific time-series of LULC classes to ensure
temporal consistency and eliminate prohibited LULC class transitions (Souza et al. 2020). Indeed,
Manandhar et al. (2009) have shown that post-classification corrections like these can improve LULC
classification accuracy. Because conformal statistics quantifies uncertainty after the full algorithm is
applied, its results should be valid regardless of the exact details of the classifier and post-hoc rules,
ultimately accounting for many of the different sources of uncertainty in LULC mapping described in the

literature (Canibe et al. 2022).

A key parameter in conformal statistics is the desired coverage C. How should remote sensing
practitioners choose C? The greater the coverage, the smaller the threshold for including labels in the
predictive set, generally resulting in larger predictive sets and a higher number of pixels deemed to be
uncertain. For example, it is easy to ensure that 100% coverage is achieved by creating predictive sets
that contain all possible labels. We do not have specific guidelines for how to choose C because this
decision fundamentally depends on the purpose of the analysis and inherent tradeoffs. Analyses that
require pixels with little uncertainty could set C to a high value (e.g., 95%) and just use pixels for which

the predictive set contains a single class. However, this procedure might also result in much fewer pixels

24



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

being available for analysis when compared to adopting the same procedure with C set to a lower value

(e.g., 80%).

We believe that conformal statistics is likely to be even more useful if class-specific probabilities from
large-scale LULC products are made available to users (e.g., as in the Google's Dynamic World LULC
classification product; Venter et al. 2022). Aside from allowing better estimation of overall LULC area
(Sales et al. 2022), maps with class-specific probabilities enable users to decide which coverage C to
adopt to create their own customized uncertainty maps assuming they have access to the ground-truth
data. Importantly, users can also create tailor-made uncertainty maps to their particular area using
conformal statistics without requiring additional modeling or remote sensing work as long as local
validation data are available. The ability to customize the uncertainty maps is important because users
often have different needs and some classification errors might be more severe than others depending
on these needs (Foody 2002; Stehman and Foody 2019). For example, users might wish to create their
own definition of what constitutes a pixel that is too uncertain to be used. For example, for wildlife
studies, a pixel that includes two very different vegetation types (e.g., forest and grassland) in its
predictive set might be too uncertain to use. On the other hand, if many pixels have predictive sets
containing grassland and pasture, users might judge these LULC classes to be sufficiently similar in terms
of their vegetation cover and choose to lump these two classes into a single one. In this case, a pixel
with these two LULC classes in its predictive set would not be considered too uncertain to be of use.
Finally, it is possible that locally derived uncertainty maps might be more accurate for the region being

studied than global uncertainty maps, ultimately improving map relevance (Stehman and Foody 2019).

Despite its promise, conformal statistics also has some important limitations. First, although conformal

statistics does not have many assumptions, it nevertheless does rely on the key assumption of data
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exchangeability (an assumption that is shared with most statistical and machine learning methods used
for LULC classification). As a result, it is possible that if large spatial correlations are present, then the
coverage guarantees of conformal statistics may not be accurate. One potential way to indirectly test
this assumption is to quantify differences between the desired coverage C and the empirical coverage
arising from a spatial cross-validation exercise. If large discrepancies arise, that could be an indication
that the exchangeability assumption is being violated. Other approaches to more formally test the
exchangeability assumption exist but they can be quite technical and are beyond the scope of this article
(e.g., Fedorova et al. 2012; Ramdas et al. 2022). Additional research is clearly needed to determine the
degree to which spatial correlation impacts the validity of conformal statistics results and to develop

alternative conformal approaches to circumvent this problem.

Second, conformal statistics requires the splitting of data into a training and a calibration dataset but
determining the best way to split the data remains to be determined and is an active area of research.
Having more training data is critical to estimate well the class probabilities but having more calibration
data is also important to generate well calibrated uncertainty estimates. Third, conformal statistics does
not quantify the uncertainty associated with the training data and how the data are split into training
and calibration data. Fourth, because of the need to split the data, an important limitation is that this
approach is likely to only be suitable for situations with relatively large datasets (i.e., >1,000
observations). Finally, conformal statistics is an area of rapid development, with a wide range of
conformal algorithms still being proposed in the literature. In particular, the conformal approach
described here ensures marginal coverage (i.e., the true classes will lie within the predictive sets C
proportion of the times across all observations in the validation dataset) but modelers increasingly want
approaches that can provide conditional coverage (i.e., the true classes will lie within the predictive sets

C proportion of the times for all observations that have a particular combination of predictor variables).
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Developing conformal approaches that can ensure conditional coverage and that can take into account

the variability in the training and calibration datasets is an important area of research.

We have focused on using conformal statistics for LULC classification but we note that this methodology
is likely to be very useful for other remote sensing classification problems as well such as tree or wildlife
species classification (e.g., Besson et al. 2022; Christin et al. 2019; Marconi et al. 2022; Oswald et al.
2022). The conformal approach that we have described is surprisingly simple (i.e., it does not require
multiple model fits and can be implemented with just a few lines of code) and yet can generate
predictive sets with the desired coverage (assuming the exchangeability assumption is met and that a
large dataset is available) irrespective of the classification algorithm that is employed. For these reasons,
we believe that conformal statistics has the potential to become a key approach in the toolkit of remote

sensing scientists.
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List of Figure Captions

Fig. 1. Study region. Panel A displays the Brazilian Amazon (green polygon) and the study region (red
rectangle). Panel B shows a false-color Landsat 8 mosaic (bands 4,3, and 2 were assigned to red, green,
and blue, respectively) of the study region, created by calculating the median value per band of several
2018 images after removing pixels classified as cloud or shadow. Panel C zooms to a portion of the study
region, shown with cyan rectangle in panel B. In all panels, the road network (obtained from Carrero

2022) is shown with black lines.

Fig. 2. Mean predictive set sizes that are greater or smaller than one indicate greater classification
uncertainty. Panels A and B show how the probability associated with each class (used to simulate the
data) changes as a function of the covariate x. Each line represents a different class. Panels C and D
show the conformal statistics results, revealing how the mean size of the predictive sets (calculated by
discretizing the covariate x into bins of width of 0.5) changes as a function of x. In all panels, the vertical
grey lines show where the probability for each class peaks. Left and right panels show class probabilities

and conformal statistics results for datasets with 3 and 5 classes, respectively.

Fig. 3. The conformal approach outperforms the conventional and the bootstrapping approaches.

Empirical coverage is shown for 2 classification scenarios in which the x5 predictor variable was either

absent or present. The horizontal dashed line is the 80% desired coverage.

Fig. 4. The conformal approach performs well irrespective of the desired coverage (x-axes). These panels

compare the conformal, conventional, and bootstrapping approaches regarding their empirical coverage
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(1:1 line is shown with diagonal dashed line). Panels A and B show the results for the classification

scenario in which the predictor variable x5 is absent and present, respectively.

Fig. 5. LULC prediction for the study region ignoring uncertainty (panels A) or taking uncertainty into
account (panels C). Panels C distinguish pixels with high level of uncertainty (i.e., empty predictive sets)
as a separate “uncertain” class. Panels B show the size of the predictive set for each pixel. In all panels,
the road network close to the Transamazon highway is displayed with black lines. Right panels show

zoomed regions, depicted with cyan rectangles in left panels.
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