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Surface layer response to heterogeneous tree
canopy distributions: roughness regime regulates
secondary flow polarity
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Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow
over canopies composed of streamwise-aligned rows of synthetic trees of height, h, and
systematically arranged to quantify the response to variable streamwise spacing, δ1, and
spanwise spacing, δ2, between adjacent trees. The response to spanwise and streamwise
heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting
in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated
with the k- and d-type response. No study has addressed the confluence of both, and results
herein show secondary flow polarity reversal across ‘critical’ values of δ1 and δ2. For
δ2/δ ! 1 and " 2, where δ is the flow depth, the counter-rotating secondary cells are
aligned such that upwelling and downwelling, respectively, occurs above the elements.
The streamwise spacing δ1 regulates this transition, with secondary cell reversal occurring
first for the largest k-type cases, as elevated turbulence production within the canopy
necessitates entrainment of fluid from aloft. The results are interpreted through the lens of
a benchmark prognostic closure for effective aerodynamic roughness, z0,Eff . = ασh, where
α is a proportionality constant and σh is height root mean square. We report α ≈ 10−1,
the value reported over many decades for a broad range of rough surfaces, for k-type
cases at small δ2, whereas the transition to d-type arrangements necessitates larger δ2.
Though preliminary, results highlight the non-trivial response to variation of streamwise
and spanwise spacing.

Key words: turbulence modelling

1. Introduction
Landscape heterogeneities are intrinsically linked to locally elevated surface fluxes of
momentum, heat, humidity and other quantities, including pollen and dust. Such surface
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fluxes are a product of land–atmosphere interactions affecting the hydrologic cycle,
whereas local heterogeneities create microclimates that profoundly alter the existence of
idealised (equilibrium) atmospheric surface layer (ASL) conditions.

Horizontally homogeneous neutrally stratified ABL (Wyngaard 2010) flow over a
homogeneous distribution of roughness elements is composed of a roughness sublayer
and an inertial layer aloft, where the former is occupied by vortical mixing processes
regulated by the spatial extent of roughness elements (Raupach, Antonia & Rajagopalan
1991; Raupach, Finnigan & Brunet 1996; Jimenez 2004; Castro 2007; Ghisalberti 2009),
whereas the latter is occupied by wall-attached eddies (Townsend 1976) and large-scale
motions (Hutchins & Marusic 2007). For a homogeneous distribution of elements with
aggregate height, h, the roughness sublayer depth, λR ≈ 5h (Grass 1971; Raupach
et al. 1991; Harmon & Finnigan 2007). In practice, however, roughness elements are
seldom distributed homogeneously across landscapes, but exhibit local heterogeneity
that confounds prognostic descriptions based upon horizontally homogeneous conditions
(Bou-Zeid et al. 2020; Stoll et al. 2020).

Such spatial heterogeneity is realised via distributions of, for example, buildings,
topographic undulations, sand dunes, wind turbines or vegetation. For this study, we
have specifically focused on spatial heterogeneity realised via distributions of virtual trees
within large-eddy simulation (LES) of ASL turbulence; it is stressed, though, that virtual
trees serve a more general purpose in behaving as generalised drag elements (Belcher,
Jerram & Hunt 2003).

Flow over vegetation has been studied for many years (Finnigan 2000), where preceding
studies have focused on aggregate canopy dynamics (Shaw & Schumann 1992; Raupach
et al. 1996; Su et al. 1998), the coupled effect of canopies and topography (Belcher,
Harman & Finnigan 2012), turbulence response to the multiscale nature of trees (Graham
& Meneveau 2012; Bai, Katz & Meneveau 2015), flow response with variable canopy
layout (Bailey & Stoll 2013) and fundamental vortical flow processes above canopies
(Finnigan, Shaw & Patton 2009; Bailey et al. 2014; Bailey & Stoll 2016). Though by
no means exhaustive, this literature survey points to the depth of prior contributions in
this area. Bailey & Stoll (2013) specifically addressed the problem of ASL flow aloft
sparse canopy arrangements, although in their case sparsity was realised via streamwise
heterogeneity. In this work, we are specifically interested in spanwise heterogeneity and the
non-trivial confluence of effects associated with variation in the streamwise and spanwise
spacing between adjacent elements.

1.1. Roughness-driven secondary flows
In recent years, substantial new work has demonstrated the passive actuator-like
influence of spanwise heterogeneity in surface texture on wall turbulence. This
largely originates with Hinze (1967), who reported results of spanwise-variable surface
roughness in rectangular duct flows. Hinze showed that such an arrangement induced
Reynolds-averaged secondary flows, which differed from contemporaneous observations
of secondary ‘corner’ flows (Prandtl 1952; Hoagland 1960; Brundrett & Baines 1964;
Perkins 1970; Gessner 1973). These studies were foremost in establishing the role of
Reynolds (turbulent) stress spatial heterogeneity in sustenance of secondary flows or
turbulent secondary flow of the second kind (Bradshaw 2003). This can be appreciated
via the Reynolds-averaged vorticity transport equation:

D⟨ω⟩t

Dt
= ⟨ω⟩t · ∇⟨u⟩t + Re−1

τ ∇2⟨ω⟩t − ∇ ×
(
∇ · ⟨u′ ⊗ u′⟩t

)
, (1.1)
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Roughness-driven secondary flow direction

where ⟨ · ⟩t denotes time averaging of an ergodic system, ω = ∇ × u is vorticity and
u is velocity, the first, second and third terms on the right-hand side denote the
stretching-and-tilting term, dissipation and turbulent torque. Here Reτ = u∗δ/ν is a bulk
Reynolds number, where u∗ is the shear velocity, δ is the flow (ASL) depth, ν is kinematic
viscosity and ⟨u′ ⊗ u′⟩t is the Reynolds-averaged Reynolds (turbulent) stress tensor. Note
that in this article, the first, second and third component of any vector denote magnitude
in the streamwise (x), spanwise (y) and vertical direction (z), respectively; velocity and
vorticity vectors have components, {u, v, w} and {ωx, ωy, ωz}, respectively; averaging of
sample quantity, θ(x), over dimension, a, is denoted by ⟨θ(x)⟩a.

Prior work has determined that the spatial heterogeneity of the Reynolds stresses,
so-called ‘turbulent torque’ or Prandtl’s secondary flow of the second kind, can
sustain Reynolds-averaged secondary flows in a variety of scenarios. From flows in
square ducts (Bradshaw 2003, and references therein), to hydraulic flows responding
to spanwise-variable gravel roughness or aquatic canopy depth (Wang & Cheng
2005; Vermaas, Uijttewaal & Hoitink 2011), to idealised channel flows over canonical
spanwise-heterogeneous roughness (Anderson et al. 2015a). Other studies have
reported similar results in turbulent boundary layer flows over complex roughness
s(Barros & Christensen 2014; Pathikonda & Christensen 2017), spanwise-heterogeneous
‘herringbone’ roughness (Nugroho, Hutchins & Monty 2013; Kevin et al. 2017),
spanwise-heterogeneous roughness derived via ‘LEGO’ arrangements (Vanderwel &
Ganapathisubramani 2015; Medjnoun, Vanderwel & Ganapathisubramani 2018, 2020) and
other canonical arrangements (Stroh et al. 2020).

Within this work, a longstanding issue has been consistent assignment of secondary
flow polarity with respect to the topographic elements. Consider, for now, the streamwise
component of (1.1) for the case of high-Reτ channel flow (i.e. absent streamwise
heterogeneity):

⟨v⟩t
∂⟨ωx⟩t

∂y
+ ⟨w⟩t

∂⟨ωx⟩t

∂z
= ∂2

∂z2 ⟨v′w′⟩t − ∂2

∂y2 ⟨v′w′⟩t + ∂2

∂y∂z
(
⟨v′v′⟩t − ⟨w′w′⟩t

)
. (1.2)

Some groups have found that the secondary flow polarity is such that ⟨w⟩t < 0
(downwelling) above relative peaks in roughness (Willingham et al. 2013; Barros &
Christensen 2014; Anderson et al. 2015a; Yang & Anderson 2017a; Awasthi & Anderson
2018), while others have persistently found that ⟨w⟩t > 0 (upwelling) above the elements
(Goldstein & Tuan 1998; Vanderwel & Ganapathisubramani 2015; Medjnoun et al. 2018,
2020). In this article, LES has been used to address this apparent disagreement, where the
aforementioned virtual trees are used to systematically isolate the arrangement ‘triggers’
needed to activate downwelling and upwelling above high roughness regions. Results
will show that the confluence of streamwise and spanwise spacing confound automatic
categorisation.

This can be appreciated from figure 1, which shows the canopy attributes assessed
for this article, streamwise spacing between successive trees, δ1, and spanwise spacing
between adjacent rows, δ2, where panels (a) and (b) show canopy transects in the x–z and
y–z plane, respectively. In addition, figure 1 shows the tree height, h, with all geometric
arguments normalised by ASL thickness, δ; additional tree attributes (h1, h2, hc and dt)
are common to all cases and quantitative values are provided in the subsequent text. There
has been significant interest in the role of δ2. Yang & Anderson (2017b) showed that
the intensity, measured via circulation, Γ , of roughness-driven secondary flows scaled
as Γ ∼ δ2

2 for δ2/δ ! 1, and began declining for δ2/δ " 1. Medjnoun et al. (2018), also,
hypothesised on a similar process with their ‘significance’ parameter. Yet, both antecedent

946 A28-3

2�
��

��
  

.8
3�8

:1
 �

��
��

�	
 �0

�
��

��
��

�

��


 
�5

3�
2/

.�
87

537
/�

�"
��

��
�:

3.
1/

��
73

!/
:�

3�"
�


:/
��

https://doi.org/10.1017/jfm.2022.583


P. Joshi and W. Anderson

1

0 1

z/δ

xl/δ

δ2/δ

δ 1/δδ 1/h

x/δ

δ1/δ δ2/δ
h/δ

h1 h2

hc

2

0 0.5 1.012

10

8

6

4

2

0 5 10 15
δ2/h

20

1.5

1.0

0

d-type roughness

k-type roughnessR2

R2

R4

z x
y

z x
y

z x

y

z x
y

R1

R1

R4R3

R3

Roughness Transitional Topography

1.5 2.0 2.5 3.0

3

1

0 1yl/δ y/δ 2 3

δ2

δ1

(a)

(c)

(b)

Figure 1. Schematic of tree canopy arrangements addressed as part of the research effort. Panels (a,b) show
canopy visualisation in the streamwise–wall-normal and spanwise–wall-normal plane, respectively, where
annotations are provided for streamwise spacing between subsequent trees, δ1/δ, spanwise spacing between
rows of trees, δ2/δ, canopy height, h/δ, and the streamwise, spanwise and vertical extent of individual tree
canopy, h1, h2 and hc, respectively. Table 1 summarises specific cases; tree ‘trunks’ are modelled as square
with side length, dt. Panel (c) shows the δ1–δ2 parameter space (normalised by h and δ), with annotations
superimposed for flow-roughness regimes predicated upon δ1 (k- or d-type roughness) (Jimenez 2004) and
δ2 (roughness, transitional and topography regimes) (Yang & Anderson 2017b). In panel (c), filled symbols
indicate the location within δ1–δ2 parameter space corresponding to individual cases, where d-type cases,
intermediate cases and k-type cases are denoted via filled black and grey circles, filled red circles and filled
blue circles, respectively (see main text). Shown also are regimes R1, R2, R3 and R4, with accompanying
sketches for each regime depicted on the right, for context.

studies report differing secondary flow direction relative to the high-roughness regions.
Results presented herein show that streamwise spacing between elements, δ1, drives a
reversal in the secondary flow direction. These arguments are summarised in figure 1(c)
δ1–δ2 parameter space, where δ2 is placed on the abscissa. In this panel, for context, we
have superimposed annotations for the roughness, transitional and topography regimes,
where the top and bottom abscissa show δ2 normalised by flow depth and canopy height,
respectively.

The dynamical significance of δ2 can be appreciated from prior work: for δ2/δ ! 1.5,
the spanwise regions between adjacent rows is inadequate to enable coexisting δ-scale
secondary cells. In this case, secondary cells emanating from the roughness elements
dominate, resulting in persistent upwelling above the elements. In contrast, for δ2/δ "
1.5, there exists sufficient spanwise spacing for two adjacent, roughness-driven, δ-scale
secondary flows to coexist. This has been graphically depicted in figure 1(c), where regions
R1/R3 and R2/R4 correspond with ‘roughness’ and ‘topography’ arrangements, which
are graphically illustrated on the right. These illustrative panels highlight the relatively
small and larger spanwise spacing. However, prior work in this area has failed to consider
dynamical implications of streamwise spacing between streamwise-aligned topographic
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Roughness-driven secondary flow direction

elements, δ1, and yet this parameter is itself a significant roughness parameter (Jimenez
2004; Flack, Schultz & Connelly 2007; Flack & Schultz 2010; Yang et al. 2016).

1.2. k- and d-type roughness
Prior research has shown that the spatial distribution of roughness elements has major
implications for instantaneous and Reynolds-averaged flow response. Here, δ1 has been
shown to regulate the flow response (Perry, Schofield & Joubert 1969; Macdonald,
Griffiths & Hall 1998), where for δ1/h ! 5 and δ1/h " 5 the flow response is defined as
d- and k-type, respectively (see also the reviews by Raupach et al. (1991), Jimenez (2004),
Chung et al. (2021) and references therein). The distinction between these roughness
regimes is predicated upon flow response: for the d-type regime, canopy voids are occupied
by h-scale vortices and the aloft flow ‘skims’ across the roughness (Macdonald et al. 1998);
for k-type regime, the relatively larger intra-canopy voids provide sufficient spatial extent
for separation of h-scale vortices. Herein, it will be shown that longstanding concerns
regarding direction of roughness-driven secondary flows can be attributed to δ1/h.

The confluence of δ1 and δ2 can be further appreciated from figure 1(c), where δ1
is shown on the ordinate (normalised by h and δ at left and right, respectively). The
transition from d- to k-type, itself not a fixed quantity, is highlighted via the superimposed
transparent red band at δ1/h ≈ 6. With this, we see the emergence of regimes R1 to
R4, based upon topography attributes within the δ1–δ2 parameter space. It is apparent
that regimes R3 and R2 correspond with dense and sparse arrangements, respectively,
whereas regimes R1 and R4 manifest as spanwise and streamwise ridges, respectively,
where the former will induce internal boundary layer (IBL) formation (Antonia & Luxton
1971; Bou-Zeid, Meneveau & Parlange 2005) and the latter will sustain Reynolds-averaged
counter-rotating secondary cells (Anderson et al. 2015a).

It is self-evident that distinct response modalities, from IBL (regime R1) to streamwise
secondary cells (regime R4), will collapse for case with δ1/h ≈ 6 and δ2/δ ≈ 1.5. In this
study, topographic arrangements were designed precisely for the purpose of targeting these
cases, as will be outlined in the following developments. Results will show that secondary
flow polarity is consistent with prior work, but that δ1/h regulates the δ2 threshold at which
polarity is reversed.

1.3. This study
We have used LES to conduct an extensive parametric study on the influence of δ1
and δ2 for roughness-driven secondary flows. Results will show that, as per prior
studies, secondary flow intensity strengthens with increasing spanwise spacing, δ2. This
is recorded via circulation in the spanwise–wall-normal plane, as per prior studies (Yang
& Anderson 2017b; Anderson et al. 2018; Anderson 2019). Likewise, it will be shown
that downwelling and upwelling occurs above the elements for distinct ‘topography’ and
‘roughness’ regime cases, irrespective of the k- or d-type configuration. We, however,
show that the transition to downwelling, i.e. secondary flow polarity reversal, occurs first
for the largest δ1/h.

Although virtual trees are used as drag elements, these can be interpreted as general
wall-mounted obstacles, which play the role of absorbing momentum fluxes (i.e.
conceptual scientific deductions realised from the work are not expected to differ if the
work were repeated with, for example, cubes instead of virtual trees) (Ghisalberti 2009). In
§ 2.1, details of the LES code and computational cases are presented. Results are presented
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in § 3, and concluding remarks are presented in § 4. In the Appendix, results of LES
modelling of flow over canopies considered in a prior article are presented (Bailey & Stoll
2013), to demonstrate efficacy of the present simulations.

2. Numerical methodology and cases

2.1. LES code
The spatially filtered incompressible momentum transport equation is solved, Dtũ(x, t) =
f (x, t), where the grid-filtering operation is performed via convolution with the filtering
kernel, ũ(x, t) = G∆ ⋆ u(x, t), where .̃ . . denotes a grid-filtered quantity. f = −ρ−1∇p −
∇ · τ + e1Π + f b, where ρ is density, ∇p is a pressure correction required to preserve a
divergence-free (incompressible) flow, ∇ · ũ = 0, τ = ũ′ ⊗ u′ is the subgrid-scale stress
tensor, where u′ = u − ũ, Π = ρ−1 dP0/ dx is an imposed pressure gradient and f b is a
body force used to represent the presence of virtual trees within the computational mesh
(discussion to follow). Note that the shear-normalised viscous stress tensor, Re−1

τ ∇2ũ,
is omitted because Reτ = u∗δν−1 ∼ O(107) for the inertia-dominated (fully rough) flow
conditions typical of geophysical/engineering wall-sheared turbulence, where u∗ is the
shear velocity, δ is flow depth (channel half-height) and ν is kinematic viscosity. A
solenoidal velocity field is maintained by computing the divergence of the momentum
transport equation, Dt[∇ · ũ(x, t)] = ∇ · f (x, t), applying the divergence-free condition,
∇ · ũ = 0 and solving the resultant pressure Poisson equation with Neumann conditions at
the domain top and bottom, ∂ p̃/∂z|z/δ=1 = 0 and ∂ p̃/∂z|z/δ=0 = 0, respectively. Spectral
discretisation is used in the horizontal directions, whereas vertical gradients are evaluated
with centred second-order finite differencing. The domain centreline conditions are
imposed with zero wall-normal gradients of streamwise and spanwise velocity and zero
vertical velocity. Owing to horizontal spectral discretisation, periodic boundary conditions
are imposed on the vertical ‘walls’ of the domain. In this sense, the numerical procedure
replicates the periodic half-channel, a benchmark flow configuration (Stevens, Wilczek
& Meneveau 2014). The turbulent half-channel replicates high-Rossby-number, neutrally
stratified atmospheric boundary layer; channel centreline conditions capture the influence
of the aloft capping inversion (Wyngaard 2010).

The deviatoric component of the subgrid-scale stresses, τ d, is evaluated using the
eddy viscosity modelling approach, τ d = τ − 1

3δ : τ = −2νtS̃, where νt = (Cs∆)2|S̃|
is the turbulent viscosity, Cs is the Smagorinsky coefficient, ∆ is the filter size, S̃ =
(∂ũ + ∂ũT)/2 is the resolved strain-rate tensor and |S̃| = (2S̃:S̃)1/2 is the magnitude of
the resolved strain-rate tensor. In the present study, Cs is evaluated dynamically during
LES with the Lagrangian scale-dependent dynamic subgrid-scale model of Bou-Zeid
et al. (2005). The present LES code has been used in many studies of inertia-dominated,
rough-wall turbulence (Anderson et al. 2015a, and references therein).

The computational mesh is discretised via ∆x = Lx/Nx, ∆y = Ly/Ny and ∆z = Lz/Nz,
where {Lx, Ly, Lz} is the domain spatial extent and {Nx, Ny, Nz} is grid resolution;
computational domain spatial extent and computational resolution details to follow. The
lower wall momentum fluxes are modelled with a hybrid approach to numerically represent
the presence of canopy trees affixed to a lower wall. For the wall itself, surface stress
is modelled under logarithmic (equilibrium) conditions with baseline roughness length,
ẑ0/δ = 2.5 × 10−3 (Anderson & Meneveau 2010a). This work is, thus, entirely predicated
upon local (space–time) efficacy of the logarithmic law (i.e. the presumption of local
space–time equilibrium conditions in a complex flow). In the strictest possible sense,
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local equilibrium never exists, but in recent years there has been widespread use of the
logarithmic law in such conditions. Bou-Zeid et al. (2005) demonstrated that such use of
the logarithmic law could be successful in channel flows, and many immersed boundary
methods leverage the logarithmic law for prescription of peripheral stresses (Graham
& Meneveau 2012, and references therein). Note that results for comparison against a
benchmark literature dataset are shown in the Appendix (Bailey & Stoll 2013). All flow
statistics are normalised by a computational shear velocity, u∗, which is necessarily derived
a posteriori for the canopy cases as u2

∗ = max⟨|ũ′w̃′|⟩t(x) + max⟨|τxz|⟩t(x) (Bailey & Stoll
2013); this maximum value provides the correct normalising velocity scale against which
turbulence statistics can be normalised, thereby enabling dynamic similarity for correct
comparison of cases.

To resolve the actual trees, we use a canopy drag model (Brown, Hobson & Wood 2001;
Graham & Meneveau 2012; Bailey & Stoll 2013):

f b(x, t) = Cda(x)ũ(x, t)U(x), (2.1)

where Cd is the drag coefficient, set to unity in this work to reflect the fully rough
(inertia-dominated) flow conditions (Jimenez 2004; Anderson & Meneveau 2010b;
Anderson 2012), a(x) is the leaf-area density, which varies in space due to spatial
heterogeneity of the canopy, and U(x) = (⟨ũ(x, t)⟩t:⟨ũ(x, t)⟩t)

1/2 is the scalar wind speed.
In order to compare the cases addressed herein, we have summarised the leaf-area index
(LAI) (Finnigan 2000; Bailey & Stoll 2013):

λ =
∫

d3x
a(x) d3x. (2.2)

2.2. Vegetation canopies
In order to address the role of canopy element distributions, we assembled the cases
summarised in table 1. We systematically address the role of δ1 and δ2 by fixing the former
and varying the latter over targeted values known to encompass critical values of the
parameter space. Figure 1 is a schematic of synthetic canopy arrangements, and provides
graphical depiction of δ1 and δ2. We quantify flow response to spanwise heterogeneity (δ2)
for k- and d-type roughness (δ1). Given the large number of cases, we define table 1 case
names via concatenation of three symbols:

Case ≡ (Symbol 1)︸ ︷︷ ︸
Roughness

k or d−type

(Symbol 2)︸ ︷︷ ︸
Streamwise spacing,δ1

1 to 4

(Symbol 3)︸ ︷︷ ︸
Spanwise spacing,δ2

1 to 9

. (2.3)

The underbrace text summarises the parameter corresponding with each symbol. For these
cases, we report λ and ⟨a(x)⟩xyz in table 1. For all cases, the streamwise, spanwise and
vertical extent of trees canopies is h1/δ = 0.03125, h2/δ = 0.03125 and hc/δ = 0.075,
respectively, whereas the tree ‘trunks’ are squares with side length, dt/δ = 0.0156. For
the cases considered, with δ/h = 8, the large elements induce vortical motions that
precludes assumption of outer-layer similarity (Townsend 1976). Turbulence statistics
shown in the following section attenuate monotonically towards the domain centreline,
indicating adequate resolution and no unphysical numerical effects associated with the
prescribed boundary conditions. In table 1, z0,Eff ./δ and ⟨(h′)2⟩1/2

xy /δ denote effective
roughness length and root mean square (r.m.s.) of the height distribution, respectively,
where h′ = h − ⟨h⟩xy.
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Case
δ1

h
δ2

h
δ1

δ

δ2

δ

z0,Eff .

δ

⟨(h′)2⟩1/2
xy

δ
λ ⟨a(x)⟩xyz

Lx

δ

Ly

δ

d11 0.25 1.25 0.03125 0.156 5.6 × 10−4 3.3 × 10−2 4.7 × 10−2 4.2 × 10−2 3 3
d12 0.25 1.75 0.03125 0.219 4.4 × 10−4 2.9 × 10−2 3.5 × 10−2 3.1 × 10−2 3 3
d13 0.25 2.75 0.03125 0.344 2.8 × 10−4 2.4 × 10−2 2.3 × 10−2 2.1 × 10−2 3 3
d14 0.25 3.75 0.03125 0.469 1.9 × 10−4 2.1 × 10−2 1.8 × 10−2 1.6 × 10−2 3 3
d15 0.25 5.75 0.03125 0.719 1.1 × 10−4 1.8 × 10−2 1.2 × 10−2 1.0 × 10−2 3 3
d16 0.25 7.75 0.03125 0.969 7.5 × 10−5 1.5 × 10−2 8.8 × 10−3 7.8 × 10−3 3 3
d17 0.25 11.75 0.03125 1.469 5.0 × 10−5 1.3 × 10−2 5.8 × 10−3 5.2 × 10−3 3 3
d18 0.33 15.75 0.04160 1.969 5.6 × 10−5 9.5 × 10−3 4.4 × 10−3 3.9 × 10−3 3 4
d19 0.50 23.75 0.06250 2.969 6.9 × 10−5 6.3 × 10−3 2.9 × 10−3 2.6 × 10−3 3 6
d21 1 1.25 0.125 0.156 3.3 × 10−4 2.8 × 10−2 1.9 × 10−2 1.7 × 10−2 3 3
d22 1 1.75 0.125 0.219 2.6 × 10−4 2.4 × 10−2 1.4 × 10−2 1.3 × 10−2 3 3
d23 1 2.75 0.125 0.344 1.6 × 10−4 2.0 × 10−2 9.6 × 10−3 8.6 × 10−3 3 3
d24 1 3.75 0.125 0.469 1.3 × 10−4 1.8 × 10−2 7.2 × 10−3 6.5 × 10−3 3 3
d25 1 5.75 0.125 0.719 7.5 × 10−5 1.5 × 10−2 4.8 × 10−3 4.3 × 10−3 3 3
d26 1 7.75 0.125 0.969 5.0 × 10−5 1.2 × 10−2 3.6 × 10−3 3.3 × 10−3 3 3
d27 1 11.75 0.125 1.469 4.4 × 10−5 1.0 × 10−2 2.4 × 10−3 2.2 × 10−3 3 3
d28 1 15.75 0.166 1.969 4.7 × 10−5 7.7 × 10−3 1.8 × 10−3 1.6 × 10−3 3 4
d29 1 23.75 0.25 2.969 5.6 × 10−5 5.2 × 10−3 1.2 × 10−3 1.1 × 10−3 3 6
k31 5.75 1.25 0.72 0.156 6.3 × 10−5 1.0 × 10−2 4.7 × 10−3 4.3 × 10−3 3 3
k32 5.75 1.75 0.72 0.219 5.0 × 10−5 9.0 × 10−3 3.5 × 10−3 3.3 × 10−3 3 3
k33 5.75 2.75 0.72 0.344 3.7 × 10−5 7.3 × 10−3 2.3 × 10−3 2.2 × 10−3 3 3
k34 5.75 3.75 0.72 0.469 3.4 × 10−5 6.4 × 10−3 1.7 × 10−3 1.6 × 10−3 3 3
k35 5.75 5.75 0.72 0.719 3.1 × 10−5 5.3 × 10−3 1.2 × 10−3 1.1 × 10−3 3 3
k36 5.75 7.75 0.72 0.969 2.6 × 10−5 4.5 × 10−3 8.7 × 10−4 8.1 × 10−4 3 3
k37 5.75 11.75 0.72 1.469 2.5 × 10−5 3.7 × 10−3 5.8 × 10−4 5.4 × 10−4 3 3
k38 5.75 15.75 0.72 1.969 3.2 × 10−5 2.8 × 10−3 4.4 × 10−4 4.1 × 10−4 3 4
k39 5.75 23.75 0.72 2.969 4.5 × 10−5 1.9 × 10−3 2.9 × 10−4 2.7 × 10−4 3 6
k41 11.75 1.25 1.469 0.156 4.0 × 10−5 7.3 × 10−3 2.7 × 10−3 2.6 × 10−3 3 3
k42 11.75 1.75 1.469 0.219 3.3 × 10−5 6.4 × 10−3 2.0 × 10−3 1.9 × 10−3 3 3
k43 11.75 2.75 1.469 0.344 2.9 × 10−5 5.2 × 10−3 1.3 × 10−3 1.3 × 10−3 3 3
k44 11.75 3.75 1.469 0.469 2.6 × 10−5 4.5 × 10−3 1.0 × 10−3 9.7 × 10−4 3 3
k45 11.75 5.75 1.469 0.719 2.4 × 10−5 3.7 × 10−3 6.7 × 10−4 6.5 × 10−4 3 3
k46 11.75 7.75 1.469 0.969 2.3 × 10−5 3.2 × 10−3 5.0 × 10−4 4.9 × 10−4 3 3
k47 11.75 11.75 1.469 1.469 2.3 × 10−5 2.6 × 10−3 3.4 × 10−4 3.2 × 10−4 3 3
k48 11.75 15.75 1.469 1.969 2.9 × 10−5 1.9 × 10−3 2.5 × 10−4 2.4 × 10−4 3 4
k49 11.75 23.75 1.469 2.969 3.9 × 10−5 1.3 × 10−3 1.7 × 10−4 1.6 × 10−4 3 6
R1.6 3 0.125 0.375 0.0156 2.6 × 10−5 2.5 × 10−2 9.3 × 10−2 8.3 × 10−2 3 3
R3.1 0.5 0.125 0.0625 0.0156 3.4 × 10−5 4.7 × 10−2 5.6 × 10−1 4.9 × 10−1 3 3
R3.6 3 0.125 0.375 0.0156 3.0 × 10−5 2.5 × 10−2 1.4 × 10−1 1.2 × 10−1 3 3

Table 1. Summary of vegetation canopy attributes and computational domain attributes considered for this
article, where δ = 16 m for all cases. These cases will be referenced via the (2.3) symbol key. See also figure 1
for graphical depictions of streamwise and spanwise heterogeneity.

Figure 2 shows vertical profiles of canopy geometric attributes for all cases summarised
in table 1 (with the exception of the comparison cases). Figure 2(a–d) shows vertical
profiles of plane-averaged LAI, ⟨α(x)⟩xy(z), for cases k1i (a), k2i (b), d3i (c) and d4i
(d). In these panels, the direction of decreasing δ1 is shown, where it is apparent that
leaf-area density monotonically increases as spanwise spacing declines. This is physically
interpreted as relatively larger spatial volumes occupied by vegetation. In contrast, from
panels (a) to (d) ⟨α(x)⟩xy(z) monotonically declines, owing to the relatively smaller spatial
volumes occupied by vegetation. Figure 2(e) shows ⟨α(x)⟩x( yl, z), where yl is coincident
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Figure 2. Vertical profiles of canopy geometric attributes for cases considered in this study. Panels (a–d) show
vertical profiles of plane-averaged leaf-area density averaged for cases k1i (a), k2i (b), d3i (c) and d4i (d),
where index i varies between 1 and 9 for variable δ2 (see also table 1 and (2.3)), and where an annotation for
the direction of decreasing δ1 has been superimposed for perspective. Panel (e) shows streamwise-averaged
leaf-area density at spanwise location, yl, coincident with the centre of a row of trees, where an annotation for
direction of δ1 is provided. Panel ( f ) shows the LAI, λ (2.2), for all table 1 cases (with the exception of the
comparison cases), with the direction of decreasing δ1 indicated.

with the centre of a streamwise-aligned row of trees (given the sampling at yl, panel (e)
is insensitive to spanwise spacing and captures only variability in δ1). Finally, figure 2( f )
shows the LAI, λ, for all cases in table 1 (with the exception of the comparison cases).
Each datapoint on panel ( f ) corresponds with a case, and solid lines are used to ‘group’
cases with fixed δ1. These graphical illustrations of canopy geometric attributes are helpful
in demonstrating consistent, monotonic trends with variation in δ1 and δ2 (see also figure 1
and (2.3) for canopy schematic and case code equation, respectively).

In order to demonstrate efficacy of the present LES code, we have also modelled ASL
flow over cases R1.6, R3.1 and R3.6, with attributes summarised in table 1. These cases
are identical to those already considered by Bailey & Stoll (2013). Comparison of results
from the present LES code against those reported previously by an independent group
help to establish efficacy of the numerical approach; comparison results are shown in the
Appendix. It is also noted that the LES code has now been in use for several decades and
has been successfully used in a variety of research avenues.

For all cases, we used Lx/δ = 3 and Lz/δ = 1, with δ/h = 8; Ly/δ was varied to
accommodate the canopy attributes, as recorded in table 1. This value of δ/h is sufficient
to ensure that the flow is dominated by roughness sublayer dynamics, with no capacity
for large-scale correlation in the outer layer (Raupach et al. 1991, 1996; Ghisalberti 2009;
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Figure 3. Contours of instantaneous streamwise velocity in the y–z plane at x = Lx/2, with isocontours of
vertical velocity superimposed for values, w̃(x, t)/u∗ = 1 (red) and −1 (blue). Results are shown for table 1
cases with δ2/δ = 1.5 and δ1/h = 0.25 (d17, panel a), δ1/h = 5.75 (k37, panel b) and δ1/h = 11.75 (k47, panel
c). Canopy elements are denoted with green silhouettes.

Anderson, Li & Bou-Zeid 2015b). For this reason, the domain streamwise extent imposes
no unphysical truncation of energy-containing large-scale motions, because roughness
sublayer processes preclude emergence of outer-layer correlation (Hutchins & Marusic
2007). The computational domain is discretised with {Nx, Ny, Nz} = {192, 192, 160},
which is consistent with Bailey & Stoll (2013).

3. Results
A series of results are presented to address the underlying question on secondary
flow polarity in high-Reynolds-number channel flows over spanwise- and streamwise-
heterogeneous canopies. As noted in § 1.1, this issue has been the topic of a
sustained research effort regarding the polarity of roughness-driven secondary flows;
that is, contrasting the results from Ganapathisubramani and coworkers (Vanderwel &
Ganapathisubramani 2015; Medjnoun et al. 2018, 2020) against those from Anderson,
Christensen, and others (Willingham et al. 2013; Barros & Christensen 2014; Anderson
et al. 2015a; Pathikonda & Christensen 2017; Yang & Anderson 2017a; Awasthi &
Anderson 2018; Zheng & Anderson 2021). Results will demonstrate that, indeed, k- or
d-type roughness can regulate the polarity of roughness-driven secondary flows, where the
former and latter induce upwelling and downwelling aloft streamwise-aligned roughness
‘rows’, respectively. This ability to regulate polarity is pronounced only in the transitional
zone (based on δ2).

In order to efficiently present flow visualisations, we show instantaneous and
Reynolds-averaged flow visualisations for cases spanning the transitional regime with
respect to δ2 and the d- and k-type regimes; indeed, the cases were designed a priori for
precisely this reason. Results are shown in the spanwise–wall-normal plane, to illustrate
large-scale flow response. Figures 3 and 4 show instantaneous and time-averaged results,
respectively, for cases noted in the caption.

For case d17, with the lowest δ1/h, streamwise spacing between successive elements
is δ1/h = 0.25, the flow is expected to ‘skim’ over successive elements in a manner
that precludes intra-canopy flow reattachment (Macdonald et al. 1998; Jimenez 2004)
(figure 3a). In contrast, the corresponding spanwise spacing, δ2/δ = 1.5, is in the
transitional regime (figure 1c and accompanying text). For case d17, figure 3(a) shows the
large-scale fluctuation typical of instantaneous visualisation. Note, however, pronounced
regions of relative streamwise momentum deficit and corresponding upwelling (red). This
modality is also observed for case k37, which is in the d- to k-type transition region.
The structure observed in figure 3(a,b), though based only on instantaneous visualisation,
is consistent with results from Ganapathisubramani and coworkers (Vanderwel &
Ganapathisubramani 2015; Medjnoun et al. 2018, 2020). However, for case k47 (figure 3c),
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Figure 4. Contours of Reynolds-averaged streamwise velocity in the y–z plane at x = Lx/2, with isocontours
of vertical velocity superimposed for values, ⟨w̃⟩t(x)/u∗ = 1 (red) and −1 (blue). Results are shown for table
1 cases with δ2/δ = 1.5 (a–c show results for cases d17, k37 and k47), 2 (d–f show results for cases d18, k38
and k48) and 3 (g–i show results for cases d19, k39 and k49) and streamwise spacing δ1/h = 0.25 (a,d,g), 5.75
(b,e,h) and 11.75 (c, f,i). Canopy elements are denoted with green silhouettes.

for which δ1/h = 11.75 and the elements are thoroughly within the k-type regime, regions
of aggregate momentum excess reside aloft the row of trees, a polarity reversal from the
observations presented in figure 3(a,b).

Figure 4 provides further insight on secondary flow structure via Reynolds-averaged
results. The top, middle and bottom row of panels corresponds with δ2/δ = 1.5, 2 and
3, respectively, whereas the left, middle and right column correspond with δ1/h = 0.25,
5.75 and 11.75, respectively. For the clear d-type cases (panels a,d,g), note that upwelling
occurs only for δ2/δ = 1.5 (panel a); for cases with relatively larger δ2/δ, i.e. clearly
within the topography regime, downwelling is observed above the panels, with upwelling
concentrated only in the roughness sublayer region of the elements.

For cases with intermediate streamwise heterogeneity (k37, k38 and k39, shown in
figure 4b, e and h, respectively), upwelling is observed only for the case with the smallest
spanwise heterogeneity (panel b). For cases with relatively larger spanwise heterogeneity,
upwelling is concentrated within the roughness sublayer, but this is encompassed within
a region of downwelling. Note also that for case k37, the domain-scale upwelling
corresponds with a region of relative streamwise momentum deficit, whereas for cases
k38 and k39, downwelling corresponds with a relative streamwise momentum excess.
The latter modality represents a high-momentum pathway (HMP), as per Christensen
and colleagues (Barros & Christensen 2014), whereas the former is consistent with
findings from Ganapathisubramani and coworkers (Vanderwel & Ganapathisubramani
2015; Medjnoun et al. 2018, 2020). This result illustrates the significant extent to which
both streamwise and spanwise heterogeneity regulate secondary flow modality.

For the very largest streamwise heterogeneity (figure 4c, f,i), downwelling occurs above
the roughness elements for all cases: this can be appreciated by coincident downwelling
and relative streamwise momentum excess. Based only upon figure 4, a relative
demarcation in secondary flow modality could be envisioned between cases d17 and k37
above and those below. As the results discussion advances, we show that both modalities
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Figure 5. Vertical profiles of x- and Reynolds-averaged vertical velocity at spanwise location, yl, coincident
with the centre of a row of trees. Panels (a–d) show results for cases d1i, d2i, k3i and k4i, respectively, where
i = 1–9 corresponds with a colour transition from red to blue. Annotations superimposed for downwelling and
upwelling. The canopy elevation, h/δ, is denoted by horizontal green lines, and the direction of increasing δ2
is shown for perspective.

are a manifestation of the same underlying flow physics: relative spatial imbalances of
production and dissipation of turbulent kinetic energy, tke(x) = (1/2)(⟨ũ′⟩t(x):⟨ũ′⟩t(x) +
Tr(⟨τ ⟩t(x))), that necessitate Reynolds-averaged secondary cells, a mechanism first
identified by Hinze (1967). Under this framework, a relative space-local excess in tke
production necessitates entrainment of relatively low-tke fluid. In the present context, the
relative excesses occur above the streamwise-aligned rows. For brevity, and because tke
has been shown in complementary prior articles (Zheng & Anderson 2021), tke contours
are not shown here. We have prepared targeted results of total streamwise–wall-normal
turbulent stress, which is indicative of tke in rough wall channel turbulence.

For the d-type cases wherein the flow skims across the elements and the roughness
sublayer depth is elevated, as per figure 4(a,b), the region of low-tke fluid resides between
the adjacent rows of trees, thereby requiring lateral entrainment. For reference, note that
the roughness sublayer is defined here as the region over which element-driven upwelling
occurs (Goldstein & Tuan 1998). For the k-type cases, in contrast, vortical mixing between
successive streamwise-aligned trees and penetration of the canopy enables a relatively
smaller roughness sublayer. As such, low-tke fluid resides aloft, enabling downwelling
(discussion to follow).

To further the discussion, figure 5 shows vertical profiles of vertical velocity for all table
1 cases, with the exception of the benchmark comparison cases, where panels (a–d) show
profiles for cases d1i, d2i, k3i and k4i, respectively. The profiles are recovered from a
spanwise location coincident with the centre of a row of elements, and downwelling and
upwelling annotations are provided for perspective.

For the d-type cases (figure 5a,b), the magnitude of the vertical gradient of vertical
velocity increases monotonically with increasing δ2; in addition, apparent depth of the
roughness sublayer thickens with increasing δ2, which is consistent with growth of the
roughness sublayer vortices with growing δ2 (Yang & Anderson 2017b; Anderson et al.
2018). This pattern of upwelling aloft the elements occurs for both d-type cases; for
the k-type cases: the vertical gradients of vertical velocity are significantly smaller by
virtue of the larger streamwise distances between successive elements. This is evidence
of the aforementioned ‘lowering’ of the roughness sublayer to occupy the canopy:
the intensity of canopy-driven mixing and associated upwelling from canopy elements
declines monotonically from the d- to k-type cases. Note also that for the k-type cases
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the regions of downwelling emerge for cases with larger spanwise heterogeneity (darker
profiles). This is consistent with aforementioned secondary flow polarity reversal as
topographic attributes vary.

In seminal work, Reynolds-averaged secondary flows due to spatial heterogeneity of
turbulent stresses, so-called Prandtl’s secondary flow of the second kind, were first
interpreted via the balance of tke (Hinze 1967) (for a review, see Bradshaw 1987 and
references therein). In the context of hydraulic flows over beds with spanwise-variable
hydrodynamic roughness, Vermaas et al. (2011) adopted the arguments of Hinze (1967)
to interpret secondary flow polarity (Wang & Cheng 2005). More recently, Anderson
et al. (2015a) adopted the framework set forth by Hinze (1967) to explain secondary flow
attributes in high-Reynolds-number rough-wall boundary layers and channels. Prandtl’s
secondary flow of the second kind can be readily understood via the Reynolds-averaged
tke balance:

⟨ṽ⟩1t∂ytke + ⟨w̃⟩1t∂ztke = P − ϵ, (3.1)

where the first and second terms on the right-hand side are production and dissipation,
respectively. Application of (3.1) over a vertical profile at a spanwise transect coincident
with a row of trees, the first left-hand side term vanishes. Recall that P = ⟨u′ ⊗
u′⟩xt:∇⟨u⟩xt, where u′ = u − ⟨u⟩xt and where T = u′ ⊗ u′ is the Reynolds (total) stress
tensor (in the LES context, recovered via addition of the resolved and subgrid-scale
stresses). It is self-evident that for the present channel flows, u′ ⊗ u′ is dominated by
the streamwise–wall-normal component whereas ∇⟨u⟩xt is dominated by the wall-normal
gradient of streamwise velocity, i.e. P ≈ ⟨Txz⟩xt∂z⟨u⟩xt. Above the elements, intense
shear leads production of tke to exceed dissipation, automatically imposing P − ϵ > 0.
Irrespective of the magnitude of tke above the elements, the vertical gradient of tke must be
negative, subsequently necessitating downwelling in order to match the polarity of the left-
and right-hand side. It is emphasised that this framework has been used rigorously in prior,
complementary studies (Wang & Cheng 2005; Vermaas et al. 2011; Anderson et al. 2015a;
Salesky, Calaf & Anderson 2022). For this reason, we have not repeated the exercise
here, and rather have used qualitative attributes of the tke balance to establish context
for the observations. Note also that other researchers have considered how imbalances in
production and dissipation aloft flows over horizontally homogeneous canopies affect the
hierarchy of dynamically active scales present and associated normalising length scales
(Pan & Chamecki 2016; Ghannam et al. 2018).

Figure 6 shows contours of total streamwise–wall-normal stresses, ⟨Txz⟩xt/u2
∗, for the

same cases highlighted in figure 4, where δ1 and δ2 increases in the left-to-right and
top-to-bottom directions, respectively; recall that u2

∗ = max⟨|ũ′w̃′|⟩t(x) + max⟨|τxz|⟩t(x)
(Bailey & Stoll 2013). Note that for the figure 4 cases that exhibited upwelling, d-type
cases with smallest δ2, we see corresponding δ-scale plumes of elevated Txz throughout
the domain (figure 6a,b). In contrast, for cases with established downwelling aloft the
elements, the plume of elevated Txz resides within the canopy. When viewed through
the framework established by Hinze (1967), the d-type modality (figures 6a,b) can be
understood as inducing a region of elevated P that is so large that entrainment from aloft
is not possible; instead, tke can be optimally balanced via lateral entrainment. In contrast,
when the roughness sublayer occupies the canopy, as it does for the k-type response, the
region of elevated Txz is relatively smaller. With this, regions of elevated P are confined
to the canopy, providing greater spatial extent for entrainment of low-tke fluid from aloft
(discussion to follow).

To provide more clarity on figure 6 and accompanying discussion, in figure 7 we
show vertical profiles of ⟨Txz⟩xt( yl, z), where yl is a spanwise location coincident with
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Figure 6. Contours of x- and Reynolds-averaged streamwise–wall-normal Reynolds (turbulent) stresses,
⟨Txz⟩xt/u2

∗ = (⟨ũ′w̃′⟩xt + ⟨τxz⟩xt)/u2
∗, in the y–z plane. Results are shown for table 1 cases with δ2/δ = 1.5

(a–c shows results for cases d17, k37 and k47), 2 (d–f shows results for cases d18, k38 and k48) and 3 (g–i
shows results for cases d19, k39 and k49) and streamwise spacing δ1/h = 0.25 (a,d,g), 5.75 (b,e,hs) and 11.75
(c, f,i). Canopy elements are denoted with green silhouettes.
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Figure 7. Vertical profiles of x- and Reynolds-averaged streamwise–wall-normal Reynolds (turbulent) stresses,
⟨Txz⟩xt = ⟨ũ′w̃′⟩xt + ⟨τxz⟩xt, at spanwise location, yl, coincident with the centre of a row of trees. Panels (a–d)
show results for cases d1i, d2i, k3i and k4i, respectively, where i = 1 to 9 corresponds with a colour transition
from blue to red. The canopy elevation, h/δ, is denoted by horizontal green lines.

the centreline of a row of trees. As per figure 5, a horizontal green profile has been
superimposed to denote the elevation of the canopy. For the d-type cases, as might be
expected, the shear layer is most intense at h/δ (figure 7a,b); in contrast, for the k-type
cases, elevated shear occurs throughout the canopy, and generally attains its maximum
value at the wall, indicative of declining fluxes of momentum to the canopy with increasing
δ1.

Note that because the profiles are shown at a discrete spanwise location, there is no
means to incorporate the dispersive stress component, that is, stresses due to spatial
heterogeneity of the mean flow, as per Calaf, Meneveau & Meyers (2010) or Bailey &
Stoll (2013). In separate work, we have computed vertical profiles of the plane-averaged
stresses, which recovered the expected linearly decreasing profile. The profiles observed
in figure 7 are a consequence of flow response to the canopy attributes.
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(b)

LMP
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Figure 8. Idealised depiction of tke production and dissipation dynamics for the d- (a) and k-type cases (b),
respectively. Red regions denote locations of elevated production, dashed grey denotes regions of elevated
dissipation.

4

2

0 0.5 1.0

Decreasing δ1 Decreasing δ1

δ2/δ

Γ ∗

10–2

10–3z 0,E
ff.

/δ

1.5 2.0 2.5 3.0 0 0.5 1.0
δ2/δ
1.5 2.0 2.5 3.0

(b)(a)

Figure 9. Bulk flow attributes for table 1 simulations. Panels (a,b) show compensated circulation, Γ ∗ (3.2)
and effective roughness length, z0,Eff ./δ, respectively, shown against spanwise heterogeneity, δ2/δ. Symbols
correspond with δ1/h = 0.25 (black symbols), 1 (grey symbols), 5.75 (red symbols) and 11.75 (blue symbols);
direction of decreasing δ1 superimposed for perspective. Cases with upwelling and downwelling above a row
of elements are denoted with filled circles and filled squares, respectively. In panel (b), the horizontal solid line
shows base roughness length, ẑ0/δ.

Figure 8 is an illustrative depiction of the aforementioned tke balance mechanisms
responsible for the observed secondary flow polarity reported in figures 3 and 4. For
the d-type cases, the relatively small values of δ1 prevent the canopy-driven shear layer
from occupying the canopy, and instead production of turbulence occurs over the depth
of the flow (figure 8a). This precludes entrainment of low-tke fluid from aloft, thereby
necessitating lateral entrainment. This explains the observed low-momentum pathway
above the elements for d-type cases (Barros & Christensen 2014). For the k-type cases,
regions of elevated tke production occupies the canopy (figure 8b), which enables lateral
entrainment from aloft and formation of HMPs above the elements.

To conclude the present discussion, figure 9(a) presents datapoints for compensated
circulation:

Γ ∗ = Γ

u∗δ
=

∫

d2x
|⟨ω̃x⟩xt( y, z)| dy dz, (3.2)

as per Yang & Anderson (2017b), and figure 9(b) presents datapoints for a
posteriori-recovered effective roughness length, z0,Eff ./δ. Each datapoint corresponds with
a table 1 simulation, as per the caption, with the notable exception of the benchmark
comparison cases, which are utilised in the Appendix.

Compensated circulation is a helpful bulk metric for quantifying intensity of
roughness-driven secondary flows; in the absence of spanwise heterogeneity, or for infinite
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spanwise heterogeneity, Γ ∗ = 0. Between these limiting values of δ2, Γ ∗ varies, where
interested readers may consult Yang & Anderson (2017b) or Anderson et al. (2018) for
further discussion.

In figure 9(a), the datapoints exhibit non-monotonic dependence on δ2, which has
been reported in numerous preceding articles (Yang & Anderson 2017b; Anderson et al.
2018); it is noted that Medjnoun et al. (2018) have also qualitatively defined this with
their ‘significance’ parameter. These trends can be interpreted as growing secondary flow
intensity in the roughness regime (recall figure 1c), as the element-driven secondary flows
in the d-type regime grow in spatial extent with increasing δ2. This trend asymptotes in
the transitional regime, before reversing trend. This is a consequence of the secondary
cells occupying a relatively lesser spatial extent, and with the emergence of HMPs and
their relatively lower streamwise vorticity (figure 8 and accompanying text). The symbol
colour codes denote the respective values of δ1, and the direction of decreasing δ1 is
superimposed, for perspective.

As might be anticipated, as δ1 decreases, the topography becomes relatively ‘more
rough’ and the element-driven secondary cells exhibit more intense compensated
circulation. This trend, and the asymptotic turning point for δ2/δ ≈ 1, is invariant to d-
or k-type values. Note that on figure 9(a), filled circles and filled squares correspond with
cases that exhibit Reynolds-averaged upwelling or downwelling, respectively. Recall that
the latter, downwelling aloft the elements, corresponds with antecedent observations of
HMPs reported by Christensen, Anderson, and others (i.e. Willingham et al. 2013; Barros
& Christensen 2014; Anderson et al. 2015a). Detailed inspection of figure 9(a) reveals
that secondary flow polarity reverses for the k-type cases first (blue square at δ2/δ ≈ 1.5),
whereas all cases reverse for larger δ2/δ. This is evidence of the aforementioned polarity
reversal for larger δ1, as the production–dissipation imbalance occupies the canopy.

Figure 9(b) shows effective roughness length normalised by flow depth, z0,Eff ./δ,
which is recovered a posteriori via least-squares fit of a logarithmic (equilibrium)
profile to vertical profiles of plane- and time-averaged streamwise velocity, ⟨ũ⟩xyt/u∗.
The least-squares fit is based on data over the range, 0.4 ≤ z/δ ≤ 0.8. Given that the
effective roughness lengths are based on a rigorous least-squares fit, and the strong trends
observed on the panels, the reported values of z0,Eff . may be regarded as robust and
accurate. To provide support for these results, please note that figure 10 shows vertical
profiles for plane- and time-averaged streamwise velocity. For all cases, it is clear that
a well-established logarithmic region is present, evidenced by comparison against the
superimposed idealised profile. For perspective, the elevation of the canopy elements
is superimposed; an idealised logarithmic profile (thick black) is superimposed, which
illustrates that the aforementioned protocol for recovery of z0,Eff . is efficacious.

On figure 9(b), the direction of decreasing δ1 is superimposed, for context, and as
expected the roughness length increases monotonically with decreasing δ1. This can
be understood as a direct consequence of additional drag associated with larger leaf
area index (recall also figure 2). Similarly, for the roughness-regime cases (d- and
k-type), effective roughness decreases monotonically as spanwise spacing increases and
leaf area index declines. This trend reverses for transitional cases and tends toward
increasing roughness for yet-larger δ2. Recall, however, that it is these cases for which the
distinct HMPs emerge and persistent downwelling occurs above the elements due to the
production–dissipation imbalance and entrainment of low-tke fluid. Thus, the entrainment
of relatively high-momentum fluid from aloft manifests as an added drag. It is noted, also,
that the onset of this is reported for the largest δ1 case, when the associated roughness
sublayer occupies the greatest spatial extent of the canopy. On figure 9(b), the base
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Figure 10. Vertical profiles of plane- and Reynolds-averaged streamwise velocity, U(z) = ⟨ũ⟩xyt(z). Panels
(a–d) show results for cases d1i, d2i, k3i and k4i, respectively, where i = 1–9 corresponds with a colour
transition from red to blue. The canopy elevation, h/δ, is denoted by vertical green line and annotation. An
idealised logarithmic profile based on roughness length, z0/δ = 10−3, is superimposed for perspective.

roughness, ẑ0/δ, prescribed in the LES (alongside the bluff canopy elements; § 2.1) is
shown via horizontal black line. As expected, as δ2 increases, noting that the limit,
δ2 = ∞, corresponds with a homogeneous roughness length, ẑ0, we see tendency towards
ẑ0.

3.1. k- and d-type roughness, flow response
The results in figure 9(b) can be interpreted somewhat differently by quantifying the
correlation between effective roughness length and corresponding canopy attributes. One
such correlation, which has received widespread use over many years (Garratt 1994;
Zagarola & Smits 1998) is:

z0,Eff .(h, δ1, δ2) ∼ σh = α(δ1, δ2)σh + ẑ0, (3.3)

where α is a proportionality constant relating height r.m.s., σh = (⟨h2⟩xy − ⟨h⟩2
xy)

1/2, and
roughness length, and ẑ0 is the aforementioned ‘baseline’ roughness length (Anderson &
Meneveau 2010b). Figure 11(a) shows a contour flood of σh for the table 1 cases, with the
exception of the benchmark comparison cases. As might be expected, the largest values
occur for the smallest δ1 and δ2, and σh decreases monotonically with increases in both.

Figure 11(b) shows the corresponding contour flood of z0/δ for the table 1 cases,
where the idealised regimes depicted on figure 1(a) are superimposed for context. The
elevated roughness contours for small δ1 and δ2 were already presented and discuss in
figure 9(b), likewise the trend reversal and elevated values for small large δ2 and small δ1,
as the secondary cells reverse and high momentum fluid is entrained toward the roughness
elements. However, the contour of α(δ1, δ2) (figure 11c) provides detailed illustration of
the roughness length and height r.m.s. correlate. Note that the minimal value required to
correlate z0 and σh a priori manifests as a channel spanning cases with the smallest δ2 and
largest δ1 to cases with the smallest δ1 and transitional δ2. The proportionality constant,
α(δ1, δ2), was recovered via rearrangement of (3.3).

Cases with small δ2 and large δ1 correspond with k-type arrangements, with spanwise
spacing k-type cases, with spanwise spacing sufficiently small that vigorous mixing occurs
within the canopy and the elements absorb the greatest fraction of the momentum flux;
for smaller δ1, mixing within the canopy is attenuated and the relative efficiency of the
correlation declines. As δ2 increases, thereby providing greater spatial extent within the
canopy, and as δ1 decreases, element-driven mixing occupies the spatial ‘gaps’ between the
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Figure 11. Large-scale aerodynamic response to variable canopy attributes. Panels (a–c) show height r.m.s.,
σh = (⟨h2⟩xy − ⟨h⟩2

xy)
1/2, a posteriori-recovered effective roughness length, z0,Eff ., and (3.3) proportionality

constant, α, respectively (note that individual values for σh, z0,Eff . and α are recorded in table 1). Panel (b)
illustrates how the confluence of variable δ1 and δ2 preclude automatic surface regime description. Nominal
regions where δ2 renders the surface a ‘roughness’ or ‘topography’ are shown (top and bottom abscissa) against
regions where δ1 renders the surface k- or d-type (left and right ordinate), where δ1 and δ2 are defined with
respect to flow depth and canopy height, for perspective. This confluence yields quadrant regions R1, R2, R3
and R4, which are graphically illustrated in figure 1(c).

streamwise-aligned row of elements. It is only for this relatively narrow range of the δ1–δ2
parameter space that vigorous mixing within the canopy corresponds with the smallest
values of α, and values of α closest to prior studies (Zagarola & Smits 1998; Anderson &
Meneveau 2011).

4. Conclusion
LES has been used to perform an assessment of turbulent channel flow response to rough
canopies composed of virtual trees. The arrangements are carefully assembled to isolate
flow response with variable streamwise and spanwise spacing, the former affecting d-
or k-type response, the latter affecting roughness, transition or topography response; no
prior article has simultaneously addressed the role of both parameters. Consistent with
prior articles, we find that for δ2/δ ! 1 (in the roughness regime), upwelling is persistent
above the elements irrespective of the presence of a d- or k-type arrangement. However, in
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Figure 12. Canopy attributes and resultant Reynolds-averaged flow statistics for cases R1.6, R3.1 and R3.6
(salient case details summarised in table 1; cases adopted from Bailey & Stoll 2013). Panel (a) shows vertical
profiles of leaf-area density; panels (b,c) show vertical profiles of plane- and time-averaged streamwise velocity
and streamwise–wall-normal turbulent stresses, respectively. Solid lines show results from LES, whereas
symbols show datapoints recovered from Bailey & Stoll (2013), where light grey, grey and black lines/symbols
correspond with cases R3.1, R3.6 and R1.6, respectively.

the transitional regime, δ1 regulates the onset of secondary flow polarity reversal and the
emergence of established HMPs. For the asymptotic inertial conditions addressed herein,
roughness element attributes are not expected to significantly alter the results, although
subsequent work may well be needed to resolve this issue.
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Appendix. Comparison against benchmark datasets
In order to demonstrate efficacy of the LES code used for this article, we repeated
the simulations first carried out by Bailey & Stoll (2013). Attributes for these cases
are summarised in table 1 (R1.6, R3.1 and R3.6). For brevity, we show only targeted
results here, which are shown in figure 12, where panel (a) shows vertical profiles of
plane-averaged LAI, whereas panels (b,c) show plane- and time-averaged streamwise
velocity and streamwise–wall-normal turbulent stresses. Figure 12(a) indicates that the
cases have been correctly replicated; panels (b,c) illustrate agreement with the prior
dataset, at least to the second order. These results provide support for results and
accompanying scientific deductions presented throughout the main text.
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