DENSITY-CONSTRAINED CHEMOTAXIS AND HELE-SHAW FLOW
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ABSTRACT. We consider a model of congestion dynamics with chemotaxis, where the density of cells
follows the chemical signal it generates, while observing an incompressibility constraint (incompressible
parabolic-elliptic Patlak-Keller-Segel model). We show that when the chemical diffuses slowly and
attracts the cells strongly, then the dynamics of the congested cells is well approximated by a surface-
tension driven free boundary problem. More precisely, we rigorously establish the convergence of the
solution to the characteristic function of a set whose evolution is determined by the classical Hele-Shaw
free boundary problem with surface tension.

The problem is set in a bounded domain, which leads to an interesting analysis on the limiting
boundary conditions. Namely, we prove that the assumption of Robin boundary conditions for the
chemical potential leads to a contact angle condition for the free interface (in particular Neumann
boundary conditions lead to an orthogonal contact angle condition, while Dirichlet boundary conditions
lead to a tangential contact angle condition).
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1. INTRODUCTION

1.1. A model for chemotaxis with density constraint. The classical parabolic-elliptic Patlak-
Keller-Segel model for chemotaxis reads:

Orp — pAp + xdiv (pVe) = 0,
nA¢g +6p—oap =0,

where p denotes the cell density and ¢ the concentration of some chemical. The nonnegative parameters
1 and n are the cell and chemical diffusivity, x is the cell sensitivity, and 6 and o describe the production
and degradation of the chemical (see [14], [23], [10]).

In this model, the diffusion competes with the aggregating potential ¢, leading to the well-known
phenomena of concentration and finite time blow-up of the density (see e.g. [5], [12]). In order to
investigate the behavior of the density p after saturation occurs we take into account the incompressibility
of the cells by imposing a constraint p < pys. We replace p with p/py and ¢° with ¢°/(par6) so that
pym =0 =1 and denote ¥ = xparfl. We are then led to the equation (see [26] [15] for details):

op — pAp+ xdiv (pVee) —Ap=0,  p<1
09" —nAP* = p,

where the pressure p is a Lagrange multiplier for the contraint p < 1, and satisfies

(1.1)

p >0, p(l1—p)=0ae.
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Similar models have been used in particular in the study of congested crowd motion (see |26]). The
conditions on p can also be expressed by writing p € P(p) with

o 0 0<p<l;
(12) P(p) {[o,oo) o

which is sometimes referred to as the Hele-Shaw graph.

In a companion paper [15], we proved the existence and uniqueness of a weak solution for and
investigated its relation to some free boundary problems. In this paper, we will investigate the singular
limit of strong attraction (x > ) and small chemical diffusion (n <« 1) and prove that the model is
asymptotically close to a Hele-Shaw free boundary problem with surface tension . This establishes
the first rigorous link between a general Chemotaxis system and Hele-Shaw flow with surface tension,
to the best of our knowledge.

We also aim to analyze the behavior of the solutions of near a fixed boundary, by setting the
problem in a bounded domain Q C R?. In particular we are interested in the effect on the dynamics
of different absorption rates of the chemical at the boundary. For full generality, we will use Robin
boundary conditions for ¢° with a fixed parameter for absorption rate. For the density, we impose
Neumann boundary conditions which ensure the conservation of cell density.

Above discussions, by setting 7 = 2 and y = ¢! for small € > 0, lead to the system (1.3))-(1.4):

p — pAp+div (e 'pVe® —Vp) =0, inQx(0,00), pé€ Pp);
(1.3) (—uVp+e1pVes —Vp)-n=0, on I x (0,00);

p(l', 0) = Pm(m) in Q?
with ¢° solving

(1.4)

o —e?AgF =p in Q;
a@® + eV -n=0 on 09,

where n denotes the outward normal on 0¢2. Note that the scaling of the continuity equation can also be
obtained by rescaling the time variable so that we observe the evolution of p at a time scale £ ~ =1/,
under the assumption that p = O(ey).

Throughout the paper, we assume that «, S and o are constants satisfying
c>0, >0, >0, a+p>0.

The assumption ¢ > 0 is important. When o = 0, the function ¢* = £2¢° is the usual Newtonian
potential (up to the boundary condition on 9f2), which does not localize in the limit € — 0: see the
discussion below (|1.8). By contrast, when o > 0, we have ¢° ~ % p when ¢ < 1 and the effect of e 1V ¢®
on the dynamic of the saturated regions is akin to that of surface tension.

1.2. Relation to Hele-Shaw free boundary problems. When p = 0, (1.3)-(1.4) is a weak formula-
tion for the free boundary problem

pel0,1), p=0, Op+e 1div(pVee) =0  in Q\ Qu(1);

p=1 p>0, Ap = e T Ag® in Qq(t),

where Qg (t) = {p(t) = 1} denotes the saturated density set and the free boundary 3(t) = 9Q,(t) N Q
moves according to the velocity law

(1.6) (1= plac)V = (=Vp+e7'V¢%) v

(1.5)

Qg+
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Here V' denotes the outward normal velocity of ¥(¢) and v denotes the outward normal of Q(¢). In
particular, when the density is a characteristic function p(z,t) = xq,@)(7), we recognize the usual
one phase Hele-Shaw problem without surface tension, which we can write with the modified pressure

g=p+etp(z5 —¢%), as

Ag =0 in Q4(t), g=c""' (5 — ¢°) on X(t);
V=-Vg-v onX(t).

In other words, in this fully saturated regime, the chemotaxis system — can be seen as a free
boundary problem describing the motion of the region occupied by the cell, driven by the chemical
concentration ¢° and the pressure variable p. Since we obtained — by imposing the constraint
p < 1, but without requiring p € {0, 1}, it is not clear that we should actually have p(z,t) = xq, @) (z)
in general. In [15], we proved that if p is a characteristic function at ¢ = 0, then this remains true
at positive times for — when ¢ = 0 . On the other hand when p > 0 the density is never a
characteristic function. Indeed in this case the saturated set interacts with the unsaturated part of the
density by a Richards-type problem, as shown in [15].

(1.7)

Nevertheless, we will show in this paper that, in the limit ¢ — 0, the effect of the attractive potential
is strong enough to ensure the convergence of p to a characteristic function xq_((x) for all p > 0.
We will then show that the asymptotic dynamic of Q(t) is described by the Hele-Shaw free boundary
problem with surface tension

(1.8)

Ag =0 1in Q,(t), q= 55 on X(t);
V=-Vqg-v onX(t),

where k denotes the mean curvature of the free boundary () (taken to be positive when (¢) is convex).
Formally, we can get (1.8]) from (1.7]) by proving that the quantity e~* (% — qSE) is an approximation of
the mean-curvature of 2, when ¢ < 1.

(1.8)) is a classical model, originally describing the motion of the interface separating two immiscible
fluids in a Hele-Shaw cell. While the problem has been derived in various frameworks (see for instance
[22] 2, 18, [16] ), our paper appears to be the first to establish a rigorous connection to chemotaxis, or more
generally to a second-order (or, when p = 0, a first-order) equation with nonlocal drift.

Note that, as ¢ tends to zero, the weight on surface tension grows to infinity in (L.8). Thus heuristically
we expect that the limit density support will re-adjust itself into a ball at time scale of order o%/2
(and instantly when o = 0). This is consistent with the convergence to radial solutions of when
o= p=0: see [4] and [10] for further discussions.

1.3. The presence of bounded domain. Our result for ;4 = 0 bears similarities with [13], where the
emergence of surface tension and derivation of a Muskat problem is studied via a variational approx-
imation. In that paper, the potential ¢¢ solves ¢ — A¢® = p (in R?) and instead of the Keller-Segel
system, the authors considers a discrete-time approximations constructed via a JKO scheme. A similar
variational analysis is performed in [I7] for the L?-based thresholding scheme.

Note that both [13] and [17] consider the setting of periodic torus or entire R? for the interaction
energy, in which case ¢° can be written as a convolution with the heat kernel. Such a representation of
¢°, as well as the symmetry of the heat kernel in space variables, played an important role in the analysis
of the aforementioned papers, in particular when deriving the weak limit equation. The fact that our
problem is set in a bounded domain presents an interesting challenge to this analysis. In particular
this necessitates a more PDE-oriented proof of Proposition replacing corresponding proofs in [17]
and [13]. Our result appears to be the first that links a Keller-Segel system with a Hele-Shaw flow
with surface tension, regardless of the choice of the domain. This connection was also suggested in the
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very recent paper [6], where the incompressible limit of a generalized version of Keller-Segel system is
investigated. The model is a variant of Cahn-Hilliard equation, which can be seen as a diffuse-interface
approximation of our Hele-Shaw flow with surface tension.

Another novel feature of our analysis, also related to the bounded domain, is the characterization of
the free boundary behavior near the fixed boundary 9Q2. Of particular interest, in the context of the
singular limit € — 0, is how the Robin boundary conditions imposed on ¢° play a role in the dynamics
of Qs(t). We will show that must be supplemented by the contact angle condition

2a

(1.9) cos(f) = := —min (17 04"‘\/55) on X(t) N o9,

where 0 is the angle formed by the free surface ¥(¢) and the fixed boundary 92, measured from inside of
the set Q4(t), and the fixed boundary 9 at the triple junction X(t) N 9Q (see Figure 1). In particular,
for Neuman condition o = 0 (zero absorption of chemicals), the contact must be orthogonal, while for
Dirichlet condition 8 = 0 (and whenever the absortion rate « is bigger or equal than /o 3), the contact
must be tangential. Let us note that a similar contact angle condition was derived recently in [11] for
the geometric mean-curvature flow.

1.4. Notations and definitions. Throughout the paper Q is a smooth bounded domain in R?.
We will use the following definition of weak solutions of (|1.3))-(1.4), as in [15]:

Definition 1.1. The pair of functions (p, p) is a weak solution of (1.3)-(1.4) if p € L*((0,00); L>°(£2))N
C'2([0,00); H-H(Q)), p € L2((0,00); H'(2)) with

0<p<1l, p=>0, (1—pp=0 ae inQx(0,00)
and the following holds:

(1.10) [ pat@c@ otz s [ [ (parc+po- 90 dzat =0
for any function ¢ € C(Q x [0,00)) and for some v € (L*(Q2 x (0,00),dp))? satisfying
(1.11) /OO / (pv-€—e 1 pVe® - & — ppdiveé —pdivé)drdt =0

o Jo

for any vector field € € C2°(Q x (0,00); RY) such that £ -n =0 on 9Q and with ¢° given by (1.4)).
One can also define solutions on finite time interval in parallel way, with considering the time integral

over (0,7T) and test functions vanishing outside of [0, 7).

Equality (1.10) is the usual weak formulation for the continuity equation d;p + div (pv) = 0 with
Neumann boundary conditions and initial condition p;,. Equation (1.11) is equivalent to the equality
pv = e 1pVe® — Vp in L?(Q x (0,00)). It is written in this way to make it easy to compare with
Definition [1.3| below (see (1.15])).

In [15] we prove the existence and uniqueness of a weak solution in the sense of Definition using
the fact that it is a gradient flow with respect to the Wasserstein metric. Here the free energy is given
by

1
u/ plogpdx — —/ p ¢t dx with the constraint p <1,
Q 2e Jo

where ¢° given by (1.4). This energy structure of the equation will also play a key role in this paper.
Because this energy does not behave well when € < 1, we will work instead with the functional

1
,u/plogpderf/p(lfad)E)dw, if0<p(z) <1ae;
Q 20¢ Q

00 otherwise .

Fe(p) =
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Since fQ pdx is preserved by the equation we are only adding a constant to the energy, but this constant
is important when ¢ < 1 (it was proved in [2I] that .%.(p) is bounded uniformly in & when p = xg €
BV(Q;{0,1})). The following result was proved in [15]:

Theorem 1.2 ([15]). For any e > 0 and any initial condition p;, satisfying

0<pin <1 ae inQ,
there exists a unique (p°,p®) weak solution of (1.3)-(1.4) in the sense of Definition Furthermore,
p° satisfies the energy inequality

t

(1.12) F(p°(1)) —|—/ / |0 |2 p° da dt < F(pin) Yt >0

0o Jo
with v¢ defined as in Definition[1.1.

The goal of this paper is to show that when ¢ <« 1, the solution of (|1.3)-(1.4) given by Theorem
converges to the solution of the following Hele-Shaw problem with surface tension:

Ag=0 in Q4(t);

9= 1573 on X(t) = 0Q4(t) N QY
Vg-n=0 on 002N Q(t);
V=-Vg-v onX(t),

together with the contact angle condition (1.9). Recall that n and v respectively denote the outward
normal of Q and Q(¢) at their boundary points.

The definition of a weak solution of (|1.13))-(1.9)) is parallel to the Definition

Definition 1.3. The pair of functions (p,q) is a weak solution of (1.13)-(L.9) if
p € L*(0,T; BV({0,11)) N C2(0,Ts HH(Q)), g€ L*(0,T5(C*())")
for some s > 0 and the followings hold:

T
(1.14) /me(x)(:(x,O)da:—&—/ /Qpatc—l—mwvgdmdtzo
0

for any function ¢ € C(Q x [0,T)) and for some v € (L*(2 x (0,T),dp))? satisfying

T 1 T
(1.15) /0 /va-f—qdivf(t)dxdt:—m/o /Q[divf—V@)V:DQ“HVp\dt

(1.13)

T
i : n—1
d — : D€ pd dt
Jr403/2/0 /asz[ e n@n: DL pdH" ()

for any vector field ¢ € C2°(Q x (0,T);R?) such that £ -n =0 on €.

This definition, similar to the one given in [13] [16l [17], warrants several comments.

(1) The condition p € L>(0,T; BV (£;{0,1})) implies that for a.e. t > 0 we have p(t) = xq, ) for
a set 25(t) C 2 with finite perimeter.

(2) In (L.15), v = ‘g—z‘ stands for the L> density of Vp with respect to the total variation |Vp|
(which exists by Radon-Nikodym’s differentiation theorem). Since p(t) = xq.) € BV, it is
also the measure theoretic normal to the boundary X(t) = 0Q4(¢t). In particular, the term
(v@v:DE)|Vp| is of the form f(z, \/|\|)d|A| with f continuous and 1-homogeneous and A =
Vp. The integral in (1.15) thus makes sense (see for example [9]).

IThe integral fQ g div & dz above should be understood as the duality bracket (g, div 5)(05“2))* ,C5 ()
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Note that ¢ has very low regularity in this definition. Since ¢ ~ k along X(t), we cannot expect
much more regularity on ¢ without improving the regularity of the free boundary X(t).

As in Definition is simply the weak formulation for the continuity equation O0;p +
div (pv) = 0 with Neumann boundary conditions and initial data p;,. Since p = xq, (), it
encodes the velocity law V' = v - v, the incompressibility condition dive = 0 in Q4(¢) and the
Neumann condition v - v = 0 on 9Q N Q(¢).

By taking test functions £ supported in either {p = 0} or {p = 1}, we see that Equation
implies Vg = 0 in {p(t) = 0} and v = —Vq in Q4(t) = {p(¢t) = 1}. Subtracting a constant if
needed, we can in particular assume that ¢ = 0 in {p(¢) = 0}. For general test functions £, and
taking into account the right hand side of we further get the surface tension condition
q= ;3= on Y (t) and the contact angle condition . This can be seen by using the classical
formula (for a smooth interface X):

/Zdivg—z/®1/:D§:/Zli§~V+/Fb'fa

where v is the normal vector to 3, x denotes the mean curvature of ¥ and b is the conormal
vector along I' = 3. Indeed, formally at least, the right hand side of (1.15) is (using the fact
that £ -n =0 on 00Q):

il fed
= |- [revt [ame-ig).

where b and € are unit conormal vectors along I' = 93X N oS b is tangent to X while ¢ is tangent
to 09 (see Figure 1))

Integration by parts in thus reveals that the jump of ¢ across ¥ must be equal to -z ~.
Since ¢ = 0 in {p(t) = 0}, we get ¢ = ;=75 + along ¥ = JE N Q. Finally, the cancellation of the

lower dimensional integral requires that the component of the vector b— ~¢C that is tangential to
O0f) must vanish. In particular, we must have [5 — 75} .Z=0andso ¢ b= v, which gives the

contact angle condition

cosf = .
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(6) A simple computation show that ([1.11) is equivalent to

/OT/va.g—qdivfdxdt:/oT/le (210—¢5>§.Vpdt

with ¢ =p+e~1p (% — qSE) + pp. Passing to the limit in the right hand side of this equation to
derive (1.15) will be the main result of the second part of the paper (see Proposition and
is at the heart of the relation between the Hele-Shaw model with active potential and the
Hele-Shaw model with surface tension . We will see in particular that the contact angle ~
depends on the boundary condition for the potential ¢ and is given by

. (12a)
Y = —min ’aJr\/Eﬂ .

1.5. Energy. The proof of the convergence will require some assumptions about the convergence of the
energy. Before stating this assumption, we need to recall a few important facts about the singular part
of the energy

1
Fe(p) = T,E/Qp(l—mf)dx if0<p(z) <1ae. ;
€ =
+00 otherwise,

where ¢° solves ((1.4). The properties of #. when ¢ < 1 were studied by two of the authors in [21]. The
first important result is the following:

(1.17)

Proposition 1.4 ([21]). Let Q be a bounded open set with CH* boundary. Given a set E C Q with finite
perimeter P(E, Q) < co, we have
2

: 1 ! n
(118) tig o) = s | [ 19+ [ 2 ve

We point out that while the result is proved only for o =1 in [21], but it can be easily extended to
o # 1 by scaling. More precisely with ¢¢ = 0¢°, £ = ¢/4/o and § = /o3, equation (1.4) become
¢ —E2A¢° =p in Q;
ag® + PEVY" -n=0 on 0Q,
which is the equation studied in [21].

Above proposition identifies the limit of #.(xg). However, this functional is not lower-semicontinuous

when — +2\753 > 1 and cannot be the I'-limit of _#.. We can in fact prove:

Theorem 1.5. Let Q be a bounded open set with C** boundary. The functional . T'-converges, when
e —0to

Fo(p) = ?1}/2 [/Q V| + /m min (1, 04—&—20\[/56> pd’i—l"l(m)} if p € BV(Q;{0,1});

00 otherwise.

This theorem is proved in [21] when _#. is restricted to characteristic functions, so we show in
Appendix [C how the proof can be generalized to our more general framework. This extension requires
a new formulation of the energy #., see (2.2).

In the absence of boundary term, the gradient flow associated to the energy _#Zp with respect to the
Wassertein distance was proved to lead to the Hele-Shaw flow (1.13)) in 2] [22]. The I'-convergence result
therefore suggests that the solution of the gradient flow associated to the energy #. (which corresponds
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to equation (1.3))) converges when ¢ — 0 to a solution of ([1.13) (supplemented with the boundary
condition (1.9))). This is the result that we want to make precise in the present paper.

1.6. Main results. We are now able to state the main result:

Theorem 1.6. Given an initial data py = XE, € BV (Q;{0,1}), 1 > 0 and a sequence £, — 0, let
(p°,p°) be the unique solution of (1.3)-(L4) given by Theorem[1.2. Then for any given T > 0, along
a subsequence, the density p° (z,t) converges strongly in L>((0,T); L*(£2)) to

p(z,t) € L>=((0,00); BV(€;{0,1}))
and the modified pressure variable ¢ (defined by (5.1))) converges to q weak-+ in L*((0,T); (C*(22))*)

for any s > 0. Furthermore, p satisfies the continuity equation (1.14) for some velocity function v(x,t)
as well as the energy dissipation property

(1.19) Aooe) + [ [ oPodedi< si(pu).

Finally, if the following energy convergence assumption holds:

T T
(1.20) i [ @)= [ p) an

n—oo

then the limit pair (p,q) also satisfies the pressure equation (L.15) on (0,T). Thus it follows that (p,p)
is a weak solution of (1.13)-(1.9) in the sense of Definition |1.3, with initial condition p;, and contact
angle

L (1%*)
Y = —min ot voB)

The result also holds if we consider a sequence of initial data pf,, = xg:, bounded in BV (£2), converging
strongly to pin, = Xg,, in L' and satisfying lim 7. (p5,) — _Zo(pin). The existence of such a sequence,
for any finite perimeter set E;,, is proved in [21] (Proposition 5.3) as part of the I convergence result.

We note that Theorem is a conditional result, since it requires the energy convergence assumption
(1.20). The analysis of [2I] implies that we always have

imint [ 7, (@)= [ plp(o) e,
0 0

n—oo

SO ensures that there is no loss of boundary between phases in the limit. This assumption is rather
natural and is similar to the one required for instance in [19] [17, [13].

Weaker notions of solutions using the theory of varifolds have been obtained in related frameworks
without the assumption (see for example [3]). This would be an interesting direction to explore
for our problem as well.

1.7. Outline of the paper. We begin with deriving two alternative formulas for the energy _#. in the
next section, which play a crucial role in our analysis. Section |3| collects the main a priori estimates
for the e-solutions. The proof of Theorem is then split between sections 4 and 5. In Section
we prove Proposition which gives the first part of the theorem, namely the strong convergence in
L' of the density toward a characteristic function which satisfies the continuity equation (1.14) and the
energy inequality . Section completes the proof of Theoremby deriving equatio under
condition (T.20). The main step is Proposition [5.2] which shows that the convergence of the energy
implies the convergence of the first variation. In the last section, we briefly recall the construction of
the JKO scheme used in [15] to prove the existence of weak solutions to — (Theorem and
we state a convergence result similar to Theorem for a discrete-time approximation: such a result is
of independent interest for numerical applications.
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2. ALTERNATIVE FORMULAS FOR _Z.

A crucial tool in our analysis will be a couple of alternative formulas for the energy _#.. We recall
that the total energy of the model, .%,, is given by

Fe(p) = M/Qplogpd%L Se(p),

where Z. is defined by (L.17) and plays key role in the analysis when ¢ <« 1. For p satisfying the
constraint 0 < p <1, we have

! & xzi )—o T, T,
/a(p)zf/gp(l—mé)d /QG y)p(y) dyd

20¢ 20¢

where G. is the Green’s function associated to equation (1.4) A similar energy functional is used in
[17, [13] with G. is the heat kernel in R?. However, we will rely on some different formulations for 7.
which make use of the particular equation solved by the function ¢° in our model: First, we write

1

Selo) =52 | (0= ?)+ (p° = 2067 + (96°)*) = (0¢°)° + 09 pd
= L _ _ £\2 _ 5 e
=502 Qp(l p)+(p—0¢°)" —0¢ (09" — p)da
Using equation for ¢° implies
1
J<(p) = 5— | p(L=p)+(p—0¢°)* = 00" (*Ag%) da
Q
_ 1 £\2 € 2 1 Qg2 n—1
= 5oz (1— dx+—/ a¢)dx+§/ﬂ|v¢|dx+§/mg|¢|d7-[ (x)

when 5 # 0 and

JA0) = oz [ 1= 0ot 5 [ (p=co et S [ (9o de

when 5 = 0. Alternatively, we can write the more symmetric formula (for any a, § > 0 with a4+ > 0):

fs(P)Zi/ﬂp(l— )dx—i——/ (p— )2 de + = /|v¢€‘2dx

20¢

62 £ 2 n—1 1 12 n—1

This formula played a key role in the proof of Proposition and Theorem in [2I]. Thanks to
the constraint 0 < p < 1, all the terms in this formula are non-negative (without the constraint, the
first term will favor values of p larger than 1). Furthermore, in the regime ¢ <« 1, the first term will
be bounded only for characteristic functions. This observation will be crucial when proving that the
limiting density is a characteristic function (even though p® may not be). We also note that the scaling
of the following two terms is consistent with the scaling of the classical Modica-Mortola regularization
of the perimeter functional.

Our analysis will also require a slight variation of this formula: we can write

p(L=p) + (p—06%)* = p+ 0%(¢°)% = 2p0¢° = (1 — p)(0¢°)* + p(1 — 0¢°)?
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leading to the formula

Fi0) = 5z [ =)o 401 =00 o+ 5 [ VP
62 6 S 2 n—1 1 «@ 12 n—1
(2.2) +5/ma+6|v¢ ol dH (m)+§/(99a+ﬁ|¢| A ().

Here also we note that all the terms are non-negative when 0 < p < 1. This formula will in particular
be crucial in proving the strong convergence of p° and when deriving the pressure equation (1.15) (see

Section .
3. A PRIORI ESTIMATES

We now derive the a priori estimates that will be used to prove the convergence of p. Here and
below, we denote
E° := p*o°.

Lemma 3.1. Let p;;,, € BV(2;{0,1}) and (p,p°) be the unique solution of (1.3)-(1.4) given by The-
orem @ There exists a constant C' depending only on fQ [Vpin| (and in particular independent of ¢)
such that for all e > 0 we have:

(i) Z:(p°(t)) < C forallt > 0.
(ii) fooo fQ |U€‘2p8 dedt < C and ||EE||L2(QX(O’OO)) C

<C.
(i) [0 (6) — p°(8) lsr-1() < OVE—s, for any 0 < s < t.
Proof. We recall that
Fe(p) = u/Qplogpd:c+ Se(p),
where (since 0 < p < 1) —C < plogp < 0. The energy inequality thus implies

ya(ps(t)) < ys(pin) < /&(pin) vt > 0.

Using Proposition we see that when p;,, = xg,, € BV(©;{0,1}), we have #.(p;,) < C for some
constant C independent on €. We deduce

(3.1) () < Felpim) /Q plog pde < C.

The energy inequality also gives

/ /QIUEIQpE dzdt < Fe(pin) < = (pin)
0

and since p® <1 (ii) follows immediately.

Finally, for a given test function ¢ € HJ(2), the continuity equation (1.10)) implies

/Qpe(:c,t)z/}(x)dm—/Qpe(x,s)w(z) dx—/:/QpEUE-Vde:ch,

and so (since p® < 1):
t 1/2 t 1/
< (/ / |v5|2dp5> (/ / P°|VY|? da dT)
s Q s Q
t 1/2
< ollmeo ([ [ 1) (652,
o Ja

and (iii) now follows from (ii). O

2

/Q (P°(z,t) = p°(z,5))9p(x) dx
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We also need some estimates on ¢, solution of (1.4). The comparison principle applied to the Robin
boundary value problem (1.4) (see e.g. Section 4 in [24]) immediately gives

(3.2) 0<¢(z)<1/oin
and multiplying (1.4) by ¢ and integrating leads to the estimate (recall that [, p® da = 1)

1 1
(3.3) Ny + IV e < [ w6t dn < [ fdo=2 [ pndo
Q 0 Ja g Ja

4. STRONG CONVERGENCE OF p° AND CONTINUITY EQUATION.

The main result of this section is the following proposition, which yields the first part of Theorem

[L.6t

Proposition 4.1. Let pyn(z) = xpg,, € BV(Q;{0,1}) and p°(z,t) the unique solution of (L.3)-(1.4)
given by Theorem[1.2. Then the followings holds for any sequence e, — 0:
(i) There exists a subsequence (still denoted €,,) along which p°~(t) converges uniformly with respect to t
in H=1(Q) to p(t) and E" converges weakly in L*(Q x (0,00)) to E.
(ii) There exists v € (L?(Q x (0,00),dp))? such that E = pv and the continuity equation holds.
(iii) Up to another subsequence, p°(t) converges to p(t) strongly in L*(), uniformly in t. Furthermore,
for all t > 0 we have

p(t) € BV(€:;{0,1})
(that is p(t) is the characteristic function of a set of finite perimeter) and the energy inequality (1.19)
holds.

Proof. First note that Lemma (iii) together with Arzela-Ascoli’s theorem yields the uniform conver-

gence of p»(¢) in H~(), and Lemma (ii) gives the weak convergence of E°".
Next, we can pass to the limit in (1.10)) to get

/me(x)C(x,O)dx—i-/o /Qpaté—l—E-VCda::O

for any function ¢ € C°([0,00) x Q). Thus p solves the continuity equation

(41) {&gp-i-dlvE—O;

p(2,0) = pina).

To complete the proof of (ii) and derive ([1.14), we just need to show that E can be written in the form
pv. We use an argument that can be found, for example, in [20]: For a scalar measure p and a vectorial
measure F', we define the function

/T/|F|2 if F< te0,7T]
— 1 n a.e. , 4,
®:(M7F)'_> 0 Q M

“+00

otherwise.

This function © is lower semi-continuous for the weak convergence of measure (see [1], Theorem 2.34).
Together with the uniform bound ©(p*", E*") = fOT Jo P2 < C (see Lemma (ii)), it implies
that E is absolutely continuous with respect to p and that there exists v(t,-) € (L?(dp(t)))? such that

E = pv. Inserting this in (4.1) yields (1.14).
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The rest of the proof is devoted to (iii). The fact that we can get stronger convergence for the density
is non-trivial: it is due to the fact that the energy _#. controls the BV norm of ¢, which is close to p°
when ¢ < 1. To see this, we introduce the function

t 2 <t<1/2
(4.2) F(t):= / 2min(r,1 —7)dr = t - for 0<t<1/2;
0 2t —t*—5 for1/2<t <1
We then have F'(0¢°) = 2min(c¢®, 1 — 0¢°) and so
1 1 . < e
—573|VE(09%) < 2%|V¢6|mm(0¢ 1—0¢%)
1
< Lmin((06°)2, (1 - 06%)?) + <97

IN

1
— [A=p)(0¢°)* + p(1 = 06%)°] +£|Vo° P,
as long as 0 < p < 1. This inequality, together with the formula (2.2) for _#., implies

(4.3 5573 | IVF(ed")ldo < _2u(6").

Note that in [21] a similar inequality was derived when p is a characteristic function. The computation
above extends this important property of _#. to the case where 0 < p <1 by using the formula (2.2).

Inequality (4.3]) shows that the boundedness of the energy #. (p°") implies some a priori estimates
for the auxiliary function

Y™ = 2F(0¢").
More precisely, (4.3) and Lemma (i) imply that

(4.4) Y™ is bounded in L*°((0,T); BV (Q)).
Next, we can write
(4.5) " = [2F(0¢5) — 2F ()] + [2F () — p°] + p°.

We are going to show that the first two terms in the right hand side go to zero (uniformly in ¢):
e Formula (2.1) and the energy bound (Lemma (1)) imply

lp™ (8) = 065 (D172 < 2060 Ze(p™ (1)) < 20€n Fe(pin) < Cen
Since F' is Lipschitz, we deduce
(46) 2P (1) — 2F(06% (1) aqy < Cllo™ (1) — 067 (D)) < Cen VE> 0.

e When p is a characteristic function, we have 2F(p) = p and so the second term in (4.5 vanishes.
When p € (0,1), we can use the fact that |2F (p) — p| < Cd whenever p < § or p > 1 — 6 and use
the energy to control the set where 6 < p <1 — 4. Indeed, formula (2.1) and the energy bound

(Lemma (i)) imply
an W <1=al < g [t de < TS A 0) < O3t

Choosing § = /e, we conclude that

[ 12 - s < | [2F () — o
Q {VEn<pen<1—/En}

< Cl{ven < o™ < 1= VE )+ Cl0lven
< Cy/en,

dz + C|Q|/an
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and so
(4.8) 12F (p" ) = p™ (1)l 12y < Cel/* Wt > 0.

Since we already know that p» converges uniformly in ¢, with respect to the H~1(Q) norm, to p, we
deduce from (4.5), (4.6) and (4.8) that
(4.9) Y™ (t) — p(t) in H=1(£2), uniformly in ¢.

Using a Lions-Aubin compactness type result (see Lemma7 and yield
YT = p strongly in L>((0,T); L*(Q)).
In particular, the lower semicontinuity of the BV norm and imply that p € L*°((0,T); BV (£2)).
Finally, using together with and we see that
107 (&) = 0™ ()l 2y < CeL/2,
so the strong convergence of ¥™ also implies that

P = strongly in L>((0,T); L*(Q)).

It remains to show that p is a characteristic function. We note that given ¢ > 0, we can extract a
subsequence which converges a.e. in 2 and (4.7) implies that [{0 < p(t) <1 -6} =0 for all 6 > 0. We
deduce that p(z,t) € {0,1} a.e. z € Q (for all ¢ > 0).

Finally, we can pass to the limit in (1.12) to get the energy inequality (1.19): The lower-semicontinuity
of © allows us to pass to the limit in the dissipation and Proposition [1.4] gives (since .7 (pin) = _Zz(pin)
when p;, is a characteristic function)

gig% Fe(pin) = Fo(pin)-

The liminf property of Proposition and the strong convergence of p® then yield:
liminf Z.(p®) > lim inf,u/ p°log p® dx + liminf Z.(p°)
e—0 e—0 Q e—0

> u/ﬂplogpdﬂhL Ho(p)

= Jo(p).
This completes the proof of Proposition

5. CONVERGENCE OF THE FIRST VARIATION

5.1. Convergence of the first variation and proof of Theorem To prove Theorem (1.6}
the only remaining step now is to pass to the limit in equation (1.11) under the energy convergence

assumption ([1.20) to derive (|1.15). We recall (1.11) here:
o0 o0
/ / E°-&dxdt = / / e TV P - € + pptdiv € 4 p°div € da dt.
0o Jo 0o Ja

Note that when & < 1, neither the term £~ p*V¢* nor the function p° (or its gradient Vp¢) are bounded.
As explained in the introduction, it is the modified pressure, defined by p* 4 ¢~! (i - gf)s) p° which is
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expected to converge to the pressure in the Hele-Shaw model with surface tension. We can also include
the term pp® in this modified pressure and normalize it to have zero average. We thus set:

1
(5.1) ¢ =p +e! (20 — ¢5> p° + pp® +m°
where m®(t) (constant in x) is chosen so that

(5.2) / ¢ (z,t)de =0 Vt>0.
Q

After a straightforward computation, using the fact that £ is tangential on 92, we can rewrite (|1.11))
as

(5.3) /OOO/QEE-gdxdt/OOO/QpEdiV <51 (210¢) §> + ¢°div & dx dt.

Passing to the limit in ([5.3)) is the objective of this section. The main challenge is with the middle term,
which we can write (with a slight abuse of notation since V¢ ¢ L!):

> - 1 (> (>
(5.4) /0 /Q&: 1<20—¢>£-V,0 dz dt,

which gives rise to the mean-curvature and the contact angle condition in the limit ¢ — 0. This term
is related to the first variation of the energy _#. defined by . The key result of this section is
Proposition below, which states that the assumption on the convergence of the energy implies
the convergence of the first variation. Similar results have been proved for different energy functionals.
In particular, a classical result of Reshetnyak [25] gives that if x . converges to x g strongly in L!, then
the convergence of the perimeter

P(E.) = / Vxe.| - / Vxel,

implies the convergence of its first variation to
/(divf —vev:DE)|Dxgl
A similar result was proved by Luckhaus and Modica [18] for the Ginzburg-Landau functional
1
Bl ) = [ elVoP+ Z(1- ) ds
Q 3
and by Laux and Otto [17] with

EXp)=¢" /p(l = Ge*p)da

when G. is the Gaussian kernel of variance 2.

Crucially, both El and E? are regularizations of the perimeter functional. In our case, we recall (see
Theorem that the energy functional _¢#. I'-converges to the perimeter functional as well, together
with a boundary term. Furthermore, it is easy to check that is the first variation of #.(p) for a
perturbation defined by

(55) {asps + Vps . f =0

ps|s:0 = p-
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Remark 5.1. Note that (5.5) preserves the constraint ps < 1 but not the condition [ ps =1 (unless
divé =0). Alternatively, we could consider the first variation of Z.(p) for a perturbation defined by

sPs di s =
(5.6) Dsps + div (ps&) =0
ps|s:O = p.
which leads to the integral €' fQ pr(i — ¢°)dx. The two integrals are the same when div& = 0, but

this second integral does not, in general, converge when € — 0. This is due to the fact that (5.6) does
not preserve characteristic functions and the energy Z. blows up in that case for e < 1.

The key result of this section, which will allow us to complete the proof of Theorem|[I.6]is the following:

Proposition 5.2. Given a sequence of functions p° € L*(2) satisfying 0 < p° < 1 and such that p* — p
strongly in L'(Q) with p € BV(Q;{0,1}) and

(5.7) lim 7 (p%) = Zo(p);

e—0

we have, for all € € CY(;R?) satisfying € -n =0 on 09,

5:5) e [ai (5 - o) €) | < CIDEL@ 22007)
and
lim 571/ div <( ng) >
e—0 Q
(5.9)
1

= W {/ [divé —v ®@v: DE|Vp| + min ( \/73> / [divEé —n®@n: DE pdH" ()

where v = | | and n denotes the outward normal unit vector to the fixed boundary OS2.

Note that we can replace (5.7]) with the equivalent condition
lim 7. (p°) = Fo(p).
e—0

Indeed a bound on _Z.(p°) or .#.(p°) implies that p € BV(€;{0,1}) (see the proof of Proposition
so that %y (p) = Zo(p) and [ p®logp® — 0.
Proceeding as in [17], we can check that this proposition imply the following time-dependent version:

Corollary 5.3. Given a sequence of functions p°(x,t) € LY(Q x (0,T)) satisfying 0 < p* < 1 and such
that p° — p in LY(Q x (0,T)) and

T T
i [y ie= [ o) a

we have, for all € € C1(Q2 x (0,T);R?) satisfying & -n =0 on 09,
T
lim 5*1/ / div ((1 — qsf) g) pEdt
e—0 0
403/2 l/ / [dive — v @ v : DE|Vp|dt

(5.10) +m1n( +\Fﬁ)/ /m [divé —n®n: DE pdH" (x)dt| .

With this corollary, we can now complete the proof of Theorem
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End of the proof of Theorem[1.6, We can now pass to the limit in and thus complete the proof
of Theorem Recall that E°~ converges weakly in L? and the convergence of the first term in the
right hand side follows from Corollary 5.3} we can use the Corollary here since Proposition gives the
strong convergence of p in L' and we are assuming condition . We thus only need to explain
why the pressure ¢° converges.

Note that (5.3)) and (5.8 imply

T
/ / q°div & dx dt
0o Ja

To obtain a bound on ¢°, we proceed as in [13]: For ¢ € C*(Q), let u solve

Au=p—f,pdr inQ;
Vu-n=0 on 02,

(5.11) < 1Bl 2ex0,rp €l L2@xc0,r)) + C 2(p™)IDEN L 0,7y (2))-

and take £ = Vu as a test function in (5.11)) to get (using the a priori estimates of Lemma and
classical Schauder estimates)

T
/ / ¢ Audzx dt
0 Q

for any s > 0. Using (5.2) we deduce

T
/ / q pdxdt
0o Ja

which implies that ¢° is uniformly bounded in L2((0,T); (C*(€))*) and has a weak-* limit g. We can
now pass to the limit in (5.3)), for £ smooth enough, and derive (1.15)). O

< CIID?ul| L2 0,1y, () < Cllullz2o.1y:c2:5 ) < CllellL2(oryico @)

< Cllellzz(0,1);:00(9))>

5.2. Proof of Proposition As noted earlier, if we set ¢° = 0¢°, £ = ¢/\/o and = /o3, equation
(1.4) becomes

¢° —E2A¢° =p in €;
agf + eV -n=0 on IN.

It is therefore enough to prove the result when o = 1 and use the fact that

[ aw ((210—¢> é) o= | i ((;—cb) 6) o

to get the result when o > 0.

The proof of Proposition makes use of the following lemma. We postpone the proof of the lemma,
which is elementary, to the end of this section.

Lemma 5.4. Given p(x) such that 0 < p <1 and ¢° solution of (1.4]) with o =1, we have the following
formulas, for all ¢ € C1(;RY):
(i) If « =0 or =0 (Neumann or Dirichlet boundary condition for ¢¢) then

ot [ (=299 0 =7 [ (=)@ + 001 = 07 dive e+ [ 196 i da

(5.12) - 26/ V¢* @ V¢ : DE dx.
Q
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(ii) If B # 0, then
[ @ =2099 0= [ (0= 9@ (1~ 6] dive o
+€/ |V¢5|2divfdx+/ %167 Pdiv € dH ()
Q o /8

(5.13) — 25/ V¢f @ V¢© : DEda — / 26°n@n : DEAH ™ (x).

Q oa B

Idea of the proof of Proposition While the proof of this Proposition may appear long

and technical, the idea is quite simple. We recall that when o = 0 (Neumann boundary condition), we
have (see (2.2))):

5_1

S =T [= 04 1= 0 do+ 5 [ VP

Q

1

- / u? +v?de,

2 Ja

where we denoted u. = e~ 1/2 [(1 — p°)(¢°)% + p°(1 — ¢°)?] 2 and v. = £'/2|V¢?|. The boundedness of

the energy implies that u. and v. are bounded in L? and in order to pass to the limit in the first two
terms in (5.12)), we need to show the convergence of [[u2 + vZ]div ¢ dx.

We now use the argument introduced in [2I] (to prove the I'-convergence of the energy), which is
itself an adaption of the classical Modica-Mortola approach: Using the fact that ue > min(¢®, 1 — ¢°)
and introducing the function F such that F'(¢°) = 2min(¢°, 1 — ¢°), (already used in Proposition
see (4.2))) we find:

(5.14) |VF(¢°)] = 2min(¢°, 1 — ¢°)|V¢©| < 2ucv. < u? + 02,
1

Since the limit p of p® is a characteristic function and we know that ¢* — p, we have F(¢°) — F(p) = 5p
in L' (see the proof of Proposition , and so

1
timint [ VP67 do > 5 / V.
e—0 2

On the other hand, the assumption of convergence of the energy, ( , implies

lim [ w2 +v2de=2_%(p /|Vp|

e—=0 [o

Together, these inequalities imply that there is equality in when ¢ — 0, which means that
u? +v2 — |VF(¢F)] — 0 in L' and that lim._¢ [, |VF(¢E)\dx = 1 [|Vpl. A Classical result (see
Proposition now implies that

1
. 2 27 1. T e . _ 4+ .
&11_1)% Q[uE +oZldivéde = E11_>r%/Q |[VE(¢%)|divEde = 5 /Q [Vpldiv €.

To pass to the limit in the last term in (5.12)), we note that the (asymptotic) equality in Young’s
inequality in (5.14)) also implies that u. —v. — 0 in L? and so 2671 |V¢|? = 202 ~ u2 + 02 ~ |[VF(¢°)]
which proves the convergence of 2e71|V¢%|2. A simple (if somewhat technical) result (see Proposition
A.3) then shows that the convergence of e 71|V ¢°|? implies that of e 1V¢® @ V<.

Additional care will be needed to take care of the boundary condition when « # 0, which is why
we will first give the detailed proof for Neumann boundary conditions, then Dirichlet conditions (which
requires extending ¢¢ to R? by 0) and finally general Robin boundary conditions (which combine the
Neumann and Dirichlet case).
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Proof of Proposition[5.2. We note that (5.13) together with (2.1) immediately imply (5.8).

The difficult part of the proof is, of course, to establish the limit (5.9, and we will first give the
proof in the simpler case of Neumann boundary conditions (o = 0). We have to pass to the limit in
(5.12). As above, we use the function F' such that F'(¢°) = 2min(¢°,1 — ¢°) (see (4.2)) and note that

FI(¢7) < 2[(1= p)(¢)? + pl1 - 7))
when 0 < p < 1. We thus have |[VF(¢°)| < 2|V¢®| [(1 — p°)(¢7)* + p°(1 — ¢5)2]1/2 and so
(5.15) IVF(¢%)] < 2uve < u? + 02 — (ue —v.)?,

where
we = e V2 [(1 = p) () + (L - 6)°]7 and . = V2V,
Next, the strong convergence of p® and (4.6]) imply that F'(¢°) converges to F'(p) strongly in L. Since
p is a characteristic function and F(0) = 0, F(1) = 1/2, we deduce F(¢°) — F(p) = 1p strongly in L'
and so

1
im i ¢ > — .
tmint [ [VF(@)|do> 5 [ (95
On the other hand, the convergence assumption (5.7)) implies
1
/ u+vide =2 7.(p°) = 7/ Vol
Q 2 Ja

Inequality ([5.15) thus implies:

(5.16) u? +v? — |[VF(¢%)| =0 in L'(Q),
: 1

(517) | vr@)ids =5 [ 19l

(5.18) ue —ve — 0 in L*(Q).

These facts allow us to pass to the limit in the first two terms of (5.12]). Indeed, using first the definition
of u® and v°, then the limit (5.16) and finally (5.17)) (together with Proposition |A.1), we can write:

lim 5*1/ [(1=p%)(¢°)* + p°(1 — ¢°)?] divEda + 5/ |Vo© |Adiv € do = m%/ (u? +v2)div € dr
Q Q e~V Ja

e—0

=lim [ |VF(¢%)|divEde
e—=0 Jo

1
(5.19) = f/ div | Vo).
2Ja
Furthermore, (5.16) and - 5.18)) yields:
(5.20) 202 — [VF(¢)] — 0 in LY(),

which we use to pass to the limit in the term involving V¢* ® V¢°. Indeed, we can write

25/3i¢€3j¢53¢§j d:z::25/ 00" 0;¢ ai§j|v¢6|2dl‘:/ %" 9;¢ 0:&; 2v2dx,
0

o [Voe|[Vee| Voo | Vo]
and since I%:ﬁf gi’a 0;¢; is bounded in L*°, (5.20) implies that
9i9° 0;¢°
hm 25/ 0;0°0:9°0;&; dr = hm/ I 06 IVF(¢°)|d.
¢ ]¢ 6] |V¢EHV¢E fj‘ (¢ )l
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Using the fact that F'(¢°) > 0, we can also write

O F(¢°) 0;F(¢7)
5.21 hrn 25/ 0;p°0;9°0;&; dx = hm 0:&; |VF(¢°)|dx
20 OO o V()] [VE(g9) 4 V&)
and using (5.17)) and Proposition [A.3 we deduce
1 Oip 0, P g
5.22 lim 25/ 0i¢°0;¢° 0 dx = = / 20,45 |Vpl.

Lastly (5.12)) together with ( m ) and ( m yields

: - dip Ojp
llm—»sl/ —2¢° V—/dlvV / I 0:65 |V pl,
lim At )§-Vp Vel =35 | w28 V!

and we obtain (5.9) in the case of Neumann boundary condition & = 0 (and when o = 1)

For the case of Dirichlet conditions (8 = 0), we proceed similarly, but we first extend ¢° to R?
by setting it equal to 0 in R?\ Q. Denoting ¢¢ this extension, we find (using inequality (5.15) and the
Dirichlet boundary condition for ¢°):

/ |VF(¢¢)| d :/ |VF(¢°)|dx < / u +vide =2 _7.(p°).
R4 Q Q

The lower semicontinuity of the BV norm and assumption (5.7) give

tmint [ [V(E@) dz > [ (VPG =5 [ (97 = m2.200).
Rd d 2 d e—0

e—0

where p denotes the extension of p to R? by 0. Indeed, when 8 =0 (and ¢ = 1), we have

Ao [ ome o] =4 o

We can thus proceed as before to show that
u? +v? — |[VF(¢°)| -0 in L(Q),
_ 1 -
VE@) de - 5 [ 19
Rd Rd
U, — v — 0 in LQ(Q).

These are the same convergences as (5.16)-(5.18)), except for (5.17) which involves the extension ¢°. We
can now write:

lime™* / (1= p)(¢°) + p°(1 — ¢°)?] divEda + 5/ |V¢©|*div & da
Q Q

e—0

= lim i div (u2 + v2) d

= lim/ div £|VF(¢°)| dz
e—=0 Jo

= hm div ¢|VF(¢°)| dx
Rd

e—0

1 . _ _1 . . n—1
i/Rd divé|Vp| = 5 (/Qd1V§|Vp| +/89pdlvfd’H (x)) .
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Similarly, we can show (as before)

/vng@w Dfdz—>1 <vﬁ @E Dg) IVal,
Vol IVal -

where (using (A.2))

Np Vb L . . et
/ (IVp| ® iR Df) Vo /Q(V®V : DE) [Vpl +/8§2 (n®@mn:DE) pdH" " (z).

This gives the result when 5 = 0 (Dirichlet boundary conditions).

For the case of Robin conditions, we need to combine the two cases above. Let ¢ : R? — [0, 1] be
a continuous function such that

(5.23) / lp— | dH" ™t < 6.
o0

Introducing the function G(t) := %tz — F(t), we then write:

/ VF(@)|pds + / G(¢7)pdH = / VF(¢)|pdz + / F(6°)pdH™ + / G(¢7)pdH"!
R4 o0 Q o0 o0
- / VF(6°) g da + / g2 Ppd
Q o0 B
which leads to
_ 8]
/ VF(67)|(1 - ) di + / VF(F)|pd + / (6% )pdH™ ! + / X1 P - p)dH !
Q R4 o0 oN ﬁ
(5.24) :/ \VF(¢E)|dx+/ 2167 2anmt.
Q o0 ﬁ
The right hand side satisfies (with the same notations as above):
/ VF(¢7)|dx + / &g Pamnt < / W2 402 — (e —ve)?da + / g P!
Q oa B Q aa B
(5.25) —2 7.(5") - / (e — ve)? da,
Q

so in order to proceed as before, we need to show that the liminf of the left hand side is greater than
2 #o(p). For this, we notice that the function

(5 -2 for 0 <t <1/2;

[0
Gty=—-t*-F(t)=1 "
(§+12—2t+5 for1/2<t<1,

B
satisfies G(t) > min{0, ;95 — £} = min{0, 5 a+5 } for all t € [0,1]. (This can be checked by a direct
computation. We can also note that F(t) < t* (see ({.2))) and so G(t) > 0 for all ¢ whenever a > . When
B8 > «, t — G(t) is decreasing on [0,1/2] so the minimum value of G is attained at t = +B € (1/2,1).

We can then compute that G(ﬁ) = 2(0;7:_%) <0).
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Hence we can write

P 5 o v € n—1 g €12(1 _ n—1
limipt [ [VF@)I(1 = @)dot [ [VF@)lodo+ [ o rean + [ S - pan

o0

« 1
- = d n—1 0
a4+ B Q}SDH +
1 1 « 1
> —|V dx—i—/ - d?—["fl—k/ min{(),—} dH" !
/QQI ol 0 27¢ . ot 2(%

1 . 1 a 1
> i\ v e n _

=2 o(p) — C9,

where we used the fact that ¢ is an approximation of p on 92, see (5.23). Going back to (5.24]), we see
that we just showed that

> [ @I+ [ |VF(p)|apdx+/anin{O

(5.26)

liminf/ |VF(¢E)\dm+/ 216 RaH 1 > 2_go(p) — €,
=0 Jo o0 B

and since this holds for any § > 0, we get
. . B QO ci2 n—1
— > .
lim in / VF(6 "d“/m Sloart =2 (o)

We can now conclude as in the previous cases: Using ([5.25) and the assumption that lim._,o Z.(p°) =
Fo(p) to conclude that

(5.27) u 402 —|[VF(¢°)| =0 in L}(Q),
(5.28) u. —v. =0 in L*(Q).

Furthermore, using ([5.26]), we also get

1
imsup | [ [VF@)0 ) do 5 [ 1960~ < 6

e—0

— 1
lim sup / [VE(¢%)|pdx — 7/ |Vﬁ|s0’ < 0§,
R4 2 R4

(5.29) =0 ,
lim su G(s° d?—[”_l—/ min{o,o‘—} dH" 1| < O,
wsup| | (¢%)p -~ ot 2(%

1imsup/ Y621 — p)dHm ! < O,
o0 B

e—0

We then write (using (5.27))
lim e~ /Q[(l = p7)(6°)? + p° (1 — 6°)°]div & dar + s/ﬂ V¢ 2div € da + /m %Iqﬁflzdivgdw*l(:c)

e—0

= lim (u§+v§)div§dx+/ g|¢€|2divéd7-l”*1(x)
e—0 Q 20 6

(5.30)
1 5 : g 12 7 n—1
—ilj)l}) Q\VF(QZ) )|d1v§d:v+/aQ B|¢ [“div&dH™ ™ (x).
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Using the same function ¢ as above, we decompose the integral in (5.30) as follows:
I :=/ IVF(¢°)|div € dz +/ 2167 2div € dH™ ()
Q oo B
— [IVF@pdivedo+ [ jorPodiveant
Q oa B
+ [ IVR@N0 = pivedst [ Slo P - p)diveda)
Q o0 B
= / |VF(¢f)|ediv € da + / G(¢%)pdiv & dH™ (x)
Rd aQ
(5.31) +/ IVF(¢°)|(1 — p)div & da + / Y165 12(1 — )div € dH " (x).
Q oo B
Hence (note that the inequalities (5 can be localized to include the div ¢, see Remarkm

/I —*/|VP\ (1—¢ dlvﬁ—*/ |Vp|ediv € — / mm{ iﬂ—;}tpdivfd’}{"l

which implies (using our particular choice of ¢, see )

/\Vp|d1v§ /anm{ +B}pd1v§d7{" !

Since the left hand side is now independent of ¢, we can take § — 0 and use (5.30) to get

< C6,

lim sup
e—0

< .

lim sup |1,
e—=0

: -1 € £\2 €(1 _ AE\217; €12 13 g62- n—1
lim e /Q[(l ) ()" +p°(1 ¢)]d1v§d:c+€/g|v¢|d1v§d:c+/89ﬁ|¢|d1v§d7-l (z)

e—0

_ 1 : : 1 o : n—1
_2/Q|Vpd1v§+/{mmm{27M}pdlvfd’H .

It then only remains to show that
hm 25/ Vo @ Ve : nger/ B|¢>€|2n®n DEdH™  (x)

;/Qu@@u D§“|Vp|+mlm<1 Jrﬂ)/ n@n: DE pdH* ().

This can be proven by combining the arguments above with how that term was handled in the case of
Dirichlet boundary conditions. Indeed, using (5.27)-(5.28) and (A.2), we can write (see the derivation

of (5.21)) above)

g £ . ~ VF((ZSE) VF(¢5) . _
25/QV¢ ® V¢© : DEdx o VE(6)) ® NEo)] : DE|VF(¢°)|da
_ [ VF(¢F) _ VF(¢°) o
= | WEe] © WE@e) | PEIVFOOII —g)de




DENSITY-CONSTRAINED CHEMOTAXIS AND HELE-SHAW FLOW 23

and so
25/V¢5®V¢5:D§dx+/ Y6520 @ n : DEAH™(x)
Q o0 ﬁ

VE(¢) | VF()
o [VF(7)] © [VF (&)

+ G(qsf)n@n:Dg@dH”—l(x)Jr/ 9|¢E|2n®n:D§(1—<p) dH"(x).
1219} o0 5

: DE|VF(¢)] (1 — o) dx—i—/Rd |§1€Ezi;| ® IVFEig : DE|VF(¢°)| ¢ dr

This term has the same structure as (5.31) and we can thus proceed as above, using (5.29)) and Corollary
[A7 to show that

hm25/V¢E®V¢E D§dx—|—/ ﬁ|¢6|2n®n DEAH" (z)

1/ Vp _Vp 1 Vp _Vp
= ® = :DE|Vp de + - / ® —— : DE|Vp|pdx
o Vol & wpl DIV = ety | Toa @ e PSP

o 1
+ mind0,—— — = yn®n: DEpdH" H(z)+ O
/m { o 2} £ pdH" () + O(0)
1 Vp _Vp
= ® —— : D¢ |Vp|dx
o o & ] - DEIVP

«

1 1
+ -n®n:D dH" (x +/ min{(), }n@n:D dH" 1 (z) + O9),
/892 Eppdr @)+ [ minfo, - £ dH" (2) + O(0)

and we conclude thanks to (5.23) by letting § — 0.

Proof of Lemma[5.4. We write (using ):
E_I/Qdiv ((1—2¢E)§)p:5_1/9p(1—2¢E)div§da?—2€_1/ﬂpv¢5~§d$c
_ —1 _ £\ 13 _9.—1 5 € . (4 € .
= /Qp(l 2¢°)div & dx — 2¢ /Q(b Vo fdm+2€/QA¢ V¢ - Eda
| - £\ 1: —1 £2 7. e € .
= /Q,o(l 2¢°)divédx + ¢ /Q¢ dlvfdx—i—ZE/QAqb V¢ - Edx
ze_l/[p—2p¢5+(¢5)2]div§dx+2€/ APV ¢© - Edux.
Q Q

For the first term, we write p — 2p¢° + (¢°)? = (1 — p)¢= + p(1 — ¢°)%. For the second term, we note
that

/ Ad)quf)e fdl‘ = —/ 8¢¢581‘j¢€€j dx — / 8i¢58j¢56i§j dx +/ 8i¢58j¢€§jyi d’Hnil(JJ)
Q Q Q oN

:—/V(|V¢E|2> gdaﬁ—/V(bE@V(bngdx_i_/ v¢anv¢5£dHn_1(x)
Q 2 o ”

1
*§/Q|V¢E|2div§dx7/gv¢5®v¢g:D{der/éngzSE~nV¢€~§dH"71(x).
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We deduce:
v (=209 p == [ (1= 9™ 4 p(1 - )Pldivedo e [ Vo Pdiveds
Q Q Q

Py /Q V" @ Vor : Deda + 2 /6 VOV R ).

When a = 0, we have V¢°© - n = 0 on 0f) so the last term vanishes. If 8 = 0, then ¢° = 0 on 9 and
since ¢ is tangential to 02, we have V¢© - £ = 0 on 92 and the last term vanish also. In both cases, we

get formula ([5.12).

In the case of general Robin boundary conditions (with in particular 8 # 0), we can write the last
term as:

25/ V6T nVe - am" N a) = 25 | 6TV EaH" T (a)
19}9) 20

= f% Vg € dH T (a).
N

Formula applied to ¥ = 99 (since £ - n = 0) gives
[ dvegan @) = [ nen: D@ dn @)
aQ a0
= / (¢°)’n®@n : DEAH" ().
oQ

Writing div (¢°2€) = V(|¢°[?) - € + |¢°]?div €, we deduce

2 V¢E~nV¢>E~§dH”_1(x):—g |¢5|2n®n;ngH"—1(x)+9/ |¢%|?div € dH™ (),
o0 /8 o0 6 o0

and so

-1 : o £ _ -1 o £\2 762'V EQiV
e [ (=299 =< [ [(0= )@ (0= 6" Pldivedat e [ Vo Paiveda

2 16 PdivedH (@) — 2¢ | V¢F @ Vg7 i DEd
+5 [ oPaivean @)~ 2 [ Voo Ve Deds

@ ¢*n@n : DEAH™(x),
B Joa

which is (5.13). O

6. JKO SCHEME AND CONVERGENCE OF THE DISCRETE TIME APPROXIMATION
The main result of this paper can also be proved at the level of the discrete time approximation
constructed in [I5]. Such a result can be relevant to some numerical applications so we will state it here.

We briefly recall the construction of the JKO scheme. For simplicity, we assume that fQ pin(z)dx = 1.
We denote by P() the set of probability measures on 2, and we define the domain of densities as

(6.1) K:={peP), p(z) <1 ae. inQ}.

In particular all p € K are absolutely continuous with respect to the Lebesgue measure and we can
identify the measure with its density. The set P () is equipped with the usual Wasserstein distance,
defined by

W2(pr,p2) = inf / & — y2dn(z,y),
m€ll(p1,02) JOxQ
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where II(p1, p2) denotes the set of all probability measures © € P(2 x Q) with marginals p; and ps.

The idea of the JKO scheme is to construct a time-discrete approximation of the solution by successive
applications of a minimization problem: For a given initial data p;, € K, we fix a time step 7 > 0
(destined to go to zero) and define the sequence p™ by:

1
(6.2) p° = pin,  p" € argmin {2W22(,0, P+ Fe(p); pe K} Vn > 1.
T

The fact that this problem has a minimizer is proved in [15, Proposition 2.1]. Furthermore, if 7™
is the unique optimal transport map from p” to p"~! (that is T"#p" = p"~! and WZ(p",p"!) =
Jo |z = T™(2)[2dp™), we define the velocity

_7n
v (x) = 2= T"(x)
-
and the pressure variable p™(z) such that
Pt ="V (¢ —p"),  p" € H,
with ¢°" solution of (|1.4) with p™. The existence of p" is shown in [15] Proposition 2.6].

We can then define the piecewise constant function p™¢,p™¢ : [0,T] — P(Q) by
(6.3) pTE(t) = pTtt forall t € [nT,(n+ 1)7),

' pTe(t) =ptl for allt € [nT, (n + 1)7).

The main result of [15] is the convergence of (p™%,p™%) when 7 — 0 with € > 0 fixed to a weak

solution of (|1.3)-(1.4). The proof of Theorem can easily be adapted to establish the convergence of
(p™%,p™°) to a weak solution of (L.13) when 7 and ¢ both go to zero:

Theorem 6.1 (Convergence when e,7 — 0). Given T > 0, consider an initial data p;n, = XE,, €

BV (92;{0,1}) and p > 0. Consider a subsequence (e, T,) with max{e,,7,} — 0. Then along a

subsequence (still denoted (e,,7,)), the discrete time approzimation p*™ converges to p strongly in

L*((0,7); LY(Q)) and ¢°™ converges to q weakly- in L*>((0,T); (C*(Q))*) (for any s > 0).
Furthermore, if the following energy convergence assumption holds:

T T
i [ @)= [ gl a

n—roo

then (p,q) is a weak solution of (1.13)) in the sense of Definition [1.3 with initial condition xp,, and
contact angle

. (12a>
Y = —min ’Oé-l-\/gﬁ .

We will not provide the details of the proof of this result which is a straightforward adaption of
the arguments presented in this paper to prove Theorem The key is to recall that the discrete
approximations p=” and p*" satisfy some approximation of equations (L.10)-(1.11)). Indeed, in addition
to p=7 and p=7, we can define the piecewise constant interpolations p™¢(z,t), p™*(x,t), v7%(x,t) and
@7 (z,t) by

Ve (t) 1= " for all ¢ € [n7,(n+1)7),

(6.4) PTE() = ¢° ") for all t € [nT, (n+ 1)7).

and the momentum
E5(x,t) = p7% (z, t)v (z, t).
Then we have (see [15]):
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Proposition 6.2. For any ( € C*(2 x [0,T)) and N such that N7 > T, there holds:

/ /EE*T-VCda?dt:_/pin( ¢(x,0) d:c—/ / T(x,t)0uC(x, t) da dt
0 Q Q

(6.5) +0 <||D Cllre@xry) ZW2 P2, p2 ) + 7]10kC 0o + TT|81€2C|OO> :
k=0
For any ¢ € C®(Q x (0,T);R?) satisfying & -n =0 on 95, there holds:
oo oo
(6.6) / / E*T - fdxdt = / / (e71pSTVST - E 4 ppSTdivE + poTdivE) da dt.
o Ja o Ja

Passing to the limit in the continuity equation (6.5) can be done exactly as in the case 7 — 0 with
e > 0 fixed (see [15]), while equation is exactly the same as our equation (I.11), so we can adapt
the proof presented in Sectionof the present paper to pass to the limit in and prove Theorem

APPENDIX A. A FEW FACTS ABOUT BV FUNCTIONS

We recall here some essential facts about BV functions which we use in our proof (we refer the reader
to [1] or [7] for details). First we have the classical result:

Proposition A.1. Let fi be a sequence of functions such that f, — f in L*(Q2) when k — oo. Then
tminf [ (@)Y= [ @)V
for all ¢ € C(Q) with ¢ > 0. Furthermore, if

[val= [ s

lim /Q @)V fil = /Q C@)Vf|  forall ¢ € C(9).

Remark A.2. If instead of assuming [, |Vfi] = [o|Vf], we only assume that [, o(x)|Vfi] —
Jo ©(@)|V f| for some ¢ € C(Q), ¢ >0, then we have

(A1) hm /C )|V fi| = /C x)|Vf] for all ¢ € C(2).

Indeed, since we can split ( into its positive and negative part, we can assume that ¢ > 0 and after
dividing by ||¢|lec, we can assume that 0 < ((z) < 1. We then have

0= hm/ )|V fr] — /QSO(fC)\Vf\
= i ([ cort@lval+ [0 -conp@ival- [ @ival)
> lim inf (/g )|V fi| — /< IVfI)

+lim inf (/Q(l—C(w))w(fE)ka—/(l— C(2))p(z )IVf|>

Since these two liminf are non-negative, they must both be zero. In particular we have liminfy_, o [, ¢(z)p()|V fi| =
fQ )|V f| and since this is true along any subsequence as well, - follows. Finally, we pomt

then
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out that if we only assume that

imsup [ G@)IVA| - [ o)V < C3
k—o0 Q Q
then the same argument implies

lim sup /Q C@)p(@)|V ful - / C(@)p(@)| V1] < C6

k— o0
for all { € C(2).

When the domain € has Lipschitz boundary any function f € BV(Q) has a well defined trace f|ao €
L'(0Q,H* 1) and the extension f of f to R? by 0 belongs to BV(R). Viewing Vf as a measure on R?
concentrated on €2, we have

Vi=Vi+fnH" aq

Lowi= [ s [ i

and (for all continuous function h : Q x S~1 — R)

(A2 fur (=) o= [ (o) 1901+ [ emsans=

We also need the following particular case of Reshetnyak’s continuity theorem (see [1] Theorem 2.39)

and so

Proposition A.3. Let fi be a sequence of function such that fi — f in L'(Q2) and fQ |V fi| dx —

Jo IV f|. Then
. Oifx Ojf _ af 0;f
tm | @RV = @ e e

for all ¢ € C(Q).

A proof of this result can be found for example in [1]. We provide below a short proof in our
particular case, using arguments which can be found in [27]. This proof can be adapted to give the
following localization of Reshetnyak’s theorem:

Corollary A.4. Let fi, be a sequence of function such that fr — f in L' (Q) and [, o(2)|V fi| dz —
Joe@)|IVf| for some ¢ € C1(Q), ¢ > 0. Then we have

. Oifk Ojf
lim

Oif 0;f
VIV

IV fil = ; ((x)p(x) \Zi

for all ¢ € CY(Q).

Proof of Proposition[A.3. We denote v} = I%J{kl € LY(Q, |V fx|) (the Radon-Nikodym derivative of ; fj
with respect to the measure |V fz|). Similarly, we note v; = |8 T First, we note that it is enough to
prove that under the conditions of the proposition we have
(A3) i [ C@PEIVAI = [ C@WPIVS i= L

k—oo Jq Q

for all ¢ € C(Q) with ¢ > 0 since we can write v;v; = 3[(v; +v)* — v} — V3.
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Given a vector field g = (g1, ... gn) € Ca(Q,R?) such that |g(z)| < 1 for all z, we write

‘/c VARIV £l - /c 2 |Vf|] \/c WAPI9A = [ a5
+] [ cwlaPvs - [ cla |Vf|]

12 _ 2
+] [ @l - [ v IVf|'~

llgil* = 1wil*| = lgi — vil lgs + vi| < 2|9 — vi

Since |gil, |vi| < 1, we have

and so for any d > 0 there exists Cs such that
[l9il® — [vif*] < 6+ Cs(gs —11)* <3+ Cslg —v|* <5 +2C5(1 - g-v)
where we used the fact that |g| < 1 and |v| = 1. We deduce

\ [t - [ <<a:>|ui|2|w|] < Sl (VA1) + IV A
Q Q
+205/Q<<x><1—g'uk>|ka|+zcg/9<<x)<1—g-v>|w|

‘ ] [ cwlalwal- [ c<x>|gi|2|Vf|].

We now pass to the limit & — oo. We note that the last term goes to zero thanks to Proposition [A.T
and we can pass to the limit in the other terms using Proposition [A.T and the fact that

/Q C@)g- vV il = /Q C()g- Vi = /Q div (Cg) i — — /Q div (Co)f
‘We deduce

/ LIV il / <<x>|ui|2|Vf|\ < 25C/1oo VA1 ()] + 4C5 ¢l oo / (1—g- v)|V/]
Q Q Q

lim sup
k—o0

< 261|C 1ol VFI()] + 4C5Cloo ( L= [ Vf)

We now take the infimum over all functions g € C}(€2, R?) such that |g(x)| < 1: the definition of the
BV norm implies that the last term goes to zero. We then let § — 0 to get the result. O

APPENDIX B. A LIONS-AUBIN COMPACTNESS RESULT

The following result is a simple adaptation of some standard result. We provide a proof for the sake
of completeness.

Lemma B.1. Let u, be a sequence of function bounded in L°°(0,T; L*(Q)) such that u,, is bounded in
L*((0,7); BV(Q)) and u,, — u in L>((0,T); H=1(Q)) Then

sup un(t) —u(t)|| L) — 0
te[0,7]



DENSITY-CONSTRAINED CHEMOTAXIS AND HELE-SHAW FLOW 29

Proof. Since [ |Vu,(t)| < C and u,(t) converges to u(t) in H~ (), we can show that u(t) € BV (Q)
and [ |[Vu(t)] < C.
Next we claim that for any > 0, there exists Cs such that
(B.1) vl @) < dllvlBvie) + Csllvllm-1(0)
for all v € BV(Q). This inequality can be proved via a compactness argument: If not, there exists dg > 0
such that for all k£ € N there exists vy, € BV(2) such that
lvellzr@) = dollveliBvie) + Kllvell -1 (o)-

We can always normalize vy so that ||vg||11(q) = 1. The inequality above then implies that vy is bounded
in BV(2) (and thus precompact in L!(Q)) and converges to zero (strongly) in H~1(€). It follows that
v), converges strongly to zero in L!(Q), which contradicts the normalization o]z o) = 1.

Inequality now gives:
lun(t) — u)l|Lr ) < Sllun(t) — w(t)llBvi) + Csllun(t) — u(t) | z-1 (o)
and the BV bound, together with the strong convergence in H~1(Q) implies
limsup [|un () = w(t)|| L= ((0,1)521 () < C.
Since this holds for all § > 0, we deduce
limsup [Jun — ul[ o ((0,7);21 (2)) =0

and the result follows.

ApPENDIX C. I'-CONVERGENCE OF _Z,
We wish to prove the following proposition which gives the I' convergence of #. to _Z:

Proposition C.1. The following holds:
(i) For any family {p}eso that converges to p in L*(£2),

lminf_#.() > folp).
(ii) Given p € L'(), there exists a sequence {p}e~o that converges to p in L'(Q) such that

1iI€n 1 SUp J=(p°) < _Zo(p).

We recall that this proposition is proved in [21] (Proposition 5.3) when _Z. is restricted to character-
istic functions. We show below how the proof can be adapted to our more general case.

Proof of Proposition|[C.1. First, we note that the limsup properties (part (ii)) follows from the corre-
sponding result in [21, Proposition 5.3] . Indeed, if p ¢ BV(€;{0,1}), then #y(p) = oo and there is
nothing to prove, while if p € BV(Q;{0,1)} then p = xg for some E satisfying P(E) < oo, so [21}
Proposition 5.3] applies.

To prove the liminf property (part (i)), we need to slightly modify the proof of |21, Proposition 5.3]
by using the formula (2.2)) instead of (2.1) for #.. We only provide details in the case of Neumann
and Dirichlet conditions (the Robin boundary condition is then proved combining both arguments, as
in [21]).

Neumann boundary conditions (« = 0). If liminf. .o _#.(p°) = oo, there is nothing to prove, so
we can assume (up to a subsequence) that #.(p°) < C and liminf._,o _Z.(p°) < co. Up to another
subsequence, we can also assume that p° — p a.e. in Q.
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Next, we recall that (2.2) gives

1
" 20

(©1) J0) = g [ 0)0d P 1 =00 d 4 5 [ (VP o

and introducing the functions (both defined for ¢ € [0, 1])

for0<t<1/2

t2
20—t —1 for1/2<t<1

F() = 2min(t,1— 1), F(t) :/O F(7)dr = {

we find (see (4.3)):
(€2) 5573 | [VP06") do < £.).
Furthermore, give
S0 = g0 [ = pdot o [0+ S [ 9o s

which implies
7 =) < 20 () <
Q
and

/ p°(1 = p°)dx < 20e _f.(p°) < Ce.
o

The first inequality implies that o¢® converges in L? to p. The second inequality implies that that p = 0
or 1 a.e. in €.
We deduce that F(0¢®) converges (strongly in L' for example) to F(p) = 3p (since F(0) = 0 and

F(1) =1/2), and (C.2) gives

o c 1 __1 _
limint 7.(0%) > 35 [ IVF()lde = s [ Velde = 7o)

Dirichlet boundary conditions. We still have (C.1)) and thus (C.2) in this case, but since ¢° = 0 on
011, we can extend the function ¢° by zero outside 2. Denoting by ¢¢ this extension, we find

1 1 _
FA) = 5o [ IVF@) o = s [ 9P| do

and so (proceeding as above)

1 1
imi )y > \V4 - \V4
hgnﬁl(I)lf ja (p ) 2()3/2 /Rn | F(p)| de 4o 3/2 /Rn | p| de

= F{s/z {/Q|Vp|dx+/mde"_l($)}
:/O(P)'
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