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Abstract. We study the incompressible limit of the porous medium equation with a reaction term
that is non-monotone with respect to the pressure variable. More specifically we consider reaction
terms that are either bistable or monostable. We show that this type of reaction term generates many
interesting di↵erences in the qualitative behavior of solutions, in contrast to the problem with monotone
reaction terms that have been extensively studied in recent literature. After characterizing the limit
problem, we embark on a comprehensive study of the problem in one space dimension, to illustrate
the delicate nature of the problem, including the generic nature of non-uniqueness and instability. For
compactly supported initial data, we show that the density can either perish or thrive, even if it starts
from the same initial data, depending on its initial pressure configuration. When the initial pressure is
a characteristic function, we establish the existence of the sharp threshold separating the two behaviors.
Lastly we present a detailed analysis of the behavior of traveling waves in this incompressible limit.
We study the existence of traveling waves for the limiting model and prove convergence results in the
incompressible limit (depending on the reaction term).

1. Introduction

1.1. A degenerate reaction di↵usion equation and its incompressible limit. We consider the
following porous media equation with a reaction term:

(1.1)

(
@t⇢� div (⇢rp) = ⇢f(p), p = Pm(⇢) := m

m�1⇢
m�1 in Rn

⇥ R+

⇢(x, 0) = ⇢in,m(x) in Rn

where f is a Lipschitz continuous function. This is a very classical equation which arises in many
applications, and it has been studied extensively in recent years as a mechanical model for tumor growth,
see for instance [19], [20] and references therein. In this context several papers have investigated the
asymptotic behavior of the solution of (1.1) in the so-called incompressible regime, corresponding to
the limit m ! 1 [1, 6, 7, 12, 13, 19, 18, 8] In the context of tumor growth, it is typically assumed that
p 7! f(p) is monotone decreasing and satisfies

(1.2) f(p)  0 for p � pM ,

Under such a monotonicity assumption, the nonlinearity g(⇢) := ⇢f(p) = ⇢f( m

m�1⇢
m�1) is a Fisher-

KPP nonlinearity [4, 14]. Indeed, we trivially have g(⇢) > 0 in (0, ⇢M ), g(⇢) < 0 in (�1, 0)[ (⇢M ,+1)
and the condition g(⇢)  g0(0)⇢ is equivalent to f(p)  f(0) for all p � 0.

The goal of this paper is to understand the dynamic of this problem, still in the regime m � 1, but
when we remove the monotonicity assumption on f (but still assume (1.2) to have uniform bounds on
the pressure). A simple example that we have in mind is the following quadratic function:

(1.3) f(p) = (1� p)(p� ↵), ↵ 2 [0, 1),

Z 1

0
f(s) ds > 0,
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although our analysis will not be restricted to this case. The reaction-di↵usion equation (1.1)-(1.3) can
be used to model the propagation of a biological population whose tendency to disperse depends on the
population density when the nonlinearity (1.3) takes into account a weak (↵ = 0) or strong (↵ > 0)
Allee e↵ect (which assumes a reduced, or negative, growth rate at low density [9]). When ↵ 2 (0, 1),

the function g(⇢) = ⇢f(p) = ⇢f
⇣

m

m�1⇢
m�1

⌘
is a bistable reaction term while when ↵ = 0, g is a

monostable nonlinearity.
In the context of tumor growth, such a function f can be used to model the competition between

drugs invading the tumor and the contact inhibition of tumor cells. Indeed, in classical tumor models,
drugs are injected far from the tumor and di↵use toward the tumor (see [5]). They therefore act mostly
on the cells in the regions with lower pressure, namely near the periphery of the tumor, while deep
inside the tumor the natural growth due to cell division dominates the dynamic. Naturally one could
ask whether this problem yields a stable evolution of the tumor zone. We will prove that it is not
the case and that non-uniqueness may occur in the incompressible limit. Furthermore we will see that
the tumor region may disappear or thrive with the same initial configuration, depending on its initial
pressure. This is in contrast to the case with monotone f , where the evolution of the tumor is uniquely
determined by its initial configuration.

Note that we could easily extend our result to more general settings, in particular to inhomogeneous
f that depends also on time and space. In the context of tumor growth, this could include models that
take into account spatial in-homogeneities or dependence of f on the concentration of nutrient. We will
keep the framework simple to focus on the non-monotonicity of f with respect to the pressure variable
and its consequences.

1.2. Known results when p 7! f(p) is decreasing. Before stating our main results, we briefly recall
here the most important aspects of the analysis when p 7! f(p) is monotone decreasing (and satisfies
(1.2)): For appropriate initial data ⇢in,m, satisfying in particular pin,m  pM and ⇢in,m ! ⇢in, the
following basic properties have been proved

(1) The functions ⇢m(x, t) and pm(x, t) are bounded in L1(Rn
⇥ R+) and in BV (Rn

⇥ (0, T )) and
converge (strongly in L1

loc
and a.e.) to ⇢1(x, t) and p1(x, t).

(2) The pair (⇢1, p1) is solution (in the sense of distribution) of

(1.4)

(
@t⇢1 = �p1 + ⇢1f(p1) in Rn

⇥ R+

⇢1(x, 0) = ⇢in(x) in Rn

and satisfies the Hele-Shaw graph condition

(1.5) p1 2 P1(⇢1) :=

8
<

:

0 if ⇢1 < 1
[0,1) if ⇢1 = 1
1 if ⇢1 > 1.

Furthermore, the problem (1.4)-(1.5) has a unique weak solution in L1((0,1);L1(Rn)\L1(Rn),
with ⇢ 2 C([0,1);L1(Rn)).

(3) For all t > 0, p1(·, t+) (defined as the trace of the BV function p1) is the unique solution p⇤

of the obstacle problem

(1.6)

(
p⇤ � 0, �p⇤ + f(p⇤)  0, in {⇢1(·, t) = 1}

�p⇤ + f(p⇤) = 0 in {p⇤ > 0}.

The first two points are proved in [19], while the characterization of p1(·, t+) as the solution of an
elliptic obstacle problem (1.6) for all t > 0 is proved in [12]. We can interpret (1.4)-(1.5) as a Hele-Shaw
type free boundary problem in which the saturated set ⌦(t) = {⇢1(·, t) = 1} expands with normal
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velocity proportional to the pressure gradient (see [12] for a rigorous statement). We note that these
results hold if f depends on (x, t) as well, provided the function p 7! f(x, t, p) satisfies (1.2) for all (x, t).
But the monotonicity of p 7! f(p) plays a crucial role in the proof of the results above. Without it, we
will see that neither the obstacle problem (1.6) nor the asymptotic equation (1.4)-(1.5) can be expected
to have a unique solution. Even the derivation of the BV bounds, crucial to derive strong convergence
of the density variable, appears to require this assumption.

1.3. Main results: General case. We will first state the result that one can show for general function
f satisfying the condition (1.2) (but no monotonicity). We start with the following proposition:

Proposition 1.1. Assume that f is a Lipschitz function satisfying (1.2) and that the initial condition
⇢in,m is a non-negative function such that

(1.7) ⇢in,m 2 L1(Rn), pin,m = Pm(⇢in,m)  pM a.e. in Rn.

Then, the solution (⇢m, pm) of (1.1) satisfies the following:
(i) ⇢m(x, t) and pm(x, t) are uniformly bounded in L1(Rn

⇥ R+) \ L1(0, T ;L1(Rn)) for all T > 0. Up
to a subsequence, ⇢m and pm converge weakly-⇤ in L1 to ⇢1 and p1.
(ii) pm is uniformly bounded in L2(0, T ;H1(Rn)) and ⇢m is uniformly bounded in C1/2(0, T ;H�1(Rn))
for all T > 0.
(iii) Any accumulation point (⇢1, p1) of {(⇢m, pm)}m�1 satisfies the Hele-Shaw graph condition (1.5)
a.e. in Rn

⇥ R+.

However, the lack of BV estimates, or more precisely the lack of strong convergence and almost
everywhere convergence of pm, is hindering further characterization of the limit. In particular, passing
to the limit in the equation (1.1) to show that (⇢1, p1) solves (1.4) is very delicate since the nonlinear
term f(pm) might not converge to f(p). Nevertheless, we can observe that f(pm) is bounded in L1(Rn

⇥

R+)\L2(0, T ;H1(Rn)). We can thus assume, up to another subsequence, that there exists g 2 L1(Rn
⇥

R+) \ L2(0, T ;H1(Rn)) such that

(1.8) f(pm) * g weak-* in L1(Rn
⇥ R+).

With this weak limit we can still characterize the limit pressure:

Proposition 1.2. Under the assumption of Proposition 1.1 and for a subsequence such that (1.8) holds,
the limit (⇢1, p1) satisfies, in the sense of distribution,

(1.9)

(
@t⇢1 = �p1 + ⇢1g, p1(1� ⇢1) = 0 in Rn

⇥ R+

⇢1(x, 0) = ⇢in(x) in Rn.

Furthermore, for a.e. t > 0 the function q = p1(·, t) is in H1(Rn) and satisfies

(1.10)

Z

Rn

rq ·r�� g� dx = 0

for all � 2 H1(Rn) such that �(x)(1� ⇢1(x, t)) = 0 a.e. x 2 Rn.
Finally, if f is concave, then g  f(p1) and if f is convex then g � f(p1): in particular, if f is linear,
then g = f(p1).

Since pm is bounded in L2(0, T ;H1(Rn)), we see that the lack of strong convergence of pm is due to
the possibility of oscillating behavior in time. While we do not yet know if such oscillations actually
happen, it is plausible given the non-uniqueness of the expected limiting pressure equation ��p = f(p)
(see the discussion below). This issue can be avoided if we can guarantee that the solution of (1.1) is
monotone in time which is true for some particular initial data. Indeed, we have:
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Proposition 1.3. Assume that the initial pressure pin,m satisfy

�pin,m + f(pin,m)�{pin,m>0} � 0 in Rn

for m � m0. Then pm and ⇢m are non-decreasing in time, and, up to a subsequence, pm converges to
p1 strongly in L1

loc
and a.e. in Rn

⇥ R+. In particular, we can assume that

g = f(p1)

in Proposition 1.2. In other words, (⇢1, p1) solves (1.4)-(1.5).

In the cases in which we are able to prove that g = f(p1) (e.g. for linear f or for monotone-in-
time solutions), it is natural to ask whether (1.4)-(1.5) actually identifies the limit (⇢1, p1) uniquely.
This would imply the convergence of the whole sequence (⇢m, pm). Such a result, which was proved
in [19] with monotone decreasing f , does not hold in general. As we will prove below in the simple
one dimensional framework, such uniqueness is false even for relatively simple f , such as the quadratic
function given by (1.3). This is not so surprising. Indeed, equation (1.9) typically identifies a unique
pressure function p1(·, t) as the solution of the elliptic problem (1.10). But without the monotonicity
of f this problem is not well-posed. Indeed, given a set ⌦, it is well known [2, 3, 15] that the Dirichlet
problem

(1.11)

(
��q = f(q) in ⌦

q = 0 on @⌦

is well posed if f is monotone decreasing, or if Lipf  �⌦ where �⌦ denotes the first eigenvalue of the
laplacian in ⌦. But in general, even if f is linear, this boundary value problem might have no solution
or multiple solutions.

1.4. Monostable and bistable reaction term in dimension 1. For any given m > 1, equation (1.1)
is well posed, but as m ! 1, the discussion above suggests it is asymptotically close to a potentially
ill-posed problem. This suggests a relatively unstable dynamic when m � 1. In order to illustrate the
non-uniqueness of the limit problem and to better understand the dynamic of (⇢m, pm) when m � 1,
we will now focus on the simpler one-dimensional framework. Throughout this section, we assume that
f satisfies one of the following conditions:

Either

(1.12) f(p) > 0 in (↵, pM ), f(p) < 0 in [0,↵) [ (pM ,1) for some ↵ 2 (0, pM ),

or (satisfied with f given by (1.3) with ↵ = 0)

(1.13) f(0) = 0, f(p) > 0 in (0, pM ), f(p) < 0 in (pM ,1).

Above conditions are satisfied with f given by (1.3), (1.12) for ↵ 2 (0, pM ] or (1.13) for ↵ = 0. It is

easy to check that the reaction term ⇢ 7! ⇢f(p) = ⇢f
⇣

m

m�1⇢
m�1

⌘
in (1.1) is a bistable nonlinearity in

case (1.12) and a monostable nonlinearity in case (1.13). In the sequel we will thus refer to (1.12) and
(1.13) respectively as the bistable and the monostable case.

For the standard bistable reaction-di↵usion equation (with linear di↵usion), the dynamic strongly
depends on the sign of the integral of the reaction term. For the nonlinear di↵usion equation (1.1), the
relevant integral (see for example Theorem 1.7 below) is

Z
⇢M

0
⇢mf

✓
m

m� 1
⇢m�1

◆
d⇢ =

Z
pM

0

1

m

✓
m� 1

m
p

◆ 2
m�1

f(p) dp.
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Figure 1. Solutions of equation (1.15) on [�L,L] for various values of L when
f(p) = (1 � p)(p � 1/4). The picture on the right, which is a close up near the
boundary x = L, clearly shows that two solutions exists for some values of L.

In the regime m � 1, many results below will thus depend on the sign of the integral
R
pM

0 f(p) dp. We
also introduce the constant K defined by

(1.14) K := sup
p>0

f(p)

p
< 1

(since f(0)  0, we have in particular K  Lip(f)).

1.5. The pressure equation. The first step is to study the semi-linear boundary value problem (1.11)
which determines the limiting pressure. In one dimension, we have:

(1.15)

(
�u00 = f(u), u � 0 in (0, L)

u(0) = u(L) = 0.

When f satisfies (1.13) (↵ = 0), then (1.15) has a solution u = 0, which we referred to as the trivial
solution below. Even in that case, it may also have non-trivial solution, as shown by the following
result:

Proposition 1.4. Assume that f is a Lipschitz function satisfying (1.12) or (1.13).
If
R
pM

0 f(s) ds < 0 then (1.15) has no solution.
If
R
pM

0 f(s) ds > 0, then there exists L0 �
⇡p
K

(with K given by (1.14)) such that

(i) If L < L0 then (1.15) has no non-trivial solution.
(ii) If L > L0 then (1.15) has at least one non-trivial solution with support (0, L).

We note that u = 0 is a solution of (1.15) in the monostable case (1.13) but not in the bistable case
(1.12), so (1.15) does not have any solution in the bistable case (1.12) when L < L0. We will also show
that L0 > ⇡p

K
except in the degenerate case where f(p) = Kp for small p > 0. Numerical computations

in the case ↵ > 0 (see Figure 1) show that, at least for some L > L0, (1.15) might have two non-trivial
solutions. A rigorous verification of this non-uniqueness is given in Remark 4.2.

This proposition proves that the characterization of p1 given in Proposition 1.2 does not necessarily
provide a unique characterization for the limit pressure. In addition we will see below that, unlike the
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case studied in [19, 12] and others, the behavior of (⇢1, p1) is not uniquely determined by the initial
condition ⇢in. Note that even if we are given both ⇢in and pin, it is not obvious that there is a unique
solution for the limiting problem, but we do not address this issue here.

1.6. Propagation vs extinction for compactly supported initial data. We establish this fact
by studying the classical question of the long-term survival or extinction of bistable populations in this
incompressible setting (in the framework of tumor growth, the question can be recast as: who wins?
the tumor or the drugs?).

First we show that if the normalized initial pressure pin,m/pM is a characteristic function, then a
sharp threshold appears depending on the length of the support of ⇢in,m when f is in addition assumed
to be concave (for instance when f is given by (1.3))

Theorem 1.5. Assume that f is a Lipschitz function satisfying (1.12) or (1.13) and that it is concave.
Assume further that the initial condition is such that

(1.16) pin,m = pM�(0,L) for some L > 0

and let (⇢1, p1) be a limit point of (⇢m, pm) with L1
� ⇤ topology. Then the following holds:

1. If
R
pM

0 f(s) ds < 0, then p1(x, t) = 0 a.e. in R ⇥ R+ and ⇢1(t, x) = ⇢in(x)ef(0)t for all t > 0.
2. If

R
pM

0 f(s) ds > 0, then, with L0 as given in Proposition 1.4,

(i) If L < L0 then p1(x, t) = 0 a.e. in R ⇥ R+ and ⇢1(t, x) = ⇢in(x)ef(0)t for all t > 0.
(ii) If L > L0, then limt!1 ⇢1(t, x) = 1 for all x 2 R.

We point out that when
R
pM

0 f(s) ds < 0 or
R
pM

0 f(s) ds > 0 and L < L0, the limit (⇢1, p1) =

(⇢in(x)ef(0)t, 0) is unique and therefore the whole sequence (⇢m, pm) converges. When ↵ = 0, we then
have ⇢1(t) = ⇢in for all t > 0, while when ↵ > 0, we find limt!1 ⇢1(t, x) = 0 for all x 2 R. In the last
case (ii), we can characterize the long time behavior of ⇢1 (for any accumulation point), but we do not
prove that the limit is unique.

This sharp transition between extinction and propagation is reminiscent of a similar result for the
reaction-di↵usion equation with ignition nonlinearity (see [23]).

When (1.16) holds, the initial density satisfies

⇢in,m =

✓
m

m� 1
pM

◆ 1
m�1

�(0,L) ! �(0,L).

However, we can have many di↵erent sequences of initial pressure pin,m (which do not satisfy (1.16))
for which we also have ⇢in,m ! �(0,L) and it is easy to see that the behavior of ⇢1 is not uniquely
determined by ⇢in = lim ⇢in,m, but also depends on pin = lim pin,m. For example, when

R
pM

0 f(s) ds > 0
and L > L0, we can have (1.16) and thus limt!1 ⇢1(t, x) = 1 as in Theorem 1.5. But we can also
have ⇢in,m ! �(0,L) with pin,m(x)  ↵ � �. Since ↵ � � is a supersolution for (1.1), we can easily
show that any an accumulation point of {(⇢m, pm)}m�1 is such that p1(x, t) = 0 a.e. in R ⇥ R+ and
limt!1 ⇢1(t, x) = 0 for all x 2 R.

This illustrates the unstable nature of the dynamic of (1.1) when m � 1.

Finally, we note that Theorem 1.5 requires the assumption that f is concave. When f is not concave,
it is not clear that we still have a sharp threshold, but we can prove the following:

Proposition 1.6. Assume that f is a Lipschitz function satisfying (1.12) or (1.13) and that the initial
condition satisfies (1.7) and

pin,m  pM�(0,L) for some L < L⇤ :=
⇡

p
K
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(with K defined by (1.14)). Then any accumulation point (⇢1, p1) of (⇢m, pm) (for the L1
�⇤ topology)

satisfies

p1(x, t) = 0 and ⇢1(x, t) = ⇢in(x)e
f(0)t a.e. in R ⇥ R+.

1.7. Traveling Wave Solutions. Finally, we address a classical question with any reaction-di↵usion
equation: the existence and behavior of traveling wave solutions joining the two equilibrium ⇢ = 0 (and

p = 0) and ⇢+
m

:=
�
m�1
m

pM
� 1

m�1 (corresponding to p = pM ). Traveling wave solutions of the reaction-
di↵usion equation (1.1) are global in time solutions of the form ⇢(x, t) = ⇢̄(x � ct) with ⇢̄ 2 C(R)
satisfying

(1.17) � c⇢̄0 = (⇢̄p̄0)0 + ⇢̄f(p̄), where p̄ =
m

m� 1
⇢̄m�1 in R

together with the limit conditions

(1.18)

(
limy!�1 ⇢̄(y) = ⇢+

m

limy!+1 ⇢̄(y) = 0.

Existence and uniqueness of traveling waves for this degenerate di↵usion-reaction equation have been
extensively studied, in particular, by Gilding and Kersner in [11]. The results depend strongly on the

nonlinearity ⇢ 7! ⇢f
⇣

m

m�1⇢
m�1

⌘
and we summarize in the two theorems below the properties that are

relevant to our analysis:

Theorem 1.7. [Traveling wave of the m-equation - Bistable case] Assume that f satisfies (1.12). For
all m � 1, there exists a unique (up to translation) solution (⇢̄m, c⇤

m
) of (1.17)-(1.18). ⇢̄m is monotone

decreasing and the velocity c⇤
m

has the same sign as

Z
⇢
+
m

0
⇢mf

✓
m

m� 1
⇢m�1

◆
d⇢.

Furthermore ⇢+
m
� ⇢̄m(x) and its derivative up to order 2 decay exponentially fast at �1 and

(i) If c⇤
m

< 0 then Supp ⇢̄m = R and ⇢̄m(x) and its derivative up to order 2 decay exponentially fast at
+1.
(ii) If c⇤

m
� 0 (and m > 1), then (up to a translation) Supp ⇢̄m = (�1, 0) and when c⇤

m
> 0, we have

limx!0� p̄0
m
(x) = �c⇤

m
.

We refer to [11] for the proof of this result. In particular, the existence of a unique traveling wave
in our framework follows from Theorem 41 and Corollary 41.1. The support properties of the traveling
wave follow from Theorem 45 and the limit limx!0� p̄0

m
(x) = �c⇤

m
is proved in Theorem 46. We point

out that
Z

⇢
+
m

0
⇢mf

✓
m

m� 1
⇢m�1

◆
d⇢ =

Z
pM

0

✓
m� 1

m
p

◆ 2
m�1

f (p)
1

m
dp

which has the same sign, for m large enough, as
R
pM

0 f(p) dp.

Theorem 1.8. [Traveling wave of the m-equation - Monostable case] Assume that f satisfies (1.13).
For all m � 1 there exists c⇤

m
such that (1.17)-(1.18) has a unique traveling wave with speed c for

all c � c⇤
m
, and no traveling waves exist when c < c⇤

m
. For c � c⇤

m
, ⇢̄m is monotone decreasing and

⇢+
m
� ⇢̄m(x) and its derivative up to order 2 decay exponentially fast at �1. Moreover

(i) If c = c⇤
m
, then Supp ⇢̄m = (�1, 0) and limx!0� p̄0

m
(x) = �c⇤

m
.

(ii) If c > c⇤
m
, then Supp ⇢̄m = R.
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The existence of a unique traveling wave for c � c⇤ follows from [11, Theorem 33]. The support
property of the traveling waves (points (i) and (ii)) follows from Theorem 38 in that same paper.

Next, we consider the limit equation (1.4)-(1.5). As before, traveling waves are solutions of (1.4)-(1.5)
of the form ⇢(x, t) = ⇢̄(x� ct). In particular, ⇢̄ must solve

�c⇢̄0 = p̄00 + ⇢̄f(p̄), p̄ 2 P1(⇢̄),

Furthermore, a traveling wave should connect equilibrium points, that is solutions of ⇢̄f(p̄) = 0, p̄ 2

P1(⇢̄). We note that

⇢̄f(p̄) =

(
f(p̄) if ⇢̄ = 1

⇢̄f(0) if ⇢̄ < 1

When f satisfies (1.12) (bistable), the only solutions are (⇢̄, p̄) = (0, 0) and (⇢̄, p̄) = (1,↵) or (1, pM ).
Since (1,↵) is unstable, we will be looking for traveling waves connecting (0, 0) and (1, pM ). When
f satisfies (1.13) (monostable), we have f(0) = 0 so any (⇢̄, p̄) = (`, 0) is an equilibrium point for all
` 2 [0, 1). We will be looking for traveling waves connecting (`, 0) and (1, pM ). Summarizing, we adopt
the following definition:

Definition 1.9. We say that (⇢̄(x), p̄(x)) is a traveling wave of (1.4)-(1.5) if x 7! p̄(x) and x 7! ⇢̄(x)
are non-increasing and there exists c such that

(1.19) � c⇢̄0 = p̄00 + ⇢̄f(p̄), p̄ 2 P1(⇢̄) in the sense of distribution

with the boundary conditions

(1.20)

(
limx!�1 ⇢̄(x) = 1

limx!+1 ⇢̄(x) = `
and

(
limx!�1 p̄(x) = pM
limx!+1 p̄(x) = 0

with ` = 1 in the bistable case and ` 2 [0, 1) in the monostable case.

Remark 1.10. It is likely unnecessary to assume that p̄ and ⇢̄ are monotone to get uniqueness of the
traveling waves. We choose to assume this given our context: since we are interested in the limits of
the traveling waves given by Theorems 1.7 and 1.8, the monotonicity will be an immediate consequence
of the monotonicity of ⇢̄m.

Let us point out that the limiting problem has some interesting degeneracies (see Proposition 5.1).
For example, if f satisfies (1.12) and

R
pM

0 f(p) dp � 0, then there exists a solution of (1.19) for all c < 0
with periodic p̄(x) in (�1, 0) and monotone ⇢̄. This solution does not satisfy limx!�1 p̄(x) = pM .
Note also that when f(0) = 0 (monostable case) and c = 0, the equation (1.19) has infinitively many
solutions found by taking p̄ ⌘ 0 and any function ⇢̄ < 1.

With this definition, we can prove the following proposition (to be compared with the classical result
for the semilinear reaction-di↵usion equation [10]):

Proposition 1.11. We can classify the travelling waves of (1.4)-(1.5) as follows:

A. Suppose f is bistable, i.e. that it satisfies (1.12).
(i) If

R
pM

0 f(p) dp < 0, then there exist no traveling waves of (1.4)-(1.5) (for any c 2 R).

(ii) If
R
pM

0 f(p) dp = 0, then there exist a traveling wave of (1.4)-(1.5) for all c  0. If c < 0
then Supp ⇢̄ = R, while for c = 0 we have Supp ⇢̄ = (�1, 0). In both cases, ` = 0.

(iii) If
R
pM

0 f(p) dp > 0, then there exists a unique (up to translation) traveling wave of (1.4)-
(1.5). It satisfies (1.20) with ` = 0 and its speed is given by

c⇤ :=

✓
2

Z
pM

0
f(p) dp

◆1/2

.
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B. Suppose f is monostable, i.e. that it satisfies (1.13). Then for all ` 2 [0, 1) there exists a unique
(up to translation) traveling wave with non-zero speed satisfying (1.20). Its speed is given by

c(`) =
1

1� `

✓
2

Z
pM

0
f(p) dp

◆1/2

� c⇤.

We will also show that, up to translation, the traveling waves are given by ⇢̄ = �(�1,0) + `�(0,+1)

and p̄ as a solution h of

(1.21) h00 + f(h) = 0 in (�1, 0), h(�1) = pM , h(0) = 0.

Lastly, we consider the traveling wave (⇢̄m, c⇤
m
) of (1.1) given either by Theorem 1.7 or by Theorem

1.8 with the minimal speed. We then have the following result:

Theorem 1.12.
(i) If f satisfies (1.12) and

R
pM

0 f(p) dp < 0, then there exists m0 and ⌘0 > 0 such that

(1.22) c⇤
m

 �⌘0m for all m � m0.

In particular c⇤
m

! �1 and pm ! 0 as m ! 1.
(ii) If f satisfies (1.12) and

R
pM

0 f(p) dp > 0, or if f satisfies (1.13), then (⇢̄m, p̄m, c⇤
m
) converges to the

unique traveling wave of (1.4)-(1.5) with ` = 0. In particular

lim
m!1

c⇤
m

=

✓
2

Z
pM

0
f(p) dp

◆1/2

.

This theorem does not consider the case
R
pM

0 f(p) dp = 0. One issue in that case is that the sign of
R
⇢
+
m

0 ⇢mf
⇣

m

m�1⇢
m�1

⌘
d⇢ might change as m ! 1. Also missing in the statement is the behavior of

the traveling waves with speed c > c⇤
m

in the monostable case. We recall that for a given c > c⇤, there
exists a traveling wave ⇢̄m of (1.1) (for m large enough). The expectation is that, after translation,
this traveling wave converges to the traveling wave of (1.4)-(1.5) with ` determined by the condition
c = 1

1�`
c⇤ (that is ` = 1� c

⇤

c
given by Proposition 1.11-B.

Outline for the rest of the paper: In the next section we briefly recall and prove some well-
known fundamental properties of the porous media equation (1.1). Section 3 is then devoted to the
proof of our results in the general case (namely all the theorems and propositions presented in Section
1.3 above) while sections 4 and 5 focus on the particular one-dimensional case: In Section 4 we establish
the asymptotic behavior of the solution for compactly supported initial data, while Section 5 is devoted
to traveling waves solutions.

2. Preliminaries: The porous media equation (1.1)

We recall here some important properties of the porous media equation (1.1) which we will use
throughout the paper. We refer to [22] for the proofs of these results (and much more). First, the
degenerate di↵usion - reaction equation (1.1) is well-posed. Indeed we have:

(1) Let ⇢k
in

be a sequence of smooth approximations of ⇢in,m in L1(Rn), satisfying in particular
⇢k
in

�
1
k
. Then (1.1) has a unique smooth solution ⇢k with initial condition ⇢k

in
.

(2) When k ! 1, ⇢k converge to a solution of (1.1) locally uniformly in L1(Rn
⇥ R+).

(3) The solution obtained this way is in fact the unique solution of (1.1).

This last point follows from the following lemma which we prove below for the reader’s sake:
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Lemma 2.1. Given ⇢1(x, t) and ⇢2(x, t) two solutions of (1.1), we have
Z

Rn

(⇢1 � ⇢2)+(x, t)dx  eC(m+1)t

Z

Rn

(⇢1 � ⇢2)+(x, 0)dx 8t > 0,

where C depends on sup f , sup f 0
+ and k⇢ikL1 but is independent of m. In particular, if ⇢1(x, 0) 

⇢2(x, 0) then ⇢1(x, t)  ⇢2(x, t) for all t > 0.

This lemma implies in particular the uniqueness, comparison property and L1 stability of (1.1) for
any m > 1. Of course, when m � 1, the stability estimate blows up, which is not surprising since we
will prove that when m ! 1 the limit equation exhibits non-uniqueness in some cases. Nevertheless,
Lemma 2.1 implies that if we consider solutions with ordered initial data, they will be ordered in the
limit m ! 1. We also recall that stability results that are uniform in m can be obtained when p 7! f(p)
is monotone decreasing (see [19]).

Proof. The proof is classical (see [22]): let ��(s) be a smooth approximation of sign+(s) such that
��(s) = 0 if s < 0, 0  ��(s)  1 and �0

�
(s) � 0 for all s. Denoting w := ⇢m1 � ⇢m2 , we can write:

Z

Rn

(⇢1 � ⇢2)t��(w)dx =

Z

Rn

�w��(w)dx+

Z

Rn

(f(p1)⇢1 � f(p2)⇢2)��(w)dx

= �

Z

Rn

|rw|2�0
�
(w)dx+

Z

Rn

f(p1)(⇢1 � ⇢2)��(w)dx+

Z

Rn

(f(p1)� f(p2))⇢2��(w)dx

 (sup f)

Z

Rn

(⇢1 � ⇢2)+dx+ k⇢2kL1(sup f 0)

Z

Rn

(p1 � p2)+dx

 [sup f +mk⇢2kL1k⇢1k
m�2
L1 (sup f 0)]

Z

Rn

(⇢1 � ⇢2)+dx.

Passing to the limit � ! 0 and using the fact that sign+(⇢m1 � ⇢m2 ) = sign+(⇢1 � ⇢2), we deduce

d

dt

Z

Rn

(⇢1 � ⇢2)+dx  C(m+ 1)

Z

Rn

(⇢1 � ⇢2)+dx,

and the result follows. ⇤

3. General nonlinearity: Proofs of the main results

3.1. Proof of Proposition 1.1. We start with the following lemma, which is a consequence of the
comparison principle and Assumption (1.2):

Lemma 3.1. Under the assumptions of Proposition 1.1, the functions ⇢m and pm are uniformly bounded
in L1(R+ ⇥ Rn) and L1((0, T );L1(Rn)) with respect to m.

Proof. We recall that the pressure pm solves

(3.1) @tp = (m� 1)p(�p+ f(p)) + |rp|2

so the comparison principle and (1.7) gives 0  pm(x, t)  pM and 0  ⇢m(x, t)  p
1

m�1

M
. Integrating

(1.1) gives

d

dt

Z

Rn

⇢m(x, t) dx 

 
sup

p2[0,pM ]
f(p)

!Z

Rn

⇢m(x, t) dx

which implies the bound for ⇢m in L1((0, T );L1(Rn)). Since pm 
m

m�1p
m�2
m�1

M
⇢m, the corresponding

bound for pm follows.
⇤
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Lemma 3.2. Under the assumptions of Proposition 1.1, the pressure pm satisfies (for all T > 0):

(3.2) krpmk
2
L2(QT ) 

m� 1

m� 2

 
sup

p2[0,pM ]
f(p)

!
kpmkL1(QT ) +

1

m� 2
kpin,mkL1(Rn),

where QT := Rn
⇥ [0, T ], and the density ⇢m is uniformly bonded in C1/2(0, T ;H�1(Rn)).

Proof. Integrating the pressure equation (3.1) gives

d

dt

Z

Rn

pm(x, t) dx = �(m� 2)

Z

Rn

|rpm|
2 dx+ (m� 1)

Z

Rn

pmf(pm) dx

and the bound on pm follows by integrating with respect to t 2 [0, T ]. Next, the density equation (1.1)
gives, for any ' 2 C1

c
(Rn)

d

dt

Z

Rn

⇢m'dx =

Z

Rn

⇢mrpm ·r'dx+

Z

Rn

f(pm)⇢m'dx.

It follows that for any 0  a < b  T , we have
����
Z

Rn

[⇢m(·, b)� ⇢m(·, a)]'dx

����  k⇢mkL1(QT )krpmkL2(QT )(b� a)1/2kr'kL2(Rn)

+ (b� a)1/2kf(pm)⇢1/2
m

kL1(QT )k⇢mk
1/2
L1(QT )k'kL2(Rn),

 C|b� a|1/2k'kH1(Rn),

and the result follows. ⇤

Lemma 3.1 and 3.2 immediately imply the statements (i) and (ii) in Proposition 1.1. It only remains
to prove (iii), namely the fact that any limit (⇢1, p1) satisfies the Hele-Shaw graph condition

p1 2 P1(⇢1).

Classically this condition is obtained by the relation pm(1� ⇢m) = pm �
�
m�1
m

� 1
m�1 p

m
m�1
m , since the

right hand side converges to zero as m ! 1. But passing to the limit in the product pm⇢m requires
some extra care. In [19, 12] this was easily done since the BV bounds provided some strong convergence.
We do not have such strong convergence here, but we note that Lemma 3.2 implies some time regularity
for ⇢m and space regularity for pm. This means that some space-time compensated compactness type
argument could yield the convergence of pm⇢m to p1⇢1 in D

0. We present here a short proof which
was first proposed in [21]:

Lemma 3.3. Under the conditions of Proposition 1.1, any accumulation point (⇢1, p1) of (⇢m, pm)
satisfies 0  ⇢1  1 and

Z

Rn

p1(x, t)(1� ⇢1(x, t))dx = 0 for a.e. t > 0.

Proof. Throughout the proof, we fix a subsequence such that (⇢m, pm) converge to (⇢, p) weak-* in L1.
Since pm  pM we have

lim inf
m!1

Z

Rn

pm(1� ⇢m) dx � lim inf
m!1

Z

Rn

pm

 
1�

✓
m� 1

m
pM

◆ 1
m�1

!
dx � 0

and using the fact that x
m

m�1 �
m

m�1x�
1

m�1 , we can see that

lim sup
m!1

Z

Rn

pm(1� ⇢m) dx = lim sup
m!1

Z

Rn

"
pm �

✓
m� 1

m

◆ 1
m�1

p
m

m�1
m

#
dx  0.
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Hence Z

Rn

pm(1� ⇢m) dx ! 0 as m ! 1

so the proof requires us to show that pm⇢m converges (at least in the sense of distribution) to p⇢. We
now define the time-averaged functions

pa,b
m

(x) :=
1

b� a

Z
b

a

pm(x, t)dt and pa,b(x) :=
1

b� a

Z
b

a

p(x, t)dt

and note that the bound (3.2) implies that pa,b
m

converges to pa,b strongly in L2(Rn). We then write

1

a� b

Z
b

a

Z

Rn

pm(1� ⇢m)dxdt =
1

b� a

Z
b

a

Z

Rn

pm(x, t)(1� ⇢m(x, a))dxdt

+
1

b� a

Z
b

a

Z

Rn

pm(x, t)(⇢m(x, a)� ⇢m(x, t))dxdt.

The first integral in the right side can also be written as
R
pa,b
m

(x)(1� ⇢m(x, a))dx and thus converges
to
R
pa,b(x)(1�⇢(x, a))dx when m ! 1.. As for the second integral, we use the uniform density bound

in C1/2([0, T ];H�1(Rn)):
Z

b

a

Z

Rn

pm(x, t)(⇢m(x, a)� ⇢m(x, t))dx dt 

Z
b

a

krpm(·, t)kL2(Rn)k⇢m(·, a)� ⇢m(·, t)kH�1(Rn)dt



 Z
b

a

krpm(·, t)k2
L2(Rn)dt

!1/2 Z
b

a

k⇢m(·, a)� ⇢m(·, t)k2
H�1(Rn) dt

!1/2

 C

 Z
b

a

krpm(·, t)k2
L2(Rn)dt

!1/2 Z
b

a

(t� a) dt

!1/2

 C

 Z
b

a

krpm(·, t)k2
L2(Rn)dt

!1/2

(b� a)

where C is independent of m. Since fm(t) := krpm(·, t)k2
L2(Rn) is uniformly bounded in L1([0, T ]),

along a subsequence fm(t) weakly converges in L1 to a measure µ such that µ([0, T ]) < 1. Hence

lim sup
m!1

1

b� a

Z
b

a

Z

Rn

pm(x, t)(⇢m(x, a)� ⇢m(x, t))dxdt  C lim
m!1

 Z
b

a

krpm(·, t)k2
L2(Rn)dt

!1/2

 C(µ[a, b])1/2.

We have thus proved:

0 = lim
m!1

1

a� b

Z
b

a

Z

Rn

pm(1� ⇢m)dxdt

=
1

b� a

Z

Rn

pa,b(x, t)(1� ⇢(x, a))dxdt+O(µ[a, b])1/2.

Now we fix a and send b to a. Since
R
T

0 dµ < 1, µ[a, b] tends to zero as b ! a expect for possibly
countably many a. On the other hand we have

Z
pa,b(x)(1� ⇢(x, a))dx !

Z
p(x, a)(1� ⇢(x, a))dx

at Lebesgue points of F (t) :=
R
p(x, t)(1� ⇢(x, t))dx. The result follows. ⇤
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Remark 3.4. The proof shows in particular that ⇢mpm converges to ⇢p in the sense of distribution.
We note that |rf(pm)| = |f 0(pm)rpm|  Lipf |rpm| and so f(pm) is bounded in L2(0, T ;H1(Rn)) just
like pm. So if we assume that

f(pm) * g weak-* in L1(Rn
⇥ R+)

then the same argument shows that

⇢mf(pm) �! ⇢g in D
0(Rn

⇥ R+).

3.2. Proof of Proposition 1.2. Using Remark 3.4 we can prove the following proposition, which is
the first part of Proposition 1.2:

Proposition 3.5. Under the assumptions of Proposition 1.1 and for a subsequence such that (1.8)
holds, the limit (⇢1, p1) satisfies

(3.3)

(
@t⇢1 = �p1 + ⇢1g in Rn

⇥ R+

⇢1(x, 0) = ⇢in(x) in Rn

in the sense of distribution.

Proof. We can rewrite equation (1.1) as

@t⇢m = �⇢m
m
+ ⇢mf(pm)

where, due to ⇢m
m

=
�
m�1
m

pm
� m

m�1 converges to p1 in L1(Rn
⇥R+) (since pm is bounded uniformly by

pM ). Remark 3.4 gives the convergence of ⇢mf(pm) to ⇢1g and the result follows. ⇤

The fact that g � f(p1) if f is convex (and the opposite inequality when f is concave) is classical:
We write f(p) = sup

a2R{ap� f⇤(a)} with f⇤ the Legendre transform of f . This implies f(pm(x, t)) �
apm(x, t) � f⇤(a) and so g(x, t) � ap1(x, t) � f⇤(a) for all a 2 R. The result follows by taking the
supremum over a 2 R. In particular, when f(p) = ap+ b is linear we get that any accumulation point
(⇢1, p1) is a solution of

@t⇢ = �p+ ⇢f(p), ⇢  1,

Z
p(·, t)(1� ⇢(·, t))dx = 0 a.e. t.

Thanks to Lemma 3.3, to complete the proof of Proposition 1.2, it remains to show that p1(·, t)
solves (1.10) for a.e. t > 0. With the lack of BV estimates on ⇢1 we cannot proceed as in [12] to
characterize pressure at all times as solutions of obstacle problems. But still it is possible to show that
the pressure equation holds for a.e. time by proceeding as in [16]:

Proposition 3.6. Under the assumptions of Proposition 3.5, for a e. t > 0, q = p1(·, t) solves
Z

Rn

rq ·r�� g� dx = 0

for all � 2 H1(Rn) such that �(x)(1� ⇢1(t, x)) = 0 a.e. x 2 Rn. In particular, p1 satisfies

(3.4) ��p1 = g in Int({⇢1(·, t) = 1}) for a.e. t > 0.

Proof. We write (p, ⇢) for (p1, ⇢1) in this proof. For given t0 > 0, let us define the functional space

H1
⇢(t0)

:= {� 2 H1(Rn),�(1� ⇢(·, t0)) = 0 a.e. in Rm
}.



14 I. KIM AND A.MELLET

We choose � 2 H1
⇢(t0)

such that � � 0. Since (⇢, p) solves ⇢t � �p = g⇢ in the weak sense with

p, g 2 L2([0, T ];H1
0 (R

n)) for any T > 0,
Z

t0+h

t0

Z
r�(x) ·rp(x, t)� g(x, t)⇢(x, t) dx dt =

Z
[⇢(x, t0)� ⇢(x, t0 + h)]�(x)dx for any h > 0.

Since � 2 H1
⇢(t0)

, we have �(x)⇢(x, t0) = �(x) a.e. and since ⇢(x, t)  1 and �(x) � 0 a.e., we deduce

1

h

Z
t0+h

t0

Z
r�(x) ·rp(x, t)� g(x, t)⇢(x, t) dx dt  0 for any h > 0.

Finally, we note that since H1(Rn) is separable, Lebesgue’s di↵erentiation theorem implies that a.e.
t0 > 0 is a di↵erentiation point for the function t 7!

R
r�(x) ·rp(x, t) for all � 2 H1(Rn). We deduce

that for a.e. t0 > 0 (independent of �) we have

(3.5)

Z
r�(x) ·rp(x, t0)dx 

Z
g(x, t0)⇢(x, t0)dx.

Hence we have ��p  g in the interior of the set {⇢1(·, t) = 1}) a.e. t.

We prove the reverse inequality (still with � � 0) by arguing similarly by integrating from t0 � h to
t0. Once we have equality in (3.5) for � � 0, it is easy to show that it holds for all �.

⇤

3.3. Proof of Proposition 1.3. For general f , it is still possible to recover g = f(p1) for solutions
with time monotonicity. This is the result of Proposition 1.3 which we prove now:

Proof of Proposition 1.3. Suppose initial pressure pin,m satisfy

�pin,m + f(pin,m)�{pin,m>0} � 0

for su�ciently large m. Then h(x, t) := pin,m(x) is a subsolution of the pressure equation (3.1), so the
comparison principle yields pm(·, ") � pin,m(x) = pm(·, 0) for any " > 0. Using the comparison principle
again, we deduce that for any " > 0 we have

pm(·, t+ ") � pm(·, t) for t � 0,

or, in other words, pm (and thus ⇢m) are non-decreasing functions. This monotonicity in time yields,
together with the previous estimates obtained above, that pm is uniformly bounded in W 1,1

loc
(Rn

⇥(0, T )).
Indeed, since @tpm � 0 we can write

Z
T

0

Z

Rn

|@tpm| dx dt =

Z
T

0

Z

Rn

@tpm dx dt 

Z

Rn

pm(x, T ) dx

and Lemma 3.1 implies that @tpm (and similarly @t⇢m) is bounded in L1(Rn
⇥(0, T )). Using Lemma 3.2,

we deduce that pm is uniformly bounded in W 1,1
loc

(Rn
⇥ (0, T )).

Hence it follows that along subsequences we have strong convergence of pm in L1
loc

(Rn
⇥ R+) and

almost everywhere convergence. In particular, we can assume that g = f(p1) in Proposition 3.5.
⇤

4. The bistable case in dimension 1: Invasion vs. Extinction

For the remainder of the paper, we assume that n = 1 and that the nonlinearity f satisfies (1.12) or
(1.13). We denote

F (p) =

Z
p

0
f(s) ds.
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4.1. Preliminaries: Proof of Proposition 1.4. In this section, we investigate the properties of the
elliptic equation (1.15), which we recall here for convenience:

(4.1)

(
�u00 = f(u), u � 0 in (0, L)

u(0) = u(L) = 0.

Proof of Proposition 1.4. We first make a couple of simple and classical remarks about (4.1): Multiply-
ing (4.1) by u0 and integrating, we immediately see that any solution of (4.1) satisfies:

(4.2)
1

2
|u0(x)|2 + F (u(x)) =

1

2
|u0(0)|2, 8x 2 [0, L].

If u is a nontrivial solution of (4.1), there exists x0 such that u(x0) = sup
x2(0,L) u(x) > 0. We have

�u00(x0) = f(u(x0)) � 0 which gives in particular u(x0) 2 [↵, pM ] and u0(x0) = 0 which implies
1
2 |u

0(0)|2 = F (u(x0))  F (pM ). When ↵ > 0, we cannot have u(x0) = ↵ since F (↵) < 0 and if
u(x0) = pM , then u0(x0) = u00(x0) = 0 so (4.1) (and the fact that f is Lipschitz) implies that u ⌘ pM ,
a contradiction. We deduce

u(x0) 2 (↵, pM ), u0(0) 2 (0,
p

2F (pM )).

Finally, when ↵ > 0, we observe that if x1 2 (0, L) is such that u(x1) = 0, then (4.1) implies
�u00(x1) = f(0) < 0 and so x1 is a strict minimum of u. In particular, while we cannot claim that u > 0
in (0, L), we see that the zeroes of u are isolated in (0, L) (when ↵ = 0, the fact that f is Lipschitz
implies that either u ⌘ 0 in (0, L) or u > 0 in (0, L)).

When F (pM ) < 0, we have F (p) < 0 for all p 2 (0, pM ] so (4.2) gives 1
2 |u

0(x)|2 � �F (u(x)) > 0 for
all x, which contradicts the existence of x0 such that u0(x0) = 0. Hence no solution exists in that case.

Next, we show that when F (pM ) > 0, a non-trivial solution exists at least for some L: Given
� 2 (0,

p
2F (pM )), let

G(s) :=

Z
s

0

1p
�2 � 2F (t)

dt, s 2 (0, s0)

where s0 2 (↵, pM ) is such that F (s0) =
1
2�

2. We see that G is a monotone increasing function such
that

G(0) = 0, G(s0) = b0 2 (0,1), G0(0) =
1

�
, G0(s0) = +1

(the fact that b0 < 1 follows from the fact that f(s0) 6= 0 and �2
� 2F (t) = 2(F (s0) � F (t) =

2f(s0)(s0 � t) + o(s0 � t)). and

G0(s) >
1p

2(F (pM )� F (↵))
for s 2 (0, s0).

The function

u(x) :=

(
G�1(x) for x 2 [0, b0]

G�1(2b0 � x) for x 2 (b0, 2b0]

then solves (4.1) with L = 2b0. We now introduce the set

S = {L ; (4.1) has at least one non-trivial solution in (0, L)}.

The construction above shows that S is non empty and Proposition 1.4 will follow if we show that S is
an interval of the form (L0,1) or [L0,1) with L0 > 0.
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Given L1 2 S and u1 solving (4.1) in (0, L1), we construct a subsolution of (4.1) in (0, L) for L > L1

by using the translation invariance of the equation. First, we note that the extension of u1 by 0 (still
denoted u1) solves

�u00
1 = f(u1) in {u1 > 0}

and so do its translations u1(x� y) for all y 2 R. We now define

(4.3) v1(x) := sup{u1(x� y) ; y 2 [0, L� L1]}

which satisfies

�v001  f(v1) in {v1 > 0}

and {v1 > 0} = (0, L) because u1 is non-negative in (0, L1) with isolated zeroes.

Next, consider v2 such that

�v002 = M, in (0, L), v2(0) = v2(L) = 0.

It is a supersolution for (4.1) if M � sup f and satisfies v2 � v1 if M is large enough. The existence of
a non trivial solution of (4.1) satisfying v1  u  v2 now follows by Perron’s principle.

Finally, it only remains to show that L0 = inf{L ; L 2 S} satisfies L0 > 0. For this, we assume that
u solves (4.1) in (0, L) for some L > 0. Then

Z
L

0
|u0

|
2 dx = �

Z
L

0
uu00 dx =

Z
L

0
uf(u) dx  K

Z
L

0
u2dx

with K = sup
p>0

f(p)
p

< 1. Poincaré inequality gives

Z
L

0
u2dx 

✓
L

⇡

◆2 Z L

0
|u0

|
2 dx.

Together with the previous inequality, we get

Z
L

0
|u0

|
2 dx 

✓
L

⇡

◆2

K

Z
L

0
|u0

|
2 dx.

If u is not the trivial solution, we must have
�
L

⇡

�2
K � 1, that is L �

⇡p
K
. Furthermore, if

�
L

⇡

�2
K = 1

then the inequalities above must be equalities and so f(u(x)) = K(u(x)) for all x and so f(p) = Kp for
p 2 [0, supu].

⇤

Remark 4.1. The non-existence parts of this result can be extended to subsolutions, that is to functions
satisfying (

�u00
 f(u) in (0, L)

u(0) = u(L) = 0.

Indeed in that case (4.2) becomes 1
2 |u

0(x)|2 � �F (u(x))+ 1
2 |u

0(0)|2 which is always positive if F (pM ) < 0,
and this contradicts the existence of x0 such that u(x0) = sup(0,L) u.

When F (pM ) > 0 and L < L0, if a subsolution u exists in (0, L) then we can use the supersolution
v2 as in the proof above (with M very large so that v2 > u) and find a solution w of (4.1) in (0, L)
satisfying u  w  v2, which contradiction the definition of L0.



INCOMPRESSIBLE LIMIT OF A POROUS MEDIA EQUATION WITH BISTABLE AND MONOSTABLE REACTION TERM17

Remark 4.2. When f is a bistable nonlinearity (↵ > 0), (4.1) can have a solution with u0(0) = u0(L) =
0. This solution can be found by solving

�u00 = f(u), u(0) = 0, u0(0) = 0.

Since f is Lipschitz, this second order initial value problem has a unique solution, which satisfies
1
2 |u

0(x)|2 + F (u(x)) = 0. It is not di�cult to show that u will be increasing until it reaches the value �
such that F (�) = 0 and then decreasing until it goes back to zero and repeats that process periodically. If
we denote by Lc the first time that u reaches back to zero, we reduce that (4.1) has solutions satisfying
u0(0) = u0(L) = 0 if and only if L = kLc for some k 2 N. On the other hand, the construction given in
the proof of Proposition 1.4 above provides a solution u with nonzero slope on @(0, L). Indeed, u1, and
thus v1 given by (4.3), has nonzero slope at x = 0, L and since v1  u with the same support (0, L),
the same property holds for u. It follows that there are at least two solutions of (4.1) when L = kLc

for k 2 N su�ciently large.

4.2. Proof of Theorem 1.5 (for f concave). Extinction: First, we prove Theorem 1.5 in the cases
where we observe extinction.

We recall that p1 2 L2(0, T,H1(R)), and so x ! p1(x, t) is in H1(R) and therefore continuous for
a.e. t > 0. For such t, we assume that the open set {p1(·, t) > 0} is not empty. It can then be written
as the union of its connected components (ai, bi) and Proposition 1.2 together with the assumption that
f is concave implies that (for a.e. t > 0)

�p001 = g  f(p1) in (ai, bi), p1 > 0 in (ai, bi).

When
R
pM

0 f(s) ds < 0, Proposition 1.4 gives a contradiction (see Remark 4.1). It follows that
p1(x, t) = 0 for all x 2 R and a.e. t > 0. Equation (1.9) and the concavity of f then implies

@t⇢1 = ⇢1g  ⇢1f(p1) = ⇢1f(0)

and so ⇢1(x, t)  ⇢inef(0)t ! 0 as t ! 1.
When

R
pM

0 f(s) ds > 0 and ⇢in = �(0,L) with L < L0, we will also get a contradiction from Proposition
1.4 if we can show that |bi � ai| < L0 (using Remark 4.1). To show that |bi � ai| < L0, we note that

d

dt

Z

R
⇢m(x, t) dx =

Z

R
⇢mf(pm) dx  C

Z

R
⇢m(x, t) dx

and we deduce that Z

R
⇢(x, t) dx 

Z

R
⇢in(x) dx+ Ct < L0 + Ct a.e t > 0.

In particular there exists ⌘ > 0 such that

(4.4)

Z

R
⇢(t, x) dx < L0 a.e. t 2 (0, ⌘).

In view of Lemma 3.3, we can always assume that
R
p1(x, t)(1� ⇢1(x, t))dx = 0 so that ⇢1(x, t) = 1

a.e. in (ai, bi) and (4.4) gives |bi � ai| < L0 (note that this argument only requires
R

R ⇢in(x) dx < L0).
and Proposition 1.4 again gives that p1(x, t) = 0 8x 2 R, a.e. t 2 (0, ⌘). As above, it follows that

@t⇢1 = ⇢1g  ⇢1f(p1) = ⇢1f(0) in R ⇥ (0, ⌘).

and so
R

R ⇢(x, ⌘) dx 
R

R ⇢in(x) dx. We can then use the same argument to prove that p1(·, t) = 0 a.e.
t 2 (0, 2⌘). Successive iterations yield the result.

Invasion: We now prove the last part of Theorem 1.5. Given L > L0, we consider q(x), a solution of
(4.1), which we extend to R by 0. Assumption (1.16) implies that pin,m(x) � q(x), so we can compare
pm(x, t) with the solution of the porous media equation with initial condition q(x), which is better
behaved than pm(x, t) thanks to Proposition 1.3. We note that we can always assume that q0(0) > 0.
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Indeed, (4.1) has solution with q0(0) = 0 only for discrete values of L (see Remark 4.2). If L happens
to be one of those values, we can always take a solution q(x) of (4.1) with a smaller value of L (still
greater than L0) so that q0(0) > 0.

We recall that q satisfies 1
2 |q

0(x)|2 + F (q(x)) = F (M) with

M := sup
x2(0,L)

q(x)

and |q0(0)| = |q0(L)| =
p
2F (M) > 0.

With this function q(x), we have the following lemma, which immediately implies the last part of
Theorem 1.5:

Lemma 4.3. Let ⇢̃m be the solution of (1.1) with p̃m(x, 0) = q(x). Then
(i) For all m the functions ⇢̃m and p̃m are monotone increasing in time.
(ii) The limit (⇢̃1, p̃1) of (⇢̃m, p̃m) along any convergent subsequence satisfies

(4.5) @t⇢̃1 = @xxp̃1 + ⇢̃1f(p̃1), p̃1 2 P1(⇢̃1).

(iii) For all t > 0, we have ⇢̃1(·, t) = �⌦(t) for some open set ⌦(t) satisfying

⌦(t) � (�
p
2F (M)t, L+

p
2F (M)t).

Proof. (i) and (ii) immediately follow from Proposition 1.3 since q satisfies

q00 + f(q)�{q>0} � 0 in R.

Furthermore, since the functions are monotone increasing in time, we can use the argument in [17] to

prove that ⇢̃1 is a characteristic function: let w(x, t) :=
R
t

0 e�f(0)sp̃1(x, s) ds, which solves (using (4.5))

@xxw(t) = e�f(0)t⇢̃1(t)� ⇢̃in +

Z
t

0
e�f(0)s⇢̃1(s)[f(0)� f(p̃1(s)] ds a.e. x in R.

Since the right hand side is bounded in L1(R), we see that for all t > 0, w(·, t) 2 W 2,1(R). As
a consequence, the set ⌦(t) := {w(t) > 0} is open and @xxw = 0 a.e. in {w(t) = 0} = R \ ⌦(t)
(see Remark 4.4 below). Finally we check that ⇢̃1(·, t) = �⌦(t). Since ⌦(t) ⇢ {p̃1(t) > 0}, we have
⇢̃1(x, t) = 1 a.e. in ⌦(t). On the other hand, for x 2 R \ ⌦(t), we have p̃1(x, s) = 0 a.e. s 2 (0, t) by
definition of w and thus

0 = e�f(0)t⇢̃1(t)� ⇢̃in a.e. in R \ ⌦(t).

Due to the choice of initial data we have ⇢̃in = 0 in {w(t) = 0} ⇢ {p̃in = 0}, and so it follows that
⇢̃1(x, t) = 0 a.e. in R \ ⌦(t). Summarizing, we showed that

(4.6) ⇢̃1(x, t) = �⌦(t), ⌦(t) := {w(t) > 0}

From the Hele-Shaw condition we have p̃1(t) = 0 a.e. in R \ ⌦(t), and thus we also have

|⌦(t)�{p̃1(t) > 0}| = 0.

Equation (4.5), together with (4.6) gives, for all smooth test function �(x):

d

dt

Z

⌦(t)
�(x) dx =

d

dt

Z

R
⇢̃1(x, t)�(x) dx =

Z

R
@t⇢̃1(x, t)�(x) dx

=

Z

R
p̃1@xx�+ ⇢̃1f(p̃1)� dx

=

Z

⌦(t)
p̃1@xx�+ f(p̃1)� dx.
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As mentioned before, since we are in one space dimension. Proposition 1.3 implies that p̃1(·, t) solves
�@xxp̃1 = f(p̃1) on any connected components of ⌦(t) and so

(4.7)

Z

⌦(t)
p̃1@xx�+ f(p̃1)� dx =

Z

@⌦(t)
|@xp̃1|�

Furthermore, if (a(t), b(t)) is the connected component of {p̃1(·, t) > 0} containing (0, L) (recall that
p̃1(x, t) � q(x) and so p̃1(·, t) > 0 in (0, L) for all t � 0), we can write

1

2
|@xp̃1(x)|2 + F (p̃1(x)) = F

 
sup
(a,b)

p̃1

!
� F

 
sup
(a,b)

q

!
= F (M) for all x 2 [a, b]

and so

|@xp̃1(a(t))| = |@xp̃1(b(t))| �
p
2F (M).

We thus have
d

dt

Z

⌦(t)
�(x) dx �

p
2F (M)[�(a(t)) + �(b(t)] in D

0(0,1)

which implies Z

@⌦(t)
V �(x)dH0(x) �

Z

@(a(t),b(t))

p
2F (M)�(x)dH0(x)

where V denotes the normal velocity of @⌦(t) (which is a countable set of points). Since this holds for
any test function �, we deduce that V � 0 on @⌦(t) and V �

p
2F (M) on @(a(t), b(t)). The result

follows.
⇤

Remark 4.4. We recall that if u 2 W 1,1
loc

(⌦) and if we denote E↵ = {u = ↵} for any ↵ 2 R, then
ru(x) = 0 for almost every x 2 E↵. In our setting, this classical result implies that @xw = 0 a.e. in
{w = 0} and that @xxw = 0 a.e. in {@xw = 0}. The fact that @xxw = 0 a.e. in {w = 0} follows.
Importantly, this argument does not require any particular properties for the boundary @{w > 0}.

4.3. Proof of Proposition 1.6 (general f). We now assume that pin,m(x)  pM�(0,L)(x) with L
such that

(4.8) L < L⇤ =
⇡

p
K

.

(with K defined by (1.14)).
The proof is similar to the first part of the proof of Theorem 1.5. First we remark that (1.14) implies

f(pm)  Kpm, and so we have g  Kp1, with the notations of Proposition 1.2.
Recall that p1(·, t) is continuous for a.e. t > 0. For such t, we assume that the open set {p1(·, t) > 0}

is not empty. It can then be written as the union of its connected components (ai, bi) and Proposition
1.2 together with the remark above implies that, for a.e. t > 0, p1(·, t) solves

�p001 = g  Kp1 in (ai, bi), p1 > 0 in (ai, bi).

We can now show (as in the proof Theorem 1.5 in the extinction case) that |bi � ai| < L⇤ for some
small time t 2 (0, ⌘). Proceeding as in the last part of proof for Proposition 1.4, we see that Poincaré
inequality yields p1(x, t) = 0 in (ai, bi). Since this holds for any connected components of {p1(·, t) > 0}
it follows that p1(x, t) = 0 for a.e. t 2 (0, ⌘).

This in turn implies that ⇢1(x, t) = ⇢in(x)ef(0)t for t < ⌘, so that the support of p1(x, ·) has not
grown and we can iterate to show that p1(x, t) = 0 for all t > 0.
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5. Traveling wave solutions

First we study the existence of traveling waves for the limiting problem and prove Proposition 1.11).
We start with the pressure equation: Recalling that F (p) =

R
p

0 f(s) ds, we have:

Proposition 5.1.
(i) if f satisfies (1.13) (monostable), then the equation

(5.1) h00 + f(h) = 0, h � 0 in (�1, 0), h(0) = 0

has a unique nonzero, bounded solution which is decreasing. This solution satisfies h0(0) = �

p
2F (pM )

and limx!�1 h = pM .
(ii) If f satisfies (1.12) (bistable) then

• if F (pM ) > 0, then the equation (5.1) has two bounded solutions: One monotone solution as in
(i) and one periodic solution with h0(0) = 0.

• if F (pM ) = 0, then (5.1) has a unique bounded solution which is decreasing. This solution
satisfies h0(0) = 0 and lim�1 h = pM .

• if F (pM ) < 0, then (5.1) has no bounded solution.

Proof of Proposition 5.1. Assume that h is a bounded solution of (5.1).
First, we note that if there is x0 < 0 such that h0(x0) = 0 then uniqueness principle for second order

ODE on [0, x0] with h(x0) and h0(x0) = 0 fixed yields that h(x0 + s) = h(x0 � s) for all s 2 [0, x0].
This implies that h(2x0) = h(0) = 0 and h0(2x0) = �h0(0). Since h � 0 in (�1, 0), we must then have
h0(0) = 0. From the uniqueness principle again, it follows that h(2x0 + s) = h(s), namely h is periodic.
When h0(0) 6= 0, we deduce that h0 cannot vanish in (�1, 0) and is thus always negative.

Next we show that h < pM . Note that h00
� �f(h) > 0 if h > pM , and thus h is strictly convex

when it is above pM . Hence if h(x1) > pM for some x1 < 0, then h must be unbounded in (�1, 0), a
contradiction. If h(x1) = pM , then either h is unbounded or h0(x1) = 0, but in this last case, we would
then have h(x) = pM for all x which contradicts the fact that h(0) = 0.

We thus have that h is either periodic or monotone decreasing and that 0  h < pM in (�1, 0).
When h is nontrivial and monotone, limx!�1 h(x) = ` 2 (0, pM ] exists and satisfies f(`) = 0, that is
` = ↵ or pM .

Next let us show that h can be nontrivial and periodic only when F (pM ) > 0 and f(0) < 0.
Multiplying (5.1) by h0 and integrating, we find

(5.2)
1

2
|h0

|
2 + F (h) =

1

2
|h0(0)|2 in (�1, 0).

When h is periodic, we have h0(0) = h0(x0) = 0. Hence it follows that F (h(z0)) = 0 for some h(z0) 2
(0, pM ). This situation can only happen when f(0) < 0 and F (pM ) > 0.

Lastly, when h is monotone, (5.2) implies F (`) = 1
2 |h

0(0)|2. If F (pM ) < 0, then this is impossible
and no bounded solution exist, thus proving the last part of the proposition. If F (pM ) � 0, and since
F (↵) < 0, we deduce ` = pM or ` = 0. The latter case yields a trivial h when f(0) = 0. In the former
case we have

h0(0) = �

p
2F (pM ).

The uniqueness of h follows since the initial value problem h00 + f(h) = 0 with h(0) = 0 and h0(0) =
�

p
2F (pM ) has a unique solution.

The existence of h when F (pM ) � 0 can now be obtained by solving

h00 + f(h) = 0 in (�1, 0), h(0) = 0 and h0(0) = �

p
2F (pM ).
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To check that h is bounded, we will use (5.2). Observe that h < pM : if h(x0) = pM for some
x0 < 0 then h0(x0) = 0, and the uniqueness principle for the ODE yields h(x) ⌘ pM for all x < 0, a
contradiction. From (5.2) and the fact that F has a maximum at pM in [0, pM ] it follows that h0(x)
cannot vanish, and so h is monotone decreasing and bounded above and therefore positive and bounded
in (�1, 0). ⇤

We can now prove the existence and uniqueness of traveling wave for the limiting equation:

Proof of Proposition 1.11. We start with the following remark: Since ⇢̄ is non-increasing and ⇢̄(+1) =
` < 1, there must exist a 2 [�1,+1) such that ⇢̄(x) = 1 for x 2 (�1, a) and ⇢̄(x) < 1 in (a,+1).
If a = �1, then ⇢̄ < 1 and p̄ = 0 in R which contradicts (1.20). We can thus always assume that
a 2 (�1,+1) and up to translation we will take a = 0.

Let us first classify possible pressure profiles. Up to a translation, any traveling wave pressure must
satisfy p̄ = 0 in (0,+1) and p̄00 + f(p̄) = 0 in (�1, 0). In particular, p̄ coincides on (�1, 0) with a
monotone decreasing solution of (5.1). Using Proposition 5.1, we deduce that there is no such p̄ when
F (pM ) < 0 which implies (i). On the other hand, if F (pM ) � 0 then again Proposition 5.1 yields that
p̄ is uniquely determined and satisfies p̄0(0) = �

p
2F (pM ).

Next we consider possible travelling wave densities. To this end, we observe that (1.19) is equivalent
to

(5.3) � c⇢̄0 = �p̄0(0)�x=0 + ⇢̄f(0)�(0,1) =
p
2F (pM )�x=0 + ⇢̄f(0)�(0,1).

When F (pM ) = 0 and f(0) < 0, (5.3) yields a continuous solution

⇢̄(x) = �(�1,0)(x) + e�
f(0)
c x�(0,+1)(x),

which satisfies the boundary conditions with ` = 0 for all c < 0 and

⇢̄(x) = �(�1,0)(x)

with c = 0. This implies (iii).

When F (pM ) > 0, c is positive due to (5.3) at x = 0 with our assumption ⇢̄0  0. So (5.3) again
gives ⇢̄f(0) � 0 in (0,1). When f(0) < 0, it follows that ⇢̄ = 0 in (0,+1), yielding ` = 0, concluding
(ii).

Lastly let us consider the monostable case f(0) = 0. In this case (5.3) implies �c⇢̄0 = 0 in (0,+1),
which yields ⇢̄ = ` in (0,+1). Since ⇢̄ = 1 in (�1, 0), it follows from (5.3) that c(1� `) =

p
2F (pM ).

We now conclude.

The existence of the traveling wave when F (pM ) > 0 is proved by taking p̄ = h as the unique

monotone solution of (5.1), c =
p

2F (pM )

1�`
and ⇢ = �(�1,0) + `�(0,+1) and checking that this solves

(1.19) for appropriate values of `.
⇤

Proof of Theorem 1.12 (i) (Receding Traveling Waves). Let us fix m > 1 and denote by (⇢̄(x), c) the
traveling wave of (1.1) given by Theorem 1.7, and by p̄(x) the corresponding pressure given by p̄(x) =
m

m�1 ⇢̄(x)
m�1. Since we assume that F (p) =

R
p

0 f(u) du satisfies F (pM ) < 0, we have c < 0 for large m.

Recall from Theorem 1.7 that ⇢̄ and thus p̄ is monotone decreasing and that 0  p̄(x)  pM .
Furthermore, we claim that there exists a constant C > 0 independent of m such that

(5.4) p̄0(x)2  Cp̄(x)  CpM .

Indeed, since @t(⇢̄(x� ct)) = �c⇢̄0  0, (1.1) gives ⇢̄0p̄0+ ⇢̄p̄00  �⇢̄f(p). Since ⇢0p0 � 0 and ⇢̄ is positive,
p00(x)  sup0ppM

�f(p)  C. Multiplying by p̄0(x) and integrating over (x,1), we find (5.4).
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Next, set ⌘ := �F (pM )/(2pM ) and consider the function

g(x) =
1

2
p̄0(x)2 + F (p̄(x)) + ⌘p̄(x).

We claim that there exists x̄ 2 R such that

(5.5)

8
><

>:

g(x̄)  F (pM )
4

g0(x̄) � 0

p̄(x̄) � ⌘1

for some small ⌘1 > 0. Indeed, we have g(�1) = F (pM ) + ⌘pM = F (pM )
2 < 0 and g(+1) = 0, which

implies the existence of x̄ satisfying the first two conditions. The first condition implies in particular

F (p̄(x̄)) 
F (pM )

4
�

1

2
p̄0(x̄)2 � ⌘p̄(x̄) 

F (pM )

4
< 0

which gives the third condition in (5.5). Since g0(x) = p̄0(x)(p̄00(x)+f(p̄(x))+⌘), the condition g0(x̄) � 0
implies

p̄00(x̄) + f(p̄(x̄))  �⌘

and so
p̄(x̄)(p̄00(x̄) + f(p̄(x̄)))  �⌘⌘1.

The pressure equation now gives

�cp̄0(x̄) = (m� 1)p̄(x̄)(p̄00(x̄) + f(p̄(x̄))) + p̄0(x̄)2  �(m� 1)⌘⌘1 + p̄0(x̄)2

that is (recall that 0  �p̄0  C)

c  �(m� 1)
⌘⌘1
C

+ C

and (1.22) follows.
⇤

Proof of Theorem 1.12 (ii) (Advancing traveling Waves). We now assume that F (pM ) =
R
pM

0 f(p) dp >
0. As before we denote by ⇢̄m, p̄m, c⇤

m
> 0 the traveling wave given by Theorems 1.7 and 1.8 and its

associated pressure and velocity for fixed m. For m large enough, we have
R
⇢
+
m

0 ⇢mf (pm)) d⇢ > 0. We
also denote by ⇢̄⇤, p̄⇤, c⇤ > 0 the unique traveling wave of the limiting problem given by Proposition
1.11. Finally, we write pm(x, t) := p̄m(x� c⇤

m
t).

Since we have uniqueness of the traveling waves for the limiting problem, it will be easy to conclude
if we can show that the limit of ⇢̄m, p̄m solves (1.19) and are supported in (�1, 0). In order to get
(1.19), the main step is to show that c⇤

m
converges which requires an upper bound on c⇤

m
. To show that

⇢̄m, p̄m do not degenerate and that their limits are positive in (�1, 0), we will need to know that c⇤
m

is uniformly bounded away from 0 when m is large.

We thus start the proof by proving that c⇤
m

! c⇤, by constructing appropriate barriers for the
pressure equation. We recall the pressure equation, solved by pm(x, t):

(5.6) pt = (m� 1)p(@xxp+ f(p)) + |@xp|
2.

Set f"(p) := f(p) + ". Since f(p) < 0 for p > pM , if " is small then there exists p"
M

> pM with
p"
M

= pM + o(1) such that f"(p) < 0 for p > p"
M
. Let h" be the monotone decreasing solution of (1.21)

with f" instead of f , that is:
(
h00
"
(x) = f"(h"(x)) for x 2 (�1, 0),

h"(�1) = p"
M
, h"(x) = 0 in [0,1)
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(we can proceed as in Proposition 5.1 to show that such an h" exists). We then claim that the function
p"(x, t) = h"(x� c"t) with c" = |h0

"
|(0) + " is a supersolution for (5.6). Indeed, we have

p"(@xxp" + f(p")) = p"(�f"(p") + f(p")) = �"p" in {p" > 0} = {x� c"t < 0}

and

@tp"(x, t)� |@xp"|
2 = c"|h

0
"
|(x� c"t)� |h0

"
|
2(x� c"t)

= (|h0
"
|(0)|+ ")|h0

"
|(x� c"t)� |h0

"
|
2(x� c"t)

� 0 when � �  x� c"t  0

for some small �. We thus have

@tp" � (m� 1)p"(@xxp" + f(p"))� |@xp"|
2
�

(
0 if x� c"t � ��

c"@xp" � |@xp"|2 + "(m� 1)p" if x� c"t  ��

Since p" is bounded below when x� c"t < ��, this last term is non-negative of m is large enough.

Having verified the supersolution property of p", let us now compare pm with p". Let now x0 be
such that p"(x, 0) � pM for x  �x0. Since pm(x, 0) = 0 for x > 0 (see Theorem 1.7), we have
pm(x, 0)  p"(x+ x0, 0) and the comparison principle implies that pm(x, t)  p"(x+ x0, t) for all t > 0.
We deduce that

cm  c"

for su�ciently large m and so lim sup
m!1 cm  c". Furthermore, it is easy to check that

c" =
q
2F"(p"M ) + " ! c⇤ as " ! 0

hence
lim sup
m!1

cm  c⇤.

Similarly, we can construct a subsolution of (5.6) by using the function f"(p) = f(p) � " and c" =
|h0

"
|(0)� ". We then have:

@tp"� (m�1)p"(@xxp"+f(p"))� |@xp"|
2 = (|h0

"
|(0)�")|h0

"
|(x�c"t)� |h0

"
|
2(x�c"t)�"(m�1)h"(x�c"t)

which is negative when ��  x � c"t  0 if � is such that |h0
"
(0)| � "  |h0

"
(y)| for y 2 (��, 0) and

negative for x� c"t  ��, provided m is large enough depending on " and �. Proceeding as above, we
deduce that:

lim inf cm � c⇤.

We have thus showed that cm ! c⇤ and it remains to show that ⇢̄m ! �(0,1) and p̄m ! h, the
monotone solution of (5.1).

Since ⇢̄m and p̄m are monotone decreasing and uniformly bounded, they are uniformly bounded in
BV (R). Hence along a subsequence ⇢̄m and p̄ converge to monotone functions ⇢̄1 and p̄1 strongly in
L1
loc

and almost everywhere. Proceeding as in the proof of Proposition 1.3 we get that ⇢̄1 and p̄1 solve
(1.19) (with c = c⇤). In order to conclude, it remains to show that ⇢̄1 and p̄1 satisfy(1.20).

Let us first show that p1(x) > 0 in (�1, 0). We use the fact that c⇤
m

! c⇤ > 0 and so c⇤
m

� c⇤/2 > 0
for m large enough and that p̄m(x) solves

(5.7) c⇤
m
(�p̄0

m
)� |p̄0

m
|
2 = (m� 1)p̄m(p̄00

m
+ f(p̄m))

In particular, we must have (p̄m)00 + f(p̄m) � 0 whenever p̄0
m

2 (�c⇤
m
, 0), and thus p̄00

m
> �f(p̄m) �

�Kp̄m for this range of p̄0
m
. Finally, we recall that p̄m(0) = 0 with p̄0

m
(0�) = �c⇤

m
< c⇤/2. It follows
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that p̄0
m

< �c⇤/4 on [�⌘, 0], for some ⌘ independent of m and thus p̄m(x) > c
⇤
x

4 for x 2 [�⌘, 0). From
the monotonicity of p̄1 implies that p̄1 is positive in (�1, 0).

Since Supp ⇢m = (�1, 0), we have ⇢̄1  �(0,1) and p̄1 = 0 on (0,1). Since p̄1(1 � ⇢̄1) = 0, we
deduce that ⇢̄1 = �(0,1). Now Proposition 5.1 implies p̄1 = h, and we can conclude.

⇤
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