I'-CONVERGENCE OF SOME NONLOCAL PERIMETERS IN BOUNDED
DOMAINS WITH GENERAL BOUNDARY CONDITIONS

ANTOINE MELLET AND YIJING WU

ABSTRACT. We establish the I'-convergence of some energy functionals describing nonlocal attractive
interactions in bounded domains. The interaction potential solves an elliptic equation (local or nonlo-
cal) in the bounded domain and the primary interest of our results is to identify the effects that the
boundary conditions imposed on the potential have on the limiting functional. We consider general
Robin boundary conditions, which include Dirichlet and Neumann conditions as particular cases. De-
pending on the order of the elliptic operator the limiting functional involves the usual perimeter or
some fractional perimeter.

We also consider the I'-convergence of a related energy functional combining the usual perimeter
functional and a nonlocal repulsive interaction energy.
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1. INTRODUCTION

Given a subset  of R™ (with possibly @ = R"™), we consider the nonlocal attractive interaction energy
defined for a set £ C Q by

Vie.(B) = — /Q /Q K. (2, y)xe()xs(y) de dy

where xg denotes the characteristic function of the set F and for all y € Q, the kernel z — K (z,y) is
the solution of

(1.1) K. +e*(-A)?K. =6(x—y) inQ

with s € (0, 2].

Functionals of this form arise in many applications, describing attractive behavior (e.g. motion
by chemotaxis) or, with the opposite sign and usually in competition with the perimeter functional,
modeling repulsive phenomena (e.g. modeling the role of protrusions in cell motility [6] or instabilities
in ferrofluids subjected to a transverse magnetic field [20]).

Our main focus is on the case 2 # R™ when (1.1) is supplemented by boundary conditions - we will
consider general Robin boundary conditions. Indeed, while the asymptotic behavior of such functionals is
a classical problem when K. (z,y) = K.(z—y), the effects of the boundary conditions have been identified.
This problem has applications in the study of the motion by chemotaxis with an incompressibility
constraint, which will be investigated in details in a forthcoming paper. In that context, the Robin
conditions model the degradation of the chemical responsible for chemotaxis at the boundary of the
domain, whose concentration is given by ¢%(x) = fQ K. (z,y)xe(y)dy.

We immediately notice that K. — § when £ — 0 and so Vk_(E) — —|E|. Since the applications we

have in mind have a volume constraint, we are interested in the behavior of Vi _(E) + |E| when € < 1.
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When Q = R”, we have K. (z,y) = e "K (%), and this functional is related to nonlocal perimeters.
Indeed, we have

(1.2) Vi (E) + |E| = / ol = K.  xg) dz = Px. (E)
]R’n
with the nonlocal perimeter

)= [ [ Keopdyar=g [ [ K- phe) -xew)ldyde

An important particular case is the s-perimeter, denoted Py, which corresponds to K(z) = Iz\% with
s € (0,1), see [3, 4, 12, 23, 8]. For general K, the asymptotic behavior of (1.2) when ¢ < 1 depends on
the rate of decay of K(x) for large |z|. In our setting, this decay is given by the following lemma (see

for instance [18]):

Lemma 1.1. The solution of (1.1) in R™ is of the form K.(x,y) = e "K (*=%) where K(z) = k(|z]) > 0
satisfies, as r — oco:

Cn,s 1 .
rn+s +o <T"+s> Zfs € (072)
(1.3) k(r) = o or as r— oo
Cn 1 +0( nl) ZfS:2
rz rz
) _o2tr( )
with ¢, s = P e

In particular, when s € (1,2], we have |z|K(z) € L'(R") and a classical result of Davila [7] implies
that

Px_(E) ~ o P(E)

where P denotes the usual perimeter, defined as the total variation of the characteristic function xg:

P(E)= [ IDxel
]Rn
We recall this result here for the reader’s sake:
Theorem 1.2 ([7, 2]). Let K. = ¢ "K(z/e) where K(z) = k(|z|) > 0 satisfies fooo E(r)yr™dr = ko < oo.
Then for every u € BV(R™) with compact support, we have

lim e~* / A Ke(x —y)|u(z) — uly)|dedy = a/ | Dl

e—0 n
with o = ko/ le - x|dH" " (x) (for any e € OBy ).
oB,

In this framework, the I'-convergence of Pk_ to the perimeter P is proved in [1].

On the other hand, Lemma 1.1 clearly implies that the condition fooo k(r)r™dr < oo fails when
s € (0,1]. When Q = R™, we expect that the appropriate scaling when s € (0,1) will give rise to the
s-perimeter. In fact, various works on this topic suggest (see in particular [19] for the case s = 1):

eSosPs(F) for s € (0,1)

Vi.(E) +|E| = Pr.(E) ~
g|lneloy P(E) for s =1.



I'-CONVERGENCE OF NONLOCAL PERIMETERS 3

Our goal in this paper is to make this asymptotic rigorous in the particular framework we consider
here (with K. solution of (1.1)) and to identify the role of boundary conditions when  # R™. In the
sequel, we denote

(o) = [ Kol dy

and we consider the functional
Vie.(E) + |E| = [ xp(1 - 65)do.
Q

The potential ¢% solves
(1.4) o+ e5(—A)*2¢p = xp in
together with Robin boundary conditions. In the local case s = 2, these are

ap+ BeVeo-n=0 on 0N
and in the nonlocal case s € (0,2) the corresponding nonlocal Robin boundary conditions take the form:

ap+BN() =0  inCQ
N (@) = ! N@) @), N@)@) = ens | 2E=0W g 4 ccq.

cns Jo yree 4y o lz—ylmte
The coefficients o and 8 will always be assumed to be non-negative functions (defined on 9 or CS, as
appropriate) satisfying a(z) + S(x) > 0 (for the nonlocal case, we refer to [10] for an introduction to
such boundary value problems with Neumann boundary conditions).
The appropriate scaling depends on s and the discussion above suggests the following definition:

5_5/ xe(l — ¢%)dz if s € (0,1)
Q
(1.5) JE(E) = 671|1n6|71/XE(17(;5EE)d£C ifs=1
Q
Eil/XE(l—gZ)EE)dx if s € (1,2].
Q

The main results of this paper identify the limit of #*(F) for a given set E and establish the I'-
convergence of the functional #°. When Q = R” some of these results are classical (though in some
cases we present simpler proofs that use strongly the fact that the kernel K. solves (1.1)), but our focus is
the case Q # R™ and (1.1) (or (1.4)) is supplemented by Robin boundary conditions. To our knowledge,
the effects of these boundary conditions on the limiting functional have not been previously identified
in all cases s € (0,2].

The original motivation for this study comes from the recent paper [18], in which we study the
following energy functional
P(E) - BVk.(E)
defined for Caccioppoli sets E C R™ with fixed volume |E| = m. This functional appears in a model for
cell motility derived in [6] in which the effects of surface tension are in competition with the repulsive
effect of protrusions along the membrane of the cell. In this case, the nonlocal perimeter has a repulsive

effect. We will establish the I'-convergence of this functional when s € (0,1) and s = 2 (see Theorems
2.6, 2.7 and 2.8).

Outline of the paper: In Section 2, we state the main results of this paper. In Section 3, we recall
several notations, definitions and properties of the perimeter and s-perimeter which will be useful in the
paper. We also derive an alternative formula for #° (see Proposition 3.4). The rest of the paper is then
devoted to the proofs of the main results.
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2. MAIN RESULTS OF THE PAPER

2.1. The case s € (0,1). We start with the case when s € (0,1) and 2 = R", that is

seB) == [ - op)ds
where ¢% is the unique bounded solution of
(2.1) b+ (=A% = xp in R"

(see (3.1) for the definition of the fractional Laplacian (—A)*/2). In this case, the kernel K. solution of
(1.1) is of the form K.(z,y) = e "K (*=¥) where K(z) ~ |ZC|++ as |z| = oo, and the functional _#7°
converges to ¢, s Ps(E) with the s-perimeter defined by:

Ixe(@) — xe(y)|
dx dy.
/n /n |x_y‘7l+é

Theorem 2.1. Let Q =R" and s € (0,1).
(i) For every set E in L*(R™) such that P,(E) < oo, we have

;1_{% F2(E) = cn s Ps(E).

Indeed, we can prove:

(ii) For any family {E.}c~o that converges to E in L*(R™), we have
lign_j(r)lf FE(E:) > cn,sPs(E).
In particular, the sequence of functionals #7 I'-converges to c, ¢ Ps.

Next, we assume that € is an open subset of R™ and we consider equation (2.1) in €, supplemented
with Robin boundary conditions:

o+ (A 2p=xp  inQ
(2:2) {a¢ +BN(¢)=0 in CQ
with
N (@) = ! N@) @), N@)@) =cns | 2E=W 4 o ccq

Cn.s Jo W dy o |lv—ynts

where a and /5 are non-negative functions (defined in CQ) satistying a(x) 4+ 8(z) > 0 for all x € CQ. We
introduce the local contribution of the s-perimeter in §2:

pL(E’Q) ;:1 Mdazdy.
° 2Jala  lz—y|rte

We then prove:

Theorem 2.2. Let Q be a bounded subset of R™ such that Ps(2) < oo and let s € (0,1). Assume a,
B :CQ— [0,00) satisfy a(x) + B(x) > 0 for all x € CQ. Then:
(i) For every set E C Q such that PL(E,Q) < oo, we have

li #2(E) = J§(E) i= e [Pé(E,m | s [ Lotealiiemalt) g,

where for a given set F', we denote Yp(x fF T ylnﬂ dy (defined for x € CF).
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(ii) For any family {E.}.>¢ that converges to E in L(Q),
3 3 S > S
liminf 72(E:) > 75 (E)
In particular, the sequence of functional #7 I'-converges to #5 .

For Dirichlet boundary conditions (5 = 0), we find (using Lemma 3.2)

AiB) = | [

= Cn,s/ Xe(Bne)YEna dx
R’Vl
= ¢p s Ps(E)

XcEnQVENQ dT +/ xcoVena(x) dx

n n

so the limiting functional does not see the set 2. On the other hand, with Neumann boundary conditions
(o = 0) our result gives:

YEno(T)Yerna(T)
ca Ya(z)
which is, to our knowledge, a new functional. This functional takes the same value for the set E N and

the set CE N ). This symmetry suggests that minimizers are such that F intersect 02 orthogonally, a
common feature of minimal surfaces with Neumann boundary conditions.

dzx

IG(E) = ns [Pf(E, Q) +

2.2. The case s = 2. Next, we consider the classical case s = 2 for which we have:

JuB) = [ el o5)ds
Q
(we drop the index 2 in the local case for clarity) where ¢5 solves the local elliptic equation
(2.3) ¢ —e?Ap=xE in Q.

When Q = R"™, Theorem 1.2 applies (in fact, this theorem applies when Q = R™ and s € (1,2]), so the
interesting case is when 2 is a subset of R™ and (2.3) is supplemented with the following Robin boundary
conditions:

(2.4) ap+ eV -n=0 on 0N
In that case, we first prove:

Proposition 2.3. Let s = 2, Q be a bounded open set with C* boundary. Assume further that a(z),
B(x) are bounded, Lipschitz non-negative functions such that a(z) + f(x) > o > 0. Given a set E C §)
with finite perimeter P(E,Q) < oo, we have

(2.5) lim 7.(E) = %P(E,Q)—i— /d A (Ia@”) Xe(x) dH" "} ().

e—0 )+ B(x)

This proposition identifies the limit of #.(F). For Neumann boundary conditions (o = 0), we

find $P(E, ), but for Dirichlet boundary conditions, we get 3 P(E,Q) + [, xg(z)dH" ! (z). How-

ever, this functional is not lower-semicontinuous (to see this, consider a sequence of sets E,, such that

Joq X, (£)dH" ! (x) = 0 which converges to E such that [, xg(z)dH" ' (z) # 0) so it cannot be the

I-limit of #.. This phenomenon is not restricted to Dirichlet conditions, but occurs whenever @ > g.
We thus prove:
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Theorem 2.4. Let s = 2, Q be a bounded open set with CH boundary. Assume further that o(z), B(x)
are bounded, Lipschitz non-negative functions defined on 02 such that a(x) + 8(x) > o > 0 and that

(2.6) 2 (a{ iﬁ 1}) < .

Then the functional 7. I'-converges, when ¢ — 0 to

a(z)

1 1 n—1
F o (E) = §P(E,Q) + /89 mm( ()Jrﬂ()) xE(z)dH" ™ (x).

For Dirichlet boundary conditions (and more generally when a > 8 on 0f2), we have F_o (E) =
P(E) while with Neumann boundary conditions (o = 0) we find .#y(E) = 1 P(E,Q).

1
2

2.3. Generalization: General elliptic operators. It is relatively easy to generalize this result to
more general elliptic operators in divergence form: given a continuous function z — A(z) with A(x)
symmetric matrix satisfying

M, < A<AIL,
for A\, A > 0. We can replace (2.3)-(2.4) with

2.7)

¢ — e2div(AVe) = xp in Q
— =0 on 02

with ||z||la = VaTAz for x € R™. Then the same proofs (see Remarks 5.2 and 5.4) show that the
corresponding functional ¢, I'-converges, when ¢ — 0 to

1 1
~PME,Q +/ ( ) dH™ 1
SPAUEQ + [ min () @)l i @)
where the anisotropic perimeter is defined by
PAED) = [ sl adH™ (o)
O*E

or equivalently:

PAE.0) = [ 1Dxella = s { [ xmdivgdes g € [CHOI, |47g(a) < 175 € ﬂ}
Q Q

Similarly, in the nonlocal case s € (0,1), we can use the anisotropic integro-differential operators

et -y [ HE=i

and similar results can be derived, with the s-perimeter replaced by the anisotropic fractional perimeter

z)xce(y / / Ixe(z) — xB(Y )Id d
n—+s n+s y
/n/n IICE—yH+ n JRn va—y\l+

and the potential 1p by ¥ (z) == [, m dy.
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2.4. The case s € [1,2). When Q@ =R"” and s € (1,2), Theorem 1.2 applies and gives
shg(l) JE(E) = 0snP(E)

and the I'-limit is proved in [1]. When  is a subset of R™, the boundary conditions play a role. We will
not investigate this case in details, like we did for the case s = 2 above. But for the sake of completeness,
we prove that the scaling given in (1.5) is the correct one by proving the convergence of #7(E) when
(1.4) is supplemented with either Dirichlet or Neumann boundary conditions, that is when ¢% solves
(2.2) with @ =0 or § =0. We then have:

Proposition 2.5. Let Q be a bounded open set with Lipschitz boundary and let #F be defined by
e Y 1n5|_1/ xe(l—¢%)dx ifs=1
Q
5_1/ xe(l — ¢%)dx if s € (1,2)
Q

where ¢5 solves (2.2) with either « =0 or 8 =0.
There exist some positive constants 0'111,57 072113 (satisfying 0’}“1 = 072171) such that for any set E C
such that P(E, Q) < oo, we have

(i) If B =0 (Dirichlet boundary conditions):

lim _#5(E) = ok \P(E,Q) + o2, / e dH
oN

e—0
(i) If « =0 (Neumann boundary conditions):

lim 7(E) =0, P(E,Q).

e—0

and o2 _, except when s = 1,

n,s’

We do not attempt to derive explicit formula for the constants o),
where the proof gives

S

Cn,1 _
‘7711,1 = 02,1 = g /BB le - yldH" 1(3/)
1

In particular, the limit with Dirichlet conditions is proportional to P(F) when s = 1.

2.5. An energy functional with competing local and nonlocal terms. Finally, we go back to our
initial motivation for studying this problem which arises in the context of a model for cell motility (see
[18]) involving the functional

P(E) — BPk.(E).
We note that the nonlocal perimeter appears now as a destabilizing term. When ¢ < 1 the results above
show that the critical regime corresponds to 3 ~ =% if s € (0,1) or B ~ e~ ! if s € (1,2]. We study this
problem for s € (0,1) and for s = 2. We fix t > 0 and define the functional 4°(FE) by

G (E)=P(E,Q) -t 77(F) when s € (0,1)
and
Y.(E)=P(E,Q)—t Z.(F) when s = 2.

When Q = R™, we prove:

Theorem 2.6. Let s € (0,1) and Q = R™. Then the functional 42 T-converges, when ¢ — 0 to
Y5 (E) = P(E) — tcy, s Ps(E)

for allt > 0.

When Q # R"™ and ¢5 solves (2.2) (Robin boundary conditions), we have:
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Theorem 2.7. Let Q be a bounded subset of R™ such that P(Q) < oo and let s € (0,1). Assume further
that a(x), f(z) are bounded, Lipschitz non-negative functions such that a(x) + f(xz) > o > 0. Then the
functional 42 I'-converges, when ¢ — 0 to

«

d
qa+f v

43(B) = P(E,Q) — tc , [PSL(E,QH—/C Vi () dz+/ B vena(@)veennlz)

coat+p Ya(r)
for allt > 0.

When s = 2, the problem is much more delicate: in the case s € (0, 1), the destabilizing term is of
lower order than the stabilizing perimeter while when s = 2, the destabilizing term is asymptotically of
the same order. We only consider the case of Neumann boundary conditions which is often the most
relevant for applications (e.g. in the study of the cell motility model introduced in [6]) and prove:

Theorem 2.8. Let Q be a bounded subset of R™ with C* boundary and consider the functional

G.(E) = P(E,Q) —t #.(E),  Ju(E)=c"! /Q el — %) dr

where ¢% solves the local elliptic equation

—2A¢p = n ()
Vo-n=0 on 0N
Then, for allt € (0,2), the functional 4. T'-converges, when € — 0 to
t
% (E) = (1 — 2) P(E, Q)

We do not carry out the detailed analysis of this limit with Robin boundary conditions, but we note
that we have a similar issue as in Theorem 2.4. For example when ¢% solves the local elliptic equation

¢ —e*Aop = xE in Q
(b =0 on 897
then Proposition 2.3 gives, for a fixed F,

9.(E)=P(E,Q)—t #.(E) — <1 - ;) P(E,Q) — t/QXE(x)dH"*(x).

However, this functional is not lower semicontinuous when 1 — % < t (that is when t > 2/3) so it cannot
be the I'-limit in that cases. Instead, ¥4. I'-converges to

(1 — ;) P(E,Q) — t/QXE(x)dH"_l(x) if0<t<2/3

(1 _ ;) (P(E,Q) _ /Q XE(x)dH“(x)) - <32t - 1) HPLO0) if2/3<t<2.

2.6. Comments about the proofs. The proofs that we present in this paper rely strongly on the fact
that ¢% solves (1.4) (with appropriate boundary conditions) rather than on the properties of the kernel
K, solution of (1.1) (which are not so easy to determine near the boundary of ). The convergence
of Z2(E) in the fractional case s € (0,1) (first part of Theorems 2.1 and 2.2) is established using the
relation between P (F) and (—A)%/?xg (see (3.5)). The lim inf property requires a different formulation
of #2 involving the lower semi-continuous norm [¢%]g/2(q), see (3.8).

When s = 2, the convergence of #.(E) (Proposition 2.3) is established by writing

/E(E) = E_l /Q XE(l - (ZSEE) dx = —E/EA¢EE dr = —¢ V(b% . I/E(CE) dHn_l(x)

o*E

Y(E) =
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and identifying the limit of eV¢% via a blow-up argument. The liminf property cannot however be
proved that way, and we rely instead on a different formulation, see (3.9), which is reminiscent of the
classical Modica-Mortola functional. To complete the proof of Theorem 2.4, we then need to establish
the lim sup property: While this is easily done by taking E. = E when 755 < 1 for all z € 09, a delicate
construction is required when aim > % on a non empty subset of 9Q (e.g. for Dirichlet conditions).

The I'-convergence of P(E,Q) —t_#°(E) (Theorems 2.6, 2.7 and 2.8) does not follow immediately
from the work above since the role of the liminf and limsup are inverted by the minus sign. When

€ (0,1) (Theorems 2.6 and 2.7), the positive term P(E) is of higher order than the negative term,
so we can establish the liminf property by first proving the boundedness of the sequence in BV. The
proof of Theorem 2.8 is much more delicate since the two terms have the same order (asymptotically).
It requires a precise estimate on the convergence of eV¢5, (see Lemma 8.2).

3. PRELIMINARY AND NOTATIONS

3.1. Perimeter and reduced boundary. Given () open set and £ C R” we recall that

P(5.9) = [ 1Dxsl =swn{ [ xedwgdsi g € (€@ o) <10 €2}
Q Q
where |g| = (g7 +...g2)"/2. We also have P(E) := P(E,R"). A Caccioppoli set E is a set such that
P(E,Q) < oo for all bounded open sets 2. We recall the following definition:

Definition 3.1. The reduced boundary, 0*F, is defined as the set of x € OE where a notion of unit
normal vector can be defined, that is:

) 5, [ PxE| > 0 for all p >0,
(2) vp(z) = lim,—o % exists and |vg(x)| = 1.
We then have (see [13])
P(E,Q) = H" {(9"ENQ) = / A (),
9+ ENQ

We also recall that for x € 0*E we have

— / xe(y)dy =0,  lim 7/ (1-xg(y))dy = 0.
p=0 p" JB ()" {vg(x)-(y—z)<0} P=0 P I B, (@) {vE(x) (y—2)>0}
3.2. Fractional Laplacian and fractional perimeters. The fractional Laplacian of a function u(zx)
is defined by

AP e u(w) ~u(y)

with ¢, s = - and the fractional perimeter of a set E is defined by

62 D= [, R =g [ [ R

which is also equal to the semi-norm §[XE}WS,1(R7L). Given a set Q C R™, we also define the local
contribution of the fractional perimeter by

1
(33) PhES = [ [ XN 4oy — Sy
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We recall the following limits:

lim (1 —s)Py(E) =w,_1P(E) and lim (1 —s)PX(F,Q) =w, 1P(E,Q)

s—1— s—1—
and (see [9]):
lim sPs(E) = wp—1|E|

s—0+

For a given set E, we define the potential

(3.4) V() = /Rn 1% dy xeCE.

We then have
Lemma 3.2. If P(E) < oo, then ¢ € L'(CE) and

PE) = | xes@r@)ds = [ xe()ver(s) ds,

n

Given § such that Ps(2) < oo and E such that PL(E,Q) < oo, we have

PL(E.Q) =/ Xcena(Z)VEno(T) da::/ xena(2)eena(x) de.

n n

Proof. The sequence v, (x) = fR"\Bn(z) % dy is positive, increasing as ) — 0 and satisfies [, , v" () dz <
P,(E). By Beppo-Levi Lemma, we can thus define ¢g(z) = lim,_,o v,(z) and the result follows since
P,(E) = lim,_ fR" XcE(z)v,(x) dz. O

With the notation (3.4), we can also write

(—A) %y = ¢, lim M J
n—0 R™\ B, (z) ‘x — y|

i 1—x£(y) —xe(y)
= Cns I XEx/ T dy+ (1 —xe(z — A gy
n—0 [ ( ) R\ B, (z) |1‘ — yln-&-s ( ( )) R\ B, (2) |J3 _ y|n+s

(3.5) = cn,s(XBYCcE — XCEVE)-
In particular, P,(E) < oo implies that (—A)%/?xg is in L'(R™).
Finally, we recall the following interpolation inequalities:

Proposition 3.3. For all s € (0,1),

(36) P() < 2

Given Q C R", for all s € (0,1),

P(E)®|E|*~* for all set E with finite perimeter.

nwnp2~°

(3.7) PE(E,Q) < A3

P(E,Conv(Q))*|EN Q' ¢ for all set E with finite perimeter

where Conv(QY) denotes the conver hull of Q and w,, denotes the volume of n-dimensional unit ball.

The first inequality is classical. We provide a proof of the second one in the appendix for the sake of
completeness.
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3.3. Alternative formula for _7°. We end this section by deriving an alternative formula for _#?
which is useful in the proofs.

Proposition 3.4. When s < 2 the functional #7 defined by (1.5) can also be written as:

(3.8)
e [ = 6 do o+ S0 Fo-R
sm=1 o
= [ oppans e [ RO IEOE gy [ gnear o Re
Q 2 Jrem\(co)2 17— Yl co

And similarly when s = 2:
5—1/ |XE—¢€E|2dx+5/ Vo5 |? da if @ =R"
(89)  J(B) = —1 ) 2 o 2 —1 ‘
€ /|XE—¢8E| d:v—l—s/ IVozl da:—s/ Vg -ndH" (x) if Q#R™
Q Q o0

When Q2 = R"”, these formulas are reminiscent of fractional and classical Modica-Mortola functional
for which the I'-convergence is studied in particular in [22].

Proof. First, we make the following simple computation: Let u € L' N L? (we will later take u = xg)
and let w (which will be ¢5,) denote the solution of w+4&*(—A)%/?w = u in R". Multiplying the equation
by w and integrating, we get:

575/(102 — wu) da:Jr/ w(=A)*?wdr =0
Q Q

and we can use this equality to write
575/ u(l —w)de = 675/ u(l—u)+e* / (u? —uw) +&~* / (w?* — wu) dz + / w(=A)*"?w da
Q Q Q Q Q
= 678/ u(l—u)+e* / (u —w)*dx + / w(—=A)*?wdz.
Q Q

Q
Taking u = xg € L'(Q2), we deduce

FHE) = / xe(l - %) dr = =* / (i — 655)% d + / 05 (—A)*/245, du.

Then the formula (3.8) follows from the definition of (—A)*/2.
A similar computation when s = 2 yields

S(B) = /Q X (1= ¢) do = &1 / Xz — G52 d + ¢ /Q G5~ )5 de

and an integration by parts gives (3.9).

Remark 3.5. We can relaz the definition of #. to non-negative BV -functions by setting
Fi(u) = 5_8/ u(l —w®) dz.
The computation above yields
Fi(u)=¢"" /n u(l—u)+e? /n(u —w)?dx + cr;s [wa]?qs/z(Rn).

and we see that the first term diverges unless u(x) € {0,1} for all x. However, u — u(l — ) is not
a double-well potential, unless we add the constraint that 0 < u < 1. While the non-negativity of u is
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natural in many context, the upper bound would have to be imposed by some over-crowding prevention
mechanisms. We are led to the energy functional:

_ {jj(u) fo<u<1

FE(u) = .
00 otherwise.

This is very similar to the relaxation of the perimeter functional with the heat content energy approzi-
mation used for example in [11, 17, 14] to construct weak solutions (via minimizing movements schemes)
of multi-phase mean curvature flow [11, 17] or the Muskat problem with surface tension [14].

Note also that the energy ﬂs appears naturally in the incompressible limit (m — oo) of the following
Keller-Segel model for Chemotazis (or congested aggregation, see [5]):

Ou = Au™ — Bdiv(uVe)
b +e* (=A% = u.

This provides another motivation for studying this problem in a bounded domain with appropriate bound-
ary condition on ¢.

4. PROOFS OF THE THEOREMS FOR s € (0,1)
4.1. The case 2 = R" - Proof of Theorem 2.1. We start with the following lemma:

Lemma 4.1. Let E be a measurable set. The function ¢% solution of (2.1) satisfies
(i) 0 < ¢%(z) <1inR™
(ii) Up to a subsequence ¢% converges weakly in L] (R™) to xg for all g € (1,00)

(iii) Up to a subsequence ¢5, converges strongly in L}, .(R™) and almost everywhere to x g

Proof. The maximum principle gives (i) and since ¢ clearly converges to x g in the sense of distribution,
(ii) follows. To prove (iii), we first write, for any ball Br (using (i)):

/ 165 — x5l do =/ (65 — Dxs + 651 — xu)| de
BR BR

<[ a-gews [ o0
BR BR
and note that (ii) implies that the right hand side converges to 0. It follows that ¢3 converges strongly

in L}, to xg and (up to another subsequence) we can assume that it converges almost everywhere. [

Note that we can write ¢5(x) = K. * xg and K. > 0 is an approximation of unity, so the results of
the lemma above are obvious. However, the proof we gave above will be easy to carry out in the other
settings presented in this paper.

Proof of Theorem 2.1. To prove (i), we write (using (2.1)):

s®) = [ xw-dyde= [ xoaropir= [ 6-0"xpde
and using (3.5), we get:
(4.1) FE(E) =cns - % (XEYcE — XcrYE) dr.

Lemma 4.1-(i) together with Lemma 3.2 imply that |_Z2(E)| < ¢, Ps(E) so we can take a subsequence
(still denoted ¢) such that _#.(E) converges. We will prove that the limit of that subsequence must be
Cn,s Ps(E) which implies the result.
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To prove this, we note that |¢%(Xe¥cE — xcEVE)| < XEYcE + Xcr¥E and the condition Py(E) < oo
implies that xpicr and xcrptp are in L'(R™). We can thus pass to the limit in (4.1) using Lebesgue
dominated convergence theorem and Lemma 4.1 (iii). We deduce (up to another subsequence)

f;(E) — cms/ XE(XE’L/)CE - XCE'(/}E) dzr = Cms/ XE'L/)CE de = CnﬂSPs(E)

n

and (i) follows.

In order to prove the second part of Theorem (2.1) (the lim inf statement), we use the formula (3.8):

(12) seB) = [ (o - 60 a5 e

Since the result trivially holds when liminf._,o #°(E.) = oo, we can assume that liminf. ,o #7(E.) <
oo and consider a subsequence (still denoted ¢) along which #7(E.) is bounded. Equality (4.2) then
implies that ¢%_ converges strongly in L? to xg (recall that yg. converges to xz in L' and thus also in

L?) and the lower semicontinuity of the H*/2? norm gives

.. s 2 cn s
llgélf j& (EE) - [(bEE] Hs/2(R™) Z [XE}HSM(]R%)
Cn,s Ixe(®) = xe(y)?
= dx d
/n /n |x _ |n+s €ray
_ C/ / xe@) = xeWl 4, 4, — ., .p,(B)
n Jrn Iff - yl”+ °
which completes the proof. O

4.2. The case 2 # R" - Proof of Theorem 2.2. We assume that 2 is a bounded subset of R™ and
that ¢% is the solution of

as e T

ad(z) + BN (¢)(z) =0 in CO

with «, § : CQ — [0,00] satisfying a(x) + S(x) > 0. These Robin boundary conditions satisfy the
maximum principle, so we can prove (the proof is similar to that of Lemma 4.1):

Lemma 4.2. Let E' be a measurable set. The function ¢% satisfies

(i) 0 < ¢%(z) <1 R”

(ii) Up to a subsequence ¢5 converges weakly in L1(Q) to xg for all ¢ € (1,00).

(iii) Up to a subsequence ¢5, converges strongly in L'(Q2) and almost everywhere to xp

Proof of Theorem 2.2-(i). We recall that E C Q. Proceeding as in the previous section, we write
F2B) = [ (- o) = [ xp(-8)"0p da
= [ p-arxpde— | xeA(0h) ~ 65N (xr) da
(4.4 = [ dat-a) g dn s [ o)

(recall that E C ). We note that the conditions PL(E, Q) < oo, Ps(f2) < co together with Lemma 3.4
imply that xcpyr € L'(Q) and xgtcr = xp¥cena + XEtca < XEterna + Xatea € L'(2). We can
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thus proceed as in the case = R™ with the first term in (4.4): Using (3.5), we write
[ -8 xpde = e [ Gp(xver — xepve) ds
Q Q

(45) — cn,s/ XEQZ)CE dr = cn,s/ XE/(/)CE dr = Cn,s/ XCE¢E dx.
Q R™ R™

For the second term, we note that N'(xg) = —c,, g for x € CQ, and using the boundary condition,
we find (note that N'(¢) = ¢(z) — w%(w) Jo % dy):

ey B 1 ¢%(y) n
(4.6) o5 (x) = ot B val®) /Q =yt dy x e R™\ Q.
Hence
B B(z) wE( ) %)
IR Ly B e e el

We can pass to the limit using Lebesgue dominated convergence theorem since
/ Ble) el 1 dx’ - Ye@)ea(x)

co o(z) + B(x) Ya(x) [z —y["t | 7 da(z)
(recall that Ps(02) < co) and we get

< 1/ch(x) S Ll(Q)

. _ Ve(r) xe(y)
gl—I’% cQ PN (xe) do = /CQ/ Ya(z) |r —y[mts dydz
(37) B(z)?
) = —Chs dx.
it C’/;Qauw()ww) !
Putting together (4.4), (4.5) and (4.7), we deduce
[ B p(x)?
;1_1;% /6 = Cn,s ‘/71 XCEQ/}E dx — AQ ot IB 1#9(3@) d.’E:|
r 2
(4.8) =Cns /QXCEsz de + /CQ(QpE - f S ZEQ((Z')) )dx}
_ [ oL B Yr(@)(Ya(z) —Yr(z))
R W T L e bal@) o]
and the result follows. O

Proof of Theorem 2.2-(ii). For any set E, the boundary condition gives
~0EN05) = natn (gl + V)
’ a+p a—+p
so the formula (3.8) implies

£ _ hE 2
JE(E) :575/(“_@)2(1“@/ |9%(x) ¢i(y)l d dy
Q 2 Jremyeoye |yt

@]
chn’S/CQ%bQ [a+6

We can now complete the proof of Theorem 2.2 by proceeding as in the proof of Theorem 2.1: Let
{E:}c>0 be a sequence of sets which converges to E in L' (and in L?) such that #(E.) is bounded.

(4.9)

e O
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Equality (4.9) thus implies that ¢3,_ converges strongly in L*(Q2) to xg. Following [10][Proposition 3.1],
we note that the space W equipped with the norm

o lu(z) — u(y)|?
[|u||3 :/u2dx—|—/ wQUZdJ;—i—/ ——————dzrdy
I Q coa+p rR2m\(cQ)2 T — y["Ts

is a Hilbert space (note that 1o € L'(CQ) since P(€2) < 00) and (4.9) implies that ¢%_is bounded in
W and thus weakly converges to ¢y in that space. We already know that ¢o(x) = xg(z) for z € Q, and
¢o can be identified in CQ2 by taking the limit in (4.6) (in D’(2)), showing that

dolx) = p w—Eae in CQ.

04+5¢Q

Similarly, ./\N/((bsE) converges weakly in L2(CS, -2 arp¥ade) to—95 1/1
using the exterior boundary condition). The lower semicontinuity of the norms then gives

. 2
liminf 75(E.) > s / [0() = do(y)* ¢°+(17’)| dx dy
e=0 2 Jremeop |z —ylnt
2
] dx

(the limit can be easily identified

o | B Wsl" B | _a v
+C”’S/ Yo a5 BlarBual Tats a+/5179

Cn,s |¢0( ) — do(y )|2 / / |¢0 )|2
=2 dx dy + cp s dx dy
2 AQ |CC — |n+s cQ |$ — ‘n—&-s

af 1/’Ed
+Cn’s/cn CENOER .

Finally we have

L[ |¢o(x) = ¢o(y)]? 1 [ |xe(@) —xsW)l _ oL
,/Qz dz dy _i/Qz—dxdy_PS(E,Q)

2 @ — gyt |z -yt

and a simple computatlon glves

|po(x ()| do()? = 2¢0(z)xe(y) + xE(Y)*
dx d dyd
/ /CQ |Ulj - y\"“ v /CQ / |z — y|nTs vaer

- /C (G0(o) 0 = 200(a)p(a) + V() d

- [ (G ) @

We deduce
o (208 - 3% v} i %)
inigh S22 o PUES) v, [ (SRS b vnto) 4 o T )
> 0, PH(E, Q>+cm/ (25 +ve@) o
which completes the proof since +ﬂ d)n +1/)E( ) = %wwE( )+ =3 wE(x)(wlfn(z) el =

5. THE CASE s = 2 - PROOF OF THEOREM 2.4
When s = 2, the function ¢% solves the boundary value problem:

{@ — 2A¢5, = x5 in O

(5.1)
adpy +efVePL -n=0 on 0.
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and we have
suB) == [ el - op)do = — [ Adp .
Q E

The proof of Theorem 2.4 is very different, and much more delicate than the case s € (0,1). We start
with the proof of Proposition 2.3 which identifies the limit of #.(E) for a fixed set E.

Proof of Proposition 2.3. For a set E such that P(E) < co, we write

= fz-:/ Aoy dx

=—e [ V¢ ve(x)dH" " (z)
O*E

where 0*FE is the reduced boundary of E and vg is the outward pointing unit normal vector (see
Definition 3.1). To pass to the limit, we take zo € 0*E and define the function w®(z) = ¢5%(xo + ex),
which solves

w® — Aw® = xg(xo+ex) in Q.
afw® + BEVw® -n =0 on 0f)..

with af = a(zg + ex), 85 = B(xo + ez) and Q. = e H(Q — xp). It is readily seen that 0 < w® < 1
(maximum principle) and that w® € C'7 so that eV¢%(z9) = Vw(0) is well defined. We conclude
thanks to the following lemma:

Lemma 5.1. There exists a constant C such that |eV¢%(zo)| = [Vw®(0)| < C for all zg. Furthermore,
If xg € 0*E N, then

eVog(z) — —%VE(JCO)

If xg € 0*E N O and 0N is differentiable at xg, then vg(x) =n(z) and
(o)
a+8 "

This lemma (together with Lebesgue dominated convergence theorem) implies

1
1 . _ danl +/ dH"™™ 1
81—%/( )= 2/E)*EOQ () a*EmaQa+5 (=)
1. .4 -1
= _—H""H(O*ENQN dH"
BN+ [ et e )

and the result follows since H"~1(0*E N Q) = P(E, Q). O

eVog(xg) = —

Lemma 5.1. If g € €2, then by definition of the reduced boundary, we have X (2o +€%) = X{z-vp(20)<0}
in L} ([13], Theorem 3.8). Furthermore, for all R > 0 we have Br(0) C Q. for £ small enough so

loc

standard elliptic regularity theory (using the fact that |w®| < 1) implies that w® is bounded in C*7(Bg).
In particular, w® (resp. Vw®) converges locally uniformly to wg (resp. Vwg) unique bounded solution
of

wo — AWy = X{z.vg(xo)<0y i R".
This solution is of the form wo(z) = w(z - ve(xo)) where ¢ : R — [0,1] solves ¢ — ¢" = X{y<0}. We

easily find
1—1ier forz<0
x) = 2
w(@) {ée_z forz >0

and so Vwg = ¢/ (0)vg(zg) = —3ve(z0).



I'-CONVERGENCE OF NONLOCAL PERIMETERS 17

If 29 € 09, we have vg(xo) = n(xo) and (as above) xg(20 +£%) = X{z-n(zg)<0} it Ljy,. Furthermore,

since ae, . are bounded and Lipschitz uniformly in &, boundary regularity for Robin boundary value
problems (see [16] Theorem 2.1 Chap. 10) implies that w® is bounded in C17(Q¢). Therefore w® (resp.
Vw*®) converges locally uniformly to wg (resp. Vwy) unique bounded solution of

wy — Awg =1 in {z-n(z) <0}
a(zo)wo + B(zo)Vwy - n(ze) =0 on {x - n(zxg) = 0}.

This solution is of the form wo(z) = ¢1(z - n(xg)) where 1 : [—00,0] — [0,1] solves p1 — ¢f = 1 and
ap1(0) + B! (0) = 0. We easily find
@
= 1 — z
¢1() o+ ﬁe

and so Vwg = ¢} (0)n(zo) = —355n(20).

O
Remark 5.2. When A is replaced by an anisotropic elliptic operator as in (2.7), we get

J(E) = —6/ AV ¢S, - vp(x) dH 1 (x)
o*E

and the argument above can be adapted, with e AV ¢%(xo) — —Q\/ﬁAyE(aco) = _%AHII/Z(\TX) if zg €

9"ENQ and eAV ¢ (w0) = — 355 ’?mrj) if xg € O*ENOQ and O is differentiable at xo. It follows that

lim 7.(E) = }/B*EHVEHAdH”_I(J:)—i-/a

(07

oa+p
We now turn to the proof of Theorem 2.4, which follows from the following proposition:

n—1
lim - Il ax(@) i (@),

Proposition 5.3. Under the assumptions of Theorem 2.4, the following holds:
(i) For any family {E:}cso that converges to E in L*(Q),

o P
llgl_}(r)lf Fe(Ee) 2 F = (E).
(ii) Given a set E such that P(E,Q) < oo, there exists a sequence {E.}.~o that converges to E in L'({2)

such that
limsup #.(E.) < F o (E).

e—0
Proof of Proposition 5.3 - Part I: the liminf condition. We use the formula (3.9) for #..
Neumann boundary conditions. We start with the case of Neumann boundary conditions (a = 0)
which is similar to the case 2 = R™. In that case (3.9) gives

6.2 FuB) = [ = 0iP dote [ Vo5 da
and introducing the functions (both defined for ¢ € [0, 1])

for0<t<1/2

t t2
F(O) = 2min(t1— 1), F(t) :/O F(r)dr = {Qt_t2 s

2
we find (since |xg — ¢%| = ¢% or (1 — ¢%)):

£ _ S £ € 12 -1 1 £ \2
[Pl = [ @ivoslde << [ (VopPae+et [ 1r6hrde

< E/Q |V¢EE\2 dr +¢e1 /Q min(¢g, 1 — ¢%)2 dx
< JZ(E).
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It follows that for a sequence {E.} such that E. — E in L' and 7. (E.) < C, the sequence F(¢%_) is
bounded in BV (). Since it converges pointwise (and so L' strongly) to F(xg) = 1xg (since F(0) =0
and F'(1) =1/2), we deduce

1

1
liminf 7. (E.) 2/ IVF(xEg)|dx = 7/ |[Vxe|dx = -P(E,Q).
e—0 o) 2 Q 2

Dirichlet boundary conditions. The case of Dirichlet boundary conditions 8 = 0 requires some
adjustments to recover the whole perimeter P(E): We still have (5.2) in this case, but we can extend
the function ¢% by zero outside 2. Denoting by ¢%, this extension, we find

FuB) > [ (VF@lde = [ [VP@) o

and so (as above)

1 1
liminf #.(E;) > / IVE(xg)|de = 5/ [Vxe|dz = §P(E)
Rn ]Rn

e—0

General Robin boundary conditions. We can now assume that 5 # 0. In that case, (3.9) and the
boundary conditions give

PA / e — ¢5Pde + e / V52 di + /a SN @ o),

We combine the two cases above. Indeed, since % > 0, we can write, as in the Neumann case:

(5.3) S(E) > / V(65| de.

On the other hand, if we use the extension of ¢% by 0 (as in the Dirichlet case), we can use the fact that

/” |VF(¢TEE)|d$=/Q|VF(¢%E)|dx+/BQ F(¢5, )dH"!

to find
(5.4) J(E) > / IVF(¢%, )| dx + / G(¢%.)dH" !
R" o9
where the function
& —1)t? for 0<t<1/2
o) = 22— py =B )2 o=t /

B (F+Dt°—2t+5 for1/2<t<1

satisfies G(t) = min{0, ;%5 — 1} for all t € [0,1]. We now combine (5.3) and (5.4): Given a smooth

function ¢ : R™ — [0, 1], we write

FuB) > | PO - et [ VPG lede+ [ Gl )edn!

e _ e i e 1 nt
> [ VR0 e)de s [ 19P@Iede s [ minfo, S - 5 oo
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which implies

lign_%lf J(E.) > /Q IVE(xe)|(1—¢)dz+ /Rn IVE(xEg)|edr + /BQ min{O, a;:ﬂ - ;} edH™
2/ 1|V)<E|dx—|—/ leapdx—k/ min{O,a - 1}g0d7-l”1
Q2 o0 2 o9 at+p 2
and it only remains to take a sequence of ¢, which converges to xg in L'(9€) to get the result. O

Remark 5.4. The proof is easily adapted to divergence form elliptic operators as in (2.7). In the case
of Dirichlet boundary conditions, for example, we have

Su(B) = / e — ¢l do +e / (V65,)T AV 5, da
—= [ e - dpPdo e [ VoRI do
Q Q

> [ FoRIF@Rlade = [ IVF@Rlade = [ IVF@)lado

and so
. 1 1,
> — = — .
liminf 7. (E;) > 2/Rn IVxElade = 5P (E)

Before turning to the second part of the proof, we state (and prove) the following useful lemma:

Lemma 5.5. Let v¢ be the solution of

(5.5)

v—e?Av=0 inQ
v=1 on 0f)

and denote Qs = {x € Q; dist (x,0Q) > 6}. Then there exists a constant C (independent of € and ¢)
such that

5*1/ o de < CH"(895) <.
Qs 0

Proof. We write

g7t / vodr =« Avedr = —¢ Vv® - ndx.
Qs Qs 005

Given zg € Q, denote § = d(xg, Q). The function v°(x) = v (xg + ex) solves
v° — Av® =0 in Bs,.(0)
and satisfies 0 < v° < 1. Standard elliptic estimates give
€
5
The result follows. O

e| Vot (zo)| = V£ (0)| < C

Proof of Proposition 5.8 - Part 2: The limsup condition. Before giving the construction of FE. in the
general case, we start with the simpler cases where O%B — % does not change sign on 0f).

Case 1: When QLW < % for all x € 9€). In that case we can simply take E. = F since Proposition 2.3
gives

lim ¢.(E) = F__(E).

e—0 a+p
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Case 2: When %5 > 1 for all x € 9Q. In that case, we have F_o_(E) = $P(E), and we need to
(e} a+p8

approach F by a sequence of sets E. which does not feel the effect of the boundary conditions on 0f2:
For a given v € (0,1), we define

E.=ENQ.
(recall that Q.+ = {2z € Q; dist(x, Q) > €7}) and we claim that
1
(5.6) S<(Be) < 5 P(E:) +o(1),

which implies (see Giusti [13]):

1 1 1
limsup #.(E.) < limsup §P(EE) = lim sup [2P(E7 Q) + 5/ XEd'H"_l}
A0~

e—0 e—=0 e—0

1 1 1
(5.7) — SP(E,Q)+ = / XpdH"! = ZP(E).
2 2 /o0 2

To prove (5.6), we write ¢, = vi(z) + v5(x) where vf = K. x xg,. (recall that K. is the fundamental

solution of our equation, solving K. — 2AK. = § in R"). We then write
JuB) = [ xp(1- ) da
Q

871/XEg(l—vf)dx—afl/XEgvgda:
Q Q

(5.8) =—¢ Vo - vg, (z) dH" ! (x) — 571/ XE. V5 dr.
0B, Q

To prove that the second term goes to zero as ¢ — 0, we note that |v§5| < v solution of (5.5). Indeed,
since v§ solves v§ — e2Av{ = g, in R", the maximum principle implies that 0 < v§ < 1, and so
[v5 ()| < |95, (x) —vi(z)] < 1in Q. Furthermore the definition of vf implies that v§ solves v5 —e*Avg =
XE. — XE. = 0. Lemma 5.5 thus implies

571/XE€U§d517 {—:71/ v dx
Q Qe

It remains to show that
(5.9) sup [eVoi(z)| <
Rn

< < Ce'HTH00) < CeMT.

DN =

so that (5.8) implies
1
J(E.) < 57—["‘1(8*&) + el

which gives (5.6).
After a rescaling, inequality (5.9) follows from the following lemma:

Lemma 5.6. Given a function f(x) such that 0 < f <1, the function w = K * f satisfies
1
IVK * f(z)| < 3 for all x € R"

Proof. Without loss of generality, we can fix z = 0 and assume that Vw(0) = 9,, w(0)e,,. We then have
0z, w(0) = — [, 02, K (y) f(y) dy and we note that d,, K > 0 for z, < 0 and 9,,K < 0 for z,, < 0.
Since 0 < f <1, we deduce

/ O, K (y) dy < 0, w(0) < / 0. K (y) dy.
{yn>0}

{yn<0}
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The function w(x) = f{yn<0} K (x —y) dy is the unique bounded solution of w — Aw = {4, <0} Which is
given by w(z) = p(z,) with

(@) 1—%6” forz <0
€Tr) =
v %e_“ forx >0

and satisfies

—0,,w(0)=1/2= / 0, K(y) dy.

{yn<0}
O
General case: Finally, we consider the general case, when aaTﬁ — % can change sign. We then define
I = {x €00, ;55 < %} and I'y = {x €0, ;55 > %} We recall (see (2.6)) that H"~2(9T3) < oo.

For a given v € (0,1), we define
A ={z € Q,dist(z,T2) > &7}

and set
E.=EnNA,.
We claim that
1 1
(5.10) J(E:) < §P(E5) +/ min {O7 a;jrﬂ — 2} xE. dH" ! +0(1) as e — 0.
o0

This inequality implies the result because we can proceed as in (5.7) to show that

1 1 1
limsup -P(E.) = -P(E,Q) + 7/ xpdH" !
e—0 2 2 2 Joa

and

. o 1 n—1
/mmln{o, ath 2} [XE. — XE|dH

Using (2.6), we have H"~!({x € T'y, dist(z,T3) < e7}) = o(1), and thus

1 1
< 5/ |XE57XE|d"H”71 < 57—["71({35 eIy, dist(z,Ty) <e7}).
Iy

: 1 1 n—1 3 & 1 n—1 __
limsup #.(E.) < §P(E,Q) + 5/89 XEdH +/@Q mm{O, R 2} XpdH"" =F o (E).

e—0

To prove (5.10), we proceed as above, writing ¢%_ = vi(z) + v5(x) where vy = K. x xg, and

(5.11) F(E) = —¢ Vi - vg, (x) dH"_l(x) —€ Vs - vg, (x) d?—["_l(m).
9 E. o E.

By (5.9), we have
1 1
—€ VoS vp, (x) dH " (z) < H" 0% E.) = - P(E.)
0+ E. 2 2

which give the first term in (5.10).
Since |v5] < v* < 1 in Q and v§ solves v§ — ?Avs = 0 in Q, we get (using a similar argument in
Lemma 5.5):
e|Vus(z)| < Cet™  forxw € Q1v-
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Thus the second term in (5.11) gives

—5/ Vs - vp, (z) dH" (x) = *6/ Vs - v, (z) dH"(x) + O(e'77)
0*E. "B\

= —E/ Vs v, (z) dH" ()
0* E.NOQ
(5.12) - 5/ Vs - vg, (x) dH " (z) + O(e' 7).
" B.N(0\2y )

The second term goes to zero since £|Vvs| < C and
H' O BN (Q\ Qu) < P(E,Q\ Qi) +H'HOA N (2 Q1.5)) = 0.

Here we use (2.6) to show H" 1(OA. N (2 Q1.+)) — 0 as e — 0. Finally, to pass to the limit in the

first term in (5.12), we note that for xy € 0*E, N0 C I'; N 9*E, we have (using Lemma 5.1 and the
definition of v§):

—eVvy(wg) = —eVoE_(w0) +eVui(zo) — (a i 5~ ;) n(xo).

We deduce:

IN

%P(Eg) +/

0* E.NOQ

5P+ [ (55 3) xean @) +o)

S (Ee)

(a Jo‘r 5o ;) A" () + o(1)

= LP(E) +/

min {0 - 1} xe dH" 1 (x) + o(1)
oN

T+ 2
which is (5.10).

6. THE CASE s € [1,2) WITH DIRICHLET OR NEUMANN CONDITIONS

We divide the proof in two parts depending on whether s € (1,2) or s =1 (the scaling of _#° makes
it clear that the critical case s = 1 is different).

Proof of Proposition 2.5 - case s € (1,2). We write the fractional Laplacian as a divergence operator:

s . s— s— Cn,s — &
(~8)u = —dvD* ], D] = P.V./ ) i

where D*~!u] is a fractional gradient of order s — 1 € (0,1).

The proof is then similar to the case s = 2: We first write
JE) = -1 / divD* "' ¢% da
E

== [ DR vele) )
o*E
and we identify the limit of e5~1D*71[¢%] - vg(z) by a blow-up argument: Given o € 0*F we define

we(x) = ¢%(zo + ex), which solves

w® + (=A)*?w® = xp(xo+ex) in Q.
w® =0 in CQ..
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Since w®, (—A)*/?w* are bounded in L>(.) and s > 1, the regularity theory for fractional elliptic

equations (for instance [21]) implies that w® is bounded in C’Z{f (R™). Since s — 1 < s/2 it follows that
D571 [we] is well defined and continuous in R”. We can then conclude as we did in the case s = 2 thanks
to the following lemma:

Lemma 6.1. There exist a constant C such that |71 D*"¢%]|(x0)| = |D*we](0)| < C for all
xo € O*E. Furthermore, there exists some constant o), , and o}, | (depending only on n and s) such that
If xg € O*ENQ, then

£~ D195 ] (w0) = D*w)(0) = Dol (0) = 7] v (o).
If xg € O*E N 0N, then we have
e D oG] (20) = D¥Hws](0) — D*Hwo](0) = o7 n(wo) if =0 (Dirichlet)

and
S D 1 p% ] (v0) = D Hw](0) — 0 ifa=0 (Neumann).

O

Proof of Lemma 6.1. The proof uses the same idea as Lemma 5.1.

If 29 € Q then xg (2o +£2) = X{zwp(w0)<0} I Lj,, and for all R > 0, Br(0) C Q. for & small enough
Since w® and (—A)*/?w® are bounded in L*(Bg), it follows that w® is bounded in C?(Bg/s) for all
B < s. In particular, w® and D*~![w?] converge locally uniformly to wy and D*~![wy] unique bounded

solution of

wo + (_A)S/2w0 = X{z-ve(zo)<0} in R™.
This solution is of the form wg(x) = ¢(z - ve(x)) and so D*~t{wg] = D*~1[p](0)ve(xo). The result
follows with o, ; := D*~[](0).

1
loc

If 2o € 0Q, and B = 0, then vg(xo) = n(xo) and xg(To + £2) = X{z-n(z)<0} i0 Lj,, and regularity

theory for fractional elliptic equations ([21]) implies that w® is bounded in C; O/ Cz(R”). Since s — 1 < s/2
it follows that w® (resp. D*~![w®]) converge locally uniformly to wq (resp. D*~1[wg]) unique bounded
solution of

wo + (=A)* 2wy =1 in {z - n(xg) < 0}
wo =0 in {x - n(zg) > 0}
This solution is of the form wy(z) = ¢i(z - n(xg)) for some 1 : R — [0,1] and so D* 1wy =

D= p1](0)n(xo). The result follows with o7  := D> 1[1](0).
When a = 0 (Neumann boundary conditions), we note that the solution of

wo 4+ (—A)* 2wy =1 in {z-n(xe) <0}
)=0 in {x - n(zg) > 0}
is wo = 1 which satisfies D*~![wg] = 0.

d

Proof of Proposition 2.5 - case s =1. When s = 1, we write the fractional Laplacian as a divergence
operator:

CAVL/2, s _ r—=y
(=A) divH [u], Hlu] = ¢, 1P.V. u(y)ﬁ_m”+1 dy
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where H[u] is an operator of order 0 (in dimension 1, H is the Hilbert transform). We then have
FuB) = (el me)™ [ xu(1 = op)da
(e [ (2205 ds
E

= (Ine))™" H¢%] - v dH" ™ (z)
o*E

and we proceed as above: Given xg € 0*F, we define we(z) = ¢5(xo + ex), which solves

w® 4 (=AY 2w = xp(zo +ex) in Q.
w® =0 in CQ.

and we conclude once again thanks to the following lemma:

Lemma 6.2. There exist a constant C such that ||Ine| "' H[¢%|(z0)| = ||Ine| L H[w](0)] < C for all
x9 € O*E. Furthermore,
If v € 0" EN K, then

| Ine|™ H[¢%)(w0) = | Ine|~ H[@®](0) — oy, 1vE(20)-
If xg € 0*E N OSY, then we have
|Ine| "' H[¢%](x0) = |Ine| " H[@](0) — aiyln(xo) if 8=0 (Dirichlet)

and
|Ine|"LH[¢%](x0) = | Ine| L H[w](0) — 0 ifa =0 (Neumann).

Proof of Lemma 6.2. Since ¢% = 0in CQ and 0 < ¢% < 1, we have (assuming Q C Bjy)

To—Y 1 1
oY) 7 dy| < |In€] / T dy—0
/|y—1021 B mg — y|ntt 1<|y—zo|<M |To — Y|

so we only need to bound (and identify the limit of) the following integral:

— To —Y —1 15 Yy
1 p.v. e (y)———=—dy = —|1 P.V. dy.
ine /qu%(y)xo et = ~linel [ W)yt

ly|<e—1

|Ing|™*

If 29 € Q then Br(0) C Q. for £ small enough. Since w® and (—A)'/?w*® are bounded in L>(Bg), it
follows that w? is bounded in C¥# (Brj2) for some 3 > 0. In particular,

PV 5 Yy < |y‘ﬁ 1 < —1
Ve W (y) g dy < T dy+ T dy < C|lng|
lyl<e—1 [yl i<t |9l 1<lyl<e1 Y]

and the bound on |Ine|~*H[¢%](z0)| follows.

Next, we note that w® converge locally uniformly to wg, unique bounded solution of

wo + (*A)lmwo = X{z-vp(x0)<0} in R™.
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This solution is of the form wo(z) = p(z-vE(xo)) for some function ¢ satisfying in particular p(—o0) = 1
and ¢(oo0) = 0. Assuming (without loss of generality) that = - vg(xo) = 1, we get

—|lne|~*P.V. / w(y1 Ldy = —|lne|"'P.V. w(y1 Ldye
tne ly|<e—1 ( )IyI”+1 [Inel ly|<e—1 ( )Iyl"+1 !
et 1
— -1 n—1
= —|Ine| /O m/aB (y1)yr dH" ™ (y) dre

"

and L’Hospital Rule gives

e—0

_ Y <o n—
—|Ing|7'P.V. / - w(yl)i\m"“ dy — —lime /aB o(y1)yr dH"H(y)e
y|<e? e—1

— — lim e(ey1)yr dH" H(y)er
0B,

e—0

- — y1 dH" " (y)er
OB1N{y1<0}

and the result follows with
n— Cn,1 n—
Tpy = cn,l/ ydH " (y) = 7/ le - yldH" " (y).
0B1N{y1>0} 9B,

If 2o € 0 and 8 = 0 then v () = n(zo) and regularity theory for fractional elliptic equations ([21])

implies that w® is bounded in C’llo/f (R™) and so w® converges locally uniformly to wg unique bounded
solution of

wo + (=AY 2we =1 in {z-n(x) < 0}
wp =0 in {z - n(z) > 0}
which is of the form wg(x) = p1(x - n(xg)) for some p; : R — [0, 1] satisfying in particular ¢;(—o00) =1

and ¢;(00) = 0. Proceeding as above, we deduce

e 'RV / i} 1) iy dy = (e
ylse—

When a = 0, the solution of the corresponding Neumann boundary value problem is wg = 1 and

—|lng|~'P.V. @1(y1)|y|$+1 dy = —|Ing|"'P.V. LalyzO

lyl<et yl<e—1 |yt

which gives the last limit in Lemma 6.2. O

7. I-CONVERGENCE OF ¥*(F) WHEN s € (0,1)

We now consider a functional in which the nonlocal perimeter has a destabilizing effect. More precisely,
we recall the definition of 4*(FE) when s € (0, 1):

2(E) = P(E, Q) — t=—* /Q xs(1 = ¢5) da

and we are interested in the I'-convergence of 47 as ¢ — 0.
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7.1. The case () = R" - Proof of Theorem 2.6. Theorem 2.6 follows from the following proposition:

Proposition 7.1.
(i) For any set E such that xg € L*(R™)

limsup ¥’ (E) < 95 (E).

e—0
(ii) For any family {E.}c.~o that converges to E in L'(R™),
liggf G°(E.) > 9 (E).
Proof. Using (3.6) and Young’s inequality, we find that for all u, there exists C(u) such that
Py(E) < CP(E)’|B|'™ < uP(E) + C(u)| Bl
With p small enough, we thus have

(7.1) G3(E) = P(E) — te, . Po(E) > = P(E) — C|E|.

|~

We note that (i) is obviously true when %35 (F) = 0o, so we can assume that 4§ (F) < oo which, using
(7.1) implies P(F) < oo and Theorem 2.1-(i) implies lim._,0 495 (F) = 95 (E).

To prove (ii), we first note that

5_3/ XE(l - (b%) = Cn,s ¢EE(XE1/)CE - XCEwE) dx S cn,sPs<E)
n Rn
and so (proceeding as above),
1
G(E) > §P(E) —C|E|.

We note that (ii) is trivially true if lim inf._,o 9°(E,) = 00, so we can assume that liminf._,o¥°(E;) < C,
and we fix a subsequence {E,, } such that liminf. .0 %°(E.) = lim., 0%’ (E.,) and 97 (E.,) < C.
Taking p = i and we get

1
iP(EEk_) <9’ (E.,)+ClE,|<C.
We can use this bound to show that (recall (4.1))
Jg = EES/R XE., (1 — ¢6E'1k) = Cn,s/]R ¢EE'“% (XB., YcE., — XcE., VE.,)dx
converges to

Joo = Cn,s/ XEwCE = Cn,sPs(E)~

Indeed, we have
1

| Tk — Joo| < / ¢u., IxB., Yep., — Xep., Ve, — Xptbes + Xep¥p|dr
Rn

Cn,s

+

/R ¢5., (xptcr — xcpp) dr —/ XEYcE

n

We can proceed as in the proof of Theorem 2.1-(i) to prove that the second term goes to 0 as g, — 0
by. The first term is bounded by

/ IXEB., YcE., — XcB., VB, — XBYcE + Xeptr| dv < 2P(E. AE) < CP(E., AE)°|E,,AE|'™* = 0
]Rn

since E., — E in L'(R") and P(E), P(E.,) < oo. Finally, we have 47 (E.,) = P(E.,) — tJj, so the
result now follows from the lower semicontinuity of the perimeter.

O
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7.2. The case 2 # R" with Robin boundary conditions. We need to prove:

Proposition 7.2.
(ii) For any set E such that xg € L'(R"),

limsup ¥’ (E) < 95 (E).

e—0

(ii) For any family {E.}.>¢ that converges to E in L(Q),
lilari,iélf G (E:) > 95 (E).
Proof. Using (3.7), we find
PE(E,Q) < C(P(E, Conv(2)))*|ENQ% < uP(E,Conv(Q)) 4 C(u)|E|.

If Q is convex, we have P(E, Conv(Q2)) = P(E, Q). In the general case, we assume that P(€2) < oo and
write P(E, Conv(Q))) < P(E) = P(E,Q) + P(Q) (recall that E C ) to get

PX(E,Q) < uP(E,Q) + uP(Q) + C(u)|El.

B
Since 0 < a+ﬁ,a+ﬂ <1, we have

/cgoﬂrﬁw d:c</ ¢de</ Yodr = Ps(Q) < oo,

and

B Yene(@)depna(r) YEnQVCcENQ 1
d — L dr < Py(Q) < .
/CQCH'B Ya(z) s co () xS/CQ/CEmQ |z — y|"tedy v < Pl@) <oo

It follows that

% (E) >

Since the statement (i) is true if ¢5(F) = oo, we can assume that 45 (F) < oo, which now implies
that P(E, ) < co. The result thus follows from Theorem 2.2-(i).

P(E,Q) — CP(Q) — C|E| — CP,(Q).

DN | =

For (ii), we note, using (4.4) and the fact that 0 < ¢, < 1, that

B Ye(r) 9%
a+ B a(z) |z —y|nrs

5_8/ xe(l—9¢%) = C'n,s/ du(XEYcE — XcEVE) dT — Cn,s/ / dydz
Q Q co
<20, .PHE,Q).

Proceeding as in the proof of Proposition 7.1, we can assume that liminf. o %°(E.) = lim., 097 (E:,) <
oo and P(E,,) < C and we need to show that

1
Jk = Cn s / XEak 1 - ¢Eak / ¢Esk XEEk ’(/JCE% XCEEk ¢E5k)dw
€k
/ / w QZJEEk( ) Ec,. _ dyda
cQ wﬂ( ) | 7y‘n ?

o a B 1/JEmQ¢CEmQ
JOO._/QXEwCE—F/CQOH‘ﬁwE—F/CQOH'ﬁ 29

converges to




28 ANTOINE MELLET AND YIJING WU

We have

i — Joo| < / 8% Ixp., Yer., — Xep. Ve, — xaten + Xervslda
/ / Bz) 95, W) vp, (2) - Ye()
cQ z) |z — y["ts Ya(z)

o x qs%ik (y) wE( )
+ /Q¢E5k (XEl/JCE—XCEl/JE)—/C / Do o vl —J.l.

We can proceed as in the proof of Theorem 2.2 to show that the last term goes to 0 as k — co. The first
term is bounded by

(7.2)

/ IXE. YcE., — XcE., VE., — XEYCE + XCEVE|d2
Q
< 2PM(E., AE,Q) < C(P(E.,AE,Q) + P(Q))°|E., AE|'™* — 0
since E., — E in L'(Q) and P(E,Q), P(E.,,Q), P(Q) < co. The second term is bounded by

/CQ/ ‘x_1|n+g quEk(w;( ;/’E( dydz /CQ/ |XE|x_ |n+q(y)|dydx

_ /Q vea®)lxe., (v) — e (y)ldy.

Since Yeq(y) € L(Q), Ixe., (v) —xe(y)| <1 and [xg., (y) — xe(y)| = 0 a.e., Lebesgue’s dominated

convergence theorem yields
XE:, Y
[ [,
cQ |l“ —y

as € — 0. This proves that the right hand side in (7.2) goes to zero, and thus Jp — Js. Since
45 (Ee,) = P(E.,,Q) — tJy, we conclude the proof of (ii) by using the lower semicontinuity of the
perimeter. 0

8. I'-CONVERGENCE OF ¥.(FE) (CASE s = 2)
Theorem 2.8 follows from the following proposition:

Proposition 8.1. Assume that Q is a bounded set with C* boundary and that t < 2.
(i) For any set E such that xg € L*(R"™),

limsup %.(E) < % (E) = (1 - ;) P(E,Q).

e—0
(ii) For any family {E.}.~o that converges to E in L'(f2),
liminf 9. (E.) > %(E).
e—0
The key tool in the proof of this proposition is the following lemma:

Lemma 8.2. Assume that Q is a bounded set with C*® boundary. For any measurable set E C Q, and
for any o/ € (0,a), the solution ¢S, of (2.8) satisfies

1
(8.1) 1eVeS,(z)| < = +c< +e° RH“) forallR>0,e>0,z€Q

where the constant C' depends on Q but not on E.
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Proof of Proposition 8.1. The statement (i) follows from Proposition 2.3.
To prove (ii), we recall that

e-l/ﬂxEu—wE)dx:—e/EAqs%dx

- / Vo - vp(x) dH" (z)
O*ENQ

so that Lemma (8.2) implies
1 1 / '
5_1/ xe(l —¢%)dz < ( +C ( + &% R )) P(E,Q)
Q 2 R

for all R > 0 and ¢ > 0 (with a constant C' independent of E). For any 0 <7 <1— %, we choose R such
that C/R < in/t and then &y such that Ce® R < in/t for all € < g, . We then have

t
Y. (FE) > (1 —5~ 77) P(E,Q) Ve < &g
for all set F with P(FE, ) < oco. The lower semincontinuity of the perimeter implies
t
liminf 9. (E.) > <1 ——— n) P(E,Q).
e—=0 2

Since this holds for all 7 > 0, the result follows. O

Proof of Lemma 8.2. We fix R > 0 throughout the proof. First, we prove that (8.1) holds for all xg such
that Bre(xo) C Q. For that, we consider the functions v = K, * xp and u® = ¢% — v°. Lemma 5.6
implies that [eVv®(z0)| < 1/2. The rescaled function @° = u®(z¢ + ex) solves @ — Au® = 0 in Bg(0)
and satisfies ||u¢|| < 2. We deduce that |[Va(0)| < & and therefore
€ V65a0)| < Ve (o)l + & < 1+ 5

Next, we take yg € 0Q and we are going to show that (8.1) holds in Bgr.(yo). Together with the
argument above, this implies the lemma. This part of the proof is more delicate and must make use of
the Neumann condition and of the regularity of 0{2. Without loss of generality, we assume that yo = 0
and v(yp) = —e,. In what follows, we use the notation z = (2, x,) with 2’ € R*~! and z,, € R. We
define F(x) = xg(2’,2,) + xg(a’, —z,) the even extension of xg and denote v§(z) = K. * F', which
satisfies [eVv§(z0)| < 1/2 by Lemma 5.6. Note that v5 solves the equation v§ —e?Av§ = xg in {x, > 0}
and satisfies the Neumann boundary condition on {z, = 0}. The idea of the proof is to use the C1:®
regularity of {2 to say that in Bg., 2 is close to the half space {z,, > 0} and that the function u® = ¢% —v§
(and its gradient) is small.

The rescaled function @°(x) = u®(yo + €x) solves

{uE—Aus -0 in OF

8.2
®.2) Vas - v =g¢%(z) on 00°

where
g°(x) = =Vui(z) - v° (),
with 05 (x) = v§(yo + ez) and Q° = {z; yo + ez € Q}.
Gradient estimates for Neumann boundary value problems (see [16, 15]) give, for n > 0:

i 1,
(8.3) S |Va©| < RHUEHLw(QEan) + Cllg*ll Lo 09:nBar) + R [9%]cn (00 Bag)-
N

R
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We have
1%°]| oo (@enBog) < Ul () < 0B Le @) + V5 lLe (@) < 2,

and we can thus conclude thanks to the following Lemma:
Lemma 8.3. For all 0 <1 there exists C > 0 such that
1951l Lo (0022 Bar) < C [(eR)™ + (e*R'™*)7]
and
l9°llcmonenman) < C [ER) + (>R )7 777

Lemma 8.3 together with (8.3) yields
1 / /
sup |V <C < +e* Rt )
QcNBgr R
for some o = a0 —n) < a. Since |Vv§| < 1/2, we deduce:

1 / /
sup |eVeg| < = + C ( + &> RM )
QNBr. R

which complete the proof (8.1). O

Proof of Lemma 8.3. We recall that ¢g°(z) = —Vo5(x)-v°(x) where 95 (z) = K * F. Calderén-Zygmund’s
estimates gives |05 ()||w2»(B,,) < C for all p < oo and so ||V (2)|lco(B,z) < C. We note that

97 (x) = =Vpvi(z) - vp (x) = O, 05 (21 (2)
where the C1® regularity of € implies
v’ (2)| < C(eR)*  in Ber(yo)
while the fact that 9, vf = 0 on {z, = 0} yields:
|0,, 05 (x)] < Clan|” < C(e*RM)7.

The first estimate in Lemma 8.3 follows. The second estimate then follows from the interpolation
inequality

o 1-n/o _e o 1-n/o
on < CllgE (I lge 1117 < CIVTE (@) |57y o "7

lg°|

APPENDIX A. AN INTERPOLATION INEQUALITY

z)xce(y 1 Ixe(T) — xe(Y)l
L(E,Q) // ey d dy 75/ ey dz dy.
QJQ Yy

We will prove that for any function u € WH1(Q) we have

[u(z) — u(y)| nwy, 21 ~* /
Al / ————"—drdy < ———||ul|71 Vul|dz
(A1) alo lz—y|"ts s(1—s) el COnv(ml |

We recall that

S
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so the result follows by a density argument.

We split the integral in the right hand side between {(z,y) € Q?; |z —y| > R} and {(z,y) € Q?; |[z—y| <
R}. For the first one, we write

/] ) a0 g ¢ [ lute)] + o)l
(@w)e0?;jo—y>R} 1T — Y[ ()R ; jo—y|>R} [T —y[**?

R
< 2nwy||ul| 1 (o) do—r-.
s

For the second integral, we write

// ) = :isﬂd dy
{(z,y)€92 ; |z—y|<R} |z — ¥
1 1
:// 7%/ Vu(te + (1 —t)y) - (z —y)|dtdrdy
{(2.1)€92 ; le—y|<R} 1T — Y|

51
|Vu(z)| dzdy dt
///{zeﬂt(u ) |z—y| <Rt} |z —y|n—1+s

where we did the change of variable z = tx 4 (1 — t)y, so that Q(y) ={z=te+ (1 —t)y; 2z € Q}. Tt is
readily seen that for ¢ € [0,1] and y € €, we have Q:(y) C Conv(£2) the convex hull of Q. We deduce:

/[ ) —ul)
((2)€0?; [o—y|<r} [T =Yl
ps—1
|[Vu(z)| dy dz dt
/ /(;onv(ﬂ /{yGQ |z—y|<Rt} ‘Z_y|n I+s

tsfl
< |Vu(z)|dz/ / —————dydt
/conv(Q) 0 J{jz—yl<rey |z —y[r1Fs

1-s
< nWn |Vu(z)| dz.
1- Conv ()

We deduce

u(z) — u(y)| R”* R /

————— drdy < 2nwy||u||pio) —— + nwp—— |Vu(z)| dz

/Q o lz—yl"ts lrlz o s I =5 Jeonv(Q) |

and (A.1) follows by taking R = — 1l

B fcronv(sz) [Vu(z)|dz"
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