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Abstract. We consider a model of congestion dynamics with chemotaxis, where the density of cells
follows the chemical signal it generates, while observing an incompressibility constraint (incompressible
parabolic-elliptic Patlak-Keller-Segel model). We show that when the chemical di↵uses slowly and
attracts the cells strongly, then the dynamics of the congested cells is well approximated by a surface-
tension driven free boundary problem. More precisely, we rigorously establish the convergence of the
solution to the characteristic function of a set whose evolution is determined by the classical Hele-Shaw
free boundary problem with surface tension.

The problem is set in a bounded domain, which leads to an interesting analysis on the limiting
boundary conditions. Namely, we prove that the assumption of Robin boundary conditions for the
chemical potential leads to a contact angle condition for the free interface (in particular Neumann
boundary conditions lead to an orthogonal contact angle condition, while Dirichlet boundary conditions
lead to a tangential contact angle condition).
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1. Introduction

1.1. A model for chemotaxis with density constraint. The classical parabolic-elliptic Patlak-
Keller-Segel model for chemotaxis reads:

(
@t⇢� µ�⇢+ �div (⇢r�) = 0,

⌘��+ ✓⇢� �� = 0,

where ⇢ denotes the cell density and � the concentration of some chemical. The nonnegative parameters
µ and ⌘ are the cell and chemical di↵usivity, � is the cell sensitivity, and ✓ and � describe the production
and degradation of the chemical (see [14], [23], [10]).

In this model, the di↵usion competes with the aggregating potential �, leading to the well-known
phenomena of concentration and finite time blow-up of the density (see e.g. [5], [12]). In order to
investigate the behavior of the density ⇢ after saturation occurs we take into account the incompressibility
of the cells by imposing a constraint ⇢  ⇢M . We replace ⇢ with ⇢/⇢M and �" with �"/(⇢M✓) so that
⇢M = ✓ = 1 and denote �̄ = �⇢M✓. We are then led to the equation (see [26, 15] for details):

(1.1)

(
@t⇢� µ�⇢+ �̄div (⇢r�")��p = 0, ⇢  1

��
" � ⌘��" = ⇢,

where the pressure p is a Lagrange multiplier for the contraint ⇢  1, and satisfies

p � 0, p(1� ⇢) = 0 a.e.
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Similar models have been used in particular in the study of congested crowd motion (see [26]). The
conditions on p can also be expressed by writing p 2 P (⇢) with

(1.2) P (⇢) :=

(
0 0  ⇢ < 1;

[0,1) ⇢ = 1,

which is sometimes referred to as the Hele-Shaw graph.

In a companion paper [15], we proved the existence and uniqueness of a weak solution for (1.1) and
investigated its relation to some free boundary problems. In this paper, we will investigate the singular
limit of strong attraction (� � µ) and small chemical di↵usion (⌘ ⌧ 1) and prove that the model is
asymptotically close to a Hele-Shaw free boundary problem with surface tension (1.8). This establishes
the first rigorous link between a general Chemotaxis system and Hele-Shaw flow with surface tension,
to the best of our knowledge.

We also aim to analyze the behavior of the solutions of (1.1) near a fixed boundary, by setting the
problem in a bounded domain ⌦ ⇢ Rd. In particular we are interested in the e↵ect on the dynamics
of di↵erent absorption rates of the chemical at the boundary. For full generality, we will use Robin
boundary conditions for �" with a fixed parameter for absorption rate. For the density, we impose
Neumann boundary conditions which ensure the conservation of cell density.

Above discussions, by setting ⌘ = "
2 and �̄ = "

�1 for small " > 0, lead to the system (1.3)-(1.4):

(1.3)

8
><

>:

@t⇢� µ�⇢+ div ("�1
⇢r�" �rp) = 0, in ⌦⇥ (0,1), p 2 P (⇢);

(�µr⇢+ "
�1
⇢r�" �rp) · n = 0, on @⌦⇥ (0,1);

⇢(x, 0) = ⇢in(x) in ⌦,

with �" solving

(1.4)

(
��

" � "
2��" = ⇢ in ⌦;

↵�
" + �"r�" · n = 0 on @⌦,

where n denotes the outward normal on @⌦. Note that the scaling of the continuity equation can also be
obtained by rescaling the time variable so that we observe the evolution of ⇢ at a time scale t̄ ⇠ "

�1
/�̄,

under the assumption that µ = O("�̄).

Throughout the paper, we assume that ↵, � and � are constants satisfying

� > 0, ↵ � 0, � � 0, ↵+ � > 0.

The assumption � > 0 is important. When � = 0, the function �̄
" = "

2
�
" is the usual Newtonian

potential (up to the boundary condition on @⌦), which does not localize in the limit " ! 0: see the
discussion below (1.8). By contrast, when � > 0, we have �" ⇠ 1

�
⇢ when "⌧ 1 and the e↵ect of "�1r�"

on the dynamic of the saturated regions is akin to that of surface tension.

1.2. Relation to Hele-Shaw free boundary problems. When µ = 0, (1.3)-(1.4) is a weak formula-
tion for the free boundary problem

(1.5)

(
⇢ 2 [0, 1), p = 0, @t⇢+ "

�1div (⇢r�") = 0 in ⌦ \ ⌦s(t);

⇢ = 1, p > 0, �p = "
�1��" in ⌦s(t),

where ⌦s(t) = {⇢(t) = 1} denotes the saturated density set and the free boundary ⌃(t) = @⌦s(t) \ ⌦
moves according to the velocity law

(1.6) (1� ⇢|⌦C
s
)V = (�rp+ "

�1r�") · ⌫|⌦s .



DENSITY-CONSTRAINED CHEMOTAXIS AND HELE-SHAW FLOW 3

Here V denotes the outward normal velocity of ⌃(t) and ⌫ denotes the outward normal of ⌦s(t). In
particular, when the density is a characteristic function ⇢(x, t) = �⌦s(t)(x), we recognize the usual
one phase Hele-Shaw problem without surface tension, which we can write with the modified pressure
q = p+ "

�1
⇢
�

1
2� � �

"
�
, as

(1.7)

(
�q = 0 in ⌦s(t), q = "

�1
�

1
2� � �

"
�
on ⌃(t);

V = �rq · ⌫ on ⌃(t).

In other words, in this fully saturated regime, the chemotaxis system (1.3)-(1.4) can be seen as a free
boundary problem describing the motion of the region occupied by the cell, driven by the chemical
concentration �" and the pressure variable p. Since we obtained (1.3)-(1.4) by imposing the constraint
⇢  1, but without requiring ⇢ 2 {0, 1}, it is not clear that we should actually have ⇢(x, t) = �⌦s(t)(x)
in general. In [15], we proved that if ⇢ is a characteristic function at t = 0, then this remains true
at positive times for (1.3)-(1.4) when µ = 0 . On the other hand when µ > 0 the density is never a
characteristic function. Indeed in this case the saturated set interacts with the unsaturated part of the
density by a Richards-type problem, as shown in [15].

Nevertheless, we will show in this paper that, in the limit "! 0, the e↵ect of the attractive potential
is strong enough to ensure the convergence of ⇢ to a characteristic function �⌦s(t)(x) for all µ � 0.
We will then show that the asymptotic dynamic of ⌦s(t) is described by the Hele-Shaw free boundary
problem with surface tension

(1.8)

(
�q = 0 in ⌦s(t), q = 

4�3/2 on ⌃(t);

V = �rq · ⌫ on ⌃(t),

where  denotes the mean curvature of the free boundary ⌃(t) (taken to be positive when ⌦s(t) is convex).
Formally, we can get (1.8) from (1.7) by proving that the quantity "�1

�
1
2� � �

"
�
is an approximation of

the mean-curvature of ⌦s when "⌧ 1.

(1.8) is a classical model, originally describing the motion of the interface separating two immiscible
fluids in a Hele-Shaw cell. While the problem has been derived in various frameworks (see for instance
[22, 2, 8, 16]), our paper appears to be the first to establish a rigorous connection to chemotaxis, or more
generally to a second-order (or, when µ = 0, a first-order) equation with nonlocal drift.

Note that, as � tends to zero, the weight on surface tension grows to infinity in (1.8). Thus heuristically
we expect that the limit density support will re-adjust itself into a ball at time scale of order �3/2

(and instantly when � = 0). This is consistent with the convergence to radial solutions of (1.1) when
� = µ = 0: see [4] and [10] for further discussions.

1.3. The presence of bounded domain. Our result for µ = 0 bears similarities with [13], where the
emergence of surface tension and derivation of a Muskat problem is studied via a variational approx-
imation. In that paper, the potential �" solves �"

t
� ��" = ⇢ (in Rd) and instead of the Keller-Segel

system, the authors considers a discrete-time approximations constructed via a JKO scheme. A similar
variational analysis is performed in [17] for the L

2-based thresholding scheme.

Note that both [13] and [17] consider the setting of periodic torus or entire Rd for the interaction
energy, in which case �" can be written as a convolution with the heat kernel. Such a representation of
�
", as well as the symmetry of the heat kernel in space variables, played an important role in the analysis

of the aforementioned papers, in particular when deriving the weak limit equation. The fact that our
problem is set in a bounded domain presents an interesting challenge to this analysis. In particular
this necessitates a more PDE-oriented proof of Proposition 5.2, replacing corresponding proofs in [17]
and [13]. Our result appears to be the first that links a Keller-Segel system with a Hele-Shaw flow
with surface tension, regardless of the choice of the domain. This connection was also suggested in the
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very recent paper [6], where the incompressible limit of a generalized version of Keller-Segel system is
investigated. The model is a variant of Cahn-Hilliard equation, which can be seen as a di↵use-interface
approximation of our Hele-Shaw flow with surface tension.

Another novel feature of our analysis, also related to the bounded domain, is the characterization of
the free boundary behavior near the fixed boundary @⌦. Of particular interest, in the context of the
singular limit " ! 0, is how the Robin boundary conditions imposed on �" play a role in the dynamics
of ⌦s(t). We will show that (1.8) must be supplemented by the contact angle condition

(1.9) cos(✓) = � := �min

✓
1,

2↵

↵+
p
��

◆
on ⌃(t) \ @⌦,

where ✓ is the angle formed by the free surface ⌃(t) and the fixed boundary @⌦, measured from inside of
the set ⌦s(t), and the fixed boundary @⌦ at the triple junction ⌃(t) \ @⌦ (see Figure 1). In particular,
for Neuman condition ↵ = 0 (zero absorption of chemicals), the contact must be orthogonal, while for
Dirichlet condition � = 0 (and whenever the absortion rate ↵ is bigger or equal than

p
��), the contact

must be tangential. Let us note that a similar contact angle condition was derived recently in [11] for
the geometric mean-curvature flow.

1.4. Notations and definitions. Throughout the paper ⌦ is a smooth bounded domain in Rd.
We will use the following definition of weak solutions of (1.3)-(1.4), as in [15]:

Definition 1.1. The pair of functions (⇢, p) is a weak solution of (1.3)-(1.4) if ⇢ 2 L
1((0,1);L1(⌦))\

C
1/2([0,1);H�1(⌦)), p 2 L

2((0,1);H1(⌦)) with

0  ⇢  1, p � 0, (1� ⇢)p = 0 a.e. in ⌦⇥ (0,1)

and the following holds:

(1.10)

ˆ
⌦
⇢in(x)⇣(x, 0) dx+

ˆ 1

0

ˆ
⌦
(⇢ @t⇣ + ⇢v ·r⇣) dx dt = 0

for any function ⇣ 2 C
1
c
(⌦⇥ [0,1)) and for some v 2 (L2(⌦⇥ (0,1), d⇢))d satisfying

(1.11)

ˆ 1

0

ˆ
⌦
(⇢v · ⇠ � "

�1
⇢r�" · ⇠ � µ⇢ div ⇠ � p div ⇠) dx dt = 0

for any vector field ⇠ 2 C
1
c
(⌦⇥ (0,1);Rd) such that ⇠ · n = 0 on @⌦ and with �" given by (1.4).

One can also define solutions on finite time interval in parallel way, with considering the time integral
over (0, T ) and test functions vanishing outside of [0, T ).

Equality (1.10) is the usual weak formulation for the continuity equation @t⇢ + div (⇢v) = 0 with
Neumann boundary conditions and initial condition ⇢in. Equation (1.11) is equivalent to the equality
⇢v = "

�1
⇢r�" � rp in L

2(⌦ ⇥ (0,1)). It is written in this way to make it easy to compare with
Definition 1.3 below (see (1.15)).

In [15] we prove the existence and uniqueness of a weak solution in the sense of Definition 1.1, using
the fact that it is a gradient flow with respect to the Wasserstein metric. Here the free energy is given
by

µ

ˆ
⌦
⇢ log ⇢ dx� 1

2"

ˆ
⌦
⇢ �

"
dx with the constraint ⇢  1,

where �" given by (1.4). This energy structure of the equation will also play a key role in this paper.
Because this energy does not behave well when "⌧ 1, we will work instead with the functional

F"(⇢) =

8
<

:
µ

ˆ
⌦
⇢ log ⇢ dx+

1

2�"

ˆ
⌦
⇢ (1� ��

") dx, if 0  ⇢(x)  1 a.e.;

1 otherwise .
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Since
´
⌦ ⇢ dx is preserved by the equation we are only adding a constant to the energy, but this constant

is important when " ⌧ 1 (it was proved in [21] that F"(⇢) is bounded uniformly in " when ⇢ = �E 2
BV(⌦; {0, 1})). The following result was proved in [15]:

Theorem 1.2 ([15]). For any " > 0 and any initial condition ⇢in satisfying

0  ⇢in  1 a.e. in ⌦,

there exists a unique (⇢", p") weak solution of (1.3)-(1.4) in the sense of Definition 1.1. Furthermore,
⇢
" satisfies the energy inequality

(1.12) F"(⇢
"(t)) +

ˆ
t

0

ˆ
⌦
|v"|2⇢" dx dt  F"(⇢in) 8t > 0

with v
" defined as in Definition 1.1.

The goal of this paper is to show that when " ⌧ 1, the solution of (1.3)-(1.4) given by Theorem 1.2
converges to the solution of the following Hele-Shaw problem with surface tension:

(1.13)

8
>>><

>>>:

�q = 0 in ⌦s(t);

q = 

4�3/2 on ⌃(t) = @⌦s(t) \ ⌦;

rq · n = 0 on @⌦ \ ⌦s(t);

V = �rq · ⌫ on ⌃(t),

together with the contact angle condition (1.9). Recall that n and ⌫ respectively denote the outward
normal of ⌦ and ⌦s(t) at their boundary points.

The definition of a weak solution of (1.13)-(1.9) is parallel to the Definition 1.1.

Definition 1.3. The pair of functions (⇢, q) is a weak solution of (1.13)-(1.9) if

⇢ 2 L
1(0, T ;BV (⌦; {0, 1})) \ C

1/2(0, T ;H�1(⌦)), q 2 L
2(0, T ; (Cs(⌦))⇤)

for some s > 0 and the followings hold:

(1.14)

ˆ
⌦
⇢in(x)⇣(x, 0) dx+

ˆ
T

0

ˆ
⌦
⇢ @t⇣ + ⇢v ·r⇣ dx dt = 0

for any function ⇣ 2 C
1
c
(⌦⇥ [0, T )) and for some v 2 (L2(⌦⇥ (0, T ), d⇢))d satisfyingˆ

T

0

ˆ
⌦
⇢v · ⇠ � q div ⇠(t) dx dt = � 1

4�3/2

ˆ
T

0

ˆ
⌦
[div ⇠ � ⌫ ⌦ ⌫ : D⇠] |r⇢| dt(1.15)

+
�

4�3/2

ˆ
T

0

ˆ
@⌦

[div ⇠ � n⌦ n : D⇠] ⇢ dHn�1(x) dt

for any vector field ⇠ 2 C
1
c
(⌦⇥ (0, T );Rd) such that ⇠ · n = 0 on @⌦. 1

This definition, similar to the one given in [13, 16, 17], warrants several comments.

(1) The condition ⇢ 2 L
1(0, T ;BV (⌦; {0, 1})) implies that for a.e. t > 0 we have ⇢(t) = �⌦s(t) for

a set ⌦s(t) ⇢ ⌦ with finite perimeter.
(2) In (1.15), ⌫ = r⇢

|r⇢| stands for the L
1 density of r⇢ with respect to the total variation |r⇢|

(which exists by Radon-Nikodym’s di↵erentiation theorem). Since ⇢(t) = �⌦s(t) 2 BV , it is
also the measure theoretic normal to the boundary ⌃(t) = @⌦s(t). In particular, the term
(⌫ ⌦ ⌫ : D⇠) |r⇢| is of the form f(x,�/|�|)d|�| with f continuous and 1-homogeneous and � =
r⇢. The integral in (1.15) thus makes sense (see for example [9]).

1The integral
´
⌦ q div ⇠ dx above should be understood as the duality bracket hq, div ⇠i(Cs(⌦))⇤,Cs(⌦).
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Figure 1.

(3) Note that q has very low regularity in this definition. Since q ⇠  along ⌃(t), we cannot expect
much more regularity on q without improving the regularity of the free boundary ⌃(t).

(4) As in Definition 1.1, (1.14) is simply the weak formulation for the continuity equation @t⇢ +
div (⇢v) = 0 with Neumann boundary conditions and initial data ⇢in. Since ⇢ = �⌦s(t), it
encodes the velocity law V = v · ⌫, the incompressibility condition div v = 0 in ⌦s(t) and the
Neumann condition v · ⌫ = 0 on @⌦ \ ⌦s(t).

(5) By taking test functions ⇠ supported in either {⇢ = 0} or {⇢ = 1}, we see that Equation (1.15)
implies rq = 0 in {⇢(t) = 0} and v = �rq in ⌦s(t) = {⇢(t) = 1}. Subtracting a constant if
needed, we can in particular assume that q = 0 in {⇢(t) = 0}. For general test functions ⇠, and
taking into account the right hand side of (1.15) we further get the surface tension condition
q = 

4�3/2 on ⌃(t) and the contact angle condition (1.9). This can be seen by using the classical
formula (for a smooth interface ⌃):

(1.16)

ˆ
⌃
div ⇠ � ⌫ ⌦ ⌫ : D⇠ =

ˆ
⌃
 ⇠ · ⌫ +

ˆ
�
b · ⇠,

where ⌫ is the normal vector to ⌃,  denotes the mean curvature of ⌃ and b is the conormal
vector along � = @⌃. Indeed, formally at least, the right hand side of (1.15) is (using the fact
that ⇠ · n = 0 on @⌦):

� 1

4�3/2

ˆ
⌃
⇠ · ⌫ +

ˆ
�

~b · ⇠
�
+

�

4�3/2

ˆ
@⌦\⌦s

⇠ · n+

ˆ
�
~c · ⇠

�

=
1

4�3/2


�
ˆ
⌃
⇠ · ⌫ +

ˆ
�
�~c · ⇠ �~b · ⇠

�
,

where ~b and ~c are unit conormal vectors along � = @⌃\ @⌦: ~b is tangent to ⌃ while ~c is tangent
to @⌦ (see Figure 1).

Integration by parts in (1.15) thus reveals that the jump of q across ⌃ must be equal to 1
4�3/2.

Since q = 0 in {⇢(t) = 0}, we get q = 1
4�3/2 along ⌃ = @E \ ⌦. Finally, the cancellation of the

lower dimensional integral requires that the component of the vector ~b� �~c that is tangential to

@⌦ must vanish. In particular, we must have
h
~b� �~c

i
· ~c = 0 and so ~c ·~b = �, which gives the

contact angle condition

cos ✓ = �.
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(6) A simple computation show that (1.11) is equivalent toˆ
T

0

ˆ
⌦
⇢v · ⇠ � q div ⇠ dx dt =

ˆ
T

0

ˆ
⌦
"
�1

✓
1

2�
� �

"

◆
⇠ ·r⇢ dt

with q = p+ "
�1
⇢
�

1
2� � �

"
�
+µ⇢. Passing to the limit in the right hand side of this equation to

derive (1.15) will be the main result of the second part of the paper (see Proposition 5.2) and
is at the heart of the relation between the Hele-Shaw model with active potential (1.6) and the
Hele-Shaw model with surface tension (1.13). We will see in particular that the contact angle �
depends on the boundary condition for the potential �" and is given by

� = �min

✓
1,

2↵

↵+
p
��

◆
.

1.5. Energy. The proof of the convergence will require some assumptions about the convergence of the
energy. Before stating this assumption, we need to recall a few important facts about the singular part
of the energy

(1.17) J"(⇢) :=

8
<

:

1

2�"

ˆ
⌦
⇢ (1� ��

") dx if 0  ⇢(x)  1 a.e. ;

+1 otherwise,

where �" solves (1.4). The properties of J" when "⌧ 1 were studied by two of the authors in [21]. The
first important result is the following:

Proposition 1.4 ([21]). Let ⌦ be a bounded open set with C
1,↵ boundary. Given a set E ⇢ ⌦ with finite

perimeter P (E,⌦) < 1, we have

(1.18) lim
"!0

J"(�E) =
1

4�3/2

ˆ
⌦
|r�E |+

ˆ
@⌦

2↵

↵+
p
��

�E(x) dHn�1(x)

�
.

We point out that while the result is proved only for � = 1 in [21], but it can be easily extended to
� 6= 1 by scaling. More precisely with �̄" = ��

", "̄ = "/
p
� and �̄ =

p
��, equation (1.4) become

(
�̄
" � "̄

2��̄" = ⇢ in ⌦;

↵�̄
" + �̄"̄r�̄" · n = 0 on @⌦,

which is the equation studied in [21].

Above proposition identifies the limit of J"(�E). However, this functional is not lower-semicontinuous
when 2↵

↵+
p
��

> 1 and cannot be the �-limit of J". We can in fact prove:

Theorem 1.5. Let ⌦ be a bounded open set with C
1,↵ boundary. The functional J" �-converges, when

"! 0 to

J0(⇢) :=

8
<

:

1

4�3/2

ˆ
⌦
|r⇢|+

ˆ
@⌦

min

✓
1,

2↵

↵+
p
��

◆
⇢ dHn�1(x)

�
if ⇢ 2 BV(⌦; {0, 1});

1 otherwise.

This theorem is proved in [21] when J" is restricted to characteristic functions, so we show in
Appendix C how the proof can be generalized to our more general framework. This extension requires
a new formulation of the energy J", see (2.2).

In the absence of boundary term, the gradient flow associated to the energy J0 with respect to the
Wassertein distance was proved to lead to the Hele-Shaw flow (1.13) in [2, 22]. The �-convergence result
therefore suggests that the solution of the gradient flow associated to the energy J" (which corresponds
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to equation (1.3)) converges when " ! 0 to a solution of (1.13) (supplemented with the boundary
condition (1.9)). This is the result that we want to make precise in the present paper.

1.6. Main results. We are now able to state the main result:

Theorem 1.6. Given an initial data ⇢in = �Ein 2 BV (⌦; {0, 1}), µ � 0 and a sequence "n ! 0, let
(⇢"n , p"n) be the unique solution of (1.3)-(1.4) given by Theorem 1.2. Then for any given T > 0, along
a subsequence, the density ⇢"n(x, t) converges strongly in L

1((0, T );L1(⌦)) to

⇢(x, t) 2 L
1((0,1); BV(⌦; {0, 1}))

and the modified pressure variable q
"n (defined by (5.1)) converges to q weak-⇤ in L

2((0, T ); (Cs(⌦))⇤)
for any s > 0. Furthermore, ⇢ satisfies the continuity equation (1.14) for some velocity function v(x, t)
as well as the energy dissipation property

(1.19) J0(⇢(t)) +

ˆ
t

0

ˆ
⌦
|v|2⇢ dx dt  J0(⇢in).

Finally, if the following energy convergence assumption holds:

(1.20) lim
n!1

ˆ
T

0
J"n(⇢

"n(t)) dt =

ˆ
T

0
J0(⇢(t)) dt,

then the limit pair (⇢, q) also satisfies the pressure equation (1.15) on (0, T ). Thus it follows that (⇢, p)
is a weak solution of (1.13)-(1.9) in the sense of Definition 1.3, with initial condition ⇢in and contact
angle

� = �min

✓
1,

2↵

↵+
p
��

◆
.

The result also holds if we consider a sequence of initial data ⇢"
in

= �E
"
in

bounded inBV (⌦), converging
strongly to ⇢in = �Ein in L

1 and satisfying limJ"n(⇢
"

in
) ! J0(⇢in). The existence of such a sequence,

for any finite perimeter set Ein, is proved in [21] (Proposition 5.3) as part of the � convergence result.

We note that Theorem 1.6 is a conditional result, since it requires the energy convergence assumption
(1.20). The analysis of [21] implies that we always have

lim inf
n!1

ˆ
T

0
J"n(⇢

"n(t)) dt �
ˆ

T

0
J0(⇢(t)) dt,

so (1.20) ensures that there is no loss of boundary between phases in the limit. This assumption is rather
natural and is similar to the one required for instance in [19, 17, 13].

Weaker notions of solutions using the theory of varifolds have been obtained in related frameworks
without the assumption (1.20) (see for example [3]). This would be an interesting direction to explore
for our problem as well.

1.7. Outline of the paper. We begin with deriving two alternative formulas for the energy J" in the
next section, which play a crucial role in our analysis. Section 3 collects the main a priori estimates
for the "-solutions. The proof of Theorem 1.6 is then split between sections 4 and 5. In Section 4,
we prove Proposition 4.1 which gives the first part of the theorem, namely the strong convergence in
L
1 of the density toward a characteristic function which satisfies the continuity equation (1.14) and the

energy inequality (1.19). Section 5 completes the proof of Theorem 1.6 by deriving equation (1.15) under
condition (1.20). The main step is Proposition 5.2 which shows that the convergence of the energy (1.20)
implies the convergence of the first variation. In the last section, we briefly recall the construction of
the JKO scheme used in [15] to prove the existence of weak solutions to (1.3)-(1.4) (Theorem 1.2) and
we state a convergence result similar to Theorem 1.6 for a discrete-time approximation: such a result is
of independent interest for numerical applications.
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2. Alternative formulas for J"

A crucial tool in our analysis will be a couple of alternative formulas for the energy J". We recall
that the total energy of the model, F", is given by

F"(⇢) = µ

ˆ
⌦
⇢ log ⇢ dx+ J"(⇢),

where J" is defined by (1.17) and plays key role in the analysis when " ⌧ 1. For ⇢ satisfying the
constraint 0  ⇢  1, we have

J"(⇢) =
1

2�"

ˆ
⌦
⇢ (1� ��

") dx =
1

2�"

ˆ
⌦
⇢(x)� �

ˆ
⌦

ˆ
⌦
G"(x, y)⇢(y) dy dx,

where G" is the Green’s function associated to equation (1.4) A similar energy functional is used in
[17, 13] with G" is the heat kernel in Rd. However, we will rely on some di↵erent formulations for J"

which make use of the particular equation solved by the function �" in our model: First, we write

J"(⇢) =
1

2�"

ˆ
⌦
(⇢� ⇢

2) + (⇢2 � 2��"⇢+ (��")2)� (��")2 + ��
"
⇢ dx

=
1

2�"

ˆ
⌦
⇢(1� ⇢) + (⇢� ��

")2 � ��
"(��" � ⇢) dx.

Using equation (1.4) for �" implies

J"(⇢) =
1

2�"

ˆ
⌦
⇢(1� ⇢) + (⇢� ��

")2 � ��
"("2��") dx

=
1

2�"

ˆ
⌦
⇢(1� ⇢) dx+

1

2�"

ˆ
⌦
(⇢� ��

")2 dx+
"

2

ˆ
⌦
|r�"|2 dx+

1

2

ˆ
@⌦

↵

�
|�"|2 dHn�1(x)

when � 6= 0 and

J"(⇢) =
1

2�"

ˆ
⌦
⇢(1� ⇢) dx+

1

2�"

ˆ
⌦
(⇢� ��

")2 dx+
"

2

ˆ
⌦
|r�"|2 dx

when � = 0. Alternatively, we can write the more symmetric formula (for any ↵, � � 0 with ↵+� > 0):

J"(⇢) =
1

2�"

ˆ
⌦
⇢(1� ⇢) dx+

1

2�"

ˆ
⌦
(⇢� ��

")2 dx+
"

2

ˆ
⌦
|r�"|2 dx

+
"
2

2

ˆ
@⌦

�

↵+ �
|r�" · n|2 dHn�1(x) +

1

2

ˆ
@⌦

↵

↵+ �
|�"|2 dHn�1(x).(2.1)

This formula played a key role in the proof of Proposition 1.4 and Theorem 1.5 in [21]. Thanks to
the constraint 0  ⇢  1, all the terms in this formula are non-negative (without the constraint, the
first term will favor values of ⇢ larger than 1). Furthermore, in the regime " ⌧ 1, the first term will
be bounded only for characteristic functions. This observation will be crucial when proving that the
limiting density is a characteristic function (even though ⇢" may not be). We also note that the scaling
of the following two terms is consistent with the scaling of the classical Modica-Mortola regularization
of the perimeter functional.

Our analysis will also require a slight variation of this formula: we can write

⇢(1� ⇢) + (⇢� ��
")2 = ⇢+ �

2(�")2 � 2⇢��" = (1� ⇢)(��")2 + ⇢(1� ��
")2
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leading to the formula

J"(⇢) =
1

2�"

ˆ
⌦
(1� ⇢)(��")2 + ⇢(1� ��

")2 dx+
"

2

ˆ
⌦
|r�"|2 dx

+
"
2

2

ˆ
@⌦

�

↵+ �
|r�" · n|2 dHn�1(x) +

1

2

ˆ
@⌦

↵

↵+ �
|�"|2 dHn�1(x).(2.2)

Here also we note that all the terms are non-negative when 0  ⇢  1. This formula will in particular
be crucial in proving the strong convergence of ⇢" and when deriving the pressure equation (1.15) (see
Section 5).

3. A priori estimates

We now derive the a priori estimates that will be used to prove the convergence of ⇢". Here and
below, we denote

E
" := ⇢

"
v
"
.

Lemma 3.1. Let ⇢in 2 BV(⌦; {0, 1}) and (⇢", p") be the unique solution of (1.3)-(1.4) given by The-
orem 1.2. There exists a constant C depending only on

´
⌦ |r⇢in| (and in particular independent of ")

such that for all " > 0 we have:
(i) J"(⇢"(t))  C for all t > 0.
(ii)
´1
0

´
⌦ |v"|2⇢" dx dt  C and kE"kL2(⌦⇥(0,1))  C.

(iii) k⇢"(t)� ⇢
"(s)kH�1(⌦)  C

p
t� s, for any 0  s  t.

Proof. We recall that

F"(⇢) = µ

ˆ
⌦
⇢ log ⇢ dx+ J"(⇢),

where (since 0  ⇢  1) �C  ⇢ log ⇢  0. The energy inequality (1.12) thus implies

F"(⇢
"(t))  F"(⇢in)  J"(⇢in) 8t > 0.

Using Proposition 1.4, we see that when ⇢in = �Ein 2 BV (⌦; {0, 1}), we have J"(⇢in)  C for some
constant C independent on ". We deduce

(3.1) J"(⇢
"(t))  J"(⇢in)� µ

ˆ
⌦
⇢ log ⇢ dx  C.

The energy inequality also givesˆ 1

0

ˆ
⌦
|v"|2⇢" dx dt  F"(⇢in)  J"(⇢in)

and since ⇢"  1 (ii) follows immediately.

Finally, for a given test function  2 H
1
0 (⌦), the continuity equation (1.10) impliesˆ

⌦
⇢
"(x, t) (x) dx�

ˆ
⌦
⇢
"(x, s) (x) dx =

ˆ
t

s

ˆ
⌦
⇢
"
v
" ·r dx d⌧,

and so (since ⇢"  1):
����
ˆ
⌦

�
⇢
"(x, t)� ⇢

"(x, s)
�
 (x) dx

���� 
✓ˆ

t

s

ˆ
⌦
|v"|2d⇢"

◆1/2✓ˆ t

s

ˆ
⌦
⇢
"|r |2 dx d⌧

◆1/2

 k kH1(⌦)

✓ˆ
t

0

ˆ
⌦
|v"|2d⇢"

◆1/2

(t� s)1/2 ,

and (iii) now follows from (ii). ⇤
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We also need some estimates on �", solution of (1.4). The comparison principle applied to the Robin
boundary value problem (1.4) (see e.g. Section 4 in [24]) immediately gives

(3.2) 0  �
"(x)  1/� in ⌦

and multiplying (1.4) by �" and integrating leads to the estimate (recall that
´
⌦ ⇢

"
dx = 1)

(3.3) �k�"k2
L2(⌦) + "

2kr�"k2
L2(⌦) 

ˆ
⌦
⇢
"
�
"
dx  1

�

ˆ
⌦
⇢
"
dx =

1

�

ˆ
⌦
⇢in dx.

4. Strong Convergence of ⇢
"
and continuity equation.

The main result of this section is the following proposition, which yields the first part of Theorem
1.6:

Proposition 4.1. Let ⇢in(x) = �Ein 2 BV (⌦; {0, 1}) and ⇢
"(x, t) the unique solution of (1.3)-(1.4)

given by Theorem 1.2. Then the followings holds for any sequence "n ! 0:
(i) There exists a subsequence (still denoted "n) along which ⇢"n(t) converges uniformly with respect to t

in H
�1(⌦) to ⇢(t) and E

"n converges weakly in L
2(⌦⇥ (0,1)) to E.

(ii) There exists v 2 (L2(⌦⇥ (0,1), d⇢))d such that E = ⇢v and the continuity equation (1.14) holds.
(iii) Up to another subsequence, ⇢"n(t) converges to ⇢(t) strongly in L

1(⌦), uniformly in t. Furthermore,
for all t > 0 we have

⇢(t) 2 BV (⌦; {0, 1})

(that is ⇢(t) is the characteristic function of a set of finite perimeter) and the energy inequality (1.19)
holds.

Proof. First note that Lemma 3.1 (iii) together with Arzelà-Ascoli’s theorem yields the uniform conver-
gence of ⇢"n(t) in H

�1(⌦), and Lemma 3.1 (ii) gives the weak convergence of E"n .
Next, we can pass to the limit in (1.10) to get

ˆ
⌦
⇢in(x)⇣(x, 0) dx+

ˆ 1

0

ˆ
⌦
⇢ @t⇣ + E ·r⇣ dx = 0

for any function ⇣ 2 C
1
c
([0,1)⇥ ⌦). Thus ⇢ solves the continuity equation

(4.1)

(
@t⇢+ divE = 0;

⇢(x, 0) = ⇢in(x).

To complete the proof of (ii) and derive (1.14), we just need to show that E can be written in the form
⇢v. We use an argument that can be found, for example, in [20]: For a scalar measure µ and a vectorial
measure F , we define the function

⇥ : (µ, F ) 7!

8
<

:

ˆ
T

0

ˆ
⌦

|F |2
µ

if F ⌧ µ a.e. t 2 [0, T ];

+1 otherwise.

This function ⇥ is lower semi-continuous for the weak convergence of measure (see [1], Theorem 2.34).

Together with the uniform bound ⇥(⇢"n , E"n) =
´
T

0

´
⌦ ⇢

"n |v"n |2  C (see Lemma 3.1 (ii)), it implies
that E is absolutely continuous with respect to ⇢ and that there exists v(t, ·) 2 (L2(d⇢(t)))d such that
E = ⇢v. Inserting this in (4.1) yields (1.14).
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The rest of the proof is devoted to (iii). The fact that we can get stronger convergence for the density
is non-trivial: it is due to the fact that the energy J" controls the BV norm of �", which is close to ⇢"

when "⌧ 1. To see this, we introduce the function

(4.2) F (t) :=

ˆ
t

0
2min(⌧, 1� ⌧) d⌧ =

(
t
2 for 0  t  1/2;

2t� t
2 � 1

2 for 1/2  t  1.

We then have F
0(��") = 2min(��", 1� ��

") and so

1

�3/2
|rF (��")|  2

1p
�
|r�"|min(��", 1� ��

")

 1

�"
min((��")2, (1� ��

")2) + "|r�"|2

 1

�"

⇥
(1� ⇢)(��")2 + ⇢(1� ��

")2
⇤
+ "|r�"|2,

as long as 0  ⇢  1. This inequality, together with the formula (2.2) for J", implies

(4.3)
1

2�3/2

ˆ
⌦
|rF (��")| dx  J"(⇢

").

Note that in [21] a similar inequality was derived when ⇢ is a characteristic function. The computation
above extends this important property of J" to the case where 0  ⇢  1 by using the formula (2.2).

Inequality (4.3) shows that the boundedness of the energy J"n(⇢
"n) implies some a priori estimates

for the auxiliary function
 
n := 2F (��"n).

More precisely, (4.3) and Lemma 3.1 (i) imply that

(4.4)  
n is bounded in L

1((0, T );BV (⌦)).

Next, we can write

 
n = [2F (��"n)� 2F (⇢"n)] + [2F (⇢"n)� ⇢

"n ] + ⇢
"n .(4.5)

We are going to show that the first two terms in the right hand side go to zero (uniformly in t):

• Formula (2.1) and the energy bound (Lemma 3.1 (i)) imply

k⇢"n(t)� ��
"n(t)k2

L2(⌦)  2�"nJ"(⇢
"n(t))  2�"nJ"(⇢in)  C"n.

Since F is Lipschitz, we deduce

(4.6) k2F (⇢"n(t))� 2F (��"n(t))k2
L2(⌦)  Ck⇢"n(t)� ��

"n(t)k2
L2(⌦)  C"n 8t > 0.

• When ⇢ is a characteristic function, we have 2F (⇢) = ⇢ and so the second term in (4.5) vanishes.
When ⇢ 2 (0, 1), we can use the fact that |2F (⇢)� ⇢|  C� whenever ⇢ < � or ⇢ > 1� � and use
the energy to control the set where �  ⇢  1� �. Indeed, formula (2.1) and the energy bound
(Lemma 3.1 (i)) imply

(4.7) |{�  ⇢
"n  1� �}|  C

�(1� �)

ˆ
⌦
⇢
"n(1� ⇢

"n) dx  C�"n

�(1� �)
J"(⇢

"n(t))  C
"n

�(1� �)
.

Choosing � =
p
"n we conclude thatˆ

⌦
|2F (⇢"n)� ⇢

"n | dx 
ˆ
{p"n⇢"n1�p

"n}
|2F (⇢"n)� ⇢

"n | dx+ C|⌦|
p
"n

 C|{
p
"n  ⇢

"n  1�
p
"n}|+ C|⌦|

p
"n

 C
p
"n,
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and so

(4.8) k2F (⇢"n(t))� ⇢
"n(t)kL2(⌦)  C"

1/4
n

8t > 0.

Since we already know that ⇢"n converges uniformly in t, with respect to the H
�1(⌦) norm, to ⇢, we

deduce from (4.5), (4.6) and (4.8) that

(4.9)  
n(t) ! ⇢(t) in H

�1(⌦), uniformly in t.

Using a Lions-Aubin compactness type result (see Lemma B.1), (4.4) and (4.9) yield

 
n ! ⇢ strongly in L

1((0, T );L1(⌦)).

In particular, the lower semicontinuity of the BV norm and (4.4) imply that ⇢ 2 L
1((0, T );BV (⌦)).

Finally, using (4.5) together with (4.6) and (4.8) we see that

k⇢"n(t)�  
n(t)kL2(⌦)  C"

1/4
n

,

so the strong convergence of  n also implies that

⇢
"n ! ⇢ strongly in L

1((0, T );L1(⌦)).

It remains to show that ⇢ is a characteristic function. We note that given t > 0, we can extract a
subsequence which converges a.e. in ⌦ and (4.7) implies that |{�  ⇢(t)  1� �} = 0 for all � > 0. We
deduce that ⇢(x, t) 2 {0, 1} a.e. x 2 ⌦ (for all t > 0).

Finally, we can pass to the limit in (1.12) to get the energy inequality (1.19): The lower-semicontinuity
of ⇥ allows us to pass to the limit in the dissipation and Proposition 1.4 gives (since F"(⇢in) = J"(⇢in)
when ⇢in is a characteristic function)

lim
"!0

F"(⇢in) = J0(⇢in).

The liminf property of Proposition C.1 and the strong convergence of ⇢" then yield:

lim inf
"!0

F"(⇢
") � lim inf

"!0
µ

ˆ
⌦
⇢
" log ⇢" dx+ lim inf

"!0
J"(⇢

")

� µ

ˆ
⌦
⇢ log ⇢ dx+ J0(⇢)

� J0(⇢).

This completes the proof of Proposition 4.1.
⇤

5. Convergence of the first variation

5.1. Convergence of the first variation and proof of Theorem 1.6. To prove Theorem 1.6,
the only remaining step now is to pass to the limit in equation (1.11) under the energy convergence
assumption (1.20) to derive (1.15). We recall (1.11) here:ˆ 1

0

ˆ
⌦
E

" · ⇠ dx dt =
ˆ 1

0

ˆ
⌦
"
�1
⇢
"r�" · ⇠ + µ⇢

"div ⇠ + p
"div ⇠ dx dt.

Note that when "⌧ 1, neither the term "
�1
⇢
"r�" nor the function p

" (or its gradient rp
") are bounded.

As explained in the introduction, it is the modified pressure, defined by p
" + "

�1
�

1
2� � �

"
�
⇢
" which is
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expected to converge to the pressure in the Hele-Shaw model with surface tension. We can also include
the term µ⇢

" in this modified pressure and normalize it to have zero average. We thus set:

(5.1) q
" = p

" + "
�1

✓
1

2�
� �

"

◆
⇢
" + µ⇢

" +m
"

where m
"(t) (constant in x) is chosen so that

(5.2)

ˆ
⌦
q
"(x, t) dx = 0 8t > 0.

After a straightforward computation, using the fact that ⇠ is tangential on @⌦, we can rewrite (1.11)
as

(5.3)

ˆ 1

0

ˆ
⌦
E

" · ⇠ dx dt =
ˆ 1

0

ˆ
⌦
�⇢"div

✓
"
�1

✓
1

2�
� �

"

◆
⇠

◆
+ q

"div ⇠ dx dt.

Passing to the limit in (5.3) is the objective of this section. The main challenge is with the middle term,
which we can write (with a slight abuse of notation since r⇢" /2 L

1):

(5.4)

ˆ 1

0

ˆ
⌦
"
�1

✓
1

2�
� �

"

◆
⇠ ·r⇢" dx dt,

which gives rise to the mean-curvature and the contact angle condition in the limit " ! 0. This term
is related to the first variation of the energy J" defined by (1.17). The key result of this section is
Proposition 5.7 below, which states that the assumption on the convergence of the energy (1.20) implies
the convergence of the first variation. Similar results have been proved for di↵erent energy functionals.
In particular, a classical result of Reshetnyak [25] gives that if �E" converges to �E strongly in L

1, then
the convergence of the perimeter

P (E") :=

ˆ
|r�E" | !

ˆ
|r�E |,

implies the convergence of its first variation toˆ
(div ⇠ � ⌫ ⌦ ⌫ : D⇠)|D�E |.

A similar result was proved by Luckhaus and Modica [18] for the Ginzburg-Landau functional

E
1
"
(⇢) =

ˆ
⌦
"|r⇢|2 + 1

"
(1� ⇢

2)2 dx

and by Laux and Otto [17] with

E
2
"
(⇢) = "

�1

ˆ
⇢(1�G" ? ⇢) dx

when G" is the Gaussian kernel of variance "2.

Crucially, both E
1
"
and E

2
"
are regularizations of the perimeter functional. In our case, we recall (see

Theorem 1.5) that the energy functional J" �-converges to the perimeter functional as well, together
with a boundary term. Furthermore, it is easy to check that (5.4) is the first variation of J"(⇢) for a
perturbation defined by

(5.5)

(
@s⇢s +r⇢s · ⇠ = 0

⇢s|s=0 = ⇢.
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Remark 5.1. Note that (5.5) preserves the constraint ⇢s  1 but not the condition
´
⇢s = 1 (unless

div ⇠ = 0). Alternatively, we could consider the first variation of J"(⇢) for a perturbation defined by

(5.6)

(
@s⇢s + div (⇢s⇠) = 0

⇢s|s=0 = ⇢.

which leads to the integral "�1
´
⌦ ⇢ ⇠r( 1

2� � �
") dx. The two integrals are the same when div ⇠ = 0, but

this second integral does not, in general, converge when " ! 0. This is due to the fact that (5.6) does
not preserve characteristic functions and the energy J" blows up in that case for "⌧ 1.

The key result of this section, which will allow us to complete the proof of Theorem 1.6 is the following:

Proposition 5.2. Given a sequence of functions ⇢" 2 L
1(⌦) satisfying 0  ⇢

"  1 and such that ⇢" ! ⇢

strongly in L
1(⌦) with ⇢ 2 BV(⌦; {0, 1}) and

(5.7) lim
"!0

J"(⇢
") = J0(⇢),

we have, for all ⇠ 2 C
1(⌦;Rd) satisfying ⇠ · n = 0 on @⌦,

(5.8)

����"
�1

ˆ
⌦
div

✓✓
1

2�
� �

"

◆
⇠

◆
⇢
"

����  CkD⇠kL1(⌦)J"(⇢
")

and

lim
"!0

"
�1

ˆ
⌦
div

✓✓
1

2�
� �

"

◆
⇠

◆
⇢
"

=
1

4�3/2

ˆ
⌦
[div ⇠ � ⌫ ⌦ ⌫ : D⇠] |r⇢|+min

✓
1,

2↵

↵+
p
��

◆ˆ
@⌦

[div ⇠ � n⌦ n : D⇠] ⇢ dHn�1(x)

�(5.9)

where ⌫ = r⇢

|r⇢| and n denotes the outward normal unit vector to the fixed boundary @⌦.

Note that we can replace (5.7) with the equivalent condition

lim
"!0

F"(⇢
") = F0(⇢).

Indeed a bound on J"(⇢") or F"(⇢") implies that ⇢ 2 BV(⌦; {0, 1}) (see the proof of Proposition 4.1)
so that F0(⇢) = J0(⇢) and

´
⇢
" log ⇢" ! 0.

Proceeding as in [17], we can check that this proposition imply the following time-dependent version:

Corollary 5.3. Given a sequence of functions ⇢"(x, t) 2 L
1(⌦⇥ (0, T )) satisfying 0  ⇢

"  1 and such
that ⇢" ! ⇢ in L

1(⌦⇥ (0, T )) and

lim
"!0

ˆ
T

0
J"(⇢

") dt =

ˆ
T

0
J0(⇢) dt,

we have, for all ⇠ 2 C
1(⌦⇥ (0, T );Rd) satisfying ⇠ · n = 0 on @⌦,

lim
"!0

"
�1

ˆ
T

0

ˆ
⌦
div

✓✓
1

2�
� �

"

◆
⇠

◆
⇢
"
dt

=
1

4�3/2

"ˆ
T

0

ˆ
⌦
[div ⇠ � ⌫ ⌦ ⌫ : D⇠] |r⇢| dt

+min

✓
1,

2↵

↵+
p
��

◆ˆ
T

0

ˆ
@⌦

[div ⇠ � n⌦ n : D⇠] ⇢ dHn�1(x) dt

#
.(5.10)

With this corollary, we can now complete the proof of Theorem 1.6.
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End of the proof of Theorem 1.6. We can now pass to the limit in (5.3) and thus complete the proof
of Theorem 1.6. Recall that E

"n converges weakly in L
2 and the convergence of the first term in the

right hand side follows from Corollary 5.3: we can use the Corollary here since Proposition 4.1 gives the
strong convergence of ⇢"n in L

1 and we are assuming condition (1.20). We thus only need to explain
why the pressure q

" converges.

Note that (5.3) and (5.8) imply

(5.11)

�����

ˆ
T

0

ˆ
⌦
q
"div ⇠ dx dt

�����  kE"kL2(⌦⇥(0,T ))k⇠kL2(⌦⇥(0,T )) + CJ"(⇢
")kD⇠kL1((0,T );L1(⌦)).

To obtain a bound on q
", we proceed as in [13]: For ' 2 C

s(⌦), let u solve
(
�u = '�

�
⌦ ' dx in ⌦;

ru · n = 0 on @⌦,

and take ⇠ = ru as a test function in (5.11) to get (using the a priori estimates of Lemma 3.1 and
classical Schauder estimates)

�����

ˆ
T

0

ˆ
⌦
q
"�u dx dt

�����  CkD2
ukL2((0,T );L1(⌦))  CkukL2((0,T );C2,s(⌦))  Ck'kL2((0,T );Cs(⌦))

for any s > 0. Using (5.2) we deduce
�����

ˆ
T

0

ˆ
⌦
q
"
' dx dt

�����  Ck'kL2((0,T );Cs(⌦)),

which implies that q
" is uniformly bounded in L

2((0, T ); (Cs(⌦))⇤) and has a weak-* limit q. We can
now pass to the limit in (5.3), for ⇠ smooth enough, and derive (1.15). ⇤

5.2. Proof of Proposition 5.2. As noted earlier, if we set �̄" = ��
", "̄ = "/

p
� and �̄ =

p
��, equation

(1.4) becomes (
�̄
" � "̄

2��̄" = ⇢ in ⌦;

↵�̄
" + �̄"̄r�̄" · n = 0 on @⌦.

It is therefore enough to prove the result when � = 1 and use the fact that

"
�1

ˆ
⌦
div

✓✓
1

2�
� �

"

◆
⇠

◆
⇢
" = "̄

�1 1

�3/2

ˆ
⌦
div

✓✓
1

2
� �̄"

◆
⇠

◆
⇢
"

to get the result when � > 0.

The proof of Proposition 5.2 makes use of the following lemma. We postpone the proof of the lemma,
which is elementary, to the end of this section.

Lemma 5.4. Given ⇢(x) such that 0  ⇢  1 and �" solution of (1.4) with � = 1, we have the following
formulas, for all ⇠ 2 C

1(⌦;Rd):
(i) If ↵ = 0 or � = 0 (Neumann or Dirichlet boundary condition for �") then

"
�1

ˆ
⌦
div ((1� 2�")⇠) ⇢ = "

�1

ˆ
⌦

⇥
(1� ⇢)(�")2 + ⇢(1� �

")2
⇤
div ⇠ dx+ "

ˆ
⌦
|r�"|2div ⇠ dx

� 2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx.(5.12)
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(ii) If � 6= 0, then

"
�1

ˆ
⌦
div ((1� 2�")⇠) ⇢ = "

�1

ˆ
⌦

⇥
(1� ⇢)(�")2 + ⇢(1� �

")2
⇤
div ⇠ dx

+ "

ˆ
⌦
|r�"|2div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2div ⇠ dHn�1(x)

� 2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx�

ˆ
@⌦

↵

�
�
"2
n⌦ n : D⇠ dHn�1(x).(5.13)

Idea of the proof of Proposition 5.2: While the proof of this Proposition 5.2 may appear long
and technical, the idea is quite simple. We recall that when ↵ = 0 (Neumann boundary condition), we
have (see (2.2)):

J"(⇢
") =

"
�1

2

ˆ
⌦
(1� ⇢

")(�")2 + ⇢
"(1� �

")2 dx+
"

2

ˆ
⌦
|r�"|2 dx

=
1

2

ˆ
⌦
u
2
"
+ v

2
"
dx,

where we denoted u" = "
�1/2

⇥
(1� ⇢

")(�")2 + ⇢
"(1� �

")2
⇤1/2

and v" = "
1/2|r�"|. The boundedness of

the energy implies that u" and v" are bounded in L
2 and in order to pass to the limit in the first two

terms in (5.12), we need to show the convergence of
´
[u2

"
+ v

2
"
]div ⇠ dx.

We now use the argument introduced in [21] (to prove the �-convergence of the energy), which is
itself an adaption of the classical Modica-Mortola approach: Using the fact that u" � min(�", 1 � �

")
and introducing the function F such that F 0(�") = 2min(�", 1� �

"), (already used in Proposition 4.1,
see (4.2)) we find:

(5.14) |rF (�")| = 2min(�", 1� �
")|r�"|  2u"v"  u

2
"
+ v

2
"
.

Since the limit ⇢ of ⇢" is a characteristic function and we know that �" ! ⇢, we have F (�") ! F (⇢) = 1
2⇢

in L
1 (see the proof of Proposition 4.1), and so

lim inf
"!0

ˆ
⌦
|rF (�")| dx � 1

2

ˆ
⌦
|r⇢|.

On the other hand, the assumption of convergence of the energy, (5.7), implies

lim
"!0

ˆ
⌦
u
2
"
+ v

2
"
dx = 2J0(⇢) =

1

2

ˆ
|r⇢|.

Together, these inequalities imply that there is equality in (5.14) when " ! 0, which means that
u
2
"
+ v

2
"
� |rF (�")| ! 0 in L

1 and that lim"!0

´
⌦ |rF (�")| dx = 1

2

´
|r⇢|. A Classical result (see

Proposition A.1) now implies that

lim
"!0

ˆ
⌦
[u2

"
+ v

2
"
]div ⇠ dx = lim

"!0

ˆ
⌦
|rF (�")|div ⇠ dx =

1

2

ˆ
⌦
|r⇢|div ⇠.

To pass to the limit in the last term in (5.12), we note that the (asymptotic) equality in Young’s
inequality in (5.14) also implies that u" � v" ! 0 in L

2 and so 2"�1|r�"|2 = 2v2
"
⇠ u

2
"
+ v

2
"
⇠ |rF (�")|

which proves the convergence of 2"�1|r�"|2. A simple (if somewhat technical) result (see Proposition
A.3) then shows that the convergence of "�1|r�"|2 implies that of "�1r�" ⌦r�".

Additional care will be needed to take care of the boundary condition when ↵ 6= 0, which is why
we will first give the detailed proof for Neumann boundary conditions, then Dirichlet conditions (which
requires extending �" to Rd by 0) and finally general Robin boundary conditions (which combine the
Neumann and Dirichlet case).
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Proof of Proposition 5.2. We note that (5.13) together with (2.1) immediately imply (5.8).

The di�cult part of the proof is, of course, to establish the limit (5.9), and we will first give the
proof in the simpler case of Neumann boundary conditions (↵ = 0). We have to pass to the limit in
(5.12). As above, we use the function F such that F 0(�") = 2min(�", 1� �

") (see (4.2)) and note that

F
0(�")  2

⇥
(1� ⇢)(�")2 + ⇢(1� �

")2
⇤1/2

when 0  ⇢  1. We thus have |rF (�")|  2|r�"|
⇥
(1� ⇢

")(�")2 + ⇢
"(1� �

")2
⇤1/2

and so

(5.15) |rF (�")|  2u"v"  u
2
"
+ v

2
"
� (u" � v")

2
,

where

u" := "
�1/2

⇥
(1� ⇢

")(�")2 + ⇢
"(1� �

")2
⇤1/2

and v" = "
1/2|r�"|.

Next, the strong convergence of ⇢" and (4.6) imply that F (�") converges to F (⇢) strongly in L
1. Since

⇢ is a characteristic function and F (0) = 0, F (1) = 1/2, we deduce F (�") ! F (⇢) = 1
2⇢ strongly in L

1

and so

lim inf
"!0

ˆ
⌦
|rF (�")| dx � 1

2

ˆ
⌦
|r⇢|.

On the other hand, the convergence assumption (5.7) impliesˆ
⌦
u
2
"
+ v

2
"
dx = 2J"(⇢

") ! 1

2

ˆ
⌦
|r⇢|.

Inequality (5.15) thus implies:

u
2
"
+ v

2
"
� |rF (�")| ! 0 in L

1(⌦),(5.16) ˆ
⌦
|rF (�")| dx ! 1

2

ˆ
⌦
|r⇢|,(5.17)

u" � v" ! 0 in L
2(⌦).(5.18)

These facts allow us to pass to the limit in the first two terms of (5.12). Indeed, using first the definition
of u" and v

", then the limit (5.16) and finally (5.17) (together with Proposition A.1), we can write:

lim
"!0

"
�1

ˆ
⌦

⇥
(1� ⇢

")(�")2 + ⇢
"(1� �

")2
⇤
div ⇠ dx+ "

ˆ
⌦
|r�"|2div ⇠ dx = lim

"!0

ˆ
⌦
(u2

"
+ v

2
"
)div ⇠ dx

= lim
"!0

ˆ
⌦
|rF (�")|div ⇠ dx

=
1

2

ˆ
⌦
div ⇠|r⇢|.(5.19)

Furthermore, (5.16) and (5.18) yields:

(5.20) 2v2
"
� |rF (�")| ! 0 in L

1(⌦),

which we use to pass to the limit in the term involving r�" ⌦r�". Indeed, we can write

2"

ˆ
⌦
@i�

"
@j�

"
@i⇠j dx = 2"

ˆ
⌦

@i�
"

|r�"|
@j�

"

|r�"|@i⇠j |r�
"|2dx =

ˆ
⌦

@i�
"

|r�"|
@j�

"

|r�"|@i⇠j 2v
2
"
dx,

and since @i�
"

|r�"|
@j�

"

|r�"|@i⇠j is bounded in L
1, (5.20) implies that

lim
"!0

2"

ˆ
⌦
@i�

"
@j�

"
@i⇠j dx = lim

"!0

ˆ
⌦

@i�
"

|r�"|
@j�

"

|r�"|@i⇠j |rF (�")|dx.
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Using the fact that F 0(�") � 0, we can also write

(5.21) lim
"!0

2"

ˆ
⌦
@i�

"
@j�

"
@i⇠j dx = lim

"!0

ˆ
⌦

@iF (�")

|rF (�")|
@jF (�")

|rF (�")|@i⇠j |rF (�")|dx

and using (5.17) and Proposition A.3 we deduce

(5.22) lim
"!0

2"

ˆ
⌦
@i�

"
@j�

"
@i⇠j dx =

1

2

ˆ
⌦

@i⇢

|r⇢|
@j⇢

|r⇢|@i⇠j |r⇢|.

Lastly (5.12) together with (5.19) and (5.22) yields

lim
"!0

�"�1

ˆ
⌦
(1� 2�")⇠ ·r⇢ =

1

2

ˆ
⌦
div ⇠|r⇢|� 1

2

ˆ
⌦

@i⇢

|r⇢|
@j⇢

|r⇢|@i⇠j |r⇢|,

and we obtain (5.9) in the case of Neumann boundary condition ↵ = 0 (and when � = 1)

For the case of Dirichlet conditions (� = 0), we proceed similarly, but we first extend �
" to Rd

by setting it equal to 0 in Rd \ ⌦. Denoting �̄" this extension, we find (using inequality (5.15) and the
Dirichlet boundary condition for �"):ˆ

Rd

|rF (�̄")| dx =

ˆ
⌦
|rF (�")| dx 

ˆ
⌦
u
2
"
+ v

2
"
dx = 2J"(⇢

").

The lower semicontinuity of the BV norm and assumption (5.7) give

lim inf
"!0

ˆ
Rd

|r(F (�̄")| dx �
ˆ
Rd

|rF (⇢̄)| = 1

2

ˆ
Rd

|r⇢̄| = lim
"!0

2J"(⇢
"),

where ⇢̄ denotes the extension of ⇢ to Rd by 0. Indeed, when � = 0 (and � = 1), we have

J0(⇢) =
1

4

ˆ
⌦
|r⇢|+

ˆ
@⌦
⇢(x)dHn�1(x)

�
=

1

4

ˆ
Rd

|r⇢̄|.

We can thus proceed as before to show that

u
2
"
+ v

2
"
� |rF (�")| ! 0 in L

1(⌦),ˆ
Rd

|rF (�̄")| dx ! 1

2

ˆ
Rd

|r⇢̄|,

u" � v" ! 0 in L
2(⌦).

These are the same convergences as (5.16)-(5.18), except for (5.17) which involves the extension �̄". We
can now write:

lim
"!0

"
�1

ˆ
⌦

⇥
(1� ⇢

")(�")2 + ⇢
"(1� �

")2
⇤
div ⇠ dx+ "

ˆ
⌦
|r�"|2div ⇠ dx

= lim
"!0

ˆ
⌦
div ⇠(u2

"
+ v

2
"
) dx

= lim
"!0

ˆ
⌦
div ⇠|rF (�")| dx

= lim
"!0

ˆ
Rd

div ⇠|rF (�̄")| dx

=
1

2

ˆ
Rd

div ⇠|r⇢̄| = 1

2

✓ˆ
⌦
div ⇠|r⇢|+

ˆ
@⌦
⇢ div ⇠ dHn�1(x)

◆
.
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Similarly, we can show (as before)

2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx �! 1

2

ˆ
Rd

✓
r⇢̄
|r⇢̄| ⌦

r⇢̄
|r⇢̄| : D⇠

◆
|r⇢̄|,

where (using (A.2))

ˆ
Rd

✓
r⇢̄
|r⇢̄| ⌦

r⇢̄
|r⇢̄| : D⇠

◆
|r⇢̄| =

ˆ
⌦
(⌫ ⌦ ⌫ : D⇠) |r⇢|+

ˆ
@⌦

(n⌦ n : D⇠) ⇢ dHn�1(x).

This gives the result when � = 0 (Dirichlet boundary conditions).

For the case of Robin conditions, we need to combine the two cases above. Let ' : Rd ! [0, 1] be
a continuous function such that

(5.23)

ˆ
@⌦

|⇢� '| dHn�1  �.

Introducing the function G(t) := ↵

�
t
2 � F (t), we then write:

ˆ
Rd

|rF (�")|' dx+

ˆ
@⌦

G(�")'dHn�1 =

ˆ
⌦
|rF (�")|' dx+

ˆ
@⌦

F (�")'dHn�1 +

ˆ
@⌦

G(�")'dHn�1

=

ˆ
⌦
|rF (�")|' dx+

ˆ
@⌦

↵

�
|�"|2'dHn�1

,

which leads toˆ
⌦
|rF (�")|(1� ') dx+

ˆ
Rd

|rF (�")|' dx+

ˆ
@⌦

G(�")'dHn�1 +

ˆ
@⌦

↵

�
|�"|2(1� ')dHn�1

=

ˆ
⌦
|rF (�")| dx+

ˆ
@⌦

↵

�
|�"|2dHn�1

.(5.24)

The right hand side satisfies (with the same notations as above):

ˆ
⌦
|rF (�")| dx+

ˆ
@⌦

↵

�
|�"|2dHn�1 

ˆ
⌦
u
2
"
+ v

2
"
� (u" � v")

2
dx+

ˆ
@⌦

↵

�
|�"|2dHn�1

= 2J"(⇢
")�

ˆ
⌦
(u" � v")

2
dx,(5.25)

so in order to proceed as before, we need to show that the lim inf of the left hand side is greater than
2J0(⇢). For this, we notice that the function

G(t) =
↵

�
t
2 � F (t) =

(
(↵
�
� 1)t2 for 0  t  1/2;

(↵
�
+ 1)t2 � 2t+ 1

2 for 1/2  t  1,

satisfies G(t) � min{0, ↵

↵+�
� 1

2} = min{0, ↵��

2(↵+�)} for all t 2 [0, 1]. (This can be checked by a direct

computation. We can also note that F (t)  t
2 (see (4.2)) and so G(t) � 0 for all t whenever ↵ � �. When

� > ↵, t 7! G(t) is decreasing on [0, 1/2] so the minimum value of G is attained at t = �

↵+�
2 (1/2, 1).

We can then compute that G( �

↵+�
) = ↵��

2(↵+�) < 0).
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Hence we can write

lim inf
"!0

ˆ
⌦
|rF (�")|(1� ') dx+

ˆ
Rd

|rF (�")|' dx+

ˆ
@⌦

G(�")'dHn�1 +

ˆ
@⌦

↵

�
|�"|2(1� ')dHn�1

�
ˆ
⌦
|rF (⇢)|(1� ') dx+

ˆ
Rd

|rF (⇢̄)|' dx+

ˆ
@⌦

min

⇢
0,

↵

↵+ �
� 1

2

�
'dHn�1 + 0

�
ˆ
⌦

1

2
|r⇢| dx+

ˆ
@⌦

1

2
⇢' dHn�1 +

ˆ
@⌦

min

⇢
0,

↵

↵+ �
� 1

2

�
'dHn�1

�
ˆ
⌦

1

2
|r⇢| dx+

ˆ
@⌦

min

⇢
1

2
,

↵

↵+ �

�
⇢dHn�1 � C�

= 2J0(⇢)� C�,

(5.26)

where we used the fact that ' is an approximation of ⇢ on @⌦, see (5.23). Going back to (5.24), we see
that we just showed that

lim inf
"!0

ˆ
⌦
|rF (�")| dx+

ˆ
@⌦

↵

�
|�"|2dHn�1 � 2J0(⇢)� C�,

and since this holds for any � > 0, we get

lim inf
"!0

ˆ
⌦
|rF (�")| dx+

ˆ
@⌦

↵

�
|�"|2dHn�1 � 2J0(⇢).

We can now conclude as in the previous cases: Using (5.25) and the assumption that lim"!0 J"(⇢") =
J0(⇢) to conclude that

u
2
"
+ v

2
"
� |rF (�")| ! 0 in L

1(⌦),(5.27)

u" � v" ! 0 in L
2(⌦).(5.28)

Furthermore, using (5.26), we also get

(5.29)

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

lim sup
"!0

����
ˆ
⌦
|rF (�")|(1� ') dx� 1

2

ˆ
⌦
|r⇢|(1� ')

����  C�,

lim sup
"!0

����
ˆ
Rd

|rF (�")|' dx� 1

2

ˆ
Rd

|r⇢̄|'
����  C�,

lim sup
"!0

����
ˆ
@⌦

G(�")'dHn�1 �
ˆ
@⌦

min

⇢
0,

↵

↵+ �
� 1

2

�
'dHn�1

����  C�,

lim sup
"!0

ˆ
@⌦

↵

�
|�"|2(1� ')dHn�1  C�.

We then write (using (5.27))

lim
"!0

"
�1

ˆ
⌦
[(1� ⇢

")(�")2 + ⇢
"(1� �

")2]div ⇠ dx+ "

ˆ
⌦
|r�"|2div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2div ⇠ dHn�1(x)

= lim
"!0

ˆ
⌦
(u2

"
+ v

2
"
)div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2div ⇠ dHn�1(x)

= lim
"!0

ˆ
⌦
|rF (�")|div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2div ⇠ dHn�1(x).

(5.30)
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Using the same function ' as above, we decompose the integral in (5.30) as follows:

I" :=

ˆ
⌦
|rF (�")|div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2div ⇠ dHn�1(x)

=

ˆ
⌦
|rF (�")|'div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2'div ⇠ dHn�1(x)

+

ˆ
⌦
|rF (�")|(1� ')div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2(1� ')div ⇠ dHn�1(x)

=

ˆ
Rd

|rF (�")|'div ⇠ dx+

ˆ
@⌦

G(�")'div ⇠ dHn�1(x)

+

ˆ
⌦
|rF (�")|(1� ')div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2(1� ')div ⇠ dHn�1(x).(5.31)

Hence (note that the inequalities (5.29) can be localized to include the div ⇠, see Remark A.2)

lim sup
"!0

����
ˆ
⌦
I" �

1

2

ˆ
⌦
|r⇢|(1� ')div ⇠ � 1

2

ˆ
Rd

|r⇢̄|'div ⇠ �
ˆ
@⌦

min

⇢
0,

↵

↵+ �
� 1

2

�
'div ⇠dHn�1

����  C�,

which implies (using our particular choice of ', see (5.23)):

lim sup
"!0

����I" �
1

2

ˆ
⌦
|r⇢|div ⇠ �

ˆ
@⌦

min

⇢
1

2
,

↵

↵+ �

�
⇢ div ⇠dHn�1

����  C�.

Since the left hand side is now independent of ', we can take � ! 0 and use (5.30) to get

lim
"!0

"
�1

ˆ
⌦
[(1� ⇢

")(�")2 + ⇢
"(1� �

")2]div ⇠ dx+ "

ˆ
⌦
|r�"|2div ⇠ dx+

ˆ
@⌦

↵

�
|�"|2div ⇠ dHn�1(x)

=
1

2

ˆ
⌦
|r⇢|div ⇠ +

ˆ
@⌦

min

⇢
1

2
,

↵

↵+ �

�
⇢ div ⇠dHn�1

.

It then only remains to show that

lim
"!0

2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx+

ˆ
@⌦

↵

�
|�"|2n⌦ n : D⇠ dHn�1(x)

=
1

2

ˆ
⌦
⌫ ⌦ ⌫ : D⇠|r⇢|+min

✓
1

2
,

↵

↵+ �

◆ˆ
@⌦

n⌦ n : D⇠ ⇢ dHn�1(x).

This can be proven by combining the arguments above with how that term was handled in the case of
Dirichlet boundary conditions. Indeed, using (5.27)-(5.28) and (A.2), we can write (see the derivation
of (5.21) above)

2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx ⇠

ˆ
⌦

rF (�")

|rF (�")| ⌦
rF (�")

|rF (�")| : D⇠ |rF (�")|dx

=

ˆ
⌦

rF (�")

|rF (�")| ⌦
rF (�")

|rF (�")| : D⇠ |rF (�")| (1� ') dx

+

ˆ
Rd

rF (�")

|rF (�")|
⌦ rF (�")

|rF (�")|
: D⇠ |rF (�")|' dx

�
ˆ
@⌦

F (�")n⌦ n : D⇠ ' dHn�1(x),



DENSITY-CONSTRAINED CHEMOTAXIS AND HELE-SHAW FLOW 23

and so

2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx+

ˆ
@⌦

↵

�
|�"|2n⌦ n : D⇠ dHn�1(x)

⇠
ˆ
⌦

rF (�")

|rF (�")| ⌦
rF (�")

|rF (�")| : D⇠ |rF (�")| (1� ') dx+

ˆ
Rd

rF (�")

|rF (�")|
⌦ rF (�")

|rF (�")|
: D⇠ |rF (�")|' dx

+

ˆ
@⌦

G(�")n⌦ n : D⇠ ' dHn�1(x) +

ˆ
@⌦

↵

�
|�"|2n⌦ n : D⇠ (1� ') dHn�1(x).

This term has the same structure as (5.31) and we can thus proceed as above, using (5.29) and Corollary
A.4 to show that

lim
"!0

2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx+

ˆ
@⌦

↵

�
|�"|2n⌦ n : D⇠ dHn�1(x)

=
1

2

ˆ
⌦

r⇢
|r⇢| ⌦

r⇢
|r⇢| : D⇠ |r⇢| (1� ') dx+

1

2

ˆ
Rd

r⇢̄
|r⇢̄| ⌦

r⇢̄
|r⇢̄| : D⇠ |r⇢̄|' dx

+

ˆ
@⌦

min

⇢
0,

↵

↵+ �
� 1

2

�
n⌦ n : D⇠ ' dHn�1(x) +O(�)

=
1

2

ˆ
⌦

r⇢
|r⇢| ⌦

r⇢
|r⇢| : D⇠ |r⇢| dx

+

ˆ
@⌦

1

2
n⌦ n : D⇠ ⇢' dHn�1(x) +

ˆ
@⌦

min

⇢
0,

↵

↵+ �
� 1

2

�
n⌦ n : D⇠ ' dHn�1(x) +O(�),

and we conclude thanks to (5.23) by letting � ! 0.
⇤

Proof of Lemma 5.4. We write (using (1.4)):

"
�1

ˆ
⌦
div ((1� 2�")⇠) ⇢ = "

�1

ˆ
⌦
⇢(1� 2�")div ⇠ dx� 2"�1

ˆ
⌦
⇢r�" · ⇠ dx

= "
�1

ˆ
⌦
⇢(1� 2�")div ⇠ dx� 2"�1

ˆ
⌦
�
"r�" · ⇠ dx+ 2"

ˆ
⌦
��"r�" · ⇠ dx

= "
�1

ˆ
⌦
⇢(1� 2�")div ⇠ dx+ "

�1

ˆ
⌦
�
"2div ⇠ dx+ 2"

ˆ
⌦
��"r�" · ⇠ dx

= "
�1

ˆ
⌦
[⇢� 2⇢�" + (�")2]div ⇠ dx+ 2"

ˆ
⌦
��"r�" · ⇠ dx.

For the first term, we write ⇢ � 2⇢�" + (�")2 = (1 � ⇢)�"2 + ⇢(1 � �
")2. For the second term, we note

thatˆ
⌦
��"r�" · ⇠ dx = �

ˆ
⌦
@i�

"
@ij�

"
⇠j dx�

ˆ
⌦
@i�

"
@j�

"
@i⇠j dx+

ˆ
@⌦
@i�

"
@j�

"
⇠j⌫i dHn�1(x)

= �
ˆ
⌦
r
✓
|r�"|2

2

◆
· ⇠ dx�

ˆ
⌦
r�" ⌦r�" : D⇠ dx+

ˆ
@⌦

r�" · nr�" · ⇠ dHn�1(x)

=
1

2

ˆ
⌦
|r�"|2div ⇠ dx�

ˆ
⌦
r�" ⌦r�" : D⇠ dx+

ˆ
@⌦

r�" · nr�" · ⇠ dHn�1(x).
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We deduce:

"
�1

ˆ
⌦
div ((1� 2�")⇠) ⇢ = "

�1

ˆ
⌦
[(1� ⇢)�"2 + ⇢(1� �

")2]div ⇠ dx+ "

ˆ
⌦
|r�"|2div ⇠ dx

� 2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx+ 2"

ˆ
@⌦

r�" · nr�" · ⇠ dHn�1(x).

When ↵ = 0, we have r�" · n = 0 on @⌦ so the last term vanishes. If � = 0, then �" = 0 on @⌦ and
since ⇠ is tangential to @⌦, we have r�" · ⇠ = 0 on @⌦ and the last term vanish also. In both cases, we
get formula (5.12).

In the case of general Robin boundary conditions (with in particular � 6= 0), we can write the last
term as:

2"

ˆ
@⌦

r�" · nr�" · ⇠ dHn�1(x) = �2
↵

�

ˆ
@⌦
�
"r�" · ⇠ dHn�1(x)

= �↵
�

ˆ
@⌦

r|�"|2 · ⇠ dHn�1(x).

Formula (1.16) applied to ⌃ = @⌦ (since ⇠ · n = 0) givesˆ
@⌦

div (�"2⇠) dHn�1(x) =

ˆ
@⌦

n⌦ n : D((�")2⇠) dHn�1(x)

=

ˆ
@⌦

(�")2n⌦ n : D⇠ dHn�1(x).

Writing div (�"2⇠) = r(|�"|2) · ⇠ + |�"|2div ⇠, we deduce

2"

ˆ
@⌦

r�" · nr�" · ⇠ dHn�1(x) = �↵
�

ˆ
@⌦

|�"|2n⌦ n : D⇠ dHn�1(x) +
↵

�

ˆ
@⌦

|�"|2div ⇠ dHn�1(x),

and so

"
�1

ˆ
⌦
div ((1� 2�")⇠)⇢ = "

�1

ˆ
⌦
[(1� ⇢)(�")2 + ⇢(1� �

")2]div ⇠ dx+ "

ˆ
⌦
|r�"|2div ⇠ dx

+
↵

�

ˆ
@⌦

|�"|2div ⇠ dHn�1(x)� 2"

ˆ
⌦
r�" ⌦r�" : D⇠ dx

� ↵

�

ˆ
@⌦
�
"2
n⌦ n : D⇠ dHn�1(x),

which is (5.13). ⇤

6. JKO Scheme and convergence of the discrete time approximation

The main result of this paper can also be proved at the level of the discrete time approximation
constructed in [15]. Such a result can be relevant to some numerical applications so we will state it here.

We briefly recall the construction of the JKO scheme. For simplicity, we assume that
´
⌦ ⇢in(x) dx = 1.

We denote by P(⌦) the set of probability measures on ⌦, and we define the domain of densities as

(6.1) K := {⇢ 2 P(⌦), ⇢(x)  1 a.e. in ⌦} .
In particular all ⇢ 2 K are absolutely continuous with respect to the Lebesgue measure and we can
identify the measure with its density. The set P(⌦) is equipped with the usual Wasserstein distance,
defined by

W
2
2 (⇢1, ⇢2) := inf

⇡2⇧(⇢1,⇢2)

ˆ
⌦⇥⌦

|x� y|2d⇡(x, y),
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where ⇧(⇢1, ⇢2) denotes the set of all probability measures ⇡ 2 P(⌦⇥ ⌦) with marginals ⇢1 and ⇢2.

The idea of the JKO scheme is to construct a time-discrete approximation of the solution by successive
applications of a minimization problem: For a given initial data ⇢in 2 K, we fix a time step ⌧ > 0
(destined to go to zero) and define the sequence ⇢n by:

(6.2) ⇢
0 = ⇢in, ⇢

n 2 argmin

⇢
1

2⌧
W

2
2 (⇢, ⇢

n�1) + F"(⇢) ; ⇢ 2 K

�
8n � 1.

The fact that this problem has a minimizer is proved in [15, Proposition 2.1]. Furthermore, if Tn

is the unique optimal transport map from ⇢
n to ⇢

n�1 (that is T
n#⇢n = ⇢

n�1 and W
2
2 (⇢

n
, ⇢

n�1) =´
⌦ |x� T

n(x)|2d⇢n), we define the velocity

v
n(x) :=

x� T
n(x)

⌧

and the pressure variable p
n(x) such that

⇢
n
v
n = "

�1
⇢
nr(�"n � p

n), p
n 2 H

1
⇢n ,

with �"n solution of (1.4) with ⇢n. The existence of pn is shown in [15, Proposition 2.6].

We can then define the piecewise constant function ⇢⌧,", p⌧," : [0, T ] 7! P (⌦) by

(6.3)
⇢
⌧,"(t) := ⇢

n+1 for all t 2 [n⌧, (n+ 1)⌧),
p
⌧,"(t) := p

n+1 for all t 2 [n⌧, (n+ 1)⌧).

The main result of [15] is the convergence of (⇢⌧,", p⌧,") when ⌧ ! 0 with " > 0 fixed to a weak
solution of (1.3)-(1.4). The proof of Theorem 1.6 can easily be adapted to establish the convergence of
(⇢⌧,", p⌧,") to a weak solution of (1.13) when ⌧ and " both go to zero:

Theorem 6.1 (Convergence when ", ⌧ ! 0). Given T > 0, consider an initial data ⇢in = �Ein 2
BV (⌦; {0, 1}) and µ � 0. Consider a subsequence ("n, ⌧n) with max{"n, ⌧n} ! 0. Then along a
subsequence (still denoted ("n, ⌧n)), the discrete time approximation ⇢

"n,⌧n converges to ⇢ strongly in
L
1((0, T );L1(⌦)) and q

"n,⌧n converges to q weakly-⇤ in L
2((0, T ); (Cs(⌦))⇤) (for any s > 0).

Furthermore, if the following energy convergence assumption holds:

lim
n!1

ˆ
T

0
J"n(⇢

"n,⌧n(t)) dt =

ˆ
T

0
J0(⇢(t)) dt,

then (⇢, q) is a weak solution of (1.13) in the sense of Definition 1.3 with initial condition �Ein and
contact angle

� = �min

✓
1,

2↵

↵+
p
��

◆
.

We will not provide the details of the proof of this result which is a straightforward adaption of
the arguments presented in this paper to prove Theorem 1.6. The key is to recall that the discrete
approximations ⇢",⌧ and p

",⌧ satisfy some approximation of equations (1.10)-(1.11). Indeed, in addition
to ⇢",⌧ and p

",⌧ , we can define the piecewise constant interpolations ⇢⌧,"(x, t), p⌧,"(x, t), v⌧,"(x, t) and
�
⌧,"(x, t) by

(6.4)
v
⌧,"(t) := v

n+1 for all t 2 [n⌧, (n+ 1)⌧),

�
⌧,"(t) := �

"(n+1) for all t 2 [n⌧, (n+ 1)⌧).

and the momentum
E

",⌧ (x, t) = ⇢
⌧,"(x, t)v⌧,"(x, t).

Then we have (see [15]):
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Proposition 6.2. For any ⇣ 2 C
1
c
(⌦⇥ [0, T )) and N such that N⌧ � T , there holds:ˆ 1

0

ˆ
⌦
E

",⌧ ·r⇣ dx dt = �
ˆ
⌦
⇢in(x)⇣(x, 0) dx�

ˆ 1

0

ˆ
⌦
⇢
",⌧ (x, t)@t⇣(x, t) dx dt

+O
 
kD2

⇣kL1(⌦⇥R+)

NX

k=0

W
2
2 (⇢

n

"
, ⇢

n�1
"

) + ⌧k@t⇣k1 + ⌧Tk@2
t
⇣k1

!
.(6.5)

For any ⇠ 2 C
1(⌦̄⇥ (0, T );Rd) satisfying ⇠ · n = 0 on @⌦, there holds:

(6.6)

ˆ 1

0

ˆ
⌦
E

",⌧ · ⇠ dx dt =
ˆ 1

0

ˆ
⌦
("�1

⇢
",⌧r�",⌧ · ⇠ + µ⇢

",⌧div ⇠ + p
",⌧div ⇠) dx dt.

Passing to the limit in the continuity equation (6.5) can be done exactly as in the case ⌧ ! 0 with
" > 0 fixed (see [15]), while equation (6.6) is exactly the same as our equation (1.11), so we can adapt
the proof presented in Section 5 of the present paper to pass to the limit in (6.6) and prove Theorem 6.1.

Appendix A. A few facts about BV functions

We recall here some essential facts about BV functions which we use in our proof (we refer the reader
to [1] or [7] for details). First we have the classical result:

Proposition A.1. Let fk be a sequence of functions such that fk ! f in L
1(⌦) when k ! 1. Then

lim inf
k!1

ˆ
⌦
⇣(x)|rfk| �

ˆ
⌦
⇣(x)|rf |

for all ⇣ 2 C(⌦) with ⇣ � 0. Furthermore, ifˆ
⌦
|rfk| !

ˆ
⌦
|rf |,

then

lim
k!1

ˆ
⌦
⇣(x)|rfk| =

ˆ
⌦
⇣(x)|rf | for all ⇣ 2 C(⌦).

Remark A.2. If instead of assuming
´
⌦ |rfk| !

´
⌦ |rf |, we only assume that

´
⌦ '(x)|rfk| !´

⌦ '(x)|rf | for some ' 2 C(⌦), ' � 0, then we have

(A.1) lim
k!1

ˆ
⌦
⇣(x)'(x)|rfk| =

ˆ
⌦
⇣(x)'(x)|rf | for all ⇣ 2 C(⌦).

Indeed, since we can split ⇣ into its positive and negative part, we can assume that ⇣ � 0 and after
dividing by k⇣k1, we can assume that 0  ⇣(x)  1. We then have

0 = lim
k!1

ˆ
⌦
'(x)|rfk|�

ˆ
⌦
'(x)|rf |

= lim
k!1

✓ˆ
⌦
⇣(x)'(x)|rfk|+

ˆ
⌦
(1� ⇣(x))'(x)|rfk|�

ˆ
⌦
'(x)|rfk|

◆

� lim inf
k!1

✓ˆ
⌦
⇣(x)'(x)|rfk|�

ˆ
⌦
⇣(x)'(x)|rf |

◆

+ lim inf
k!1

✓ˆ
⌦
(1� ⇣(x))'(x)|rfk|�

ˆ
⌦
(1� ⇣(x))'(x)|rf |

◆
.

Since these two lim inf are non-negative, they must both be zero. In particular we have lim infk!1
´
⌦ ⇣(x)'(x)|rfk| =´

⌦ ⇣(x)'(x)|rf | and since this is true along any subsequence as well, (A.1) follows. Finally, we point
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out that if we only assume that

lim sup
k!1

ˆ
⌦
'(x)|rfk|�

ˆ
⌦
'(x)|rf |  C�

then the same argument implies

lim sup
k!1

ˆ
⌦
⇣(x)'(x)|rfk|�

ˆ
⌦
⇣(x)'(x)|rf |  C�

for all ⇣ 2 C(⌦).

When the domain ⌦ has Lipschitz boundary any function f 2 BV(⌦) has a well defined trace f |@⌦ 2
L
1(@⌦,Hd�1) and the extension f̄ of f to Rd by 0 belongs to BV(Rd). Viewing rf as a measure on Rd

concentrated on ⌦, we have

rf̄ = rf + f nHd�1|@⌦
and so ˆ

Rd

|rf̄ | =
ˆ
⌦
|rf |+

ˆ
@⌦

|f |dHd�1

and (for all continuous function h : ⌦⇥ Sd�1 ! R)

(A.2)

ˆ
Rd

h

✓
x,

rf̄

|rf̄ |

◆
|rf̄ | =

ˆ
⌦
h

✓
x,

rf

|rf |

◆
|rf |+

ˆ
@⌦

h(x, n)|f |dHd�1
.

We also need the following particular case of Reshetnyak’s continuity theorem (see [1] Theorem 2.39)

Proposition A.3. Let fk be a sequence of function such that fk ! f in L
1(⌦) and

´
⌦ |rfk| dx !´

⌦ |rf |. Then

lim
k!1

ˆ
⌦
⇣(x)

@ifk

|rfk|
@jfk

|rfk|
|rfk| =

ˆ
⌦
⇣(x)

@if

|rf |
@jf

|rf | |rf |

for all ⇣ 2 C(⌦).

A proof of this result can be found for example in [1]. We provide below a short proof in our
particular case, using arguments which can be found in [27]. This proof can be adapted to give the
following localization of Reshetnyak’s theorem:

Corollary A.4. Let fk be a sequence of function such that fk ! f in L
1(⌦) and

´
⌦ '(x)|rfk| dx !´

⌦ '(x)|rf | for some ' 2 C
1(⌦), ' � 0. Then we have

lim
k!1

ˆ
⌦
⇣(x)'(x)

@ifk

|rfk|
@jfk

|rfk|
|rfk| =

ˆ
⌦
⇣(x)'(x)

@if

|rf |
@jf

|rf | |rf |

for all ⇣ 2 C
1(⌦).

Proof of Proposition A.3. We denote ⌫k
i
= @ifk

|rfk| 2 L
1(⌦, |rfk|) (the Radon-Nikodym derivative of @ifk

with respect to the measure |rfk|). Similarly, we note ⌫i =
@if

|rf | . First, we note that it is enough to
prove that under the conditions of the proposition we have

(A.3) lim
k!1

ˆ
⌦
⇣(x)|⌫k

i
|2|rfk| =

ˆ
⌦
⇣(x)|⌫i|2|rf | i = 1, . . . , n

for all ⇣ 2 C(⌦) with ⇣ � 0 since we can write ⌫i⌫j =
1
2 [(⌫i + ⌫j)2 � ⌫

2
i
� ⌫

2
j
].
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Given a vector field g = (g1, . . . gn) 2 C
1
0 (⌦,Rd) such that |g(x)|  1 for all x, we write

����
ˆ
⌦
⇣(x)|⌫k

i
|2|rfk|�

ˆ
⌦
⇣(x)|⌫i|2|rf |

���� 
����
ˆ
⌦
⇣(x)|⌫k

i
|2|rfk|�

ˆ
⌦
⇣(x)|gi|2|rfk|

����

+

����
ˆ
⌦
⇣(x)|gi|2|rfk|�

ˆ
⌦
⇣(x)|gi|2|rf |

����

+

����
ˆ
⌦
⇣(x)|gi|2|rf |�

ˆ
⌦
⇣(x)|⌫i|2|rf |

���� .

Since |gi|, |⌫i|  1, we have
��|gi|2 � |⌫i|2

�� = |gi � ⌫i| |gi + ⌫i|  2|gi � ⌫i|

and so for any � > 0 there exists C� such that
��|gi|2 � |⌫i|2

��  � + C�(gi � ⌫i)
2  � + C�|g � ⌫|2  � + 2C�(1� g · ⌫)

where we used the fact that |g|  1 and |⌫| = 1. We deduce
����
ˆ
⌦
⇣(x)|⌫k

i
|2|rfk|�

ˆ
⌦
⇣(x)|⌫i|2|rf |

����  �k⇣k1(|rfk|(⌦) + |rf |(⌦)|)

+ 2C�

ˆ
⌦
⇣(x)(1� g · ⌫k)|rfk|+ 2C�

ˆ
⌦
⇣(x)(1� g · ⌫)|rf |

+

����
ˆ
⌦
⇣(x)|gi|2|rfk|�

ˆ
⌦
⇣(x)|gi|2|rf |

���� .

We now pass to the limit k ! 1. We note that the last term goes to zero thanks to Proposition A.1
and we can pass to the limit in the other terms using Proposition A.1 and the fact thatˆ

⌦
⇣(x)g · ⌫k|rfk| =

ˆ
⌦
⇣(x)g ·rfk = �

ˆ
⌦
div (⇣g)fk ! �

ˆ
⌦
div (⇣g)f.

We deduce

lim sup
k!1

����
ˆ
⌦
⇣(x)|⌫k

i
|2|rfk|�

ˆ
⌦
⇣(x)|⌫i|2|rf |

����  2�k⇣k1|rf |(⌦)|+ 4C�k⇣k1
ˆ
⌦
(1� g · ⌫)|rf |

 2�k⇣k1|rf |(⌦)|+ 4C�k⇣k1
✓ˆ

⌦
|rf |�

ˆ
⌦
g ·rf

◆

We now take the infimum over all functions g 2 C
1
0 (⌦,Rd) such that |g(x)|  1: the definition of the

BV norm implies that the last term goes to zero. We then let � ! 0 to get the result. ⇤

Appendix B. A Lions-Aubin compactness result

The following result is a simple adaptation of some standard result. We provide a proof for the sake
of completeness.

Lemma B.1. Let un be a sequence of function bounded in L
1(0, T ;L1(⌦)) such that un is bounded in

L
1((0, T ); BV(⌦)) and un ! u in L

1((0, T );H�1(⌦)) Then

sup
t2[0,T ]

kun(t)� u(t)kL1(⌦) ! 0
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Proof. Since
´
|run(t)|  C and un(t) converges to u(t) in H

�1(⌦), we can show that u(t) 2 BV (⌦)
and
´
|ru(t)|  C.

Next we claim that for any � > 0, there exists C� such that

(B.1) kvkL1(⌦)  �kvkBV(⌦) + C�kvkH�1(⌦)

for all v 2 BV(⌦). This inequality can be proved via a compactness argument: If not, there exists �0 > 0
such that for all k 2 N there exists vk 2 BV(⌦) such that

kvkkL1(⌦) � �0kvkkBV(⌦) + kkvkkH�1(⌦).

We can always normalize vk so that kvkkL1(⌦) = 1. The inequality above then implies that vk is bounded
in BV(⌦) (and thus precompact in L

1(⌦)) and converges to zero (strongly) in H
�1(⌦). It follows that

vk converges strongly to zero in L
1(⌦), which contradicts the normalization kvkkL1(⌦) = 1.

Inequality (B.1) now gives:

kun(t)� u(t)kL1(⌦)  �kun(t)� u(t)kBV(⌦) + C�kun(t)� u(t)kH�1(⌦)

and the BV bound, together with the strong convergence in H
�1(⌦) implies

lim sup kun(t)� u(t)kL1((0,T );L1(⌦))  C�.

Since this holds for all � > 0, we deduce

lim sup kun � ukL1((0,T );L1(⌦)) = 0

and the result follows.
⇤

Appendix C. �-convergence of J"

We wish to prove the following proposition which gives the � convergence of J" to J0:

Proposition C.1. The following holds:
(i) For any family {⇢"}">0 that converges to ⇢ in L

1(⌦),

lim inf
"!0

J"(⇢
") � J0(⇢).

(ii) Given ⇢ 2 L
1(⌦), there exists a sequence {⇢"}">0 that converges to ⇢ in L

1(⌦) such that

lim sup
"!0

J"(⇢
")  J0(⇢).

We recall that this proposition is proved in [21] (Proposition 5.3) when J" is restricted to character-
istic functions. We show below how the proof can be adapted to our more general case.

Proof of Proposition C.1. First, we note that the limsup properties (part (ii)) follows from the corre-
sponding result in [21, Proposition 5.3] . Indeed, if ⇢ /2 BV(⌦; {0, 1}), then J0(⇢) = 1 and there is
nothing to prove, while if ⇢ 2 BV(⌦; {0, 1)} then ⇢ = �E for some E satisfying P (E) < 1, so [21,
Proposition 5.3] applies.

To prove the liminf property (part (i)), we need to slightly modify the proof of [21, Proposition 5.3]
by using the formula (2.2) instead of (2.1) for J". We only provide details in the case of Neumann
and Dirichlet conditions (the Robin boundary condition is then proved combining both arguments, as
in [21]).

Neumann boundary conditions (↵ = 0). If lim inf"!0 J"(⇢") = 1, there is nothing to prove, so
we can assume (up to a subsequence) that J"(⇢")  C and lim inf"!0 J"(⇢") < 1. Up to another
subsequence, we can also assume that ⇢" ! ⇢ a.e. in ⌦.
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Next, we recall that (2.2) gives

(C.1) J"(⇢) =
1

2�"

ˆ
⌦
(1� ⇢)(��")2 + ⇢(1� ��

")2 dx+
"

2

ˆ
⌦
|r�"|2 dx

and introducing the functions (both defined for t 2 [0, 1])

f(t) = 2min(t, 1� t), F (t) =

ˆ
t

0
f(⌧) d⌧ =

(
t
2 for 0  t  1/2

2t� t
2 � 1

2 for 1/2  t  1

we find (see (4.3)):

(C.2)
1

2�3/2

ˆ
⌦
|rF (��")| dx  J"(⇢

").

Furthermore, (2.1) give

J"(⇢) =
1

2�"

ˆ
⌦
⇢(1� ⇢) dx+

1

2�"

ˆ
⌦
(⇢� ��

")2 dx+
"

2

ˆ
⌦
|r�"|2 dx

which implies ˆ
⌦
(⇢" � ��

")2 dx  2�"J"(⇢
")  C"

and ˆ
⌦
⇢
"(1� ⇢

") dx  2�"J"(⇢
")  C".

The first inequality implies that ��" converges in L
2 to ⇢. The second inequality implies that that ⇢ = 0

or 1 a.e. in ⌦.
We deduce that F (��") converges (strongly in L

1 for example) to F (⇢) = 1
2⇢ (since F (0) = 0 and

F (1) = 1/2), and (C.2) gives

lim inf
"!0

J"(⇢
") � 1

2�3/2

ˆ
⌦
|rF (⇢)| dx =

1

4�3/2

ˆ
⌦
|r⇢| dx = J0(⇢).

Dirichlet boundary conditions. We still have (C.1) and thus (C.2) in this case, but since �" = 0 on
@⌦, we can extend the function �" by zero outside ⌦. Denoting by �" this extension, we find

J"(⇢
") � 1

2�3/2

ˆ
⌦
|rF (�")| dx =

1

2�3/2

ˆ
Rn

|rF (�")| dx

and so (proceeding as above)

lim inf
"!0

J"(⇢
") � 1

2�3/2

ˆ
Rn

|rF (⇢)| dx =
1

4�3/2

ˆ
Rn

|r⇢| dx

=
1

4�3/2

ˆ
⌦
|r⇢| dx+

ˆ
@⌦
⇢ dH

n�1(x)

�

= J0(⇢).

⇤
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Mathématiques Pures et Appliquées, 155:62–82, 2021.
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