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Abstract. We establish the �-convergence of some energy functionals describing nonlocal attractive
interactions in bounded domains. The interaction potential solves an elliptic equation (local or nonlo-
cal) in the bounded domain and the primary interest of our results is to identify the e↵ects that the
boundary conditions imposed on the potential have on the limiting functional. We consider general
Robin boundary conditions, which include Dirichlet and Neumann conditions as particular cases. De-
pending on the order of the elliptic operator the limiting functional involves the usual perimeter or
some fractional perimeter.

We also consider the �-convergence of a related energy functional combining the usual perimeter
functional and a nonlocal repulsive interaction energy.
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1. Introduction

Given a subset ⌦ of Rn (with possibly ⌦ = Rn), we consider the nonlocal attractive interaction energy
defined for a set E ⇢ ⌦ by

VK"(E) = �

ˆ
⌦

ˆ
⌦

K"(x, y)�E(x)�E(y) dx dy

where �E denotes the characteristic function of the set E and for all y 2 ⌦, the kernel x 7! K"(x, y) is
the solution of

(1.1) K✏ + "s(��)s/2K" = �(x� y) in ⌦

with s 2 (0, 2].
Functionals of this form arise in many applications, describing attractive behavior (e.g. motion

by chemotaxis) or, with the opposite sign and usually in competition with the perimeter functional,
modeling repulsive phenomena (e.g. modeling the role of protrusions in cell motility [6] or instabilities
in ferrofluids subjected to a transverse magnetic field [20]).

Our main focus is on the case ⌦ 6= Rn when (1.1) is supplemented by boundary conditions - we will
consider general Robin boundary conditions. Indeed, while the asymptotic behavior of such functionals is
a classical problem whenK"(x, y) = K"(x�y), the e↵ects of the boundary conditions have been identified.
This problem has applications in the study of the motion by chemotaxis with an incompressibility
constraint, which will be investigated in details in a forthcoming paper. In that context, the Robin
conditions model the degradation of the chemical responsible for chemotaxis at the boundary of the
domain, whose concentration is given by �"

E
(x) =

´
⌦
K"(x, y)�E(y) dy.

We immediately notice that K" ! � when " ! 0 and so VK"(E) ! �|E|. Since the applications we
have in mind have a volume constraint, we are interested in the behavior of VK"(E) + |E| when " ⌧ 1.
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When ⌦ = Rn, we have K"(x, y) = "�nK
�
x�y

"

�
, and this functional is related to nonlocal perimeters.

Indeed, we have

VK"(E) + |E| =

ˆ
Rn

�E(1�K" ⇤ �E) dx = PK"(E)(1.2)

with the nonlocal perimeter

PK(E) :=

ˆ
E

ˆ
Rn\E

K(x� y) dy dx =
1

2

ˆ
Rn

ˆ
Rn

K(x� y)|�E(x)� �E(y)| dy dx.

An important particular case is the s-perimeter, denoted Ps, which corresponds to K(x) = 1

|x|n+s with

s 2 (0, 1), see [3, 4, 12, 23, 8]. For general K, the asymptotic behavior of (1.2) when "⌧ 1 depends on
the rate of decay of K(x) for large |x|. In our setting, this decay is given by the following lemma (see
for instance [18]):

Lemma 1.1. The solution of (1.1) in Rn
is of the form K"(x, y) = "�nK

�
x�y

"

�
where K(z) = k(|z|) � 0

satisfies, as r ! 1:

(1.3) k(r) =

8
>><

>>:

cn,s
rn+s

+ o

✓
1

rn+s

◆
if s 2 (0, 2)

cn
e�r

r
n�1
2

+ o

✓
e�r

r
n�1
2

◆
if s = 2

as r ! 1

with cn,s =
2
s
�(n+s

2 )
⇡n/2|�(� s

2 )|
.

In particular, when s 2 (1, 2], we have |z|K(z) 2 L1(Rn) and a classical result of Dávila [7] implies
that

PK"(E) ⇠ "�P (E)

where P denotes the usual perimeter, defined as the total variation of the characteristic function �E :

P (E) =

ˆ
Rn

|D�E |.

We recall this result here for the reader’s sake:

Theorem 1.2 ([7, 2]). Let K" = "�nK(x/") where K(z) = k(|z|) � 0 satisfies
´1
0

k(r)rn dr = k0 < 1.

Then for every u 2 BV(Rn) with compact support, we have

lim
"!0

"�1

ˆ
Rn

ˆ
Rn

K"(x� y)|u(x)� u(y)|dxdy = �

ˆ
Rn

|Du|

with � = k0

ˆ
@B1

|e · x|dHn�1(x) (for any e 2 @B1).

In this framework, the �-convergence of PK" to the perimeter P is proved in [1].

On the other hand, Lemma 1.1 clearly implies that the condition
´1
0

k(r)rn dr < 1 fails when
s 2 (0, 1]. When ⌦ = Rn, we expect that the appropriate scaling when s 2 (0, 1) will give rise to the
s-perimeter. In fact, various works on this topic suggest (see in particular [19] for the case s = 1):

VK"(E) + |E| = PK"(E) ⇠

(
"s�sPs(E) for s 2 (0, 1)

"| ln "|�1P (E) for s = 1.
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Our goal in this paper is to make this asymptotic rigorous in the particular framework we consider
here (with K" solution of (1.1)) and to identify the role of boundary conditions when ⌦ 6= Rn. In the
sequel, we denote

�"
E
(x) =

ˆ
⌦

K"(x, y)�E(y) dy

and we consider the functional

VK"(E) + |E| =

ˆ
⌦

�E(1� �"
E
) dx.

The potential �"
E

solves

(1.4) �+ "s(��)s/2� = �E in ⌦

together with Robin boundary conditions. In the local case s = 2, these are

↵�+ �"r� · n = 0 on @⌦

and in the nonlocal case s 2 (0, 2) the corresponding nonlocal Robin boundary conditions take the form:

↵�+ � eN (�) = 0 in C⌦

eN (�)(x) =
1

cn,s
´
⌦

1

|x�y|n+s dy
N (�)(x), N (�)(x) = cn,s

ˆ
⌦

�(x)� �(y)

|x� y|n+s
dy, x 2 C⌦.

The coe�cients ↵ and � will always be assumed to be non-negative functions (defined on @⌦ or C⌦, as
appropriate) satisfying ↵(x) + �(x) > 0 (for the nonlocal case, we refer to [10] for an introduction to
such boundary value problems with Neumann boundary conditions).

The appropriate scaling depends on s and the discussion above suggests the following definition:

(1.5) J s

"
(E) :=

8
>>>>><

>>>>>:

"�s

ˆ
⌦

�E(1� �"
E
) dx if s 2 (0, 1)

"�1
| ln "|�1

ˆ
⌦

�E(1� �"
E
) dx if s = 1

"�1

ˆ
⌦

�E(1� �"
E
) dx if s 2 (1, 2].

The main results of this paper identify the limit of J s

"
(E) for a given set E and establish the �-

convergence of the functional J s

"
. When ⌦ = Rn some of these results are classical (though in some

cases we present simpler proofs that use strongly the fact that the kernel K" solves (1.1)), but our focus is
the case ⌦ 6= Rn and (1.1) (or (1.4)) is supplemented by Robin boundary conditions. To our knowledge,
the e↵ects of these boundary conditions on the limiting functional have not been previously identified
in all cases s 2 (0, 2].

The original motivation for this study comes from the recent paper [18], in which we study the
following energy functional

P (E)� �VK"(E)

defined for Caccioppoli sets E ⇢ Rn with fixed volume |E| = m. This functional appears in a model for
cell motility derived in [6] in which the e↵ects of surface tension are in competition with the repulsive
e↵ect of protrusions along the membrane of the cell. In this case, the nonlocal perimeter has a repulsive
e↵ect. We will establish the �-convergence of this functional when s 2 (0, 1) and s = 2 (see Theorems
2.6, 2.7 and 2.8).

Outline of the paper: In Section 2, we state the main results of this paper. In Section 3, we recall
several notations, definitions and properties of the perimeter and s-perimeter which will be useful in the
paper. We also derive an alternative formula for J s

"
(see Proposition 3.4). The rest of the paper is then

devoted to the proofs of the main results.
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2. Main results of the paper

2.1. The case s 2 (0, 1). We start with the case when s 2 (0, 1) and ⌦ = Rn, that is

J s

"
(E) = "�s

ˆ
Rn

�E(1� �"
E
) dx

where �"
E

is the unique bounded solution of

(2.1) �+ "s(��)s/2� = �E in Rn

(see (3.1) for the definition of the fractional Laplacian (��)s/2). In this case, the kernel K" solution of
(1.1) is of the form K"(x, y) = "�nK

�
x�y

"

�
where K(z) ⇠

cn,s

|z|n+s as |z| ! 1, and the functional J s

"

converges to cn,sPs(E) with the s-perimeter defined by:

Ps(E) :=
1

2

ˆ
Rn

ˆ
Rn

|�E(x)� �E(y)|

|x� y|n+s
dx dy.

Indeed, we can prove:

Theorem 2.1. Let ⌦ = Rn
and s 2 (0, 1).

(i) For every set E in L1(Rn) such that Ps(E) < 1, we have

lim
"!0

J s

"
(E) = cn,sPs(E).

(ii) For any family {E"}">0 that converges to E in L1(Rn), we have

lim inf
"!0

J s

"
(E") � cn,sPs(E).

In particular, the sequence of functionals J s

"
�-converges to cn,sPs.

Next, we assume that ⌦ is an open subset of Rn and we consider equation (2.1) in ⌦, supplemented
with Robin boundary conditions:

(2.2)

(
�+ "s(��)s/2� = �E in ⌦

↵�+ � eN (�) = 0 in C⌦

with

eN (�)(x) =
1

cn,s
´
⌦

1

|x�y|n+s dy
N (�)(x), N (�)(x) = cn,s

ˆ
⌦

�(x)� �(y)

|x� y|n+s
dy, x 2 C⌦

where ↵ and � are non-negative functions (defined in C⌦) satisfying ↵(x) + �(x) > 0 for all x 2 C⌦. We
introduce the local contribution of the s-perimeter in ⌦:

PL

s
(E,⌦) :=

1

2

ˆ
⌦

ˆ
⌦

|�E(x)� �E(y)|

|x� y|n+s
dx dy.

We then prove:

Theorem 2.2. Let ⌦ be a bounded subset of Rn
such that Ps(⌦) < 1 and let s 2 (0, 1). Assume ↵,

� : C⌦ 7! [0,1) satisfy ↵(x) + �(x) > 0 for all x 2 C⌦. Then:

(i) For every set E ⇢ ⌦ such that PL

s
(E,⌦) < 1, we have

lim
"!0

J s

"
(E) = J s

0
(E) := cn,s


PL

s
(E,⌦) +

ˆ
C⌦

↵

↵+ �
 E(x) dx+

ˆ
C⌦

�

↵+ �

 E\⌦(x) CE\⌦(x)

 ⌦(x)
dx

�

where for a given set F , we denote  F (x) :=
´
F

1

|x�y|n+s dy (defined for x 2 CF ).
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(ii) For any family {E"}">0 that converges to E in L1(⌦),

lim inf
"!0

J s

"
(E") � J s

0
(E)

In particular, the sequence of functional J s

"
�-converges to J s

0
.

For Dirichlet boundary conditions (� = 0), we find (using Lemma 3.2)

J s

0
(E) = cn,s

ˆ
Rn

�CE\⌦ E\⌦ dx+

ˆ
Rn

�C⌦ E\⌦(x) dx

�

= cn,s

ˆ
Rn

�C(E\⌦) E\⌦ dx

= cn,sPs(E)

so the limiting functional does not see the set ⌦. On the other hand, with Neumann boundary conditions

(↵ = 0) our result gives:

J s

0
(E) = cn,s


PL

s
(E,⌦) +

ˆ
C⌦

 E\⌦(x) CE\⌦(x)

 ⌦(x)
dx

�

which is, to our knowledge, a new functional. This functional takes the same value for the set E \⌦ and
the set CE \⌦. This symmetry suggests that minimizers are such that @E intersect @⌦ orthogonally, a
common feature of minimal surfaces with Neumann boundary conditions.

2.2. The case s = 2. Next, we consider the classical case s = 2 for which we have:

J"(E) = "�1

ˆ
⌦

�E(1� �"
E
) dx

(we drop the index 2 in the local case for clarity) where �"
E

solves the local elliptic equation

(2.3) �� "2�� = �E in ⌦.

When ⌦ = Rn, Theorem 1.2 applies (in fact, this theorem applies when ⌦ = Rn and s 2 (1, 2]), so the
interesting case is when ⌦ is a subset of Rn and (2.3) is supplemented with the following Robin boundary
conditions:

(2.4) ↵�+ �"r� · n = 0 on @⌦.

In that case, we first prove:

Proposition 2.3. Let s = 2, ⌦ be a bounded open set with C1,↵
boundary. Assume further that ↵(x),

�(x) are bounded, Lipschitz non-negative functions such that ↵(x) + �(x) � � > 0. Given a set E ⇢ ⌦
with finite perimeter P (E,⌦) < 1, we have

(2.5) lim
"!0

J"(E) =
1

2
P (E,⌦) +

ˆ
@⌦

↵(x)

↵(x) + �(x)
�E(x) dH

n�1(x).

This proposition identifies the limit of J"(E). For Neumann boundary conditions (↵ = 0), we
find 1

2
P (E,⌦), but for Dirichlet boundary conditions, we get 1

2
P (E,⌦) +

´
@⌦
�E(x)dHn�1(x). How-

ever, this functional is not lower-semicontinuous (to see this, consider a sequence of sets En such that´
@⌦
�En(x)dH

n�1(x) = 0 which converges to E such that
´
@⌦
�E(x)dHn�1(x) 6= 0) so it cannot be the

�-limit of J". This phenomenon is not restricted to Dirichlet conditions, but occurs whenever ↵ > �.
We thus prove:
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Theorem 2.4. Let s = 2, ⌦ be a bounded open set with C1,↵
boundary. Assume further that ↵(x), �(x)

are bounded, Lipschitz non-negative functions defined on @⌦ such that ↵(x) + �(x) � � > 0 and that

(2.6) H
n�2

✓
@

⇢
↵

↵+ �
>

1

2

�◆
< 1.

Then the functional J" �-converges, when "! 0 to

F ↵
↵+�

(E) =
1

2
P (E,⌦) +

ˆ
@⌦

min

✓
1

2
,

↵(x)

↵(x) + �(x)

◆
�E(x) dH

n�1(x).

For Dirichlet boundary conditions (and more generally when ↵ � � on @⌦), we have F ↵
↵+�

(E) =
1

2
P (E) while with Neumann boundary conditions (↵ = 0) we find F0(E) = 1

2
P (E,⌦).

2.3. Generalization: General elliptic operators. It is relatively easy to generalize this result to
more general elliptic operators in divergence form: given a continuous function x 7! A(x) with A(x)
symmetric matrix satisfying

�In  A  ⇤In

for �,⇤ > 0. We can replace (2.3)-(2.4) with

(2.7)

(
�� "2div(Ar�) = �E in ⌦

↵�+ �"Ar� ·
n

knkA
= 0 on @⌦

with kxkA =
p

xTAx for x 2 Rn. Then the same proofs (see Remarks 5.2 and 5.4) show that the
corresponding functional J" �-converges, when "! 0 to

1

2
PA(E,⌦) +

ˆ
@⌦

min

✓
1

2
,

↵

↵+ �

◆
�E(x)knkA dHn�1(x)

where the anisotropic perimeter is defined by

PA(E,⌦) =

ˆ
@⇤E

k⌫E(x)kAdH
n�1(x)

or equivalently:

PA(E,⌦) =

ˆ
⌦

kD�EkA = sup

⇢ˆ
⌦

�E div g dx ; g 2 [C1

0
(⌦)]n, |A�1g(x)|  1 8x 2 ⌦

�
.

Similarly, in the nonlocal case s 2 (0, 1), we can use the anisotropic integro-di↵erential operators

L
s/2

A
[�] = PV

ˆ
Rn

u(x)� u(y)

kx� ykn+s

A

dy

and similar results can be derived, with the s-perimeter replaced by the anisotropic fractional perimeter

PA

s
(E) :=

ˆ
Rn

ˆ
Rn

�E(x)�CE(y)

kx� ykn+s

A

dx dy =
1

2

ˆ
Rn

ˆ
Rn

|�E(x)� �E(y)|

kx� ykn+s

A

dx dy

and the potential  F by  A

F
(x) :=

´
F

1

kx�ykn+s
A

dy.
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2.4. The case s 2 [1, 2). When ⌦ = Rn and s 2 (1, 2), Theorem 1.2 applies and gives

lim
"!0

J s

"
(E) = �s,nP (E)

and the �-limit is proved in [1]. When ⌦ is a subset of Rn, the boundary conditions play a role. We will
not investigate this case in details, like we did for the case s = 2 above. But for the sake of completeness,
we prove that the scaling given in (1.5) is the correct one by proving the convergence of J s

"
(E) when

(1.4) is supplemented with either Dirichlet or Neumann boundary conditions, that is when �"
E

solves
(2.2) with ↵ ⌘ 0 or � ⌘ 0. We then have:

Proposition 2.5. Let ⌦ be a bounded open set with Lipschitz boundary and let J s

"
be defined by

J s

"
(E) :=

8
><

>:

"�1
| ln "|�1

ˆ
⌦

�E(1� �"
E
) dx if s = 1

"�1

ˆ
⌦

�E(1� �"
E
) dx if s 2 (1, 2)

where �"
E

solves (2.2) with either ↵ ⌘ 0 or � ⌘ 0.
There exist some positive constants �1

n,s
, �2

n,s
(satisfying �1

n,1
= �2

n,1
) such that for any set E ⇢ ⌦

such that P (E,⌦) < 1, we have

(i) If � ⌘ 0 (Dirichlet boundary conditions):

lim
"!0

J s

"
(E) = �1

n,s
P (E,⌦) + �2

n,s

ˆ
@⌦

�E dHn�1

(i) If ↵ ⌘ 0 (Neumann boundary conditions):

lim
"!0

J s

"
(E) = �1

n,s
P (E,⌦).

We do not attempt to derive explicit formula for the constants �1
n,s

and �2
n,s

, except when s = 1,
where the proof gives

�1

n,1
= �2

n,1
=

cn,1
2

ˆ
@B1

|e · y|dHn�1(y).

In particular, the limit with Dirichlet conditions is proportional to P (E) when s = 1.

2.5. An energy functional with competing local and nonlocal terms. Finally, we go back to our
initial motivation for studying this problem which arises in the context of a model for cell motility (see
[18]) involving the functional

P (E)� �PK"(E).

We note that the nonlocal perimeter appears now as a destabilizing term. When "⌧ 1 the results above
show that the critical regime corresponds to � ⇠ "�s if s 2 (0, 1) or � ⇠ "�1 if s 2 (1, 2]. We study this
problem for s 2 (0, 1) and for s = 2. We fix t > 0 and define the functional G s

"
(E) by

G s

"
(E) = P (E,⌦)� tJ s

"
(E) when s 2 (0, 1)

and
G"(E) = P (E,⌦)� tJ"(E) when s = 2.

When ⌦ = Rn, we prove:

Theorem 2.6. Let s 2 (0, 1) and ⌦ = Rn
. Then the functional G s

"
�-converges, when "! 0 to

G s

0
(E) = P (E)� tcn,sPs(E)

for all t > 0.

When ⌦ 6= Rn and �"
E

solves (2.2) (Robin boundary conditions), we have:
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Theorem 2.7. Let ⌦ be a bounded subset of Rn
such that P (⌦) < 1 and let s 2 (0, 1). Assume further

that ↵(x), �(x) are bounded, Lipschitz non-negative functions such that ↵(x) + �(x) � � > 0. Then the

functional G s

"
�-converges, when "! 0 to

G s

0
(E) = P (E,⌦)� tcn,s


PL

s
(E,⌦) +

ˆ
C⌦

↵

↵+ �
 E(x) dx+

ˆ
C⌦

�

↵+ �

 E\⌦(x) CE\⌦(x)

 ⌦(x)
dx

�

for all t > 0.

When s = 2, the problem is much more delicate: in the case s 2 (0, 1), the destabilizing term is of
lower order than the stabilizing perimeter while when s = 2, the destabilizing term is asymptotically of
the same order. We only consider the case of Neumann boundary conditions which is often the most
relevant for applications (e.g. in the study of the cell motility model introduced in [6]) and prove:

Theorem 2.8. Let ⌦ be a bounded subset of Rn
with C1.↵

boundary and consider the functional

G"(E) = P (E,⌦)� tJ"(E), J"(E) = "�1

ˆ
⌦

�E(1� �"
E
) dx

where �"
E

solves the local elliptic equation

(2.8)

(
�� "2�� = �E in ⌦

r� · n = 0 on @⌦

Then, for all t 2 (0, 2), the functional G" �-converges, when "! 0 to

G0(E) =

✓
1�

t

2

◆
P (E,⌦)

We do not carry out the detailed analysis of this limit with Robin boundary conditions, but we note
that we have a similar issue as in Theorem 2.4. For example when �"

E
solves the local elliptic equation

(
�� "2�� = �E in ⌦

� = 0 on @⌦,

then Proposition 2.3 gives, for a fixed E,

G"(E) = P (E,⌦)� tJ"(E) !

✓
1�

t

2

◆
P (E,⌦)� t

ˆ
⌦

�E(x)dH
n�1(x).

However, this functional is not lower semicontinuous when 1� t

2
< t (that is when t > 2/3) so it cannot

be the �-limit in that cases. Instead, G" �-converges to

G0(E) =

8
>><

>>:

✓
1�

t

2

◆
P (E,⌦)� t

ˆ
⌦

�E(x)dH
n�1(x) if 0  t  2/3

✓
1�

t

2

◆✓
P (E,⌦)�

ˆ
⌦

�E(x)dH
n�1(x)

◆
�

✓
3t

2
� 1

◆
H

n�1(@⌦) if 2/3  t < 2.

2.6. Comments about the proofs. The proofs that we present in this paper rely strongly on the fact
that �"

E
solves (1.4) (with appropriate boundary conditions) rather than on the properties of the kernel

K" solution of (1.1) (which are not so easy to determine near the boundary of ⌦). The convergence
of J s

"
(E) in the fractional case s 2 (0, 1) (first part of Theorems 2.1 and 2.2) is established using the

relation between Ps(E) and (��)s/2�E (see (3.5)). The lim inf property requires a di↵erent formulation
of J s

"
involving the lower semi-continuous norm [�"

E
]Hs/2(⌦), see (3.8).

When s = 2, the convergence of J"(E) (Proposition 2.3) is established by writing

J"(E) = "�1

ˆ
⌦

�E(1� �"
E
) dx = �"

ˆ
E

��"
E
dx = �"

ˆ
@⇤E

r�"
E
· ⌫E(x) dH

n�1(x)
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and identifying the limit of "r�"
E

via a blow-up argument. The lim inf property cannot however be
proved that way, and we rely instead on a di↵erent formulation, see (3.9), which is reminiscent of the
classical Modica-Mortola functional. To complete the proof of Theorem 2.4, we then need to establish
the lim sup property: While this is easily done by taking E" = E when ↵

↵+�


1

2
for all x 2 @⌦, a delicate

construction is required when ↵

↵+�
> 1

2
on a non empty subset of @⌦ (e.g. for Dirichlet conditions).

The �-convergence of P (E,⌦) � tJ s

"
(E) (Theorems 2.6, 2.7 and 2.8) does not follow immediately

from the work above since the role of the lim inf and lim sup are inverted by the minus sign. When
s 2 (0, 1) (Theorems 2.6 and 2.7), the positive term P (E) is of higher order than the negative term,
so we can establish the lim inf property by first proving the boundedness of the sequence in BV . The
proof of Theorem 2.8 is much more delicate since the two terms have the same order (asymptotically).
It requires a precise estimate on the convergence of "r�"

E
(see Lemma 8.2).

3. Preliminary and notations

3.1. Perimeter and reduced boundary. Given ⌦ open set and E ⇢ Rn we recall that

P (E,⌦) =

ˆ
⌦

|D�E | = sup

⇢ˆ
⌦

�E div g dx ; g 2 [C1

0
(⌦)]n, |g(x)|  1 8x 2 ⌦

�

where |g| = (g2
1
+ . . . g2

n
)1/2. We also have P (E) := P (E,Rn). A Caccioppoli set E is a set such that

P (E,⌦) < 1 for all bounded open sets ⌦. We recall the following definition:

Definition 3.1. The reduced boundary, @⇤E, is defined as the set of x 2 @E where a notion of unit

normal vector can be defined, that is:

(1)
´
B⇢(x)

|D�E | > 0 for all ⇢ > 0,

(2) ⌫E(x) = lim⇢!0

´
B⇢(x) D�E´
B⇢(x) |D�E | exists and |⌫E(x)| = 1.

We then have (see [13])

P (E,⌦) = H
n�1(@⇤E \ ⌦) =

ˆ
@⇤E\⌦

dHn�1(x).

We also recall that for x 2 @⇤E we have

lim
⇢!0

1

⇢n

ˆ
B⇢(x)\{⌫E(x)·(y�x)<0}

�E(y) dy = 0, lim
⇢!0

1

⇢n

ˆ
B⇢(x)\{⌫E(x)·(y�x)>0}

(1� �E(y)) dy = 0.

3.2. Fractional Laplacian and fractional perimeters. The fractional Laplacian of a function u(x)
is defined by

(3.1) (��)s/2u(x) := cn,sPV

ˆ
Rn

u(x)� u(y)

|x� y|n+s
dy

with cn,s =
2
s
�(n+s

2 )
⇡n/2|�(� s

2 )|
and the fractional perimeter of a set E is defined by

(3.2) Ps(E) :=

ˆ
Rn

ˆ
Rn

�E(x)�CE(y)

|x� y|n+s
dx dy =

1

2

ˆ
Rn

ˆ
Rn

|�E(x)� �E(y)|

|x� y|n+s
dx dy

which is also equal to the semi-norm 1

2
[�E ]W s,1(Rn). Given a set ⌦ ⇢ Rn, we also define the local

contribution of the fractional perimeter by

(3.3) PL

s
(E,⌦) :=

ˆ
⌦

ˆ
⌦

�E(x)�CE(y)

|x� y|n+s
dx dy =

1

2
[�E ]W s,1(⌦).
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We recall the following limits:

lim
s!1�

(1� s)Ps(E) = !n�1P (E) and lim
s!1�

(1� s)PL

s
(E,⌦) = !n�1P (E,⌦)

and (see [9]):

lim
s!0+

sPs(E) = !n�1|E|

For a given set E, we define the potential

(3.4)  E(x) :=

ˆ
Rn

�E(y)

|x� y|n+s
dy x 2 CE.

We then have

Lemma 3.2. If Ps(E) < 1, then  E 2 L1(CE) and

Ps(E) =

ˆ
Rn

�CE(x) E(x) dx =

ˆ
Rn

�E(x) CE(x) dx.

Given ⌦ such that Ps(⌦) < 1 and E such that PL

s
(E,⌦) < 1, we have

PL

s
(E,⌦) =

ˆ
Rn

�CE\⌦(x) E\⌦(x) dx =

ˆ
Rn

�E\⌦(x) CE\⌦(x) dx.

Proof. The sequence v⌘(x) =
´
Rn\B⌘(x)

�E(y)

|x�y|n+s dy is positive, increasing as ⌘ ! 0 and satisfies
´
CE v⌘(x) dx 

Ps(E). By Beppo-Levi Lemma, we can thus define  E(x) = lim⌘!0 v⌘(x) and the result follows since
Ps(E) = lim⌘!0

´
Rn �CE(x)v⌘(x) dx. ⇤

With the notation (3.4), we can also write

(��)s/2�E = cn,s lim
⌘!0

ˆ
Rn\B⌘(x)

�E(x)� �E(y)

|x� y|n+s
dy

= cn,s lim
⌘!0

"
�E(x)

ˆ
Rn\B⌘(x)

1� �E(y)

|x� y|n+s
dy + (1� �E(x))

ˆ
Rn\B⌘(x)

��E(y)

|x� y|n+s
dy

#

= cn,s(�E CE � �CE E).(3.5)

In particular, Ps(E) < 1 implies that (��)s/2�E is in L1(Rn).

Finally, we recall the following interpolation inequalities:

Proposition 3.3. For all s 2 (0, 1),

(3.6) Ps(E) 
n!n2�s

s(1� s)
P (E)s|E|

1�s
for all set E with finite perimeter.

Given ⌦ ⇢ Rn
, for all s 2 (0, 1),

(3.7) PL

s
(E,⌦) 

n!n2�s

s(1� s)
P (E,Conv(⌦))s|E \ ⌦|1�s

for all set E with finite perimeter

where Conv(⌦) denotes the convex hull of ⌦ and !n denotes the volume of n-dimensional unit ball.

The first inequality is classical. We provide a proof of the second one in the appendix for the sake of
completeness.
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3.3. Alternative formula for J s

"
. We end this section by deriving an alternative formula for J s

"

which is useful in the proofs.

Proposition 3.4. When s < 2 the functional J s

"
defined by (1.5) can also be written as:

(3.8)

J s

"
(E) =

8
>><

>>:

"�s

ˆ
Rn

(�E � �"
E
)2 dx+

cn,s
2

[�"
E
]2
Hs/2(Rn)

if ⌦ = Rn

"�s

ˆ
⌦

(�E � �"
E
)2 dx+

cn,s
2

ˆ
R2n\(C⌦)2

|�"
E
(x)� �"

E
(y)|2

|x� y|n+s
dx dy �

ˆ
C⌦
�"
E
N (�"

E
) dx if ⌦ 6= Rn.

And similarly when s = 2:

(3.9) J"(E) =

8
><

>:

"�1

ˆ
Rn

|�E � �"
E
|
2 dx+ "

ˆ
Rn

|r�"
E
|
2 dx if ⌦ = Rn

"�1

ˆ
⌦

|�E � �"
E
|
2 dx+ "

ˆ
⌦

|r�"
E
|
2 dx� "

ˆ
@⌦

�"
E
r�"

E
· ndHn�1(x) if ⌦ 6= Rn.

When ⌦ = Rn, these formulas are reminiscent of fractional and classical Modica-Mortola functional
for which the �-convergence is studied in particular in [22].

Proof. First, we make the following simple computation: Let u 2 L1
\ L2 (we will later take u = �E)

and let w (which will be �"
E
) denote the solution of w+"s(��)s/2w = u in Rn. Multiplying the equation

by w and integrating, we get:

"�s

ˆ
⌦

(w2
� wu) dx+

ˆ
⌦

w(��)s/2w dx = 0

and we can use this equality to write

"�s

ˆ
⌦

u(1� w) dx = "�s

ˆ
⌦

u(1� u) + "�s

ˆ
⌦

(u2
� uw) + "�s

ˆ
⌦

(w2
� wu) dx+

ˆ
⌦

w(��)s/2w dx

= "�s

ˆ
⌦

u(1� u) + "�s

ˆ
⌦

(u� w)2 dx+

ˆ
⌦

w(��)s/2w dx.

Taking u = �E 2 L1(⌦), we deduce

J s

"
(E) = "�s

ˆ
⌦

�E(1� �"
E
) dx = "�s

ˆ
⌦

(�E � �"
E
)2 dx+

ˆ
⌦

�"
E
(��)s/2�"

E
dx.

Then the formula (3.8) follows from the definition of (��)s/2.
A similar computation when s = 2 yields

J"(E) = "�1

ˆ
⌦

�E(1� �"
E
) dx = "�1

ˆ
⌦

|�E � �"
E
|
2 dx+ "

ˆ
⌦

�"
E
(��)�"

E
dx

and an integration by parts gives (3.9).
⇤

Remark 3.5. We can relax the definition of J" to non-negative BV-functions by setting

J s

"
(u) = "�s

ˆ
Rn

u(1� w") dx.

The computation above yields

J s

"
(u) = "�s

ˆ
Rn

u(1� u) + "�s

ˆ
Rn

(u� w")2 dx+
cn,s
2

[w"]2
Hs/2(Rn)

.

and we see that the first term diverges unless u(x) 2 {0, 1} for all x. However, u 7! u(1 � u) is not

a double-well potential, unless we add the constraint that 0  u  1. While the non-negativity of u is
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natural in many context, the upper bound would have to be imposed by some over-crowding prevention

mechanisms. We are led to the energy functional:

J̄ s

"
(u) =

(
J s

"
(u) if 0  u  1

1 otherwise.

This is very similar to the relaxation of the perimeter functional with the heat content energy approxi-

mation used for example in [11, 17, 14] to construct weak solutions (via minimizing movements schemes)

of multi-phase mean curvature flow [11, 17] or the Muskat problem with surface tension [14].
Note also that the energy J̄ s

"
appears naturally in the incompressible limit (m ! 1) of the following

Keller-Segel model for Chemotaxis (or congested aggregation, see [5]):
(
@tu = �um

� �div(ur�)

�+ "s(��)s/2� = u.

This provides another motivation for studying this problem in a bounded domain with appropriate bound-

ary condition on �.

4. Proofs of the theorems for s 2 (0, 1)

4.1. The case ⌦ = Rn - Proof of Theorem 2.1. We start with the following lemma:

Lemma 4.1. Let E be a measurable set. The function �"
E

solution of (2.1) satisfies
(i) 0  �"

E
(x)  1 in Rn

(ii) Up to a subsequence �"
E

converges weakly in Lq

loc
(Rn) to �E for all q 2 (1,1)

(iii) Up to a subsequence �"
E

converges strongly in L1

loc
(Rn) and almost everywhere to �E

Proof. The maximum principle gives (i) and since �"
E
clearly converges to �E in the sense of distribution,

(ii) follows. To prove (iii), we first write, for any ball BR (using (i)):ˆ
BR

|�"
E
� �E | dx =

ˆ
BR

|(�"
E
� 1)�E + �"

E
(1� �E)| dx



ˆ
BR

(1� �"
E
)�E dx+

ˆ
BR

�"
E
(1� �E) dx

and note that (ii) implies that the right hand side converges to 0. It follows that �"
E

converges strongly
in L1

loc
to �E and (up to another subsequence) we can assume that it converges almost everywhere. ⇤

Note that we can write �"
E
(x) = K" ? �E and K" > 0 is an approximation of unity, so the results of

the lemma above are obvious. However, the proof we gave above will be easy to carry out in the other
settings presented in this paper.

Proof of Theorem 2.1. To prove (i), we write (using (2.1)):

J s

"
(E) = "�s

ˆ
Rn

�E(1� �"
E
) dx =

ˆ
Rn

�E(��)s/2�"
E
dx =

ˆ
Rn

�"
E
(��)s/2�E dx

and using (3.5), we get:

(4.1) J s

"
(E) = cn,s

ˆ
Rn

�"
E
(�E CE � �CE E) dx.

Lemma 4.1-(i) together with Lemma 3.2 imply that |J s

"
(E)|  cn,sPs(E) so we can take a subsequence

(still denoted ") such that J"(E) converges. We will prove that the limit of that subsequence must be
cn,sPs(E) which implies the result.
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To prove this, we note that |�"
E
(�E CE ��CE E)|  �E CE +�CE E and the condition Ps(E) < 1

implies that �E CE and �CE E are in L1(Rn). We can thus pass to the limit in (4.1) using Lebesgue
dominated convergence theorem and Lemma 4.1 (iii). We deduce (up to another subsequence)

J s

"
(E) ! cn,s

ˆ
Rn

�E(�E CE � �CE E) dx = cn,s

ˆ
Rn

�E CE dx = cn,sPs(E)

and (i) follows.

In order to prove the second part of Theorem (2.1) (the lim inf statement), we use the formula (3.8):

(4.2) J s

"
(E) = "�s

ˆ
Rn

(�E � �"
E
)2 dx+

cn,s
2

[�"
E
]2
Hs/2(Rn)

.

Since the result trivially holds when lim inf"!0 J s

"
(E") = 1, we can assume that lim inf"!0 J s

"
(E") <

1 and consider a subsequence (still denoted ") along which J s

"
(E") is bounded. Equality (4.2) then

implies that �"
E"

converges strongly in L2 to �E (recall that �E" converges to �E in L1 and thus also in

L2) and the lower semicontinuity of the Hs/2 norm gives

lim inf
"!0

J s

"
(E") � lim inf

"!0

cn,s
2

⇥
�"
E"

⇤2
Hs/2(Rn)

�
cn,s
2

[�E ]
2

Hs/2(Rn)

=
cn,s
2

ˆ
Rn

ˆ
Rn

|�E(x)� �E(y)|2

|x� y|n+s
dx dy

=
cn,s
2

ˆ
Rn

ˆ
Rn

|�E(x)� �E(y)|

|x� y|n+s
dx dy = cn,sPs(E)

which completes the proof. ⇤

4.2. The case ⌦ 6= Rn - Proof of Theorem 2.2. We assume that ⌦ is a bounded subset of Rn and
that �"

E
is the solution of

(4.3)

(
�+ "s(��)s/2� = �E in ⌦

↵�(x) + � eN (�)(x) = 0 in C⌦

with ↵, � : C⌦ ! [0,1] satisfying ↵(x) + �(x) > 0. These Robin boundary conditions satisfy the
maximum principle, so we can prove (the proof is similar to that of Lemma 4.1):

Lemma 4.2. Let E be a measurable set. The function �"
E

satisfies

(i) 0  �"
E
(x)  1 in Rn

(ii) Up to a subsequence �"
E

converges weakly in Lq(⌦) to �E for all q 2 (1,1).
(iii) Up to a subsequence �"

E
converges strongly in L1(⌦) and almost everywhere to �E

Proof of Theorem 2.2-(i). We recall that E ⇢ ⌦. Proceeding as in the previous section, we write

J s

"
(E) = "�s

ˆ
⌦

�E(1� �"
E
) dx =

ˆ
⌦

�E(��)s/2�"
E
dx

=

ˆ
⌦

�"
E
(��)s/2�E dx�

ˆ
C⌦
�EN (�"

E
)� �"

E
N (�E) dx

=

ˆ
⌦

�"
E
(��)s/2�E dx+

ˆ
C⌦
�"
E
N (�E) dx(4.4)

(recall that E ⇢ ⌦). We note that the conditions PL

s
(E,⌦) < 1, Ps(⌦) < 1 together with Lemma 3.4

imply that �CE E 2 L1(⌦) and �E CE = �E CE\⌦ + �E C⌦  �E CE\⌦ + �⌦ C⌦ 2 L1(⌦). We can
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thus proceed as in the case ⌦ = Rn with the first term in (4.4): Using (3.5), we writeˆ
⌦

�"
E
(��)s/2�E dx = cn,s

ˆ
⌦

�"
E
(�E CE � �CE E) dx

�! cn,s

ˆ
⌦

�E CE dx = cn,s

ˆ
Rn

�E CE dx = cn,s

ˆ
Rn

�CE E dx.(4.5)

For the second term, we note that N (�E) = �cn,s E for x 2 C⌦, and using the boundary condition,

we find (note that eN (�) = �(x)� 1

 ⌦(x)

´
⌦

�(y)

|x�y|n+s dy):

(4.6) �"
E
(x) =

�

↵+ �

1

 ⌦(x)

ˆ
⌦

�"
E
(y)

|x� y|n+s
dy x 2 Rn

\ ⌦.

Hence ˆ
C⌦
�"
E
N (�E) dx = �cn,s

ˆ
C⌦

ˆ
⌦

�(x)

↵(x) + �(x)

 E(x)

 ⌦(x)

�"
E
(y)

|x� y|n+s
dydx.

We can pass to the limit using Lebesgue dominated convergence theorem since
����
ˆ
C⌦

�(x)

↵(x) + �(x)

 E(x)

 ⌦(x)

1

|x� y|n+s
dx

���� 
 E(x) C⌦(x)

 ⌦(x)
  C⌦(x) 2 L1(⌦)

(recall that Ps(⌦) < 1) and we get

lim
"!0

ˆ
C⌦
�"
E
N (�E) dx = �cn,s

ˆ
C⌦

ˆ
⌦

�(x)

↵(x) + �(x)

 E(x)

 ⌦(x)

�E(y)

|x� y|n+s
dydx

= �cn,s

ˆ
C⌦

�(x)

↵(x) + �(x)

 E(x)2

 ⌦(x)
dx.(4.7)

Putting together (4.4), (4.5) and (4.7), we deduce

lim
"!0

J s

"
= cn,s

ˆ
Rn

�CE E dx�

ˆ
C⌦

�

↵+ �

 E(x)2

 ⌦(x)
dx

�

= cn,s

ˆ
⌦

�CE E dx+

ˆ
C⌦

( E �
�

↵+ �

 E(x)2

 ⌦(x)
)dx

�
(4.8)

= cn,s


PL

s
(E,⌦) +

ˆ
C⌦

↵

↵+ �
 E(x) dx+

ˆ
C⌦

�

↵+ �

 E(x)( ⌦(x)�  E(x))

 ⌦(x)
dx

�

and the result follows. ⇤

Proof of Theorem 2.2-(ii). For any set E, the boundary condition gives

��"
E
N (�"

E
) = cn,s ⌦

✓
↵

↵+ �
|�"

E
|
2 +

�

↵+ �
| eN (�"

E
)|2
◆

so the formula (3.8) implies

(4.9)

J s

"
(E) = "�s

ˆ
⌦

(�E � �"
E
)2 dx+

cn,s
2

ˆ
R2n\(C⌦)2

|�"
E
(x)� �"

E
(y)|2

|x� y|n+s
dx dy

+ cn,s

ˆ
C⌦
 ⌦


↵

↵+ �
|�"

E
|
2 +

�

↵+ �
| eN (�"

E
)|2
�
dx.

We can now complete the proof of Theorem 2.2 by proceeding as in the proof of Theorem 2.1: Let
{E"}">0 be a sequence of sets which converges to E in L1 (and in L2) such that J s

"
(E") is bounded.
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Equality (4.9) thus implies that �"
E"

converges strongly in L2(⌦) to �E . Following [10][Proposition 3.1],
we note that the space W equipped with the norm

kuk2
W

=

ˆ
⌦

u2 dx+

ˆ
C⌦

↵

↵+ �
 ⌦u

2 dx+

ˆ
R2n\(C⌦)2

|u(x)� u(y)|2

|x� y|n+s
dx dy

is a Hilbert space (note that  ⌦ 2 L1(C⌦) since Ps(⌦) < 1) and (4.9) implies that �"
E"

is bounded in
W and thus weakly converges to �0 in that space. We already know that �0(x) = �E(x) for x 2 ⌦, and
�0 can be identified in C⌦ by taking the limit in (4.6) (in D

0(⌦)), showing that

�0(x) =
�

↵+ �

 E

 ⌦

a.e. in C⌦.

Similarly, eN (�"
E
) converges weakly in L2(C⌦, �

↵+�
 ⌦ dx) to� ↵

↵+�

 E

 ⌦
(the limit can be easily identified

using the exterior boundary condition). The lower semicontinuity of the norms then gives

lim inf
"!0

J s

"
(E") �

cn,s
2

ˆ
R2n\(C⌦)2

|�0(x)� �0(y)|2

|x� y|n+s
dx dy

+ cn,s

ˆ
C⌦
 ⌦

"
↵

↵+ �

����
�

↵+ �

 E

 ⌦

����
2

+
�

↵+ �

����
↵

↵+ �

 E

 ⌦

����
2
#
dx

=
cn,s
2

ˆ
⌦2

|�0(x)� �0(y)|2

|x� y|n+s
dx dy + cn,s

ˆ
⌦

ˆ
C⌦

|�0(x)� �0(y)|2

|x� y|n+s
dx dy

+ cn,s

ˆ
C⌦

↵�

(↵+ �)2
 2

E

 ⌦

dx.

Finally we have

1

2

ˆ
⌦2

|�0(x)� �0(y)|2

|x� y|n+s
dx dy =

1

2

ˆ
⌦2

|�E(x)� �E(y)|

|x� y|n+s
dx dy = PL

s
(E,⌦)

and a simple computation givesˆ
⌦

ˆ
C⌦

|�0(x)� �0(y)|2

|x� y|n+s
dx dy =

ˆ
C⌦

ˆ
⌦

�0(x)2 � 2�0(x)�E(y) + �E(y)2

|x� y|n+s
dy dx

=

ˆ
C⌦

(�0(x)
2 ⌦ � 2�0(x) E(x) +  E(x)) dx

=

ˆ
C⌦

✓
(�2↵� � �2)

(↵+ �)2
 2

E

 ⌦

+  E(x)

◆
dx.

We deduce

lim inf
"!0

J s

"
(E") � cn,sP

L

s
(E,⌦) + cn,s

ˆ
C⌦

✓
(�2↵� � �2)

(↵+ �)2
 2

E

 ⌦

+  E(x) +
↵�

(↵+ �)2
 2

E

 ⌦

◆
dx.

� cn,sP
L

s
(E,⌦) + cn,s

ˆ
C⌦

✓
��

↵+ �

 2

E

 ⌦

+  E(x)

◆
dx

which completes the proof since ��
↵+�

 
2
E
 ⌦

+  E(x) =
↵

↵+�
 E(x) +

�

↵+�

 E(x)( ⌦(x)� E(x))

 ⌦(x)
. ⇤

5. The case s = 2 - Proof of Theorem 2.4

When s = 2, the function �"
E

solves the boundary value problem:

(5.1)

(
�"
E
� "2��"

E
= �E in ⌦

↵�"
E
+ "�r�"

E
· n = 0 on @⌦.
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and we have

J"(E) = "�1

ˆ
⌦

�E(1� �"
E
) dx = �"

ˆ
E

��"
E
dx.

The proof of Theorem 2.4 is very di↵erent, and much more delicate than the case s 2 (0, 1). We start
with the proof of Proposition 2.3 which identifies the limit of J"(E) for a fixed set E.

Proof of Proposition 2.3. For a set E such that P (E) < 1, we write

J"(E) = �"

ˆ
E

��"
E
dx

= �"

ˆ
@⇤E

r�"
E
· ⌫E(x) dH

n�1(x)

where @⇤E is the reduced boundary of E and ⌫E is the outward pointing unit normal vector (see
Definition 3.1). To pass to the limit, we take x0 2 @⇤E and define the function w"(x) = �"

E
(x0 + "x),

which solves (
w" ��w" = �E(x0 + "x) in ⌦"
↵"w" + �"rw" · n = 0 on @⌦".

with ↵" = ↵(x0 + "x), �" = �(x0 + "x) and ⌦" = "�1(⌦ � x0). It is readily seen that 0  w"  1
(maximum principle) and that w" 2 C1,� so that "r�"

E
(x0) = rw"(0) is well defined. We conclude

thanks to the following lemma:

Lemma 5.1. There exists a constant C such that |"r�"
E
(x0)| = |rw"(0)|  C for all x0. Furthermore,

If x0 2 @⇤E \ ⌦, then

"r�"
E
(x0) ! �

1

2
⌫E(x0)

If x0 2 @⇤E \ @⌦ and @⌦ is di↵erentiable at x0, then ⌫E(x) = n(x) and

"r�"
E
(x0) ! �

↵

↵+ �
n(x0)

This lemma (together with Lebesgue dominated convergence theorem) implies

lim
"!0

J"(E) =
1

2

ˆ
@⇤E\⌦

dHn�1(x) +

ˆ
@⇤E\@⌦

↵

↵+ �
dHn�1(x)

=
1

2
H

n�1(@⇤E \ ⌦) +

ˆ
@⌦

�E

↵

↵+ �
dHn�1(x)

and the result follows since H
n�1(@⇤E \ ⌦) = P (E,⌦). ⇤

Lemma 5.1. If x0 2 ⌦, then by definition of the reduced boundary, we have �E(x0+"x) ! �{x·⌫E(x0)<0}
in L1

loc
([13], Theorem 3.8). Furthermore, for all R > 0 we have BR(0) ⇢ ⌦" for " small enough so

standard elliptic regularity theory (using the fact that |w"|  1) implies that w" is bounded in C1,�(BR).
In particular, w" (resp. rw") converges locally uniformly to w0 (resp. rw0) unique bounded solution
of

w0 ��w0 = �{x·⌫E(x0)<0} in Rn.

This solution is of the form w0(x) = '(x · ⌫E(x0)) where ' : R ! [0, 1] solves ' � '00 = �{x<0}. We
easily find

'(x) =

(
1� 1

2
ex for x < 0

1

2
e�x for x > 0

and so rw0 = '0(0)⌫E(x0) = �
1

2
⌫E(x0).
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If x0 2 @⌦, we have ⌫E(x0) = n(x0) and (as above) �E(x0+ "x) ! �{x·n(x0)<0} in L1

loc
. Furthermore,

since ↵", �" are bounded and Lipschitz uniformly in ", boundary regularity for Robin boundary value
problems (see [16] Theorem 2.1 Chap. 10) implies that w" is bounded in C1,�(⌦"). Therefore w" (resp.
rw") converges locally uniformly to w0 (resp. rw0) unique bounded solution of

(
w0 ��w0 = 1 in {x · n(x0) < 0}

↵(x0)w0 + �(x0)rw0 · n(x0) = 0 on {x · n(x0) = 0}.

This solution is of the form w0(x) = '1(x · n(x0)) where '1 : [�1, 0] ! [0, 1] solves '1 � '00
1
= 1 and

↵'1(0) + �'0
1
(0) = 0. We easily find

'1(x) = 1�
↵

↵+ �
ex

and so rw0 = '0
1
(0)n(x0) = �

↵

↵+�
n(x0).

⇤
Remark 5.2. When � is replaced by an anisotropic elliptic operator as in (2.7), we get

J"(E) = �"

ˆ
@⇤E

Ar�"
E
· ⌫E(x) dH

n�1(x)

and the argument above can be adapted, with "Ar�"
E
(x0) ! �

1

2

p
⌫
T
EA⌫E

A⌫E(x0) = �
1

2

A⌫E(x0)

k⌫EkA
if x0 2

@⇤E\⌦ and "Ar�"
E
(x0) ! �

↵

↵+�

An(x0)

knkA
if x0 2 @⇤E\@⌦ and @⌦ is di↵erentiable at x0. It follows that

lim
"!0

J"(E) =
1

2

ˆ
@⇤E

k⌫EkA dHn�1(x) +

ˆ
@⌦

↵

↵+ �
knkA�E(x) dH

n�1(x).

We now turn to the proof of Theorem 2.4, which follows from the following proposition:

Proposition 5.3. Under the assumptions of Theorem 2.4, the following holds:

(i) For any family {E"}">0 that converges to E in L1(⌦),

lim inf
"!0

J"(E") � F ↵
↵+�

(E).

(ii) Given a set E such that P (E,⌦) < 1, there exists a sequence {E"}">0 that converges to E in L1(⌦)
such that

lim sup
"!0

J"(E")  F ↵
↵+�

(E).

Proof of Proposition 5.3 - Part I: the lim inf condition. We use the formula (3.9) for J".
Neumann boundary conditions. We start with the case of Neumann boundary conditions (↵ = 0)
which is similar to the case ⌦ = Rn. In that case (3.9) gives

(5.2) J"(E) = "�1

ˆ
⌦

|�E � �"
E
|
2 dx+ "

ˆ
⌦

|r�"
E
|
2 dx

and introducing the functions (both defined for t 2 [0, 1])

f(t) = 2min(t, 1� t), F (t) =

ˆ
t

0

f(⌧) d⌧ =

(
t2 for 0  t  1/2

2t� t2 � 1

2
for 1/2  t  1

we find (since |�E � �"
E
| = �"

E
or (1� �"

E
)):ˆ

⌦

|rF (�"
E
)| dx =

ˆ
⌦

f(�"
E
)|r�"

E
| dx  "

ˆ
⌦

|r�"
E
|
2 dx+ "�1

ˆ
⌦

1

4
f(�"

E
)2 dx

 "

ˆ
⌦

|r�"
E
|
2 dx+ "�1

ˆ
⌦

min(�"
E
, 1� �"

E
)2 dx

 J"(E).
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It follows that for a sequence {E"} such that E" ! E in L1 and J"(E")  C, the sequence F (�"
E"

) is
bounded in BV (⌦). Since it converges pointwise (and so L1 strongly) to F (�E) =

1

2
�E (since F (0) = 0

and F (1) = 1/2), we deduce

lim inf
"!0

J"(E") �

ˆ
⌦

|rF (�E)| dx =
1

2

ˆ
⌦

|r�E | dx =
1

2
P (E,⌦).

Dirichlet boundary conditions. The case of Dirichlet boundary conditions � = 0 requires some
adjustments to recover the whole perimeter P (E): We still have (5.2) in this case, but we can extend
the function �"

E
by zero outside ⌦. Denoting by �"

E
this extension, we find

J"(E) �

ˆ
⌦

|rF (�"
E
)| dx =

ˆ
Rn

|rF (�"
E
)| dx

and so (as above)

lim inf
"!0

J"(E") �

ˆ
Rn

|rF (�E)| dx =
1

2

ˆ
Rn

|r�E | dx =
1

2
P (E).

General Robin boundary conditions. We can now assume that � 6= 0. In that case, (3.9) and the
boundary conditions give

J"(E) = "�1

ˆ
⌦

|�E � �"
E
|
2 dx+ "

ˆ
⌦

|r�"
E
|
2 dx+

ˆ
@⌦

↵

�
|�"

E
|
2 dHn�1(x).

We combine the two cases above. Indeed, since ↵

�
� 0, we can write, as in the Neumann case:

(5.3) J"(E") �

ˆ
⌦

|rF (�"
E"

)| dx.

On the other hand, if we use the extension of �"
E
by 0 (as in the Dirichlet case), we can use the fact that

ˆ
Rn

|rF (�"
E"

)| dx =

ˆ
⌦

|rF (�"
E"

)| dx+

ˆ
@⌦

F (�"
E"

)dHn�1

to find

(5.4) J"(E") �

ˆ
Rn

|rF (�"
E"

)| dx+

ˆ
@⌦

G(�"
E"

)dHn�1

where the function

G(t) =
↵

�
t2 � F (t) =

(
(↵
�
� 1)t2 for 0  t  1/2

(↵
�
+ 1)t2 � 2t+ 1

2
for 1/2  t  1

satisfies G(t) � min{0, ↵

↵+�
�

1

2
} for all t 2 [0, 1]. We now combine (5.3) and (5.4): Given a smooth

function ' : Rn
! [0, 1], we write

J"(E") �

ˆ
⌦

|rF (�"
E"

)|(1� ') dx+

ˆ
Rn

|rF (�"
E"

)|' dx+

ˆ
@⌦

G(�"
E"

)'dHn�1

�

ˆ
⌦

|rF (�"
E"

)|(1� ') dx+

ˆ
Rn

|rF (�"
E"

)|' dx+

ˆ
@⌦

min

⇢
0,

↵

↵+ �
�

1

2

�
'dHn�1
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which implies

lim inf
"!0

J"(E") �

ˆ
⌦

|rF (�E)|(1� ') dx+

ˆ
Rn

|rF (�E)|' dx+

ˆ
@⌦

min

⇢
0,

↵

↵+ �
�

1

2

�
'dHn�1

�

ˆ
⌦

1

2
|r�E | dx+

ˆ
@⌦

1

2
�E' dx+

ˆ
@⌦

min

⇢
0,

↵

↵+ �
�

1

2

�
'dHn�1

and it only remains to take a sequence of 'n which converges to �E in L1(@⌦) to get the result. ⇤

Remark 5.4. The proof is easily adapted to divergence form elliptic operators as in (2.7). In the case

of Dirichlet boundary conditions, for example, we have

J"(E) = "�1

ˆ
⌦

|�E � �"
E
|
2 dx+ "

ˆ
⌦

(r�"
E
)TAr�"

E
dx

= "�1

ˆ
⌦

|�E � �"
E
|
2 dx+ "

ˆ
⌦

kr�"
E
k
2

A
dx

�

ˆ
⌦

f(�"
E
)kF (�"

E
)kA dx =

ˆ
⌦

krF (�"
E
)kA dx =

ˆ
Rn

krF (�"
E
)kA dx

and so

lim inf
"!0

J"(E") �
1

2

ˆ
Rn

kr�EkA dx =
1

2
PA(E).

Before turning to the second part of the proof, we state (and prove) the following useful lemma:

Lemma 5.5. Let v" be the solution of

(5.5)

(
v � "2�v = 0 in ⌦

v = 1 on @⌦

and denote ⌦� = {x 2 ⌦; dist (x, @⌦) > �}. Then there exists a constant C (independent of " and �)
such that

"�1

ˆ
⌦�

v" dx  CH
n�1(@⌦�)

"

�
.

Proof. We write

"�1

ˆ
⌦�

v" dx = "

ˆ
⌦�

�v" dx = �"

ˆ
@⌦�

rv" · ndx.

Given x0 2 ⌦, denote � = d(x0, @⌦). The function v̄"(x) = v"(x0 + "x) solves

v̄" ��v̄" = 0 in B�/"(0)

and satisfies 0  v̄"  1. Standard elliptic estimates give

"|rv"(x0)| = |rv̄"(0)|  C
"

�
.

The result follows. ⇤

Proof of Proposition 5.3 - Part 2: The lim sup condition. Before giving the construction of E" in the
general case, we start with the simpler cases where ↵

↵+�
�

1

2
does not change sign on @⌦.

Case 1: When ↵

↵+�


1

2
for all x 2 @⌦. In that case we can simply take E" = E since Proposition 2.3

gives

lim
"!0

J"(E) = F ↵
↵+�

(E).
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Case 2: When ↵

↵+�
> 1

2
for all x 2 @⌦. In that case, we have F ↵

↵+�
(E) = 1

2
P (E), and we need to

approach E by a sequence of sets E" which does not feel the e↵ect of the boundary conditions on @⌦:
For a given � 2 (0, 1), we define

E" = E \ ⌦"�

(recall that ⌦"� = {x 2 ⌦ ; dist(x, @⌦) > "�}) and we claim that

(5.6) J"(E") 
1

2
P (E") + o(1),

which implies (see Giusti [13]):

lim sup
"!0

J"(E")  lim sup
"!0

1

2
P (E") = lim sup

"!0


1

2
P (E,⌦"� ) +

1

2

ˆ
@⌦"�

�EdH
n�1

�

=
1

2
P (E,⌦) +

1

2

ˆ
@⌦

�EdH
n�1 =

1

2
P (E).(5.7)

To prove (5.6), we write �"
E"

= v"
1
(x) + v"

2
(x) where v"

1
= K" ? �E" (recall that K" is the fundamental

solution of our equation, solving K" � "2�K" = � in Rn). We then write

J"(E") = "�1

ˆ
⌦

�E"(1� �"
E"

) dx

= "�1

ˆ
⌦

�E"(1� v"
1
) dx� "�1

ˆ
⌦

�E"v
"

2
dx

= �"

ˆ
@⇤E"

rv"
1
· ⌫E"(x) dH

n�1(x)� "�1

ˆ
⌦

�E"v
"

2
dx.(5.8)

To prove that the second term goes to zero as " ! 0, we note that |v"
2
|  v" solution of (5.5). Indeed,

since v"
1
solves v"

1
� "2�v"

1
= �E" in Rn, the maximum principle implies that 0  v"

1
 1, and so

|v"
2
(x)|  |�"

E"
(x)�v1(x)|  1 in ⌦. Furthermore the definition of v"

1
implies that v"

2
solves v"

2
�"2�v"

2
=

�E" � �E" = 0. Lemma 5.5 thus implies
����"

�1

ˆ
⌦

�E"v
"

2
dx

���� 
����"

�1

ˆ
⌦"�

v" dx

����  C"1��Hn�1(@⌦"� )  C"1�� .

It remains to show that

(5.9) sup
Rn

|"rv"
1
(x)| 

1

2

so that (5.8) implies

J"(E") 
1

2
H

n�1(@⇤E") + C"1��

which gives (5.6).
After a rescaling, inequality (5.9) follows from the following lemma:

Lemma 5.6. Given a function f(x) such that 0  f  1, the function w = K ? f satisfies

|rK ? f(x)| 
1

2
for all x 2 Rn

Proof. Without loss of generality, we can fix x = 0 and assume that rw(0) = @xnw(0)en. We then have
@xnw(0) = �

´
Rn @xnK(y)f(y) dy and we note that @xnK � 0 for xn < 0 and @xnK  0 for xn < 0.

Since 0  f  1, we deduceˆ
{yn>0}

@xnK(y) dy  �@xnw(0) 

ˆ
{yn<0}

@xnK(y) dy.
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The function !(x) =
´
{yn<0} K(x� y) dy is the unique bounded solution of ! ��! = �{xn<0} which is

given by !(x) = '(xn) with

'(x) =

(
1� 1

2
ex for x < 0

1

2
e�x for x > 0

and satisfies

�@xn!(0) = 1/2 =

ˆ
{yn<0}

@xnK(y) dy.

⇤

General case: Finally, we consider the general case, when ↵

↵+�
�

1

2
can change sign. We then define

�1 =
n
x 2 @⌦, ↵

↵+�


1

2

o
and �2 =

n
x 2 @⌦, ↵

↵+�
> 1

2

o
. We recall (see (2.6)) that H

n�2(@�2) < 1.

For a given � 2 (0, 1), we define

⇤" = {x 2 ⌦, dist(x,�2) > "�}

and set

E" = E \ ⇤".

We claim that

(5.10) J"(E") 
1

2
P (E") +

ˆ
@⌦

min

⇢
0,

↵

↵+ �
�

1

2

�
�E" dH

n�1 + o(1) as "! 0.

This inequality implies the result because we can proceed as in (5.7) to show that

lim sup
"!0

1

2
P (E") =

1

2
P (E,⌦) +

1

2

ˆ
@⌦

�EdH
n�1

and
����
ˆ
@⌦

min

⇢
0,

↵

↵+ �
�

1

2

�
[�E" � �E ] dH

n�1

���� 
1

2

ˆ
�1

|�E"��E | dH
n�1


1

2
H

n�1({x 2 �1, dist(x,�2)  "�}).

Using (2.6), we have H
n�1({x 2 �1, dist(x,�2)  "�}) = o(1), and thus

lim sup
"!0

J"(E") 
1

2
P (E,⌦) +

1

2

ˆ
@⌦

�EdH
n�1 +

ˆ
@⌦

min

⇢
0,

↵

↵+ �
�

1

2

�
�E dHn�1 = F ↵

↵+�
(E).

To prove (5.10), we proceed as above, writing �"
E"

= v"
1
(x) + v"

2
(x) where v1 = K" ? �E" and

J"(E") = �"

ˆ
@⇤E"

rv"
1
· ⌫E"(x) dH

n�1(x)� "

ˆ
@⇤E"

rv"
2
· ⌫E"(x) dH

n�1(x).(5.11)

By (5.9), we have

�"

ˆ
@⇤E"

rv"
1
· ⌫E"(x) dH

n�1(x) 
1

2
H

n�1(@⇤E") =
1

2
P (E")

which give the first term in (5.10).
Since |v"

2
|  v"  1 in ⌦ and v"

2
solves v"

2
� "2�v"

2
= 0 in ⌦, we get (using a similar argument in

Lemma 5.5):

"|rv"
2
(x)|  C"1�� for x 2 ⌦ 1

2 "
� .
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Thus the second term in (5.11) gives

�"

ˆ
@⇤E"

rv"
2
· ⌫E"(x) dH

n�1(x) = �"

ˆ
@⇤E"\⌦ 1

2
"�

rv"
2
· ⌫E"(x) dH

n�1(x) +O("1��)

= �"

ˆ
@⇤E"\@⌦

rv"
2
· ⌫E"(x) dH

n�1(x)

� "

ˆ
@⇤E"\(⌦\⌦ 1

2
"�

)

rv"
2
· ⌫E"(x) dH

n�1(x) +O("1��).(5.12)

The second term goes to zero since "|rv"
2
|  C and

H
n�1(@⇤E" \ (⌦ \ ⌦ 1

2 "
� )  P (E,⌦ \ ⌦ 1

2 "
� ) +H

n�1(@⇤" \ (⌦ \ ⌦ 1
2 "

� )) ! 0.

Here we use (2.6) to show H
n�1(@⇤" \ (⌦ \ ⌦ 1

2 "
� )) ! 0 as " ! 0. Finally, to pass to the limit in the

first term in (5.12), we note that for x0 2 @⇤E" \ @⌦ ⇢ �1 \ @⇤E, we have (using Lemma 5.1 and the
definition of v"

1
):

�"rv"
2
(x0) = �"r�"

E"
(x0) + "rv"

1
(x0) !

✓
↵

↵+ �
�

1

2

◆
n(x0).

We deduce:

J"(E") 
1

2
P (E") +

ˆ
@⇤E"\@⌦

✓
↵

↵+ �
�

1

2

◆
dHn�1(x) + o(1)

=
1

2
P (E") +

ˆ
�1

✓
↵

↵+ �
�

1

2

◆
�E"dH

n�1(x) + o(1)

=
1

2
P (E") +

ˆ
@⌦

min

⇢
0,

↵

↵+ �
�

1

2

�
�E"dH

n�1(x) + o(1)

which is (5.10).
⇤

6. The case s 2 [1, 2) with Dirichlet or Neumann conditions

We divide the proof in two parts depending on whether s 2 (1, 2) or s = 1 (the scaling of J s

"
makes

it clear that the critical case s = 1 is di↵erent).

Proof of Proposition 2.5 - case s 2 (1, 2). We write the fractional Laplacian as a divergence operator:

(��)s/2u = �divDs�1[u], Ds�1[u] =
cn,s
s

P.V.

ˆ
Rn

u(y)
y � x

|y � x|n+s
dy

where Ds�1[u] is a fractional gradient of order s� 1 2 (0, 1).

The proof is then similar to the case s = 2: We first write

J s

"
(E) = �"s�1

ˆ
E

divDs�1�"
E
dx

= �"s�1

ˆ
@⇤E

Ds�1[�"
E
] · ⌫E(x) dH

n�1(x)

and we identify the limit of "s�1Ds�1[�"
E
] · ⌫E(x) by a blow-up argument: Given x0 2 @⇤E we define

w"(x) = �"
E
(x0 + "x), which solves

(
w" + (��)s/2w" = �E(x0 + "x) in ⌦"
w" = 0 in C⌦".
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Since w", (��)s/2w" are bounded in L1(⌦") and s > 1, the regularity theory for fractional elliptic

equations (for instance [21]) implies that w" is bounded in Cs/2

loc
(Rn). Since s � 1 < s/2 it follows that

Ds�1[w"] is well defined and continuous in Rn. We can then conclude as we did in the case s = 2 thanks
to the following lemma:

Lemma 6.1. There exist a constant C such that |"s�1Ds�1[�"
E
](x0)| = |Ds�1[w"](0)|  C for all

x0 2 @⇤E. Furthermore, there exists some constant �1
n,s

and �2
n,s

(depending only on n and s) such that

If x0 2 @⇤E \ ⌦, then

"s�1Ds�1[�"
E
](x0) = Ds�1[w"](0) ! Ds�1[w0](0) = �1

n,s
⌫E(x0).

If x0 2 @⇤E \ @⌦, then we have

"s�1Ds�1[�"
E
](x0) = Ds�1[w"](0) ! Ds�1[w0](0) = �2

n,s
n(x0) if � ⌘ 0 (Dirichlet)

and

"s�1Ds�1[�"
E
](x0) = Ds�1[w"](0) ! 0 if ↵ ⌘ 0 (Neumann).

⇤

Proof of Lemma 6.1. The proof uses the same idea as Lemma 5.1.
If x0 2 ⌦ then �E(x0 + "x) ! �{x·⌫E(x0)<0} in L1

loc
and for all R > 0, BR(0) ⇢ ⌦" for " small enough

Since w" and (��)s/2w" are bounded in L1(BR), it follows that w" is bounded in C�(BR/2) for all
� < s. In particular, w" and Ds�1[w"] converge locally uniformly to w0 and Ds�1[w0] unique bounded
solution of

w0 + (��)s/2w0 = �{x·⌫E(x0)<0} in Rn.

This solution is of the form w0(x) = '(x · ⌫E(x0)) and so Ds�1[w0] = Ds�1['](0)⌫E(x0). The result
follows with �1

n,s
:= Ds�1['](0).

If x0 2 @⌦, and � ⌘ 0, then ⌫E(x0) = n(x0) and �E(x0 + "x) ! �{x·n(x0)<0} in L1

loc
and regularity

theory for fractional elliptic equations ([21]) implies that w" is bounded in Cs/2

loc
(Rn). Since s� 1 < s/2

it follows that w" (resp. Ds�1[w"]) converge locally uniformly to w0 (resp. Ds�1[w0]) unique bounded
solution of (

w0 + (��)s/2w0 = 1 in {x · n(x0) < 0}

w0 = 0 in {x · n(x0) > 0}

This solution is of the form w0(x) = '1(x · n(x0)) for some '1 : R ! [0, 1] and so Ds�1[w0] =
Ds�1['1](0)n(x0). The result follows with �2

n,s
:= Ds�1['1](0).

When ↵ ⌘ 0 (Neumann boundary conditions), we note that the solution of
(
w0 + (��)s/2w0 = 1 in {x · n(x0) < 0}
eN (w0) = 0 in {x · n(x0) > 0}

is w0 ⌘ 1 which satisfies Ds�1[w0] = 0.
⇤

Proof of Proposition 2.5 - case s = 1. When s = 1, we write the fractional Laplacian as a divergence
operator:

(��)1/2u = �divH[u], H[u] = cn,1P.V.

ˆ
Rn

u(y)
x� y

|x� y|n+1
dy
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where H[u] is an operator of order 0 (in dimension 1, H is the Hilbert transform). We then have

J"(E) = ("| ln "|)�1

ˆ
⌦

�E(1� �"
E
) dx

= �(| ln "|)�1

ˆ
E

(��)1/2�"
E
dx

= (| ln "|)�1

ˆ
@⇤E

H[�"
E
] · ⌫E dHn�1(x)

and we proceed as above: Given x0 2 @⇤E, we define w"(x) = �"
E
(x0 + "x), which solves

(
w" + (��)1/2w" = �E(x0 + "x) in ⌦"
w" = 0 in C⌦"

and we conclude once again thanks to the following lemma:

Lemma 6.2. There exist a constant C such that || ln "|�1H[�"
E
](x0)| = || ln "|�1H[w"](0)|  C for all

x0 2 @⇤E. Furthermore,

If x0 2 @⇤E \ ⌦, then

| ln "|�1H[�"
E
](x0) = | ln "|�1H[w̄"](0) ! �1

n,1
⌫E(x0).

If x0 2 @⇤E \ @⌦, then we have

| ln "|�1H[�"
E
](x0) = | ln "|�1H[w̄"](0) ! �1

n,1
n(x0) if � ⌘ 0 (Dirichlet)

and

| ln "|�1H[�"
E
](x0) = | ln "|�1H[w̄"](0) ! 0 if ↵ ⌘ 0 (Neumann).

⇤

Proof of Lemma 6.2. Since �"
E
= 0 in C⌦ and 0  �"

E
 1, we have (assuming ⌦ ⇢ BM )

| ln "|�1

�����

ˆ
|y�x0|�1

�"
E
(y)

x0 � y

|x0 � y|n+1
dy

�����  | ln "|�1

ˆ
1|y�x0|M

1

|x0 � y|n
dy ! 0

so we only need to bound (and identify the limit of) the following integral:

| ln "|�1P.V.

ˆ
|y�x0|1

�"
E
(y)

x0 � y

|x0 � y|n+1
dy = �| ln "|�1P.V.

ˆ
|y|"�1

w"(y)
y

|y|n+1
dy.

If x0 2 ⌦ then BR(0) ⇢ ⌦" for " small enough. Since w" and (��)1/2w" are bounded in L1(BR), it
follows that w" is bounded in C�(BR/2) for some � > 0. In particular,

P.V.

ˆ
|y|"�1

w"(y)
y

|y|n+1
dy 

ˆ
|y|1

|y|�

|y|n
dy +

ˆ
1|y|"�1

1

|y|n
dy  C| ln "|�1

and the bound on | ln "|�1H[�"
E
](x0)| follows.

Next, we note that w" converge locally uniformly to w0, unique bounded solution of

w0 + (��)1/2w0 = �{x·⌫E(x0)<0} in Rn.
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This solution is of the form w0(x) = '(x ·⌫E(x0)) for some function ' satisfying in particular '(�1) = 1
and '(1) = 0. Assuming (without loss of generality) that x · ⌫E(x0) = x1, we get

�| ln "|�1P.V.

ˆ
|y|"�1

'(y1)
y

|y|n+1
dy = �| ln "|�1P.V.

ˆ
|y|"�1

'(y1)
y1

|y|n+1
dye1

= �| ln "|�1

ˆ
"
�1

0

1

rn+1

ˆ
@Br

'(y1)y1 dH
n�1(y) dre1

and L’Hospital Rule gives

�| ln "|�1P.V.

ˆ
|y|"�1

'(y1)
y

|y|n+1
dy ! � lim

"!0

"n
ˆ
@B"�1

'(y1)y1 dH
n�1(y)e1

! � lim
"!0

ˆ
@B1

'("y1)y1 dH
n�1(y)e1

! �

ˆ
@B1\{y1<0}

y1 dH
n�1(y)e1

and the result follows with

�1

n,1
:= cn,1

ˆ
@B1\{y1>0}

y1 dH
n�1(y) =

cn,1
2

ˆ
@B1

|e · y|dHn�1(y).

If x0 2 @⌦ and � ⌘ 0 then ⌫E(x0) = n(x0) and regularity theory for fractional elliptic equations ([21])

implies that w" is bounded in C1/2

loc
(Rn) and so w" converges locally uniformly to w0 unique bounded

solution of (
w0 + (��)1/2w0 = 1 in {x · n(x0) < 0}

w0 = 0 in {x · n(x0) > 0}

which is of the form w0(x) = '1(x · n(x0)) for some '1 : R ! [0, 1] satisfying in particular '1(�1) = 1
and '1(1) = 0. Proceeding as above, we deduce

�| ln "|�1P.V.

ˆ
|y|"�1

'1(y1)
y

|y|n+1
dy ! �1

n,1
n(x0).

When ↵ ⌘ 0, the solution of the corresponding Neumann boundary value problem is w0 ⌘ 1 and

�| ln "|�1P.V.

ˆ
|y|"�1

'1(y1)
y

|y|n+1
dy = �| ln "|�1P.V.

ˆ
|y|"�1

y

|y|n+1
dy = 0

which gives the last limit in Lemma 6.2. ⇤

7. �-convergence of G s

"
(E) when s 2 (0, 1)

We now consider a functional in which the nonlocal perimeter has a destabilizing e↵ect. More precisely,
we recall the definition of G s

"
(E) when s 2 (0, 1):

G s

"
(E) = P (E,⌦)� t"�s

ˆ
⌦

�E(1� �"
E
) dx

and we are interested in the �-convergence of G s

"
as "! 0.
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7.1. The case ⌦ = Rn - Proof of Theorem 2.6. Theorem 2.6 follows from the following proposition:

Proposition 7.1.
(i) For any set E such that �E 2 L1(Rn)

lim sup
"!0

G s

"
(E)  G s

0
(E).

(ii) For any family {E"}">0 that converges to E in L1(Rn),

lim inf
"!0

G s

"
(E") � G s

0
(E).

Proof. Using (3.6) and Young’s inequality, we find that for all µ, there exists C(µ) such that

Ps(E)  CP (E)s|E|
1�s

 µP (E) + C(µ)|E|.

With µ small enough, we thus have

(7.1) G s

0
(E) = P (E)� tcn,sPs(E) �

1

2
P (E)� C|E|.

We note that (i) is obviously true when G s

0
(E) = 1, so we can assume that G s

0
(E) < 1 which, using

(7.1) implies P (E) < 1 and Theorem 2.1-(i) implies lim"!0 G s

"
(E) = G s

0
(E).

To prove (ii), we first note that

"�s

ˆ
Rn

�E(1� �"
E
) = cn,s

ˆ
Rn

�"
E
(�E CE � �CE E) dx  cn,sPs(E)

and so (proceeding as above),

G s

"
(E) �

1

2
P (E)� C|E|.

We note that (ii) is trivially true if lim inf"!0 G s

"
(E") = 1, so we can assume that lim inf"!0 G s

"
(E") < C,

and we fix a subsequence {E"k} such that lim inf"!0 G s

"
(E") = lim"k!0 G s

"k
(E"k) and G s

"k
(E"k) < C.

Taking µ = 1

2t
and we get

1

2
P (E"k)  G s

"k
(E"k) + C|E"k | < C.

We can use this bound to show that (recall (4.1))

Jk = "�s

k

ˆ
Rn

�E"k
(1� �"k

E"k
) = cn,s

ˆ
Rn

�"k
E"k

(�E"k
 CE"k

� �CE"k
 E"k

) dx

converges to

J1 = cn,s

ˆ
Rn

�E CE = cn,sPs(E).

Indeed, we have

1

cn,s
|Jk � J1| 

ˆ
Rn

�"k
E"k

|�E"k
 CE"k

� �CE"k
 E"k

� �E CE + �CE E | dx

+

����
ˆ
Rn

�"k
E"k

(�E CE � �CE E) dx�

ˆ
Rn

�E CE

���� .

We can proceed as in the proof of Theorem 2.1-(i) to prove that the second term goes to 0 as "k ! 0
by. The first term is bounded byˆ

Rn

|�E"k
 CE"k

� �CE"k
 E"k

� �E CE + �CE E | dx  2Ps(E"k�E)  CP (E"k�E)s|E"k�E|
1�s

! 0

since E"k ! E in L1(Rn) and P (E), P (E"k) < 1. Finally, we have G s

"k
(E"k) = P (E"k) � tJk, so the

result now follows from the lower semicontinuity of the perimeter.
⇤



�-CONVERGENCE OF NONLOCAL PERIMETERS 27

7.2. The case ⌦ 6= Rn with Robin boundary conditions. We need to prove:

Proposition 7.2.
(ii) For any set E such that �E 2 L1(Rn),

lim sup
"!0

G s

"
(E)  G s

0
(E).

(ii) For any family {E"}">0 that converges to E in L1(⌦),

lim inf
"!0

G s

"
(E") � G s

0
(E).

Proof. Using (3.7), we find

PL

s
(E,⌦)  C(P (E,Conv(⌦)))s|E \ ⌦|1�s

 µP (E,Conv(⌦)) + C(µ)|E|.

If ⌦ is convex, we have P (E,Conv(⌦)) = P (E,⌦). In the general case, we assume that P (⌦) < 1 and
write P (E,Conv(⌦))  P (E) = P (E,⌦) + P (⌦) (recall that E ⇢ ⌦) to get

PL

s
(E,⌦)  µP (E,⌦) + µP (⌦) + C(µ)|E|.

Since 0 
↵

↵+�
, �

↵+�
 1, we have

ˆ
C⌦

↵

↵+ �
 E(x) dx 

ˆ
C⌦
 Edx 

ˆ
C⌦
 ⌦dx = Ps(⌦) < 1,

andˆ
C⌦

�

↵+ �

 E\⌦(x) CE\⌦(x)

 ⌦(x)
dx 

ˆ
C⌦

 E\⌦ CE\⌦

 ⌦

dx 

ˆ
C⌦

ˆ
CE\⌦

1

|x� y|n+sdy
dx  Ps(⌦) < 1.

It follows that

G s

0
(E) �

1

2
P (E,⌦)� CP (⌦)� C|E|� CPs(⌦).

Since the statement (i) is true if G s

0
(E) = 1, we can assume that G s

0
(E) < 1, which now implies

that P (E,⌦) < 1. The result thus follows from Theorem 2.2-(i).

For (ii), we note, using (4.4) and the fact that 0  �"
E
 1, that

"�s

ˆ
⌦

�E(1� �"
E
) = Cn,s

ˆ
⌦

�"
E
(�E CE � �CE E) dx� Cn,s

ˆ
C⌦

ˆ
⌦

�

↵+ �

 E(x)

 ⌦(x)

�"
E

|x� y|n+s
dydx

 2Cn,sP
L

s
(E,⌦).

Proceeding as in the proof of Proposition 7.1, we can assume that lim inf"!0 G s

"
(E") = lim"k!0 G s

"k
(E"k) <

1 and P (E"k)  C and we need to show that

Jk :=
1

Cn,s

"�s

k

ˆ
⌦

�E"k
(1� �"k

E"k
) =

ˆ
Rn

�"k
E"k

(�E"k
 CE"k

� �CE"k
 E"k

) dx

�

ˆ
C⌦

ˆ
⌦

�(x)

↵(x) + �(x)

 E"k
(x)

 ⌦(x)

�"k
E"k

|x� y|n+s
dydx

converges to

J1 :=

ˆ
⌦

�E CE +

ˆ
C⌦

↵

↵+ �
 E +

ˆ
C⌦

�

↵+ �

 E\⌦ CE\⌦

 ⌦

.
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We have

(7.2)

|Jk � J1| 

ˆ
⌦

�"k
E"k

|�E"k
 CE"k

� �CE"k
 E"k

� �E CE + �CE E | dx

+

�����

ˆ
C⌦

ˆ
⌦

�(x)

↵(x) + �(x)

�"k
E"k

(y)

|x� y|n+s

 E"k
(x)�  E(x)

 ⌦(x)

�����

+

�����

ˆ
⌦

�"k
E"k

(�E CE � �CE E)�

ˆ
C⌦

ˆ
⌦

�(x)

↵(x) + �(x)

�"k
E"k

(y)

|x� y|n+s

 E(x)

 ⌦(x)
� J1

����� .

We can proceed as in the proof of Theorem 2.2 to show that the last term goes to 0 as k ! 1. The first
term is bounded byˆ

⌦

|�E"k
 CE"k

� �CE"k
 E"k

� �E CE + �CE E | dx

 2PL

s
(E"k�E,⌦)  C(P (E"k�E,⌦) + P (⌦))s|E"k�E|

1�s
�! 0

since E"k ! E in L1(⌦) and P (E,⌦), P (E"k ,⌦), P (⌦) < 1. The second term is bounded byˆ
C⌦

ˆ
⌦

1

|x� y|n+s

| E"k
(x)�  E(x)|

 ⌦(x)
dydx =

ˆ
C⌦

ˆ
⌦

|�E"k
(y)� �E(y)|

|x� y|n+s
dydx

=

ˆ
⌦

 C⌦(y)|�E"k
(y)� �E(y)|dy.

Since  C⌦(y) 2 L1(⌦), |�E"k
(y) � �E(y)|  1 and |�E"k

(y) � �E(y)| ! 0 a.e., Lebesgue’s dominated
convergence theorem yields ˆ

C⌦

ˆ
⌦

|�E"k
(y)� �E(y)|

|x� y|n+s
dx ! 0

as "k ! 0. This proves that the right hand side in (7.2) goes to zero, and thus Jk ! J1. Since
G s

"k
(E"k) = P (E"k ,⌦) � tJk, we conclude the proof of (ii) by using the lower semicontinuity of the

perimeter. ⇤

8. �-convergence of G"(E) (case s = 2)

Theorem 2.8 follows from the following proposition:

Proposition 8.1. Assume that ⌦ is a bounded set with C1,↵
boundary and that t < 2.

(i) For any set E such that �E 2 L1(Rn),

lim sup
"!0

G"(E)  G0(E) =

✓
1�

t

2

◆
P (E,⌦).

(ii) For any family {E"}">0 that converges to E in L1(⌦),

lim inf
"!0

G"(E") � G0(E).

The key tool in the proof of this proposition is the following lemma:

Lemma 8.2. Assume that ⌦ is a bounded set with C1,↵
boundary. For any measurable set E ⇢ ⌦, and

for any ↵0
2 (0,↵), the solution �"

E
of (2.8) satisfies

(8.1) |"r�"
E
(x)| 

1

2
+ C

✓
1

R
+ "↵

0
R1+↵

0
◆

for all R > 0, " > 0, x 2 ⌦

where the constant C depends on ⌦ but not on E.
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Proof of Proposition 8.1. The statement (i) follows from Proposition 2.3.
To prove (ii), we recall that

"�1

ˆ
⌦

�E(1� �"
E
) dx = �"

ˆ
E

��"
E
dx

= �"

ˆ
@⇤E\⌦

r�"
E
· ⌫E(x) dH

n�1(x)

so that Lemma (8.2) implies

"�1

ˆ
⌦

�E(1� �"
E
) dx 

✓
1

2
+ C

✓
1

R
+ "↵

0
R1+↵

0
◆◆

P (E,⌦)

for all R > 0 and " > 0 (with a constant C independent of E). For any 0 < ⌘ < 1� t

2
, we choose R such

that C/R < 1

2
⌘/t and then "0 such that C"↵

0
R1+↵

0
< 1

2
⌘/t for all " < "0, . We then have

G"(E) �

✓
1�

t

2
� ⌘

◆
P (E,⌦) 8" < "0

for all set E with P (E,⌦) < 1. The lower semincontinuity of the perimeter implies

lim inf
"!0

G"(E") �

✓
1�

t

2
� ⌘

◆
P (E,⌦).

Since this holds for all ⌘ > 0, the result follows. ⇤

Proof of Lemma 8.2. We fix R > 0 throughout the proof. First, we prove that (8.1) holds for all x0 such
that BR"(x0) ⇢ ⌦. For that, we consider the functions v" = K" ⇤ �E and u" = �"

E
� v". Lemma 5.6

implies that |"rv"(x0)|  1/2. The rescaled function ū" = u"(x0 + "x) solves ū" � �ū" = 0 in BR(0)
and satisfies kū"k  2. We deduce that |rū(0)|  C

R
and therefore

|"r�"
E
(x0)|  |"rv"(x0)|+

C

R


1

2
+

C

R
.

Next, we take y0 2 @⌦ and we are going to show that (8.1) holds in BR"(y0). Together with the
argument above, this implies the lemma. This part of the proof is more delicate and must make use of
the Neumann condition and of the regularity of @⌦. Without loss of generality, we assume that y0 = 0
and ⌫(y0) = �en. In what follows, we use the notation x = (x0, xn) with x0

2 Rn�1 and xn 2 R. We
define F (x) = �E(x0, xn) + �E(x0,�xn) the even extension of �E and denote v"

1
(x) = K" ⇤ F , which

satisfies |"rv"
1
(x0)|  1/2 by Lemma 5.6. Note that v"

1
solves the equation v"

1
�"2�v"

1
= �E in {xn > 0}

and satisfies the Neumann boundary condition on {xn = 0}. The idea of the proof is to use the C1,↵

regularity of ⌦ to say that in BR", ⌦ is close to the half space {xn > 0} and that the function u" = �"
E
�v"

1

(and its gradient) is small.
The rescaled function ū"(x) = u"(y0 + "x) solves

(8.2)

(
ū" ��ū" = 0 in ⌦"

rū" · ⌫" = g"(x) on @⌦"

where
g"(x) = �rv̄"

1
(x) · ⌫"(x),

with v̄"
1
(x) = v"

1
(y0 + "x) and ⌦" = {x ; y0 + "x 2 ⌦}.

Gradient estimates for Neumann boundary value problems (see [16, 15]) give, for ⌘ > 0:

sup
⌦"\BR

|rū"| 
1

R
kū"kL1(⌦"\B2R) + Ckg"kL1(@⌦"\B2R) +R⌘[g"]C⌘(@⌦"\B2R).(8.3)
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We have

kū"kL1(⌦"\B2R)  ku"kL1(⌦)  k�"
E
kL1(⌦) + kv"

1
kL1(⌦)  2,

and we can thus conclude thanks to the following Lemma:

Lemma 8.3. For all � < 1 there exists C > 0 such that

kg"kL1(@⌦"\B3R)  C
⇥
("R)↵ + ("↵R1+↵)�

⇤

and

kg"kC⌘(@⌦"\B2R)  C
⇥
("R)↵ + ("↵R1+↵)�

⇤1�⌘/�
.

Lemma 8.3 together with (8.3) yields

sup
⌦"\BR

|rū"|  C

✓
1

R
+ "↵

0
R1+↵

0
◆

for some ↵0 = ↵(� � ⌘) < ↵. Since |rv"
1
|  1/2, we deduce:

sup
⌦\BR"

|"r�"
E
| 

1

2
+ C

✓
1

R
+ "↵

0
R1+↵

0
◆

which complete the proof (8.1). ⇤

Proof of Lemma 8.3. We recall that g"(x) = �rv̄"
1
(x) ·⌫"(x) where v̄"

1
(x) = K ⇤ F̄ . Calderón-Zygmund’s

estimates gives kv̄"
1
(x)kW 2,p(B3R)  C for all p < 1 and so krv̄"

1
(x)kC�(B3R)  C. We note that

g"(x) = �rx0 v̄"
1
(x) · ⌫"

x0(x)� @xn v̄
"

1
(x)⌫"

n
(x)

where the C1,↵ regularity of ⌦ implies

|⌫"0(x)|  C("R)↵ in B"R(y0)

while the fact that @xnv
"

1
= 0 on {xn = 0} yields:

|@xn v̄
"

1
(x)|  C|xn|

�
 C("↵R1+↵)�.

The first estimate in Lemma 8.3 follows. The second estimate then follows from the interpolation
inequality

kg"kC⌘  Ckg"k⌘/�
C� kg"k1�⌘/�

L1  Ckrv̄"
1
(x)k⌘/�

C�(B3R)
kg"k1�⌘/�

L1 .

⇤

Appendix A. An interpolation inequality

We recall that

PL

s
(E,⌦) :=

ˆ
⌦

ˆ
⌦

�E(x)�CE(y)

|x� y|n+s
dx dy =

1

2

ˆ
⌦

ˆ
⌦

|�E(x)� �E(y)|

|x� y|n+s
dx dy.

We will prove that for any function u 2 W 1,1(⌦) we have

(A.1)

ˆ
⌦

ˆ
⌦

|u(x)� u(y)|

|x� y|n+s
dx dy 

n!n21�s

s(1� s)
kuk1�s

L1(⌦)

 ˆ
Conv(⌦)

|ru| dx

!s
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so the result follows by a density argument.
We split the integral in the right hand side between {(x, y) 2 ⌦2 ; |x�y| � R} and {(x, y) 2 ⌦2 ; |x�y| 
R}. For the first one, we writeˆ ˆ

{(x,y)2⌦2 ; |x�y|�R}

|u(x)� u(y)|

|x� y|n+s
dx dy 

ˆ ˆ
{(x,y)2R2n ; |x�y|�R}

|u(x)|+ |u(y)|

|x� y|n+s
dx dy

 2n!nkukL1(⌦) dx
R�s

s
.

For the second integral, we writeˆ ˆ
{(x,y)2⌦2 ; |x�y|R}

|u(x)� u(y)|

|x� y|n+s
dx dy

=

ˆ ˆ
{(x,y)2⌦2 ; |x�y|R}

1

|x� y|n+s

ˆ
1

0

|ru(tx+ (1� t)y) · (x� y)| dt dx dy



ˆ
1

0

ˆ
⌦

ˆ
{z2⌦t(y) ; |z�y|Rt}

ts�1

|z � y|n�1+s
|ru(z)| dz dy dt

where we did the change of variable z = tx+ (1� t)y, so that ⌦t(y) = {z = tx+ (1� t)y ; x 2 ⌦}. It is
readily seen that for t 2 [0, 1] and y 2 ⌦, we have ⌦t(y) ⇢ Conv(⌦) the convex hull of ⌦. We deduce:ˆ ˆ

{(x,y)2⌦2 ; |x�y|R}

|u(x)� u(y)|

|x� y|n+s
dx dy



ˆ
1

0

ˆ
Conv(⌦)

ˆ
{y2⌦ ; |z�y|Rt}

ts�1

|z � y|n�1+s
|ru(z)| dy dz dt



ˆ
Conv(⌦)

|ru(z)| dz

ˆ
1

0

ˆ
{|z�y|Rt}

ts�1

|z � y|n�1+s
dy dt

 n!n

R1�s

1� s

ˆ
Conv(⌦)

|ru(z)| dz.

We deduce ˆ
⌦

ˆ
⌦

|u(x)� u(y)|

|x� y|n+s
dx dy  2n!nkukL1(⌦)

R�s

s
+ n!n

R1�s

1� s

ˆ
Conv(⌦)

|ru(z)| dz

and (A.1) follows by taking R =
2kukL1(⌦)´

Conv(⌦) |ru(z)| dz .
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