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Abstract

Animals can actively encode different types of identity information in learned communication
signals, such as group membership or individual identity. The social environments in which
animals interact may favor different types of information, but whether identity information
conveyed in learned signals is resilient or responsive to social disruption over short
evolutionary timescales is not well understood. We inferred the type of identity information
that was most salient in vocal signals by combining computational tools, including supervised
machine learning, with a conceptual framework of “hierarchical mapping”, or patterns of
relative acoustic convergence across social scales. We used populations of a vocal learning

species as a natural experiment to test whether the type of identity information emphasized in
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learned vocalizations changed in populations that experienced the social disruption of
introduction into new parts of the world. We compared the social scales with the most salient
identity information among native and introduced range monk parakeet (Myiopsitta
monachus) calls recorded in Uruguay and the United States, respectively. We also evaluated
whether the identity information emphasized in introduced range calls changed over time. To
place our findings in an evolutionary context, we compared our results with another parrot
species that exhibits well-established and distinctive regional vocal dialects that are
consistent with signaling group identity. We found that native and introduced range monk
parakeet calls both displayed the strongest convergence at the individual scale and minimal
convergence within sites. We did not identify changes in the strength of acoustic convergence
within sites over time in the introduced range calls. These results indicate that the individual
identity information in learned vocalizations did not change over short evolutionary timescales
in populations that experienced the social disruption of introduction. Our findings point to
exciting new research directions about the resilience or responsiveness of communication

systems over different evolutionary timescales.

Author summary

In some avian and mammalian lineages, vocal communication is partially reliant on social
learning. Learned vocalizations may carry information important to communicate to others,
including individual identity or group membership. The information encoded in learned
vocalizations may change under different social conditions, such as the number of individuals
available for social interactions. We used populations of monk parakeets introduced to the
United States of America as a natural experiment of social disruption. We tested the ideas
that the type of identity information encoded in learned vocalizations could either remain the

same or change in introduced populations compared to native range populations in Uruguay.
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By using computational tools, we quantified patterns of acoustic variation linked to identity
information in learned vocalizations of native and introduced range populations. We found
that individual identity information was more salient than group membership in learned
vocalizations in each of the native and introduced ranges. The type of identity information
important for monk parakeets to communicate appears resilient to social disruption that
occurred over the last 50 years. While socially learned traits are considered very flexible, our
findings suggest that there are constraints on how learned vocalizations are used to

communicate identity information over cultural timescales.

1. Introduction
Animals can use communication signals to transmit social information, including group
membership, individual identity, social status, sex, or other social characteristics (Bradbury &
Vehrencamp, 1998; Seyfarth, Cheney, Bergman, Fischer, Zuberbuhler, et al., 2010). The
types of identity information that animals encode in signals may be an outcome of differences
in the social environment within or among species. Different types of information may be more
or less important for animals to communicate in social environments that can change over
ecological or evolutionary timescales (Bergman, 2010; Hobson, 2020; Hobson, Mgnster, &
DeDeo, 2021; Ramos-Fernandez, King, Beehner, Bergman, Crofoot, et al., 2018).
Vocalizations are well-studied communication signals that can contain identity
information. For example, voice cues arising from vocal tract filtering can provide receivers
with information about individual identity (Furuyama, Kobayasi, & Riquimaroux, 2016; Prior,
Smith, Lawson, Ball, & Dooling, 2018; Rendall, Owren, & Rodman, 1998). However,
individuals can also use social learning to modify identity information, such as vocal learning
species that can encode both group-level and individual identity information in learned

vocalizations in a stable manner. When individuals imitate vocalizations of their social
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companions, the resulting group-level acoustic convergence can be used to recognize group
members (Boughman & Wilkinson, 1998; Nowicki & Searcy, 2014; Sewall, Young, & Wright,
2016). Learned vocalizations with group identity information, such as vocal dialects, have
been reported in several vocal learning taxa, including cetaceans (Janik & Slater, 1998;
Jones, Daniels, Tufano, & Ridgway, 2020; Nousek, Slater, Wang, & Miller, 2006; Rendell &
Whitehead, 2003; Watwood, Tyack, & Wells, 2004), bats (Boughman, 1998), songbirds
(Mammen & Nowicki, 1981; Sewall, 2009;2011), and parrots (Martinez & Logue, 2020; Wright,
1996). Individuals can also communicate individual identity information by developing
distinctive vocalizations that differentiate them from other individuals. For instance, bottlenose
dolphins (Tursiops truncatus) and green-rumped parrotlets (Forpus passerinus) can use vocal
learning to produce distinctive individual signatures used for individual vocal recognition
(Berg, Delgado, Okawa, Beissinger, & Bradbury, 2011; Berg, Delgado, Cortopassi, Beissinger,
& Bradbury, 2012; Janik, Sayigh, & Wells, 2006; Kershenbaum, Sayigh, & Janik, 2013).
These findings from the same or closely related taxa suggest that changes in the social
environment could influence the identity information that animals encode in learned
vocalizations. For instance, living in large social groups or interacting repeatedly with different
individuals may favor signaling individual identity information, due to either the pressure of
providing sufficient information for receivers to discriminate among unique individuals (Pollard
& Blumstein, 2011), or the relative benefits and costs associated with maintaining many
different social relationships (Tibbetts & Dale, 2007). However, the degree to which identity
information encoded in learned communication signals dynamically responds to changes in
social conditions over short evolutionary timescales is not well understood. Short-term
changes in the social environment can influence identity information in learned vocalizations.
For instance, captive and wild Puerto Rican Amazon parrots (Amazona vittata) exhibit distinct

vocal dialects that have arisen over only a few decades, and translocated individuals will
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switch to calling in the dialect of the local population (Martinez et al., 2020). In a field
experiment with yellow-naped amazons (Amazona auropalliata), a juvenile translocated
between regional populations also switched to calling in the local vocal dialect (Salinas-
Melgoza & Wright, 2012). However, regional dialect boundaries in this species remained
stable over 11 years (Wright, Dahlin, & Salinas-Melgoza, 2008), despite natural dispersal of
individuals across dialect boundaries (Wright, Rodriguez, & Fleischer, 2005). In elephant
seals (Mirounga angustirostris), increasing population size appears associated with a change
in the type of identity information encoded in learned vocalizations over short evolutionary
timescales. As recovering populations grew in size over 50 years, vocal dialects were
replaced by more structurally complex calls that displayed greater individual distinctiveness
(Casey, Reichmuth, Costa, & Le Boeuf, 2018).

To test whether identity information in vocalizations is resilient or responsive to short-
term changes in the social environment, we need two critical components: a way to quantify
the relative salience of different types of identity information in learned signals and the
potential to compare identity information across groups with different social characteristics.

First, new tools are needed to better quantify the salient types of information in
vocalizations. Computational approaches like machine learning can be applied within a
conceptual framework that links patterns of vocal convergence to identity signaling.
Individuals should use vocal learning to converge on vocalizations across different scales of
social organization (Smith-Vidaurre, Araya-Salas, & Wright, 2020), and such vocal
convergence should yield “hierarchical mapping” patterns, which are patterns of relative
acoustic convergence that vary in a stable manner across social scales (Bradbury et al.,
1998). To evaluate hierarchical mapping patterns, we can use machine learning tools to
quantify relative acoustic convergence over different social scales, for example, from

individuals to flocks or regional populations. From hierarchical mapping patterns, we can use
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the social scale with the strongest relative acoustic convergence to infer the most salient type
of identity information encoded in vocalizations. This conceptual framework assumes that
patterns of acoustic convergence reflect identity information encoding that is stable across
social contexts, in contrast to the rapid vocal matching exhibited by some vocal learners that
should yield varying patterns of acoustic convergence and divergence in real time (Balsby &
Bradbury, 2009; King & Janik, 2013; Scarl & Bradbury, 2009; Vehrencamp, Ritter, Keever, &
Bradbury, 2003).

Second, we can compare hierarchical mapping patterns among groups with historical
variation in population stability to test whether identity information in learned vocalizations is
resilient or responsive to disruption of the social environment. We can leverage different types
of natural experiments for this comparison, including the introduction of species to new parts
of the world, which can cause founder effects that influence traits transmitted by genetic
inheritance and by social learning in introduced populations (Aplin, 2019; Dlugosch & Parker,
2008). Introduction events that expand a species’ range can be thought of as an extreme form
of social disruption. In particular, when this process occurs through the pet trade, individuals
are removed from their natural social environments, placed in captivity for transport, and then
can remain in captivity throughout the remainder of their lives, such as in breeding colonies
that sustain the pet trade. These original individuals or their captive-bred descendants can
found new populations after escaping or being released from captivity (Blackburn, Pysek,
Bacher, Carlton, Duncan, et al., 2011; Carrete, Edelaar, Blas, Serrano, Potti, et al., 2012;
Chapple, Simmonds, & Wong, 2012). New populations established outside of the native
range after this form of social disruption should be small shortly after establishment. However,
if boom and bust population growth leads to increased population size after establishment
(Blackburn et al., 2011), then social environments that are similar to native range populations

could gradually re-establish in the introduced range. Alternatively, the effects of social



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

disruption could persist over generations and influence learned vocal outcomes, since vocal
learning is a social process. For example, there could be fewer overall numbers of individuals
available for social interactions in introduced populations, which could alter the cognitive costs
of social recognition for receivers (Sewall et al., 2016; Tibbetts et al., 2007), and in turn, alter
the type of identity information that signalers convey in learned vocalizations compared to the
native range.

In this study, we focused on native and introduced range populations of monk
parakeets (Myiopsitta monachus) to test how social disruption that occurred generations ago,
over the course of the past 50 years, could cause changes in the type of identity information
encoded in contact calls. Parrots are suitable for this research because they can use social
learning to both acquire and modify “contact” calls, which individuals are thought to use to
maintain contact with their social companions while flying and foraging (Bradbury & Balshy,
2016). Monk parakeets in particular are also suitable because they have established new
populations worldwide through the pet trade since the late 1960s, enabling comparisons
between native range populations and introduced range populations. The independently
established introduced range populations share a common origin, with the majority of these
populations stemming from native range populations in Uruguay and the surrounding region
of northern Argentina (Edelaar, Roques, Hobson, Goncalves Da Silva, Avery, et al., 2015;
Hobson, Smith-Vidaurre, & Salinas-Melgoza, 2017; Russello, Avery, & Wright, 2008; Smith-
Vidaurre, 2020). In addition, we know more about monk parakeets’ social system than most
parrot species. While social relationships among pairs are important, experiments with captive
social groups indicate that this species is capable of hierarchical social organization, which
could extend to wild populations (Hobson, Avery, & Wright, 2013;2014; Hobson, John,
Mclintosh, Avery, & Wright, 2015; van der Marel, Francis, O’Connell, Estien, Carminito, et al.,

2022). Finally, recent work has contributed to growing knowledge of this species’ vocal
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communication system (Smeele, Tyndel, Aplin, & McElreath, 2022; Smeele, Senar, Aplin, &
McElreath, 2023; Smith-Vidaurre et al., 2020; Smith-Vidaurre, Perez-Marrufo, & Wright,
2021).

We used introduced range monk parakeet populations in the United States (U.S.) as
independent replicates of populations established following social disruption. Recent work
with monk parakeets supports the idea that the introduction process, including transport out of
the native range and housing in long-term captivity, represents a form of extreme social
disruption. Under naturalistic conditions, removing even a single individual from an
established social group consistently disrupts monk parakeets’ dominance ranks (van der
Marel et al., 2022). In the U.S. introduced range, social disruption through the pet trade has
occurred over short evolutionary timescales, beginning about 50 years ago. The earliest
sightings of monk parakeets in the U.S. were reported in 1969, although populations in some
states may have been established in the 1980’s or later (Edelaar et al., 2015; Russello et al.,
2008). In our previous work, we used the term “invasive” to refer to monk parakeet
populations outside of the native range (Smith-Vidaurre et al., 2020;2021). We now use the
term “introduced” to refer to these populations, as “invasive” and “invasions” were recently
identified as terms that should be changed to use more inclusive terminology in ecology and
evolutionary biology (Cheng, Gaynor, Moore, Darragh, Estien, et al., 2023).

We used contact call recordings to infer which type of identity information was most
salient in learned monk parakeet vocal signals. We used this approach on both native and
introduced range contact calls to test whether the type of identity information was the same or
differed between the native and introduced ranges. Previous work with native range
populations in Uruguay demonstrated that the strongest acoustic convergence in contact calls
occurs at the individual scale (Smith-Vidaurre et al., 2020). We expected that if introduced

populations had recovered following social disruption, then the type of identity information in
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introduced range contact calls would not change, such that both native and introduced
populations would exhibit the strongest acoustic convergence at the individual scale.
However, if the introduction process was sufficiently disruptive, then we expected that
introduced range parakeets would diverge from the type of identity information used in the
native range, and would instead display stronger acoustic convergence at a higher social
scale. We placed our results in the context of longer timescales by comparing against another
parrot species with strong contact call convergence at higher social scales and distinctive
vocal dialects. Our integration of quantitative approaches with a conceptual framework of
hierarchical mapping patterns can be used to evaluate stable identity information encoding in
learned communication signals more broadly across taxa. Together, our rigorous
computational and comparative approaches provide new insight into how identity information
in learned vocal signals is resilient to social disruption over ecological timescales, but differs

between species representing longer evolutionary timescales.

2. Methods

2.1 Recording contact calls

We recorded contact calls from native range monk parakeets in 2017 at 37 sites across 7
departments in Uruguay in our previous work (Smith-Vidaurre et al., 2020). Our introduced
range dataset included contact calls recorded at 26 sites across 5 states in the U.S. in 4
different sampling years: 2004, 2011, 2018, and 2019. In 2004, introduced range contact calls
were recorded in Connecticut, Florida, Louisiana, and Texas (calls were provided by
Buhrman-Deever, Rappaport, & Bradbury, 2007). We recorded parakeets in Texas and
Louisiana in 2011, Arizona in 2018, and Texas again in 2019. For our temporal analyses

below, we relied on contact calls that we recorded in Texas in 2004, 2011, and 2019 (3
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sampling years), and contact calls recorded in Louisiana in 2004 and 2011 (2 sampling years,
see S1 Appendix section 1).

Recording sessions in 2004 used Marantz PMD670 or PMD690 recorders with
Sennheiser ME67K6 shotgun microphones, and these recordings were digitized at 48000 Hz
and 16 bit depth (Buhrman-Deever et al., 2007). In all other recording sessions we used
Marantz PMD661 MKII and PMD660 solid state recorders, Sennheiser ME67 long shotgun
microphones and foam windscreens, and we digitized our recordings at 44100 Hz sampling
rate and 16 bit depth (Smith-Vidaurre et al., 2020;2021). All recorded individuals were
unmarked, with the exception of a few marked individuals in the native range (Smith-Vidaurre

et al., 2020).
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2.2 Pre-processing contact calls

We manually selected contact calls from our field recordings. For our introduced range
recording sessions in later years, we selected contact calls using Raven version 1.4 (The
Cornell Lab of Ornithology Bioacoustics Research Program, 2014), consistent with native
range contact call selection in Smith-Vidaurre et al. (2020). The previously published
introduced range contact calls from 2004 were provided as clips of original recordings
(Buhrman-Deever et al., 2007). We performed pre-processing for all introduced range contact
calls, including the 2004 clips, with the warbleR package (Araya-Salas & Smith-Vidaurre,
2017) to implement the same quality control pipeline we had previously used for native range
contact calls (S1 Appendix section 1, Smith-Vidaurre et al., 2020;2021). Our quality control
criteria included contact calls with signal to noise ratios of 7 or higher (e.g. calls that were at
least 7 times louder than background noise) that also did not display loud signals or other
background noise that overlapped with contact call structure. We performed the majority of
our pre-processing and downstream analyses in the R software environment (R Core Team,

2022), including the tidyverse (Wickham, Averick, Bryan, Chang, McGowan, et al., 2019).

2.3 Social scales represented in our contact call datasets

We obtained contact calls at two different social scales for the purposes of this study: the
individual scale, and a group scale that represented a higher level of social organization. To
assess contact call convergence at the individual scale, we repeatedly sampled known
individuals to obtain multiple exemplar contact calls produced by the same individual. This
individual-level dataset included 229 total contact calls from 8 native range birds (3 marked, 5
unmarked) recorded at 3 different sites in 2017, and 9 introduced range birds (all unmarked)
recorded at 7 different sites in either 2004, 2011, or 2019 (see Table A5 in Smith-Vidaurre et

al. (2021)). Each individual was recorded at one site only, and because the birds we recorded
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were generally unmarked, we recorded repeat contact calls from particular individuals while
the calling bird was producing multiple contact calls within a short period of time (e.g. a few
minutes (Smith-Vidaurre et al., 2020)). After pre-processing contact calls, our individual scale
dataset included a median of 10 (range: 4 - 25) contact calls for the native range individuals
and a median of 12 (range: 5 - 28) contact calls for the introduced range individuals. Our
individual scale dataset provided us with sufficient sampling depth per individual to assess
acoustic convergence at the individual scale. We used this contact call dataset to represent
individual vocal signatures over a short sampling period for each repeatedly sampled
individual. In previous work with this same dataset, we identified individual vocal signatures
encoded in frequency modulation patterns (Smith-Vidaurre et al., 2021), which are widely
considered to be acoustic structures that animals modify by learning to create individually
distinctive signals (Berg et al., 2011; Fripp, Owen, Quintana-Rizzo, Shapiro, Buckstaff, et al.,
2005; Janik & Slater, 2000; Janik et al., 2006). While individuals’ physiological states could
influence subtle patterns of variation in learned vocalizations (Janik & Knornschild, 2021),
studies with other vocal learning taxa, such as bottlenose dolphins, have also identified
individual vocal signatures encoded in the frequency contours of learned vocalizations
recorded over short timescales (Kershenbaum et al., 2013; King et al., 2013).

To address contact call convergence at a group scale, we recorded and compared
contact calls across nesting sites. We used nesting sites as groups because parakeets likely
interact frequently with other individuals at the same nesting site. Monk parakeet nesting sites
include clusters of single or multi-chambered stick nests that are often built in close proximity
(Eberhard, 1998), and parakeets from nearby clusters of nests engage in social interactions
(Hobson et al., 2014), making it difficult to determine the boundaries of independent nesting
colonies. In this study, we recorded at groups of nests that were geographically separate (the

shortest distance among these nesting sites was 0.15 km), which we refer to hereafter as
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“sites”. For our site scale dataset, we obtained a single contact call per bird at each site.
Because the parakeets usually produced a single contact call when leaving or returning to
their nests, we sampled a single contact call per unmarked individual at this higher social
scale.

After pre-processing, our site scale dataset included 1353 total contact calls recorded
at 63 sites across 37 native and 26 introduced range sites (some introduced range sites were
repeatedly sampled in different sampling years, see Tables A3 and A4 in Smith-Vidaurre et al.
(2021)). This dataset contained a median of 15 (range: 5 - 53) and 15.5 (range: 5 - 91)
contact calls across the native and introduced range sites, respectively. Since we recorded a
single contact call per unique individual at each site, our site scale dataset did not provide
sufficient resolution of individual vocal signatures. However, this dataset allowed us to
compare patterns of acoustic variation at a higher scale of social organization over broader
geographic areas in each range (Fig 1).

To compare hierarchical mapping patterns between the native and introduced ranges,
we used 37 native range sites separated by 0.15 — 513.59 km across 7 departments in
Uruguay, and 18 introduced range sites across 5 U.S. states that were separated by 0.74 —
3502.98 km (Smith-Vidaurre et al., 2020;2021). In our analyses below, we randomly selected
a subsample of sites and contact calls per site for calculations of acoustic convergence, and
we repeated this process over many resampling iterations, which allowed us to control for
non-independence among sites (e.g. sites separated by short geographic distances that may
be easily traversed by volant animals). To compare hierarchical mapping patterns over time in
the introduced range, we used a subsample of sites in Texas and Louisiana that were
recorded in more than one sampling year (see the respective number of sites and geographic
distances in S1 Appendix section 1). For our analyses at the site scale, we also generated 3

versions of the site scale dataset to account for the possibility that some contact calls could
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represent repeated sampling of the same unmarked individual(s) (S1 Appendix section 2).
These 3 datasets included the full dataset of contact calls, as well as the full dataset filtered
by either clustering with Gaussian mixture models in the mclust R package (Scrucca, Fop,
Murphy, & Raftery, 2016) or visual classification methods with a custom-designed RShiny app
(Chang, Cheng, Allaire, Xie, & McPherson, 2018) to remove contact calls that were likely to
represent such repeated individual sampling (S1 Appendix sections 3 - 7). Following contact
call similarity measurements, we performed all subsequent analyses with these 3 site scale
datasets to compare the degree of repeated individual sampling in each of the native and
introduced ranges, as well as to assess the robustness of our overall results at this higher
social scale. We used separate contact call datasets at the individual and site scales under
the assumption that our sampling approach captured stable patterns of acoustic convergence,
rather than the rapid vocal matching that some parrots exhibit in real time (Balsby et al., 2009;
Scarl et al., 2009; Vehrencamp et al., 2003). In other words, if individuals were using learning
to stably converge on vocalizations at a given social scale, then we expected to find relatively
higher convergence at one social scale compared to the other, regardless of the individuals

that we sampled at each social scale.

2.4 Measuring contact call similarity with spectrographic cross-correlation

We used contact call similarity measurements to quantify hierarchical mapping patterns.
Contact call similarity measurements formed the basis for our comparisons of calls within and
among individuals or social groups to assess hierarchical mapping patterns, or the relative
strength of acoustic convergence across different social scales. For instance, if individuals
were converging on shared contact calls within sites, then we expected that contact calls
compared within the same site would exhibit high similarity measurements, and lower

similarity measurements when compared to contact calls from different sites. We measured
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contact call similarity with spectrographic cross-correlation (SPCC) (Clark, Marler, & Beeman,
1987), which has traditionally been used in studies reporting patterns of acoustic variation
consistent with social learning of vocalizations in parrots (Balsby et al., 2009; Berg et al.,
2011; Bradbury, Cortopassi, & Clemmons, 2001; Buhrman-Deever et al., 2007; Eberhard,
Zager, Ferrer-Paris, & Rodriguez-Clark, 2022; Guerra, Cruz-Nieto, Ortiz-Maciel, & Wright,
2008; Salinas-Melgoza et al., 2012; Salinas-Melgoza & Renton, 2021; Scarl et al., 2009;
Smith-Vidaurre et al., 2020; Wright, 1996; Wright et al., 2008). We performed SPCC with a
Hanning window, a window length of 378 samples, and a window overlap of 90 samples for
Fourier transformations, as well as Pearson’s correlation method and a bandpass filter of 0.5
to 9kHz (Araya-Salas et al., 2017). Unless otherwise specified, we used these same
parameters for subsequent spectrum-based analyses. We conducted SPCC with all contact
calls across the native and introduced ranges, which allowed us to use this similarity

measurement in subsequent quantitative assessments of hierarchical mapping patterns.

2.5 Measuring contact call similarity with supervised machine learning

We also measured similarity among monk parakeet contact calls using a supervised machine
learning approach that identifies biologically relevant patterns of variation in avian acoustic
signals (Humphries, Buxton, & Jones, 2018; Keen, Ross, Griffiths, Lanzone, & Farnsworth,
2014; Smith-Vidaurre et al., 2020). As in our previous work (Smith-Vidaurre et al., 2020),
measuring similarity with a traditional method (SPCC) and a newer method (supervised
random forests), allowed us to verify that the hierarchical mapping patterns we identified were
not an artifact of using a single similarity method. We built supervised random forests models
with 1844 acoustic and image features, including features derived from spectrographic cross-
correlation (SPCC) and dynamic time warping similarity measurements, standard spectral

acoustic measurements, descriptive statistics of Mel-frequency cepstral coefficients, and
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spectrogram image measurements (S1 Appendix sections 8 — 9). We used the warbleR and
dtw R packages for acoustic measurements (Araya-Salas et al., 2017; Giorgino, 2009), the
software WNDCHRM for image measurements (Shamir, Orlov, Eckley, Macura, Johnston, et
al., 2008), and the MASS and base R packages to extract features (R Core Team, 2022;
Venables & Ripley, 2002). We trained random forests models to classify contact calls back to
4 repeatedly sampled individuals in each of the native and introduced ranges (156 contact
calls and 8 individuals total, S1 Appendix sections 10 - 11) (Breiman, 2001). We built and
trained models on known repeatedly sampled individuals because monk parakeet contact
calls group visibly by individual in a low dimensional trait space (e.g. two-dimensional acoustic
space, S1 Fig) (Smith-Vidaurre et al., 2020). It is important to train classification models on
discrete categories or classes (Kuhn & Johnson, 2013), as a means of ensuring that
classification outcomes reflect biologically relevant variation, rather than issues with how the
models were built.

We built our first model with the full set of 1844 acoustic and image features. We built a
second model by performing automated feature selection and using the most important
features from that analysis (S1 Appendix section 11). Then, we used our second model with
114 features for final analyses, as this model outperformed the first. To predict the similarity of
the individual scale contact calls that we used for validation, as well as the site scale contact
calls, we ran the remaining individual scale contact calls (73 total contact calls, 4 and 5
repeatedly sampled native and introduced range individuals, respectively) and the 1353 site
scale contact calls down the final model. We extracted the resulting proximity matrix as the
random forests similarity measurements (Humphries et al., 2018; Keen et al., 2014; Keen,
Odom, Webster, Kohn, Wright, et al., 2021; Odom, Araya-Salas, Morano, Ligon, Leighton, et
al., 2021; Smith-Vidaurre et al., 2020). We performed our random forests analyses with the

caret, ranger, Boruta, and edarf R packages (Jones & Linder, 2016; Kuhn, 2008; Kursa &
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Rudnicki, 2010; Wright & Ziegler, 2017). To validate model performance, we used these
similarity measurements to cluster the validation contact calls with Gaussian mixture modeling
in the R package mclust (Scrucca et al., 2016), which allowed us to determine whether the
random forests model identified biologically relevant patterns of acoustic variation within and
among contact calls of new individuals (e.g. individuals that were not present in the training
dataset).

After confirming that the final model captured relevant patterns of variation among the
individuals that we used to validate model performance, we used random forests similarity
measurements to generate low-dimensional acoustic space for the individual scale validation
contact calls and the site scale contact calls. Since we had used the individual scale contact
calls to train and validate the random forests model that we used to predict contact call
similarity, we did not use random forests similarity measurements to perform quantitative
analyses of acoustic convergence at the individual scale. Instead, we used the training
classification performance of our final random forests model, and the clustering performance
during validation with random forests similarity, to support our individual scale analyses with
SPCC similarity. Using two similarity methods to quantify acoustic convergence at the site
scale allowed us to validate that our results at this social scale reflected biologically relevant

variation, and were not artifacts associated with using a single similarity method.

2.6 Comparing native and introduced range hierarchical mapping patterns in acoustic space
To assess hierarchical mapping patterns in each of the native and introduced ranges, we
compared patterns of acoustic convergence in low-dimensional acoustic space at the
individual and site social scales. To generate acoustic space for each similarity method, we
optimized non-metric multidimensional scaling (MDS) to reduce the dimensionality of the

SPCC and random forests similarity matrices, respectively, with the MASS R package
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(Venables et al., 2002) (S1 Appendix section 12). For acoustic space at the individual scale,
we used random forests similarity obtained during model validation for 4 native range
parakeets recorded at 3 sites in the department of Colonia, Uruguay in 2017, and 4
introduced range birds recorded at 3 sites in Austin, United States in 2019. For the site scale,
we used both random forests and SPCC similarity measurements for 5 native range sites in
the department of Colonia, Uruguay in 2017, and 5 introduced range sites in Austin, United
States in 2019. We also filtered the acoustic space MDS coordinates by contact calls in each
of the 3 site scale datasets that we used to address repeated sampling of individuals (see
section 2.3). Acoustic space can be interpreted on the same axes for each similarity method
but not compared between similarity methods (e.g. acoustic space is different between SPCC
and random forests analyses). We interpreted contact calls that grouped together in acoustic
space by individual or site as structurally similar calls (e.g. high convergence), while calls
dispersed in acoustic space were structurally different (e.g. low convergence). We compared
hierarchical mapping patterns between the native and introduced ranges by comparing the

relative patterns of overlap in acoustic space among individuals or sites.

2.7 Using Earth Mover’s Distance to compare hierarchical mapping patterns between ranges
Due to recent criticism of using Mantel tests to quantify acoustic convergence (Smeele et al.,
2022), we propose using Earth Mover’s Distance (Rubner, Tomasi, & Guibas, 2000) to
estimate the strength of acoustic convergence across social scales. Mantel tests have been
used to correlate matrices of acoustic similarity with matrices of binary categorical identity
(e.g. individual or group identity) over many permutations, in order to address whether
vocalizations compared within categories are more similar than vocalizations among
categories (S1 Appendix sections 15 — 16), while controlling for non-independent data in

pairwise symmetric matrices (Smith-Vidaurre et al., 2020; Wright, 1996). Earth Mover’s
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Distance provides a conceptually similar approach that can be used to quantify and compare
acoustic convergence. We compared hierarchical mapping patterns between the native and
introduced range populations by comparing the relative magnitude of Earth Mover’s Distance
values at each social scale between ranges.

For this analysis, we obtained similarity values representing comparisons of contact
calls within and among categories at each social scale (e.g. comparisons of the same or
different individuals at the individual scale). We used the emdist R package (Urbanek &
Rubner, 2022) to calculate Earth Mover’s Distance, or the minimum amount of work needed
to convert distributions of the same-category contact call comparisons into distributions of
different-category contact call comparisons. We performed these calculations in a single
dimension bounded between 0 and 1 (e.g. the minimum and maximum possible similarity
values). In these calculations, larger values of Earth Mover’s Distance are equivalent to
stronger acoustic convergence. For instance, if stronger convergence occurred at the
individual scale, then similarity values for contact calls compared for the same individual
should be distributed closer to 1, while similarity values for contact calls compared among
individuals should distributed closer to 0, and it should take more work, or greater Earth
Mover's Distance, to convert one distribution into the other. We calculated Earth Mover’s
Distance in a histogram-based approach with a customized resampling routine to generate
even sample sizes for calculations across social scales. Our resampling routine also allowed
us to control for variation in same-site membership at the individual scale (some introduced
range individuals were sampled at the same or different sites), as well as possible non-

independence among sites at the site scale (S1 Appendix section 13).



501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

2.8 Evaluating hierarchical mapping patterns over time in the introduced range

We compared the relative magnitudes of Earth Mover’s Distance calculations over time in two
U.S. cities to determine whether the strength of acoustic convergence at the site scale
changed over time in the introduced range. For these analyses, we used introduced range
populations that we had repeatedly recorded in Austin, Texas and New Orleans, Louisiana.
We calculated Earth Mover’s Distance with the emdist package (Urbanek et al., 2022) with
our customized resampling routine for each year that we had sampled contact calls in each
city, because we did not always sample the same sites in each year. For Austin, we obtained
Earth Mover’s Distance using different sites recorded in each of 3 sampling years: 3 sites in
2004, 5 sites in 2011, and 6 sites in 2019. For New Orleans, we calculated Earth Mover’s
Distance using different sites sampled in 2 years: 3 sites in 2004 and 2 sites in 2011. We
obtained Earth Mover’s Distance with random forests and SPCC similarity measurements, as
well as each of the 3 site scale datasets. These analyses were similar to those that we
performed above to compare hierarchical mapping patterns between ranges (section 2.7, S1
Appendix section 13). We also performed Mantel test results over time in these introduced
range cities (S1 Appendix section 17). Finally, we addressed the possibility of population
recovery since introduction by using the auk R package (Strimas-Mackey, Miller, &
Hochachka, 2018) to evaluate population trends from eBird checklists in each city over our

sampling years (S1 Appendix section 14) (Sullivan, Wood, lliff, Bonney, Fink, et al., 2009).

2.9 Comparing hierarchical mapping patterns with another parrot species

We placed our results in context by quantifying and directly comparing hierarchical mapping
patterns of native and introduced range monk parakeets with the yellow-naped amazon, a
species well-known for having regional group identity information in their contact calls. These

amazon parrots imitate the contact calls of conspecifics and exhibit distinctive regional vocal
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dialects that are audibly perceptible to humans (Wright, 1996). Such vocal sharing may
facilitate recognizing familiar group members (Sewall et al., 2016; Wright, 1996). Regional
dialects in yellow-naped amazon contact calls have provided a baseline for identifying strong
acoustic convergence within social groups for other vocal learning species (Bradbury et al.,
2001; Buhrman-Deever et al., 2007; Guerra et al., 2008), including monk parakeets (Smith-
Vidaurre et al., 2020). Here we used yellow-naped amazon contact calls as a point of
reference for strong acoustic convergence that could occur at a higher social scale in
introduced range monk parakeet contact calls if group membership information became more
important to signal after introduction than individual identity.

For our comparative analyses, we quantified hierarchical mapping patterns over the
individual and site social scales for native and introduced range monk parakeets (separately),
and over the individual, site, and regional dialect social scales for yellow-naped amazons.
For yellow-naped amazons, we used previously published contact calls recorded in Costa
Rica in 1994 (Wright, 1996). We measured contact call similarity for each species using
SPCC (Araya-Salas et al., 2017), and selected similarity values for a subsample of individuals
or groups at each social scale that represented similar sampling depth and geographic
breadth for each range and species (supplementary sections 19 — 20).

We compared hierarchical mapping patterns by assessing patterns of relative overlap among
distributions of the subsampled SPCC similarity values within and among categories (e.g.
individuals or groups).

We also designed a customized bootstrapping approach to quantify the strength of
acoustic convergence at each social scale for native range monk parakeets, invasive range
monk parakeets, and yellow-naped amazons that complemented and validated our analyses
with Earth Mover’s Distance. We used the same SPCC values selected above in a

bootstrapping analysis in which we randomly selected 5 similarity values within the given



551 category and 5 similarity values among the given category in each bootstrapping iteration (S1
552 Appendix section 21). This random sampling was performed with replacement, such that

553 SPCC values within or among categories could be randomly selected more than once in the
554 same iteration. We calculated bootstrapped similarity ratios by dividing similarity values within
555 the given category by similarity values among the given category. We performed

556  bootstrapping over 200 iterations and calculated 1000 total similarity ratios for exemplars of
557 each category (individual or group) at each social scale for native range parakeets, introduced
558 range parakeets, and yellow-naped amazons. Similarity ratios close to 1 pointed to weaker
559 convergence. We used similarity ratios increasingly greater than 1 as evidence of stronger
560 convergence (e.g. contact calls were more similar within categories than among categories).
561

562 3. Results

563 3.1 Strong individual signatures in native and introduced range contact calls

564 We identified strong acoustic convergence at the individual scale in contact calls recorded in
565 both ranges. Contact call lexicons (or collections of spectrograms) for known repeatedly

566 sampled individuals indicated that parakeets in each of the native and introduced ranges

567 consistently produced contact calls that were distinctive from those of other birds (Fig 2A).
568 This result was further supported by the general patterns of low overlap among individuals
569 that we identified in random forests and SPCC acoustic space, although there was higher

570 overlap among introduced range individuals (Fig 2B, S1 Fig).

571 Our supervised machine learning results also pointed to strong acoustic convergence
572 at the individual scale. The final random forests model that we used to predict similarity of the
573 site scale contact calls displayed high classification accuracy during training. The model

574 classified contact calls back to the individuals that we used for training with 97.44% accuracy

575 (95% CI: 93.57 - 99.30). The mean + SE balanced accuracy of our model’s classification
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performance per individual (representing the averaged sensitivity and specificity) was similarly
high for the 4 native range (99.00% = 0.010) and 4 introduced range training individuals
(98.75% = 0.008). Finally, our analyses of the strength of acoustic convergence at the
individual scale with Earth Mover’s Distance also supported strong individual signatures in
native and introduced range contact calls (Fig 4). The Earth Mover’s Distance values that we
calculated at the individual scale in each of the native and introduced ranges were of similar
magnitude (Fig 4, Native range mean and 95% CI: 0.159 (0.153, 0.164); Introduced range
mean and 95% CI: 0.131 (0.125, 0.138), Table S2 in S1 Appendix). We obtained qualitatively

similar results using Mantel tests (S1 Appendix section 16, Tables S4 and S5 in S1 Appendix).
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Fig 2. Native and introduced range monk parakeets displayed strong individual vocal

signatures.

In A) we show a lexicon with 4 contact calls for one repeatedly sampled bird in each of the
native and introduced ranges. In B), random forests acoustic space is shown for 4 native
range and 4 introduced range individuals. Each point represents a different contact call per
individual, and individual identities are encoded by shapes and hues. The convex hull
polygons demonstrate the area per individual in acoustic space. The blue palette corresponds
to the native range and gold-brown to the introduced range. See Table S1 in in S1 Appendix
for decoded individual identities. Individuals generally produced visibly consistent contact
calls (A) that were also distinctive from other individuals (B).
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3.2 Contact call convergence within sites was low

We found that individuals at the same site did not produce similar contact calls (Fig 3A).
When we assessed hierarchical mapping patterns in acoustic space, we found that contact
calls did not group by site identity. Instead, contact calls from the same site were
overdispersed, resulting in substantial overlap among different sites in acoustic space
generated using random forests similarity (Fig 3B), as well as SPCC similarity (S2 Fig). The
low degree of acoustic convergence that we identified at the site scale was supported by
Earth Mover’s Distance values that were an order magnitude lower for the site scale
compared to the individual scale in each of the native and introduced ranges (Fig 4, Table S2
in S1 Appendix). This result held across the complementary SPCC and random forests
similarity methods that we used for Earth Mover’s Distance calculations at the site scale (Fig
4).

We compared our Earth Mover’s Distance results across the 3 site scale datasets to
determine how keeping or filtering out contact calls of potentially repeatedly sampled
individuals affected our results at this social scale. While the Earth Mover’s Distance statistics
for the 3 native range site scale datasets were consistently low, values for the introduced
range varied more across the site scale datasets. The introduced range Earth Mover’s
Distance values for each site scale dataset were uniformly greater than those we obtained for
the native range datasets using each similarity method (Table S2 in S1 Appendix). However,
despite this variation that we observed between ranges, and across site scale datasets for the
introduced range, all Earth Mover’s Distance values at the site scale remained an order of
magnitude lower than the values we calculated at the individual scale in each of the native
and introduced ranges (Fig 4, Table S2 in S1 Appendix). The highest Earth Mover’s Distance
values that we observed at the site scale for the native and introduced ranges occurred with

the full dataset of contact calls, in which we did not filter out contact calls attributed to



646 repeatedly sampled unmarked individuals at this social scale (Fig 4, Table S2 in S1

647  Appendix).
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674 Fig 3. We identified minimal acoustic convergence at the site scale in the native and
675 introduced ranges.
676 In A) we show a lexicon of 4 contact calls each for one native range site and one introduced
677 range site, in which each contact call represents a unique individual. B) is a plot of random
678 forests acoustic space for 4 native range and 4 introduced range sites. The full dataset of
679 contact calls was used per site (see S2 Fig for the other site scale datasets). Across panels,
680 the color palettes, aesthetics, and polygons used are similar to Fig 2, but here encode site
681 identities. See Table S1 in S1 Appendix for decoded site identities. Contact calls within sites
682 were visibly different (A), and there was low differentiation among sites in acoustic space (B)
683 compared to the individual scale (Fig 2B).

684
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700 Fig 4. Acoustic convergence was stronger at the individual scale for native and

701 introduced range monk parakeets.

702 We show Earth Mover’s Distance measurements for A) native range monk parakeets, and B)
703 introduced range monk parakeets. In each panel, the symbols and error bars show the mean
704 individual and site scale Earth Mover’s Distance values and 95% confidence intervals

705 calculated with spectrographic cross-correlation (SPCC) or random forests similarity. Higher
706 Earth Mover’s Distance values indicate higher convergence, and we identified higher

707  convergence at the individual scale in each of the native and introduced ranges. The site

708 scale values were calculated with the full contact call dataset at this social scale.
709
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3.3 Patterns of site scale convergence in the introduced range were consistent over time

We did not identify clear evidence of temporal change in the strength of site scale acoustic
convergence in the introduced range (Fig 5, Table S3 in S1 Appendix). In the city of Austin,
we identified higher Earth Mover’s Distance values (indicating higher convergence) in 2011
using the all 3 site scale datasets for both SPCC and random forests similarity (Table S3 in S1
Appendix). For the city of New Orleans, we found the highest Earth Mover’s Distance values
in 2004 using the full and visual classification datasets and both similarity methods (Table S3
in S1 Appendix). Despite this variation, the Earth Mover’s Distance values never reached the
same magnitude as convergence at the individual scale (Fig 5), but rather remained at the
same order of magnitude over time in each city (Table S3 in S1 Appendix). These Earth
Mover’s Distance values that we calculated over time in each city were similar to the site-level
calculations we obtained in our comparison between ranges (Table S2, Table S3 in S1
Appendix). We used eBird checklists from these cities in a complementary analysis of
population trends over time, to address the possibility that population size could have
increased since establishment. However, we found that the mean annual frequency of monk
parakeets reported in complete checklists in Austin and New Orleans remained low (less than
5% of all species sightings) and was also generally consistent from 2004 to 2020 (S1

Appendix section 14, S7 Fig).
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Fig 5. Introduced range acoustic convergence at the site scale remained low over in
two cities sampled over time

We show Earth Mover’s Distance measurements for A) 3 sampling years in Austin, TX and B)
2 sampling years in New Orleans, LA. The mean Earth Mover’s Distance value calculated for
the individual scale with SPCC similarity is shown as a point of reference (a solid horizontal
line in each panel). The shading around the individual scale line represents the 95%
confidence interval. Lower Earth Mover’s Distance values indicate weaker convergence, and
site scale convergence over time in each city remained weaker than individual scale
convergence for the introduced range. In each panel, the symbols and error bars show the
mean site scale Earth Mover’s Distance values and 95% confidence intervals calculated with
random forests (dashed lines) or spectrographic cross-correlation (SPCC) similarity (dotted
lines). The site scale values were calculated with the full contact call dataset at this social
scale.
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3.4 More repeated sampling of individuals in our introduced range site scale dataset

Using clustering with Gaussian mixture models, and visual classification across multiple
observers, we attributed more contact calls in our introduced range site scale datasets to the
inadvertent repeated sampling of unmarked individuals compared to our native range site
scale datasets. The mean number of repeated individuals that we identified by our clustering
and visual classification filtering approaches were only slightly higher for the introduced range
than the native range (Table 1). However, we found that the mean number of contact calls
attributed to repeated individuals was about twofold greater for introduced range sites by each
of the clustering and visual classification approaches that we had used to identify repeated

sampling of individuals in our site scale datasets (Table 1).



769 Table 1. Assessing the degree of repeated sampling of individuals at the site scale in
770 each of the native and introduced ranges

771

Repeated individuals

Contact calls per repeated

Filtering approach Range individual
(mean = SE) (mean + SE)
_ Native 3.24 £0.38 104 +1.61

Clustering
Introduced 3.40£0.47 23.6 £ 5.53
_ o Native 3.48 £ 0.39 2.83+0.15
Visual classification

Introduced 3.57+0.54 5.31+0.64
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3.5 Distinct hierarchical mapping patterns between monk parakeets and yellow-naped
amazons

The hierarchical mapping patterns that we identified for both native and introduced range
monk parakeet contact calls differed from the hierarchical mapping patterns that we
recapitulated in yellow-naped amazon contact calls. Our results from this comparative
analysis showed that the individual scale was the social scale with the strongest acoustic
convergence in native and introduced range monk parakeet contact calls, while the regional
dialect scale displayed the strongest convergence in yellow-naped amazon contact calls. We
found that the greatest separation between the median similarity values of the two categories
of comparison per social scale (e.g. same or different individual or group) occurred at the
individual scale for native and introduced range monk parakeets (Fig 6A, panels i and ii). For
yellow-naped amazons, we detected the greatest separation between categories at the
regional dialect scale (Fig 6A, panel vii). In addition, the bootstrapped similarity ratios that we
used to assess the strength of acoustic convergence were greatest at the individual scale for
monk parakeets in each of the native and introduced ranges (Fig 6B, panels i and ii). In
contrast, the largest similarity ratio for yellow-naped amazons occurred at the regional dialect

scale (Fig 6B, panel iii).
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Fig 6. We compared hierarchical mapping patterns among contact calls of native and
introduced range monk parakeets as well as yellow-naped amazons

In A) we show density curves for the distributions of spectrographic cross-correlation (SPCC)
similarity values that represent comparisons of contact calls within or among categories in red
and blue shading, respectively. The dashed lines represent the median similarity values per
distribution. In B) we show the mean similarity ratios calculated from bootstrapped SPCC
values. The solid line at 1 represents no convergence within a given category. For both native
and introduced range monk parakeets, we show site scale results obtained from the full
dataset of contact calls. In both A) and B), the social scale at which the strongest
convergence occurred is shown in red.
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4. Discussion

We asked whether the type of identity information that is important to communicate in learned
acoustic signals changed in introduced populations established after social disruption that
occurred over ecological timescales. We inferred that individual identity remained the most
important type of identity information to communicate in learned monk parakeet vocalizations,
even in populations established after repeated introductions to new parts of the world. We
discuss this new insight into the resilience of identity information encoded in learned
communication signals, and point to possible directions for future work over ecological and

evolutionary timescales.

4.1 Hierarchical mapping patterns were similar between native and introduced range monk
parakeet populations

Monk parakeets in native range populations in Uruguay and introduced range populations in
the U.S. emphasized individual identity information in learned vocalizations. In each range,
the hierarchical mapping patterns that we quantified in contact calls showed the strongest
convergence at the individual scale and weaker convergence within sites. These results were
robust to the greater degree of repeated individual sampling that we identified in our
introduced range site scale dataset (S1 Appendix, section 18). In addition, the low
convergence that we identified at the site scale in two cities sampled over time, which
represented independent introduction events, suggested that these hierarchical mapping
patterns were unlikely to have changed in the broader U.S. introduced range over the
timespan of this study. We also recapitulated the structural differences between native and
introduced range contact calls that reflected the simplification of individual vocal signatures
associated with smaller local populations in the U.S. (see the separation in acoustic space

among native and introduced range contact calls in Fig 2B and Fig 3B) (Smith-Vidaurre et al.,
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2021). This simplification of individual vocal signatures post-introduction may explain the
patterns of greater overlap that we identified among introduced individuals in acoustic space
(Fig 2), as well as lower acoustic convergence at the individual scale for the introduced range
compared to the native range using Earth Mover’s Distance (Fig 4, Table S2 in S1 Appendix).
However, despite these differences at the individual scale between ranges, we found that
acoustic convergence at the individual scale was consistently an order of magnitude greater
than convergence at the site scale in each of the native and introduced ranges. This overall
result of stronger convergence at the individual scale in monk parakeet contact calls was
supported by the two independent analytical approaches that we used to quantify acoustic
convergence: Earth Mover’s Distance and a customized bootstrapping routine (see below).
Using two methods to measure contact call similarity at the site scale also allowed us to
validate the weaker convergence that we identified at this higher social scale in each of the
native and introduced ranges.

Our analyses indicate that individual identity remained the most important type of
identity information to communicate to receivers, even in introduced populations. In other
words, we inferred that the type of identity information emphasized in learned contact calls
was resilient to social disruption that occurred over short evolutionary timescales (less than
50 years ago when monk parakeets were introduced to the U.S. (Edelaar et al., 2015;
Russello et al., 2008)). Although some features of the social environment changed after
introduction, such as the smaller local population sizes that we identified in previous work
(Smith-Vidaurre et al., 2021), monk parakeets’ social environments may have been generally
resilient to introduction or were re-established after initial perturbations. If the individually
distinctive contact calls that we identified in the native and introduced ranges are used for
individual vocal recognition, then parakeets in each range should be engaging in social

interactions that favor signaling individual identity in learned communication signals, which is
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an idea that can be tested in future work. Our guantitative approaches with vocal signals
allowed us to reach this inference without depending on the time- and resource-intensive
collection of social data. These findings do not preclude the possibility that social interactions
at higher scales of social organization are important in this species. While relationships at the
pair level are important for monk parakeets, this species consistently forms social groups with
multiple levels of social organization in captive settings (Hobson et al., 2013;2014,;2015; van
der Marel, Prasher, Carminito, O’Connell, Phillips, et al., 2021; van der Marel et al., 2022).
Signaling individual identity information in learned vocalizations could instead reflect a
more fixed aspect of vocal communication systems, such as developmental constraints or
genetic encoding of receivers’ perceptual abilities. Future work could also address the stability
of individual identity information in learned contact calls across different social contexts, given
that some vocal learning species exhibit rapid convergence or divergence that appears
conditional on the social context (Balsby et al., 2009; King et al., 2013; Scarl et al., 2009;
Vehrencamp et al., 2003), and in others, individual vocal signatures appear to change over

time (Zdenek, Heinsohn, & Langmore, 2018).

4.2 Comparing our results against a parrot species that exhibits regional vocal dialects

We performed a comparative analysis with yellow-naped amazon contact calls to place our
ecological comparison of native and introduced range monk parakeet contact calls in an
evolutionary context. If introduced range monk parakeets switched to emphasizing group
membership information in contact calls, then hierarchical mapping patterns in introduced
range monk parakeet contact calls should have exhibited stronger convergence at a higher
social scale. We used yellow-naped amazons as a baseline for comparison because this
species exhibits strong acoustic convergence at a higher social scale (regional populations),

and regional vocal dialects that are audibly and visibly distinctive to humans (Salinas-Melgoza
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et al., 2012; Sewall et al., 2016; Wright, 1996; Wright & Dahlin, 2018). We found that
hierarchical mapping patterns were similar between native and introduced range monk
parakeets, supporting our conclusion that identity information in monk parakeet contact
contact calls did not change after social disruption that occurred over ecological timescales. In
this comparative analysis, we used a customizing bootstrapping approach that yielded similar
results for native range and introduced range monk parakeets as our analysis with Earth
Mover’s Distance.

Our comparative analysis also highlighted the importance of using quantitative tools to
complement human perception of audible and visible variation in avian vocalizations. When
relying on the human ear and eye, the variation among regional dialects in yellow-naped
amazon contact calls is far more perceptible than individually distinctive monk parakeet
contact calls. For example, the regional dialects that we recapitulated in the amazon contact
calls are distinctive to the human ear (Wright, 1996), including North dialect contact calls that
sound like “wah-wah”, and variants of the South dialect that sound like “weeup”. In contrast,
patterns of individual variation in monk parakeet contact calls are difficult to distinguish by the
human ear, and contact calls of different individuals all sound like “chees”. However, when we
used quantitative methods to compare hierarchical mapping patterns between species, we
found that individual scale convergence in native and introduced range monk parakeet
contact calls was stronger than regional dialect convergence for yellow-naped amazons (Fig
6A: panels i, ii, and vii).

Amazon vocal dialects may be more perceptible to humans than monk parakeet
individual vocal signatures because of humans’ limited abilities to perceive fine-scale temporal
variation at higher frequencies (Dooling, Leek, Gleich, & Dent, 2002; Lohr, Dooling, &
Bartone, 2006). Parrots’ auditory perception abilities appear tuned for higher frequencies,

such as orange-fronted conures (Eupsittula canicularis), which display the greatest auditory
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sensitivity in a frequency band that overlaps with the greatest spectral energies in contact
calls (Wright, Cortopassi, Bradbury, & Dooling, 2003). In addition, yellow-naped amazon
contact calls exhibit slower frequency modulation patterns that are more perceptible to
humans, and can also be arranged into fewer categories (e.g. a few regional dialects), a task
that should pose reduced cognitive challenges compared to categorizing monk parakeet
contact calls by many different individuals (Bradbury et al., 1998; Wiley, 2013). Overall, our
results from this comparative analysis point to the importance of using computational
approaches to identify information in animal signals that is difficult for humans to perceive but

may be critical in animal communication systems.

4.3 Future research considerations with hierarchical mapping patterns

We combined computational tools with a conceptual framework of how hierarchical mapping
patterns are connected to identity signaling in animal vocal signals. This combined approach
allowed us to quantify hierarchical mapping patterns and then infer the most salient identity
information encoded in vocal signals. Similar computational approaches could be applied to
quantify hierarchical mapping patterns with existing datasets of animal signals to learn more
about the social environments in which individuals communicate across a broader range of
taxa, without depending on the time-intensive collection of social data from marked
individuals. When communication signals are learned, hierarchical mapping patterns should
capture overall patterns of acoustic variation that represent both active convergence or
divergence within social groups, as well as the side-effects of learning from others in a given
social group (e.g. vocalizations can be similar when individuals learned from templates that
happened to be similar). Here, we used the social scale with the strongest acoustic
convergence to infer which type of identity information animals are actively encoding in

learned vocalizations (e.g. the type of identity information that is most important to
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communicate). In our conceptual framework, we considered stronger acoustic convergence
as active convergence, and weaker patterns of acoustic convergence as stochastic outcomes
associated with learning. For instance, monk parakeet contact calls recorded at the same site
did display a degree of convergence (Table S2 in S1 Appendix), albeit minimal, which should
be expected when animals are learning to sound different from others and are learning from
the same social group or set of templates.

Whether and how animals perceive and use stronger or weaker patterns of acoustic
convergence in learned vocalizations can be assessed experimentally using playbacks of
contact call variants. Indeed, the hierarchical mapping patterns identified for a particular
population or species can be used as an important foundation for designing biologically
relevant playback experiments, which can be more time-consuming than recording
communication signals, and are fundamental to understand how receivers use the information
that signalers communicate. Playback experiments are important because mismatches can
occur between the social information encoded in signals and the information that receivers
use for social recognition, especially when it is cognitively costly to track certain types of
information (Bergman, 2010; Bergman & Beehner, 2015). Addressing how different types of
identity information are used by receivers will be important, since distantly related avian taxa,
including vulturine guineafowl (Acryllium vulturinum) and superb fairy-wrens (Malurus
cyaneus), exhibit multilevel social structures in the wild, suggesting that hierarchical social
structures may be more taxonomically widespread than traditionally thought (Camerlenghi,
McQueen, Delhey, Cook, Kingma, et al., 2022; Papageorgiou, Christensen, Gall, Klarevas-
Irby, Nyaguthii, et al., 2019).

While quantifying hierarchical mapping patterns can yield exciting insights into the
identity information that may be important to communicate, researchers should be careful

when using these patterns to inform new research directions about identity signaling and
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social systems. Recording unmarked individuals in natural populations provides only a
shapshot of dynamic social interactions, as well as the social information conveyed in signals
that is important in a given social environment. For instance, sampling a few vocalizations per
individual over a short time frame makes it difficult to assess how identity information
encoding may change during dynamic social interactions, such as the rapid vocal matching
exhibited by wild orange-fronted conures and rose-breasted cockatoos (Eolophus
roseicapillus) (Balsby et al., 2009; Scarl et al., 2009; Vehrencamp et al., 2003). In addition,
while the literature has focused on social recognition in more complex social environments
with frequent and repeated interactions among many individuals (Bergman et al., 2015;
Pollard et al., 2011; Ramos-Fernandez et al., 2018; Sewall et al., 2016; Tibbetts et al., 2007),
future work could also address how learned identity signals should change in social

environments characterized by fewer individuals and differentiated relationships overall.

5. Conclusions

We used native and introduced range monk parakeet contact calls to test whether the type of
identity information encoded in learned vocalizations changed in populations that were
established after social disruption that occurred over the last 50 years. We used
computational tools, including supervised machine learning, to quantify and compare
hierarchical mapping patterns in contact calls between the native and introduced ranges. We
inferred that identity information encoding was resilient to social disruption over short
ecological timescales. By comparing hierarchical mapping patterns between monk parakeet
and yellow-naped amazon contact calls, we found that identity information encoding in
learned parrot vocalizations changed over longer evolutionary timescales. Our results suggest
that identity signaling systems facilitated by socially learned vocalizations are resilient to

changes in social conditions over short evolutionary timescales, despite the flexibility
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generally attributed to socially learned behaviors. Taken together, our findings point to exciting
new research directions on how the flexibility of socially learned communication signals may

be constrained over short, cultural timescales.
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Supporting Information:

S1 Appendix. Supplementary information about our sampling and analytical pipelines.
This document holds more details about the datasets that we used as well as each of our
customized analytical pipelines with monk parakeet and yellow-naped amazon contact calls.

This appendix also holds Tables S1 through S5.

S1 Fig. Similar patterns of acoustic convergence at the individual scale for native and
introduced range monk parakeets using spectrographic cross-correlation (SPCC).

All 4 panels show SPCC acoustic space generated by multidimensional scaling (MDS) for
contact calls of repeatedly sampled monk parakeets in each of the native and introduced
ranges. Top left panel: 4 native range individuals that were used to train supervised random
forests models. Bottom left panel: 4 introduced range individuals that we used to train
supervised random forests models. Top right panel: 4 native range individuals were used to
validate supervised random forests models. Bottom right panel: 5 introduced range individuals
that were used to validate supervised random forests models. Blue palettes correspond to the
native range and gold-brown palettes to the introduced range. In each panel, points represent
different calls per repeatedly sampled individual. Individual identities are displayed through
shapes and hues per range, and convex hull polygons demonstrate the area encompassed

per individual in acoustic space. The acoustic space across all 4 panels can be interpreted on
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the same axes. Here, individuals were overdispersed in acoustic space, pointing to strong
individual signatures in each range. These results were similar to our findings with random

forests similarity (Fig 2).

S2 Fig. Low acoustic convergence at the site scale in each range, as well as across the
3 site scale datasets used to address potential repeated sampling of individuals.

Plots of random forests acoustic space are shown by similarity method (columns), as well as
the three datasets used to address repeated individual sampling in each of the native and
introduced ranges (rows). Acoustic space for the clustering and visual classification datasets
were generated by filtering multidimensional scaling (MDS) coordinates for the full dataset of
calls. The 4 sites shown here and the aesthetics used per range are the same as in Fig 3 in

the main text.

S3 Fig. Earth Mover’s Distance individual scale results were consistent across total bin
numbers in each of the native and introduced ranges.

These results were calculated using spectrographic cross-correlation similarity. The means
and 95% confidence intervals (Cls) were obtained by summarizing across 100 resampling
iterations for each of the 6 total bin numbers. The calculation used to report results in the
main text (16 bins) is shown as a red “X”. The 95% Cls are small and are not visible around

the mean.

S4 Fig. Earth Mover’s Distance site scale results were consistent across total bin
numbers in each of the native and introduced ranges.
These results were generated using spectrographic cross-correlation and random forests

similarity, as well as the three site scale datasets used to address repeated sampling of
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unmarked individuals. The means and 95% confidence intervals (Cls) were obtained by
summarizing across 100 resampling iterations for each bin number. The calculation used to
report results in the main text (16 bins) is shown as a red “X”. The 95% Cls are small and are

not visible around the mean.

S5 Fig. Earth Mover’s Distance site scale results were consistent across total bin
numbers over 3 sampling years for Austin, TX (in the U.S. introduced range).

These results were generated using spectrographic cross-correlation and random forests
similarity, as well as the three site scale datasets used to address repeated sampling of
unmarked individuals. The means and 95% confidence intervals (Cls) were obtained by
summarizing across 100 resampling iterations for each bin number. The calculation used to
report results in the main text (with 16 bins) is shown as a red “X”. These 95% Cls are also

small and are not visible around the mean.

S6 Fig. Earth Mover’s Distance site scale results were consistent across total bin
numbers over 2 sampling years for New Orleans, LA (in the U.S. introduced range).
These results were generated using spectrographic cross-correlation and random forests
similarity, as well as the three site scale datasets used to address repeated sampling of
unmarked individuals. The means and 95% confidence intervals (Cls) were obtained by
summarizing across 100 resampling iterations for each bin number. As above, the calculation
used to report results in the main text (with 16 bins) is shown as a red “X”, and the 95% Cls

are not visible around the mean.



1111 S7 Fig. The frequency of introduced range monk parakeet sightings relative to other
1112 species reported in complete eBird checklists remained low over our sampling years in
1113  Austin and New Orleans (2004 to early 2020).

1114 Each bar represents the mean percentage of monk parakeets observed relative to other

1115 species, averaged across weeks per year. The error bars denote the standard error. Gold
1116 rectangles highlight the sampling years in which monk parakeets were recorded in each city.
1117

1118 S8 Fig. Density curves of spectrographic cross-correlation (SPCC) values for monk
1119 parakeets and yellow-naped amazons, as well as an acoustic space plot for yellow-
1120 naped amazons.

1121 Panels A, C, and B show density curves of SPCC values for native range monk parakeets,
1122  introduced range monk parakeets, and yellow-naped amazons, respectively. Each density
1123 curve was generated from the full symmetric matrix of similarity values for the given species
1124 and range (including the diagonal). Panel D shows acoustic space for yellow-naped amazon
1125 contact calls, and points are colored by three regional dialects reported in Costa Rica by
1126  Wright (1996) (Nor = North, Nic = Nicaragua, Sou = South). We used these graphics to

1127 doublecheck the similarity values that we used for our comparative analysis.
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