

1
2
3
4 **Characterization of an evolutionarily distinct bacterial ceramide kinase from *Caulobacter***
5
6 ***crescentus***
7
8

9 Tanisha Dhakephalkar¹, Geordan Stukey^{2,3}, Ziqiang Guan⁴, George M. Carman^{2,3}, and Eric A.
10
11 Klein^{1,2,3,5,*}
12
13
14
15

16 **Affiliations:**
17

18 ¹Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA.
19
20

21 ²Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
22
23

24 ³Rutgers Center for Lipid Research, New Jersey Institute for Food Nutrition and Health, Rutgers
25 University, New Brunswick, NJ 08901, USA
26
27

28 ⁴Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
29
30

31 ⁵Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ
32
33 08102, USA
34
35

36 *Correspondence to: eric.a.klein@rutgers.edu
37
38
39

40 **Running title:** CpgB is a bacterial ceramide kinase
41
42

43
44
45 **Keywords:** sphingolipid, ceramide, ceramide 1-phosphate, lipid metabolism, lipid kinase,
46
47 microbiology, enzyme kinetics
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9 **Abstract**
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A common feature among nearly all Gram-negative bacteria is the requirement for lipopolysaccharide (LPS) in the outer leaflet of the outer membrane. LPS provides structural integrity to the bacterial membrane which aids bacteria in maintaining their shape and acts as a barrier from environmental stress and harmful substances such as detergents and antibiotics. Recent work has demonstrated that *Caulobacter crescentus* can survive without LPS due to the presence of the anionic sphingolipid ceramide-phosphoglycerate. Based on genetic evidence, we predicted that protein CpgB functions as a ceramide kinase and performs the first step in generating the phosphoglycerate head group. Here, we characterized the kinase activity of recombinantly expressed CpgB and demonstrated that it can phosphorylate ceramide to form ceramide 1-phosphate. The pH optimum for CpgB was 7.5, and the enzyme required Mg^{2+} as a cofactor. Mn^{2+} , but not other divalent cations, could substitute for Mg^{2+} . Under these conditions, the enzyme exhibited typical Michaelis-Menten kinetics with respect to NBD-C6-ceramide ($K_{m,app}=19.2 \pm 5.5 \mu M$; $V_{max,app}=2590 \pm 230 \text{ pmol/min/mg enzyme}$) and ATP ($K_{m,app}=0.29 \pm 0.07 \text{ mM}$; $V_{max,app}=10100 \pm 996 \text{ pmol/min/mg enzyme}$). Phylogenetic analysis of CpgB revealed that CpgB belongs to a new class of ceramide kinases which is distinct from its eukaryotic counterpart; furthermore, the pharmacological inhibitor of human ceramide kinase (NVP-231) had no effect on CpgB. The characterization of a new bacterial ceramide kinase opens avenues for understanding the structure and function of the various microbial phosphorylated sphingolipids.

1
2
3
4
5
6
7
8
9 **Introduction**
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Gram-negative bacteria have a three-layered cell envelope composed of the inner membrane, a thin layer of peptidoglycan-cell wall and an outer membrane. A key component of the outer membrane is lipopolysaccharide (LPS) (1). LPS is an essential molecule in nearly all Gram-negative species due to its roles in barrier formation and membrane integrity (2). While the general structure of LPS is well conserved, there is considerable variation between and within species (3). LPS can be divided into three structural domains: 1) lipid A, a membrane anchored multi-acylated oligosaccharide, 2) the core oligosaccharide, often containing 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), which is generally conserved within a species, and 3) the polysaccharide O-antigen, which is highly variable, even among strains of the same species. In many organisms, like *Escherichia coli*, the lipid A portion of LPS is negatively charged due to the presence of phosphate groups on the glucosamine disaccharide (3). These phosphates are the binding sites for cationic antimicrobial peptides (CAMPs) like polymyxins (4,5). While LPS is generally considered to be essential, LPS-null mutants of several Gram-negative organisms have been isolated including *Acinetobacter baumannii* (6), *Moraxella catarrhalis* (7), *Neisseria meningitidis* (8), and *Caulobacter crescentus* (9). The ability of *C. crescentus* to survive in the absence of LPS is, in part, due to the presence of the anionic sphingolipid ceramide-phosphoglycerate (CPG), as sphingolipid synthesis becomes essential in the LPS-null mutant (9). In contrast to *E. coli*, the mature lipid A molecule in *C. crescentus* is not phosphorylated; instead, the phosphate groups are hypothesized to be removed by the phosphatase CtpA (9) and replaced with galactopyranuronic acid (10). Whereas polymyxin antibiotics target the phosphorylated lipid A in *E. coli*, antibiotic sensitivity assays demonstrated that CAMPs kill *C. crescentus* by

1
2
3
4 interacting with the anionic CPG lipids (9). Synthesis of the CPG headgroup is sequentially
5 catalysed by the three proteins CpgABC (CCNA_01217-01219) (9) (Figure 1A). Deletion of *cpgB*
6 (*ccna_01218*) results in the loss of ceramide 1-phosphate (C1P) which is consistent with its
7 annotation as a putative lipid kinase (9) (Figure 1B).
8
9

10 C1P has important physiological roles in eukaryotes including mast cell activation,
11 phagocytosis, cellular proliferation, and survival (reviewed in (11)). Human ceramide kinase
12 (hCERK) uses ceramide and ATP as substrates to produce C1P (12). The CERK enzyme is part of
13 a larger family of lipid kinases including sphingosine kinase and diacylglycerol kinase. A bacterial
14 dihydrosphingosine kinase has recently been identified in *Porphyromonas gingivalis* (13);
15 however, to our knowledge, this is the first described bacterial CERK enzyme. In this study we
16 used purified *C. crescentus* CpgB to characterize its ceramide kinase activity. Phylogenetic
17 analysis comparing various lipid kinases suggests that bacterial CERK enzymes form a distinct
18 clade from their eukaryotic counterparts.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35 36 37 38 **Results** 39 40 41 42

43 *CCNA_01218* is a bacterial ceramide kinase
44

45 Most Gram-negative bacteria require LPS in the outer membrane for survival. A recently
46 isolated mutant of *C. crescentus* is capable of surviving without LPS, largely due to the presence
47 of the anionic sphingolipid CPG (9). Genetic analysis identified 3 genes (*ccna_01217-01219*)
48 that were required for synthesizing the phosphoglycerate headgroup. CCNA_01218 (CpgB) is
49 annotated as a lipid kinase-related protein and deletion of *cpgB* resulted in a loss of C1P (Figure
50 1B) (9), consistent with *cpgB* encoding a bacterial ceramide kinase. To determine the enzymatic
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 activity of CpgB, we purified the His-tagged recombinant protein from *E. coli* (Figure 2) and
5 performed kinase assays. CpgB could readily phosphorylate C16-ceramide (Figure 3A) as well
6 as a fluorescent NBD-C6 ceramide (Figure 3B). The identity of the phosphorylated NBD-
7 ceramide product was confirmed by mass spectrometry (Figure 3C). Since CpgB has a conserved
8 LCB5 diacylglycerol (DAG) kinase domain, we tested whether CpgB could phosphorylate DAG
9 to produce phosphatidic acid (PA) and found comparable activity (Figure 3A-B). Although
10 CpgB can produce PA *in vitro*, the *C. crescentus* lipidome contains only ~1% PA (14) and
11 deletion of *cpgB* had no effect on PA levels (Figure 3D). Therefore, we conclude that ceramide is
12 the preferred *in vivo* substrate for CpgB. Owing to their ease of use, NBD-labelled lipid
13 substrates have been used to characterize the activities of ceramide glycosyltransferases (15), PA
14 phosphatase (16), hCERK (17), and bacterial dihydrosphingosine kinase (13); similarly, the
15 remainder of the kinase assays described below use the NBD-ceramide substrate.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 *Influence on pH and divalent cations on CpgB activity*
37
38 To characterize the requirements for CpgB activity, was measured C1P production over a
39 pH range from 4.5-10; optimal activity was observed at pH 7.5 (Figure 4A). By contrast, hCERK
40 has optimal activity at pH 6.5 (12,17). Since hCERK activity increases strongly in the presence of
41 magnesium or calcium (12), we tested CpgB's dependence on divalent cations. In the absence of
42 any cations, we did not observe production of C1P (Figure 4B). Both magnesium and manganese
43 strongly increased CpgB activity, with smaller effects observed in the presence of zinc or cobalt
44 (Figure 2C). In contrast to hCERK, calcium did not stimulate CpgB activity (Figure 4C).
45
46
47
48
49
50
51
52
53
54
55
56
57
58 *Determination of CpgB kinetic parameters*
59
60
61
62
63
64
65

1
2
3
4 Using the NBD-ceramide substrate, we measured C1P production over a two-hour period
5 to identify the linear range of activity for subsequent determinations of enzyme kinetic parameters
6 (Figure 5A); unless otherwise noted, all remaining kinase assays were performed for 30 minutes
7 in the presence of Mg^{2+} at pH 7.4. The enzyme exhibited typical Michaelis-Menten kinetics with
8 respect to NBD-C6-ceramide ($K_{m,app}=19.2 \pm 5.5 \mu M$; $V_{max,app}=2590 \pm 230 \text{ pmol/min/mg enzyme}$)
9 and ATP ($K_{m,app}=0.29 \pm 0.07 \text{ mM}$; $V_{max,app}=10100 \pm 996 \text{ pmol/min/mg enzyme}$) (Figures 5B-C).
10
11 We are reporting apparent K_m and V_{max} values since CpgB has two substrates and performs a Bi-
12 Bi reaction; under these conditions the concentration of each substrate affects the apparent kinetic
13 parameters of the other. Additionally, the kinetic parameters determined using the NBD-ceramide
14 substrate are likely to differ from the true physiological constants and cannot be used to make any
15 definitive conclusions about intracellular substrate concentrations.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Bacterial and eukaryotic ceramide kinases are phylogenetically distinct enzymes

Given the observed enzymatic differences between hCERK and CpgB, we considered whether these two enzymes are evolutionarily related. Sequence alignment shows limited agreement (12.5% identity and 22.5% similarity); four of the five sphingosine kinase conserved domains show some homology between the eukaryotic and bacterial kinases (Figure 6A) (12). The two kinases also share a conserved GGDG motif which is involved in ATP binding (18). However, the eukaryotic ceramide kinases have an absolutely conserved CxxxCxxC motif that is required for enzyme activity (19) but is absent from CpgB.

To further assess the functional similarity between the ceramide kinases, we treated CpgB with the hCERK inhibitor NVP-231 (20). NVP-231 is a competitive inhibitor of ceramide binding and inhibits 90% of hCERK activity at 100 nM (20). By contrast, 100 nM NVP-231 had no

1
2
3
4 significant effect on CpgB activity (Figure 4B). When the concentration was increased to 300 nM,
5 we observed only a modest 20-25% inhibition (Figure 6B), suggesting that CpgB may have a
6 distinct active site from hCERK.
7
8

9 Several enzyme families are capable of phosphorylating sphingolipids and DAG. To
10 visualize the similarity of CpgB to these enzymes, we performed a maximum-likelihood
11 phylogenetic analysis and included representative proteins from the following families: hCERK,
12 yeast diacylglycerol kinase Dgk1 (21), bacterial dihydrosphingosine kinase dhSphK1 (13), and
13 bacterial phosphatidylglycerol kinase YegS (22). Each of these enzymes formed a distinct clade
14 despite having overlapping activities (Figure 6C). We did find several cyanobacterial enzymes
15 with homology to hCERK as well as some green algae with homologues of YegS; CpgB
16 homologues were only found in bacterial species. Further analysis of the CpgB-encoding
17 organisms revealed that nearly all genera with the *cpgB* gene either produce or encode the genes
18 required for sphingolipid synthesis (23) (Figure 6D).
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Discussion

39
40
41
42
43 Bacterial sphingolipids have a wide range of head groups including sugars (24-26),
44 phosphoglycerol (27), phosphoglycerate (9), and phosphoethanolamine (28). These modifications
45 likely determine the physiological functions of the respective sphingolipids. For example,
46 phosphoglycerol dihydroceramide produced by *P. gingivalis* promotes osteoclastogenesis through
47 its interactions with non-muscle myosin II-A (27). In the case of *C. crescentus*, production of the
48 anionic CPG enables survival in the absences of LPS (9). Genetic analysis using single-gene
49 deletion mutants led to the identification of three enzymes required for CPG synthesis and
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 suggested the first step is catalyzed by CpgB, a putative ceramide kinase. In this report, we used
5 recombinant CpgB expressed and purified from *E. coli* to confirm its ceramide kinase activity and
6 analyze its enzymatic properties.
7
8
9
10

11 CpgB differs from the human CERK with regards to divalent cation specificity,
12 susceptibility to the inhibitor NVP-231, and kinetic parameters. For comparison, the $K_{m,app}$'s for
13 CpgB are 19 μ M and 0.29 mM for ceramide and ATP, respectively, whereas the reported K_m 's for
14 hCERK are 187 μ M and 32 μ M (12).
15
16

17 From a structural perspective, hCERK activity is observed in cellular membrane fractions
18 despite not having any predicted transmembrane domains; one explanation is that the N-terminal
19 PH domain interacts with membrane phosphatidylinositol molecules (12). By contrast, CpgB
20 purifies as a soluble protein without the use of detergents and is predicted to be a cytoplasmic
21 protein (29). Consistent with these biochemical findings, phylogenetic analysis suggests that the
22 bacterial CERK forms a unique subfamily of lipid kinases, distinct from eukaryotic CERK. Broad
23 conservation of CpgB across many classes of bacteria suggests that phosphorylation may be a
24 common sphingolipid modification.
25
26

27 Until recently, the genes responsible for specific ceramide modifications were unknown.
28 As a result, various studies broadly determined the importance of total sphingolipid production by
29 knocking out the *spt* gene and assessing phenotypes related to survival or virulence (28,30,31).
30 With the discovery of enzymes required for sphingolipid glycosylation, phosphorylation, and other
31 modifications (9,13,24,26), we can now dissect the roles of specific headgroup modifications. The
32 characterization of a new bacterial CERK opens avenues for understanding the structure and
33 function of the various microbial phosphorylated sphingolipids.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 **Experimental Procedures**
5
6
7
8
9
10

11 *Cloning His-tagged CpgB*
12
13

14 The *cpgB* gene was amplified from *C. crescentus* genomic DNA using primers EK1462
15 (tatattcatATGCTTCGTCGTGCACGCCATCC) and EK1464
16 (tactgaattcTCATCCGACCAGGAACCGCAAGGC) and ligated into the NdeI/EcoRI site of
17 plasmid pET28a to generate an N-terminal His-tagged fusion. The resulting plasmid was verified
18 by Sanger sequencing and transformed into *E. coli* strain BL21(DE3) for expression and
19 purification.
20
21
22
23
24
25
26
27
28
29

30 *Purification of CpgB*
31
32

33 A 1L culture of *E. coli* BL21(DE3) cells carrying the pET28a-*cpgB* plasmid was grown in LB
34 broth with 30 µg/mL kanamycin at 37 °C with shaking to an OD₆₀₀ of 0.6. Isopropyl β-D-1-
35 thiogalactopyranoside (IPTG) was added to a final concentration of 0.5 mM, followed by induction
36 at 16 °C for 18 h. The cells were collected by centrifugation at 10,000 x g and resuspended in 12.5
37 mL of buffer containing 0.5 M sucrose and 10 mM Tris, pH 7.5. Lysozyme was added to a final
38 concentration of 144 µg/mL and the suspension was stirred on ice for 2 min. 12.5 mL of 1.5 mM
39 EDTA was added with stirring for an additional 7 min to induce plasmolysis. The cells were
40 collected by centrifugation at 10,000 x g for 10 min and the pellet was resuspended in lysis buffer
41 (20 mM Tris pH 7.5, 0.5 M NaCl, 10 mM imidazole) prior to lysis via 2-3 passages through a
42 French press (20,000 psi). The lysate was centrifuged at 8,000 x g for 10 min to remove unbroken
43 cells. His-CpgB was purified using an ÄKTA start FPLC system and a 1 mL HisTrap HP column
44 (Cytiva). After loading, the column was washed with lysis buffer prior to elution via a linear
45 gradient (10-500 mM imidazole). The eluted protein was analyzed by SDS-PAGE and Coomassie
46 staining. The protein was then dialyzed against 20 mM Tris pH 7.5, 0.5 M NaCl, 10 mM imidazole
47 and stored at -20 °C. The protein concentration was determined using the Bradford assay (Bio-Rad).
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

gradient to 1M imidazole. Protein elution was monitored by A_{280} and fractions were collected and analyzed by SDS-PAGE followed by Coomassie blue staining. Fractions containing the purified CpgB were combined and dialyzed into 10 mM Tris, pH 7.2, 0.1 M NaCl, 2 mM EDTA, 1 mM DTT over 48 hr at 4 °C. The dialyzed protein was concentrated using an Amicon Ultra centrifugal filter (10 kDa molecular weight cutoff) (Millipore Sigma). The protein concentration was determined using the BCA Protein Assay Kit (Pierce).

CpgB kinase assay using C16-ceramide

CpgB kinase activity was measured for 30 min at 30 °C as described previously for *E. coli* diacylglycerol kinase (32). The reaction mixture contained 50 mM imidazole-HCl, pH 6.6, 50 mM octyl- β -D-glucopyranoside, 50 mM NaCl, 12.5 mM MgCl₂, 1 mM EGTA, 10 mM β -mercaptoethanol, 1 mM cardiolipin, 0.1 mM ATP (1000 cpm/pmol), and 0.8 mM ceramide or DAG in a total volume of 20 μ l. The radioactive products (PA or C1P) are chloroform soluble and were separated from the remaining radioactive substrate by a non-acidic chloroform/methanol/MgCl₂ (1 M) phase separation. The chloroform soluble products were separated by TLC using a chloroform/methanol/water (65:25:4, v/v) solvent system and visualized by phosphorimaging.

NBD-ceramide kinase assay

The NBD-ceramide kinase assays were carried out largely as previously described for human ceramide kinase (12,17). Briefly, the reaction was carried out in a buffer containing: 20 mM HEPES (pH 7.4), 10 mM KCl, 15 mM MgCl₂, 10% glycerol, 1 mM DTT, 1 mM ATP, 0.2 mg/mL fatty acid-free BSA, and 10 μ M C6-NBD ceramide (added from a 10 mM ethanol stock) (Thermo

1
2
3
4 Fisher Scientific). The reaction was started by adding 0.025 μ g/ μ L of the CpgB enzyme. Tubes
5 were incubated in the dark at 30 °C for the indicated times. After the incubation, 1 μ L of the reaction
6 mixture was spotted onto Silica Gel 60 TLC plates. The spots were resolved in a solvent system
7 containing butanol/acetic acid/water (3:1:1, v/v). The dried TLC plates were visualized using the
8 GFP filter set on a Bio-Rad ChemiDoc. To test the specificity of CpgB, we performed the reaction
9 under identical conditions using 1-NBD-decanoyl-2-decanoyl-sn-Gly (NBD-DAG) (Cayman
10 Chemical) as the substrate. Inhibition of CpgB activity was performed by adding the indicated
11 concentrations of NVP-231 (Cayman Chemical) to the reaction prior to addition of the enzyme.
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26 *Lipidomic profiling and confirmation of ceramide-phosphate production by LC/MS/MS*
27

28 Lipids were extracted from bacterial cells or the NBD-ceramide CpgB reaction using the method
29 of Bligh and Dyer with minor modifications (33). The lipid extracts were analyzed by normal
30 phase LC/MS/MS in the negative ion mode as previously described (34,35).
31
32
33
34
35
36
37

38 *Kinetic analysis of CpgB*
39

40 To determine the kinetic constants for CpgB, activity assays were performed for 30 min as
41 described above while varying substrate concentrations. To determine the $K_{m,app}$ for ceramide,
42 ATP concentration was held constant (1 mM) while NBD-ceramide concentration ranged from
43 0.625-160 μ M. The $K_{m,app}$ for ATP was determined by holding the NBD-ceramide constant at 160
44 μ M, while varying the ATP concentration from 0.031-1 mM. Product formation was measured
45 from the fluorescent images using ImageJ (36) and quantified using a standard curve of NBD-
46 ceramide spotted onto the TLC plates. The enzyme activity was fit to the Michaelis-Menten
47 equation using OriginPro (OriginLab).
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6 *Assessing the pH optimum and the requirement for divalent cations*
7
8

9 To test the effect of pH on CpgB activity, a standard reaction mix was made containing 10 mM
10 KCl, 15 mM MgCl₂, 10% glycerol, 1 mM DTT, 1 mM ATP, 0.2 mg/mL fatty acid-free BSA, and
11 10 µM C6-NBD ceramide. The pH was controlled by adding the following buffers: pH 4.5–6 (100
12 mM citrate), pH 6.5–7.5 (100 mM MOPS), pH 8–9 (100 mM Tris-HCl), and pH 10 (100 mM
13 borate). The reactions were started with the addition of 0.025 µg/µL of CpgB and allowed to run
14 for 30 min. Phosphorylated product was quantified as above. The efficacy of various divalent
15 cations was tested by replacing the MgCl₂ with 15 mM CaCl₂, ZnCl₂, MnCl₂, CuCl₂, or CoCl₂ and
16 determining CpgB activity at pH 7.4 as described above.
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31 *Phylogenetic analysis of lipid kinase enzymes*
32
33

34 Using CCNA_01218 (CpgB; Accession YP_002516591.3) protein as a query, we performed
35 BLASTP searches to find related proteins in the NCBI database (37). The top hits were all from
36 species closely related to *C. crescentus*, so we repeated the search excluding Alphaproteobacteria
37 to get a wider range of organisms. Candidate hits were chosen using an E-value cutoff of 1E-20
38 and we manually curated the list to select the top ~60 hits from different genera. A similar
39 method was used to find homologues of hCERK (Accession NP_073603.2), *Porphyromonas*
40 *gingivalis* dihydrosphingosine kinase (Accession AAQ66413), *E. coli* YegS (Accession
41 NP_416590), and *Saccharomyces cerevisiae* Dgk1 (Accession QHB11896.1). A total of 397
42 protein sequences were aligned using MUSCLE aligner (38). Phylogenetic trees were prepared
43 using RAxML (Randomized Axelerated Maximum Likelihood version 8.2.12) (39) with 100
44 bootstraps and a maximum-likelihood search. RAxML was run on the CIPRES Portal at the San
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 Diego Supercomputer Center (40). Phylogenetic trees were visualized in R using the packages
5
6 ggtree (41), ape (42), treeio (43), and ggplot2 (44). To determine which *cpgB* encoding bacterial
7
8 genera produce sphingolipids, we performed a literature search as well as used the Riken JCM
9 catalogue (<https://jcm.brc.riken.jp/en/>). For genera with no experimental evidence of
10 sphingolipids, we used BLASTP to determine whether these genera encode all three key
11 enzymes for sphingolipid synthesis: Spt (Accession A0A0H3C7E9.1), bCerS (Accession
12 A0A0H3C8X0.1), and CerR (Accession A0A0H3C8X7.1).
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Data availability

All of the data for this work is contained within the manuscript.

Acknowledgements

We thank Valerie Carabetta and Olaitan Akintunde (Cooper Medical School of Rowan University) for their assistance with protein purification.

Funding

Funding was provided by National Science Foundation grants MCB-1553004, MCB-2031948, and MCB-2224195 (E.A.K.) and National Institutes of Health grants GM069338 and AI148366 (Z.G.), and GM136128 (G.M.C.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

1
2
3
4
5
6
7 **Author CrediT statement**
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Tanisha Dhakephalkar: Conceptualization, Methodology, Investigation, Writing- Original Draft, Visualization. **Geordan Stukey:** Methodology, Investigation, Writing- Review & Editing.
Ziqiang Guan: Conceptualization, Investigation, Writing- Review & Editing. **George Carman:** Conceptualization, Methodology, Writing- Review & Editing. **Eric Klein:** Conceptualization, Methodology, Investigation Writing- Original Draft, Visualization, Supervision.

27
28
29
30
31 **References**
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1. Sutcliffe, I. C. (2010) A phylum level perspective on bacterial cell envelope architecture. *Trends Microbiol* **18**, 464-470
2. Bertani, B., and Ruiz, N. (2018) Function and biogenesis of lipopolysaccharides. *EcoSal Plus* **8**
3. Whitfield, C., and Trent, M. S. (2014) Biosynthesis and export of bacterial lipopolysaccharides. *Annu Rev Biochem* **83**, 99-128
4. Manioglu, S., Modaresi, S. M., Ritzmann, N., Thoma, J., Overall, S. A., Harms, A., Upert, G., Luther, A., Barnes, A. B., Obrecht, D., Muller, D. J., and Hiller, S. (2022) Antibiotic polymyxin arranges lipopolysaccharide into crystalline structures to solidify the bacterial membrane. *Nat Commun* **13**, 6195
5. Morrison, D. C., and Jacobs, D. M. (1976) Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. *Immunochemistry* **13**, 813-818

1
2
3
4 6. Boll, J. M., Crofts, A. A., Peters, K., Cattoir, V., Vollmer, W., Davies, B. W., and Trent,
5 M. S. (2016) A penicillin-binding protein inhibits selection of colistin-resistant,
6 lipooligosaccharide-deficient *Acinetobacter baumannii*. *Proc Natl Acad Sci U S A* **113**,
7 E6228-E6237
8
9 7. Peng, D., Hong, W., Choudhury, B. P., Carlson, R. W., and Gu, X. X. (2005) *Moraxella*
10 *catarrhalis* bacterium without endotoxin, a potential vaccine candidate. *Infect Immun* **73**,
11 7569-7577
12
13 8. Steeghs, L., den Hartog, R., den Boer, A., Zomer, B., Roholl, P., and van der Ley, P. (1998)
14 Meningitis bacterium is viable without endotoxin. *Nature* **392**, 449-450
15
16 9. Zik, J. J., Yoon, S. H., Guan, Z., Stankeviciute Skidmore, G., Gudoor, R. R., Davies, K.
17 M., Deutschbauer, A. M., Goodlett, D. R., Klein, E. A., and Ryan, K. R. (2022)
18 *Caulobacter* lipid A is conditionally dispensable in the absence of fur and in the presence
19 of anionic sphingolipids. *Cell Rep* **39**, 110888
20
21 10. Smit, J., Kaltashov, I. A., Cotter, R. J., Vinogradov, E., Perry, M. B., Haider, H., and
22 Qureshi, N. (2008) Structure of a novel lipid A obtained from the lipopolysaccharide of
23 *Caulobacter crescentus*. *Innate Immun* **14**, 25-37
24
25 11. Gomez-Munoz, A. (2004) Ceramide-1-phosphate: a novel regulator of cell activation.
26 *FEBS Lett* **562**, 5-10
27
28 12. Sugiura, M., Kono, K., Liu, H., Shimizugawa, T., Minekura, H., Spiegel, S., and Kohama,
29 T. (2002) Ceramide kinase, a novel lipid kinase. Molecular cloning and functional
30 characterization. *J Biol Chem* **277**, 23294-23300
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 13. Ranjit, D. K., Moye, Z. D., Rocha, F. G., Ottenberg, G., Nichols, F. C., Kim, H. M., Walker,
5 A. R., Gibson, F. C., 3rd, and Davey, M. E. (2022) Characterization of a bacterial kinase
6 that phosphorylates dihydrosphingosine to form dhS1P. *Microbiol Spectr* **10**, e0000222
7
8 14. De Siervo, A. J., and Homola, A. D. (1980) Analysis of *Caulobacter crescentus* lipids. *J
9 Bacteriol* **143**, 1215-1222
10
11 15. Okino, N., Li, M., Qu, Q., Nakagawa, T., Hayashi, Y., Matsumoto, M., Ishibashi, Y., and
12 Ito, M. (2020) Two bacterial glycosphingolipid synthases responsible for the synthesis of
13 glucuronosylceramide and alpha-galactosylceramide. *J Biol Chem* **295**, 10709-10725
14
15 16. Burgdorf, C., Hansel, L., Heidbreder, M., Johren, O., Schutte, F., Schunkert, H., and Kurz,
16 T. (2009) Suppression of cardiac phosphatidate phosphohydrolase 1 activity and lipin
17 mRNA expression in Zucker diabetic fatty rats and humans with type 2 diabetes mellitus.
18
19 *Biochem Biophys Res Commun* **390**, 165-170
20
21 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 17. Don, A. S., and Rosen, H. (2008) A fluorescent plate reader assay for ceramide kinase.
18 *Anal Biochem* **375**, 265-271
19
20 18. Labesse, G., Douguet, D., Assairi, L., and Gilles, A. M. (2002) Diacylglyceride kinases,
21 sphingosine kinases and NAD kinases: distant relatives of 6-phosphofructokinases. *Trends
22 Biochem Sci* **27**, 273-275
23
24 19. Lidome, E., Graf, C., Jaritz, M., Schanzer, A., Rovina, P., Nikolay, R., and Bornancin, F.
25 (2008) A conserved cysteine motif essential for ceramide kinase function. *Biochimie* **90**,
26 1560-1565
27
28 20. Graf, C., Klumpp, M., Habig, M., Rovina, P., Billich, A., Baumruker, T., Oberhauser, B.,
29 and Bornancin, F. (2008) Targeting ceramide metabolism with a potent and specific
30 ceramide kinase inhibitor. *Mol Pharmacol* **74**, 925-932

1
2
3
4 21. Han, G. S., O'Hara, L., Carman, G. M., and Siniossoglou, S. (2008) An unconventional
5 diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth.
6
7 *J Biol Chem* **283**, 20433-20442
8
9
10 22. Bakali, H. M., Herman, M. D., Johnson, K. A., Kelly, A. A., Wieslander, A., Hallberg, B.
11 M., and Nordlund, P. (2007) Crystal structure of YegS, a homologue to the mammalian
12 diacylglycerol kinases, reveals a novel regulatory metal binding site. *J Biol Chem* **282**,
13 19644-19652
14
15 23. Stankeviciute, G., Tang, P., Ashley, B., Chamberlain, J. D., Hansen, M. E. B., Coleman,
16 A., D'Emilia, R., Fu, L., Mohan, E. C., Nguyen, H., Guan, Z., Campopiano, D. J., and
17 Klein, E. A. (2022) Convergent evolution of bacterial ceramide synthesis. *Nat Chem Biol*
18 **18**, 305-312
19
20 24. Heaver, S. L., Le, H. H., Tang, P., Basle, A., Mirretta Barone, C., Vu, D. L., Waters, J. L.,
21 Marles-Wright, J., Johnson, E. L., Campopiano, D. J., and Ley, R. E. (2022)
22 Characterization of inositol lipid metabolism in gut-associated Bacteroidetes. *Nat*
23 *Microbiol* **7**, 986-1000
24
25 25. Kawahara, K., Moll, H., Knirel, Y. A., Seydel, U., and Zähringer, U. (2000) Structural
26 analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium
27 *Sphingomonas capsulata*. *European Journal of Biochemistry* **267**, 1837-1846
28
29 26. Stankeviciute, G., Guan, Z., Goldfine, H., and Klein, E. A. (2019) *Caulobacter crescentus*
30 adapts to phosphate starvation by synthesizing anionic glycoglycerolipids and a novel
31 glycosphingolipid. *MBio* **10**, e00107-00119
32
33 27. Kanzaki, H., Movila, A., Kayal, R., Napimoga, M. H., Egashira, K., Dewhirst, F., Sasaki,
34 H., Howait, M., Al-Dharrab, A., Mira, A., Han, X., Taubman, M. A., Nichols, F. C., and
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 Kawai, T. (2017) Phosphoglycerol dihydroceramide, a distinctive ceramide produced by
5 *Porphyromonas gingivalis*, promotes RANKL-induced osteoclastogenesis by acting on
6 non-muscle myosin II-A (Myh9), an osteoclast cell fusion regulatory factor. *Biochim
7 Biophys Acta Mol Cell Biol Lipids* **1862**, 452-462
8
9 14. Brown, E. M., Ke, X., Hitchcock, D., Jeanfavre, S., Avila-Pacheco, J., Nakata, T., Arthur,
15 T. D., Fornelos, N., Heim, C., Franzosa, E. A., Watson, N., Huttenhower, C., Haiser, H. J.,
16 Dillow, G., Graham, D. B., Finlay, B. B., Kostic, A. D., Porter, J. A., Vlamakis, H., Clish,
17 C. B., and Xavier, R. J. (2019) Bacteroides-derived sphingolipids are critical for
18 maintaining intestinal homeostasis and symbiosis. *Cell Host Microbe* **25**, 668-680 e667
19
20 29. Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C.,
21 Ester, M., Foster, L. J., and Brinkman, F. S. (2010) PSORTb 3.0: improved protein
22 subcellular localization prediction with refined localization subcategories and predictive
23 capabilities for all prokaryotes. *Bioinformatics* **26**, 1608-1615
24
25 30. Moye, Z. D., Valiuskyte, K., Dewhirst, F. E., Nichols, F. C., and Davey, M. E. (2016)
26 Synthesis of sphingolipids impacts survival of *Porphyromonas gingivalis* and the
27 presentation of surface polysaccharides. *Front Microbiol* **7**, 1919
28
29 31. Rocha, F. G., Moye, Z. D., Ottenberg, G., Tang, P., Campopiano, D. J., Gibson, F. C., 3rd,
30 and Davey, M. E. (2020) *Porphyromonas gingivalis* sphingolipid synthesis limits the host
31 inflammatory response. *J Dent Res* **99**, 568-576
32
33 32. Walsh, J. P., and Bell, R. M. (1986) sn-1,2-Diacylglycerol kinase of *Escherichia coli*.
34 Mixed micellar analysis of the phospholipid cofactor requirement and divalent cation
35 dependence. *J Biol Chem* **261**, 6239-6247
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 33. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and
5 purification. *Can J Biochem Physiol* **37**, 911-917
6
7 34. Goldfine, H., and Guan, Z. (2015) Lipidomic Analysis of Bacteria by Thin-Layer
8 Chromatography and Liquid Chromatography/Mass Spectrometry. in *Hydrocarbon and*
9 *Lipid Microbiology Protocols* (McGenity, T. J. ed.), Humana Press. pp 1-15
10
11 35. Guan, Z., Katzianer, D., Zhu, J., and Goldfine, H. (2014) *Clostridium difficile* contains
12 plasmalogen species of phospholipids and glycolipids. *Biochim Biophys Acta* **1842**, 1353-
13 1359
14
15 36. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
16 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein,
17 V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012) Fiji: an open-source platform for
18 biological-image analysis. *Nat Methods* **9**, 676-682
19
20 37. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local
21 alignment search tool. *J Mol Biol* **215**, 403-410
22
23 38. Edgar, R. C. (2004) MUSCLE: a multiple sequence alignment method with reduced time
24 and space complexity. *BMC Bioinformatics* **5**, 113
25
26 39. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis
27 of large phylogenies. *Bioinformatics* **30**, 1312-1313
28
29 40. Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010) Creating the CIPRES Science Gateway
30 for inference of large phylogenetic trees. *2010 Gateway Computing Environments*
31 *Workshop (GCE)*, 1-8
32
33 41. Yu, G. (2020) Using ggtree to visualize data on tree-like structures. *Curr Protoc*
34 *Bioinformatics* **69**, e96
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 42. Paradis, E., and Schliep, K. (2019) ape 5.0: an environment for modern phylogenetics and
5 evolutionary analyses in R. *Bioinformatics* **35**, 526-528
6
7 43. Wang, L. G., Lam, T. T., Xu, S., Dai, Z., Zhou, L., Feng, T., Guo, P., Dunn, C. W., Jones,
8 B. R., Bradley, T., Zhu, H., Guan, Y., Jiang, Y., and Yu, G. (2020) Treeio: An R Package
9 for phylogenetic tree input and output with richly annotated and associated data. *Mol Biol*
10 *Evol* **37**, 599-603
11
12 44. Wickham, H. (2016) *ggplot2: Elegant Graphics for Data Analysis*, Springer-Verlag New
13 York
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure Legends

Figure 1: Identification of CpgB as a putative ceramide kinase. (A) Previous genetic analysis of the *cpgABC* genes led to a proposed mechanism for ceramide-phosphoglycerate (CPG) synthesis (9). (B) Extracted-ion chromatograms show the presence or absence of ceramide and C1P. Total lipids were extracted from the indicated strains and analyzed by normal phase LC/ESI-MS in the negative ion mode. The signal for the C1P peak was magnified 10-fold since this lipid is only a minor component of the *C. crescentus* lipidome. This figure is a representative chromatogram (n=2).

Figure 2: Purification of CpgB. His-tagged CpgB was expressed and purified from *E. coli*. An SDS-PAGE gel of recombinant CpgB was stained with Coomassie blue to assess protein purity.

1
2
3
4 **Figure 3: Cpg has ceramide kinase activity.** (A) Recombinant CpgB was used to phosphorylate
5 C16-ceramide or DAG. ^{32}P incorporation was monitored by TLC and phosphorimaging. This TLC
6 result is a representative image (n=3). (B) The substrate specificity of CpgB was analyzed using
7 fluorescent NBD lipid substrates as indicated. This TLC is a representative result (n=3). (C)
8 Production of the phosphorylated NBD-ceramide product was confirmed by negative ion ESI/MS
9 analysis. (D) Negative ion ESI/MS analysis of lipid extracts from wild type (WT) and ΔcpgB
10 strains shows no difference in phosphatidic acid (PA) levels.
11
12
13
14
15
16
17
18
19
20
21
22
23

24 **Figure 4: Characterization of CpgB pH and divalent cation requirements.** (A) CpgB kinase
25 activity was determined over a range of pH's using the following buffers: pH 4.5–6 (100 mM
26 citrate), pH 6.5–7.5 (100 mM MOPS), pH 8–9 (100 mM Tris-HCl) and pH 10 (100 mM borate).
27 Activity was quantified using the NBD-ceramide substrate (n=3, error bars are the SD). (B) The
28 CpgB kinase assay was performed in the presence or absence of 15 mM Mg^{2+} using NBD-
29 ceramide. Product formation was analyzed by TLC. (C) The activity of CpgB was determined in
30 the presence of 15 mM of the indicated divalent cations. Activities were normalized to magnesium
31 (n=3; error bars are the SD).
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46 **Figure 5: CpgB enzyme kinetics.** The kinetic parameters of CpgB were measured using the C6-
47 NBD ceramide substrate. (A) CpgB activity was measured as a function of time (n=3, error bars
48 are SD). (B-C) Michaelis-Menten kinetic parameters were determined for CpgB (n=2, error bars
49 are SD). (B) To determine the $K_{\text{m,app}}$ for ceramide, ATP concentration was held constant (1 mM)
50 while NBD-ceramide concentration varied. (C) The $K_{\text{m,app}}$ for ATP was determined by holding the
51 NBD-ceramide constant at 160 μM while varying the ATP concentration. $K_{\text{m,app}}$ values were 19.2
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 $\pm 5.5 \mu\text{M}$ and $0.29 \pm 0.07 \text{ mM}$ for NBD-ceramide and ATP, respectively. $V_{\text{max,app}}$ values were
5 $2590 \pm 230 \text{ pmol/min/mg enzyme}$ and $10100 \pm 996 \text{ pmol/min/mg enzyme}$ for NBD-ceramide and
6 ATP, respectively.
7
8
9
10
11
12
13

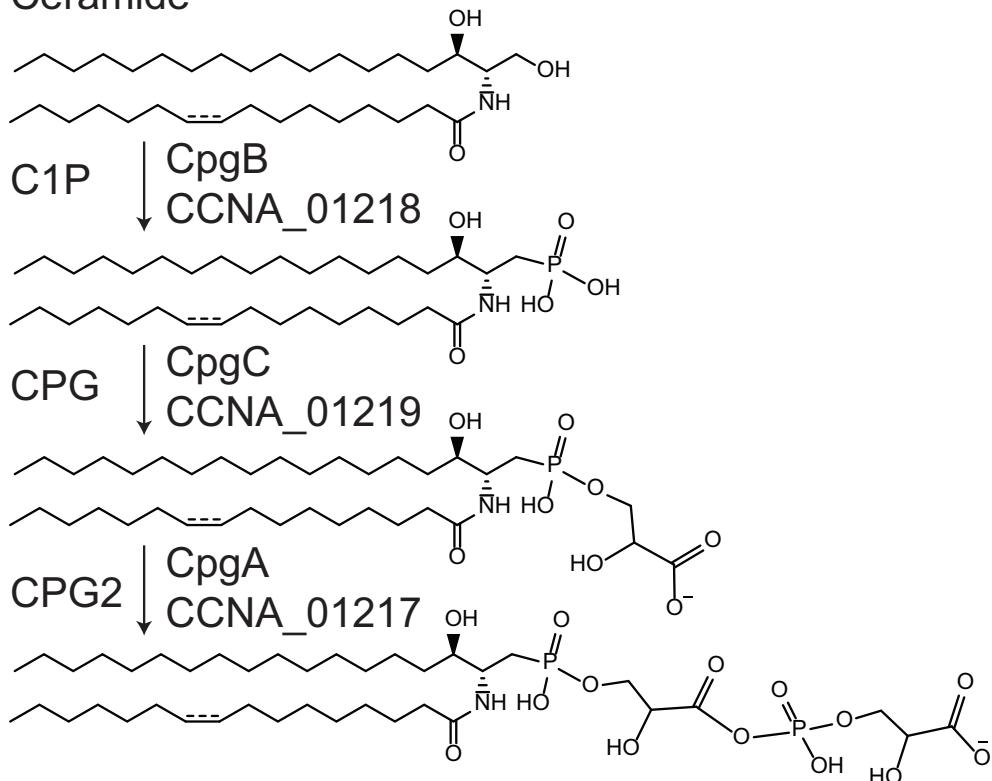
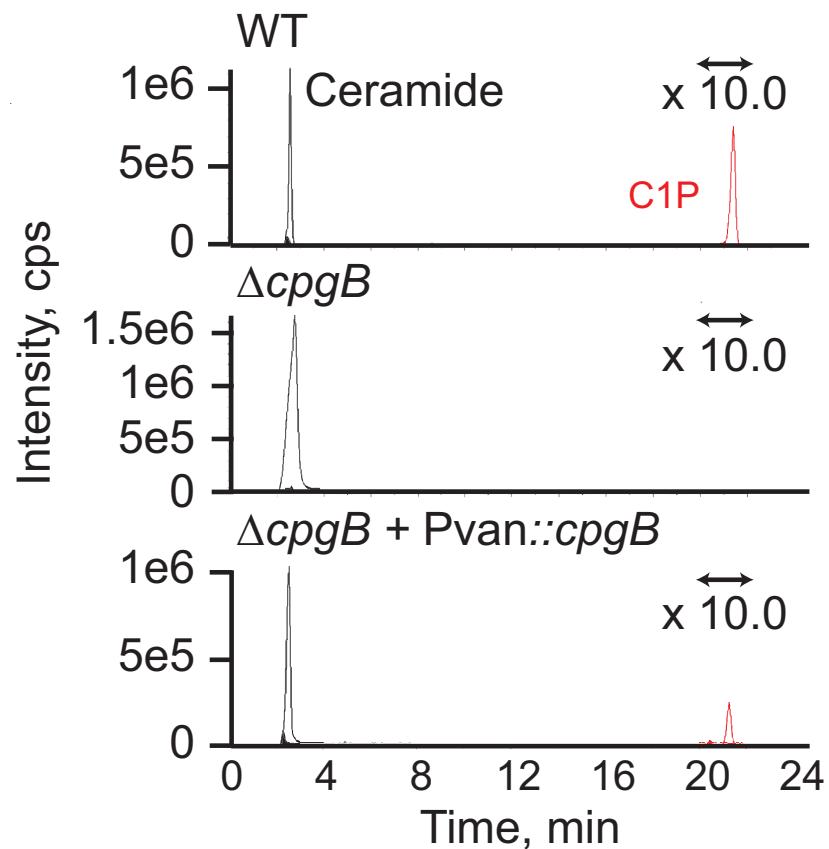

14 **Figure 6: Bacterial CERK is a unique class of lipid kinases.** (A) Sequence alignment of CpgB
15 and hCERK shows limited homology. The hCERK sphingosine-kinase domains are indicated by
16 the red boxes. The conserved GGDG motif is indicated with asterisks. hCERK has a conserved
17 CxxxCxxC which is absent in CpgB. (B) CpgB activity was measured in the presence of the
18 hCERK inhibitor NVP-231 using the NBD-ceramide substrate. Activities were normalized to the
19 control sample ($n=3$; error bars are SD, ANOVA $F(4,10)=10.22$, $P<0.0015$; * post-hoc
20 comparisons using Tukey test, $P<0.05$). (C) Phylogenetic analysis of various lipid kinases was
21 performed using the maximum-likelihood method. The branch-tip color indicates the lipid-kinase
22 family, and the line colors designate proteins of bacterial or eukaryotic origin. (D) The
23 phylogenetic tree of the bacterial CpgB homologues is color coded to indicate which genera have
24 members with either experimental evidence (pink) or genetic evidence (green) of sphingolipid
25 production. Genetic evidence indicates that the genus has members with all three required enzymes
26 for sphingolipid production: Spt, bCerS, and CerR.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1


[Click here to access/download/Main Figure \(High Resolution\);Fig1.eps](#)

A

Ceramide

B

Figure 2

[Click here to access/download/Main Figure \(High Resolution\);Fig2.eps](#)

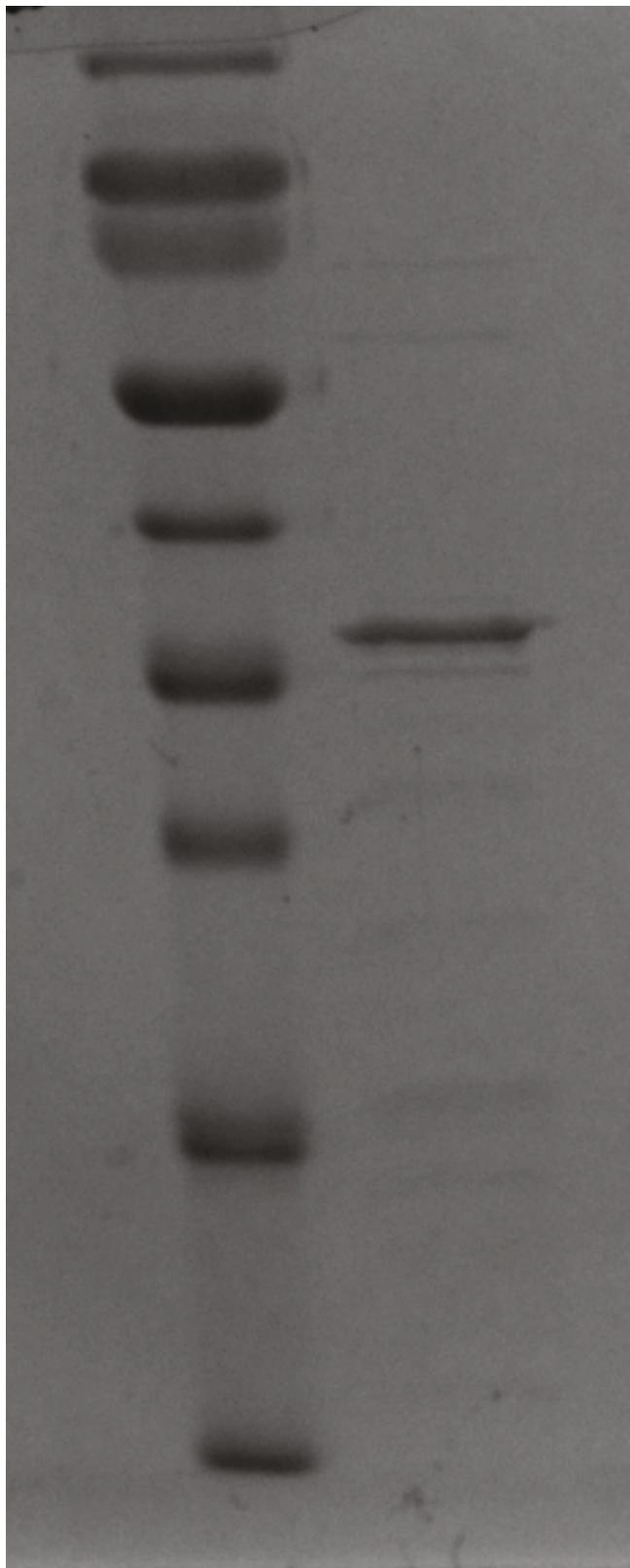
kDa

130

95

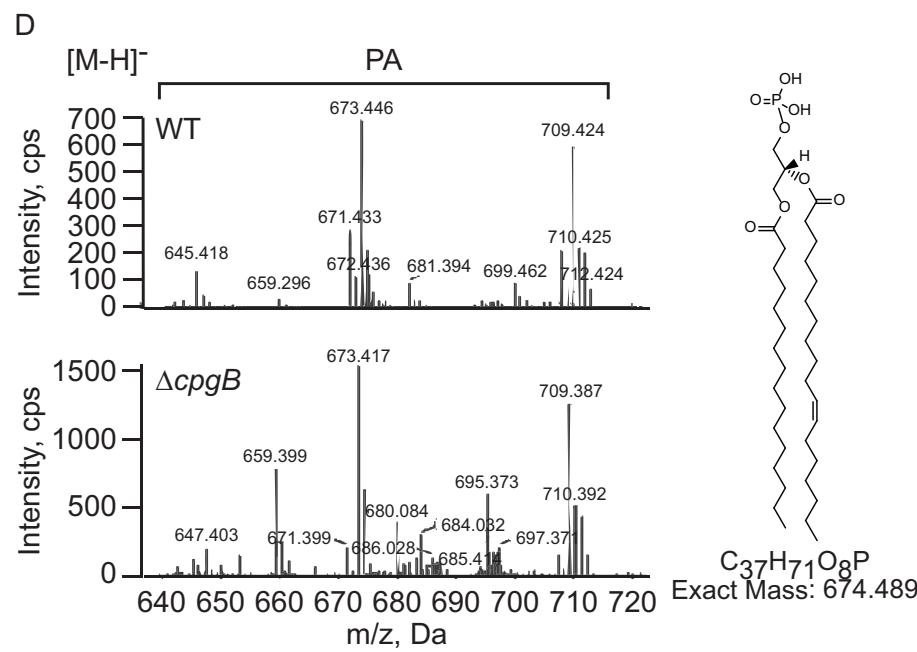
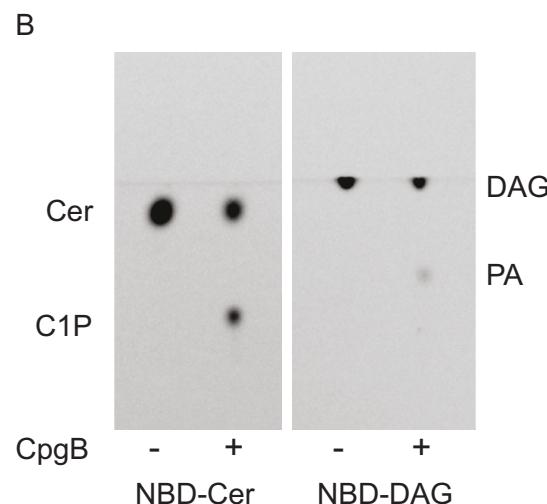
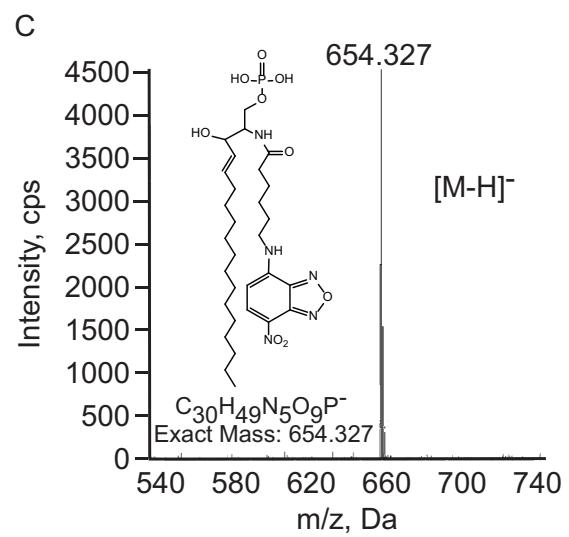
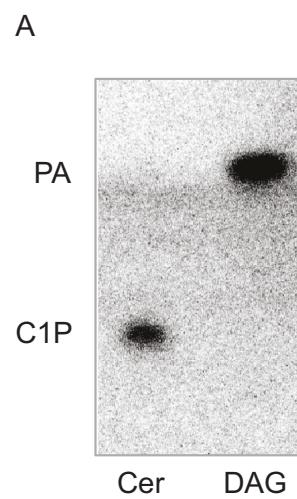
72

55

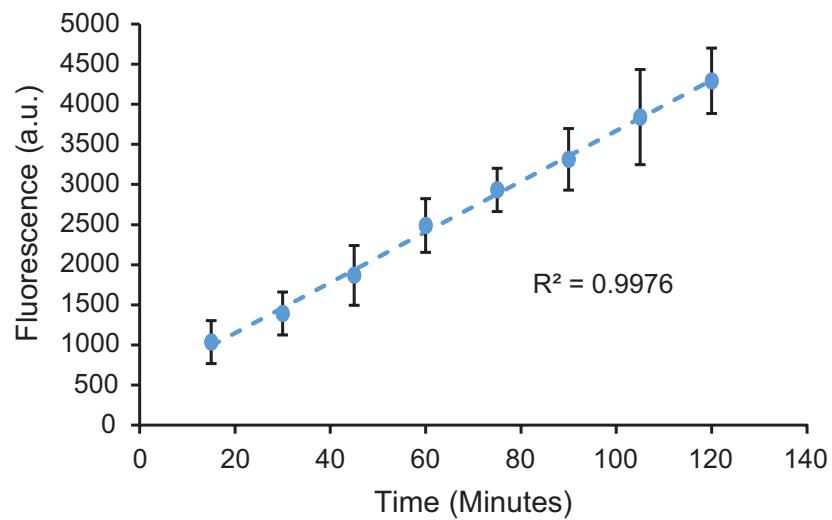

43

34

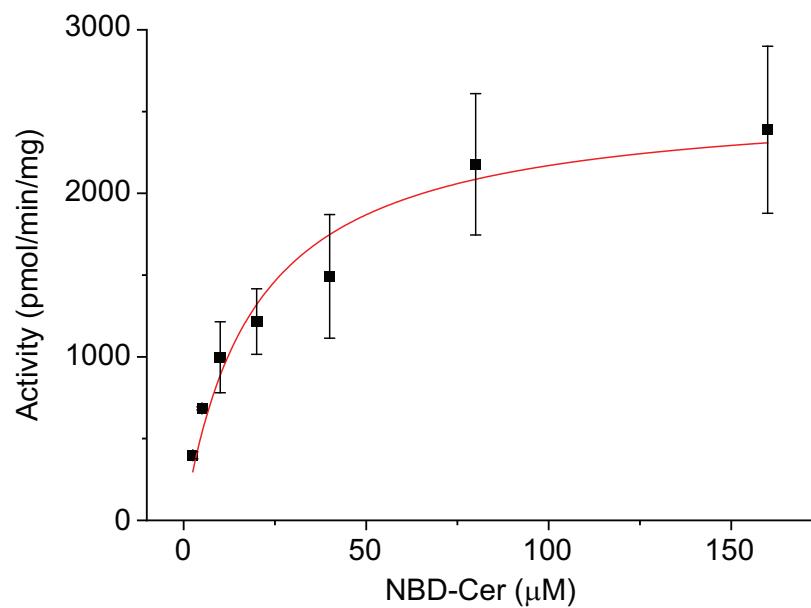
25





17

10



← CpgB


Figure 3

A

B

C

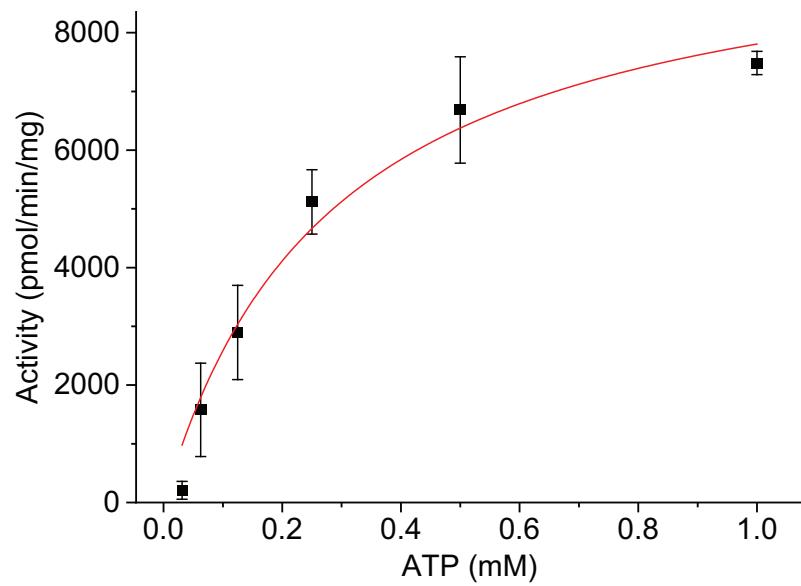
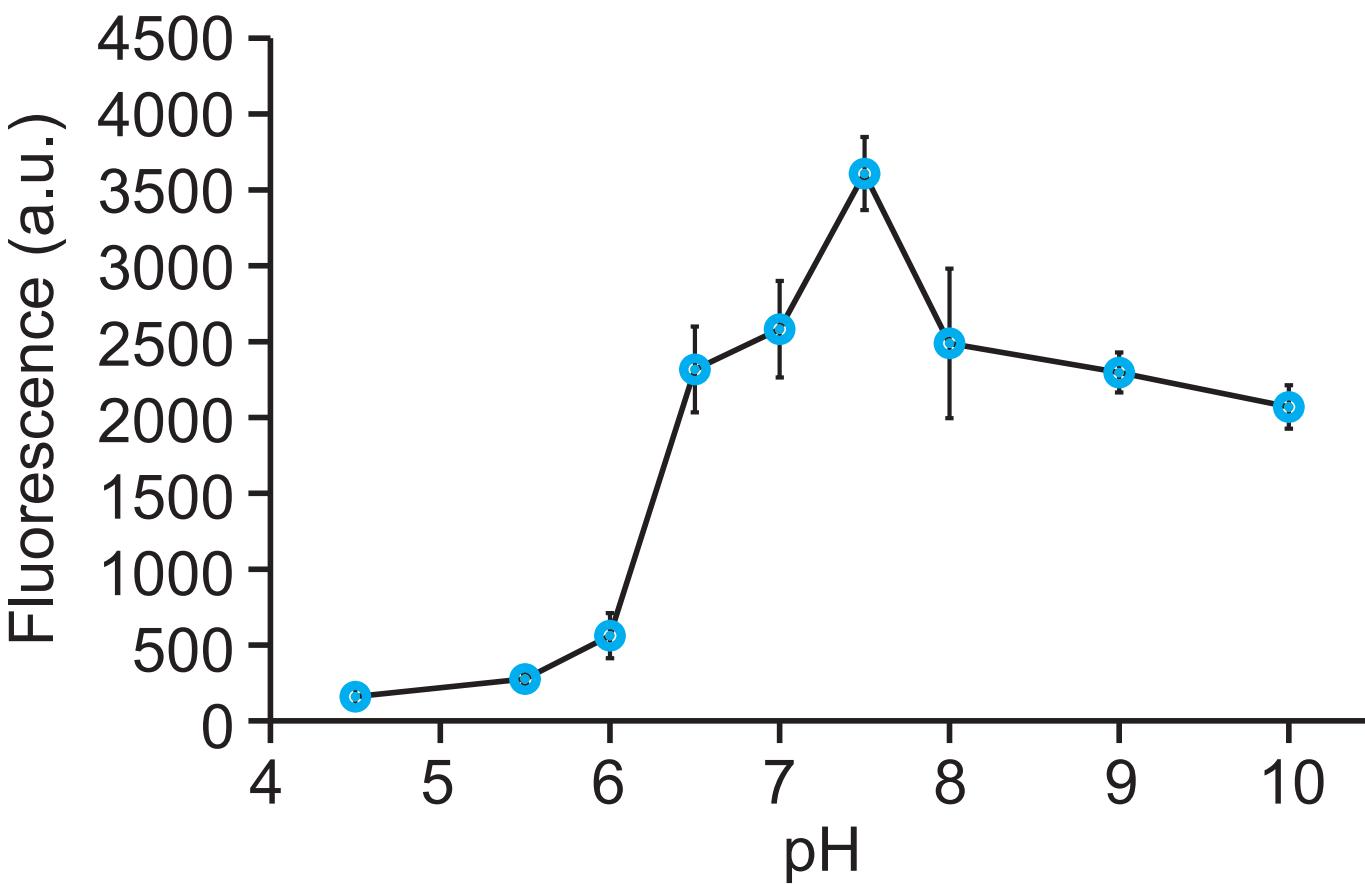



Figure 4

Click here to access/download; Main Figure (High Resolution); Fig4.eps

A

B

C1P

Mg

C

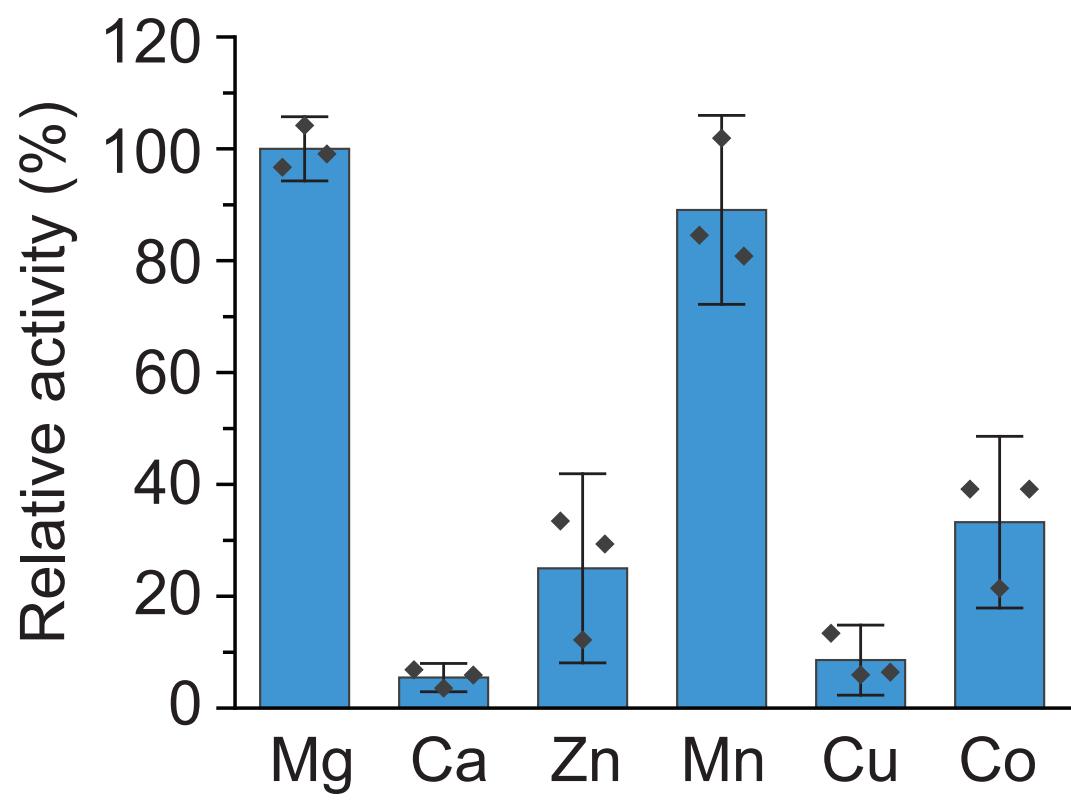
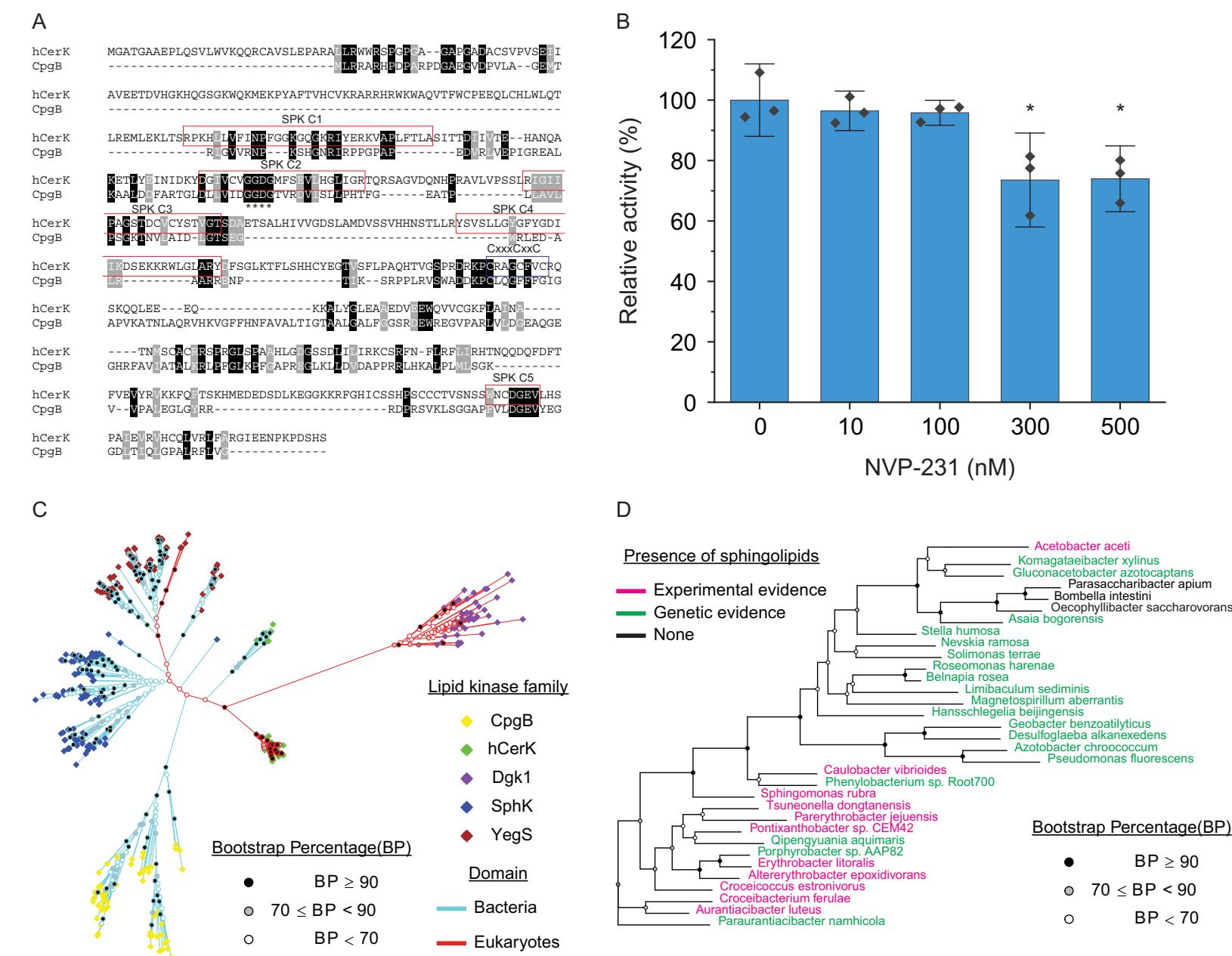



Figure 6

[Click here to access/download; Main Figure \(High Resolution\); Fig6.eps](#)

Figure 6

Author CrediT statement

Tanisha Dhakephalkar: Conceptualization, Methodology, Investigation, Writing- Original Draft, Visualization. **Geordan Stukey:** Methodology, Investigation, Writing- Review & Editing.

Ziqiang Guan: Conceptualization, Investigation, Writing- Review & Editing. **George Carman:** Conceptualization, Methodology, Writing- Review & Editing. **Eric Klein:** Conceptualization, Methodology, Investigation Writing- Original Draft, Visualization, Supervision.

[Click here to view linked References](#)

[Click here to access/download](#)

Revised Manuscript (with tracked changes)
resubmission_v1_track_changes.docx