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Abstract 13 

 14 

Land-use land-cover (LULC) change is one of the most important anthropogenic threats to biodiversity 15 

and ecosystems integrity. As a result, the systematic generation of annual regional, national, and global 16 

LULC map products derived from the classification of satellite imagery data have become critical inputs 17 

for multiple scientific disciplines. The importance of quantifying pixel-level uncertainty to improve the 18 

robustness of downstream analyses has long been acknowledged but this practice is still not widely 19 

adopted in the generation of these LULC products. The lack of uncertainty quantification is likely due to 20 

the fact that most approaches that have been put forward for this task are too computationally 21 

intensive for large-scale analysis (e.g., bootstrapping). In this article, we describe how conformal 22 

statistics can be used to quantify pixel-level uncertainty in a way that is not computationally intensive, is 23 

statistically rigorous despite relying on few assumptions, and can be used together with any 24 

classification algorithm that produces class probabilities. Our simulation results show how the size of the 25 

predictive sets created by conformal statistics can be used as an indicator of classification uncertainty at 26 

the pixel level. Our analysis based on data from the Brazilian Amazon reveals that both forest and water 27 

have high certainty whereas pasture and the “natural (other)” category have substantial uncertainty. 28 

This information can guide additional ground-truth data collection and the resulting raster combining 29 

the LULC classification with the uncertainty results can be used to communicate in a transparent way to 30 

downstream users which classified pixels have high or low uncertainty. Given the importance of 31 

systematic LULC maps and uncertainty quantification, we believe that this approach will find wide use in 32 

the remote sensing community. 33 

 34 

Keywords: conformal statistics, land-use land-cover, LULC, uncertainty quantification, image 35 

classification  36 
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1. Introduction 37 

 38 

There has been an increasing trend towards the systematic creation of large-scale (regional, national, 39 

and global) land-use land-cover (LULC) map products (Stehman and Foody 2019). Prominent products 40 

include annual national (e.g., Mapbiomas (mapbiomas.org; Souza et al. 2020)) and global LULC maps 41 

(e.g., Buchhorn et al. 2020; Potapov et al. 2022). Because LULC change is the main driver of terrestrial 42 

and freshwater biodiversity and ecosystems integrity loss across the world (Díaz et al. 2019; Tilman et al. 43 

2017), these LULC products have become increasingly foundational for a wide range of downstream 44 

scientific applications (Canibe et al. 2022; Jain 2020; Lyons et al. 2018; Stehman and Foody 2019). For 45 

example, these maps have been used to generate global estimates of market and non-market value of 46 

ecosystem service (Sutton and Costanza 2002), to assess LULC changes associated with large-scale 47 

projects such as hydroelectric dams (Guerrero et al. 2020), the potential large-scale benefits as well as 48 

opportunity costs of conservation initiatives (e.g., integrated crop-livestock systems with soybeans and 49 

Amazon soy moratorium) (Nepstad et al. 2019; Rausch and Gibbs 2021), and to determine how the 50 

expanding footprint of human activities (greatly influenced by LULC changes) have impacted wildlife 51 

movement (Tucker et al. 2018).  52 

 53 

The need for accuracy and uncertainty quantification for these LULC maps has long been acknowledged 54 

(Congalton et al. 2014; Foody 2002; Gao et al. 2020; Khatami et al. 2017; Stehman and Foody 2019). For 55 

example, it has been shown that the spatial and temporal predictions of species distribution models are 56 

strongly affected by uncertainty in LULC maps (Canibe et al. 2022). Similarly, a recent review has 57 

highlighted the impact that errors in LULC classification can have for causal inference in the field of 58 

environmental economics (Jain 2020). Nevertheless, uncertainty quantification associated with these 59 

large-scale LULC products is rare (Lyons et al. 2018). We believe that one of the main reasons for this 60 
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refers to the fact that the great majority of the approaches put forth to quantify classification 61 

uncertainty have relied on re-sampling approaches such as bootstrapping (Cheng et al. 2021; Hsiao and 62 

Cheng 2016; Lyons et al. 2018; Weber and Langille 2007). This is unfortunate because these resampling 63 

approaches are often too computationally intensive for large-scale products and bootstrapping is only 64 

able to capture the uncertainty associated with variability in the input dataset whereas LULC 65 

classification includes numerous other sources of uncertainty (e.g., the ability of these classifiers to 66 

make accurate predictions) (Canibe et al. 2022).  67 

 68 

Earlier approaches have focused on quantifying uncertainty for population-level parameters such as 69 

parameters within, or derived from, confusion matrices (e.g., kappa coefficient, user and producer 70 

accuracy statistics; Cheng et al. 2021; Foody 2004; Stehman 1997; Weber and Langille 2007). However, 71 

more emphasis has recently been placed on creating spatially explicit uncertainty estimates as these are 72 

likely to be more useful to end users (Foody 2002; Gao et al. 2020; Khatami et al. 2017; Stehman and 73 

Foody 2019). In this regard, multiple studies have proposed the use of summary statistics based on class 74 

probabilities (e.g., maximum class probability, difference between the largest and the second largest 75 

probabilities, and Shannon entropy) to quantify classification uncertainty at the pixel level (D'Urso and 76 

Menenti 1996; Hsiao and Cheng 2016; Park et al. 2016). Unfortunately, determining which pixels are too 77 

uncertain to be used for downstream analysis based on these summary statistics is challenging. For 78 

instance, a pixel with a maximum class probability of 0.5 might have very little uncertainty if all the 79 

remaining classes have substantially smaller probabilities or might indicate greater uncertainty if 80 

another class has probability of 0.5. It is even more challenging to make this type of determination 81 

based on more abstract summary statistics such as Shannon entropy. Importantly, some increasingly 82 

common classification algorithms (e.g., random forest and deep learning models) can sometimes 83 

produce poorly calibrated probability estimates (i.e., the estimated probabilities associated with each 84 
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class label overestimate the likelihood that those class labels are actually correct) (Guo et al. 2017; 85 

Mukhoti et al. 2020; Niculescu-Mizil and Caruana 2005), potentially resulting in classifiers confidently 86 

mis-classifying certain cases. 87 

 88 

In this article, we introduce conformal statistics as a straight-forward but rigorous approach to quantify 89 

uncertainty in LULC classification that holds great promise for three main reasons. First, it does not rely 90 

on resampling approaches and, as a result, it is not as computationally intensive as bootstrapping. 91 

Second, it can work with any classification algorithm (e.g., machine learning algorithms) that can 92 

generate estimates of the probability associated with each class, an important characteristic given that 93 

machine learning classifiers tend to outperform their parametric counterparts (Maxwell et al. 2018). 94 

Third, conformal statistics rely on minimal assumptions to generate predictive sets with the desired 95 

empirical coverage. Given that conformal statistics is, to our knowledge, new to the field of remote 96 

sensing, we start this article by providing a brief overview of conformal statistics. We then show how 97 

this approach compares favorably against other alternative approaches using simulated data and 98 

illustrate the insights that can be obtained using empirical data from the Amazon region. Finally, we end 99 

this article with a discussion on remaining challenges and future research.  100 

 101 

2. Conformal statistics 102 

 103 

Conformal statistics (also known as distribution-free uncertainty quantification) is focused on creating 104 

predictive sets or regions Γ𝐶  that have the desired empirical coverage C (Angelopoulos and Bates 2021; 105 

Shafer and Vovk 2008). For example, a 95% predictive set/region is valid if it contains the truth 95% of 106 

the time. While conformal approaches have also been developed for continuous response variables (i.e., 107 

regression setting) (Izbicki et al. 2022; Lei et al. 2018; Romano et al. 2019), here we focus on its use for 108 
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classification problems. In this case, the response variable 𝑦𝑖  consists of the class label (𝑦𝑖=1,2,…, K, 109 

where K is the overall number of classes) for unit i (e.g., pixel, image, or individual tree) and therefore 110 

the predictive set generated by conformal statistics refers to a subset of class labels (e.g., Γ𝐶 = {1,2,4} in 111 

a 5-class classification problem). More formally, conformal statistics is focused in creating Γ𝐶  such that:  112 

 113 

𝑝(𝑦𝑖 ∈ Γ𝐶) ≥ 𝐶 114 

 115 

where p() stands for probability. As a result, the number of classes in the subset Γ𝐶  (the cardinality of Γ𝐶) 116 

is a natural measure of the amount of uncertainty. For example, if the subset Γ𝐶  only contains class label 117 

2, this is an indication of very low uncertainty in our predictions. On the other hand, if the subset Γ𝐶  118 

contains class labels 1, 2, and 4, this indicates higher uncertainty because it suggests that any of these 119 

classes are likely to be the true class. Interestingly, it is also possible for the subset Γ𝐶  to be empty. This 120 

can happen if none of the classes are likely to be the true one according to our predictive algorithm. 121 

Therefore, empty subsets also indicate high uncertainty.  122 

 123 

Note that conformal statistics is focused on creating predictive sets that include the true (reference) 124 

class 𝐶 × 100 percent of the times. As a result, differently from earlier approaches that only took into 125 

account accuracy metrics (i.e., how well the map labels matched the true (reference) classes; Cheng et 126 

al. 2021; Foody 2004; Stehman 1997; Weber and Langille 2007) or approaches that only took into 127 

account the distribution of the estimated class probabilities (D'Urso and Menenti 1996; Hsiao and Cheng 128 

2016; Park et al. 2016), the uncertainty quantification from conformal statistics relies on both the 129 

distribution of class probabilities and how likely the map labels agree with the true classes.  130 

 131 
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There are a variety of conformal statistics approaches. In this article, we focus on inductive (also known 132 

as split) conformal prediction, one of the most widely used conformal approaches. In this approach, we 133 

start by splitting the data into two sets called the training and the calibration datasets. We fit the 134 

classification algorithm to the training data and use this algorithm to output the probability for each 135 

class 𝑓(𝒙𝒊) ∈ [0,1]𝐾, where K is the total number of classes and 𝒙𝒊 is the vector containing the predictor 136 

variables associated with the observation within the calibration set that we wish to classify. In the next 137 

step, we define the score 𝑠𝑖  as the class probability associated with the true class 𝑦𝑖  (i.e., 𝑠𝑖 = 𝑓(𝒙𝒊)𝑦𝑖
). 138 

Assuming that the calibration dataset contains n observations, we calculate the score for all 139 

observations within this dataset (i.e.,  𝑠1, … , 𝑠𝑛). Table 1 illustrates these calculations for 4 observations 140 

in the calibration dataset. 141 

 142 

Table 1. Example of the calculation of the scores for 4 hypothetical observations in the calibration 143 

dataset. Cells with bold numbers correspond to the probabilities associated with the true classes. 144 

Observations True class 

𝑦𝑖  

Class probabilities 𝑓(𝒙𝒊) Score 𝑠𝑖  

1 2 3 4 5 

1 3 0.10 0.10 0.80 0.00 0.00 0.80 

2 3 0.00 0.10 0.30 0.30 0.30 0.30 

3 1 0.25 0.25 0.10 0.40 0.00 0.25 

4 4 0.00 0.00 0.05 0.90 0.05 0.90 

 145 

The next step consists of using the conformal scores 𝑠1, … , 𝑠𝑛 in the calibration dataset (i.e., rightmost 146 

column in Table 1) to calculate 𝑞̂1−𝐶, the 1 − 𝐶𝑡ℎ empirical quantile of these scores. For instance, if 147 

predictive sets that have 90% coverage are desired, then C=0.9 and 𝑞̂1−𝐶 is the 10% quantile. This 148 

quantity can be readily calculated by ordering the conformal scores 𝑠1, … , 𝑠𝑛 and picking the value for 149 
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which 10% of the 𝑠1, … , 𝑠𝑛 scores are below it. Finally, we create a predictive set for each pixel in the 150 

area of interest. This predictive set is defined as the subset containing all the classes for which 151 

𝑓(𝒙𝒕𝒆𝒔𝒕)𝑦 ≥ 𝑞̂1−𝐶, where 𝒙𝒕𝒆𝒔𝒕 is a vector containing the predictor variables for the test pixel. Table 2 152 

illustrates the resulting 90% predictive sets for five new observations, assuming that 𝑞̂0.1 (the 10% 153 

quantile of the conformal scores 𝑠1, … , 𝑠𝑛 from the calibration dataset) was calculated to be equal to 154 

0.21. Notice that the predictive set for observation 2 contains 4 labels because all of these labels have 155 

probability higher than our 𝑞̂0.1 threshold of 0.21. On the other hand, observation 5 has an empty 156 

predictive set because none of the labels have high enough probability. In other words, none of the 5 157 

labels is likely to be the true label.  158 

 159 

Uncertainty is quantified by assessing the size of these predictive sets. More specifically, uncertainty is 160 

smallest when the predictive set contains only a single class and increases with the number of classes 161 

within the predictive set. For example, observations 3, 4, and 2 in Table 2 have increasingly higher 162 

classification uncertainty because their predictive sets are increasingly larger. However, uncertainty is 163 

also high when the predictive set is empty (e.g., observation 5 in Table 2). 164 

 165 

Table 2. Example of creating 90% predictive sets for new observations, assuming that 𝑞̂0.1 = 0.21. Cells 166 

with bold numbers correspond to labels y that satisfy the inequality 𝑓(𝒙𝒕𝒆𝒔𝒕)𝑦 ≥ 𝑞̂0.1. 167 

Observations Class probabilities 𝑓(𝒙𝒕𝒆𝒔𝒕) 90% Predictive 

sets 1 2 3 4 5 

1 0.85 0.05 0.00 0.10 0.00 {1} 

2 0.25 0.25 0.25 0.24 0.01 {1,2,3,4} 

3 0.10 0.10 0.40 0.40 0.00 {3,4} 
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4 0.30 0.00 0.25 0.05 0.40 {1,3,5} 

5 0.20 0.20 0.20 0.20 0.20 {} 

 168 

One of the most attractive features of conformal statistics is that it does not rely on parametric 169 

assumptions. The only required assumption is that observations are exchangeable (or the slightly stricter 170 

assumption that the observations are independent and identically distributed), a common assumption 171 

across the great majority of the machine learning methods (Shafer and Vovk 2008). Although we refrain 172 

from providing a mathematical proof, an intuitive explanation of why this approach works is that, 173 

because of the exchangeability assumption, the coverage result for the calibration dataset should be the 174 

same as the coverage result for the dataset for which we want predictions (i.e., test data) if the same 175 

method is applied to both datasets. In our example, if 90% of the true classes have an estimated 176 

probability greater than 0.21 in the calibration dataset, then predictive sets defined by all classes with 177 

probability greater than 0.21 for the test data should also encompass the true class 90% of the times. 178 

 179 

The inductive/split conformal prediction should feel familiar to remote sensing experts that have 180 

performed cross-validation due to the process of splitting the data into multiple sets. The major 181 

difference is that conformal statistics fits the model only once to the training dataset and this approach 182 

“learns” how to generate predictive sets with the desired coverage using the left-out calibration data. A 183 

very well written introduction to conformal statistics can be found in Angelopoulos and Bates (2021) 184 

while a comprehensive treatment of this topic can be found in Vovk et al. (2005). Note that the 185 

conformal score 𝑠𝑖  is typically defined in such a way that higher scores imply lower confidence in 186 

predictions. However, we have defined the conformal score differently (i.e., higher score values indicate 187 

greater confidence in the prediction) because we believe that it is easier to understand conformal 188 

predictions this way. We also note that other conformal scores can be used and these may lead to 189 
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different predictive sets. However, this article focuses on a single score to simplify the presentation of 190 

the methodology. Readers interested in learning about other scores can find additional information in 191 

the articles from Angelopoulos and Bates (2021), Chernozhukov et al. (2021), Izbicki et al. (2020), Izbicki 192 

et al. (2022), and Romano et al. (2020) and the references therein. Finally, to facilitate the adoption of 193 

this methodology, we provide a short tutorial to illustrate how to generate predictive sets in R using 194 

conformal statistics (Appendix 1). 195 

 196 

3. Simulations 197 

 198 

While any classification method could have been used, we rely on the random forest classifier for all 199 

simulated data examples as this is a very popular method for LULC classification (see review in Belgiu 200 

and Dragut 2016). We relied on the 'randomforest' R package (Liaw and Wiener 2002) with its default 201 

settings. Furthermore, we rely on external test datasets (i.e., datasets not used to fit the model or used 202 

to learn how to generate predictive sets) to assess the performance of this method. More specifically, 203 

we determine empirical coverage by calculating the proportion of times that the true classes in the test 204 

dataset were contained in the corresponding predictive sets. 205 

 206 

3.1.  Simulation set 1. 207 

 208 

The goal of simulation set 1 is to show how conformal prediction can generate predictive sets that vary 209 

in size according to how challenging the prediction is. To this end, we created two simulated data sets. 210 

The first one contained 3 groups while the second one had 5 groups. The probabilities associated with 211 

these groups varied smoothly as a function of a single predictor variable x. This variable x was generated 212 

by creating a sequence of evenly spaced numbers between -3 and 3. We simulated a total of 50,000 213 
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observations and 88%, 2%, and 10% of these observations were randomly allocated to the training, 214 

calibration, and test datasets, respectively. We set the desired coverage level of the predictive sets to 215 

C=0.8. 216 

 217 

3.2.  Simulation set 2. 218 

 219 

The goal of simulation set 2 is to compare conformal methods to other methods used to quantify 220 

uncertainty. We start by simulating the predictor variables 𝑥1, 𝑥2, and 𝑥3 in the following way: 221 

 222 

𝑥𝑝~𝑈𝑛𝑖𝑓(−3,3) for 𝑝 ∈ {1,2,3} 223 

 224 

We assume that the response variable y can only belong to one of three classes, with probability for 225 

classes 1, 2, and 3, given by 
exp(𝑥1+𝑥2)

𝐷
,

exp(𝑥1−𝑥2)

𝐷
, and 

exp(𝑥2+𝑥3)

𝐷
, respectively. In this expression, D is the 226 

normalizing constant that ensures that these numbers sum to one (i.e., 𝐷 = exp(𝑥1 + 𝑥2) +227 

exp(𝑥1 − 𝑥2) + exp(𝑥2 + 𝑥3)).  228 

 229 

We simulated 10 datasets. Each dataset contained 5,000 observations; 4,000 were used for training, 500 230 

were used for calibration, and 500 were used for test purposes. Our classification algorithm was trained 231 

under two different scenarios. In the first scenario, all three predictor variables (i.e., 𝑥1, 𝑥2, and 𝑥3) were 232 

available to the classifier. In the second scenario, we make classification more challenging by excluding 233 

the predictor variable 𝑥3 (i.e., the model was trained using only predictor variables 𝑥1 and 𝑥2). Similar to 234 

simulation set 1, we train a random forest classifier and set the desired coverage level of the predictive 235 

sets to C=0.8.  236 

 237 
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We compare the conformal statistics approach to two other methods used to quantify uncertainty. The 238 

first method (onwards the conventional approach) starts by predicting the class probabilities for each 239 

observation in the test dataset. We create the smallest set that encompasses the true class 80% of the 240 

time in the following way. We first order these probabilities from greatest to smallest and then we 241 

include classes until the sum of their probabilities just exceeds 80%. For example, if the predicted 242 

probabilities are [0.1,0.7,0.2] for classes 1, 2, and 3, respectively, then only classes 2 and 3 would be 243 

part of our 80% predictive set. The second method to quantifying uncertainty is similar to the approach 244 

adopted by Hsiao and Cheng (2016). In this bootstrap approach, we resample the training data with 245 

replacement 100 times and make 100 predictions for each observation in the test dataset. Then, we 246 

calculate the proportion of times that the different classes are predicted for each observation, yielding a 247 

vector of proportions. Finally, we use the same approach as the conventional approach to calculate 248 

predictive sets that encompass the true class 80% of the time.  249 

 250 

4. Case study 251 

 252 

To illustrate the use of conformal statistics based on a real example, we train a random forest classifier 253 

to the data used by Mapbiomas to validate their annual LULC classification products for Brazil (freely 254 

available at https://mapbiomas.org/pontos-de-validacao). These data were created by visually 255 

inspecting satellite imagery for each year between 1985 and 2018. Pixels were selected for inspection 256 

based on stratified random sampling and each pixel was evaluated by 3 independent analysts (Souza et 257 

al. 2020). For our purposes, we only used pixels for which the 3 analysts agreed on the LULC class to 258 

avoid introducing additional uncertainty associated with inconsistent reference class labels. 259 

 260 

https://mapbiomas.org/pontos-de-validacao
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Our study region consisted of an area of approximately 80,000 km2 in the Amazon region in Brazil that is 261 

traversed by the Transamazon highway (Fig. 1). To avoid using observations from very different 262 

ecosystems within Brazil, we selected Mapbiomas observations that were within approximately 200 km 263 

of this highway. We focused solely on 2018 LULC classes and we dropped LULC classes that were not 264 

observed (labeled as “non-observed” by Mapbiomas) or were too infrequently observed (i.e., temporary 265 

crops, urban area, and other non-vegetated areas). We also combined 3 natural classes that are likely to 266 

have similar spectral signatures and that were also relatively rare (e.g., savanna, grassland, other non-267 

forest formations (natural)). Ultimately, this process resulted in 4,346 observations with 4 LULC classes 268 

(forest, pasture, water, and natural (others)). 269 

 270 

 271 
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Fig. 1. Study region. Panel A displays the Brazilian Amazon (green polygon) and the study region (red 272 

rectangle). Panel B shows a false-color Landsat 8 mosaic (bands 4,3, and 2 were assigned to red, green, 273 

and blue, respectively) of the study region, created by calculating the median value per band of several 274 

2018 images after removing pixels classified as cloud or shadow. Panel C zooms to a portion of the study 275 

region, shown with cyan rectangle in panel B. In all panels, the road network (obtained from Carrero 276 

2022) is shown with black lines. 277 

 278 

Spectral information for each ground-truth observation from Mapbiomas and for the overall study 279 

region was acquired from 2018 Landsat 8 imagery using Google Earth Engine (Gorelick et al. 2017). We 280 

trained a random forest algorithm on 80% of the observations, chosen completely at random, reserving 281 

20% for calibration of our conformal statistics procedure. We used this classifier to make point 282 

predictions of LULC and to calculate the size of predictive sets with C=0.9 for the entire study region. 283 

 284 

To evaluate the accuracy of our classification and how well this conformal methodology was able to 285 

quantify uncertainty, we relied on a 10-fold spatial cross-validation. More specifically, we divided our 286 

ground-truth observations into 10 non-overlapping spatial blocks. For each cross-validation fold, we use 287 

observations from 9 of these blocks to train and calibrate the model (with the training/calibration split 288 

being 80%/20%) to then predict the classes and create predictive sets for the observations in the left-out 289 

block. We use these out-of-sample predictions and predictive sets to create a confusion matrix and to 290 

determine empirical coverage. 291 

 292 

5. Results 293 

 294 

5.1.  Simulation set 1 295 
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 296 

We find an empirical coverage of 80.64% and 79.92% for the simulated test datasets with 3 and 5 297 

classes, respectively, values close to the desired coverage of C=0.8. Furthermore, we find that the mean 298 

predictive set size tends to be close to 1 whenever the class probabilities peak, indicating higher 299 

certainty in the predicted label (Fig. 2). On the other hand, for the dataset with 3 classes, the mean 300 

predictive set size tends to dip below 1 (indicating the presence of several empty predictive sets and 301 

therefore higher uncertainty) whenever the true class probabilities are small and prediction is more 302 

challenging (Fig. 2C). For the dataset with 5 classes, the mean predictive set size tends to rise above 1 303 

(indicating the presence of several predictive sets with more than one class and therefore higher 304 

uncertainty) whenever the true class probabilities are small and prediction is more challenging (Fig. 2D).  305 

 306 

Note that a mean predictive set size close to one is not the result of averaging predictive sets of size 0 307 

(i.e., empty sets) and size 2 because the analysis of the dataset with 3 classes yielded only empty sets 308 

and sets of size 1 whereas the analysis for the dataset with 5 classes did not yield any empty predictive 309 

set. Ultimately, these simulated data results indicate that the predictive set size can be used as a 310 

measure of prediction difficulty and uncertainty as long as one remembers that both empty and large 311 

predictive sets correspond to high uncertainty. 312 

 313 
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 314 

Fig. 2. Mean predictive set sizes that are greater or smaller than one indicate greater classification 315 

uncertainty. Panels A and B show how the probability associated with each class (used to simulate the 316 

data) changes as a function of the covariate x. Each line represents a different class. Panels C and D 317 

show the conformal statistics results, revealing how the mean size of the predictive sets (calculated by 318 

discretizing the covariate x into bins of width of 0.5) changes as a function of x. In all panels, the vertical 319 
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grey lines show where the probability for each class peaks. Left and right panels show class probabilities 320 

and conformal statistics results for datasets with 3 and 5 classes, respectively. 321 

 322 

5.2.  Simulation set 2 323 

 324 

Recall that we rely on a classification problem with three predictor variables 𝑥1, 𝑥2, and 𝑥3. While this is 325 

a straight-forward problem when these three variables are known, there is much greater uncertainty if 326 

𝑥3 is not available for the classification algorithm. Our simulation results reveal that the conformal 327 

approach was able to retain the desired coverage of C=0.8 for the test dataset regardless of the variable 328 

𝑥3 being available for the classifier or not (Fig. 3). In contrast, the conventional approach showed a 329 

larger empirical coverage than desired regardless of the presence or absence of 𝑥3. The bootstrap 330 

approach performed better than the conventional approach but still suffered from larger empirical 331 

coverage when 𝑥3 was present. 332 

 333 

 334 
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Fig. 3. The conformal approach outperforms the conventional and the bootstrapping approaches. 335 

Empirical coverage is shown for 2 classification scenarios in which the 𝑥3 predictor variable was either 336 

absent or present. The horizontal dashed line is the 80% desired coverage. 337 

 338 

We emphasize that the conformal approach can generate predictive sets with any desired coverage. To 339 

illustrate this, we use the same datasets as before but now we systematically vary the desired coverage 340 

from 0.5 to 0.9. Our results show that the conformal predictive sets generally have the desired coverage 341 

(Figs. 4). A comparison of these conformal results to those from the conventional and bootstrap 342 

approaches reveals that the predictive sets created by these latter approaches in general had empirical 343 

coverage that did not match the desired coverage. Part of the reason for this pattern is that both the 344 

conventional and the bootstrap approaches cannot generate empty sets. As a result, the smallest 345 

predictive set size is 1 for these methods and consequently empirical coverage for the bootstrap and 346 

conventional methods never declines below a given threshold. Finally, we note that the conformal 347 

approach yields better uncertainty quantification despite relying on fewer observations for model 348 

training (due to the data splitting procedure) when compared to the conventional and bootstrap 349 

approaches. 350 

 351 
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 352 

Fig. 4. The conformal approach performs well irrespective of the desired coverage (x-axes). These panels 353 

compare the conformal, conventional, and bootstrapping approaches regarding their empirical coverage 354 

(1:1 line is shown with diagonal dashed line). Panels A and B show the results for the classification 355 

scenario in which the predictor variable 𝑥3 is absent and present, respectively.  356 

 357 

5.3.  Empirical results 358 

 359 

We find that the LULC classes predicted by the random forest classifier display the expected spatial 360 

pattern of pastures close to the road network whereas forests are typically far away from roads (Fig. 361 

5A). Furthermore, the river seems to be well delineated in this landscape.  362 

 363 
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 364 

Fig. 5. LULC prediction for the study region ignoring uncertainty (panels A) or taking uncertainty into 365 

account (panels C). Panels C distinguish pixels with high level of uncertainty (i.e., empty predictive sets) 366 

as a separate “uncertain” class. Panels B show the size of the predictive set for each pixel. In all panels, 367 

the road network close to the Transamazon highway is displayed with black lines. Right panels show 368 

zoomed regions, depicted with cyan rectangles in left panels. 369 

 370 
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We calculate the confusion matrix based on our 10-fold spatial cross-validation (Table 3). These results 371 

reveal that the random forest algorithm resulted in 96% of correctly classified observations. 372 

Furthermore, we find that the classes, when ranked from best to worst (regardless if based on user or 373 

producer accuracy), were forest, water, pasture, and the natural (other) category. Our 10-fold spatial 374 

cross-validation also revealed that the empirical coverage of the 90% predictive sets generated by 375 

conformal statistics was on average equal to 95% whereas, when using 80% predictive sets, the 376 

empirical coverage was on average equal to 82% (Appendix 2). These results suggest that the conformal 377 

statistics approach is able to quantify uncertainty well when out-of-sample predictions are made. 378 

 379 

    Actual LULC class User 
acc. (%)     Forest Natural (other) Pasture Water Total 

Predicted 
LULC 
class 

Forest 3792 28 43 8 3871 98 

Natural (other) 6 43 20 4 73 59 

Pasture 18 20 230 0 268 86 

Water 2 4 0 125 131 95 

Total 3818 95 293 137 4343  

Table 3. Confusion matrix calculated based on the 10-fold spatial cross-validation exercise. 380 

 381 

Interestingly, when applied to this dataset, conformal statistics generated either empty predictive sets 382 

or predictive sets with only a single LULC class (Fig. 5B). Furthermore, differently from the accuracy 383 

results in the confusion matrix, we find that water was the LULC class with the least classification 384 

uncertainty (i.e., the class with smallest proportion of pixels with empty predictive sets), followed by 385 

forest (Table 4). Importantly, although there is almost an equal number of uncertain pixels in forests and 386 

pastures, these pixels represent over half of the pasture pixels (Table 4 and Fig. 5C). These results 387 

suggest that there is substantial heterogeneity in pastures within the region, likely reflecting the 388 

gradient from well-maintained pastures without many trees or shrubs to abandoned pastures with over-389 
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grown vegetation. Finally, both the confusion matrix and the conformal statistics results suggest that the 390 

class “natural (other)” had the most uncertainty.  391 

 392 

LULC classes  Proportion of uncertain pixels # uncertain pixels # of pixels 

Forest 0.13 1297073 9699045 

Natural (other) 1.00 208573 208659 

Pasture 0.54 1368957 2515110 

Water 0.06 28350 458336 

Table 4. Summary of the conformal statistics results across the landscape for each LULC class. Pixels 393 

deemed to be uncertain are those for which the predictive set is empty.  394 

 395 

6. Discussion  396 

 397 

In this article, we have introduced conformal statistics as a straightforward yet powerful approach to 398 

quantify pixel-level uncertainty in LULC classification. Using simulated data, we have shown that the size 399 

of the predictive set can be used as a measure of uncertainty. More specifically, pixels for which the 400 

predictive set is either empty or large (i.e., sets containing multiple classes) are uncertain pixels. We 401 

have also shown that this approach works better than bootstrapping both in terms of its simplicity (i.e., 402 

it does not require multiple model fits) and the ability to create predictive sets that have the desired 403 

coverage. Using an empirical dataset from the Amazon region, we show how this approach can generate 404 

insights regarding which LULC classes have low or high uncertainty (e.g., water and “natural (other)” 405 

class, respectively). These insights may or may not match those from a standard confusion matrix given 406 

that conformal statistics relies on both how likely the map labels agree with the true class and the 407 

estimated class probabilities. Finally, making these results available as a raster (either by directly 408 

incorporating into the LULC map as in Fig. 5C or as an additional uncertainty “band”) can enable 409 
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downstream users of LULC map products to consider which pixels to discard due to the presence of too 410 

much uncertainty. 411 

 412 

Several approaches already exist to determine pixel-level uncertainty. For example, Hsiao and Cheng 413 

(2016) proposed a bootstrapping methodology to identify pixels with high classification uncertainty. In 414 

their approach, the bootstrap approach generates probability vectors for each pixel and pixels are 415 

deemed as unclassified if the maximum of these probabilities is below a user-determined threshold. This 416 

approach is computationally intensive and, as a result, might be challenging to implement for large-scale 417 

LULC products. Furthermore, the bootstrap approach only accounts for uncertainty in the input data 418 

(i.e., the fact that different training samples can potentially yield different predictions), failing to 419 

consider other sources of uncertainty (e.g., how well the model is able to predict individual LULC 420 

classes). The conformal statistics approach, on the other hand, is not computationally intensive and, 421 

despite not taking into account uncertainty in the input data, captures well the proportion of times that 422 

the predictive sets encompass the true (reference) classes. 423 

 424 

The most similar approaches that we found in the literature were proposed by Park et al. (2016) and 425 

Khatami et al. (2017). They proposed to create an accuracy map by first labeling each pixel in the 426 

calibration dataset as 0 (if misclassified) and 1 (if correctly classified) and then using spatial and/or 427 

spectral information to interpolate these results in order to generate an accuracy map. One limitation of 428 

this approach relative to conformal statistics is that it does not provide information regarding which 429 

other classes are likely for the pixels with high probability of misclassification. Another limitation is that, 430 

because these approaches rely on models trained on the calibration data to create the accuracy map, it 431 

is possible that these models might fail to generalize well for out-of-sample data due to under or over-432 

fitting. The conformal approach, on the other hand, has theoretical guarantees regarding the coverage 433 
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of the generated predictive sets (if the exchangeability assumption holds) because the model is only 434 

fitted to the training data whereas the calibration dataset is comprised of truly out-of-sample data.  435 

 436 

A major benefit of conformal statistics is that it can be used to quantify uncertainty associated with any 437 

algorithm. By algorithm, we mean not only machine learning black-box classifiers (e.g., deep learning, 438 

random forests, and support vector machines) but also algorithms that rely on these classifiers and post-439 

hoc rules. For example, post-hoc rules used in Mapbiomas include taking into account the local 440 

neighborhood of a pixel to avoid isolated pixels and pixel-specific time-series of LULC classes to ensure 441 

temporal consistency and eliminate prohibited LULC class transitions (Souza et al. 2020). Indeed, 442 

Manandhar et al. (2009) have shown that post-classification corrections like these can improve LULC 443 

classification accuracy. Because conformal statistics quantifies uncertainty after the full algorithm is 444 

applied, its results should be valid regardless of the exact details of the classifier and post-hoc rules, 445 

ultimately accounting for many of the different sources of uncertainty in LULC mapping described in the 446 

literature (Canibe et al. 2022).  447 

 448 

A key parameter in conformal statistics is the desired coverage C. How should remote sensing 449 

practitioners choose C? The greater the coverage, the smaller the threshold for including labels in the 450 

predictive set, generally resulting in larger predictive sets and a higher number of pixels deemed to be 451 

uncertain. For example, it is easy to ensure that 100% coverage is achieved by creating predictive sets 452 

that contain all possible labels. We do not have specific guidelines for how to choose C because this 453 

decision fundamentally depends on the purpose of the analysis and inherent tradeoffs. Analyses that 454 

require pixels with little uncertainty could set C to a high value (e.g., 95%) and just use pixels for which 455 

the predictive set contains a single class. However, this procedure might also result in much fewer pixels 456 



 

25 
 

being available for analysis when compared to adopting the same procedure with C set to a lower value 457 

(e.g., 80%). 458 

 459 

We believe that conformal statistics is likely to be even more useful if class-specific probabilities from 460 

large-scale LULC products are made available to users (e.g., as in the Google's Dynamic World LULC 461 

classification product; Venter et al. 2022). Aside from allowing better estimation of overall LULC area 462 

(Sales et al. 2022), maps with class-specific probabilities enable users to decide which coverage C to 463 

adopt to create their own customized uncertainty maps assuming they have access to the ground-truth 464 

data. Importantly, users can also create tailor-made uncertainty maps to their particular area using 465 

conformal statistics without requiring additional modeling or remote sensing work as long as local 466 

validation data are available. The ability to customize the uncertainty maps is important because users 467 

often have different needs and some classification errors might be more severe than others depending 468 

on these needs (Foody 2002; Stehman and Foody 2019). For example, users might wish to create their 469 

own definition of what constitutes a pixel that is too uncertain to be used. For example, for wildlife 470 

studies, a pixel that includes two very different vegetation types (e.g., forest and grassland) in its 471 

predictive set might be too uncertain to use. On the other hand, if many pixels have predictive sets 472 

containing grassland and pasture, users might judge these LULC classes to be sufficiently similar in terms 473 

of their vegetation cover and choose to lump these two classes into a single one. In this case, a pixel 474 

with these two LULC classes in its predictive set would not be considered too uncertain to be of use. 475 

Finally, it is possible that locally derived uncertainty maps might be more accurate for the region being 476 

studied than global uncertainty maps, ultimately improving map relevance (Stehman and Foody 2019). 477 

 478 

Despite its promise, conformal statistics also has some important limitations. First, although conformal 479 

statistics does not have many assumptions, it nevertheless does rely on the key assumption of data 480 
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exchangeability (an assumption that is shared with most statistical and machine learning methods used 481 

for LULC classification). As a result, it is possible that if large spatial correlations are present, then the 482 

coverage guarantees of conformal statistics may not be accurate. One potential way to indirectly test 483 

this assumption is to quantify differences between the desired coverage C and the empirical coverage 484 

arising from a spatial cross-validation exercise. If large discrepancies arise, that could be an indication 485 

that the exchangeability assumption is being violated. Other approaches to more formally test the 486 

exchangeability assumption exist but they can be quite technical and are beyond the scope of this article 487 

(e.g., Fedorova et al. 2012; Ramdas et al. 2022). Additional research is clearly needed to determine the 488 

degree to which spatial correlation impacts the validity of conformal statistics results and to develop 489 

alternative conformal approaches to circumvent this problem. 490 

 491 

Second, conformal statistics requires the splitting of data into a training and a calibration dataset but 492 

determining the best way to split the data remains to be determined and is an active area of research. 493 

Having more training data is critical to estimate well the class probabilities but having more calibration 494 

data is also important to generate well calibrated uncertainty estimates. Third, conformal statistics does 495 

not quantify the uncertainty associated with the training data and how the data are split into training 496 

and calibration data. Fourth, because of the need to split the data, an important limitation is that this 497 

approach is likely to only be suitable for situations with relatively large datasets (i.e., >1,000 498 

observations). Finally, conformal statistics is an area of rapid development, with a wide range of 499 

conformal algorithms still being proposed in the literature. In particular, the conformal approach 500 

described here ensures marginal coverage (i.e., the true classes will lie within the predictive sets C 501 

proportion of the times across all observations in the validation dataset) but modelers increasingly want 502 

approaches that can provide conditional coverage (i.e., the true classes will lie within the predictive sets 503 

C proportion of the times for all observations that have a particular combination of predictor variables). 504 
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Developing conformal approaches that can ensure conditional coverage and that can take into account 505 

the variability in the training and calibration datasets is an important area of research.  506 

 507 

We have focused on using conformal statistics for LULC classification but we note that this methodology 508 

is likely to be very useful for other remote sensing classification problems as well such as tree or wildlife 509 

species classification (e.g., Besson et al. 2022; Christin et al. 2019; Marconi et al. 2022; Oswald et al. 510 

2022). The conformal approach that we have described is surprisingly simple (i.e., it does not require 511 

multiple model fits and can be implemented with just a few lines of code) and yet can generate 512 

predictive sets with the desired coverage (assuming the exchangeability assumption is met and that a 513 

large dataset is available) irrespective of the classification algorithm that is employed. For these reasons, 514 

we believe that conformal statistics has the potential to become a key approach in the toolkit of remote 515 

sensing scientists.  516 

 517 
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List of Figure Captions 669 

 670 

Fig. 1. Study region. Panel A displays the Brazilian Amazon (green polygon) and the study region (red 671 

rectangle). Panel B shows a false-color Landsat 8 mosaic (bands 4,3, and 2 were assigned to red, green, 672 

and blue, respectively) of the study region, created by calculating the median value per band of several 673 

2018 images after removing pixels classified as cloud or shadow. Panel C zooms to a portion of the study 674 

region, shown with cyan rectangle in panel B. In all panels, the road network (obtained from Carrero 675 

2022) is shown with black lines. 676 

 677 

Fig. 2. Mean predictive set sizes that are greater or smaller than one indicate greater classification 678 

uncertainty. Panels A and B show how the probability associated with each class (used to simulate the 679 

data) changes as a function of the covariate x. Each line represents a different class. Panels C and D 680 

show the conformal statistics results, revealing how the mean size of the predictive sets (calculated by 681 

discretizing the covariate x into bins of width of 0.5) changes as a function of x. In all panels, the vertical 682 

grey lines show where the probability for each class peaks. Left and right panels show class probabilities 683 

and conformal statistics results for datasets with 3 and 5 classes, respectively. 684 

 685 

Fig. 3. The conformal approach outperforms the conventional and the bootstrapping approaches. 686 

Empirical coverage is shown for 2 classification scenarios in which the 𝑥3 predictor variable was either 687 

absent or present. The horizontal dashed line is the 80% desired coverage. 688 

 689 

Fig. 4. The conformal approach performs well irrespective of the desired coverage (x-axes). These panels 690 

compare the conformal, conventional, and bootstrapping approaches regarding their empirical coverage 691 
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(1:1 line is shown with diagonal dashed line). Panels A and B show the results for the classification 692 

scenario in which the predictor variable 𝑥3 is absent and present, respectively.  693 

 694 

Fig. 5. LULC prediction for the study region ignoring uncertainty (panels A) or taking uncertainty into 695 

account (panels C). Panels C distinguish pixels with high level of uncertainty (i.e., empty predictive sets) 696 

as a separate “uncertain” class. Panels B show the size of the predictive set for each pixel. In all panels, 697 

the road network close to the Transamazon highway is displayed with black lines. Right panels show 698 

zoomed regions, depicted with cyan rectangles in left panels. 699 
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