

Tantalum

Zi-Ling Xue^a and Tabitha M. Cook^b

^a Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA

^b Department of Chemistry and Biochemistry, Berry College, Mount Berry, Georgia 30149, USA

Abstract. This review on coordination chemistry of tantalum covers the literature between 2003 and 2018. Tantalum complexes with ligands based on groups 15 (nitrogen, phosphorus, arsenic), 16 (oxygen, sulfur, selenium, tellurium), and 17 (fluorine, chlorine, bromine) as well as with mixed-donor ligands are the focus. Coverage of organometallic complexes is selective to give readers a more comprehensive understanding of the coordination chemistry of tantalum. Complexes with hydride and boron- and carbon-based ligands, including alkylidene, η^2 -allyl, allene, vinyl, alkene, alkylidyne, η^3 -allyl, alkyne, N-heterocyclic carbene (NHC), and CCC pincer ligands, are discussed. Complexes with alkyl, cyclopentadienyl, acyl, iminoacyl, and related ligands are generally not discussed. Tantalum is among the largest early transition elements and can easily form complexes with high coordination numbers, although six is the most common. In addition, the larger radii of tantalum ions lead to less tight coordination sphere and frequently observed stereodynamic properties of the complexes. Tantalum complexes have been used as precursors to make electronic materials through processes such as chemical vapor deposition or atomic layer deposition.

Tantalum

1. INTRODUCTION	7
2. TANTALUM (V)	10
2.1. Selected Hydride Ligands	10
2.2. Selected Boron-based Ligands	1443
2.3. Selected Carbon-Based Ligands	1645
2.3.1. Alkylidene, η^2-allyl, allene, vinyl, and alkene ligands	1645
2.3.2. Alkylidyne, η^3-allyl, and alkyne ligands	19

Formatted: Line spacing: 1.5 lines

Formatted: Font: (Default) Arial, 11 pt, Bold

Formatted: Font: (Default) Arial, 11 pt

Formatted: Font: 11 pt

2.3.3. <i>N</i>-Heterocyclic carbene (NHC) ligands	23
2.3.4. CCC pincer ligands	24
2.4. Nitrogen-Based Ligands	27
2.4.1. Neutral ligands	27
2.4.2. Amide ligands.....	<u>2928</u>
2.4.3. Azide and hydroazide ligands	31
2.4.4. Tris(pyrazolyl)borohydride ligands	33
2.4.5. Ketimide Ligands.....	35
2.4.6. Diketiminate ligands	35
2.4.7. Miscellaneous monoanionic bidentate nitrogen-based ligands	36
2.4.8. Diamide ligands.....	37
2.4.9. Amidinate and guanidinate ligands	39
2.4.10. Pyrrole and oxazoline ligands	42
2.4.11. Aminopyridinate ligands	43
2.4.12. Imide ligands	44
2.4.13. Nitride complexes.....	49
2.4.14. Dianionic tridentate ligands	50
2.4.15. Miscellaneous dianionic ligands	<u>5254</u>
2.4.16. Other trianionic ligands	52
2.4.17. Porphyrin, phthalocyanine, and corrole ligands.....	55

2.4.18. Imide-nitride ligands	<u>5857</u>
2.4.19. Precursors to solid-state materials	<u>5958</u>
2.5. Phosphorus- and Arsenic-Based Ligands	<u>6059</u>
2.6. Oxygen-Based Ligands	62
2.6.1. Ether ligands	62
2.6.2. Alkoxide, hydroxyl, enolate, and related ligand	<u>6362</u>
2.6.3. Siloxide ligands	<u>7170</u>
2.6.4. Aryloxide ligands	<u>7372</u>
2.6.5. Ketone ligands or ligands containing N–C=O, As–C=O, and P=O functionalities	<u>7675</u>
2.6.6. O₂-monoanionic and dianionic bidentate ligands and O,O,O-dianionic tridentate ligands	<u>7776</u>
2.6.7. Carboxylate, carboxylic acid and related ligands	<u>8079</u>
2.6.8. β-Diketonate ligands	<u>8079</u>
2.6.9. Oxo ligands	<u>8180</u>
2.6.10. Polynuclear oxo ligands	<u>8483</u>
2.6.11. Polyoxometalates (POMs)	<u>8584</u>
2.6.12. Peroxo ligands	<u>8887</u>
2.6.13. Isocyanate ligand	89
2.6.14. Phosphinylamine ligands	<u>9089</u>

2.6.15. Precursors to solid-state materials	<u>9089</u>
2.7. Sulfur-, Selenium-, and Tellurium-Based Ligands	91
2.7.1. Sulfide ligands	91
2.7.2. Thioether ligands	<u>9392</u>
2.7.3. Thione ligand	<u>9493</u>
2.7.4. Dithiocarbamate ligands	<u>9493</u>
2.7.5. (Methimazolyl)borate ligands	<u>9493</u>
2.7.6. Trifluorosulfane ligand	<u>9594</u>
2.7.7. Selenide ligands	<u>9594</u>
2.7.8. Selenoether ligands	<u>9695</u>
2.7.9. Telluroether ligands	<u>9695</u>
2.7.10. Reactions of $TaCl_3(=S)$	<u>9695</u>
2.8. Halogen-Based Ligands	<u>9695</u>
2.8.1. Fluoride ligands	<u>9796</u>
2.8.2. Chloride and bromide ligands	<u>102104</u>
2.9. Mixed-Donor Ligands	<u>105103</u>
2.9.1. η^2-Aminoxy (N, O) ligands	<u>105103</u>
2.9.2. Amino-acidate (N, O) ligands	<u>105104</u>
2.9.3. Aminophenol (N, O) and aminothiophenol (N, S) ligands	<u>106104</u>
2.9.4. Benzotriazole and benzoxazole phenoxide (N, O) ligands	<u>106104</u>

2.9.5. Iminomethylphenol (<i>N,O</i>) ligand	<u>106105</u>
2.9.6. Phosphine alkoxide (<i>O,P</i>) ligand	<u>107105</u>
2.9.7. Other monoanionic bidentate ligands	<u>107106</u>
2.9.8. Monoanionic tridentate ligands.....	<u>112114</u>
2.9.9. Dianionic bidentate ligands	<u>113112</u>
2.9.10. <i>N,P,N</i>-dianionic tridentate ligand	<u>114112</u>
2.9.11. <i>O,N,O</i>-dianionic tridentate ligands	<u>115113</u>
2.9.12. <i>C,N</i>-trianionic bidentate (carbene-amide)	<u>119117</u>
2.9.13. <i>O,C,O</i>-dianionic tridentate [carbene-bis(phenoxyde)]	<u>119118</u>
2.9.14. <i>O,P,O</i>-dianionic tridentate ligands.....	<u>120118</u>
2.9.15. <i>S,N,S</i>-dianionic tridentate ligand	<u>121119</u>
2.9.16. <i>O,C,O</i>-trianionic tridentate ligand	<u>121119</u>
2.9.17. <i>O,N,O</i>-trianionic tridentate ligands	<u>122120</u>
2.9.18. <i>O,O,O,N</i>-trianionic tetridentate ligands	<u>123124</u>
2.9.19. Tetraanionic pentadentate ligands	<u>124122</u>
2.9.20. Aryloxy phosphine ligand	<u>125124</u>
2.9.21. <i>O,N,N,O</i>-dianionic tetridentate ligand	<u>126124</u>
3. TANTALUM (IV).....	<u>127125</u>
3.1. Hydride Ligands.....	<u>127125</u>
3.2. Selected Carbon-Based Ligand	<u>128426</u>

3.3. Nitrogen-Based Ligands	<u>129427</u>
3.3.1. Neutral ligands	<u>129428</u>
3.3.2. Amido ligands.....	<u>130428</u>
3.3.3. Ketimide ligands.....	<u>130428</u>
3.3.4. Hydrazido, and hydrazidium ligands	<u>130429</u>
3.4. Sulfur-Based Ligands.....	<u>Error! Bookmark not defined.</u> <u>129</u>
3.5. Phosphorous Ligands	<u>131429</u>
3.6. Mixed-Donor Ligands	<u>131430</u>
4. TANTALUM (III).....	<u>134433</u>
4.1. Boron-Based Ligands	<u>134433</u>
4.2. Carbon-Based Ligands	<u>134433</u>
4.2.1. Alkylidene, alkylidyne, alkene, and alkyne ligands.....	<u>134433</u>
4.2.2. Carbonyl ligands	<u>136435</u>
4.3. Nitrogen-Based Ligands	<u>137436</u>
4.3.1. Neutral ligands	<u>137436</u>
4.3.2. Tris(pyrazolyl)borohydride and (methimazolyl)borate ligands	<u>137436</u>
4.3.3 Amide ligands.....	<u>138437</u>
4.4. Sulfide and Selenide Ligands	138
5. TANTALUM (I).....	<u>139438</u>
5.1. Carbon-Based Ligands	<u>139438</u>

5.1.1. <i>Isocyanide ligands</i>	139138
6. TANTALUM (0).....	140139
6.1. Carbon-Based Ligands	140139
6.1.1. <i>Homoleptic isocyanide ligands</i>	140139
6.2 Nitrogen-Based Ligands	140139
7. TANTALUM (-I).....	140139
7.1 Hydride Ligands.....	140139
7.2. Carbon-Based Ligands	141140
7.2.1. <i>Homoleptic and alkene ligands</i>	141140
7.2.2. <i>Isocyanide ligands</i>	141140
7.3 Nitrogen-Based Ligands	142144
8. TANTALUM IN MIXED OXIDATION STATES.....	142144
9. ACKNOWLEDGMENTS	143142
10. REFERENCES.....	144143

1. INTRODUCTION

Tantalum is a third-row, group 5 transition element with two naturally occurring isotopes, Ta-180 and Ta-181 at natural abundance of 0.012% and 99.988%, respectively. The element was discovered by Swedish chemist Anders G. Ekeberg in 1802 who named it after Tantalus, a villain from Greek mythology.¹ Due to oxide film on its surface, tantalum is known to be very corrosion resistant but is ~~attached~~^{attacked} by

Commented [MDJ1]: Attacked?

Commented [XZ(2R1]: Corrected

HF.² Ekeberg gave the element the name tantalum because of the difficulty he encountered in dissolving tantalum-containing minerals.¹

Tantalum has similar atomic and ionic radii and chemical properties as the second-row, group 5 transition element niobium as a result of lanthanide contraction. In fact, the two elements, both present in the mineral columbite $[(\text{Fe},\text{Mn})(\text{Ta},\text{Nb})_2\text{O}_6]$,² were thought to be one until at least 1845 when German mineralogist and chemist Heinrich Rose showed the presence of two distinct elements in the mineral.^{1,3} One was tantalum and the other Rose named niobium after Niobe, daughter of Tantalus.¹

Several oxidation states of tantalum, from –III to V, are known. Tantalum is oxophilic and more often at the V oxidation in its coordination compounds. At lower oxidation states, tantalum atoms tend to form Ta-Ta bonds. Tantalum is among the largest early transition elements. It thus can easily form complexes with high coordination numbers, although six is the most common coordination number. In addition, the larger radii of tantalum ions lead to less tight coordination sphere and often observed stereodynamic properties of the complexes.

There is no known biological role of the element, although the daily dietary intake of tantalum by humans is about 1 μg , and it mainly exists in bones at ca. 0.03 ppm (parts per million).²

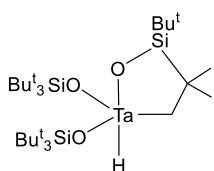
Tantalum oxide Ta_2O_5 is widely used as a capacitor material in electronic equipment such as mobile phones and computers mainly due to its large dielectric constant ($k = 27$ as amorphous solid). The need for better Ta-containing materials has led in part to the studies of tantalum complexes as precursors in the past 15 years, as discussed below.

This review on tantalum coordination chemistry covers the literature between 2003 and 2018. SciFinder searches of keywords “tantalum” and “Ta” in January and February 2019 were followed by sorting of the hits by CA (Chemical Abstracts) sections, leading to the selection of hits in the following CA sections: “Inorganic Chemicals and Reactions”, “Organometallic and Organometalloidal Compounds”, “Catalysis, Reaction Kinetics, and Inorganic Reaction Mechanisms”, “Benzene, Its Derivatives, and Condensed Benzenoid Compounds”, “General Organic Chemistry”, “Heterocyclic, Aliphatic & Alicyclic Compounds”, “Industrial Inorganic Chemicals”, and “Physical Organic Chemistry”. The abstracts of the hits in these CA sections and their original papers were then evaluated for the current review.

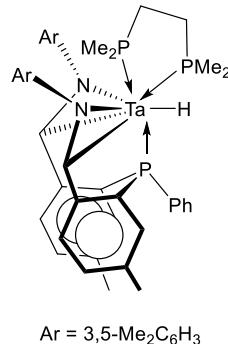
This review follows essentially the format of the last review of niobium and tantalum in Comprehensive Coordination Chemistry II (CCC II) which covered the literature till 2002.⁴ As in CCC II, carbon-based ligands is selective - Alkyl, cyclopentadienyl, acyl, iminoacyl and related ligands are generally not discussed. Detailed surveys of the organometallic chemistry of Ta between 2003 and early 2005 are given in the review by Mashima in Comprehensive Organometallic Chemistry III.⁵ Tatalum coordination chemistry was also reviewed in Annual Reports on the Progress of Chemistry till 2013.⁶⁻⁸

NMR chemical shifts of d⁰ tantalum complexes, in comparison to those of vanadium and niobium analogs, have been found to follow the general trends for d⁰ transition metal compounds:⁹ (1) For single-bonded ligands such as M-H, M-CR₃, M-*NR*₃, M-SiR₃ and M-*PR*₃, ¹H, ¹³C, ¹⁵N, ²⁹Si and ³¹P shifts of these α atoms in the complexes of both first- and third-row transition metals are typically *downfield shifted*

from those of second-row analogs with a “V-shape” (Trend 1). (2) For multiple-bonded ligands including those with d-p π bonds, such as M=CHR, M≡CR, M=NR, M=O and M \rightleftharpoons F, ^{13}C , ^{15}N , ^{17}O and ^{19}F shifts of the α atoms in the complexes of first-, second- and third-row transition metals move consecutively *upfield* (Trend 2).⁹

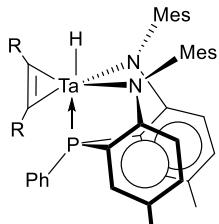

Common abbreviations are defined in the Abbreviations Section.

2. TANTALUM (V)

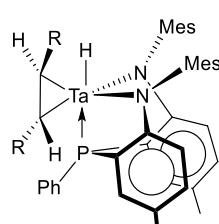

2.1. Selected Hydride Ligands

Complex (silox)₂TaH(κ^2 -O,C-OSiBu^l₂CMe₂CH₂) (silox = Bu^l₃SiO⁻, **1**) was produced via cyclometallation of (silox)₃Ta.¹⁰ $[\text{NPN}^{***}]\text{Ta}(\text{H})(\text{dmpe})$ (**2**, $[\text{NPN}^{***}] = \kappa^5$ -C_NP_NC-[PhP(C₆H₄-o-CHNAr)₂]⁴⁻, Ar = 3,5-Me₂C₆H₃) was made from $[\text{NPN}^{***}]\text{Ta}(\text{CH}_2\text{SiMe}_3)(\text{dmpe})$ exposed to high pressures of H₂.¹¹ Treatment of KHBEt₃ with $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})\text{Cl}$ ($[\text{NPN}^*]^{2-} = \text{PhP}[2-(N\text{-mesityl})-5\text{-Me-C}_6\text{H}_3]^{2-}$); R = Et, SiMe₃) yielded the corresponding hydrides $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})\text{H}$ (**3**).¹² Addition of H₂ gas to $[\text{NPN}^*]\text{TaMe}_3$ and $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})\text{CH}_2\text{Ph}$ (R = Et, SiMe₃) yielded $([\text{NPN}^*]\text{Ta})_2(\mu\text{-H})_4$.¹³ Hydrogenolysis of $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})\text{CH}_2\text{Ph}$ took many days and the complexes $[\text{NPN}^*]\text{Ta}(\eta^2\text{-}trans\text{-RHC=CHR})\text{H}$ (R = SiMe₃, Et; **4**) could be isolated. The ethyl complex (**4**) undergoes rearrangement to also form the terminal 1-hexene isomer.¹³ Deuterated labeling studies were also conducted to help elucidate the reaction pathways of these reactions.¹³

Commented [XZ(3): We didn't use (here in other complexes except it's indicating a dimer.



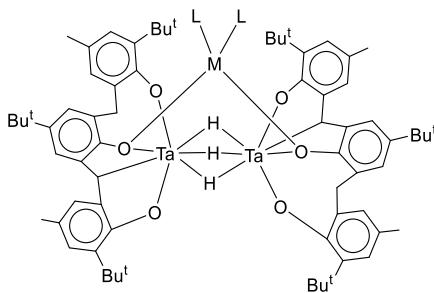
(1)


Ar = 3,5-Me₂C₆H₃

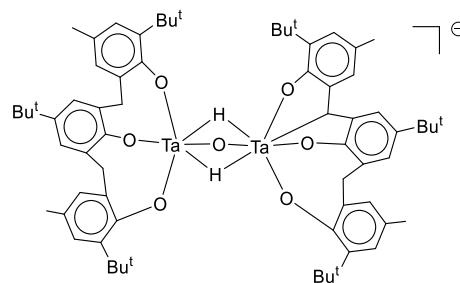
(2)

R = Et, SiMe₃

(3)

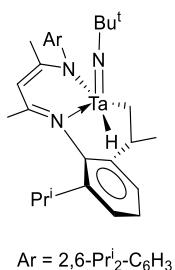

R = Et, SiMe₃

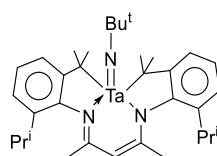
(4)


$(\text{Bu}^t_2\text{PhSiO})_3\text{TaH}_2$ was synthesized from the reaction of $(\text{Bu}^t_2\text{PhSiO})_3\text{TaCl}_2$ with Na/Hg in an H₂ environment.¹⁴ **Complexes** $[(\text{bit-Bu}^t\text{-X})\text{Ta}]_2(\mu\text{-H})_3\text{ML}_2$ (M = Li, L = thf, **5a**, including the structure of the bit-Bu^t-X ligand); M = K, L = dme, **5b**) were prepared from the reactions of $[(\text{Bu}^t\text{-X})\text{TaCl}_2]_2$ [$\text{H}_3(\text{Bu}^t\text{-X}) = 2,6\text{-bis}(3\text{-tert-butyl-5-methyl-2-hydroxybenzyl)-4-tert-butyl-phenol}$] with MBHEt₃.¹⁵ Treatment of $[(\text{bit-Bu}^t\text{-X})\text{Ta}]_2(\mu\text{-H})_3\text{K}(\text{dme})_2$ (**5b**) with 18-crown-6 in thf afforded (**96**).¹⁵

Commented [MDJ4]: Define this?

Commented [XZ(5R4): Done, indicating that the structure is in the drawing.

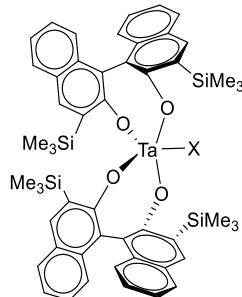

M = Li, L = thf; **5a**
M = K, L = dme; **5b**


(6)

Complexes $(\text{silox})_3(\text{H})\text{Ta-EHR}$ [E = N, R = H, Me, Bu^n , Ph, $\text{C}_6\text{H}_4-p\text{-X}$ (X = H, Me, NMe_2); E = P, R = H, Ph; E = As, R = H, Ph] were prepared from the oxidative addition of REH_2 to $(\text{silox})_3\text{Ta}$.¹⁶

Hydrogenolysis of $[\text{BDI}^{\text{P}^{\text{T}}}] \text{Ta}(\text{=NBu}^{\text{t}})\text{Me}_2$ ($[\text{BDI}^{\text{P}^{\text{T}}}]^- = \text{bis-N,N'}(2,6\text{-Pr}_2\text{C}_6\text{H}_3)_2\beta$ -diketiminato $\kappa^2\text{-ArNC(Me)CHC(Me)NAr}$, Ar = 2,6-Pr₂C₆H₃) produced two diastereotopic isomers of cyclometallated tantalum hydride (**7**).¹⁷ Refluxing (**7**) resulted in the elimination of H₂ to make $[\kappa^4\text{-C}_2\text{N}_2\text{C}_2\text{-BDI}^{\text{P}^{\text{T}}}] \text{Ta}(\text{=NBu}^{\text{t}})$ (**8**).¹⁷

Ar = 2,6-Prⁱ₂-C₆H₃

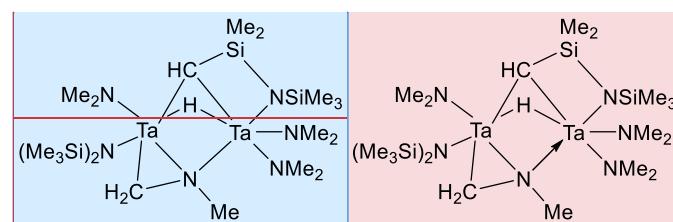


(8)

Reaction of $\text{Ta}[\text{O}_2\text{-3,3'}\text{-(SiMe}_3)_2\text{C}_{20}\text{H}_{10}]_2\text{(Ph)}$ (**9a**) with diisobutylaluminum hydride yielded $(\text{R},\text{R})\text{-Ta}[\text{O}_2\text{-3,3'}\text{-(SiMe}_3)_2\text{C}_{20}\text{H}_{10}]_2\text{(H)}$ (**9b**).¹⁸

Commented [MDJ6]: Scheme shows only 9, please define R = Ph, for 9a and H for 9b in scheme.

Commented [XZ(7R6): They are now added in the scheme



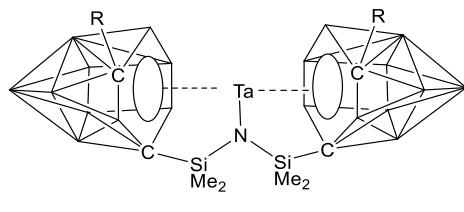
$\text{X} = \text{Ph, 9a; H, 9b}$

(**9**)

$(\text{silox})_3\text{Ta}(\text{H})(\eta^3\text{-BH}_4)$ was prepared from a two-step process involving the exposure of $(\text{silox})_3\text{Ta}$ to H_2 to give $(\text{silox})_3\text{TaH}_2$, followed by the reaction of $(\text{silox})_3\text{TaH}_2$ with $\text{BH}_3\text{-thf}$.¹⁹

$(\text{Me}_2\text{N})_2[(\text{Me}_3\text{Si})_2\text{N}]\text{Ta}(\mu\text{-H})_2(\mu\text{-C-}\eta^2\text{-CHSiMe}_2\text{NSiMe}_3)\text{Ta}(\text{NMe}_2)_2$ (**10**) was prepared, which is discussed in Section 2.3.1.²⁰

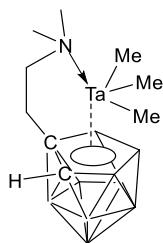
Commented [MDJ8]: Why is there a dative bond for the amide? Seems something is incorrect here. Just draw the regular bond


Commented [XZ(9R8): Corrected

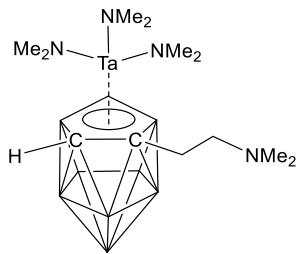
Field Code Changed

(10)

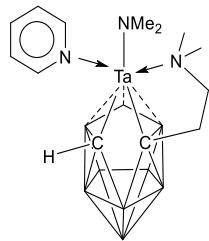
2.2. Selected Boron-based Ligands


Dicarborane amide complexes $[(c\text{loso-2-R-2,3-C}_2\text{B}_{10}\text{H}_{10})\text{Me}_2\text{Si}]_2\text{NTa}$ (R = Me, Ph, **11**) were afforded from the reaction of TaCl_5 with $[(c\text{loso-1-R-1,2-C}_2\text{B}_{10}\text{H}_{10})\text{Me}_2\text{Si}]_2\text{NH}$ (R = Me, Ph) and sodium metal.²¹ With MAO (methylaluminoxane) as a co-catalyst, these complexes were found to be active catalysts in ethylene polymerization.²¹

R = Me, Ph

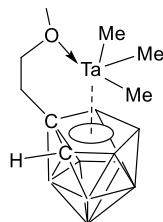

(11)

Refluxing $(\text{Me}_2\text{NHCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{11}$ with excess NaH in THF, followed by the addition of TaMe_3Cl_2 in toluene at room temperature, afforded $[\eta^1:\eta^5-(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{TaMe}_3$ (**12**).²²



(12)

Treatment of $\text{Ta}(\text{NMe}_2)_5$ with $(\text{Me}_2\text{NHCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{11}$ gave the product $[\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{Ta}(\text{NMe}_2)_3$ (13).²³ When (13) was heated in the presence of py, the reaction is proposed to go through a Ta(III) intermediate before an intramolecular electron-transfer from the metal to the carborane ligand led to the final formation of $[\eta^1\text{:}\eta^6\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{Ta}(\text{NMe}_2)(\text{py})$ (14).²³



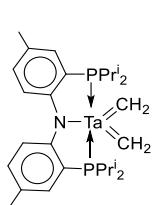
(13)

(14)

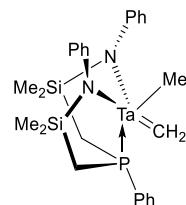
When $[(\text{MeOCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{Na}_2$ reacted with $\text{Me}_3\text{TaCl}_2\text{Me}_3\text{Cl}_2$, the reaction gave $[\eta^1\text{:}\eta^5\text{-}(\text{MeOCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{TaMe}_3$ (15).²⁴

(15)

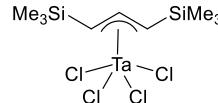
2.3. Selected Carbon-Based Ligands


In this section, alkyl, cyclopentadienyl, acyl, iminoacyl and related ligands are generally not discussed.

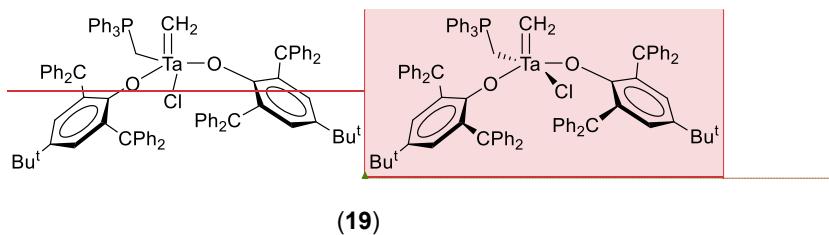
2.3.1. Alkylidene, η^2 -allyl, allene, vinyl, and alkene ligands


Alkyl complex $[\text{PNP}]\text{TaMe}_4$ was thermolytically and/or photochemically converted to the bis(methylidene) $[\text{PNP}]\text{Ta}(\text{=CH}_2)_2$ (**16**, $[\text{PNP}]^- = \text{N}(2\text{-PPri}_2\text{-4-Me-C}_6\text{H}_3)_2^-$).²⁵

$[\text{NPN}^{\text{Ph}}]\text{Ta}(\text{=CH}_2)\text{Me}$ ($[\text{NPN}^{\text{Ph}}]^{2-} = \text{PhP}(\text{CH}_2\text{SiMe}_2\text{NPh})_2^{2-}$, **17**) was ~~also~~ made from irradiation of $[\text{NPN}^{\text{Ph}}]\text{TaMe}_3$ in toluene.²⁶

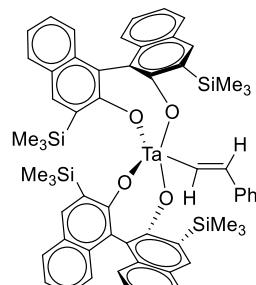

As discussed in Section 2.1, C-H activation of $(\text{Me}_2\text{N})_3\text{Ta}(\eta^2\text{-CH}_2\text{SiMe}_2\text{NSiMe}_3)$ in its reaction with H_3SiPh gave alkylidene/hydride complex $(\text{Me}_2\text{N})_2[(\text{Me}_3\text{Si})_2\text{N}]\text{Ta}(\mu\text{-H})_2(\mu\text{-C-}\eta^2\text{-CHSiMe}_2\text{NSiMe}_3)\text{Ta}(\text{NMe}_2)_2$ (**10**).²⁰

(16)


(17)

(18)

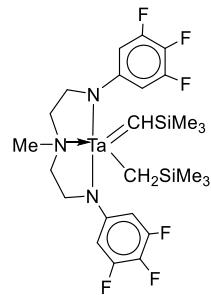
$\text{Me}_3\text{SiCH=CHCH}(\text{SiMe}_3)(\text{SnMe}_3)$ reacted neatly with TaCl_5 yielding $[\eta^3\text{-1,3-}(\text{SiMe}_3)_2\text{C}_3\text{H}_3]\text{TaCl}_4$ (**18**).²⁷ The methylenide complex $(\text{Ar}'\text{O})_2\text{Ta}(\text{=CH}_2)(\text{Cl})(\text{CH}_2\text{PPh}_3)[(\text{OAr}')^- = 2,6\text{-bis(diphenylmethyl)}\text{-4-tert-butylphenoxide}^-]$, **19**] was produced by reaction of H_2CPPPh_3 with $(\text{Ar}'\text{O})_2\text{TaMeCl}_2$.²⁸ The deuterated alkyl complex $\text{Ta}(\text{CD}_2\text{Bu}^t)_5$ converts


to alkylidene ($\text{Bu}^t\text{CD}_2)_3\text{Ta}=\text{CDBu}^t$ over time.²⁹ KIE studies on the conversion of $\text{Ta}(\text{CD}_2\text{Bu}^t)_5$ to $(\text{Bu}^t\text{CD}_2)_3\text{Ta}=\text{CDBu}^t$ and $\text{Ta}(\text{CH}_2\text{Bu}^t)_5$ to archetypical alkylidene ($\text{Bu}^t\text{CH}_2)_3\text{Ta}=\text{CHB}u^t$ gave a KIE = 14.1(0.8).²⁹

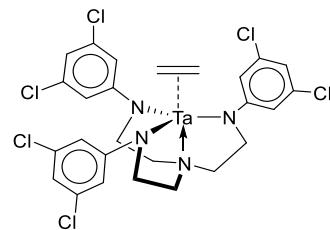
Commented [XZ(10): Added Stereochemistry]

Field Code Changed

Addition of $\text{RC}\equiv\text{CH}$ ($\text{R} = \text{Me, Ph}$) to $(R,R)\text{-Ta}[\text{O}_2\text{-}3,3'\text{-(SiMe}_3)_2\text{C}_{20}\text{H}_{10}]_2(\text{H})$ (**9b**) yielded $(R,R)\text{-Ta}[\text{O}_2\text{-}3,3'\text{-(SiMe}_3)_2\text{C}_{20}\text{H}_{10}]_2[E\text{-CH=C(H)Ph}]$ (**20**) and isomers $(R,R)\text{-Ta}[\text{O}_2\text{-}3,3'\text{-(SiMe}_3)_2\text{C}_{20}\text{H}_{10}]_2[Z\text{-C(H)=C(H)Me}]$ and $(R,R)\text{-Ta}[\text{O}_2\text{-}3,3'\text{-(SiMe}_3)_2\text{C}_{20}\text{H}_{10}]_2[\text{C(Me)=CH}_2]$.¹⁸



(20)

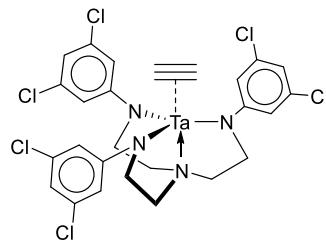

Thermolysis of $(\text{silox})_3\text{Ta}(\text{olefin})$ [$\text{silox}^- = \text{Bu}^t_3\text{SiO}^-$; $\text{olefin} = \text{C}_2\text{H}_4, \text{C}_2\text{H}_3\text{Me}$,

$\text{C}_2\text{H}_3\text{Et}$, $^{\circ}\text{C}_5\text{H}_8$, $^{\circ}\text{C}_6\text{H}_{10}$, $\text{H}_2\text{CCHC}_6\text{H}_4-p\text{-X}$ ($\text{X} = \text{H, OMe, CF}_3$) yielded two Ta(V) species: the “tuck-in” alkyls $(\text{silox})_2\text{Ta}(\text{R})(\kappa^2\text{-O,C-OSiBu}^{\text{t}}\text{CMe}_2\text{CH}_2)$ [$\text{R} = \text{Et, Pr}^n, \text{Bu}^n, ^{\circ}\text{Pen, }^{\circ}\text{Hex, CH}_2\text{CH}_2\text{C}_6\text{H}_4-p\text{-X}$ ($\text{X} = \text{H, OMe, F}^{\text{a}}$)], and $(\text{silox})_3\text{Ta}(\text{alkylidene})$ [alkylidene = $=\text{CHMe}$, $=\text{CHEt}$, $=\text{CHPr}^n$, $=^{\circ}\text{C}_5\text{H}_8$, $=^{\circ}\text{C}_6\text{H}_{10}$, $=\text{CHCH}_2\text{C}_6\text{H}_4-p\text{-X}$ ($\text{X} = \text{H, OMe, F}^{\text{a}}$)].¹⁰ During its thermolysis, the norbornene derivative, $(\text{silox})_3\text{Ta}(\eta^2\text{-}^{\circ}\text{C}_7\text{H}_{10})$ converted to the norbornylidene $(\text{silox})_3\text{Ta}=\text{C}_7\text{H}_{10}$.¹⁰ The “tuck-in” alkyl $(\text{silox})_2(2\text{-norbornyl})\text{Ta}(\kappa^2\text{-O,C-OSiBu}^{\text{t}}\text{CMe}_2\text{CH}_2)$ was not observed. Kinetic isotope effects (KIEs) were studied on a few of these systems.¹⁰ Olefin substitution and association chemistry of adducts $(\text{silox})_3\text{Ta}(\text{olefin})$ [olefin = C_2H_4 (as $^{13}\text{C}_2\text{H}_4$ or C_2D_4), $\text{C}_2\text{H}_3\text{Me}$, $\text{C}_2\text{H}_3\text{Et}$, *cis*- C_4H_8 , $\text{iso-C}_4\text{H}_8$, $\text{C}_2\text{H}_3\text{Ph}$, $^{\circ}\text{C}_5\text{H}_8$, $^{\circ}\text{C}_6\text{H}_{10}$, $^{\circ}\text{C}_7\text{H}_{10}$ (*norbornene*)] were investigated via kinetic studies and theoretical calculations.³⁰ Reactions of both $(\text{silox})_2\text{Ta}(\text{pyrr})(\eta^2\text{-C}_2\text{H}_4)$ with ethylene and $(\text{silox})_2\text{Ta}(\text{pyrr})\text{Cl}_2$ with excess ethylene and Na/Hg gave $(\text{silox})_2\text{Ta}(\text{pyrr})[\kappa^2\text{-C,C-CH}_2(\text{CH}_2)_2\text{CH}_2]$.³¹

$[\text{F}_3\text{N}_2\text{NMe}]\text{Ta}(\text{=CHSiMe}_3)(\text{CH}_2\text{SiMe}_3)$ ($[\text{F}_3\text{N}_2\text{NMe}]^{2-} = [(3,4,5\text{-F}_3\text{C}_6\text{H}_2\text{NCH}_2\text{CH}_2)_2\text{NMe}]^{2-}$, **21**) was the product of the reaction of $\text{Me}_3\text{SiCH}_2\text{MgCl}$ with $[\text{F}_3\text{N}_2\text{NMe}]\text{TaCl}_3$.³² Another alkylidene, $[\text{F}_3\text{N}_2\text{NMe}]\text{Ta}(\text{=CHBu}^{\text{t}})\text{Me}$, was synthesized from treatment of $[\text{F}_3\text{N}_2\text{NMe}]\text{Ta}(\text{CH}_2\text{Bu}^{\text{t}})\text{Cl}_2$ with MeMgCl .³² $[\text{F}_3\text{N}_2\text{NMe}]\text{Ta}(\eta^2\text{-C}_2\text{H}_4)\text{Et}$ was produced from EtMgBr and $[\text{F}_3\text{N}_2\text{NMe}]\text{TaCl}_3$.³² Treatment of $[\text{Cl}_2\text{N}_2\text{NMe}]\text{TaCl}_2$ ($[\text{Cl}_2\text{N}_2\text{NMe}]^{3-} = [(3,5\text{-Cl}_2\text{C}_6\text{H}_3\text{NCH}_2\text{CH}_2)_3\text{N}]^{3-}$) with EtMgCl yielded $[\text{Cl}_2\text{N}_2\text{NMe}]\text{Ta}(\eta^2\text{-C}_2\text{H}_4)$ (**22**).³²

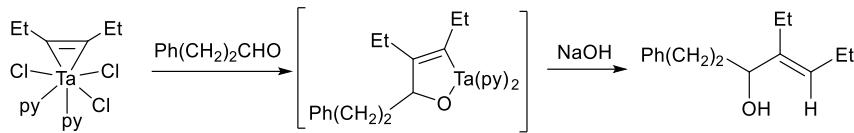
(21)

(22)

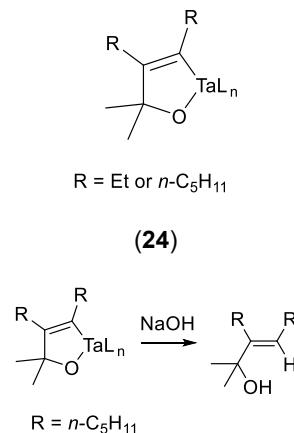

Addition of Ph_3PCH_2 to $(\text{silox})_3\text{Ta}$ yielded $(\text{silox})_3\text{Ta}=\text{CH}_2$ and phosphonio alkylidyne $(\text{silox})_3\text{Ta}=\text{C}\equiv\text{PPh}_3$.¹⁶

2.3.2. Alkylidyne, η^3 -allyl, and alkyne ligands

Many Ta atoms in the complexes in this section could be considered to be at the III oxidation state by the Dewar-Chatt bonding model but at the V oxidation state by the metalacyclopene bonding model.³³

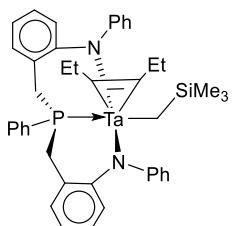

Reaction of $[\text{Cl}_2\text{N}_2\text{NMe}]\text{TaCl}_2$ ($[\text{Cl}_2\text{N}_2\text{NMe}]^{3-} = [(\text{3,5-Cl}_2\text{C}_6\text{H}_3\text{NCH}_2\text{CH}_2)_3\text{N}]^{3-}$) with $\text{H}_2\text{C}=\text{CHMgBr}$ gave $[\text{Cl}_2\text{N}_2\text{NMe}]\text{Ta}(\eta^2\text{-C}_2\text{H}_2)$ (23).³²

Commented [XZ(11): Some of these complexes (in fact nearly all alkyne complexes) are Ta(III) by a different count. I added this paragraph to clarify.]

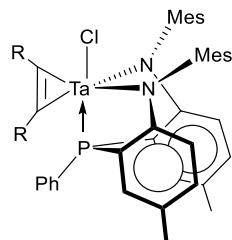


(23)

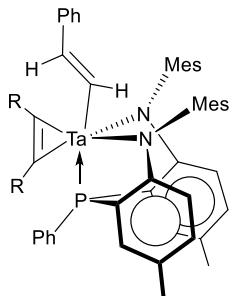
$\text{TaCl}_3(\eta^2\text{-RC}\equiv\text{CR}')(dme)$ ($\text{R} = \text{R}' = \text{Et}$; $\text{R} = \text{R}' = n\text{-C}_5\text{H}_{11}$; $\text{R} = \text{Ph}$, $\text{R}' = \text{Me}$; $\text{R} = \text{R}' = \text{Ph}$; $\text{R} = \text{R}' = \text{SiMe}_3$; $\text{R} = \text{SiMe}_3$, $\text{R}' = \text{Me}$; $\text{R} = \text{Bu}^t$, $\text{R}' = \text{Me}$; $\text{R} = \text{SiPr}_3^t$, $\text{R}' = \text{Me}$) were prepared from a one-pot reaction of TaCl_5 , alkyne, and Zn powder in a mixed $\text{dme}/\text{toluene}$ solvent.^{34, 35} When the dme complexes were reacted with pyridine, $\text{TaCl}_3(\eta^2\text{-RC}\equiv\text{CR}')(py)_2$ ($\text{R} = \text{R}' = \text{Et}$; $\text{R} = \text{R}' = n\text{-C}_5\text{H}_{11}$; $\text{R} = \text{Ph}$, $\text{R}' = \text{Me}$; $\text{R} = \text{R}' = \text{Ph}$; $\text{R} = \text{R}' = \text{SiMe}_3$; $\text{R} = \text{SiMe}_3$, $\text{R}' = \text{Me}$) were formed.^{34, 35} Thermodynamic and kinetic studies were conducted on the other alkyne exchange reactions with dme and py complexes.³⁵ Alkyne exchange reactions were also used to synthesize $\text{Ta}(\text{PhC}\equiv\text{CR})(dme)$ ($\text{R} = \text{COOMe}$, CONMe_2).³⁵ $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(dme)$ was ~~also~~ formed when the solids of the reaction of TaCl_5 with 3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (btcd) were mixed with a solution containing toluene, dme , and 3-hexyne.³⁶ When using this method, $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(dme)$ could not be isolated from the product mixture containing other products, $(\text{TaCl}_3)_x(dme)_y$ and hexamethylbenzene which was from alkyne trimerization.³⁶ Reactivities of $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(dme)$, $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})\text{py}_2$, $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(\text{bipy})$ and $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(\text{tmeda})$ towards 3-phenylpropanal was also investigated.³⁴ Only $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(\text{py})_2$ reacted with aldehyde $\text{Ph}(\text{CH}_2)_2\text{CHO}$ to give an allylic alcohol (Scheme 1).³⁴ NMR-scale reactions of aldehydes RCHO with $\text{TaCl}_3(\text{EtC}\equiv\text{CEt})(\text{py})_2$ and $\text{TaCl}_3[\eta^2\text{-}(n\text{-C}_5\text{H}_{11})\text{C}\equiv\text{C}(n\text{-C}_5\text{H}_{11})](\text{py})_2$ gave oxatantalacyclopentene complexes (**24**).³⁴ The L portions of these complexes are still unclear. Hydrolysis of the oxatantalacyclopentene product formed from $\text{TaCl}_3[(n\text{-C}_5\text{H}_{11})\text{C}\equiv\text{C}(n\text{-C}_5\text{H}_{11})](\text{py})_2$ affords an allylic alcohol (Scheme 2).³⁴

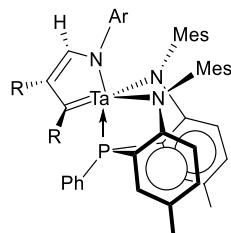


Scheme 1



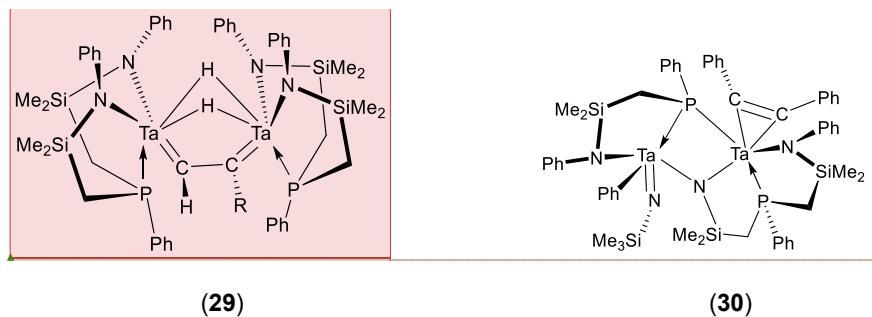
Scheme 2


$[\text{NPN}']\text{Ta}(\text{CH}_2\text{SiMe}_3)(\eta^2\text{-EtC}\equiv\text{CEt})$ ($[\text{NPN}']^{2-} = \text{PhP}(\text{CHC}_6\text{H}_4\text{-o-NPh})_2^{2-}$, **25**) was synthesized from the reaction of $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(\text{dme})$ with the lithium salt $[\text{NPN}']\text{Li}_2$ (dioxane).¹¹ Addition of $[\text{NPN}^*]\text{K}_2(\text{thf})_{0.5}$ ($[\text{NPN}^*]^{2-} = \text{PhP}[2\text{-(N-mesyl)}\text{-5-Me-C}_6\text{H}_3]_2^{2-}$) to $\text{TaCl}_3(\text{dme})(\eta^2\text{-RC}\equiv\text{CR})$ ($\text{R} = \text{Et, SiMe}_3$) yielded $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})\text{Cl}$ (**26**).^{12, 13, 37} When phenylacetylene was added to $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})(\text{H})$, $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})(\text{CH}=\text{CHPh})$ (**27**) was synthesized.¹² Reaction of $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})\text{H}$ (**3**) with $\text{ArN}\equiv\text{C}$ ($\text{Ar} = 2,6\text{-Me}_2\text{C}_6\text{H}_3$) gave (**28**).¹²


(25)

(26)

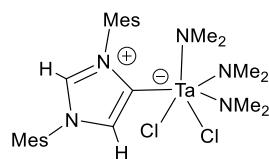
(27)


(28)

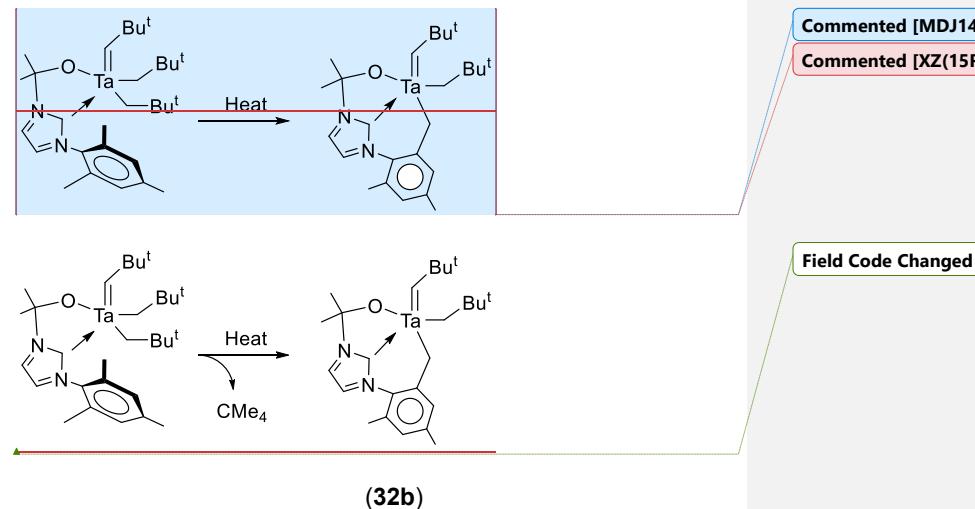
Commented [XZ(12): 27 and 28 were reversed. Fixed now.]

Heterobimetallic complex $\text{TaCl}_3(\text{C}_4\text{H}_2\text{Bu}^{\text{t}}_2)\text{Ni}(\text{cod})$ was synthesized by adding 1 equiv $\text{Ni}(\text{cod})_2$ to $\text{TaCl}_3(\text{C}_4\text{H}_2\text{Bu}^{\text{t}}_2)$.³⁸ Addition of PMe_2Ph , 1,2-bis(diphenylphosphino)ethane (dppe), 1,2-bis(diethylphosphino)ethane (depe), and/or 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr^{IPr}) to $\text{TaCl}_3(\text{C}_4\text{H}_2\text{Bu}^{\text{t}}_2)\text{Ni}(\text{cod})$ led to the formation $\text{TaCl}_3(\text{C}_4\text{H}_2\text{Bu}^{\text{t}}_2)\text{Ni}(\text{PMe}_2\text{Ph})_2$, $\text{TaCl}_3(\text{C}_4\text{H}_2\text{Bu}^{\text{t}}_2)\text{Ni}(\text{dppe})$, $\text{TaCl}_3(\text{C}_4\text{H}_2\text{Bu}^{\text{t}}_2)\text{Ni}(\text{depe})$, and/or $\text{TaCl}_3(\text{C}_4\text{H}_2\text{Bu}^{\text{t}}_2)\text{Ni}(\text{IPr}^{\text{IPr}})$, respectively. DFT calculations were reported completed for the complex $\text{TaCl}_3(\text{C}_4\text{H}_2\text{Bu}^{\text{t}}_2)\text{Ni}(\text{IPr}^{\text{IPr}})$.³⁸

Complexes $\{[\text{NPN}^{\text{Ph}}]\text{Ta}\}_2(\mu\text{-RCCH})(\mu\text{-H})_2$ ($[\text{NPN}^{\text{Ph}}]^{2-} = \text{PhP}(\text{CH}_2\text{SiMe}_2\text{NPh})_2^{2-}$; R = Ph, Pr^n , Bu^t ; **29**) were produced via the reactions of $([\text{NPN}^{\text{Ph}}]\text{Ta})_2(\mu\text{-H})_4$ with terminal

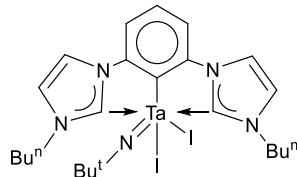

alkynes.³⁹ In low pressure environments, $([NPN^{Ph}]Ta)_2(\mu\text{-PhCCH})(\mu\text{-H})_2$ lost H_2 to form $([NPN^{Ph}]Ta)_2(\mu\text{-CH})(\mu\text{-CPh})$.³⁹ Reaction of $\{[PhP(CH_2SiMe_2NPh)_2]Ta\}_2(\mu\text{-H})_4$ and-with $PhC\equiv CPh$ gave the asymmetric complex (30).³⁹

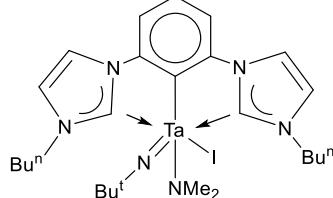
2.3.3. *N*-Heterocyclic carbene (NHC) ligands


$TaX_5(\text{IPr})$ [$X = F, Cl, Br$; $\text{IPr} = 1,3\text{-bis}(2,6\text{-diisopropylphenyl})\text{imidazol-2-ylidene}$]

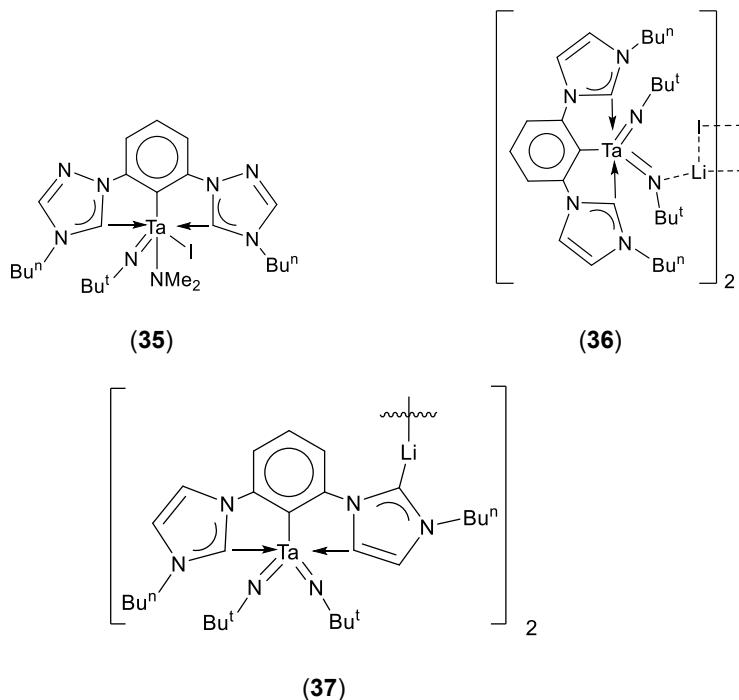
were prepared from TaX_5 and free IPr in equimolar portions.^{40, 41} $[(\text{IMes})_2\text{TaCl}_4](\text{TaCl}_6)$ ($\text{IMes} = 1,3\text{-dimesitylimidazol-2-ylidene}$) was afforded from the reaction of TaCl_5 with IMes at low temperature.⁴¹ Complexes $\text{LTaF}_3(\text{NMe}_2)_2$ ($\text{L} = \text{IMes}$, $\text{SIMes} = 1,3\text{-dimesityl-4,5-dihydroimidazol-2-ylidene}$) were prepared via the reactions of $\text{L}\cdot\text{HBF}_4$ with $\text{Ta}(\text{NMe}_2)_5$.⁴² The salt $[\text{IMes}-\text{H}\cdots\text{IMes}][\text{fac-TaCl}_3(\text{NMe}_2)_3]$ was formed from $\text{IMes}\cdot\text{HCl}$ with $\text{Ta}(\text{NMe}_2)_5$ followed by a pentane extraction.⁴² If the residue was extracted followed by a slow evaporation, crystals of $(\alpha\text{IMes})\text{TaCl}_2(\text{NMe}_2)_3$ (31) formed.⁴² A more direct route to synthesize $(\alpha\text{IMes})\text{TaCl}_2(\text{NMe}_2)_3$ was found by reacting $\text{TaCl}_2(\text{NMe}_2)_3$ with IMes .⁴²

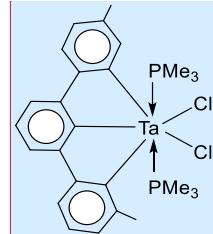
(31)


Complexes $\text{Ta}(=\text{X}-\text{Bu}^t)(\text{L})(\text{CH}_2\text{Bu}^t)_2$ ($\text{X} = \text{N, CH}$) (**32a,b**) were prepared from the reactions of $\text{Ta}(=\text{XBu}^t)(\text{CH}_2\text{Bu}^t)_3$ with HL [1-mesityl-3-(2-hydroxyisobutyl)imidazol-2-ylidene].⁴³ If the reaction were heated or left at room temperature for a couple of days, one of the ortho-methyl groups in the NHC mesityl substituent in $\text{Ta}(\text{=CHBu}^t)(\text{L})(\text{CH}_2\text{Bu}^t)_2$ underwent C-H bond activation to form $[\text{Ta}(\text{L}^*)(\text{=CHBu}^t)(\text{CH}_2\text{Bu}^t)]$ (Scheme 3).⁴³


Scheme 3

2.3.4. CCC pincer ligands


When 1.1 equiv of $\text{Ta}(\text{NBu}^t)(\text{NMe}_2)_3$ was combined with 1,3-bis(3-*n*-butylimidazol-1-yl)benzene diiodide ($[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{I}_2$), a mixture of bis(NHC)-CCC imido products, $[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{Ta}(\text{NBu}^t)\text{I}_2$ (**33**) and $[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{Ta}(\text{NBu}^t)(\text{NMe}_2)\text{I}$ (**34**) were observed.⁴⁴ When $\text{Ta}(\text{NBu}^t)(\text{NMe}_2)_3$ was added in excess to ($[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{I}_2$), $[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{Ta}(\text{NBu}^t)(\text{NMe}_2)\text{I}$ (**34**) was the sole product. A similar approach was used to make pure $[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{Ta}(\text{NBu}^t)(\text{NMe}_2)\text{I}$ (**35**) using $\text{Ta}(\text{NBu}^t)(\text{NMe}_2)_3$ and 1,3-bis(3-*n*-butyltriazol-1-yl)benzene diiodide ($[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{I}_2$).⁴⁴ The dimeric ($[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{Ta}(\text{NBu}^t)_2\cdot\text{LiI}_2$) (**36**) was afforded by the treatment of (**34**) with Bu^tNHLi .⁴⁵ This dimer was found to have catalytic activity for oxidative amination reactions.^{45, 46} After a few months, ($[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{Ta}(\text{NBu}^t)_2\cdot\text{LiI}_2$) was found to transform to an asymmetric CCC-NHDC/NHC (NHDC = anionic N-heterocyclic dicarbene, **37**).⁴⁶ Heating ($[\text{Bu}^t\text{C}^i\text{C}^i\text{C}^{\text{Bu}}]\text{Ta}(\text{NBu}^t)_2\cdot\text{LiI}_2$) for a few days produced (**34**) instead of the desired product (**37**).⁴⁶ Reaction (**34**) with excess LiNHBu^t , followed by heating, gave an oxo product (**129**) in Section 2.67.9.⁴⁶


(**33**)

(**34**)

NMR-scale reactions of $[\text{Ar}^{\text{Tol}2}]\text{TaMe}_3\text{Cl}$ ($[\text{Ar}^{\text{Tol}2}]^- = 6\text{-di-}p\text{-tolylphenyl}$) containing a CCC-pincer ligand with PMe_3 or $\text{Ta}(\text{PMe}_3)_2\text{Me}_3\text{Cl}_2$ with $[\text{Ar}^{\text{Tol}2}]\text{Li}$ both yielded $[\kappa^3\text{-Ar}^{\text{Tol}2}]\text{Ta}(\text{PMe}_3)_2\text{MeCl}$ (**38**; $\text{Tol}^* = \text{C}_6\text{H}_3\text{Me}$).⁴⁷ $[\kappa^3\text{-Ar}^{\text{Tol}2}]\text{Ta}(\text{PMe}_3)_2\text{Cl}_2$ could be made from the reaction of ZnCl_2 with $[\kappa^3\text{-Ar}^{\text{Tol}2}]\text{Ta}(\text{PMe}_3)_2\text{MeCl}$.⁴⁷

(38)

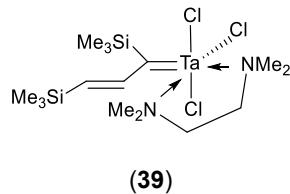
Commented [MDJ16]: Should improve this drawing, ipso C, are bent. Are these like that in the X-ray structure? A lot of strain?

Commented [XZ(17R16)]: Done

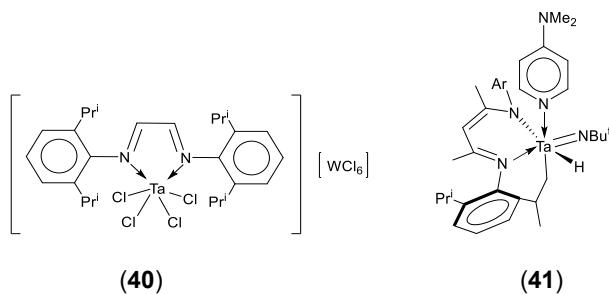
2.4. Selective Silicon-Based Ligands

Ta[Si(SiMe₃)₃]₂(NMe₂)₃ and Ta(SiBu^tPh₂)₂(NMe₂)₃ were synthesized via addition of Li(thf)₃Si(SiMe₃)₃ or Li(thf)₂(SiBu^tPh₂), respectively, to TaCl₂(NMe₂)₃.⁴⁸ When TaCl(SiBu^tPh₂)(NMe₂)₃ was treated with Li(thf)₃Si(SiMe₃)₃, Ta[Si(SiMe₃)₃](SiBu^tPh₂)(NMe₂)₃ formed.⁴⁸ Ta[Si(SiMe₃)₃](SiBu^tPh₂)(NMe₂)₃ and Ta(SiBu^tPh₂)₂(NMe₂)₃ were found to be thermally unstable and kinetic studies on the decomposition of these complexes were conducted.^{48, 49}

Commented [XZ(18)]: This heading was missed. There are 2 section 2.4. I have renumbered the sections after this one


2.45. Nitrogen-Based Ligands

2.45.1. Neutral ligands


Sr(HF)₃(TaF₆)₂ reacted with liquid NH₃ to give eight-coordinate TaF₅(NH₃)₃ with a square antiprismatic structure.⁵⁰ [TaF₄(py)₄](TaF₆) and [TaF₄(2,2'-bipy)₂](TaF₆) were produced from addition of the neutral donor ligands to TaF₅ via ligand promoted self-ionization.⁵¹

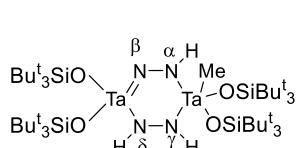
Treatment of [n³-C₃H₃(SiMe₃)₂-1,3]TaCl₄ with NH₂(CH₂)₄NH₂ (tmEDA) led to the formation of the allyl [Me₃SiCH=CHC(SiMe₃)=]TaCl₃(tmEDA) (39).²⁷ The tmEDA ligand is unsymmetrically bonded to the Ta center. The Ta-N bond *trans* to the alkylidene ligand

is significantly longer than the Ta-N bond *trans* to a chloride ligand.²⁷

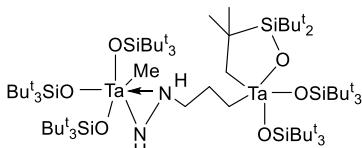
Oxidation of $[\text{DAD}^{\text{Dip}}]\text{TaCl}_4$ (DAD = 1,4-diaza-1,3-dienes or α -diimines; $\text{DAD}^{\text{Dip}} = \text{ArN=CHCH=NAr}$; Ar = 2,6- $\text{Pr}^2\text{C}_6\text{H}_3$) with WCl_6 yielded $([\text{DAD}^{\text{Dip}}]\text{TaCl}_4)(\text{WCl}_6)$ (**40**).⁵² $([\text{DAD}^{\text{Dip}}]\text{TaBr}_4)(\text{TaBr}_6)$ was made from TaBr_5 and DAD^{Dip} .⁵³ Addition of 4-dimethylaminopyridine (dmap) to (**7**) yielded octahedral complex (**41**).¹⁷

The dme ligand of diphenylhydrazide $TaCl_3(=NNPh_2)(dme)$ was found to be labile. Treatment of this complex with pyridine, tmeda, 2,2'-bipyridine, or thf gave $TaCl_3(=NNPh_2)(L)$ ($L = \text{pyridine}, tmeda, 2,2'\text{-bipyridine}, \text{thf}$).

$\{MeN[(CH_2)CH_2N(SiMe_3)_2]\}Ta(=NNPh_2)(py)_n$ (BArF₂₄) (n = 1, 2) were produced when $[k^3\text{-MeN}[(CH_2)CH_2N(SiMe_3)_2]]TaCl(=NNPh_2)$ was treated with Na(BArF₂₄) (BArF₂₄⁻ =


Commented [XZ(19): I've deleted one "layer" of parenthesis, making $\kappa^3\text{-MeN}[(\text{CH}_2)_2\text{N}(\text{SiMe}_3)]_2 \rightarrow [\kappa^3\text{-MeN}(\text{CH}_2\text{CH}_2\text{NSiMe}_3)]_2$.

$\text{B}[3,5-(\text{CF}_3)_2\text{C}_6\text{H}_3]_4^-$) and pyridine.⁵⁴ The bispyridine complex was ~~projected to be a~~ decomposition product of the monopyridine complex.⁵⁴ Treatment of $\text{Ta}(=\text{NBu}^l)\text{Cl}_3\text{py}_2$ with tmeda gave $\text{Ta}(=\text{NBu}^l)\text{Cl}_3(\text{tmeda})$.⁵⁵


Adduct $\text{TaCl}_5(4\text{-Bu}^l\text{py})$ was formed from the addition of 4-Bu^lpy to TaCl_5 .⁵⁶

2.45.2. Amide ligands

Exposure of hydrazine ~~or and~~ N-amino-2-methylaziridine to $(\text{silox})_3\text{Ta}=\text{CH}_2$ afforded $(\text{silox})_3(\text{Me})\text{TaNHNNH}_2$ and $(\text{silox})_3(\text{Me})\text{TaNH}(-^{\circ}\text{NCHMeCH}_2)$, respectively.¹⁶ These complexes were precursors to $[(\text{silox})_2\text{TaMe}](\mu\text{-N}_\alpha\text{HN}_\beta)(\mu\text{-N}_\gamma\text{HN}_\delta\text{H})[\text{Ta}(\text{silox})_2]$ (42) and $[(\text{silox})_3\text{MeTa}](\mu\text{-}\eta^2\text{-N,N:}\eta^1\text{-C-NHNCH}_2\text{CH}_2\text{CH}_2)\text{Ta}(\kappa\text{-O,C-OSiBu}^t_2\text{CMe}_2\text{CH}_2)(\text{silox})_2$ (43), respectively.¹⁶

(42)

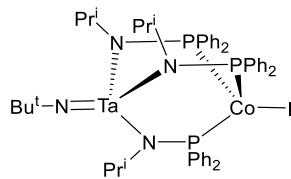
(43)

Reaction of $(\text{Me}_2\text{N})_3\text{TaCl}_2$ with 1 equiv of $\text{LiN}(\text{SiMe}_3)_2$ gave a mixed amide complex $(\text{Me}_2\text{N})_3\text{Ta}(\text{Cl})[\text{N}(\text{SiMe}_3)_2]$ which, in the solid state, adopted a distorted trigonal bipyramidal geometry with the $-\text{N}(\text{SiMe}_3)_2$ and $-\text{Cl}$ ligands in the equatorial and axial positions, respectively.⁵⁷ Studies of reactions of $\text{TaCl}(\text{NMe}_2)_4$ with LiNR_2 ($\text{R} = \text{Et}$, SiMe_3) suggest the presence of an equilibrium among $\text{TaCl}(\text{NMe}_2)_4$, $\text{Ta}(\text{NMe}_2)_5$ and $\text{Ta}_2(\mu\text{-Cl})_2(\text{NMe}_2)_6\text{Cl}_2$: $2 \text{TaCl}(\text{NMe}_2)_4 \rightleftharpoons \text{Ta}(\text{NMe}_2)_5 + \frac{1}{2} \text{Ta}_2(\text{NMe}_2)_6\text{Cl}_2(\mu\text{-Cl})_2$.⁵⁸ For

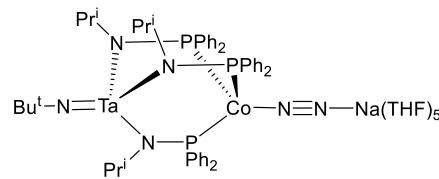
Commented [XZ(20): Corrected ref.]

example, $\text{TaCl}(\text{NMe}_2)_4$ reacted with LiNEt_2 , affording $\text{Ta}(\text{NMe}_2)_5$, $\text{Ta}(\text{NMe}_2)_4(\text{NEt}_2)$, and $\text{Ta}(\text{NMe}_2)_3(\text{NEt}_2)_2$.⁵⁸ Similarly, the reaction of $\text{TaCl}(\text{NMe}_2)_4$ with $\text{LiN}(\text{SiMe}_3)_2$ gives

$\text{Ta}(\text{NMe}_2)_4[\text{N}(\text{SiMe}_3)_2]$, $\text{Ta}(\text{NMe}_2)_5$, and $(\text{Me}_2\text{N})_3\text{TaN}(\text{SiMe}_3)\text{SiMe}_2\text{CH}_2$ (Section 2.910.9).⁵⁸ $\text{Ta}(\text{NMe}_2)_4(\text{NEt}_2)$, $\text{Ta}(\text{NMe}_2)_5$, and $\text{Ta}(\text{NMe}_2)_3(\text{NEt}_2)_2$ are in a slow exchange: $2 \text{Ta}(\text{NMe}_2)_4(\text{NEt}_2) \rightleftharpoons \text{Ta}(\text{NMe}_2)_5 + \text{Ta}(\text{NMe}_2)_3(\text{NEt}_2)_2$ with an equilibrium constant of $K_{\text{eq}} = 0.25(0.01)$ at 90°C .⁵⁸

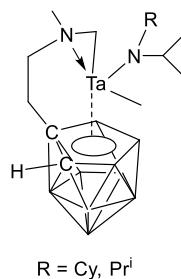

In studying the amine exchange of $\text{Ta}(\text{NMe}_2)_5$ with 5 equiv of *N*-methyl-*p*-toluidine $[(p\text{-tol})\text{MeNH}]$, a mixture of products $[(p\text{-tol})\text{MeN}]\text{Ta}(\text{NMe}_2)_4$ and $[(p\text{-tol})\text{MeN}]_2\text{Ta}(\text{NMe}_2)_3$ were formed.⁵⁹ When 25 equiv of *(p*-tol)*MeNH* was used in the reaction, $[(p\text{-tol})\text{MeN}]_2\text{Ta}(\text{NMe}_2)_3$ and $[(p\text{-tol})\text{MeN}]_3\text{Ta}(\text{NMe}_2)_2$ were made. $[(p\text{-tol})\text{MeN}]_2\text{Ta}(\text{NMe}_2)_3$ and $[(p\text{-tol})\text{MeN}]_3\text{Ta}(\text{NMe}_2)_2$ could also be synthesized via a reaction of $\text{Ta}(\text{NMe}_2)_5$, *(p*-tol)*MeNH*, and 1-octene. Alkylaniline was produced in this reaction as well.⁵⁹

Complexes $(\text{silox})_2\text{TaCl}_2(\text{NR}_2)$ [NR_2 = pyrrolidine (pyrr), piperidine (pip), NMe_2] were made via addition of lithium amides to $(\text{silox})_2\text{TaCl}_3$.³¹ $\text{Cl}_4\text{Ta}(\text{NMePh})(\text{OEt}_2)$ and $\text{Ta}_2\text{Cl}_4(\text{NMePh})_2(\mu\text{-Cl})_2$ were prepared as precursors for hydroaminoalkylation catalysts.⁶⁰


Phosphinoamido-imido complex $(\text{Ph}_2\text{PNPr})_3\text{Ta}=\text{NBu}^t$ was prepared from $\text{LiNPr}^t\text{PPh}_2$ and $\text{Ta}(\text{=NBu}^t)\text{Cl}_3\text{py}_2$.⁶¹ Addition of CoI_2 to $(\text{Ph}_2\text{PNPr})_3\text{Ta}=\text{NBu}^t$ produced the heterobimetallic complex $\text{ICo}(\text{PPh}_2\text{NPr})_3\text{Ta}=\text{NBu}^t$ (**44**). Reaction of $\text{ICo}(\text{PPh}_2\text{NPr})_3\text{Ta}=\text{NBu}^t$ with Na/Hg under N_2 yielded $[(\text{thf})_5\text{Na}][\text{N}_2\text{Co}(\text{Ph}_2\text{PNPr})_3\text{Ta}=\text{NBu}^t]$ (**45**).⁶¹

Commented [MDJ21]: Where did the other iodide from CoI_2 go? Was it reduced off

Commented [XZ(22R21)]: The authors indicated they don't know. The yields are <50%. My guess is $2\text{CoI}_2 \rightarrow \text{Co} + \text{Co}_3$.



(44)

(45)

Treatment of $[\eta^1:\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{TaMe}_3$ (12) with 1 equiv of CyNC **and** or PrNC gave amide $\{\sigma:\eta^1:\eta^5\text{-}[\text{MeN}(\text{CH}_2)\text{CH}_2\text{CH}_2]\text{C}_2\text{B}_9\text{H}_{10}\}\text{Ta}[\text{N}(\text{Pr}^i)\text{R}](\text{Me})$ (R = Cy, Prⁱ; 46).²⁴

(46)

Amide imide complex $\text{Ta}(=\text{NBu}^t)(\text{NHBu}^t)\text{Cl}_2(\text{ppy})_2$ was made via the reaction of TaCl_5 with Bu^tNH_2 in the presence of pyridine.⁶²

2.45.3. Azide and hydroazide ligands

Hepta-coordinated complexes $\text{A}_2[\text{Ta}(\text{N}_3)_7]$ ($\text{A}^+ = \text{PPh}_4^+$, Cs^+) were isolated from the reactions of $\text{Ta}(\text{N}_3)_5$ with AN_3 .⁶³ Preparation of $[\text{TaF}_4(2,2'\text{-bipy})_2][\text{Ta}(\text{N}_3)_6]$ was

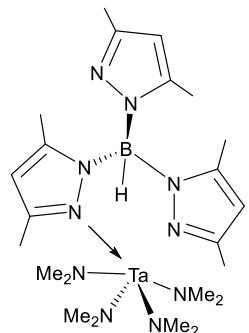
conducted by mixing 2,2'-bipyridine (2,2'-bipy) and TaF_5 , which was followed by addition of 3 equiv of Me_3SiN_3 .⁶⁴ If the molar ratio of of TaF_5 to Me_3SiN_3 was 1:6, the self-ionization product $[\text{Ta}(\text{N}_3)_4(2,2'\text{-bipy})_2][\text{Ta}(\text{N}_3)_6]$ formed.⁶⁴ $[\text{Ta}(\text{N}_3)_4(1,10\text{-phen})_2][\text{Ta}(\text{N}_3)_6]$ could be synthesized via a similar route.⁶⁴ When 3,3'-bipy or 4,4'-bipy was used, even with great excesses of Me_3SiN_3 , only complexes $[\text{Ta}(\text{N}_3)_5]_2(\mu\text{-L})$ ($\text{L} = 3,3'\text{-bipy}, 4,4'\text{-bipy}$) were produced.⁶⁴

Commented [TC23]: Added for clarity

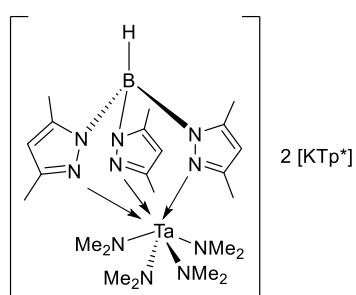
$\text{Ta}_2(\text{NMe}_2)_8(\mu\text{-N}_3)_2$ was synthesized from $\text{TaCl}(\text{NMe}_2)_4$ and NaN_3 .⁶⁵ Reaction of $\text{Ta}_2(\text{NMe}_2)_8(\mu\text{-N}_3)_2$ with formamidine $\text{Pr}^i\text{NC}(\text{H})\text{NHPr}^i$ or *p*-toluidine afforded *fac*- $\text{Ta}(\text{NMe}_2)_3(\eta^1\text{-N}_3)[\text{Pr}^i\text{NC}(\text{H})\text{NPr}^i]$ or $\text{Ta}_3(\text{NMe}_2)_5(\mu\text{-NMe}_2)(\mu\text{-NC}_6\text{H}_4\text{Me}-4)_2(\text{NC}_6\text{H}_4\text{Me}-4)(\mu\text{-N}_3)_2(\eta^1\text{-N}_3)$, respectively.⁶⁵

$\text{TaCl}_3[\text{N}(\text{Pr}^i)\text{NMe}_2]_2$ was synthesized via addition of $\text{LiN}(\text{Pr}^i)\text{NMe}_2$ to TaCl_5 .⁶⁶ $\text{TaCl}(\text{NMe}_2)_3[\text{N}(\text{SiMe}_3)\text{NMe}_2]$ was produced from hydrazinolysis of $\text{TaCl}(\text{NMe}_2)_4$ using $(\text{Me}_3\text{Si})\text{NHNMe}_2$.⁶⁷ $\text{Ta}(\text{NMe}_2)_4[\text{N}(\text{SiMe}_3)\text{NMe}_2]$ was synthesized via metathesis using $\text{TaCl}(\text{NMe}_2)_3[\text{N}(\text{SiMe}_3)\text{NMe}_2]$ and LiNMe_2 .⁶⁷ ALD experiments were conducted using $\text{Ta}(\text{NMe}_2)_4[\text{N}(\text{SiMe}_3)\text{NMe}_2]$ as a precursor to make Ta_2O_5 films.⁶⁷ Treatment of TaCl_5 with tmeda and either 1,1-dimethyl-2-trimethylsilylhydrazine or 1-trimethylsilyl-1-aminopiperidine gave $[\text{Ta}(\text{=NNMe}_2)\text{Cl}_2(\text{NH}_2\text{NMe}_2)(\text{tmeda})]\text{Cl}\cdot\text{CH}_2\text{Cl}_2$ or $\{\text{Ta}(\text{=NNC}_5\text{H}_{10})\text{Cl}_2[\text{NH}_2\text{N}(\text{C}_5\text{H}_{10})]\}(\text{tmeda})\text{Cl}\cdot\text{CH}_2\text{Cl}_2$.⁶⁸ $[\text{Ta}(\text{=NN}(\text{C}_5\text{H}_{10})\text{Cl}_2[\text{NH}_2\text{N}(\text{C}_5\text{H}_{10})]_2]\text{Cl}\cdot[(\text{CH}_2\text{Cl}_2)(\text{C}_6\text{H}_{14})_{0.5}]$ was synthesized in a similar method using TaCl_5 with 1-aminopiperidine and 1-trimethylsilyl-1-aminopiperidine.⁶⁸ Complexes $(\text{dme})\text{TaCl}_3(\text{=NNR}_2)$ [$\text{R}_2 = \text{Ph}_2, \text{C}_{12}\text{H}_8$ (carbazole), (*p*-ClPh)₂, (*p*-BrPh)₂, (*p*-MePh)₂, (*p*-MeOPh)₂]² were prepared from TaCl_5 and the corresponding disubstituted hydrazine H_2NNR_2 .^{54, 69} $\text{Ta}(\text{=NBu}^i)(\text{NR}_2)_2(\text{tdmh})$ ($\text{R} = \text{Me}, \text{Et}$) were made from the

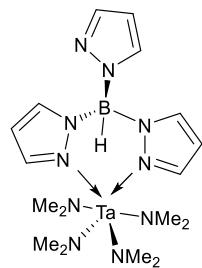
addition of $\text{H}(\text{Me}_3\text{Si})\text{NNMe}_2$ ($\text{Htdmh} = N$ -trimethylsilyl- $N'N'$ -dimethylhydrazine) with $\text{Ta}(\text{=NBu}^t)(\text{NR}_2)_3$.⁷⁰ The ethyl analogue was used for CVD of $\text{TaN}(\text{Si})$ thin films.⁷⁰ $\text{TaCl}_3(\text{tdmh})_2$ was made from the reaction of H-tdmh with $\text{Ta}(\text{=NBu}^t)\text{Cl}_3(\text{py})_2$.⁷¹ Treatment of $\text{Ta}(\text{=NBu}^t)\text{Cl}_3(\text{py})_2$ with 1 equiv of $\text{XMg}(\text{tdmh})$ ($\text{X} = \text{Br}, \text{Cl}$) yielded $\text{Ta}(\text{=NBu}^t)(\text{tdmh})_2\text{X}$.⁷¹ $\text{Ta}(\text{=NBu}^t)(\text{tdmh})_2\text{X}$ was reacted with several amines ($\text{H}_2\text{NC}_6\text{F}_5$) and salts ($\text{KCH}_2\text{Ph}, \text{LiNMe}_2, \text{LiNHBu}^t$) to prepare $\text{Ta}(\text{=NC}_6\text{F}_5)(\text{tdmh})_2\text{Cl}$, $\text{Ta}(\text{=NBu}^t)(\text{tdmh})_2(\text{CH}_2\text{Ph})$, $\text{Ta}(\text{=NBu}^t)(\text{tdmh})_2(\text{NMe}_2)$, and $\text{Ta}(\text{=NBu}^t)(\text{tdmh})_2(\text{NHBu}^t)$.⁷¹ $\text{Ta}(\text{=NBu}^t)(\text{tdmh})_2(\text{NHBu}^t)$ was also prepared from the reaction of $\text{Ta}(\text{=NBu}^t)\text{Cl}_3(\text{py})_2$ with 2 equiv of $\text{XMg}(\text{tdmh})$ ($\text{X} = \text{Br}, \text{Cl}$).⁷¹

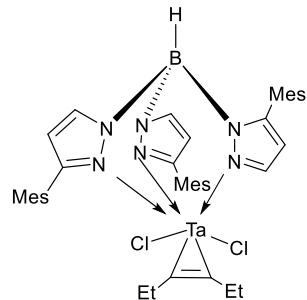

2.45.4. *Tris(pyrazolyl)borohydride ligands*

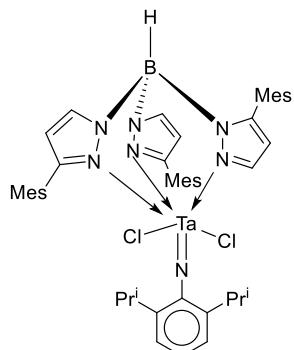
Solutions containing KTp^* [$\text{Tp}^{*-} = \text{HB}(3,5\text{-dimethylpyrazolyl})_3^-$] and $\text{TaCl}(\text{NMe}_2)_4$ were added together to afford the mixture of $(\kappa^1\text{-Tp}^*)\text{Ta}(\text{NMe}_2)_4$ (**47**) and $[(\kappa^3\text{-Tp}^*)\text{Ta}(\text{NMe}_2)_4] \cdot 2\text{KTp}^*$ (**48**).⁷² When KTp [$\text{Tp}^- = \text{HB}(\text{pyrazolyl})_3^-$] reacted with $\text{TaCl}(\text{NMe}_2)_4$, only $(\kappa^2\text{-Tp})\text{Ta}(\text{NMe}_2)_4$ (**49**) formed.⁷² Reactions of $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(\text{dme})$ with KTp^* and $\text{TITp}^{\text{Mes}*}$ [$\text{Tp}^{\text{Mes}*} = \text{HB}(3\text{-mesitylpyrazolyl})_2(5\text{-mesitylpyrazolyl})^-$] yielded $\text{Tp}^*\text{TaCl}_2(\eta^2\text{-EtC}\equiv\text{CEt})$ and $\text{Tp}^{\text{Mes}*}\text{TaCl}_2(\eta^2\text{-EtC}\equiv\text{CEt})$ (**50**), respectively.⁷³ When $\text{TaCl}_3(=N\text{-2,6-Pr}_2\text{C}_6\text{H}_3)(\text{dme})$ was used to react with $\text{TITp}^{\text{Mes}*}$, the product was $\text{Tp}^{\text{Mes}*}\text{TaCl}_2(=N\text{-2,6-Pr}_2\text{C}_6\text{H}_3)$ (**51**). Treatment of $\text{TaCl}_3(\text{=NBu}^t)(\text{dme})$ with TITp^{Mes} [$\text{Tp}^{\text{Mes}-} = \text{HB}(3\text{-mesitylpyrazolyl})_3^-$] yielded both $\text{Tp}^{\text{Mes}}\text{TaCl}_2(\text{=NBu}^t)$ (**52a**) and its isomer $\text{Tp}^{\text{Mes}}\text{TaCl}_2(\text{=NBu}^t)$ (**52b**).⁷³ Reaction of LiNMe_2 with $\text{Tp}^*\text{Ta}(\text{=NBu}^t)\text{Cl}_2$ gave $\text{Tp}^*\text{Ta}(\text{=NBu}^t)(\text{NMe}_2)\text{Cl}$ if the LiNMe_2 was in slight excess, whereas $\text{Tp}^*\text{Ta}(\text{=NBu}^t)(\text{NMe}_2)_2$ was formed if a larger excess was used.⁷⁴ Equimolar reactions of

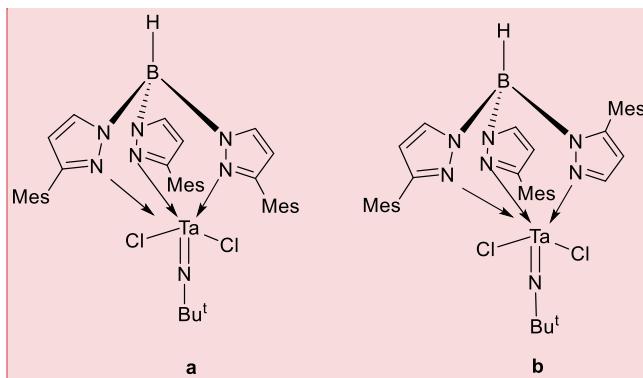

$B(C_6F_5)_3$ with $Tp^*Ta(=NBu^t)Me(NMe_2)$ and $Tp^*Ta(=NBu^t)(NMe_2)_2$ gave

$[Tp^*Ta(NMe_2)(=NBu^t)][BMe(C_6F_5)_3]$ and $\{Tp^*Ta(NMe_2)[\kappa^1-N-$


$N(CH_2)Me](=NBu^t)\}[BH(C_6F_5)_3]$, respectively.⁷⁴

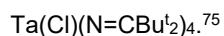

(47)


(48)


(49)

(50)

(51)

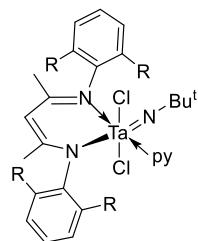


(52)

Commented [XZ(24): "a" and "b" added to clarify.

2.45.5. Ketimide Ligands

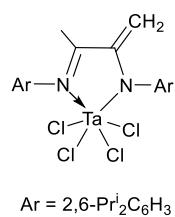
Reaction of $\text{TaCl}_4(\text{tmeda})$ with $\text{Li}(\text{N}=\text{CBu}^{\text{l}}_2)$ resulted in the formation of

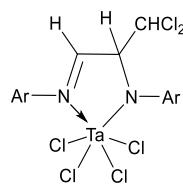


2.45.6. Diketiminate ligands

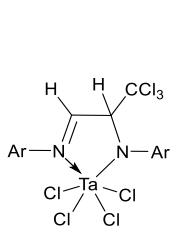
Complexes $[\text{BDI}^{\text{R}}]\text{Ta}(\text{=NBu}^{\text{l}})\text{Cl}_2(\text{p}^{\text{p}}\text{p}\text{y})$ ($[\text{BDI}^{\text{R}}]^- = \text{ArNCMeCHCMeNAr}^-$, Ar = 2,6-

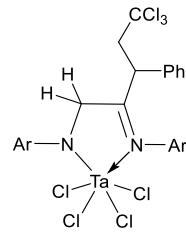
$R_2C_6H_3$; $R = Pr^i, Cl$; **53**) were synthesized via addition of $Li[BDI^R]$ to


$Ta(=NBu^t)Cl_3(ppy)_2$.^{76, 77}

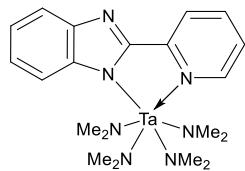

(53)

2.45.7. Miscellaneous monoanionic bidentate nitrogen-based ligands

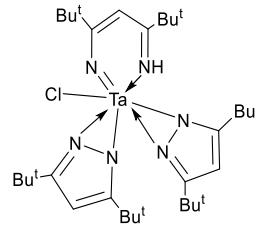

$CHCl_3$ and CCl_4 abstracted an H atom from one of the methyl groups on α -diimine ligand $DAD^{Dip}-R$ [$DAD = 1,4$ -daza-1,3-dienes; $DAD^{Dip}-R, R' = ArN=C(R)C(R')=NAr$; $Ar = 2,6-Pr^i_2C_6H_3$] of $[DAD^{Dip}-CH_3, CH_3]TaCl_4$ to produce the asymmetric complex (**54**).⁵² Reactions of $[DAD^{Dip}-H, H]TaCl_4$ with $CHCl_3$ and CCl_4 yielded (**55**) and (**56**), respectively, where the organic compound attached to one side of the ligand backbone.⁵² $[DAD^{Dip}-H, H]TaCl_4$ also reacted with styrene and CCl_4 to make (**57**).⁵²


(54)

(55)



(56)



(57)

$[\text{BzImPy}]\text{Ta}(\text{NMe}_2)_4$ ($[\text{BzImPy}^-] = 2\text{-}(2\text{-pyridin})\text{benzimidazolate}^-$, **58**) was prepared from $\text{Ta}(\text{NMe}_2)_5$ and $\text{H}[\text{BzImPy}]$.⁷⁸ Treatment of $\text{TaCl}_4(4\text{-Bu}^t\text{py})_2$ with potassium 3,5-di-*t*-butylpyrazolate (KBu^t_2pz) yielded $\text{Ta}(\text{tmkh})_2(\text{Bu}^t_2\text{pz})\text{Cl}$ ($\text{tmkh} = 2,2,6,6\text{-tetramethyl-5-ketimidehept-3-en-3-imide}$) (**58**).⁷⁹

(58)

(59)

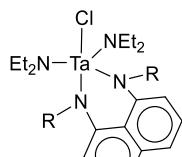
2.5.8. Diamide ligands

Diamido-arsenine complex $[\text{NAsN}]\text{TaMe}_3$ [$\text{NAsN}^{2-} = \text{PhAs}(\text{CH}_2\text{SiMe}_2\text{NPh})_2^{2-}$]

was prepared from the reaction of $[\text{NAsN}]\text{Li}_2(\text{thf})_2$ with $\text{Ta}(\text{Me})_3\text{Cl}_2$.⁸⁰ **Hydrolysis**

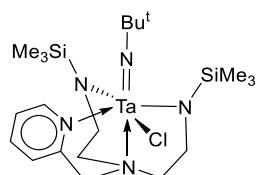
Hydrogenation of $[\text{NAsN}]\text{TaMe}_3$ only yielded free ligand.⁸⁰ Reactions of $\text{Ta}(\text{Me})_3\text{Cl}_2$ with $1,8\text{-(RNH)}_2\text{C}_{10}\text{H}_6$ and $\text{Li}_2\text{R}_2\text{DAN}$ ($\text{R}_2\text{DAN}^{2-} = [1,8\text{-(RN)}_2\text{C}_{10}\text{H}_6]^{2-}$; $\text{R} = \text{Ph, 3,5-Me}_2\text{C}_6\text{H}_3$)

afforded $\text{TaCl}_3[1,8-(\text{RN})_2\text{C}_{10}\text{H}_6]$ and $\text{TaMe}_3[1,8-(\text{RN})_2\text{C}_{10}\text{H}_6]$, respectively.⁸¹ Similarly, reactions of $\text{Li}_2(\text{Pr}^i)_2\text{DAN}$ with $\text{Ta}(\text{NEt}_2)_2\text{Cl}_3$ and $\text{Li}_2(3,5\text{-Me}_2\text{C}_6\text{H}_3)_2\text{DAN}$ with

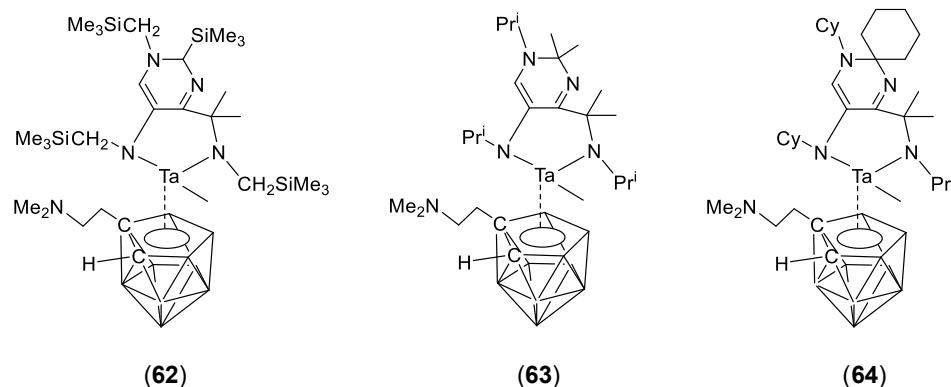

$\text{Ta}(\text{NEt}_2)_2\text{Cl}_3\text{py}$ both yielded $\text{TaCl}(\text{NEt}_2)_2[1,8-(\text{RN})_2\text{C}_{10}\text{H}_6]$ ($\text{R} = \text{Pr}^i, 3,5\text{-Me}_2\text{C}_6\text{H}_3$; **60**).⁸¹

Addition of LiNMe_2 to **(60)** gave metathesis products $\text{Ta}(\text{NEt}_2)_2(\text{NMe}_2)[1,8-(\text{RN})_2\text{C}_{10}\text{H}_6]$ ($\text{R} = \text{Pr}^i, \text{R} = 3,5\text{-Me}_2\text{C}_6\text{H}_3$).⁸¹ $[\eta^2\text{-RN}(\text{CH}_2)_n\text{NR}]\text{Ta}(\text{NMe}_2)_3$ ($\text{R} = \text{Me}, n = 2 \text{ or } 3; \text{R} = \text{Et}, n = 2 \text{ or } 3$) were made from the addition of diamine lithium salts $[\text{RN}(\text{CH}_2)_n\text{NR}]\text{Li}_2$, generated in situ, to the dinuclear complex $(\text{Me}_2\text{N})_3\text{TaCl}_2$.⁸² $\text{Ta}[1,2-(\text{NCH}_2\text{Bu}^i)_2\text{C}_6\text{H}_4]_2\text{Cl}$ was generated from the treatment of TaCl_5 with $\text{Li}_2[1,2-(\text{NCH}_2\text{Bu}^i)_2\text{C}_6\text{H}_4]$.⁸³

Commented [MDJ25]: Please ensure the “i” is after Pr or before, but be consistent.


Commented [XZ(26R25): Yes, after.

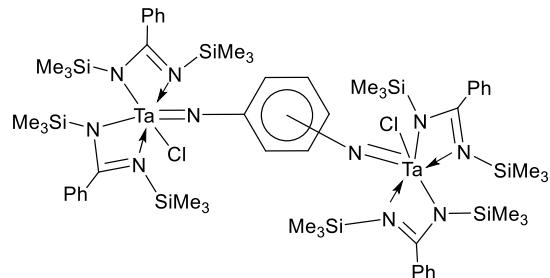
Commented [XZ(27): I kept the writing here (which is different from that in the paper) so it's consistent with those a few lines before here.


(60)

Reaction of $\text{Ta}(=\text{NBu}^i)\text{Cl}_3(\text{ppy})_2$ with $\text{Li}_2(2\text{-C}_5\text{H}_4\text{N})\text{CH}_2\text{N}-(\text{CH}_2\text{CH}_2\text{N}(\text{SiMe}_3))_2$ gave the tetradeятate complex $\text{Ta}(=\text{NBu}^i)\text{Cl}(\text{N}_2\text{NN}')[\text{N}_2\text{NN}'] = (2\text{-C}_5\text{H}_4\text{N})\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2\text{N}(\text{SiMe}_3))_2$ (**61**).⁸⁴

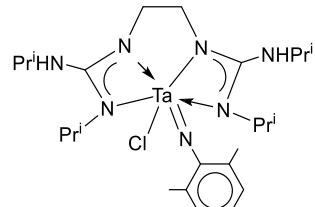
(61)

Treatment of $[\eta^1:\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{TaMe}_3$ (**12**) with 4 equiv of isonitriles $\text{Me}_3\text{SiCH}_2\text{NC}$, Pr^iNC , or 1 equiv of Pr^iNC , followed by 3 equiv of CyNC yielded fused six-membered *N*-heterocycles (**62**), (**63**), and (**64**), respectively.²⁴

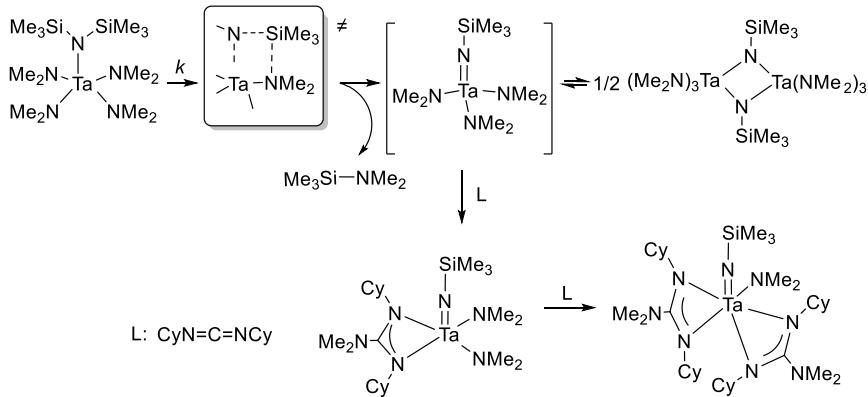


2.45.9. Amidinate and guanidinate ligands

Reactions of $\text{Ta}(\text{=NBu}^{\text{t}})\text{Cl}_3(\text{py})_2$ with 2 equiv of $\text{Li}[(\text{NR})_2(\text{CMe})]$ ($\text{R} = \text{Pr}^{\text{i}}, \text{Bu}^{\text{i}}$) gave $\text{Ta}(\text{=NBu}^{\text{t}})[\text{NR}_2(\text{CMe})]_2\text{Cl}$.⁸⁵ Treatment of $\text{Ta}(\text{=NBu}^{\text{t}})[(\text{NR})_2(\text{CMe})]_2\text{Cl}$ with various lithium amides $\text{LiNR}'\text{R}''$ gave a family of amidinate amide complexes.


Ta(=NBu^t)[NR]₂(CMe)₂(NR'R'') (For R = Prⁱ, R' = R'' = Me; R' = R'' = Et; R' = Et, R'' = Me; For R = Bu^t, R' = R'' = Me; R' = R'' = Et; R' = Et, R'' = Me).⁸⁵ These complexes were used as candidates for thin film growth.⁸⁵ Ta(MeCN)₂Cl₃₂(μ-1,n-NC₆H₄N) (n = 3, 4) reacted with two equiv of Li[PhC(NSiMe₃)₂] to give benzamidinato complexes {Ta[(NSiMe₃)₂(CPh)]₂Cl}₂(μ-1,n-NC₆H₄N)] (**65**).⁵⁶ Reaction of Ta(=NBu^t)(CH₂Ph)₃ with diisopropylcarbodiimide gave the amidinate complex

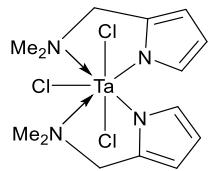
$Ta[(NPr^i)_2C(CH_2Ph)]_2(=NBu^t)(CH_2Ph)$, which could only be characterized via NMR spectroscopic studies.⁸⁶


(65)

$[Bu^tNC(NMe_2)NEt]Ta(NMe_2)_4$ was synthesized from the addition of 1-t-butyl-3-ethylcarbodiimide to $Ta(NMe_2)_5$.⁸² Reaction of isopropylcarbodiimide with $Ta(=NBu^t)(NRR')_3$ ($R = R' = Me$; $R = Me$, $R' = Et$; $R = R' = Et$) gave complexes $Ta[NPr^i)_2C(NRR')]_2(=NBu^t)(NRR')$.⁸⁷ MOCVD experiments were conducted with these complexes to make TaN thin films.⁸⁷ Similar guanidinate complexes $Ta(=NR)(NR''R''')[C(NR''R''')(NR')_2]_2$ (For $R = Bu^t$, $R' = Pr^i$, $R'' = R''' = Me$; $R'' = Me$, $R''' = Et$; $R'' = R''' = Et$; For $R = Bu^t$, $R' = Cy$, $R'' = R''' = Me$; $R'' = Me$, $R''' = Et$; $R'' = R''' = Et$; For $R = Pr^n$, $R' = Pr^i$, Cy , $R'' = R''' = Et$) were also prepared via similar methods using different carbodiimides.⁸⁸ Biguanidinate $[L_4^{Pr^i}]Ta(=N-2,6-Me_2C_6H_3)Cl$ ($L_4^{Pr^i} = \kappa^4-N,N,N,N-[Pr^iNC(NHPr^i)N(CH_2)_2NC(NHPr^i)NPr^i]^{2-}$, **66**) was synthesized by reaction of $Li_2[L_4^{Pr^i}]$ with the imide $Ta(=N-2,6-Me_2C_6H_3)Cl_3(\text{thf})_2$.⁸⁹ Crystal structure was solved for the thf adduct obtained from a solution mixture of thf-Et₂O.⁸⁹

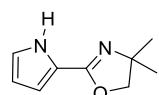
(66)

Reaction of TaCl₅ with LiNMe₂, in addition to giving Ta(NMe₂)₅, unexpectedly afforded M(NMe₂)₄(κ^2 -N,N-MeNCH₂NMe₂) containing a chelating ligand in ca. 5–10% yield.⁹⁰ Ta(NMe₂)₄[N(SiMe₃)₂] undergoes the elimination of Me₃Si-NMe₂, converting the amide N(SiMe₃)₂ ligand to the imide =NSiMe₃ ligand, to give “Ta(NMe₂)₃(=NSiMe₃)” which was observed as its dimer (Scheme 4).⁹¹ Kinetic study of the α -SiMe₃ abstraction gives $\Delta H^\ddagger = 21.3(1.0)$ kcal/mol and $\Delta S^\ddagger = -17(2)$ eu. CyN=C=NCy captures “Ta(NMe₂)₃(=NSiMe₃)” to yield guanidinates Ta(NMe₂)_{3-n}(=NSiMe₃)[CyNC(NMe₂)NCy]_n (n = 1, 2).⁹¹ The dimer Ta₂(NMe₂)₆(μ -NSiMe₃)₂ could also be prepared from Ta(=NSiMe₃)Cl₃(py)₂ and LiNMe₂.⁹¹



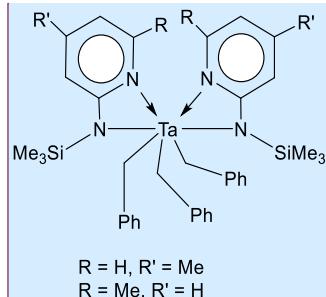
Scheme 4

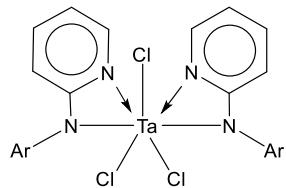
DFT calculations were used to model the rare α -elimination of square pyramidal $\text{Ta}(\text{NMe}_2)_4[\text{N}(\text{SiMe}_3)_2]$ to form $\text{Ta}(\text{=NSiMe}_3)(\text{NMe}_2)_3$ and $\text{Me}_3\text{SiNMe}_2$.⁹² In the presence of the carbodiimide, MeN=C=NMe , $\text{Ta}(\text{=NSiMe}_3)(\text{NMe}_2)_3$ was trapped as the mono- and biguanidinate-substituted products $\text{Ta}(\text{=NSiMe}_3)(\text{NMe}_2)_2[\text{MeNC}(\text{NMe}_2)\text{NMe}]$ and $\text{Ta}(\text{=NSiMe}_3)(\text{NMe}_2)[\text{MeNC}(\text{NMe}_2)\text{NMe}]_2$.⁹²


2.5.10. Pyrrole and oxazoline ligands

Reaction of $\text{Li}[\text{N-2-(CH}_2\text{NMe}_2)\text{C}_4\text{H}_3]$ with TaCl_5 yielded $[\text{N-2-(CH}_2\text{NMe}_2)\text{C}_4\text{H}_3]_2\text{TaCl}_3$ (**67**).⁹³ The two pyrrolyl ligands are fluxional as shown via variable-temperature (VT) NMR spectroscopic studies.⁹³

(67)


Oxazoline complexes $[\text{OX}]\text{Ta}(\text{NMe}_2)_4$ and $[\text{OX}]_2\text{Ta}(\text{NMe}_2)_3$ ($\text{HOX} = 4,4\text{-dimethyl-2-pyrrole-2-oxazoline}$) were synthesized via reaction of $\text{Ta}(\text{NMe}_2)_5$ with HOX .⁹⁴ The crystal structures of both complexes show a distorted octahedral geometry involving the $\kappa^2\text{-}N,N\text{-OX}$ ligand.⁹⁴


4,4-Dimethyl-2-pyrrole-2-oxazoline (HOX)

2.5.11. Aminopyridinate ligands

Reaction of (4-methylpyridin-2-yl)(trimethylsilyl)amine or (6-methylpyridin-2-yl)(trimethylsilyl)amine with $\text{Ta}(\text{CH}_2\text{Ph})_5$ gave complexes (68) ($\text{R} = \text{H}$, $\text{R}' = \text{Me}$; $\text{R} = \text{Me}$, $\text{R}' = \text{H}$).⁹⁵ (2,6-diisopropylphenyl)(pyridin-2-yl)amine was treated with Bu^nLi , followed by its slow addition to $\text{TaCl}_2(\text{CH}_2\text{Ph})_3$. The process resulted in the formation of $\text{Ta}[\text{NC}_5\text{H}_5\text{NAr}]_2(\text{CH}_2\text{Ph})_3$ ($\text{Ar} = 2,6\text{-Pr}_2\text{C}_6\text{H}_3$, which has with an analogous structure to those of (68)).⁹⁵ Direct reaction of TaCl_5 with either (2,6-diisopropylphenyl)(pyridin-2-yl)amine or lithiated reagent [from adding Bu^nLi to (2,6-diisopropylphenyl)(pyridin-2-yl)amine, as described above] afforded $\text{Ta}[\text{NC}_5\text{H}_5\text{NAr}]_2\text{Cl}_3$ (69) which, after activated by polymethylaluminoxane, has low activity as ethylene polymerization catalysts.⁹⁵

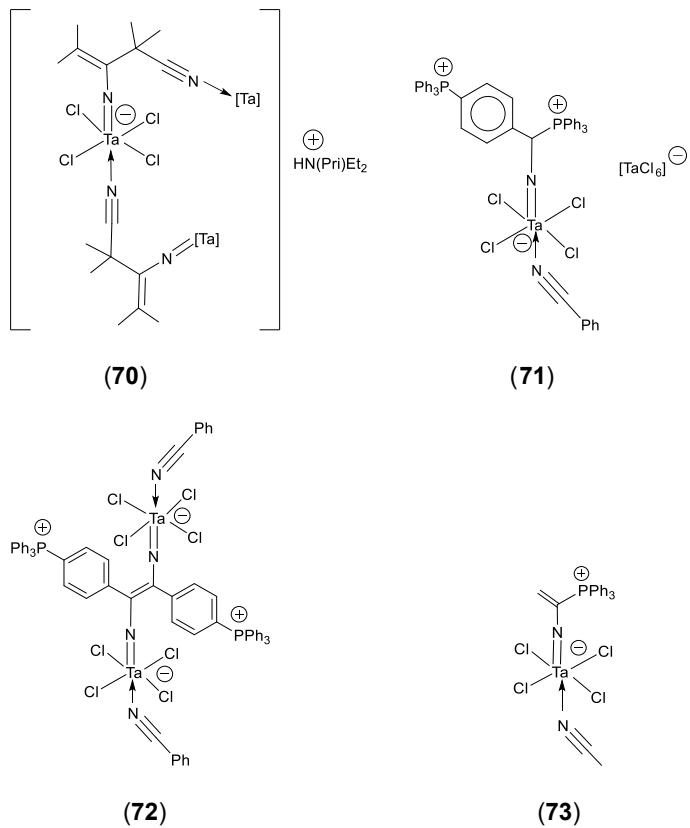
(68)

(69)

Commented [MDJ28]: Please try to fix the R and R' on the pyridyls so these look straight and not bent

Commented [XZ(29R28)]: OK now?

2.45.12. Imide ligands

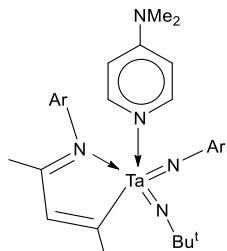

As indicated in Section 2.45.2, reaction of TaCl₅ with Bu^tNH₂ in the presence of pyridine yielded the amide imide complex Ta(=NBut)(NHBu^t)Cl₂(ppy)₂.⁶²

(silox)₃Ta=NR were prepared through 1,2-H₂ elimination by heating amide hydride complexes (silox)₃(H)TaNHR (R = H, Me, Buⁿ, C₆H₄-*p*-X, Li, SiMe₃; X = H, Me, NMe₂, CF₃).¹⁶ Though the imido complexes (silox)₃Ta=N-N=Ta(silox)₃ could not be synthesized, similar complexes (silox)₂(Cl)Ta=N-N=Ta(Cl)(silox)₂ and (silox)₂(Me)Ta=N-N=Ta(Me)(silox)₂ were prepared. Imido complex (silox)₃Ta=N-N=Ta(silox)₃ was synthesized from (silox)₃Ta.¹⁶

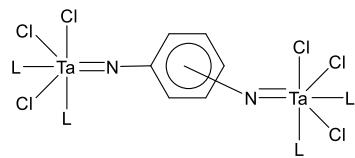
NMR-scale reaction of (silox)₂Ta(pyrr)(η²-N,C-NC₅H₅) or (silox)₂Ta(pip)Ta(η²-N,C-NC₅H₅) with H₂NMe led to the formation of imido complexes (silox)₂Ta(pyrr)(=NMe) and (silox)₂Ta(pip)(=NMe), respectively.³¹

Zwitterionic vinylimido complexes Ta[=NC(=CRR')NEt₃]Cl₄(L) (R = R' = H, L = Cl; R = H, R' = Me, L = MeCN; R = R' = Me, L = Pr'CN) were synthesized from the reactions of TaCl₅ and NEt₃ with nitriles MeCN, EtCN, and Pr'CN.⁹⁶ Reaction of TaCl₅

with NPr_2^iEt in the presence of excess Pr^iCN yielded the polymer (**70**).⁹⁶ Reaction of TaCl_5 with PhCN and PPh_3 gave zwitterionic compound (**71**).⁹⁷ The formation of this compound was followed by EPR at different stages.⁹⁷ Addition of NPr_2^iEt to (**71**) gave (**72**).⁹⁷ $\text{Ta}[\text{NC}(\text{PPh}_3)\text{CH}_2]\text{Cl}_4(\text{CH}_3\text{CN})$ (**73**) and $(\text{TaCl}_4\{\text{NC}(\text{PPh}_3)\text{CHCH}(\text{PPh}_3)\text{CN}\}\text{TaCl}_4)(\text{NCC}_2\text{H}_4\text{CN})_2$ (**74**) were prepared from reactions of TaCl_5 and PPh_3 with either acetonitrile and succinonitrile, respectively.⁹⁷

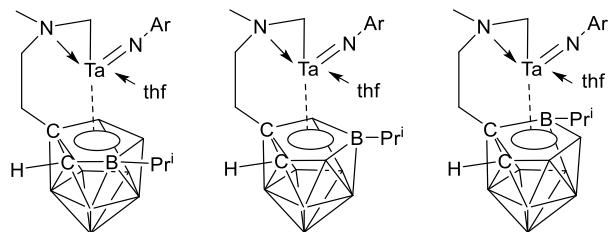


(74)

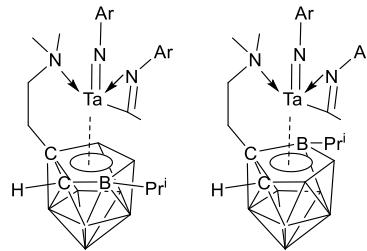

Reaction of H_2 with complex (7) and 4-dimethylaminopyridine (dmap) gave $(\text{mad})\text{Ta}(=\text{NBu}^t)(=\text{NAr})(\text{dmap})$ ($\text{mad} = \text{monoazabutadiene}; \text{Ar} = 2,6\text{-Pr}_2\text{C}_6\text{H}_3$) (75).¹⁷ $(\text{TaL}_2\text{Cl}_3)_2(\mu\text{-1,}n\text{-NC}_6\text{H}_4\text{N})$ ($\text{L} = \text{MeCN}, 4\text{-Bu}^t\text{py}, n = 2, 3, 4$; 76) were synthesized via reactions of TaCl_5 with the applicable N,N,N',N' -tetrakis(trimethylsilyl) -1,4-, -1,3- or -1,2-phenylenediamine and free MeCN or 4-Bu^tpy.⁵⁶ Treatment of TaCl_5 with 3,5-lutidine ($3,5\text{-Me}_2\text{C}_5\text{H}_3\text{N}$) and $\text{HN}(\text{SiMe}_3)_2$ yielded $\text{Ta}(=\text{NSiMe}_3)\text{Cl}_3(\text{NC}_5\text{H}_3\text{Me}_2\text{-3,5})_2$, which was found to be an effective precursor for [low pressure chemical vapor deposition \(LPCVD\)](#) of TaN thin films.⁹⁸

Commented [MDJ30]: Define?

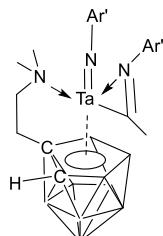
Commented [TC31R30]: Done.


(75)

$n = 2$ (1,2 or ortho)
 $n = 3$ (1,3 or meta)
 $n = 4$ (1,4 or para)

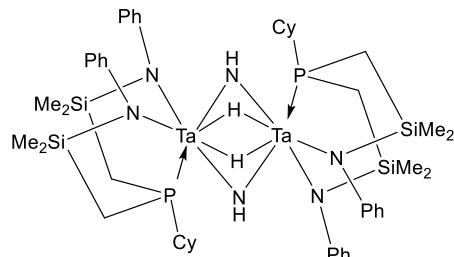

(76)

Reaction of $[\eta^1:\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{TaMe}_3$ (12), discussed in Section 2.2, with 2,6-dimethylphenyl isonitrile (Ar-NC) afforded three regioisomers of $\{\sigma:\eta^1:\eta^5\text{-}[\text{MeN}(\text{CH}_2)\text{CH}_2\text{CH}_2](\text{CHMe}_2)\text{C}_2\text{B}_9\text{H}_9]\text{Ta}(\text{=N-Ar})(\text{thf})$ (Ar = 2,6-Me₂C₆H₃, 77).²² When (12) reacted with 2-3 equiv of ArNC, two isomers of $[\eta^1:\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)(\text{CHMe}_2)\text{C}_2\text{B}_9\text{H}_9]\text{Ta}(\text{=N-Ar})(\eta^2\text{-C}, N\text{-MeC=N-Ar})$ (78) were synthesized.²² When (12) was treated with bulkier 2,6-diisopropylphenyl isonitrile (Ar'NC, Ar' = 2,6-Pr₂-C₆H₃), the reaction gave afford $[\eta^1:\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{Ta}(\text{=N-Ar')(\eta^2\text{-C}, N\text{-MeC=N-Ar'})}$ (79).²²


Ar = 2,6-Me₂C₆H₃

(77)

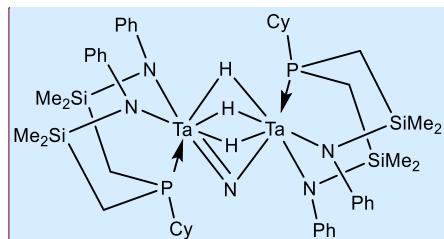
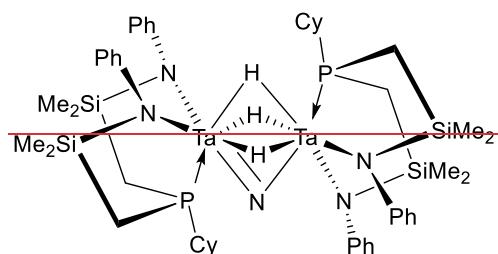
Ar = 2,6-Me₂C₆H₃


(78)

$\text{Ar}' = 2,6\text{-Pr}_2^{\text{l}}\text{C}_6\text{H}_3$

(79)

Imide ($[\text{NPN}^{\text{Cy}}]\text{Ta}_2(\mu\text{-NH})_2(\mu\text{-H})_2$ (80, $[\text{NPN}^{\text{Cy}}]^{2-} = \text{CyP}(\text{CH}_2\text{SiMe}_2\text{NPh})_2^{2-}$) was formed from the addition of hydrazine H_2NNH_2 to $\text{Ta}(\text{IV})$ dimer ($[\text{NPN}^{\text{Cy}}]\text{Ta}_2(\mu\text{-H})_4$).⁹⁹ Reaction of the phenyl analog ($[\text{NPN}^{\text{Ph}}]\text{Ta}^{\text{IV}}_2(\mu\text{-H})_4$ ($[\text{NPN}^{\text{Ph}}]^{2-} = \text{PhP}(\text{CH}_2\text{SiMe}_2\text{NPh})_2^{2-}$) with H_2NNH_2 gave an analogous product ($[\text{NPN}^{\text{Ph}}]\text{Ta}_2(\mu\text{-NH})_2(\mu\text{-H})_2$).⁹⁹

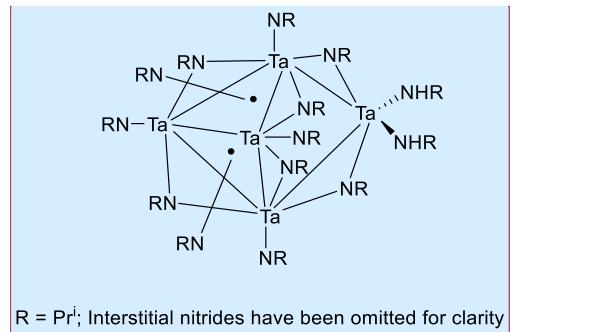



(80)

As discussed later in Section 2.67.10, hexatantalum tetradecaaimido clusters $(\text{ArN})_{14}\text{Ta}_6\text{O}$ (130), $\text{Ar} = \text{Ph}, p\text{-MeC}_6\text{H}_4, p\text{-MeOC}_6\text{H}_4, p\text{-Bu}^{\text{l}}\text{C}_6\text{H}_4, p\text{-BrC}_6\text{H}_4, m\text{-ClC}_6\text{H}_4$ and $(\text{Cp}^{\text{*}}_2\text{Co})[(\text{ArN})_{14}\text{Ta}_6\text{O}]$ were prepared.^{100, 101}

2.45.13. Nitride complexes

Nitride ($[\text{NPN}^{\text{Cy}}\text{Ta}]_2(\mu\text{-N})(\mu\text{-H})_3$ **81**, $[\text{NPN}^{\text{Cy}}]^{2-} = \text{CyP}(\text{CH}_2\text{SiMe}_2\text{NPh})_2^{2-}$) was formed from the addition of 1,1-dimethylhydrazine Me_2NNH_2 to Ta(IV) dimer $([\text{NPN}^{\text{Cy}}\text{Ta}]_2(\mu\text{-H})_4$.⁹⁹


(81)

Commented [MDJ32]: A suggestion: consider removing stereochemistry unless you plan to do this for all or most complexes for consistency.

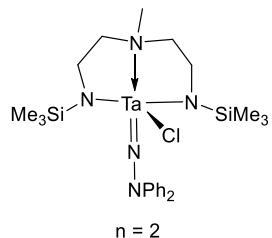
Commented [XZ(33R32): Done for such compounds by the Fryzuk group

Cluster compound $\text{Ta}_5(\mu_5\text{-N})(\mu_3\text{-NPr}^i)_2(\mu\text{-NPr}^i)_6(\eta^1\text{-NPr}^i)_4(\eta^1\text{-NHPr}^i)_2$ **82** was prepared from the reaction of $\text{Ta}(\text{NMe})_5$ with excess Pr^iNH_2 .¹⁰² The cluster contains 76 valence electrons, assuming that the edge-bridging imide ligands, located around a basal-apical Ta-Ta vectors, serve as 2e⁻ donating ligands. The molecular framework was rationalized by polyhedral skeletal electron pair (PSEP) theory.^[102]

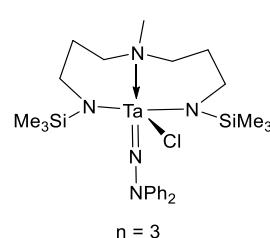
Commented [MDJ34]:

(82)

Commented [MDJ35]: Where are the nitrides?

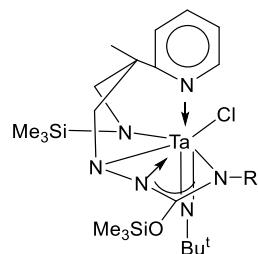

Commented [XZ(36R35): There are interstitial nitrides and omitted for clarity (as indicated on the bottom).]

DFT calculations were also performed on the reduction of CO₂ gas by


(Bu^tArN)₃M≡N (M = V, Ta, Nb; Ar = 3,5-Me₂C₆H₃).¹⁰³ Amongst the metal complexes studied, the Ta complex had the strongest activity to activate CO₂.¹⁰³

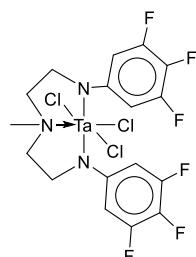
2.45.14. Dianionic tridentate ligands

(dme)Ta(=NNPh₂)Cl₃ reacted with MeN[(CH₂)_nN(SiMe₃)]₂Li₂ (n = 2, 3), affording the bis(amide)amine hydrazido complexes (κ^3 -MeN[(CH₂)_nN(SiMe₃)]₂)Ta(=NNPh₂)Cl (83, 84).⁵⁴



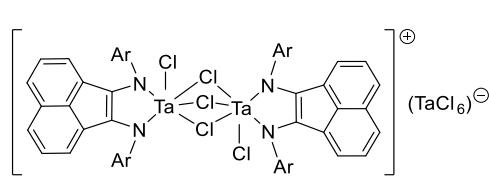
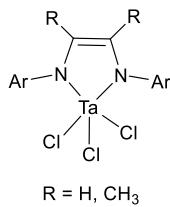
(83)

(84)

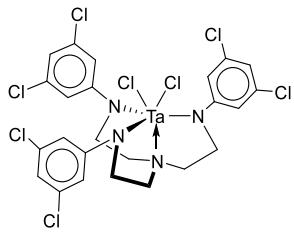

Complexes (**85**) were prepared via reactions of $\text{Ta}(\text{=NBu}^t)(\text{N}_2\text{N}_{\text{py}})\text{Cl}(\text{py})$ [$\text{N}_2\text{N}_{\text{py}} = \text{MeC}(2\text{-C}_5\text{H}_4\text{N})(\text{CH}_2\text{NSiMe}_3)_2$] with Bu^tNCO or *p*-tolyl isocyanate.¹⁰⁴ These complexes were compared against similar cationic W complexes including DFT calculations.^{104, 105}

$\text{R} = \text{Bu}^t, p\text{-C}_6\text{H}_4\text{Me}$

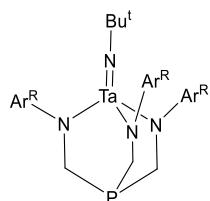
(**85**)



$[\text{F}_3\text{N}_2\text{NMe}]\text{TaCl}_3$ ($[\text{F}_3\text{N}_2\text{NMe}]^{2-} = [(3,4,5\text{-F}_3\text{C}_6\text{H}_2\text{NCH}_2\text{CH}_2)_2\text{NMe}]^{2-}$, **86**) was prepared via slow addition of TaCl_5 to $\text{H}_2[\text{F}_3\text{N}_2\text{NMe}]$.³²

(**86**)


2.45.15. Miscellaneous dianionic ligands

Reactions of α -diimines DAD^{Dip} or $\text{DAD}^{\text{Dip}}\text{-Me,Me}$ [$\text{DAD} = 1,4$ -diaza-1,3-dienes; $\text{DAD}^{\text{Dip}} = \text{ArN}=\text{C}(\text{H})\text{C}(\text{H})=\text{NAr}$; $\text{DAD}^{\text{Dip}}\text{-R,R'} = \text{ArN}=\text{C}(\text{R})\text{C}(\text{R}')=\text{NAr}$; $\text{Ar} = 2,6\text{-Pr}_2\text{C}_6\text{H}_3$] with TaCl_5 , followed by the addition of reductant 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (mbtcd), gave $[\text{DAD}^{\text{Dip}}]\text{TaCl}_3$ or $(\text{DAD}^{\text{Dip}}\text{-Me,Me})\text{TaCl}_3$ (**87a,b**), respectively.⁵² When R and R' belong to a single acenaphthene group, $[\text{DAD}^{\text{Dip}}\text{-acenaphthene}]\text{TaCl}_2(\mu\text{-Cl})_3](\text{TaCl}_6)$ was prepared (**88**).⁵² $(\text{Cp}_2\text{Co})\{[\text{DAD}^{\text{Dip}}]\text{TaCl}_4\}$ was prepared from the reduction of $(\text{DAD}^{\text{Dip}})\text{TaCl}_4$, as discussed in Section 3.3.1.⁵²



2.45.16. Other trianionic ligands


Reaction of TaCl_5 to $\text{H}_3[\text{Cl}_2\text{N}_2\text{NMe}]$ ($[\text{Cl}_2\text{N}_2\text{NMe}]^{3-} = [(3,5\text{-Cl}_2\text{C}_6\text{H}_3\text{NCH}_2\text{CH}_2)_3\text{N}]^{3-}$) produced $[\text{Cl}_2\text{N}_2\text{NMe}]\text{TaCl}_2$ (**89**).³² $[\text{P}(\text{CH}_2\text{NAr}^{\text{R}})_3]\text{Ta}=\text{NBu}^{\text{t}}$ ($\text{Ar}^{\text{R}} = 3,5\text{-R}_2\text{C}_6\text{H}_3$; $\text{R} = \text{H, CF}_3$) (**90**) were prepared from the precursors $[\text{P}(\text{CH}_2\text{NAr}^{\text{R}})_3]\text{H}_3$ with $\text{Ta}(\text{=NBu}^{\text{t}})(\text{NEt}_2)_3$.¹⁰⁶ When $\text{P}(\text{CH}_2\text{NAr}^{\text{R}})_3\text{Ta}=\text{NBu}^{\text{t}}$ was reacted with $\text{Rh}_2(\text{CO})_4(\mu\text{-Cl})_2$, $\text{trans-Cl}(\text{CO})\text{Rh}[\text{P}(\text{CH}_2\text{NAr}^{\text{R}})_3\text{Ta}(\text{=NBu}^{\text{t}})]_2$ formed (**91**).¹⁰⁶

(89)

(90)

(91)

$[\kappa^3\text{-N}(\text{CH}_2\text{in})_2(\text{CH}_2\text{inH})]\text{Ta}(\text{NMe}_2)_3$ (92). $\text{N}(\text{CH}_2\text{inH})_3$ = tris[(2-indole)methyl]amine;

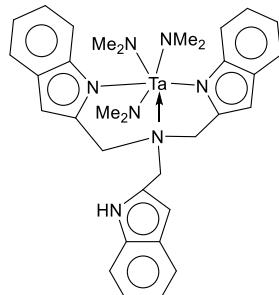
(92) was prepared via the reaction of equimolar portions of $\text{Ta}(\text{NMe}_2)_5$ and

$\text{N}(\text{CH}_2\text{inH})_3$.¹⁰⁷ Reaction of $[\kappa^3\text{-N}(\text{CH}_2\text{in})_2(\text{CH}_2\text{inH})]\text{Ta}(\text{NMe}_2)_3$ with MeLi yielded the

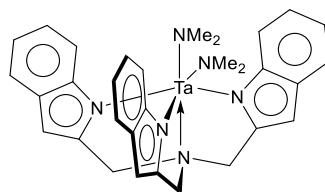
tetradentate, tripodal complex $[\kappa^4\text{-N}(\text{CH}_2\text{in})_3]\text{Ta}(\text{NMe}_2)_2$ (93), where the third indolyl group coordinated to the Ta center.¹⁰⁷ $[\kappa^4\text{-N}(\text{CH}_2\text{in})_3]\text{Ta}(\text{NMe}_2)\text{Cl}$ was made from

Me_3SiCl and (93).¹⁰⁷ Amino-imido complex $[\kappa^4\text{-N}(\text{CH}_2\text{in})_3]\text{Ta}(=\text{NAr})(\text{NHMe}_2)$ ($\text{Ar} = 2,6$ -

$\text{Pr}_2^i\text{C}_6\text{H}_3$) was synthesized from the addition of $\text{N}(\text{CH}_2\text{inH})_3$ to a solution of


$\text{Ta}(=\text{NAr})(\text{NMe}_2)_3$.¹⁰⁷ If $[\kappa^4\text{-N}(\text{CH}_2\text{in})_3]\text{Ta}(=\text{NAr})(\text{NHMe}_2)$ were treated with MeI , a rapid

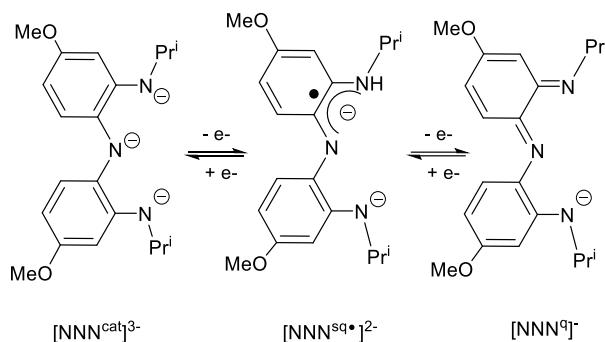
equilibrium was established between that complex and $[(\kappa^4\text{-N}(\text{CH}_2\text{in})_3]\text{Ta}=\text{NAr}$ and


$(\text{Me}_3\text{NH})\text{I}$, which was monitored via ^1H NMR spectroscopy.¹⁰⁷

Commented [MDJ37]: Which nucleus or nuclei?

Commented [XZ(38R37)]: Done

(92)

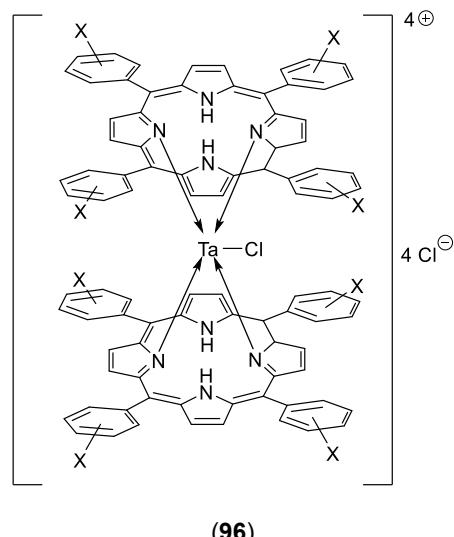

(93)

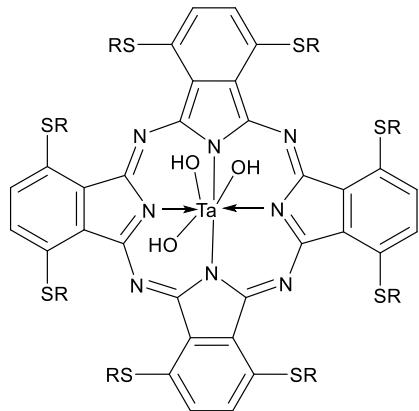
$[\text{NNN}^{\text{cat}}]\text{TaCl}_2$ ($[\text{NNN}^{\text{cat}}]\text{H}_3$ = bis(2-isopropylamino-4-methoxyphenylamine, **94**)

was made via the reaction of $[\text{NNN}^{\text{cat}}]\text{H}_3$ with $\text{TaCl}_2(\text{MMe})_3$, TaMe_3Cl_2 .¹⁰⁸ Reaction of $[\text{NNN}^{\text{cat}}]\text{TaCl}_2$ with $\text{Bu}^{\text{t}}\text{NC}$, a σ -donating ligand, formed $[\text{NNN}^{\text{cat}}]\text{TaCl}_2(\text{CNBu}^{\text{t}})$.¹⁰⁸ $[\text{NNN}^{\text{cat}}]^{3-}$ could be oxidized by one electron to form the radical, semiquinone ligand $[\text{NNN}^{\text{sq}}]^{2-}$. The removal of one more electron formed the quinone form $[\text{NNN}^{\text{q}}]^-$ (Scheme 5). $[\text{NNN}^{\text{cat}}]\text{TaCl}_2$ reacted with PhICl_2 , $\text{Ar}'\text{N}_3$ ($\text{Ar}' = \text{Ph}$, *p*-tolyl, *p*- $\text{C}_6\text{H}_4\text{Bu}^{\text{t}}$), and Ph_2CN_2 to form $[\text{NNN}^{\text{sq}}]\text{TaCl}_3$, $[\text{NNN}^{\text{q}}]\text{TaCl}_2(=\text{NAr}')$, and $[\text{NNN}^{\text{q}}]\text{TaCl}_2(\text{NNCPh}_2)$, respectively. EPR and CV studies were conducted on $[\text{NNN}^{\text{sq}}]\text{TaCl}_3$.¹⁰⁸ ${}^{X,\text{R}}[\text{NNN}^{\text{cat}}]\text{H}_3$ (For $\text{R} = \text{Pr}^{\text{i}}$, $\text{X} = \text{F}, \text{H}, \text{Me}, \text{Bu}^{\text{t}}, \text{OMe}$; For $\text{R} = \text{dmp}$, $\text{X} = \text{OMe}$) and derivatives of the $[\text{NNN}^{\text{cat}}]^{3-}$ complexes, where electron-donating groups were on the 4,4' positions, were prepared in order to probe the electronic effects on the ligands. From the reactions of these derivatives with $\text{TaCl}_2(\text{MMe})_3$, TaMe_3Cl_2 , ${}^{X,\text{R}}[\text{NNN}^{\text{cat}}]\text{TaCl}_2$ (**95**) were prepared.¹⁰⁹ ${}^{\text{OMe},\text{dmp}}[\text{NNN}^{\text{cat}}]\text{TaCl}_2$ complex shows an affinity for weakly coordinating solvents and has one OEt_2 ligand coordinating to the Ta center in its crystal structure. ${}^{X,\text{R}}[\text{NNN}^{\text{cat}}]\text{TaCl}_2$ reacted with $[\text{N}(\text{CH}_2\text{Ph})\text{Et}_3]\text{Cl}$, yielding $[\text{N}(\text{CH}_2\text{Ph})\text{Et}_3][{}^{X,\text{R}}(\text{NNN}^{\text{cat}})]\text{TaCl}_3$.¹⁰⁹

Commented [TC39]: Added for more information

$X, R^{\bullet} [NNN^{cat}]TaCl_2(CNBu^t)$, $X, R^{\bullet} [NNN^{sq}]TaCl_3$, and $X, R^{\bullet} [NNN^q]TaCl_2(=NPh-p-R')$ (For $R = Pr^i$, $R' = Bu^t$, $X = F, H, Me, Bu^t, OMe$; For $R = Pr^i$, $R' = CF_3$, $X = F, OMe$; For $R = dmp$, $R' = CF_3$, $X = OMe$) were prepared using (95) with $CNBu^t$, $PhICl_2$, or $(NPh-p-R')N_3$, respectively.¹⁰⁹

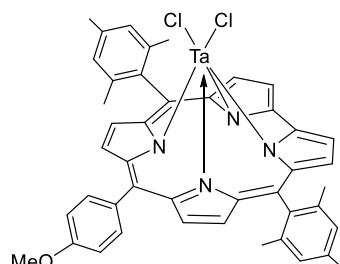

Scheme 5



2.45.17. Porphyrin, phthalocyanine, and corrole ligands

$H_2t(Xp)p$ (meso-tetraarylporphyrins) and $TaCl_5$ were ground together with a small amount of toluene to give $\{[H_2t(4-Xp)p]_2TaCl\}Cl_4$ ($X = H, OMe, Me, Pr^i, Br, Cl$) or $\{[H_2t(3-X'p)p]_2TaCl\}Cl_4$ ($X' = OMe, Me, Cl, Br$) complexes (96).¹¹⁰ $(HO)_3Ta[OPT-Pc]$

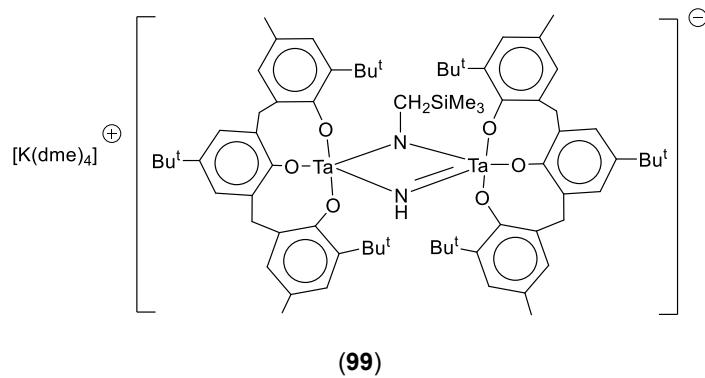
and $(OH)_3Ta[OOT-Pc]$ (Pc = phthocyanine, OPT = octa-pentylthio, OOT = octa-octylthio; **97**) were synthesized by the reactions of substituted 3,6-dicyanobenzenes with anhydrous $Ta(OBu^n)_5$ in 1-pentanol in the presence of 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU).¹¹¹



$R = (CH_2)_4CH_3$ for OPT; $(CH_2)_7CH_3$ octyl (OOT)

(97)

$[\text{Mes}_2(p\text{-OMePh})\text{corrole}]\text{TaCl}_2$ (98) was synthesized via the addition of $[\text{Mes}_2(p\text{-OMePh})\text{corrole}]\text{H}_3$ and $\text{Ta}(\text{MMe})_3\text{Cl}_2\text{TaMe}_3\text{Cl}_2$.¹¹² $[\text{Mes}_2(p\text{-OMePh})\text{corrole}]\text{Ta=NBu}^t$ was prepared via a similar method using $\text{Ta}(\text{=NBu}^t)(\text{CH}_2\text{Ph})_3$.¹¹² Several alkoxyl derivatives were also prepared from $[\text{Mes}_2(p\text{-OMePh})\text{corrole}]\text{TaMe}_2$ and $[\text{Mes}_2(p\text{-OMePh})\text{corrole}]\text{Ta=NBu}^t$, which is discussed in Section 2.67.2.¹¹²


Commented [XZ(40): I've made this formula consistent throughout the article.

(98)

2.45.18. Imide-nitride ligands

$[\text{K(dme)}_4]\{([\text{OOO}]\text{Ta})_2(\mu\text{-N})(\mu\text{-NCH}_2\text{SiMe}_3)\}$ ($[\text{OOO}]^{3-}$ = 2,6-bis(3-tert-butyl-5-methyl-2-oxybenzyl)-4-tertbutylphenolate, **99**) was synthesized from the addition of $\text{Me}_3\text{SiCHN}_2$ to $[\text{K(dme)}_2]\{([\text{OOCO}]\text{Ta})_2(\mu\text{-H})_3\}$ ($[\text{OOCO}]^{4-}$ = cyclometalated $[\text{OOO}]^{3-}$ ligand).¹¹³ Imido $[\text{K(dme)}_4]\{[\text{OOO}]\text{Ta}(\text{=NSiMe}_3)\}\{[\text{OOCO}]\text{Ta})(\mu\text{-H})_2$ (**100**) was prepared from the reaction of $[\text{K(dme)}_2]\{([\text{OOCO}]\text{Ta})_2(\mu\text{-H})_3\}$ with Me_3SiN_3 .¹¹³ Upon addition of Me_3SiN_3 to $[\text{K(dme)}_4]\{[\text{OOO}]\text{Ta}(\text{=NSiMe}_3)\}\{[\text{OOCO}]\text{Ta})(\mu\text{-H})_2$, $[\text{K(dme)}]\{[\text{OOO}]\text{Ta}(\text{=NSiMe}_3)\}\{([\text{OOO}]\text{Ta})(\mu\text{-NSiMe}_3)(\mu\text{-H})$ was prepared.¹¹³ Treatment of $[\text{K(dme)}_2]\{([\text{OOCO}]\text{Ta})_2(\mu\text{-H})_3\}$ with NaN_3 yielded $[\text{Na(dme)}]_2\{([\text{OOO}]\text{Ta})([\text{OOCO}]\text{Ta})(\mu\text{-H})_2(\mu\text{-N})\}$, which was unstable at room temperature, yielding $[\text{Na(dme)}]\{[\text{OOO}]\text{Ta}(\text{H})\}\{[\text{OOCO}]\text{Ta}(\mu\text{-O})\}(\mu\text{-N})[\text{Na(dme)}]$ over time.¹¹³

Commented [MDJ41]: Keep $K(dme)_4$ font size consistent with above.

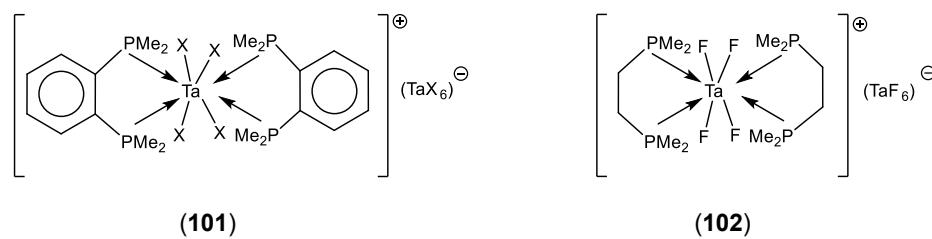
Commented [XZ(42R41)]: Done. Good catch!

2.45.19. Precursors to solid-state materials

The *in-situ* mechanism of the formation of Ta_2O_5 thin films by ALD using $Ta(=NBu^t)(NEt_2)_3$ and D_2O or O_3 was explored using quartz crystal microbalance (QCM) and quadrupole mass spectrometry.¹¹⁴

DFT calculations were conducted to investigate the transamination of alkylamide ligands during MOCVD conditions to make TaN films.¹¹⁵ Energetics and rate constants for the ligand exchange of $Ta(=NBu^t)(NMe_2)_3$ with NH_3 , the proton transfer, and dissociation of $HNMe_2$ to afford net transamination of the dimethylamido ligand were calculated to be facile at ~ 300 °C. The increased nitrogen content and deposition of N-rich films were consistent with the calculated increased strength of the $Ta-NH_2$ bonds.¹¹⁵ The mechanisms of the growth of TaN films by ALD using $Ta(=NBu^t)(NEt_2)_3$ and NH_3 were also investigated via B3LYP hybrid density functional theory.¹¹⁶

Thin TaS_2 films have been fabricated from $Ta(NMe_2)_5$ and Bu^tSH by aerosol-assisted chemical vapor deposition (AACVD) on glass at 225–450 °C. Hexanes or

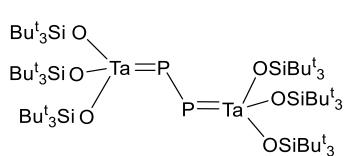

dichloromethane were used as solvents.¹¹⁷ In order to investigate possible compounds within the aerosol mist, five equiv. of Bu^tSH was used in the reaction with Ta(NMe₂)₅. From this reaction, crystals of Ta(S-Bu^t)₂(NMe₂)₃ were isolated and its crystal structure was determined.¹¹⁷

Thin films using $\text{Ta}(\text{NBu}^t)(\text{NEt}_2)_3$ and H_2 prepared via plasma plasma-enhanced atomic layer deposition (PEALD) were studied using various temperatures, plasma power, and duration time.¹¹⁸ The film made was a homogeneous mixture of TaC , TaN , Ta_3N_5 , and Ta_2O_5 phases, where O_2 from the air was incorporated into the film.¹¹⁸

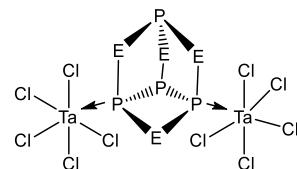
2.6. Phosphorus- and Arsenic-Based Ligands

The complex $[\text{TaF}_4(\text{dppe})_2](\text{TaF}_6) \cdot \frac{1}{2}\text{CH}_3\text{CN}$ was produced from addition of dppe to TaF_5 .⁵¹ The adduct complex $\text{TaCl}_5 \cdot \text{PPh}_3$ was prepared by adding PPh_3 slowly to a solution containing TaCl_5 .⁹⁷

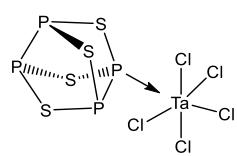
Hepta-coordinated $\text{Ta}(\text{PMe}_3)_2\text{Me}_3\text{Cl}_2$ was produced by the addition of PMe_3 to TaMe_3Cl_2 .¹¹⁹ $\{\text{TaX}_4[\text{o-C}_6\text{H}_4(\text{PMe}_2)_2]\}_2\{\text{TaX}_6\}$ ($\text{X} = \text{F, Cl}$) (**101**), $[\text{TaF}_4(\text{dmpe})_2]\{\text{TaF}_6\}$ (**102**), $\{\text{TaF}_4[\text{Et}_2\text{P}(\text{CH}_2)_2\text{PEt}_2]\}_2\{\text{TaF}_6\}$, and $\{\text{TaF}_4[\text{o-C}_6\text{H}_4(\text{PPh}_2)_2]\}_2\{\text{TaF}_6\}$ were prepared from TaX_5 and phosphines $\text{o-C}_6\text{H}_4(\text{PMe}_2)_2$, $\text{Me}_2\text{P}(\text{CH}_2)_2\text{PMe}_2$, $\text{Et}_2\text{P}(\text{CH}_2)_2\text{PEt}_2$ and $\text{o-C}_6\text{H}_4(\text{PPh}_2)_2$, respectively.¹²⁰

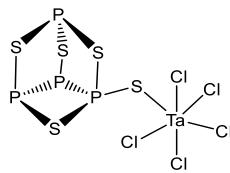


Phosphinidenes (silox)₃Ta=PR was prepared through 1,2-H₂ elimination from heating (silox)₃(H)Ta-PHR (R = H, Ph).¹⁶

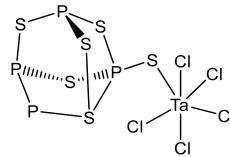

Diphosphorus-bridged complex [(silox)₃Ta]₂(μ:η¹,η¹-P₂) (**103**) was synthesized via the reaction of (silox)₃Ta with P₄.¹²¹ Complexes (TaCl₅)₂(β-P₄E₄) (E = S, Se) (**104**) were made from P₄E₄ with TaCl₅.¹²² (TaCl₅)(α-P₄S₄) (**105**), (TaCl₅)(α-P₄S₅) (**106**), (TaCl₅)(β-P₄S₅) (**107**), and (TaCl₅)(β-P₄S₆) (**108**) were prepared from TaCl₅.¹²³ {[BDI^{Pt}]Ta(=NBu^t)₂(μ-η³:η³-P₄) (**109**) ([BDI^{Pt}]⁻ = bis-*N,N'*-(2,6-Prⁱ₂-C₆H₃)-β-diketiminato) was synthesized from a heated reaction of [BDI]Ta(=NBu^t)(CO)₂ with P₄.¹²⁴

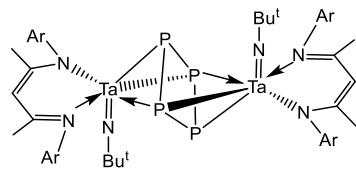
Commented [MDJ43]: Please check formula...is it PHR?


Commented [XZ(44R43)]: Yes


(103)


(104)

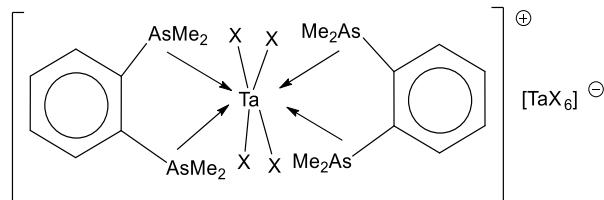

(105)


(106)

(107)

(108)

(109)


Arsinidenes (silox)₃Ta=AsR was made through H₂ elimination by heating

(silox)₃(H)Ta-AsHR (R = H, Ph).¹⁶

{TaX₄[*o*-C₆H₄(AsMe₂)₂]₂}(TaX₆) (X = Cl, F) (110) were synthesized via the addition of *o*-C₆H₄(AsMe₂)₂ to TaF₅.¹²⁰

Commented [MDJ45]: Seems like a typo, Ta6+ or are you referring to AsHR

Commented [XZ(46R45)]: Yes

(110)

2.67. Oxygen-Based Ligands

2.67.1. Ether ligands

Dimethoxybenzenes and 1,2-diphenoxoethane acted as bidentate bridging ligands in their reactions with TaX₅ (X = F, Cl) in 1:2 molar ratio, yielding dinuclear complexes (TaX₅)₂(μ - κ^2 -[O-O]) ([O-O] = 1,4-(OMe)₂C₆H₄, 1,4-(OMe)₂-2,5-C₆H₂F₂, 1,3-(OMe)₂C₆H₄, PhO(CH₂)₂OPh).¹²⁵ When 1,2-dimethoxybenzene reacted with TaX₅ (X = Cl, Br) in ca. 1:1 molar ratio, C–O bond cleavage occurred yielding TaX₄[κ^2 -OC₆H₄(2-

OMe)] as the products.¹²⁵ Similarly when TaBr₅ reacted with 1,4-(OMe)₂C₆H₄, C-O bond cleavage led to the formation of TaBr₄[κ^1 -OC₆H₄(4-OMe)].¹²⁵

Reactions of TaX₅ (X = Cl, Br) with other ethers (L = 2,5-dimethyltetrahydrofuran and tetrahydropyran) as well as the reaction of TaCl₅ with 1,4-dioxane led to the formation of hexacoordinated adducts TaX₅(L).¹²⁶

TaF₅ reacted with diethers ROCH₂CHR'OR" [diethers = MeO(CH₂)₂OMe (dme), MeOCH₂CH(Me)OMe, and EtO(CH₂)₂OEt] to give ionic derivatives [MF₄(κ^2 -ROCH₂CHR'OR")₂](TaF₆) or [TaF₄(ROCH₂CHR'OR")₂](Ta₂F₁₁) according to the metal/diether molar ratios.¹²⁷

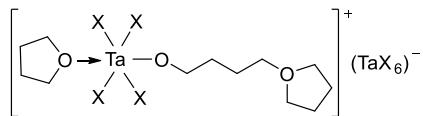
Reactions of thf with TaX₅ gave adducts TaX₅(thf) (X = F, Cl).¹²⁶

2.67.2. Alkoxide, hydroxyl, enolate, and related ligands

Ta(OCPh₂R)₃(=NBu^t) (R = CH₂CMe=CH₂) was synthesized via the reaction of COPh₂ with Ta(η^3 -CH₂CMeCH₂)₃(=NBu^t).⁵⁵ (Ar'O)₂TaMe₃ [(OAr')⁻ = 2,6-bis(diphenylmethyl)-4-tert-butylphenoxy] and (Ar'O)₂Ta(κ^1 MMe)₂Cl₂ were produced from the addition of TaMe₃Cl₂(MMe)₃ to NaOAr' and HOAr', respectively.²⁸

Commented [XZ(47): "Me" should not have (...).

Commented [XZ(48): I've made this formula consistent.


Reaction of hydride complex (*R,R*)-Ta[O₂-3,3'-(SiMe₃)₂C₂₀H₁₀]₂(H) with acetophenone yielded (*R,R,R*) and (*R,R,S*) isomers of Ta[O₂-3,3'-(SiMe₃)₂C₂₀H₁₀]₂(OCHMePh)(O=CMePh).¹⁸ Upon addition of more (*R,R*)-[Ta(O₂C₂₀H₁₀(SiMe₃)₂-3,3')₂(H)] to the NMR reaction tube, free acetophenone was consumed, leaving the complexes (*R,R,S*)/(*R,R,R*) Ta[O₂-3,3'-(SiMe₃)₂C₂₀H₁₀]₂(OCHMePh) and (*R,R*)-Ta[O₂-3,3'-(SiMe₃)₂C₂₀H₁₀]₂[OC(=CH₂)Ph] behind.¹⁸

In the reactions of thf with TaX_5 , in addition to adducts $TaX_5(\text{thf})$ ($X = F, Cl$)

discussed in the previous section, $\{\text{Ta}X_4(\text{thf})[\text{O}(\text{CH}_2)_4\text{O}(\text{CH}_2)_3\text{CH}_2]\}(\text{Ta}X_6)$ ($X = Cl, Br, I$; **111**) were also products.¹²⁶ Complexes (**111**), containing a new 4-(tetrahydrofuran-1-ium)-butan-1-oxo ligand, are believed to play a role in ~~THF~~^{thf} polymerization catalyzed by TaX_5 .¹²⁶

Commented [MDJ49]: Stay with thf not THF for consistency. Please check all document.

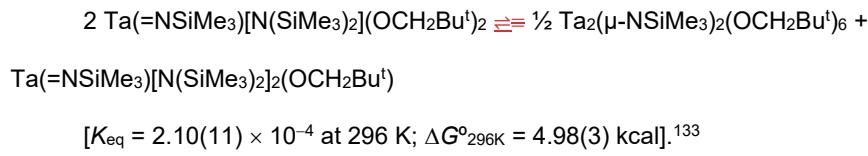
Commented [XZ(50R49)]: Done

$X = Cl, Br, I$

(**111**)

Reactions of TaF_5 with $ROSiMe_3$ ($R = Me, Et, Ph$) in 1:1 and 1:2 molar ratios gave alkoxides $TaF_4(OR)$ and $TaF_3(OR)_2$, respectively.¹²⁸ When TaF_5 reacted with $MeOSiMe_3$ in 1:3 molar ratio, $TaF_2(OMe)_3$ was the product.¹²⁸

When $EtOSiMe_3$ reacted with $TaCl_5$, elimination of $ClSiMe_3$ was observed, yielding $TaCl_4(OEt)$.¹²⁹


Reactions of TaX_5 ($X = Cl, Br$) with dimethoxymethane $CH_2(OMe)_2$ afforded $TaX_5[OMe(CH_2X)]$ and $[\text{Ta}X_3(OMe)(\mu\text{-OMe})]_2$.¹³⁰

Reactions of $TaCl_5$ with 3 equiv of epoxides (1,2-epoxybutane and epoxycyclohexane) and $TaBr_5$ with 3 equiv of ethylene oxide gave dinuclear dihalide tris(2-haloalcoholato) complexes $[\text{Ta}X_2(OR)_2(\mu\text{-OR})]_2$ [$X = Cl, R = -CH(Et)CH_2Cl, -CH(CH_2)_4CHCl; X = Br, R = -CH_2CH_2Br$] through multiple epoxide insertion into metal–

halide bonds.¹³¹

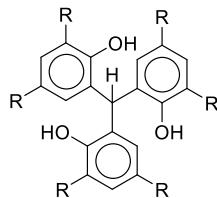
$\text{Li}\{\text{Ta}[\text{OCH}(\text{CF}_3)_2]_6\}$ was synthesized from TaCl_5 and $\text{Li}[\text{OCH}(\text{CF}_3)_2]$.¹³²

Alkyl amide imide complex $\text{Ta}(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2](\text{CH}_2\text{Bu}^t)_2$ reacted with O_2 , leading to the selective insertion of oxygen into the two Ta-alkyl bonds to yield alkoxy complex $\text{Ta}(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2](\text{OCH}_2\text{Bu}^t)_2$.¹³³ In reactions of O_2 with these d^0 complexes, oxidation of the ligands was the prevailing pathway.¹³³⁻¹³⁶ $\text{Ta}(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2](\text{OCH}_2\text{Bu}^t)_2$ underwent the following ligand exchange to give $\text{Ta}_2(\mu\text{-NSiMe}_3)_2(\text{OCH}_2\text{Bu}^t)_6$ and $\text{Ta}(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2]_2(\text{OCH}_2\text{Bu}^t)$,¹³³ reaching the equilibrium:

$\text{Ta}(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2](\text{OCH}_2\text{Bu}^t)_2$ and $\text{Ta}(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2]_2(\text{OCH}_2\text{Bu}^t)$ were also prepared from the reactions of $\{\text{Ta}(\mu\text{-Cl})\text{Cl}(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2]\}_2$ with $\text{LiOCH}_2\text{Bu}^t$ and $\text{LiN}(\text{SiMe}_3)_2/\text{LiOCH}_2\text{Bu}^t$, respectively.¹³³ When $\text{TaMe}_2(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2]$, methyl analog of $\text{Ta}(\text{=NSiMe}_3)[\text{N}(\text{SiMe}_3)_2](\text{CH}_2\text{Bu}^t)_2$, was exposed to 1 equiv of O_2 , the reaction also led to the formation of dialkoxy dimer $\text{Ta}_2(\mu\text{-OMe})_2(\text{OMe})_2(\text{=NSiMe}_3)_2[\text{N}(\text{SiMe}_3)_2]_2$ as *cis/trans* isomers.¹³⁷ However, when only 0.5 equiv of O_2 was used, the alkoxy-bridged alkyl dimer $\text{Ta}_2(\mu\text{-OMe})_2\text{Me}_2(\text{=NSiMe}_3)_2[\text{N}(\text{SiMe}_3)_2]_2$ was the product as *cis/trans* isomers.¹³⁷ Only the *trans* alkoxy-bridged alkyl dimer crystallized in the solid. When dissolved, the *trans*

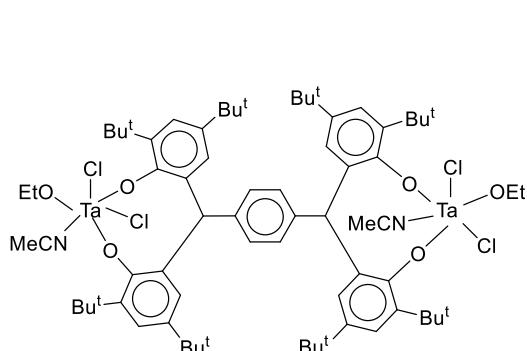
isomer was converted to the *cis* isomer till the equilibrium: *trans* \rightleftharpoons *cis* was established with $K_{\text{eq}} = 0.79(0.02)$ at $23.45.0(0.1)$ °C.¹³⁷ Kinetic studies of the exchange gave the rate constants $k = 0.018(0.002)$ min⁻¹ for the *trans* \rightarrow *cis* conversion and $k' = 0.022(0.002)$ min⁻¹ for the reverse *cis* \rightarrow *trans* conversion at $23.25.40(0.1)$ °C for $\text{Ta}_2(\mu\text{-OMe})_2\text{Me}_2(=\text{NSiMe}_3)_2[\text{N}(\text{SiMe}_3)_2]_2$.¹³⁷

$\text{Ta} (= \text{NBu}^t)\text{Cl}_2(\text{O-2,6-Pr}^t_2\text{C}_6\text{H}_3)(\text{py})_2$ was prepared from $\text{TaCl}_3(=\text{NBu}^t)(\text{py})_2$ and $\text{LiO-2,6-Pr}^t_2\text{C}_6\text{H}_3\cdot\text{thf}$.¹³⁸

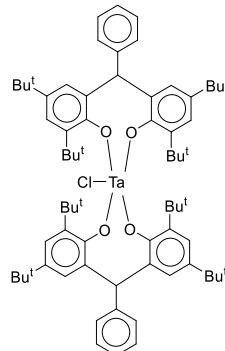

Treatment of $\text{Ta}(\text{OMe})_5$ with CoCl_2 or the reaction of $[\text{Na}][\text{Ta}(\text{OMe})_6]$ with CoCl_2 produced ionic complex $[\text{Co}_2\text{Ta}_2(\text{OMe})_{12}(\text{MeCN})_4][\text{CoCl}_3(\text{MeCN})]_2$ containing a planar $\text{M}_4(\mu_3\text{-OMe})_2(\mu\text{-OMe})_4$ core.¹³⁹

Mixing $\text{Ta}(\text{OEt})_5$ and SnCl_4 in a mixture of toluene and EtOH gave $(\text{EtOH})(\text{EtO})_3\text{Ta}(\mu\text{-OEt})_2\text{SnCl}_4$, which, when was recrystallized from a solution in toluene and Pr^iOH , yielded $(\text{Pr}^i\text{OH})(\text{OPr}^i)_3\text{Ta}(\mu\text{-OEt})_2\text{SnCl}_4$ retaining the heterometallic $\text{Ta}(\mu\text{-OEt})_2\text{Sn}$ core.¹⁴⁰ These complexes may be used to make halide-free spinodal form of $\text{Ta}(\text{V})$ -doped $\text{TiO}_2\text{-SnO}_2$ as a potential thermoelectric material.¹⁴⁰

Reactions of $\text{Ta}(\text{OR})_5$ ($\text{R} = \text{Me, Et}$) with pinacol and Et_3N gave $\text{Ta}(\text{O}_2\text{C}_6\text{H}_{12})_2(\text{OC}_6\text{H}_{12}\text{OH})$.¹⁴¹


Reaction of TaCl_5 with tris(3,5-di-t-butyl-2-hydroxy)methane and Et_3N gave $(\text{Et}_2\text{NH}_2)[\text{TaCl}_3(\text{O-2,4-But}^t_2\text{C}_6\text{H}_2)_3\text{CH}]$, in which the $\text{Ta}(\text{V})$ center is coordinated by three Cl^- and three phenoxides of the tripodal ligand.¹⁴²

Commented [XZ(51): I have used this formula in other places of the manuscript, including, e.g., $\text{KTa}(\text{OPr}^i)_6$ and KOPr^i on p. 67 below the structure of 113. Also, $\text{Ti}(\text{OTf})$ on p. 69.



tris(3,5-di-t-butyl-2-hydroxy)methane

TaCl₅ reacted with $\alpha,\alpha,\alpha',\alpha'$ -tetra(3,5-di-t-butyl-2-hydroxyphenyl-*p*-)xylene-*para*-tetraphenol (*p*-LH₄), yielding [TaCl₂(OEt)(NCMe)]₂(μ -*p*-L) (**112**).¹⁴³ When TaCl₅ reacted with two equiv of 2,2'-PhCH(4,6-Bu^t₂C₆H₂OH)₂, TaCl[2,2'-PhCH(4,6-Bu^t₂C₆H₂O)₂]₂ (**113**) was the product.¹⁴⁴

(**112**)

(**113**)

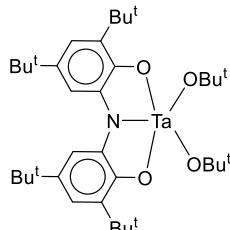
Commented [MDJ52]: Consider making the O-Cipso bonds straight

Commented [XZ(53R52)]: Is this adequate?

Reactions of $\text{KTa}_2(\text{OPr}^i)_6$, prepared from $\text{Ta}_2(\text{OPr}^i)_{10}$ with KOPr^i and CdI_2 under slightly different conditions gave heterobimetallic alkoxides $[\text{I}_2\text{Cd}_2\text{Ta}(\text{OPr}^i)_7]_2$ or $\{\text{I}_2\text{Cd}[\text{Ta}(\text{OPr}^i)_6]\text{K}(\text{HOPr}^i)_2\}_4$.¹⁴⁵ $\text{Ta}_2(\text{OPr}^i)_{10}$ reacted with CdI_2 in thf and $\text{Cd}[\text{N}(\text{SiMe}_3)_2]_2$ in Pr^iOH /toluene, yielding $\text{I}_2\text{CdTa}(\text{OPr}^i)_5 \bullet \text{thf}$ and $[\text{CdTa}(\text{OPr}^i)_7]_2$, respectively.¹⁴⁵

Thermogravimetric and differential thermal analysis (TGA/DTA) of $[\text{CdTa}(\text{OPr}^i)_7]_2$

showed that it decomposed to $\text{Cd}_2\text{Ta}_2\text{O}_7$.¹⁴⁵


When $\text{Ta}_2(\text{OPr}^i)_{10}$ reacted with a series of glycols [HO-gly-OH = 2-methyl-2,4-pentanediol, (\pm) 2,3-butanediol, 2,2-dimethyl-1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol], yielding $\text{Ta}_2(\text{O-gly-O})_4(\mu\text{-OPr}^i)_2$ based NMR spectra.¹⁴⁶

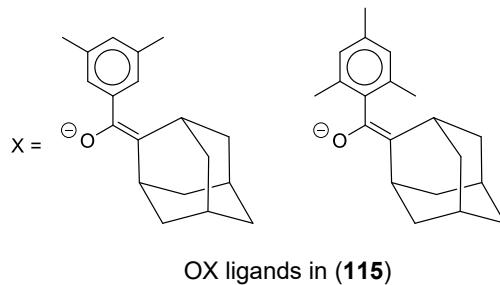
Reaction of $\text{Ta}_2(\text{OPr}^i)_{10}$ with $\text{Sr}(\text{OPr}^i)_2$, prepared *in-situ* from Sr metal and HOPr^i , gave $\text{SrTa}_2(\text{OPr}^i)_8(\mu\text{-OPr}^i)_4(\text{Pr}^i\text{OH})_2$.¹⁴⁷ When dimethyl~~ethanol~~amine~~ethanol~~ $\text{Me}_2\text{NCH}_2\text{CH}_2\text{OH}$ (dmae-OH) was added to solution of $\text{SrTa}_2(\text{OPr}^i)_8(\mu\text{-OPr}^i)_4(\text{Pr}^i\text{OH})_2$, Sr-Ta complex $\text{Sr}[(\mu\text{-OPr}^i)(\mu\text{-O-dmae})\text{Ta}(\text{OPr}^i)_4]_2$ was the product.¹⁴⁷ $[\text{Nb}(\text{OPr}^i)_6]\text{Pb}[\text{Ta}(\text{OPr}^i)_6]$ was also reported.¹⁴⁸

$([\text{NPN}^{\text{Ph}}]\text{Ta})_2(\mu\text{-H})_4$ ($[\text{NPN}^{\text{Ph}}]^{2-} = \text{PhP}(\text{CH}_2\text{SiMe}_2\text{NPh})_2^{2-}$) reacted with CO_2 to give $([\text{NPN}^{\text{Ph}}]\text{Ta})_2(\mu\text{-H})_2(\mu\text{-OCH}_2\text{O})$.¹⁴⁹

Addition of 4-methylbenzyl alcohol and triphenylmethanol to $[\text{Mes}_2(p\text{-OMePh})\text{corrole}]\text{Ta}(\text{OCH}_2\text{-}p\text{-MeC}_6\text{H}_4)_2$ and the amido-alkoxide $[\text{Mes}_2(p\text{-OMePh})\text{corrole}]\text{Ta}(\text{OCPh}_3)(\text{NHBu}^t)$, respectively.¹¹²

Reaction of $[\text{ONO}^{\text{cat}}]\text{TaMe}_2$ ($[\text{ONO}^{\text{cat}}]^{3-} = \text{N,N-bis}(3,5\text{-di-}t\text{-butyl-}2\text{-phenoxide})\text{amide}$) with Bu^tOH gave $[\text{ONO}^{\text{cat}}]\text{Ta}(\text{OBu}^t)_2$ (**114**).¹⁵⁰

(114)


Reaction of $\text{Ta}(\text{OPr}^i)_2[\text{OSi}(\text{OBu}^t)_3]_3$ with silica led to the formation of surface-supported hydroxide ($\equiv\text{SiO}_3\text{Ta}(\text{OH})_2$), which then reacted with $\text{RMe}_2\text{Si-NMe}_2$ ($\text{R} = \text{Me}$, Bu^n and Oc^n), affording $(\equiv\text{SiO}_2\text{Ta}(\text{OH})(\text{OSiMe}_2\text{R})[\text{OSi}(\text{OSiMe}_2\text{R})(\text{OSi}\equiv)]$ that contains the siloxide OSiMe_2R ligand.¹⁵¹ When silica reacted with $\text{Ta}(\text{OPr}^i)_2[\text{OSi}(\text{OBu}^t)_3]_3$ in the presence of $\text{RMe}_2\text{Si-NMe}_2$, the grafted complex was $(\equiv\text{SiO}_2\text{Ta}(\text{OH})_2[\text{OSi}(\text{OSiMe}_2\text{R})](\text{OSi}\equiv)_2]$.¹⁵¹ These Ta(V) centers were catalysts for highly selective olefin epoxidation with aqueous H_2O_2 .¹⁵¹ Kinetic and mechanistic studies of the catalytic olefin epoxidation were conducted.¹⁵²

Oxalate complexes $(\text{Hphen})[\text{Ni}(\text{phen})_3][\text{Ta}(\text{C}_2\text{O}_4)_4]$, $[\text{Ni}(\text{phen})_3][\text{Ta}(\text{OH})(\text{C}_2\text{O}_4)_3]$, $[\text{Ni}(\text{phen})_3][\text{Ta}(\text{OEt})(\text{C}_2\text{O}_4)_3]$ and $[\text{Ni}(\text{phen})_3][\text{Ta}(\text{OMe})(\text{C}_2\text{O}_4)_3]$ ($\text{phen} = 1,10\text{-phenanthroline}$) were prepared-synthesized from tantalate(V) oxalate solutions and $[\text{Ni}(\text{phen})_3]\text{Cl}_2$, which was prepared in-situ, with-in different solvents.¹⁵³ Oxalatate complexes $[\text{M}(\text{phen})_3][\text{Ta}(\text{OEt})(\text{C}_2\text{O}_4)_3]\cdot\text{H}_2\text{O}$ ($\text{M} = \text{Fe, Co}$; $\text{phen} = 1,10\text{-phenanthroline}$) were prepared-similarly synthesized from the reactions of $[\text{M}(\text{phen})_3]\text{Cl}_2$ prepared in-situ and an aqueous (oxalato)tantalate(V) solutions containing EtOH.¹⁵⁴

Bis-enolate complexes $\text{TaMe}_3(\text{OX})_2$ (115; $\text{X} = \text{enolate ligands}$) were prepared

from the K^+ salts of the enolates and $Ta(Me)_3Cl_2$.¹⁵⁵ Hydrogenolysis of (115) in pyridine led to the formation of Ta(III) complex *cis*-Ta(OX)₂Me(py)(2,2'-bipyridine) and Ta(V) bis-pyridyl complex *cis*-Ta(OX)₂Me(py)(pyridyl)₂.¹⁵⁵

Commented [XZ(54): I've made this formula $TaMe_3Cl_2$ consistent.]

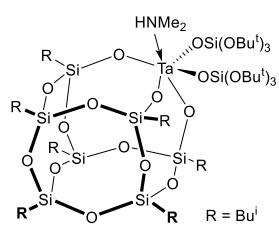
Reaction of ketimide chloride $Ta(Cl)(N=CBu^t_2)_4$ with $Tl(OTf)$ gave $Ta(OTf)(N=CBu^t_2)_4$.⁷⁵ Dinuclear complexes $[(\eta^2-RC\equiv CR)TaCl_2]_2(\mu-OMe)_2(\mu-thf)$ ($R = Et$ or Pr^n) were synthesized by treating $(\eta^2-RC\equiv CR)TaCl_3(dme)$ ($R = Et$ or Pr^n) with $NaOMe$ in thf .¹⁵⁶ When a mixture of $[(\eta^2-(EtC\equiv CEt)TaCl_2]_2(\mu-OMe)_2(\mu-thf)$ and $[(\eta^2-(Pr^nC\equiv CPr^n)TaCl_2]_2(\mu-OMe)_2(\mu-thf)$ was monitored via 1H NMR spectroscopy, spontaneous dissociation and dimerization occurred to yield a mixed dinuclear tantalum-alkyne complex $[(\eta^2-(EtC\equiv CEt)TaCl_2][(\eta^2-(Pr^nC\equiv CPr^n)TaCl_2](\mu-OMe)_2(\mu-thf)$.¹⁵⁶

As discussed earlier in Section 2.3.3, the reactions of $Ta(=XBu^t)(CH_2Bu^t)_3$ with an NHC containing an OH group, HL (1-mesityl-3-(2-hydroxyisobutyl)imidazol-2-ylidene), yielded $Ta(=XBu^t)(L)(CH_2Bu^t)_2$ ($X = N, CH$; **32a,b**).⁴³

Extended X-ray absorption fine structure (EXAFS) and Raman spectroscopy

were used to investigate hydrolysis and condensation behavior of $\text{Ta}(\text{OEt})_5$, revealing that it was dimeric and instantaneously underwent hydrolysis and condensation reaction upon water addition.¹⁵⁷ For the mixed solutions of $\text{Ta}(\text{OEt})_5$ and prehydrolyzed $\text{Si}(\text{OEt})_4$, EXAFS results show that the two species remain as separate entities in the solution.¹⁵⁷

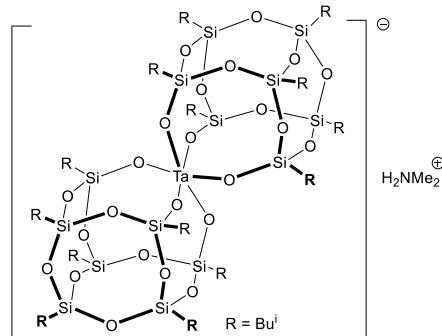
2.67.3. Siloxide ligands


Siloxide complexes $(\text{R}_3\text{SiO})_3\text{TaCl}_2$ ($\text{R}_3 = \text{Cy}_3, \text{Bu}^t_2\text{Ph}, \text{Bu}^t_2\text{Me}, \text{Pr}^i_2\text{Bu}^t, \text{Pr}^i_3, \text{Bu}^t_2\text{H}$) with various sized ligands have been prepared from TaCl_5 and R_3SiONa .¹⁴ Studies of the reduction of these complexes and $(\text{Bu}^t_3\text{SiO})_3\text{TaCl}_2$ by sodium amalgam suggest that $\text{Ta}^{\text{IV}}_2(\text{OSiR}_3)_6(\mu\text{-Cl})_2$ may be a common intermediate. When the siloxide ligand was large ~~in $(\text{Bu}^t_3\text{SiO})_3\text{TaCl}_2$~~ , disproportionation of the Ta(IV) intermediate ~~$\text{Ta}_2(\text{OSiBu}^t_3)_6(\mu\text{-Cl})_2$ gave the~~ Ta(III) species $(\text{Bu}^t_3\text{SiO})_3\text{Ta}$ ~~and the Ta(V) complex $(\text{Bu}^t_3\text{SiO})_3\text{TaCl}_2$~~ . When the siloxide ligand was small, the Ta(IV) intermediate $\text{Ta}^{\text{IV}}_2(\text{OSiPr}^i_3)_6(\mu\text{-Cl})_2$ was stable.¹⁴

$\{[\text{BDI}^{\text{P}}](\text{Ph}_3\text{SiO})\text{Ta}(=\text{NBu}^t)\}[\text{B}(\text{C}_6\text{F}_5)_4]$ ($[\text{BDI}^{\text{P}}]^- = \text{bis-}N,N'-(2,6\text{-Pr}^i_2\text{-C}_6\text{H}_3)\text{-}\beta\text{-diketiminate}$) was synthesized via reaction of Ph_3SiOH with $\{[\text{BDI}^{\text{P}}]\text{MeTa}(=\text{NBu}^t)\}[\text{B}(\text{C}_6\text{F}_5)_4]$.^{76, 77}

$\{\text{Ta}[\text{OSi}(\text{SiMe}_3)_3](\mu\text{-OEt})(\text{OEt})_3\}_2$ and $\text{Ta}[\text{OSi}(\text{SiMe}_3)_3]_3(\text{OEt})_2$ were synthesized from the reactions of $\text{HOSi}(\text{SiMe}_3)_3$ with $\text{Ta}(\text{OEt})_5$ in different molar ratios.¹⁵⁸

$\text{Ta}(\text{NMe}_2)_3[\text{OSi}(\text{OBu}^t)_3]_2$ and $[(\text{Pr}^i_3\text{GeO})_3\text{Ta}]_2(\mu\text{-OH})_2(\mu\text{-O})$ were prepared from the reactions of $\text{Ta}(\text{NMe}_2)_3\text{Cl}_2$ with $\text{KOSi}(\text{OBu}^t)_3$ and of $\text{Ta}(\text{NMe}_2)_5$ with HOGePr^i_3 , respectively.¹⁵⁹ Their reactions with silsesquioxane yielded $[(\text{Bu}^t\text{O})_3\text{SiO}]_2\text{Ta}(\text{POSS})(\text{HNMe}_2)$ (**116**) and $[(\text{Pr}^i_3\text{GeO})_2\text{Ta}]_2(\mu\text{-OH})(\mu\text{-O})(\mu\text{-O})$.


OSi)(POSS)(HNMe₂) (**117**), respectively.¹⁵⁹ In the presence of H₂O₂ and urea, (**116**) was converted to (H₂NMe₂)[Ta(POSS)₂] (**118**) containing two POSS ligands bridged by an octahedral TaO₆ center.¹⁵⁹ (**118**) was prepared independently via reaction of 2 equiv of silsesquioxane with 1 equiv of Ta(NMe₂)₅.¹⁵⁹ Germanoxy-containing (**117**) was efficient for the epoxidation of cyclooctene by H₂O₂.¹⁵⁹

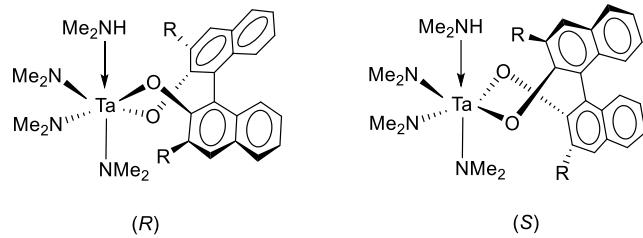
(**116**)

(**117**)

(**118**)

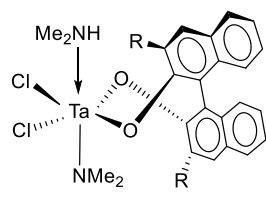
Ta(OEt)₅ reacted with 1 equiv of 1,1,3,3-tetraphenyl-disiloxane-1,3-diol, (HO)SiPh₂OSiPh₂(OH) and incompletely condensed silsesquioxane precursor Cy₇Si₇O₉(OH)₃ (Cy = cyclohexyl), giving disiloxanediolate

$Ta_2(OEt)_4(\mu-OEt)_2[\mu-\kappa^2-(O-Ph_2Si)_2O]_2$ and tantalasilsesquioxane derivative $Ta_2(OEt)_2(\mu-OEt)_2(C_7Si_7O_{12})_2$, respectively.¹⁶⁰

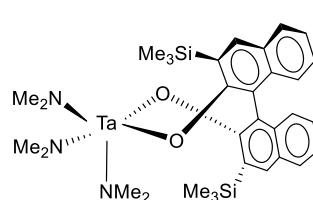

Reaction between $Ta(OEt)_5$ and 1,1,3,3-tetramethyl-1,3-disiloxanediol ($HOSiMe_2OSiMe_2OH$) gave siloxy complexes $Ta_2(OEt)_4(\mu-OEt)_2(\mu-\kappa^2-OSiMe_2OSiMe_2O)_2$ and $[Ta(\kappa^2-OSiMe_2OSiMe_2OSiMe_2O)]_2(\mu-OEt)_2(\mu-\kappa^2-OSiMe_2OSiMe_2O)_2$.¹⁶¹ These products catalyzed the transformation of $HOSiMe_2OSiMe_2OH$ to polysiloxanes.¹⁶¹

As discussed earlier, amide silyl complex $(Me_2N)_4Ta(-SiBu^tPh_2)_2$ reacted with O_2 to yield siloxy aminoxy $(Me_2N)_3Ta(\eta^2-ONMe_2)(OSiBu^tPh_2)$, siloxy $(Me_2N)_4Ta(OSiBu^tPh_2)$ and the unusual μ -oxo amino $Ta_2(NMe_2)_2(OSiBu^tPh_2)_2(\mu,\kappa^2-Me_2NCH_2NMe)_2(\mu-O)_2$ with two bridging chelating (aminomethyl)amide $-N(Me)CH_2NMe_2$.¹³⁵

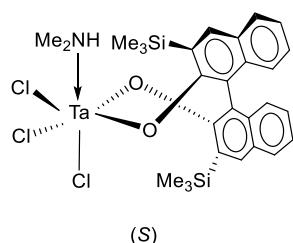
Silica supported complex $\equiv Si-O-Ta(NMe_2)_4$ was formed from the reaction of silica $SiO_{2-(700)}$ with $Ta(NMe_2)_5$.¹⁶²


2.67.4. Aryloxide ligands

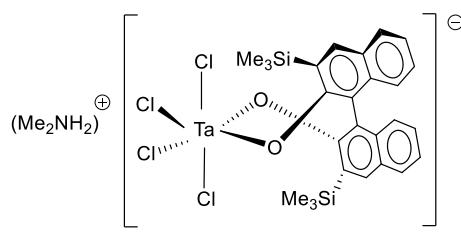
Reactions of $Ta(NMe_2)_5$ and *mer,cis*- $Ta(NMe_2)_2Cl_3(HNMe_2)$ with optically resolved 3,3'-disubstituted-2,2'-dihydroxy-1,1'-binaphthyl gave amine adducts $Ta(\kappa^2-O,O-R_2-C_{20}H_{10})(NHMe_2)(NMe_2)_3$ (119, $R = SiMe_3, SiMe_2Ph, SiMePh_2, SiPh_3$) and $Ta(\kappa^2-O,O-R_2-C_{20}H_{10})(NHMe_2)(NMe_2)Cl_2$ (120, $R = SiMe_3, SiMe_2Ph, SiMePh_2, SiPh_3$), respectively.¹⁶³ Heating **S-(119)** ($R = SiMe_3$) under vacuum leads to the elimination of $HNMe_2$ and formation of $Ta[\kappa^2-O,O-3,3'-(SiMe_3)_2-C_{20}H_{10}](NMe_2)_3$ (121). When mixed with $SiCl_4$, **S-(119)** ($R = SiMe_3$) was converted to a mixture of $Ta[\kappa^2-O,O-3,3'-(SiMe_3)_2-C_{20}H_{10}](NHMe_2)Cl_3$ (122) and $(Me_2NH_2)Ta[\kappa^2-O,O-3,3'-(SiMe_3)_2-C_{20}H_{10}]Cl_4$ (123).¹⁶³


(S), R = SiMe₃
 (R), R = SiMe₂Ph
 (R), R = SiMePh₂
 (R,S), R = SiPh₃

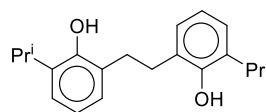
(119)



(S), R = SiMe₃
 (S), R = SiMe₂Ph
 (S), R = SiMePh₂
 (S), R = SiPh₃

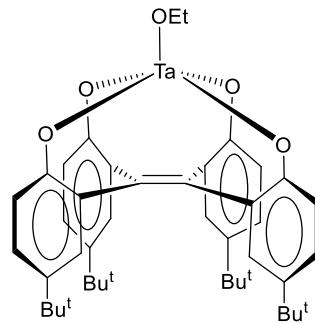

(120)

(121)

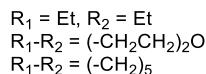
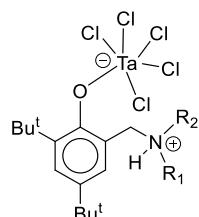


(122)

(123)


2,2'-Ethylenebis(6-isopropylphenol) (H_2bipp) reacted with $TaCl_5$ to give $(bipp)TaCl_3$ containing a chelating bis(aryloxide) ligand. Addition of $RMgCl$ ($R = CH_2Ph$, Me) and S ($S = thf$, Et_2O) gave $(bipp)TaR_3$ and $(bipp)TaCl_3(S)$, respectively.¹⁶⁴

2,2'-Ethylenebis(6-isopropylphenol)



$[K(H_2O)(MeOH)_3]_2(PPh_4)_2[Ta_6Cl_{12}(p-OC_6H_4-F)_6]$ containing *p*-fluorophenolate¹⁶⁵ ligands was prepared from $[Ta_6Cl_{14}(MeOH)_4] \cdot 6MeOH$, $K(p-OC_6H_4-F)$ and $(PPh_4)Br$ in $MeOH$.

Treatment of 2,2',2'',2'''-(1,2-ethenediyliidene)tetrakis(4-tert-butylphenols) $[(tpo)H_4]$ with $Ta(OEt)_5$ and $Ta(NMe_2)_5$ afforded $Ta(V)$ square pyramidal complexes $(tpo)Ta(OEt)$ (**124**) and dimethylamide $(tpo)Ta(NMe_2)$, respectively, which are supported by the tpo^{4-} spectator ligand.¹⁶⁶ When $(tpo)Ta(OEt)$ or $(tpo)Ta(NMe_2)$ was treated with $AlMe_3$, the methyl derivative $(tpo)TaMe$ was the product.¹⁶⁶ $(tpo)Ta(OEt)$ and $(tpo)Ta(NMe_2)$ were cleanly regenerated by addition of $EtOH$ and $HNMe_2$ to $(tpo)TaMe$, respectively.¹⁶⁶

(124)

Reactions of the aminophenols with $TaCl_5$ yielded zwitterionic aminophenolate complexes (125) with protonated N atom of the ligand and negative charged metal center. The complexes show moderate activities for the ring opening polymerization of lactides.¹⁶⁷

(125)

2.67.5. Ketone ligands or ligands containing $N-C=O$, $As-C=O$, and $P=O$ functionalities

TaX_5 ($X = F, Cl, Br$) reacted with ketones, yielding adducts $TaX_5(\text{ketone})$ ($X = F, Cl$, ketone = $Me_2C=O, MePhC=O, Ph_2C=O$; $X = Cl$, ketone = $HPhC=O$; $X = Br$, ketone =

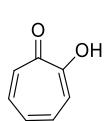
$\text{Me}_2\text{C}=\text{O}$).¹⁶⁸

TaF_5 reacted with benzophenone Ph_2CO , (2-diphenylphosphino)phenol (dppph), and 4-fluorobenzonitrile $\text{NCC}_6\text{H}_4(p\text{-F})$ to give $[\text{TaF}_4(\text{Ph}_2\text{CO})_2](\text{TaF}_6)$, $[\text{TaF}_4(\text{dppph})_2](\text{TaF}_6)$, and $\text{TaF}_5[\text{NCC}_6\text{H}_4(p\text{-F})]$, respectively.¹⁶⁹

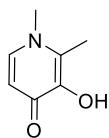
Reactions of TaCl_5 with ethers OR_2 [$\text{R}_2 = \text{Me}_2, \text{Et}_2, \text{Me}(\text{CH}_2\text{Cl})$] and N,N -diethyl methyl carbamate gave adducts $\text{TaCl}_5(\text{OR}_2)$ and $\text{TaCl}_5(\text{Et}_2\text{NCO}_2\text{Me})$, respectively.¹²⁹

Reactions of TaX_5 ($\text{X} = \text{F}, \text{Cl}$) with ligands L containing $\text{N}-\text{C}=\text{O}$ and $\text{P}=\text{O}$ functionalities (tetramethylurea, tetraethylurea, dimethylformamide, diethylformamide, N -phenylacetanilide, [triphenylphosphane](#) [triphenylphosphine](#) oxide, and trimethyl phosphate) gave complexes $\text{MX}_5(\text{L})$.¹⁷⁰ Reactions of TaBr_5 with N -phenylacetanilide and tetramethylurea yielded $\text{TaBr}_5(N$ -phenylacetanilide) and $[\text{TaBr}_4(\text{tetramethylurea})_2](\text{TaBr}_6)$, respectively.¹⁷⁰

TaCl_5 reacted with $\text{Li}(\text{dme})^+[\text{RC}(\text{=O})-\text{As}-\text{C}(\text{=O})\text{R}]^-$ ($\text{R} = \text{Ph, mesityl}$), giving not the substituted product but $[\text{R}(\text{O=})\text{C}_2\text{As-As}(\text{C=O})\text{R}]_2$, presumably via oxidative coupling of the arsadiionate ligands.¹⁷¹


2.67.6. *O,O*-monoanionic and dianionic bidentate ligands and *O,O,O*-dianionic tridentate ligands

Reaction of TaBr_5 with $\text{MeOCH}_2\text{CH}_2\text{OMe}$ (dme) led to single C-O bond cleavage, yielding O,O -monoanionic alkoxyether complex $\text{TaBr}_4(\kappa^2\text{-OCH}_2\text{CH}_2\text{OMe})$ and MeBr .¹⁷² Similar reaction of TaCl_5 with 1 equiv of dme gave alkoxyether $\text{TaCl}_4(\kappa^2\text{-OCH}_2\text{CH}_2\text{OMe})$ as well as oxo-bridged adduct $\text{Cl}_3(\text{dme})\text{Ta}(\mu\text{-O})\text{TaCl}_5$.¹⁷³

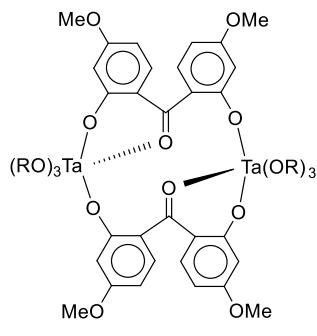

Reaction of TaCl_5 with tropolone (Htro) gave $[\text{Ta}(\kappa^2\text{-O,O-tro})_4]\text{Cl}$ containing an

eight-coordinated Ta(V) cation.¹⁷⁴ Its crystal structure was compared with that of its less stable Nb(V) analog, showing more distorted square antiprismatic geometry.¹⁷⁴

Reaction of Ta(OEt)₅ with deferiprone (Hdef) gave tris(1,2-dimethyl-3-hydroxy-4(1*H*)pyridone)oxotantalum TaO(κ^2 -O,O-C₇H₈O₂N)₃.¹⁷⁵

Tropolone (Htro)

Deferiprone (Hdef)

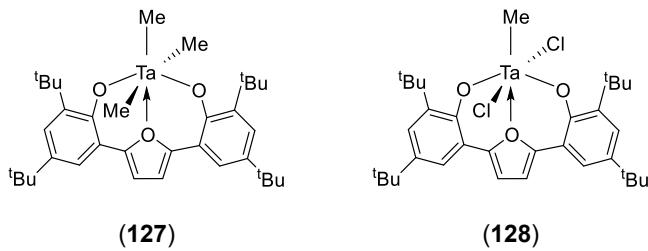

TaX₅(acetone) (X = F, Cl) were reactive towards acetone, acetophenone or benzophenone, giving the aldolate species TaF₄[κ^2 -(O)-OC(Me)CH₂CPh₂O] and TaCl₄[κ^2 -(O)-OC(Me)CH₂CPh(Me)O].¹⁶⁸ Reactions of TaX₅ (X = F, Cl, Br) with acetylacetones yielded TaX₄[κ^2 -(O)-OC(Me)C(R)C(Me)O] (X = F, Cl, R = H, Me; X = Br, R = Me).¹⁶⁸

BiPh₃ reacted with salicylic acid and Ta(OEt)₅, giving Bi₂Ta₂(μ -O)(sal)₄(Hsal)₄(OEt)₂.¹⁷⁶ When BiPh₃ reacted with salicylic acid, HOPrⁱ, Mg(OAc)₂, and Ta(OEt)₅, the product was BiTa₄(μ -O)₄(sal)₄(Hsal)₃(OPrⁱ)₄ (sal = O₂CC₆H₄-2-O²⁻, Hsal = O₂CC₆H₄-2-OH⁻).¹⁷⁶ Pyrolysis and hydrolysis of Bi₂Ta₂(μ -O)(sal)₄(Hsal)₄(OEt)₂ yielded bimetallic oxides.¹⁷⁶

Reactions of Bi-Ta salicylate complexes Bi₂Ta₂(sal)₄(Hsal)₄(OEt)₄ and BiTa₄(μ -O)₄(sal)₄(Hsal)₃(OPrⁱ)₄ with NaBPh₄ in alcoholic solutions gave heterobimetallic oxide [PhBi(Hsal)Ta(sal)₂(OEt)₂·EtOH]₂ and PhBiTa₄(μ -O)₄(Hsal)₂(sal)₄(OEt)₄·CH₂Cl₂.¹⁷⁷

Ta(OEt)₅ reacted with 3 equiv of bidentate catechol 1,3-(OH)₂C₆H₃ (cat-H₂), yielding Ta(cat)₂(cat-H)(py).¹⁷⁸

Reactions of Ta(OEt)₅ and Ta(OEt)(OCH₂Bu^t)₄ with 4,4'-dimethoxy-2,2'-diol-benzophenone (H₂-Obzp) gave [(RO)₃Ta(μ,μ_c-Obzp)]₂ (**126**, R = Et, Bu^tCH₂).¹⁷⁹ The complexes adopt the 'bridging, chelating bridging' (μ,μ_c-Obzp) mode.¹⁷⁹


(126)

Bisphenoxide-supported trimethyl complex (**127**) was prepared by the reaction of ~~Me₃TaMe₃Cl₂~~ with dipotassium salt of [(2,5-HOC₆H₂-2,4-Bu^t)₂OC₄H₂] containing a furan linker.¹⁸⁰ If the bisphenol directly reacts with ~~Me₃TaMe₃Cl₂~~, the product was dichloro methyl complex (**128**).¹⁸⁰

Commented [MDJ55]: Different format before, please use parenthesis to separate Me from py

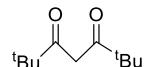
Commented [XZ(56R55): Changed here and below.

Commented [MDJ57]: Same here

2.67.7. Carboxylate, carboxylic acid and related ligands

When TaF_5 was mixed with acetic anhydride, ^{19}F NMR spectroscopic studies showed the formation of adduct $\text{TaF}_5[\text{O}=\text{C}(\text{Me})\text{OC}(=\text{O})\text{Me}]$ and $\text{TaF}_5[\text{OC}(\text{O})\text{Me}]^-$ anion, along with $\text{MeC}(=\text{O})\text{F}$ and $\text{MeC}(=\text{O})\text{O}^-$ anion.¹⁸¹

Reactions of TaX_5 ($\text{X} = \text{Cl}, \text{Br}$) with acetic acid and halo-substituted acetic acids gave dinuclear complexes $\text{Ta}_2\text{X}_8(\mu\text{-OOCMe})_2$ and $\text{Ta}_2\text{Cl}_8(\mu\text{-OOCR})_2$ ($\text{R} = \text{CH}_2\text{Cl}, \text{CHCl}_2, \text{CCl}_3, \text{CF}_3$).¹⁸² TaF_5 reacted with acetic acid and halo-substituted acetic acids RCOOH ($\text{R} = \text{Me}, \text{CH}_2\text{Cl}$) to give ionic complexes $[\text{MF}_4(\text{RCOOH})_2](\text{MF}_6)$.¹⁸²


When freshly prepared $\text{Ta}(\text{OH})_5 \cdot \text{nH}_2\text{O}$ was dissolved in aqueous oxalic acid, followed by addition of dimethylformamide $\text{HC}(\text{=O})\text{NMe}_2$ and NH_4Cl , the process afforded oxalate complex $(\text{NH}_4)(\text{Me}_2\text{NH}_2)_2[\text{Ta}(\text{C}_2\text{O}_4)_4]$.¹⁸³

2.67.8. β -Diketonate ligands

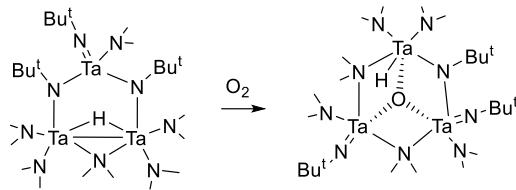
β -Diketonate complexes $[\text{TaX}(\text{NH}_3)_3\text{F}_2]\text{F}_2$ ($\text{X} = \text{tta, hfa, bfa}$) were prepared from the reactions of basic aqueous solution of TaF_7^{2-} with thenoyltrifluoroacetone (Htta), hexafluoroacetylacetone (Hhfa), and benzoyltrifluoroacetylacetone (Hbfa).¹⁸⁴

Reaction of $TaCl_5$ with neat 2,2,6,6-tetramethylheptane-3,5-dione (Htmhd) (in the absence of solvent) gives $[Ta(tmhd)_4](TaCl_6)$ containing the 8-coordinate $Ta(V)$ cation,

$[\text{Ta}(\text{tmhd})_4]^+$.¹⁸⁵

Htmhd

Reaction of $\text{Co}(\text{acac})_2$ with 1.5 eq. of $\text{Ta}_2(\text{OPr})_5$ ¹⁴⁰ gave $\text{Co}_2\text{Ta}_2(\text{OPr})_{14}$ and $\text{Ta}(\text{acac})(\text{OPr})_4$.¹⁸⁶

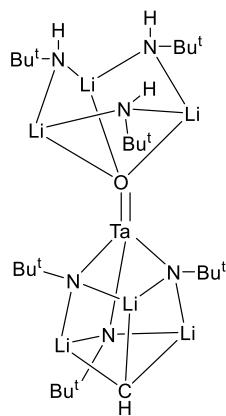

EXAFS and Raman [spectroscopic](#) studies showed that the reaction of $\text{Ta}(\text{OEt})_5$ with Hacac gave $\text{Ta}(\text{OEt})_x(\text{acac})_{5-x}$ ($x = 4, 3, 2$), where Ta ion was 6- ($x = 4$), 7- ($x = 3$), or 8-coordinated ($x = 2$), respectively.¹⁵⁷

2.67.9. Oxo ligands

When TaCl_5 reacted with 2 or more equiv of dme, multiple C–O bond cleavages occurred, giving $\text{Ta}(\text{O})\text{Cl}_3(\text{dme})$.¹⁷³

TaCl_5 promoted coordinated urea dehydration of N,N' -dicyclohexylurea [CyNH-C(=O)-NHCy] by NEt_3 to carbodiimide CyN=C=NHCy with the formation of $\text{TaOCl}_3(\text{NEt}_3)_2$ in a process similar to that by NbCl_5 .¹⁸⁷

$\text{Ta}_3(\mu\text{-H})(\mu\text{-NMe}_2)(\mu\text{=NBu}^t)_2(\text{=NBu}^t)(\text{NMe}_2)_5$ with a Ta(IV)–Ta(IV) bond reacted with O_2 , affording the oxo product in Scheme 6.¹⁸⁸



Scheme 6

Mixing $\text{Ta}(\text{OEt})_5$ with $\text{Ba}_4(\text{OEt})_4(\text{thd})_4(\text{EtOH})_4$ (Hthd = tetramethylheptanedion), followed by slow hydrolysis with air, gives $\text{Ba}_4\text{Ta}_4\text{O}_3(\text{thd})_4(\text{OEt})_{18}$.¹⁸⁹ Similarly, slow hydrolysis of $\text{Ba}_2\text{Ta}_2(\text{Pr}^i\text{acac})_2(\text{OEt})_{12}$ ($\text{HPr}^i\text{acac} = \text{Pr}^i\text{OCOCH}_2\text{COMe}$, isopropyl acetoacetate) in air afforded $\text{Ba}_4\text{Ta}_4\text{O}_4(\text{Pr}^i\text{acac})_4(\text{OEt})_{16}$. Both clusters were characterized by single-crystal diffraction.¹⁸⁹

Hydrolysis of ortho-pinacolate $\text{Ta}(\text{O}_2\text{C}_6\text{H}_{12})_2(\text{OC}_6\text{H}_{12}\text{OH})$ yielded $\text{Ta}_2\text{O}(\text{O}_2\text{C}_6\text{H}_{12})_2(\text{OC}_6\text{H}_{12}\text{OH})_4$.¹⁴¹

The unusual oxo complex (**129**) was prepared from reacting complex (**34**) with excess LiNHBut , followed by heating.⁴⁶

(129)

Reaction of $\text{TaCl}(\text{NMe}_2)_4$ with H_2O gave $\text{Ta}_2(\mu\text{-Cl})_2(\mu\text{-O})(\text{NMe}_2)_6$ with elimination of HNMe_2 .⁵⁸

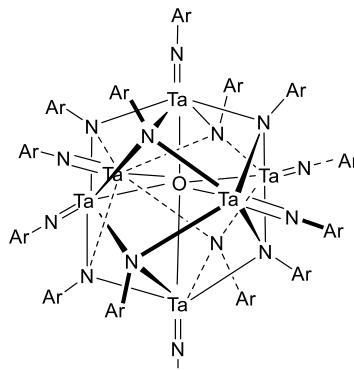
Reduction of peroxy complexes $\alpha\text{-K}_5\text{SiW}_{11}[\text{Ta}(\text{O}_2)]\text{O}_{39}\cdot 18\text{H}_2\text{O}$ and $\alpha_2\text{-K}_7\text{P}_2\text{W}_{17}[\text{Ta}(\text{O}_2)]\text{O}_{61}\cdot 16\text{H}_2\text{O}$ by NaHSO_3 yielded oxo complexes $\alpha\text{-K}_5\text{SiW}_{11}\text{TaO}_{40}\cdot 14\text{H}_2\text{O}$ and $\alpha_2\text{-K}_7\text{P}_2\text{W}_{17}\text{TaO}_{62}\cdot 14\text{H}_2\text{O}$, respectively.¹⁹⁰

Mixed-metal complex $[\text{Ni}(\text{bpy})_3]_2[\text{TaO}(\text{C}_2\text{O}_4)_3]\text{Cl}\cdot n\text{H}_2\text{O}$ ($n = 11, 12$) was prepared from (oxalato)tantalite(V) solution and $[\text{Ni}(\text{bpy})_3]\text{Cl}_2$.¹⁹¹ Reaction of $\text{Ni}(\text{NO}_3)_2$, bpy and (oxalato)tantalite(V) solution gives $[\text{Ni}_2(\text{bpy})_4(\mu\text{-C}_2\text{O}_4)]_{1.5}[\text{TaO}(\text{C}_2\text{O}_4)_3]\cdot 13\text{H}_2\text{O}$.¹⁹¹

$[\text{Cr}(\text{bpy})_2(\text{H}_2\text{O})(\mu\text{-O})\text{Ta}(\text{C}_2\text{O}_4)_3]_2\cdot 3.5\text{H}_2\text{O}$ (bpy = 2,2'-bipyridine) and $[\text{H}_2(\text{terpy})][\text{Cr}(\text{terpy})(\text{C}_2\text{O}_4)(\mu\text{-O})\text{Ta}(\text{C}_2\text{O}_4)_3]\cdot 0.5\text{H}_2\text{C}_2\text{O}_4\cdot 2.5\text{H}_2\text{O}$ (terpy = 2,2':6':2'-terpyridine) were prepared from the reactions of the (oxalato)tantalate(V) solution with $[\text{Cr}(\text{bpy})_2(\text{H}_2\text{O})_2](\text{NO}_3)_3$ and $[\text{Cr}(\text{terpy})(\text{H}_2\text{O})_3](\text{NO}_3)_3$, respectively.¹⁹² These complexes contain Cr–O–Ta bridgescores.

Adding a mixture from dissolving tantalum metal in aqueous $\text{HF}\text{-H}_2\text{O}_2$ solution to a solution of $\text{FeCl}_2\cdot 4\text{H}_2\text{O}$ and 1,10-phenanthroline (phen) yielded $[\text{Fe}(\text{phen})_3][\text{Ta}_2(\mu\text{-O})\text{F}_{10}]$.¹⁹³ If $\text{RuCl}_3\cdot 4\text{H}_2\text{O}$ was used instead of $\text{FeCl}_2\cdot 4\text{H}_2\text{O}$, the reaction afforded $[\text{Ru}(\text{phen})_3]_2[\text{Ta}_2(\mu\text{-O})\text{F}_{10}](\text{TaF}_6)_2$.¹⁹³

Reaction of TaCl_5 with imine $\text{Ph}_2\text{C}=\text{NH}$ gave $(\text{Ph}_2\text{C}=\text{NH}_2)_2[\text{Ta}_2(\mu\text{-O})\text{Cl}_{10}]$, presumably the result of adventitious water.¹⁹⁴


Reactions of $\text{Ta}(\text{NMe}_2)_5$ and $\text{TaCl}(\text{NMe}_2)_4$ with H_2O gave cage complex $\text{Ta}_4(\text{Me}_2\text{N})_{12}(\mu_3\text{-O})_4$ ¹⁹⁵ and dimer $\text{Ta}_2(\text{NMe}_2)_6(\mu\text{-Cl})_2(\mu\text{-O})$,⁵⁸ respectively.

Reactions of TaF_5 with $\text{Ti}(\text{OAc})_2$ and $\text{V}(\text{OAc})_2$ yielded $\text{Ta}(\text{OAc})_3$ with an oxo ligand and $[\text{V}(\text{OAc})_3](\text{TaF}_6)$ with no oxo ligand, respectively.¹⁹⁶

Relativistic quantum chemistry studies of TaO_3^- showed that the oxidation state Ta was the expected V with divalent oxygen O(-II).¹⁹⁷ Optimized geometrical and electronic structures of TaO_3^- as well as its relative energies, vibrational frequencies, and energy of decomposition were provided from the calculations.

2.67.10. Polynuclear oxo ligands

O-centered hexatantalum tetradecaimido clusters ($\text{ArN}=\text{Ta}_6\text{O}$ **130**, Ar = Ph, *p*-MeC₆H₄, *p*-MeOC₆H₄, *p*-Bu^tC₆H₄, *p*-BrC₆H₄, *m*-ClC₆H₄) were prepared from the reactions of either $\text{Bn}_3\text{Ta}=\text{N}-\text{Bu}^t$ or $\text{Ta}(\text{NMe}_2)_5$ with an excess of the aniline and stoichiometric water (or Ta_2O_5).^{100, 101} Reduction with Cp^*_2Co gave stable salts of $(\text{Cp}^*_2\text{Co})[(\text{ArN})_{14}\text{Ta}_6\text{O}]$ (Ar = Ph, *p*-MeC₆H₄).¹⁰⁰

(130)

Mixed-metal oxoalkoxide complexes $(Nb_xTa_{1-x})_4(\mu\text{-O})_2(OMe)_{14}(ReO_4)_2$ ($x = 0.3, 0.5, 0.7$) were obtained by the reactions of Re_2O_7 with $M_2(OMe)_{10}$ ($M = Nb, Ta$).¹⁹⁸ Similarly oxo-ethoxo-perrhenate $Ta_4(\mu\text{-O})_2(\mu\text{-OR})_{14}(\text{OR})_{10}(ReO_4)_2$ ($R = Me, Et$), containing a tetranuclear $M_4(\mu\text{-O})_2(\mu\text{-OR})_4$ core, was obtained via interaction of $Ta(OR)_5$ with Re_2O_7 containing a tetranuclear $M_4(\mu\text{-O})_2(\mu\text{-OR})_4$ core.^{199, 200}

2.67.11. Polyoxometalates (POMs)

Hexatantalate Lindqvist compound $Na_8Ta_6O_{19}\cdot26H_2O$, a polyoxometalate with a layered structure, was prepared from H_2TaF_7 and $NaOH$.²⁰¹

$Cs_3[H_9P_4Ta_6(O_2)_6O_{25}]\cdot9H_2O$ and guanidinium salt $(CN_3H_6)_6[H_4P_4Ta_6(O_2)_6O_{24}]\cdot4H_2O$ were prepared from the reaction of $K_8(Ta_6O_{19})\cdot16H_2O$, H_2O_2 , H_3PO_4 , with $NaOH$, followed by the addition of $CsCl$ and guanidine hydrochloride $(CN_3H_5\cdotHCl)$, respectively.²⁰²

Mixed polyoxometalates $Cs_4Na(Ta_3W_3O_{19})\cdot6H_2O$, $Cs_5(TaW_9O_{32})\cdot6.5H_2O$ and $Cs_6(Ta_2W_8O_{32})\cdot6H_2O$ were prepared from $[Ta(O_2)_4]^{3-}$, $Na_2WO_4\cdot2H_2O$, HCl , Cs^+ and water/ H_2O_2 under strict pH control. $(Ta_3W_3O_{19})^{5-}$ adopts the Lindqvist-type structure. $(TaW_9O_{32})^{5-}$ and $(Ta_2W_8O_{32})^{6-}$ were isostructural with $(W_{10}O_{32})^{4-}$.²⁰³

Hydrothermal method led to the synthesis of polytantalotungstate $Cs_{12.5}K_{4.5}H(Ta_{12}Si_4W_{37}O_{158})\cdot25H_2O$ whose structure was based on the $(SiW_9Ta_3O_{40})^{7-}$ cluster.²⁰⁴ This polytantalotungstate showed significant photocatalytic water splitting activity to give H_2 and O_2 from water.²⁰⁴ Two other polytantalotungstates $Cs_5K_4[Cr_3(Ta_3P_2W_{15}O_{62})_2(H_2O)_{12}]\cdot15H_2O$ and $Cs_{8.5}K_8Na_2H_{5.5}[Cr_4(Ta_3P_2W_{15}O_{62})_4(H_2O)_{12}]\cdot53H_2O$, which were based on Cr_3Ta_6 and

$\text{Cr}_4\text{Ta}_{12}$ clusters, were also prepared.²⁰⁵ Both polytantalotungstates also demonstrated significant photocatalytic water splitting activities.²⁰⁵

Polyoxometalate $(\text{Bu}^n\text{N})_4[(\text{TaW}_5\text{O}_{18})_2(\mu\text{-O})]$ was synthesized by the reaction of $(\text{Bu}^n\text{N})_3(\text{TaW}_5\text{O}_{19})$ with Bu^nSnCl_3 or $\text{PhC}(=\text{O})\text{Cl}$.²⁰⁶

Small-angle X-ray scattering (SAXS) studies of $\text{Rb}_8(\text{Ta}_6\text{O}_{19})$ and $\text{Cs}_8(\text{Ta}_6\text{O}_{19})$ in aqueous RbOH , CsOH or NMe_4OH solutions showed solvent-separated ion-pairing between $(\text{Ta}_6\text{O}_{19})^{8-}$ and counterions. In contrast, Nb(V) analogs revealed that contact ion-pairing dominates between $[\text{Nb}_6\text{O}_{19}]^{8-}$ and its counter ions.²⁰⁷

The reactivity of peroxide H_2O_2 with $(\text{NMe}_4)_6\text{H}_2\text{Ta}_6\text{O}_{19} \cdot 21\text{H}_2\text{O}$ was investigated. Small and wide-angle as well as total X-ray scattering showed that peroxide ligand promoted the linking of the hexameric tantalate clusters probably through bridging of bound peroxide or hydrogen bonding.²⁰⁸

A solution route to $(\text{Ta}_6\text{O}_{19})^{8-}$ [in $\text{Na}_8(\text{Ta}_6\text{O}_{19}) \cdot 15\text{H}_2\text{O}$] was developed by using peroxy complex $[\text{Ta}(\text{O}_2)_4]^{3-}$ in adequately alkaline conditions in order to block the formation of Ta_2O_5 , followed by catalytic decomposition of the peroxide ligands by $(\text{VO}_4)^3-$. Terminal $\text{M}(\eta\text{=O})$ bond lengths and $\text{M}-\mu_2\text{-O}-\text{M}$ angles of $(\text{Ta}_6\text{O}_{19})^{8-}$ were larger than those in its Nb analog, while bridging $\mu_2\text{-O}-\text{M}$ bond lengths in the tantalum complex was smaller and the central $\eta^6\text{-O}-\text{M}$ bond lengths were identical within experimental error.²⁰⁹

Kinetics of the oxygen-isotope exchange between ^{17}O -enrich $(\text{H}_x\text{Ta}_6\text{O}_{19})^{8-}$ Lindqvist H^+ and aqueous solutions was studied using ^{17}O NMR spectroscopy, revealing that the terminal $\eta\text{=O}$ ligands reacted faster than the $\mu_2\text{-O(H)}$ ligands. Oxygen sites in the Ta complex and its Nb analog reacted via different pathways.²¹⁰

Heating of $(\text{Me}_4\text{N})_6(\text{H}_2\text{Ta}_6\text{O}_{19}) \cdot x\text{H}_2\text{O}$ coating led to the formation of the Ta_2O_5 film, along with NMe_3 , OMe_2 and water. The approach precluded abrupt nanoparticle formation, giving films with densities near 95% of single-crystal values.²¹¹

Reaction between $(\eta^6\text{-C}_6\text{H}_6)_2\text{Ru}_2\text{Cl}_2(\mu\text{-Cl})_2$ and $\text{Na}_8(\text{Ta}_6\text{O}_{19})$ gave two new hybrid POM complexes, $\text{Na}_{10}[(\eta^6\text{-C}_6\text{H}_6)\text{RuTa}_6\text{O}_{18}]_2(\mu\text{-O}) \cdot 39.4\text{H}_2\text{O}$ and $\text{Na}_4[\text{trans-}(\eta^6\text{-C}_6\text{H}_6)\text{Ru}]_2\text{Ta}_6\text{O}_{19} \cdot 20\text{H}_2\text{O}$.²¹² $\text{Na}_{10}[(\eta^6\text{-C}_6\text{H}_6)\text{RuTa}_6\text{O}_{18}]_2(\mu\text{-O}) \cdot 39.4\text{H}_2\text{O}$ dissociated in water to give $[(\eta^6\text{-C}_6\text{H}_6)\text{RuTa}_6\text{O}_{19}]^{6-}$.²¹² Reaction of $\text{Cp}^*{}_2\text{Ir}_2\text{Cl}_2(\mu\text{-Cl})_2$ with $\text{Na}_8(\text{Ta}_6\text{O}_{19})$ gave hybrid POM complexes $\text{Na}_6[(\text{Cp}^*\text{Ir})\text{Ta}_6\text{O}_{19}] \cdot 27\text{H}_2\text{O}$ and $\text{Na}_4[\text{trans-}[(\text{Cp}^*\text{Ir})_2\text{Ta}_6\text{O}_{19}] \cdot 24\text{H}_2\text{O}_4]$.²¹³ Similarly reactions of $\text{Cp}^*{}_2\text{Rh}_2\text{Cl}_2(\mu\text{-Cl})_2$ with sodium hexatantalate and cesium hexatantalate $\text{M}_8(\text{Ta}_6\text{O}_{19})$ ($\text{M} = \text{Na}$,²¹⁴ Cs ²¹⁵) yielded the *trans* complex $[(\text{Cp}^*\text{Rh})_2\text{Ta}_6\text{O}_{19}]^{4-}$, which was isolated as $\text{M}_4[(\text{Cp}^*\text{Rh})_2\text{Ta}_6\text{O}_{19}] \cdot n\text{H}_2\text{O}$ ($\text{M} = \text{Na}$, $n = 24$,²¹⁴ $\text{M} = \text{Cs}$, $n = 18$,^{214, 215}).

Ta-containing POMs $[\text{Ln}_3(\text{H}_2\text{O})_{22}](\text{P}_2\text{W}_{15}\text{Ta}_3\text{O}_{62}) \cdot n\text{H}_2\text{O}$ ($\text{Ln} = \text{La, Ce, Pr, Nd}$) were prepared from the self-assembly of Wells–Dawson type Ta/W mixed-addendum POM and lanthanide ions.²¹⁶ The La complex showed proton conduction **performance** at high relative humidity.²¹⁶

Hydrothermal reactions of hydrous tantalum oxide and NMe_4OH with two different amounts of $\text{Ti}(\text{OPr})_4$ gave two polyoxotantalates $(\text{NMe}_4)_8(\text{Ti}_2\text{Ta}_8\text{O}_{28}) \cdot 21\text{H}_2\text{O}$ and $(\text{NMe}_4)_{10}(\text{Ti}_{12}\text{Ta}_6\text{O}_{44}) \cdot 39\text{H}_2\text{O}$.²¹⁷ Both were kinetically stable over a much wider range of pH range than the more familiar hexatantalate cluster $\text{Ta}_6\text{O}_{19}^{8-}$.²¹⁷

Rare-earth polyoxometalates $[\text{M}(\text{H}_2\text{O})_7]_3(\text{P}_2\text{W}_{15}\text{Ta}_3\text{O}_{62}) \cdot n\text{H}_2\text{O}$ ($\text{M} = \text{Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu}$) were prepared through self-assembly of $\text{K}_5\text{Na}_4[\text{P}_2\text{W}_{15}\text{O}_{59}(\text{TaO}_2)_3] \cdot 17\text{H}_2\text{O}$ and rare-earth salts in water.²¹⁸

Base catalytic activity of $(H_4Ta_6O_{19})^{4-}$ (with $Bu^n_4N^+$ cation) for, e.g., Knoevenagel condensation and CO_2 fixation reactions was higher than its Nb^V and Mo^{VI}/W^{VI} analogs.²¹⁹ This was likely due to the large number of negative charges on the surface O atoms in the $(H_4Ta_6O_{19})^{4-}$ ion.²¹⁹

2.67.12. Peroxo ligands

Water-soluble peroxo complex $(gu)_3[Ta(O_2)_4]$ (gu = guanidinium) was prepared from $TaCl_5$, H_2O_2 , and $(gu)_2CO_3$ in water.²²⁰ Reactions of the peroxo complex in H_2O_2 solution with ethylenediaminetetraacetic acid (H_4edta),²²⁰ propylenediaminetetraacetic acid (H_4pdta),²²⁰ diethylenetriaminepentaacetic acid (H_5dtpa),²²¹ and triethylenetetraminehexaacetic acid (H_6ttha)²²¹ gave peroxo-polyaminocarboxylato complexes $(gu)_3[Ta(O_2)_2(edtaO_2)] \cdot 2.32H_2O \cdot 0.68H_2O_2$,²²⁰ $(gu)_3[Ta(O_2)_2(pdtaO_2)] \cdot H_2O$,²²⁰ $(gu)_3[Ta_2(O_2)_4(dtpaO_3)] \cdot 5H_2O$,²²¹ and $(gu)_3[Ta_2(O_2)_4(HtthaO_4)] \cdot 3H_2O$,²²¹ respectively. In these complexes, N atoms of the polyaminocarboxylates were oxidized into N-oxide derivatives.^{220, 221} When 1:1 solutions of $(gu)_3[Nb(O_2)_4]$ and $(gu)_3[Ta(O_2)_4]$ were used in the reactions with H_5dtpa and H_6ttha , the reactions yielded heterometallic $(gu)_3[NbTa(O_2)_4(dtpaO_3)] \cdot 2.5H_2O$ and $(gu)_3[NbTa(O_2)_4(HtthaO_4)] \cdot 2H_2O$.²²¹

Water-soluble bimetallic peroxo-tartrato complex $(gu)_6[Ta_2(O_2)_4(tart)_2] \cdot 4H_2O$ ($tart$ = tartrate) was obtained from $(gu)_3[Ta(O_2)_4]$, DL-H₄tart, and H_2O_2 .²²² Reaction of 1:1 aqueous solution of $(gu)_3[Nb(O_2)_4]$ and $(gu)_3[Ta(O_2)_4]$ with DL-H₄tart and H_2O_2 yielded the mixed Nb/Ta complex $(gu)_5[NbTa(O_2)_4(tart)(Htart)] \cdot 4H_2O$.²²² Crystal structure of $(gu)_6[Ta_2(O_2)_4(tart)_2] \cdot 6H_2O$ showed two 8-foldocta-coordinated Ta atoms, each surrounded by O atoms of two bidentate peroxo, two monodentate carboxylato, and two

alkoxo groups from both bridging tartrate ligands.²²²

IR and Raman spectra of several peroxotantalates $M_3[Ta(O_2)_4]$ ($M = NH_4^+, K^+, Rb^+, Cs^+$) were studied and discussed with respect to the internal vibrations of the peroxogroup and the dodecahedral $[Ta(O_2)_4]^{3-}$ ion.²²³ Powder X-ray diffraction of the complexes and single-crystal structure of $Rb_3[Ta(O_2)_4]$ showed that these compounds were isotypic.²²³

Reactions of a mixture of $K_8Ta_6O_{19} \cdot 16H_2O$ and H_2O_2 with α - $K_8SiW_{11}O_{39} \cdot 13H_2O$ and α_2 - $K_{10}P_2W_{17}O_{61} \cdot 20H_2O$ afforded perox complexes α - $K_5SiW_{11}[Ta(O_2)]O_{39} \cdot 18H_2O$ with the Keggin structure and α_2 - $K_7P_2W_{17}[Ta(O_2)]O_{61} \cdot 16H_2O$ with the Wells–Dawson structure, respectively.¹⁹⁰

Actinyl polyoxometalate nanoclusters $Cs_{15}\{[Ta(O_2)_4]Cs_4K_{12}[UO_2(O_2)_{1.5}]_{28}\} \cdot 20H_2O$ and $Na_6K_9\{[Ta(O_2)_4]Rb_4Na_{12}[UO_2(O_2)_{1.5}]_{28}\} \cdot 20H_2O$ were synthesized by incorporating a central $Ta(O_2)_4^{3-}$ anion templating a shell of 28 uranyl peroxide polyhedra.²²⁴

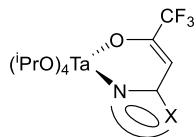
Catalytic activity for selective epoxidation of olefins by binuclear peroxy $[SeO_4WO(O_2)_2TaO(O_2)_2]^{3-}$ anion was investigated by DFT computations and compared with analogous anions.²²⁵

2.67.13. Isocyanate ligand

TaF_5 reacted with methyl isocyanate $MeN=C=O$ to give adduct $TaF_5(MeN=C=O)$ and the heterocyclic cation $[(\mu-F)(\mu-MeN=C=O)(TaF_4)_2]_n^+$ ($n = 1, 2$), as shown by ^{19}F NMR and IR spectra.²²⁶ In $TaF_5(MeN=C=O)$, the methyl isocyanate ligand was coordinated in the monodentate mode via N or O atom as bond isomers.²²⁶

2.67.14. Phosphinylamine ligands

Reaction of TaF_5 with bis(diphenylphosphinyl)amine $Ph_2P(=O)NHP(=O)Ph_2$ (LH) was studied by ^{19}F and ^{31}P NMR [spectroscopy](#), showing the formation of several species including $(F_5Ta)_2(\mu-\kappa^2-LH)$, $(LH_2)[(TaF_5)_2(\mu-\kappa^2-L)]$, $TaF_4(\kappa^2-L)$, $[TaF_5(\kappa^2-L)]^-$, and $TaF_3(\kappa^2-L)_2$.²²⁷


2.67.15. Precursors to solid-state materials

The general approaches to make electronic metal oxide materials were reviewed.²²⁸

$(Pr^iO)_2Ta[OSi(OBu^i)_3]_3$ was prepared from the reaction of $Ta(OPr^i)_5$ with $(Bu^iO)_3SiOH$.²²⁹ The complex was used as a structural and spectroscopic model of $Ta(V)$ on silica. Its thermolysis in solution afforded homogeneous, high-surface-area xerogels ($Ta_2O_5 \cdot 6SiO_2$).²²⁹

Reaction of 3 equiv of $[K^+][Ta(OPr^i)_6]^-$ with $ErCl_3$ gave alkoxide $Er[Ta(OPr^i)_6]_3$ which reacted with MCl_4 ($M = Si, Ti, Zr$) to give mixed complexes $Er[TaM(OPr^i)_2(O)_4]_3$ and Pr^iCl .²³⁰ Thermogravimetric and differential thermal analyses of the mixed complexes were conducted with interest to form metal oxides.²³⁰

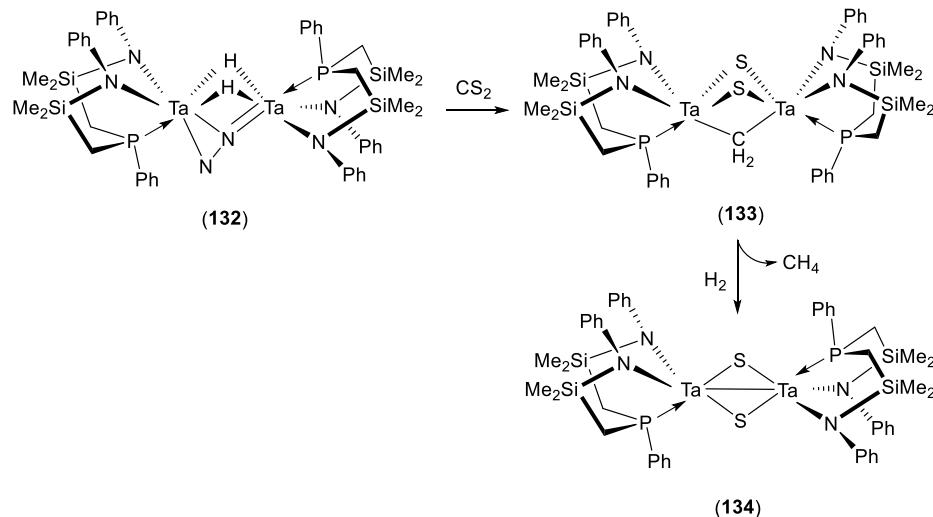
Monomeric heteroleptic $Ta(V)$ complexes $Ta(OPr^i)_4(ArTFP)$ (**131**) were prepared from $Ta_2(OPr^i)_{10}$ and bidentate chelating ligands 3,3,3-trifluoro-1-(heteroar-2-yl)propen-2-oles ($ArTFP-H$; $TFP-H$ = trifluoropropenol; Ar = pyridine, 4,5-dimethyloxazole, 4,5-dimethylthiazole, benzimidazole, benzoxazole, benzthiazole).²³¹ These complexes showed better stability and volatility than $Ta_2(OPr^i)_{10}$, simplifying chemical vapor deposition of Ta_2O_5 from the precursors.²³¹

X = CH, NH, O, S

(131)

The growth characteristics of Ta₂O₅ thin film from Ta(=NBu^t)(NEt₂)₃ and H₂O by atomic layer deposition (ALD) was studied.²³²

Crystals of borate KTa[B₄O₆(OH)₄](OH)₂·1.33H₂O were prepared from Ta₂O₅, B₂O₃, SiO₂ in molar ratio of 2:1:1 by the hydrothermal method.²³³ The crystals showed second-order nonlinear optical properties.


Thermal decomposition of mixed-metal oxo methoxide (Nb_{1-x}Ta_x)₄O₂(OMe)₁₄(ReO₄)₂ (x = 0, 0.3, 0.5, 0.7, 1) at ca. 160 °C led to the formation of Re–Nb–O and Re–Ta–O oxides.²³⁴

2.78. Sulfur-, Selenium-, and Tellurium-Based Ligands

2.78.1. Sulfide ligands

In the reaction of CS₂ with ([NPN^{Ph}]Ta)₂(μ-H)₂(μ-η²:η¹-N₂) (132; [NPN^{Ph}]²⁻ = PhP(CH₂SiMe₂NPPh)²⁻) containing a side-on end-on dinitrogen ligand, cleavage of both C=S double bonds was observed with the formation of ([NPN^{Ph}]Ta)₂(μ-S)₂(μ-CH₂) (133) with one bridging methylene and two bridging sulfide ligands (Scheme 7).²³⁵ Reduction of the product with H₂ led to ([NPN^{Ph}]Ta^{IV})₂(μ-S)₂ (134) containing a Ta-Ta bond

(Scheme 7).²³⁵

Scheme 7

When TaBr_5 reacted with NiBr_2 , PPh_3 , and $\text{S}(\text{SiMe}_3)_2$, cluster $\text{Ta}_2\text{Ni}_2(\mu_3\text{-S})_4\text{Br}_4(\text{PPh}_3)_2(\text{MeCN})_2$ was the product. Based on the crystal structure of its Nb/Cl analog, the compound takes a cubane structure.²³⁶ Reaction of TaCl_5 and NiCl_2 with PMe_3 , followed by addition of $\text{S}(\text{SiMe}_3)_2$, gave $[\text{Ni}_3\text{S}_2(\text{PMe}_3)_6][\text{Ta}_3\text{Ni}(\mu_3\text{-S})_4(\text{PMe}_3)_4\text{Cl}_6]_2$.²³⁶ Similar reaction of FeCl_2 , TaCl_5 , (diphenylphosphanyl)methane (dppm), and $\text{S}(\text{SiMe}_3)_2$ afforded $[\text{Fe}(\text{dppm})_2(\text{MeCN})_2][\text{TaFe}_3(\mu_3\text{-S})_4\text{Cl}_3(\text{dppm})(\text{MeCN})]_2$. The anions in both products $[\text{Ta}_3\text{Ni}(\mu_3\text{-S})_4(\text{PMe}_3)_4\text{Cl}_6]^-$ and $[\text{TaFe}_3(\mu_3\text{-S})_4\text{Cl}_3(\text{dppm})(\text{MeCN})]^-$ also adopt the cubane structure with bridging sulfide ligands.²³⁶

When FeCl_2 reacted with TaCl_5 , PMe_3 and $\text{S}(\text{SiMe}_3)_2$, cluster $[\text{Cl}(\text{Me}_3\text{P})\text{Ta}(\mu\text{-S})_2(\mu_3\text{-S})_2\text{Fe}(\text{PMe}_3)_2]_2$ was produced.²³⁷ In the cluster, the two $[\text{Cl}(\text{Me}_3\text{P})\text{Ta}]$ units are arranged

around one central $\text{Fe}_2(\mu\text{-S})_2$ unit. Selenide analogs are discussed in the section on selenide ligands (Section 2.7.7).

Reaction of TaCl_5 with $\text{NiCl}_2(\text{PPh}_3)_2$ and $\text{S}(\text{SiMe}_3)_2$ in MeCN gave

$[\text{TaCl}_2(\text{MeCN})]_2[\text{Ni}(\text{PPh}_3)]_2(\mu_3\text{-S})_4$.²³⁸ If $\text{Ta}(\text{NCS})_5$ reacted with $\text{Co}(\text{NCS})_2$, PBu^t_3 , and $\text{S}(\text{SiMe}_3)_2$, the product was $[\text{Ta}(\text{NCS})_3][\text{Co}(\text{PBu}^t_3)]_3(\mu_3\text{-S})_4$.²³⁸ Both adopt the cubane structure.

Reaction of $\text{Cu}(\text{NCS})_2$ with PPh_3 and $\text{Li}_3(\text{TaS}_4)(\text{tmeda})_2$ ($\text{tmeda} =$ tetramethylethylenediamine $\text{Me}_2\text{NCH}_2\text{CH}_2\text{NMe}_2$) yielded $\text{Cu}_3\text{Ta}(\mu\text{-S})_2(\mu_3\text{-S})_2(\text{PPh}_3)_4$.²³⁹ When $(\text{Et}_4\text{N})_2[\text{Fe}(\text{SPh})_4]$ reacted with $\text{Li}_3(\text{TaS}_4)(\text{MeCN})_4$, the product was $(\text{Et}_4\text{N})_3\{\text{Ta}(\mu\text{-S})_4[\text{Fe}(\text{SPh})_2]\}_2$.²³⁹

Reaction of $\text{S}=\text{Mo}[\text{NBu}^t(3,5\text{-Me}_2\text{C}_6\text{H}_3)]_3$ with $\text{Ta}(\text{OSiBu}^t_3)_3$ yielded $\text{S}=\text{Ta}(\text{OSiBu}^t_3)_3$ and $\text{Mo}[\text{NBu}^t(3,5\text{-Me}_2\text{C}_6\text{H}_3)]_3$.²⁴⁰

DFT calculations of the reaction $\text{Re}(\text{NH}_2)_3 + \text{CS}_2 + 2\text{Ta}(\text{NH}_2)_3$, leading to the forming $\text{S}=\text{Ta}(\text{NH}_2)_3$ and $\text{C}\equiv\text{Re}(\text{NH}_2)_3$, showed that this was a promising reaction for the cleavage of CS_2 .²⁴¹

2.78.2. Thioether ligands

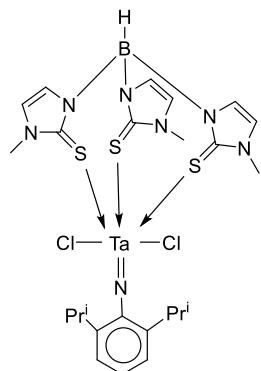
Adding SBu^n_2 to TaCl_5 afforded $\text{TaCl}_5(\text{SBu}^n_2)$.²⁴² When bidentate $\text{o-C}_6\text{H}_4(\text{CH}_2\text{SEt})_2$ was used instead, the reaction gave dimer $\text{Ta}_2\text{Cl}_{10}[\mu,\eta^2\text{-o-C}_6\text{H}_4(\text{CH}_2\text{SEt})_2]$.²⁴²

Reaction of TaF_5 with SMe_2 and $\text{RS}(\text{CH}_2)_2\text{SR}$ ($\text{R} = \text{Me, Et or Pr}^i$) in anhydrous CH_2Cl_2 solution produced $[\text{TaF}_4(\text{SMe}_2)_4](\text{TaF}_6)$ and $\{\text{TaF}_4[\kappa^2\text{-RS}(\text{CH}_2)_2\text{SR}]_2\}(\text{TaF}_6)$, respectively.²⁴³ In neat SR_2 ($\text{R} = \text{Me, Et}$), TaF_5 formed adducts $\text{TaF}_5(\text{SR}_2)$.²⁴³

Treatment of the imido complexes $TaCl_3(=NR)(p\text{-Py})_2$ ($R = Bu^t, 2,6\text{-Me}_2C_6H_3$) with $S(SiMe_3)_2$ afforded sulfide clusters $Ta_4Cl_4(=NR)_4Py_4(\mu_3\text{-S})_4$ with cubane structures.²⁴⁴

Commented [XZ(58): Lower case py was used later.]

2.78.3. Thione ligand


When TaX_5 ($X = Cl, OEt$) was mixed with 3-(4'-pyridyl)-4-phenyl-1,2,4-triazole-5-thione (L), adduct $TaX_5(L)$ was the product in which the S atom of the ligand is coordinated to the $Ta(V)$ ion.²⁴⁵

2.78.4. Dithiocarbamate ligands

Reaction of $Ta(NMe_2)_5$ with CS_2 in toluene and thf gave the $Ta(V)$ dimethyldithiocarbamate (dtc) complex $[Ta(dtC)_4](dtC)$.²⁴⁶ If the solvent was CH_2Cl_2 , the product was $[Ta(dtC)_4]Cl$.²⁴⁶

2.78.5. (Methimazolyl)borate ligands

Tris(methimazolyl)borate complex $Ta(=N-2,6\text{-}iPr_2C_6H_3)Cl_2[HB(mt)_3]$ (**135**, mt = methimazolyl) was obtained from the reaction of $Ta(=NR)Cl_3(thf)_2$ with $Na[HB(mt)_3]$.²⁴⁷ The work showed that the $HB(mt)_3^-$ ligand can bind to “hard” metals in high oxidation states. When $Ta(\eta^2\text{-}RC\equiv CR)Cl_3(dme)$ ($R = Et, Ph$) reacted with $Na[HB(mt)_3]$, the products were $Ta(\eta^2\text{-}RC\equiv CR)Cl_2[HB(mt)_3]$.²⁴⁸

(135)

2.78.6. Trifluorosulfane ligand

DFT calculations showed that the dissociation of $\text{Ta}(\text{SF}_3)(\text{CO})_5$ to $\text{Ta}(\text{SF}_2)(\text{F})(\text{CO})_5$ was thermodynamically favored by 32.3 kcal/mol.²⁴⁹

2.78.7. Selenide ligands

As the formation of sulfide analog, when TaBr_5 reacted with NiBr_2 , PPh_3 , and $\text{Se}(\text{SiMe}_3)_2$, cluster $\text{Ta}_2\text{Ni}_2(\mu_3\text{-Se})_4\text{Br}_4(\text{PPh}_3)_2(\text{MeCN})_2$ was the product.²³⁶ Adding TaCl_5 to $\text{Fe}_8\text{Se}_9(\text{dppm})_3$ afforded $[\text{FeCl}(\text{dppmSe})_2][\text{TaFe}_3(\mu_3\text{-Se})_4\text{Cl}_3(\text{dppm})(\text{MeCN})]$. The anions in the products adopt the cubane structure.²³⁶

Reaction of LiOMe with $\text{Se}(\text{SiMe}_3)_2$ and $\text{Ta}(\text{OEt})_5$ in MeCN and Et_2O gave 1-D polymeric $1/\infty[\text{Li}_3(\text{TaSe}_4)(\text{MeCN})_4]_\infty$ containing chelating Li^+ cations via four of the six edges of the tetrahedral $(\text{TaSe}_4)^-$ building blocks and the $\text{Li}(\text{MeCN})_2^+$ cations.²³⁹

Reaction of TaCl_5 with $\text{NiCl}_2(\text{PPh}_3)_2$ and $\text{Se}(\text{SiMe}_3)_2$ in MeCN afforded

$[\text{TaCl}_2(\text{MeCN})]_2[\text{Ni}(\text{PPh}_3)]_2(\mu_3\text{-Se})_4$.²³⁸

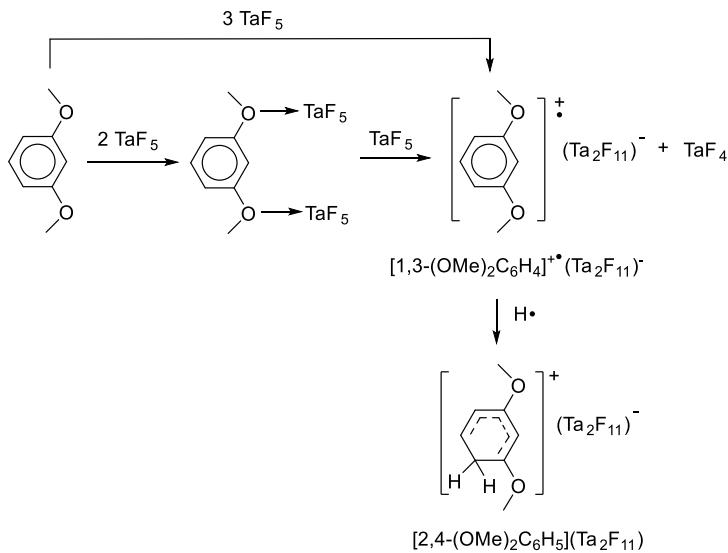
Reaction of $\text{Se}=\text{Mo}[\text{NBu}^t(3,5\text{-Me}_2\text{C}_6\text{H}_3)]_3$ with $\text{Ta}(\text{OSiBu}^t_3)_3$ yielded $\text{Se}=\text{Ta}(\text{OSiBu}^t_3)_3$ and $\text{Mo}[\text{NBu}^t(3,5\text{-Me}_2\text{C}_6\text{H}_3)]_3$.²⁴⁰ $\text{Se}=\text{Ta}(\text{OSiBu}^t_3)_3$ was also prepared from the reaction of Se with $\text{Ta}(\text{OSiBu}^t_3)_3$.²⁴⁰

2.78.8. Selenoether ligands

Reaction of SeBu^n_2 with TaCl_5 gave $\text{TaCl}_5(\text{SeBu}^n_2)$.²⁴² When TaF_5 reacted with SeMe_2 and $\text{MeSe}(\text{CH}_2)_2\text{SeMe}$, the products were $\text{TaF}_5(\text{SeMe}_2)$ and $(\text{TaF}_5)_2[\mu\text{-MeSe}(\text{CH}_2)_2\text{SeMe}]$.²⁴³

2.78.9. Telluroether ligands

Adding TeBu^n_2 to TaCl_5 or TeMe_2 to TaX_5 ($\text{X} = \text{F, Cl, Br}$) yielded $\text{TaCl}_5(\text{TeBu}^n_2)$ and $\text{TaX}_5(\text{TeMe}_2)$, respectively.²⁴² TaCl_5 led to the decomposition of ditelluroether $\text{CH}_2(\text{CH}_2\text{TeBu}^t)_2$. One of the products was the dealkylated $[\text{Bu}^t\text{Te}(\text{CH}_2)_3\text{Te}](\text{TaCl}_6)$.²⁴²


2.78.10. Reactions of $\text{TaCl}_3(=\text{S})$

$\text{TaCl}_3(=\text{S})$ catalyzed trimerization of alkyne $\text{PhC}\equiv\text{CH}$, giving 1,2,54- triphenylbenzene and 1,3,5-triphenylbenzene, along with small amounts of 2,4-diphenylthiophene and 2,5-diphenylthiophene.²⁵⁰ When $\text{MeC}\equiv\text{CMe}$ was used, the products were hexamethylbenzene and a small amount of 2,3,4,5-tetramethylthiophene.²⁵⁰

2.89. Halogen-Based Ligands

2.89.1. Fluoride ligands

Reaction of $\text{Ta}(\text{OH})_5$ with 4-amino-1,2,4-triazole in aqueous HF solution gave $(\text{C}_2\text{H}_5\text{N}_4)\text{TaF}_6$ containing protonated 4-amino-1,2,4-triazolium cation.²⁵¹ The 3:1 molar reaction of TaF_5 with 1,3-dimethoxybenzene initially gave adduct $(\text{TaF}_5)_2[\kappa^2\text{-1,3-}(\text{OMe})_2\text{C}_6\text{H}_4]$. Subsequent single-electron oxidation of the arene ligand by TaF_5 yielded TaF_4 and radical $[\text{1,3-(OMe)}_2\text{C}_6\text{H}_4]^{+\bullet}(\text{Ta}_2\text{F}_{11})^-$. The radical takes an H atom to give arenium salt $[\text{2,4-(OMe)}_2\text{C}_6\text{H}_5](\text{Ta}_2\text{F}_{11})$ (Scheme 8).²⁵² Similar products formed when 3 equiv of TaF_5 reacted with 1,4-(MeO)₂C₆H₄ and 1,4-F₂-2,5-(MeO)₂C₆H₂ to give long-lived radical cation salts $[\text{1,4-(MeO)}_2\text{C}_6\text{H}_4]^{+\bullet}(\text{Ta}_2\text{F}_{11})^-$ and $[\text{1,4-F}_2\text{-2,5-}(\text{MeO})_2\text{C}_6\text{H}_2]^{+\bullet}(\text{Ta}_2\text{F}_{11})^-$, respectively, which were quantified characterized by EPR.²⁵³ Radical TaF_4 formed in the reaction with CH_3CN as solvent was observed in EPR as $\text{TaF}_4(\text{NCMe})_2$.²⁵³ When non-alkoxy-substituted arenes (arene = $\text{C}_6\text{H}_5\text{Me}$, 1,4-C₆H₄Me₂, $\text{C}_6\text{H}_5\text{F}$, $\text{C}_6\text{H}_5\text{NO}_2$) were used in the reactions with 3 equiv of TaF_5 , radical cation salts [arene]^{+\bullet}($\text{Ta}_2\text{F}_{11})^-$ and TaF_4 were the products.²⁵³

Scheme 8. Formation of arenium salt $[2,4-(OMe)_2C_6H_5](Ta_2F_{11})$.

Reactions of TaF_5 with 4-hydroxy-3-methoxybenzaldehyde

(vanillin) and N,N-dimethylaniline gave protonated salts $[4-(OH)-3-(OMe)C_6H_3CH(=O)H][4-(OH)-3-(OMe)C_6H_3-CHO](TaF_6)$ and $[TaF_4(NPhMe_2)_2](TaF_6)$, respectively.²⁵⁴

Attempts of crystallization of the latter product resulted in the isolation of the ammonium salt $(PhNHMe_2)(TaF_6)$.²⁵⁴

Using $N(C_2H_4NH_2)_3$ (tren) as a template, reaction of Ta_2O_5 with aqueous HF solution led to the formation of $(H_4tren)(TaF_7)_2 \cdot H_2O$ and $(H_4tren)(TaF_7)_2$ containing isolated TaF_7^{2-} anions as distorted monocapped trigonal prisms and pentagonal bipyramids, respectively.²⁵⁵ If ZrF_4 (or ZrO_2), Ta_2O_5 , and tren in 40% HF aqueous-EtOH solution were heated to 190 °C in an autoclave, the reaction yielded hydrate

$(H_3tren)_6(TaOF_6)_4(ZrF_7)_2 \cdot 3H_2O$ containing $(H_3tren)_2(MX_7)_2 \cdot H_2O$ ($M = Zr, Ta$; $X = F, O$)

~~sheets in the structure~~.²⁵⁶ In addition, when tren was used as a template, solvothermal reaction of Ta₂O₅ with aqueous HF at 170 °C yielded (H₃tren)(TaF₇)~~F~~.²⁵⁷ The hydrogen bond network in the compound gives a layered structure.²⁵⁷

Commented [MDJ59]: Is this correct, charges don't make sense. Please check.

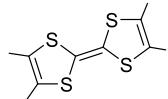
Commented [XZ(60R59)]: Correct. (H₃tren)³⁺ is a trication.

Two-step hydrothermal process using Ta₂O₅, aqueous HF solution, Cu(acetate)₂·H₂O, 2-oxidopyridinium-3-carboxylic acid (opdcH), and 1,10-phenanthroline (phen) affords a blue fluorescent, zigzag chain coordination polymer {[Cu₂(opdc)₂(phen)₂][F₅Ta(μ-O)TaF₅]}_n.²⁵⁸ A similar process using Ta₂O₅, aqueous HF and piperazine yields [H₂N(C₂H₄)₂NH₂](TaF₇).²⁵⁹

Reactions of TaF₅ with hydrazinium difluoride (N₂H₆)F₂ and NaF in aqueous HF solution yield (N₂H₆)₃[(TaF₈)~~(TaF₇)~~]HF₂ and Na₇TaF₈(TaF₇)₂, respectively. Both compounds contain discrete TaF₈³⁻ and TaF₇²⁻ anions in their crystal structures.²⁶⁰

When TaF₅ reacted with [S(NMe₂)₃](SiMe₃F₂), salts [S(NMe₂)₃](TaF₆) and [S(NMe₂)₃](Ta₂F₁₁) were obtained. TaF₅[(Me₂N)₂CO] was detected in solution mixture of TaF₅ and (Me₂N)₂CO.²⁶¹ When two equiv of L = HCONMe₂ or thf were mixed with TaF₅, NMR revealed the formation of (TaF₄L₄)(TaF₆).²⁶¹

N-alkyl-*N*-methylpyrrolidinium (RMePyr⁺, R = Et, Buⁿ, and hexyl) and *N*-Buⁿ-pyridinium (BuⁿPy⁺) salts of TaF₆⁻ were prepared.²⁶² Their thermal behaviors (by DSC), ionic conductivity, and viscosity were studied.²⁶² ¹⁹F, ¹H NMR [spectroscopy](#) and DSC studies of (NMe₄)TaF₆ were performed, showing that, e.g., the NMR [spectral](#) changes were associated with changes in the character of ion motions in the anion and cation sublattices of compounds.²⁶³

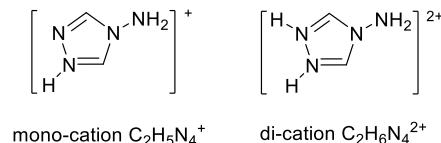

Crystals of salts [H₂(2,2'-bpy)]TaOF₅ (2,2'-bpy = 2,2'-bipyridyl), (Hdpa)TaF₆ (dpa = 2,2'-dipyridylamine), and (H₂en)TaF₇ (en = ethylenediamine) were prepared from

Ta₂O₅ in aqueous HF solutions using the organic bases with different *pK_a* values.²⁶⁴

(NH₄)₂TaF₇, Na₃TaF₈, and K₂TaF₇ were obtained from a Ta(V) extract in tributyl phosphate, which had been prepared by dissolving Ta₂O₅ in aqueous fluoride–sulfuric acid solutions.²⁶⁵ Mixed-cation complexes NaMTaF₇ (M⁺ = K⁺, Rb⁺, Cs⁺, NH₄⁺) were prepared from Ta₂O₅ in HF solutions of MF and NaF.²⁶⁶

Cd(BF₄)(TaF₆) is prepared from a solution of Cd(BF₄)₂, CdF₂, and TaF₅ in anhydrous HF. Eight F⁻ ions from 4 BF₄⁻ and 4 TaF₆⁻ anions surround each Cd²⁺ ion as a distorted square antiprism.²⁶⁷

Electrochemical oxidation of tetramethyltetraphiafulvalene in a solution of (Buⁿ₄N)TaF₆ in CH₂Cl₂ leads to the formation of (TMTTF)₂⁺ cation which is then crystallized with TaF₆⁻ anion to give (TMTTF)₂TaF₆.²⁶⁸ The compound undergoes an antiferromagnetic transition around 9 K.²⁶⁸


tetramethyltetraphiafulvalene

TaF₅ dissolved in aqueous HF solution reacted with *cis*-*syn*-*cis*-dicyclohexano-18-crown-6 (crown) to give [H₃O⁺(crown)]TaF₆.²⁶⁹ Ta₂O₅ reacts with HF and aza-15-crown-5, giving [H(aza-15-crown-5)]₂(Ta₂F₁₀O) containing two azonia-15-crown-5 cations.²⁷⁰ Similarly, when Ta₂O₅ is dissolved in HF solution and then added 18-crown-6, 15-crown-5, benzo-15-crown-5, and benzo-12-crown-4, the products are [(18-crown-6)·H₃O](TaF₆), [(15-crown-5)·H₅O₂](TaF₆), [(benzo-15-crown-5)₂·H₅O₂][(benzo-15-

crown-5)₂·H₃O](TaF₆)₂, and [(benzo-12-crown-4)₂·H₃O](TaF₆), respectively.²⁷¹ Tantalum oxyfluoride clusters (Ta₈O₁₂F₂₄)⁸⁻·8(N₂C₃H₅)⁺, (Ta₈O₁₂F₂₄)⁸⁻·2[(C₂H₄NH₃)₃NH]⁴⁺·6H₂O, and (Ta₄O₄F₁₆)⁴⁻·4(NC₅H₆)⁺ were prepared.²⁷²

M(Ta₂F₁₁)₂ (M = Cd, Hg) have been synthesized from MF₂ and four equiv of TaF₅ in anhydrous HF as solvent.²⁷³ Cations are connected through two anions forming 1-D chains.

Addition of 4-amino-1,2,4-triazole to a solution of Ta(OH)₅ in aqueous HF solution led to the protonation of 4-amino-1,2,4-triazole and formation of (C₂H₅N₄)₂TaF₇ and (C₂H₆N₄)TaF₇·H₂O containing mono-cation C₂H₅N₄⁺ and di-cation C₂H₆N₄²⁺, respectively.²⁷⁴ The TaF₇²⁻ anions in the two complexes adopt monocap trigonal prismatic and pentagonal bipyramidal geometries, respectively.

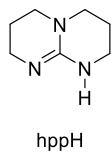
1-Alkyl-3-methylimidazolium hexafluoro complex salts (R-Im-Me)(TaF₆) (R = *n*-tetradecanyl, *n*-hexadecanyl, *n*-octadecanyl) are prepared from (R-Im-Me)Cl and KTaF₆ containing a liquid crystalline mesophase.²⁷⁵

Amidinate Ta(=NBu^t)(Bu^tNCMeNBu^t)₂F was made from the treatment of Ta(=NBu^t)(Bu^tNCMeNBu^t)₂Cl with AgBF₄.⁸⁵

Reaction of [PNP]Ta(=NSiMe₃)Cl₂ ([PNP]⁻ = N(2-PPri₂-4-Me-C₆H₃)₂⁻), whose preparation is discussed in Section 2.9.8, with FSnMe₃ gave {[PNP]₂Ta₂(=NSiMe₃)₂(μ-

$\text{F}_3\}[\text{Me}_3\text{ClSn}(\mu\text{-X})\text{SnClMe}_3]$ ($\text{X} = \text{F, Cl}$).²⁷⁶

XPS, ^{19}F SSNMR [spectroscopy](#), and DSC studies were performed on KTaF_6 , K_2TaF_7 , and K_3TaF_8 to obtain electronic binding energies of accessible orbitals, correlate SSNMR [spectral](#) shifts with structures and XPS data, and characterize phase transitions in the compounds.²⁷⁷

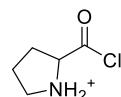

Molecular modelling of the stepwise hydrolysis of TaX_5 ($\text{X} = \text{F, Cl}$) to $\text{Ta}(\text{OH})_5$ and Ta_2O_5 shows that this is an endothermic reaction, while the formation of $\text{Ta}(\text{H}_2\text{O})\text{F}_5$ and $\text{TaF}_4(\text{OOH})$ is exothermic.²⁷⁸

2.89.2. Chloride and bromide ligands

Reaction of TaCl_5 with $\{\text{hpp}\}\text{SiMe}_3$ in 1:4-2 molar ratio ($[\text{hppH}] = 1,3,4,6,7,8$ -hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidine) [or with in-situ generated \(hpp\)Li](#) afforded $[(\text{hpp})_2\text{Ta}](\text{TaCl}_6)_2$ [which was identified by mass spectral analysis of the crude solid product](#).²⁷⁹ [However, \$\(\[\text{hppH}_2\)_2\(\text{TaCl}_6\)_2\(\text{Cl}\)\$ and \$\(\[\text{hppH}_2\)_3\(\text{TaCl}_6\)_2\(\text{Cl}\)\text{-MeCN}\$ in low yield were isolated, presumably generated as a result of adventitious moisture.](#)²⁷⁸

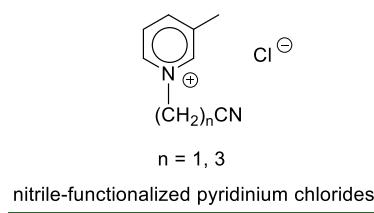
Commented [XZ(61): The change here is to make the abbreviated names consistent. For example, earlier "Hdpa" is used.

I didn't change $[\text{NPN}^{\text{Ph}}]^{2-}$ et al. (by Fryzuk et al.) as it's based on binding atoms (rather than abbreviated names). In addition, it seems to be widely used. Making a change may cause confusion.



When $\text{Ta}(\text{=NBu}^t)\text{Cl}_3(\text{py})_2$ reacted with non-heterocyclic carbene (NHC) 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr), the product was ionic complex $(\text{IPrH})[\text{Ta}(\text{=NBu}^t)\text{Cl}_4(\text{py})]$.²⁸⁰

Reactions of IMes:CO₂ and IPr:CO₂, which are carboxylation products of NHCs

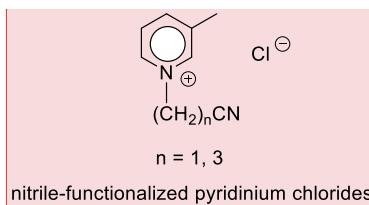

1,3-dimesitylimidazol-2-yliden (IMes) and IPr, respectively, with TaCl₅ gave (IMes:CO₂)TaCl₅ and [(IPr:CO₂)₂TaCl₃](TaCl₆)₂, respectively, with O-Ta bonds. The metal centers in the two complexes adopt distorted octahedral and pentagonal bipyramidal geometries, respectively.²⁸¹

Thermally-stable salts of (pyrrolidinium-2-carbonylchloride)(TaX₆) (X = F, Cl), as *L*-proline derivatives, were reported.²⁸²

pyrrolidinium-2-carbonyl chloride

Mixings of nitrile-functionalized pyridinium chlorides with TaCl₅ gave salts of the nitrile-functionalized pyridinium cations and TaCl₆⁻ anions as ionic liquids which were characterized by X-ray diffraction.²⁸³ (b₂mpy₂bmPy)(TaCl₆) (b₂mpy₂bmPy = 1-butyl-4-methylpyridinium) was similarly synthesized.²⁸⁴ When water is present, the reactions of (b₂mpy₂bmPy)Cl and (emIm)Cl (emIm = 1-ethyl-3-methylimidazolium) with TaCl₅ give (b₂mpy₂bmPy)₄[(TaCl₆)₂[Ta₂(μ-O)Cl₁₀]] and [(emIm)₂][Ta₂(μ-O)Cl₁₀], respectively.²⁸⁴

Reaction of TaCl_5 with α -diimine DAD^{Dip} produced $[\text{DAD}^{\text{Dip}}(\text{H})]\text{TaMCl}_6$.⁵³


Radical salt $(1,4\text{-Me}_2\text{C}_6\text{H}_4)^{+}\text{Ta}_2\text{Cl}_{11}^{-}$ was produced by reaction of TaCl_5 with 1,4-xylene, and the product was identified by EPR.²⁵³

$\text{TaCl}_3(=\text{O})$ reacts with phosphaalkynes $\text{P}\equiv\text{C}-\text{R}$ ($\text{R} = \text{Bu}^t$, 1-adamantyl), yielding 1,2-dichloro-phosphaalkenes $\text{Cl}-\text{P}=\text{C}(\text{Cl})\text{R}$.²⁵⁰ The tantalum-containing product was not identified but is probably a reduced species.

Cluster-containing 3-D heterotrimetallic frameworks

$(\text{H}_3\text{O})\{\text{Ta}_6\text{Cl}_{12}(\text{CN})_6[\text{Mn}(\text{salen})]_6\text{Fe}(\text{CN})_6\}\cdot 4\text{H}_2\text{O}$ and $\{\text{Ta}_6\text{Cl}_{12}(\text{CN})_6[\text{Mn}(\text{salen})]_6\text{Cr}(\text{CN})_6\}\cdot 7\text{H}_2\text{O}$ were prepared from the self-assembly of the paramagnetic octahedral metal cluster $[\text{Ta}_6\text{Cl}_{12}(\text{CN})_6]^{3-}$, $[\text{Mn}(\text{salen})]^+$ [$\text{salen} = N,N'$ -ethylenebis-(salicylidene)iminate] and polycyanometallates ($[\text{Fe}(\text{CN})_6]^{4-}$ and $[\text{Cr}(\text{CN})_6]^{3-}$, respectively).²⁸⁵ $[\text{Ta}_6\text{Cl}_{12}(\text{CN})_6]^{3-}$ consists of a Ta_6 octahedral metal core supported by 12 edge-bridging $\mu_2\text{-Cl}^-$ as inner ligands and 6 apical CN^- ligands.²⁸⁵

186, 284

Ionic liquids with TaCl_6^- -anion and two nitrile functionalized pyridinium cations have

been prepared and characterized by X-ray diffraction.²⁸²

Commented [MDJ62]: Not clear what this is, phosphaalkyne?

Commented [XZ(63R62): Yes. Name added.

Commented [MDJ64]: What is this for?

Commented [XZ(65R64): The product is an organophosphorus compound. The sentence here indicates the reactivity of $\text{TaCl}_3(=\text{O})$.

Commented [XZ(66): Moved 5 paragraphs earlier (after the combined text).

Commented [XZ(67): Combined with an earlier paragraph (5 paragraphs before this one).

Amidinate $Ta(=NBu^t)(Bu^tNCMeNBu^t)_2Br$ was made from the treatment of $Ta(=NBu^t)(Bu^tNCMeNBu^t)_2Cl$ with BBr_3 .⁸⁵

$[Ta_6Br_{12}(H_2O)_6](BPh_4)_2 \cdot 4H_2O$ was obtained from the reaction of $Ta_6Br_{14} \cdot 7H_2O$ with $NaBPh_4$ in water.²⁸⁶

2.910. Mixed-Donor Ligands

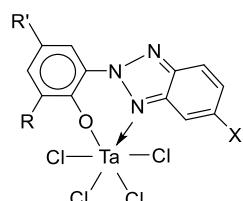
2.109.1. η^2 -Aminoxy (*N,O*) ligands

$d^0 Ta(NMe_2)_5$ reacted with O_2 to give aminoxyl complexes $(Me_2N)_nTa(\eta^2-ONMe_2)_{5-n}$ ($n = 4, 3$) as well as $(Me_2N)_4Ta_2[\kappa^2-N(Me)CH_2NMe_2]_2(\mu-O)_2$ and $(Me_2N)_6Ta_3[\kappa^2-N(Me)CH_2NMe_2]_2(\eta^2-ONMe_2)(\mu-O)_3$ with ~~novel~~-chelating (aminomethyl)amide $-N(Me)CH_2NMe_2$ ligands.¹³⁴

As discussed earlier, $(Me_2N)_4Ta-SiBu^tPh_2$ reacted with O_2 to yield aminoxyl complex $(Me_2N)_3Ta(\eta^2-ONMe_2)(OSiBu^tPh_2)$ as well as $(Me_2N)_4Ta(OSiBu^tPh_2)$ and $Ta_2(NMe_2)_2(OSiBu^tPh_2)_2(\mu, \kappa^2-Me_2NCH_2NMe)_2(\mu-O)_2$ with two chelating, bridging- $N(Me)CH_2NMe_2$ ligands.¹³⁵

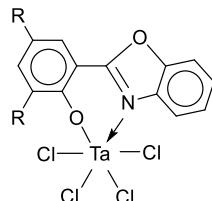
Reaction of 3 equiv of $HONEt_2$ with $Ta(NMe_2)_5$ gave η^2 -hydroxylamido oxo dimer $Ta_2(\mu-O)_2(\eta^2-ONEt_2)_6$.²⁸⁷

2.109.2. Amino-acidate (*N,O*) ligands


When $Ta(OEt)_5$ reacted with *L*- α -amino acids including- *L*-phenylalanine, *L*-proline, and *L*-methionine (MetH), $Ta(OEt)_4(\kappa^2\text{-amino acidato})$ complexes were the products in which the amino acidate ligands were bidentate using both the N and O binding sites.²⁸⁸

2.109.3. Aminophenol (*N*,*O*) and aminothiophenol (*N*,*S*) ligands

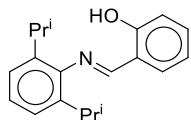
Reaction of 2-aminophenol or 2-aminothiophenol ($\text{2-HX-C}_6\text{H}_4\text{NH}_2$; X = O, S) with TaCl_5 afforded the product $\text{Ta}(\kappa^2\text{-XC}_6\text{H}_4\text{NH}_2)\text{Cl}_4$ containing a bidentate ligand.²⁸⁹


2.109.4. Benzotriazole and benzoxazole phenoxide (*N*,*O*) ligands

Complexes with benzotriazole phenoxide (136) and benzoxazole phenoxide (137) ligands were prepared from the reactions of TaCl_5 with benzotriazoles phenols and benzoxazole phenols, respectively.²⁹⁰ These complexes were tested as catalysts for the ring-opening polymerization of glycidol to synthesize hyperbranched polyglycerols using 1,1,1-tris(hydroxymethyl)propane as an initiator.²⁹⁰

R = H, R' = Me, X = H
R = R' = Bu^t , X = Cl
R = R' = t-pentyl, X = H

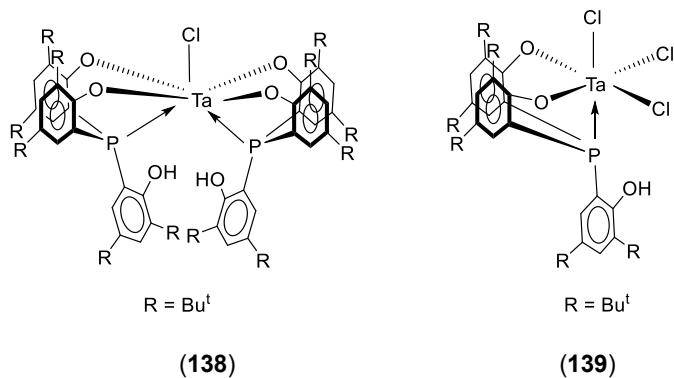
(136)



R = Bu^t
R = Cl
R = Br

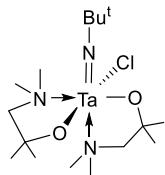
(137)

2.109.5. Iminomethylphenol (*N*,*O*) ligand

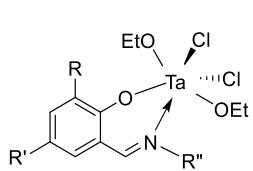

$[\text{TaCl}_2(\kappa^2\text{-dpimp})_2](\text{TaCl}_6)$ is prepared from TaCl_5 and 2-[(2,6-diisopropylphenyl)iminomethyl]phenol (dpimpH).²⁹¹

dpimpH

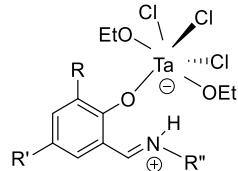
2.109.6. Phosphine alkoxide (O,P) ligand


Reaction of triphenol phosphine ($2\text{-HO-3,5-Bu}^t_2\text{C}_6\text{H}_2\text{)P}$ ($\text{H}_3\text{[O}_3\text{P]}$)) with 3 equiv of Bu^nLi and 1 equiv of TaCl_5 gave 7-coordinate $\text{Ta}[\text{O}_2\text{P(OH)}]_2\text{Cl}$ (**138**).²⁹² If $\text{H}_3\text{[O}_3\text{P]}$ or (**138**) reacted with TaCl_5 , the product was $\text{Ta}[\text{O}_2\text{P(OH)}]\text{Cl}_3$ (**139**).²⁹²

2.109.7. Other monoanionic bidentate ligands


Imine complex $(\text{silox})_2\text{Ta}(\eta^2\text{-NC}_5\text{H}_9)\text{Me}$ was tentatively identified in the thermolysis of $(\text{silox})_2\text{Ta}(\text{pip})\text{Me}_2$.³¹

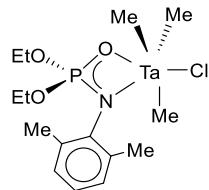
Reaction of 2 equiv of $\text{NaOCMe}_2\text{CH}_2\text{NMe}_2$ with $\text{Ta}(\text{=NBu}^t)\text{Cl}_3(\text{py})_2$ gave $\text{Ta}(\text{=NBu}^t)\text{Cl}(\kappa^2\text{-OCMe}_2\text{CH}_2\text{NMe}_2)_2$ (**140**).²⁹³



(140)

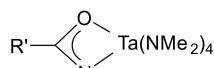
TaCl₅ reacts with imino phenols [in EtOH-toluene solution](#) to give imino phenolate complexes (141) and (142), which are catalysts for the polymerization of lactides, ϵ -caprolactone and ethylene.²⁹⁴

R = R' = Bu^t; R'' = 4-OMe-C₆H₄
R = Bu^t; R' = Me, R'' = 4-OMe-C₆H₄

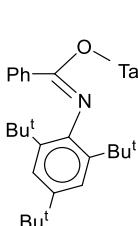


R = R' = R'' = Bu^t
R = Bu^t; R' = Me, R'' = 4-OMe-C₆H₄CH₂

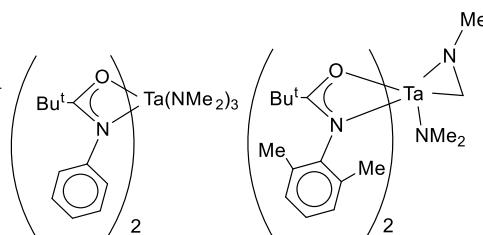
(141)


(142)

Complex (143) with a κ^2 -N,O-phosphoramidate ligand was prepared and it was a precatalyst for room-temperature hydroaminoalkylation.²⁹⁵


(143)

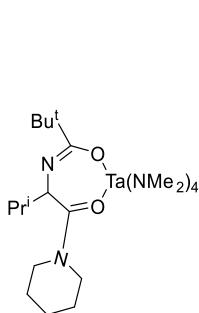
Several *a*Amides (144) and (145) were prepared from the reactions of Ta(NMe₂)₅ with organic amides.^{296, 297} These amidates were precatalysts for hydroaminoalkylation.^{296, 297} Bis(amidate) amide (146)²⁹⁶ and bis(amidate) aziridine complex (147)²⁹⁴ were also reported.



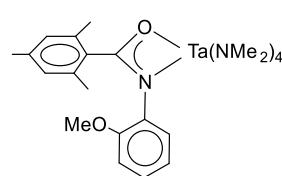
R = Pr^t, R' = Bu^t
R = H, R' = Bu^t
R = Me, R' = Bu^t
R = Pr^t, R' = Ph

(144)

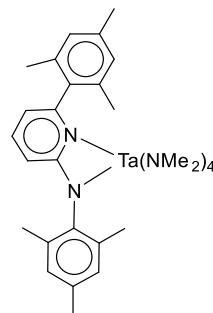
(145)


(146)

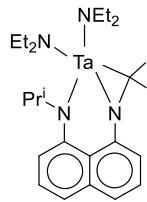
(147)


A series of 2-pyridonate complexes LTa(NMe₂)₃X (X = Cl, L = 3-mesityl-2-pyridonate,²⁹⁸ 3-methyl-2-pyridonate,²⁹⁸ 3-trifluoromethyl-2-pyridonate,²⁹⁸ 2-pyridonate,²⁹⁸ 6-phenyl-2-pyridonate,²⁹⁸ 6-methyl-2-pyridonate,²⁹⁸ 3-phenyl-2-pyridonate²⁹⁸ $\text{X}^{\text{H}} = \text{OTf}$, L = 3-phenyl-2-pyridonate²⁹⁸) and (3-phenyl-2-pyridonate)Ta(NMe₂)₄²⁹⁹ were prepared and found to be precatalysts for

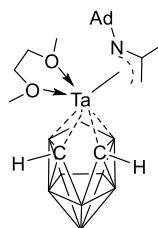
Commented [XZ(68): If the negative sign “-” is used here, should we add “-” to other places such as “X = Cl” (just 3 lines) above and “X = O, S”?


hydroaminoalkylation.^{298, 299} Also alkyl ureates prepared in situ from $\text{Ta}(\text{CH}_2\text{SiMe}_3)_3\text{Cl}_2$ and α -ureate N, O chelating ligand salts were catalytic systems for hydroaminoalkylation.³⁰⁰ Other N, O -heteroatom containing-chelating ligands derived from including N -[3-methyl-1-oxo-1-(piperidin-1-yl)butan-2-yl]pivalamide, N -(2-methoxyphenyl)-2,4,6-trimethylbenzamide, and $N,6$ -dimesitylpyridin-2-amine were used to react with $\text{Ta}(\text{NMe}_2)_5$, giving (Z)-(2,2-dimethyl-1-[3-methyl-1-oxo-1-(piperidin-1-yl)butan-2-yl]imino)propoxy) $\text{Ta}(\text{NMe}_2)_4$ (**148**), mono[N -(2-methoxyphenyl)-2,4,6-trimethylbenzamide] $\text{Ta}(\text{NMe}_2)_4$ (**149**) and mono($N,6$ -dimesityl-2-aminopyridinate) $\text{Ta}(\text{NMe}_2)_4$ (**150**), respectively.³⁰¹

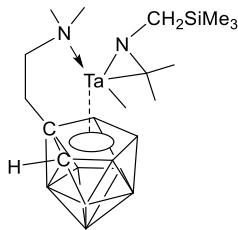
(**148**)



(**149**)


(**150**)

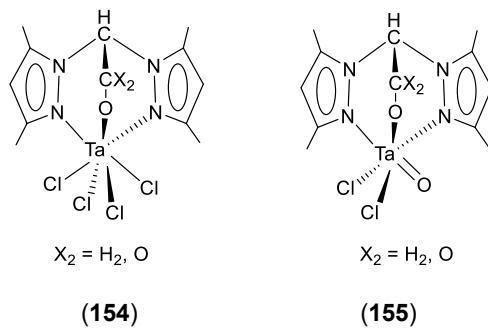
If MeLi were added to $\text{TaCl}(\text{NEt}_2)_2[1,8-(\text{Pr}^i\text{N})_2\text{C}_{10}\text{H}_6]$, aziridine [κ^3 - $(\text{Me}_2\text{CN})(\text{Pr}^i\text{N})\text{C}_{10}\text{H}_6$] $\text{Ta}(\text{NEt}_2)_2$ (**151**) formed after the elimination of methane.⁸¹


(151)

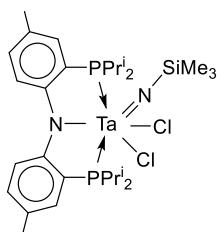
Treatment of $(\eta^5\text{-C}_2\text{B}_9\text{H}_{11})\text{TaMe}_3$ with adamantyl isonitrile in dme produced $(\eta^6\text{-C}_2\text{B}_9\text{H}_{11})\text{Ta}[\eta^3\text{-C}_2\text{N-CH}_2\text{C}(\text{CH}_3)\text{Me}]\text{NAd}](\text{dme})$ (152).²³

(152)

Treatment of $[\eta^1\text{:}\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{TaMe}_3$ (12) with 1 equiv of isonitrile $\text{Me}_3\text{SiCH}_2\text{NC}$ to give aziridine $[\eta^1\text{:}\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{Ta}[\eta^2\text{-C}_2\text{N-CH}_2\text{SiMe}_3]\text{Me}$ (153).²⁴


1453

Silica surface grafted \equiv Si-O-Ta(NMe₂)₄ was found to be susceptible to β -H elimination. When heated under reduced pressure, \equiv Si-O-Ta(NMe₂)₄ gave \equiv Si-O-Ta(η^2 -NMeCH₂)(NMe₂)₂ directly.¹⁶² Treatment of \equiv Si-O-Ta(NMe₂)₄ with HNMePh at room temperature yielded \equiv Si-O-Ta(η^2 -NPhCH₂)(NMe₂)₂.¹⁶² These complexes were tested as catalysts for hydroamin¹⁶¹ [alkylation of alkenes](#) [reactions](#).


As discussed in Section 2.4.12 on imide ligands, reactions of carborane complex $[\eta^1:\eta^5\text{-}(\text{Me}_2\text{NCH}_2\text{CH}_2)\text{C}_2\text{B}_9\text{H}_{10}]\text{TaMe}_3$ (**12**) with 2,6-dimethylphenyl isonitrile and 2,6-diisopropylphenyl isonitrile yielded imide aziridine complexes (**77**, **78**, **79**).

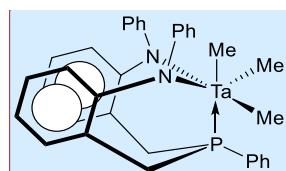
2.109.8. Monoanionic tridentate ligands

Reaction of TaCl₅ with lithium 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide gave (**154**) with a heteroscorpionate ligand.³⁰² Complexes (**154**) were converted to (**155**) in thf probably through hydrolysis.³⁰²

Reaction of $\text{Ta}(\text{=NSiMe}_3)\text{Cl}_3(\text{py})_2$ with $\text{Li}[\text{N}(2-\text{PPr}^i_2\text{-4-Me-C}_6\text{H}_3)_2]$ ($\text{Li}[\text{PNP}]$) gave $[\text{PNP}]\text{Ta}(\text{=NSiMe}_3)\text{Cl}_2$ (**156**), which reacted with $\text{Na}(\text{O-2,6-Pr}^i_2\text{C}_6\text{H}_3)$, affording $[\text{PNP}]\text{Ta}(\text{=NSiMe}_3)\text{Cl}(\text{O-2,6-Pr}^i_2\text{C}_6\text{H}_3)$.²⁷⁶ When FSnMe_3 was added to the alkoxide derivative, the reaction yielded the fluoride imide complex $[\text{PNP}]\text{Ta}(\text{=NSiMe}_3)\text{F}(\text{O-2,6-Pr}^i_2\text{C}_6\text{H}_3)$.²⁷⁶

2.109-9. Dianionic bidentate ligands

$(Me_2N)_3Ta(Cl)[N(SiMe_3)_2]$ reacted with 1 equiv of $LiN(SiMe_3)_2$ gave


(Me₂N)₃TaN(SiMe₃)SiMe₂CH₂ with a four-membered metallaheterocyclic ring through γ -

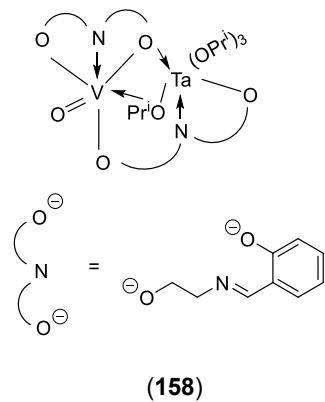
hydrogen abstraction.⁵⁷ The cyclic product could also be prepared from the reactions of $(\text{Me}_2\text{N})_3\text{TaCl}_2$ ⁵⁷ or $(\text{Me}_2\text{N})_4\text{TaCl}$ ⁵⁸ with $\text{LiN}(\text{SiMe}_3)_2$ or direct γ -H activation of the $\text{N}(\text{SiMe}_3)_2$ ligand in $(\text{Me}_2\text{N})_3\text{Ta}[\text{N}(\text{SiMe}_3)_2](\text{SiPh}_2\text{Bu}^t)$ by the silyl ligand.³⁰³ Kinetics of the γ -H abstraction by the silyl ligand was found to follow first-order kinetics with $\Delta H^\ddagger = 23.6(1.6)$ kcal/mol and $\Delta S^\ddagger = 3(5)$ eu between 288 and 313 K.³⁰³ DFT studies of the γ -H abstraction by silyl ligands revealed that the formation of the metallacyclic complex through γ -H abstraction was entropically driven.³⁰³

2.109.10. *N,P,N*-dianionic tridentate ligand

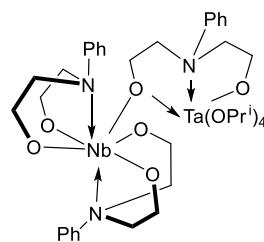
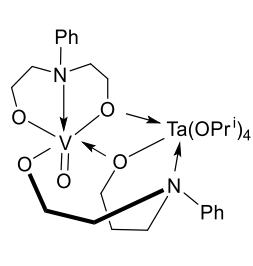
Complexes containing *N,P,N*-dianionic tridentate ligands, such as $[\text{NPN}^\text{R}]^{2-}$ ($\text{R} = \text{Ph, Cy, Ad}$), $[\text{NPN}']^{2-}$, $[\text{NPN}^*]^{2-}$ were used as starting materials to make other derivatives containing the tridentate ligands. These studies are discussed in other sections of this review. The current section is focused on the reaction forming new bonds between a Ta(V) ion and a tridentate ligand.

$[\text{NPN}']\text{TaMe}_3$ ($[\text{NPN}']^{2-} = \text{PhP}(\text{CH}_2\text{C}_6\text{H}_4\text{-o-NPh})_2^{2-}$) (**157**) was synthesized via treatment of TaCl_2Me_3 with $[\text{NPN}']\text{Li}_2$ (dioxane).¹¹

(157)


Commented [MDJ69]: Please fix bent C-N bonds

Commented [XZ(70R69)]: Done



2.109.11. *O,N,O*-dianionic tridentate ligands

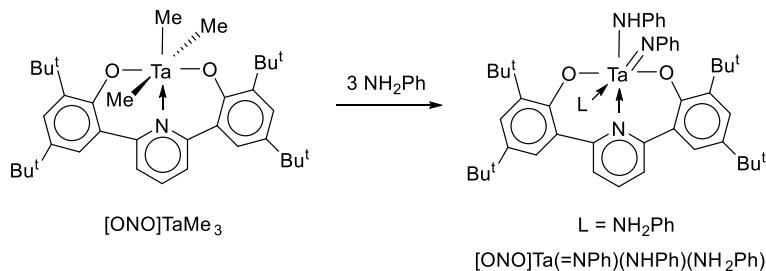
$\text{Ta}_2(\mu-\text{pdm})_2(\text{OCH}_2\text{Bu}^t)_6$ (pdmH₂ = 2,6-dimethanol pyridine) was prepared from $\text{Ta}_2(\text{OCH}_2\text{Bu}^t)_6(\mu-\text{OEt})_2$ and pdmH₂.³⁰⁴

$\text{Ta}_2(\text{OPr}^i)_{10}$ reacted with $\text{V}(=\text{O})(\text{OsaeO})(\text{HOsaeO})$ (HOsaeOH = N-salicylidene-2-aminoethanol), giving (**158**) which was believed to have the following structure.³⁰⁵

Mixed-metal complexes $\text{V}(=\text{O})[\text{PhN}(\text{CH}_2\text{CH}_2\text{O})]_2[\text{Ta}(\text{OPr}^i)_4]$ (**159**)³⁰⁶ and $\text{Nb}[\text{PhN}(\text{CH}_2\text{CH}_2\text{O})_3[\text{Ta}(\text{OPr}^i)_4]$ (**160**)³⁰⁷ have been reported.

Reactions of $Ta_2(OR)_10$ with diethanolamines $RN(CH_2CH_2OH)_2$ ($R = H, Me, Bu^n, Ph$) gave $[RN(CH_2CH_2O)_2]_2Ta(OR)_4$.³⁰⁸

Reaction of $Ta(OEt)_5$ with salicylaldoxime $2-(HO)C_6H_4CH=NOH-2-OH$

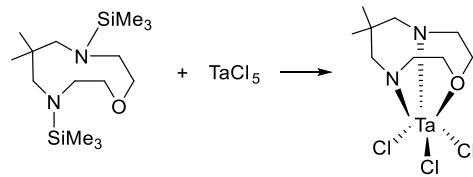

afforded dimer $Ta_2(\mu-O)(\mu-\kappa^3-O, N, O\text{-salicylaldoximate})_2(OEt)_4$.³⁰⁹

Complexes $[ONO]TaCl_3$ and $[ONO]TaCl_2Me$ supported by a pyridine-linked bisphenoxide ligand were prepared by the reactions of Me_2TaCl_3 and $Me_3TaMe_3Cl_2$ with bis(phenol)pyridine $2,6\text{-}(HOC_6H_2-2,4-Bu^t_2)_2NC_5H_3$ ($[ONO]H_2$), respectively.¹⁸⁰ In

$[ONO]TaCl_2Me$, the Me and pyridinyl ligands are *trans* to each other. When dipotassium salt $[ONO]K_2$ reacts with $Me_3TaMe_3Cl_2$, the product is the trimethyl derivative $[ONO]TaMe_3$,¹⁸⁰ which reacts with NH_2Ph , yielding $[ONO]Ta(=NPh)(NPh)(NH_2Ph)$

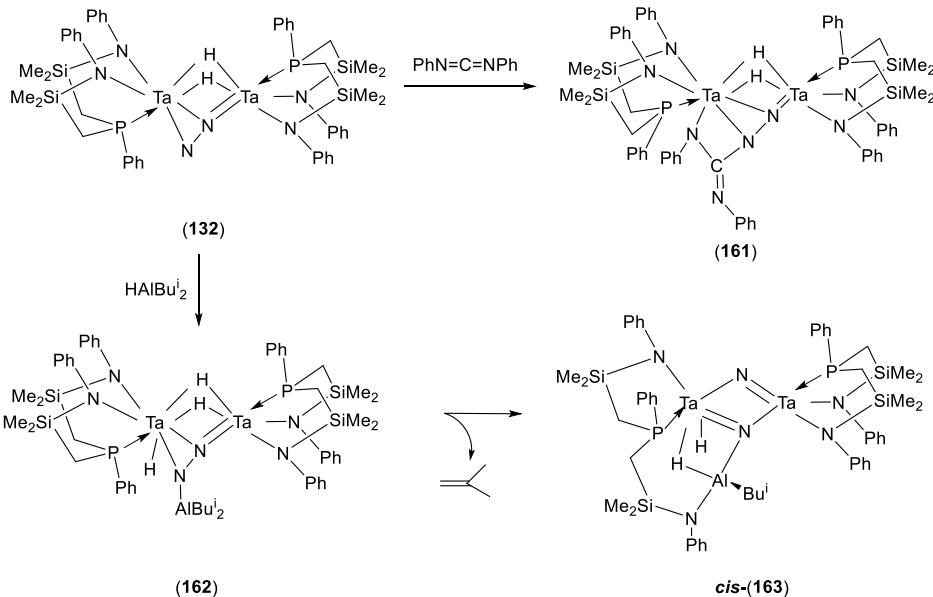
(Scheme 9).³¹⁰ When $[ONO]H_2$ reacted with $Ta(NMe_2)_5$, the product was $[ONO]Ta(NMe_2)_3$, which formed $[ONO]Ta(NMe_2)_2Cl$ in the reaction with Me_3SiCl .³¹⁰

Reaction of $[ONO]Ta(NMe_2)_2Cl$ with $PhNH_2$ gave $[ONO]Ta(=NPh)Cl(L)$ ($L = NH_2Ph$ or $HNMe_2$) in which the Cl^- ligand is *trans* to the pyridinyl ligand.³¹⁰ When added $HNMe_2$, $[ONO]TaCl_2Me$ was converted to $[ONO]Ta(Cl)(Me)(NMe_2)$, in which the Me ligand retains its *trans* position to the pyridinyl ligand.³¹⁰ Hydrazinolysis of $[ONO]Ta(NMe_2)_2Cl$ with H_2NNMe_2 gave $[ONO]Ta(=NNMe_2)Cl(HNMe_2)$.⁵⁴



Scheme 9

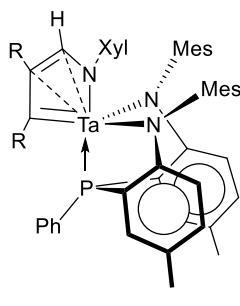
Commented [MDJ71]: Fix formula, do same for others and put parenthesis for the methyl group


Commented [XZ(72R71)]: Fixed

Reaction of dipotassium salt $[\text{ONO}]K_2$ with $(\text{dme})\text{Ta}(\text{=NNPh}_2)\text{Cl}_3$ gave $[\text{ONO}]\text{TaCl}(\text{=NNPh}_2)(\text{py})$.⁵⁴ A bis-*N,N'*-trimethylsilyl functionalized macrocycle was used to prepare a complex with a dianionic diamido macrocyclic ligand (Scheme 10).³¹¹ The identity of the complex was based on microanalysis.

Scheme 10

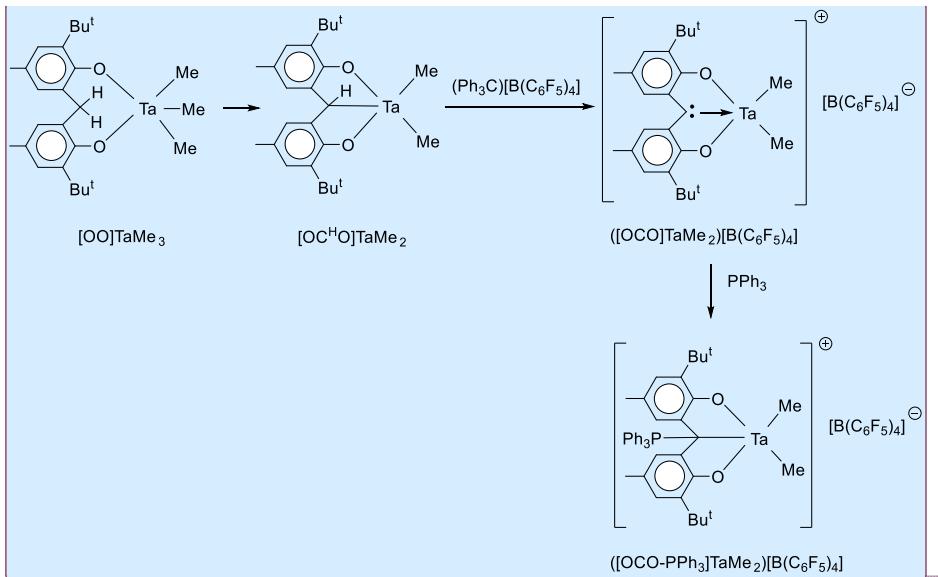
N,N'-diphenyl carbodiimide $\text{PhN}=\text{C}=\text{NPh}$ reacted with $([\text{NPN}^{\text{Ph}}]\text{Ta})_2(\mu\text{-H})_2(\mu\text{-}\eta^2\text{:}\eta^1\text{-N}_2)$ (**132**) to give $([\text{NPN}^{\text{Ph}}]\text{Ta})_2(\mu\text{-H})_2[\mu\text{-PhNC}\text{---}\text{N}(\text{Ph})\text{N}_2]$ (**161**, Scheme 11).³¹²



Scheme 11

When adding HAlBu^i_2 to $([\text{NPN}^{\text{Ph}}]\text{Ta})_2(\mu\text{-H})_2(\mu\text{-}\eta^1\text{:}\eta^2\text{-N}_2)$, the initial product was thermally unstable (**162**) in Scheme 11 which was converted to **cis**-(**163**) and a diastereomeric rotational isomer of (**163**).³¹³ Reactions of (**132**) with secondary and primary boranes led to the cleavage of coordinated dinitrogen ligands.³¹⁴ For example, in the reaction with 9-borabicyclo[3.3.1]nonane (9-BBN), hydroboration of the Ta_2N_2 unit occurred, triggering a cascade of reactions that eventually generated a imide–nitride derivative.³¹⁴ When Lewis acid ER_3 [$\text{ER}_3 = \text{GaMe}_3$, AlMe_3 or $\text{B}(\text{C}_6\text{F}_5)_3$] was used in the reaction with (**132**), adduct $([\text{NPN}^{\text{Ph}}]\text{Ta})_2(\mu\text{-H})_2(\mu\text{-}\eta^1\text{:}\eta^2\text{-NNER}_3)$ was the product.³¹⁵

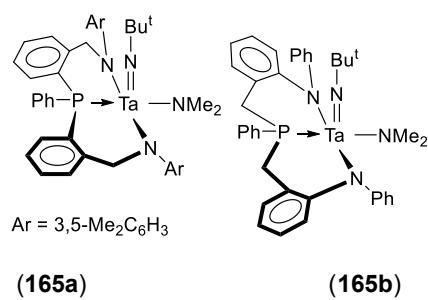
2.109.12. *C,N*-trianionic bidentate (carbene-amide)


Reaction of $[\text{NPN}^*]\text{Ta}(\text{RC}\equiv\text{CR})\text{H}$ (**164**; $[\text{NPN}^*]^{2-} = \text{PhP}[2-(N\text{-mesityl})-5\text{-Me-C}_6\text{H}_3]^{2-}$; $\text{R} = \text{Et, SiMe}_3$) with 2,6-dimethylphenyl isocyanide yielded a five-membered tantalacyclic product (**164**).¹²

(**164**)

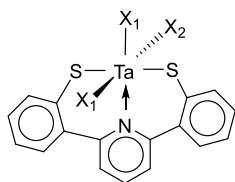
2.109.13. *O,C,O*-dianionic tridentate [carbene-bis(phenoxide)]

Chelating bis(phenoxide) trimethyl complex $[\text{OO}]\text{TaMe}_3$ in Scheme 12 under heating yielded $[\text{OC}^{\text{H}}\text{O}]\text{TaMe}_2$ with a tridentate trianionic ligand.³¹⁶ $[\text{OC}^{\text{H}}\text{O}]\text{TaMe}_2$ then reacted with $(\text{Ph}_3\text{C})[\text{B}(\text{C}_6\text{F}_5)_4]$ to give $([\text{OCO}]\text{TaMe}_2)[\text{B}(\text{C}_6\text{F}_5)_4]$ in Scheme 12 containing a carbene-bis(phenoxide) ligand.³¹⁶ PPh_3 binds to the carbene C atom in $([\text{OCO}]\text{TaMe}_2)[\text{B}(\text{C}_6\text{F}_5)_4]$, yielding $([\text{OCO-PPPh}_3]\text{TaMe}_2)[\text{B}(\text{C}_6\text{F}_5)_4]$.³¹⁶


Commented [MDJ73]: Put lone pair on carbene

Commented [XZ(74R73): Fixed]

Scheme 12


2. 109.14. *O,P,O-dianionic tridentate ligands*

Bu^tN=Ta(NMe₂)₃ reacted with benzylene-linked ~~tr~~diaminophosph~~an~~ines (H₂[NPN]), yielding [NPN](=NBu^t)(NMe₂) ([NPN]²⁻ = PhP[C₆H₄-o-CH₂N(3,5-Me₂C₆H₃)₃]²⁻, **165a**; PhP(CH₂C₆H₄-o-NPh)²⁻, **165b**).³¹⁷

2.109.15. *S,N,S*-dianionic tridentate ligand

Reaction of $(2\text{-C}_6\text{H}_4\text{SH})_2\text{-2,6-C}_5\text{H}_3\text{N}$ ($[\text{SNS}]\text{H}_2$) with $\text{Ta}(\text{NMe}_2)_5$ gave bis(thiophenolate)pyridine complex $[\text{SNS}]\text{Ta}(\text{NMe}_2)_3$ (**166a**).³¹⁸ Using the salt $\text{K}_2[\text{SNS}]$ and $\text{TaCl}_3(\text{NEt}_2)_2$ yielded $[\text{SNS}]\text{TaCl}(\text{NEt}_2)_2$ (**166b**).³¹⁸

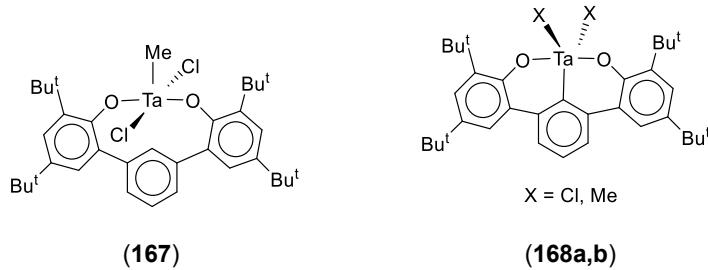
$X_1 = X_2 = \text{NMe}_2$
 $X_1 = \text{NEt}_2, X_2 = \text{Cl}$

(**166a,b**)

2.109.16. *O,C,O*-trianionic tridentate ligand

Benzene-linked diphenol ($\text{HO-C}_6\text{H}_2\text{-Bu}^{\text{t}2}\text{-C}_6\text{H}_4$) reacts with $[\text{Me}_3\text{TaMe}_3\text{Cl}_2]$, yielding dichloro methyl complex $\text{TaMeCl}_2[(\text{OC}_6\text{H}_2\text{-Bu}^{\text{t}2})_2\text{C}_6\text{H}_4]$ (**167**), which under heating eliminates CH_4 to give $\text{TaCl}_2[(\text{OC}_6\text{H}_2\text{-Bu}^{\text{t}2})_2\text{C}_6\text{H}_3]$ (**168a**).^{180, 319} Deuterium labeling of the phenol hydrogen atoms has been used, revealing the mechanism of the reaction.³¹⁹

When the dipotassium salt of the benzene-linked diphenol was reacted with


$[\text{Me}_3\text{TaMe}_3\text{Cl}_2]$, the product is (**168b**), the dimethyl derivative of (**168a**).¹⁸⁰

Commented [MDJ75]: fix

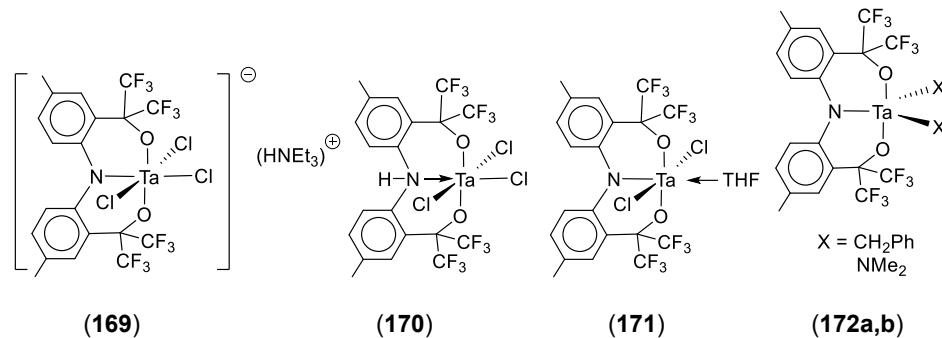
Commented [XZ(76R75)]: Done

Commented [MDJ77]: fix

Commented [XZ(78R77)]: Done

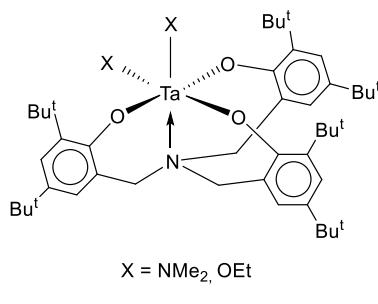
2.109.17. *O,N,O-trianionic tridentate ligands*

Reactions of the *N,N*-bis(3,5-*di t butyl**Bu*¹-2-phenoxide)amide trianion ($[\text{ONO}^{\text{cat}}]^{3-}$) with TaCl_5 ³²⁰ and bis(3,5-*Bu*¹*di t butyl*-2-phenol)amine with $[\text{Me}_3\text{TaMe}_3\text{Cl}_2]$ ³²¹ yielded $[\text{ONO}^{\text{cat}}]\text{TaCl}_2$ ³²¹ and $[\text{ONO}^{\text{cat}}]\text{TaCl}_2(\text{L})$ ($\text{L} = \text{OEt}_2$,^{150, 320} py ³²¹). The Et_2O ligand is


[ONO^{cat}]TaCl₂³²¹ or [ONO^{cat}]TaCl₂(OEt₂) was oxidized by 0.5 equiv of PhICl₂ to give a radical semiquinonate ligand [ONO^{sq}]²⁻ in [ONO^{sq}]TaCl₃.³²⁰ [ONO^{sq}]TaCl₃ was further oxidized by 0.5 equiv of PhICl₂ to yield quinonate form of the ligand, [ONO^q]⁻ in [ONO^q]TaCl₄.³²¹ [ONO^{cat}]TaCl₂(OEt₂) reacted with 2 equiv of diazoalkane Ph₂CN₂ to form the ketazine adduct [ONO^{cat}]TaCl₂[n²(N,N')Ph₂C=NN=CPh₂].³²²

TaCl₅ reacted with 2,2'-[azanediylbis(3-methyl-6,1-phenylene)]bis(1,1,1,3,3,3-hexafluoropropan-2-ol) and NEt₃ to give (**169**) containing the pincer ligand.³²³ Without NEt₃, the reaction in toluene afforded (**170**), which then in thf was converted (**171**).³²³ The two remaining Cl⁻ ligands in (**171**) were replaced by PhCH₂MgCl to yield dibenzyl complex (**172a**), which is also prepared from the reaction of Ta(CH₂Ph)₅ with the pre-ligand 2,2'-[azanediylbis(3-methyl-6,1-phenylene)]bis(1,1,1,3,3,3-hexafluoropropan-2-ol).³²³ Reaction of the pre-ligand with Ta(NMe₂)₅, followed by vacuum to remove

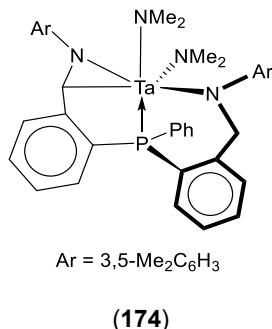
Commented [MDJ79]: fix


Commented [XZ(80R79]: Done

coordinated HNMe_2 , yield (172b).³²³

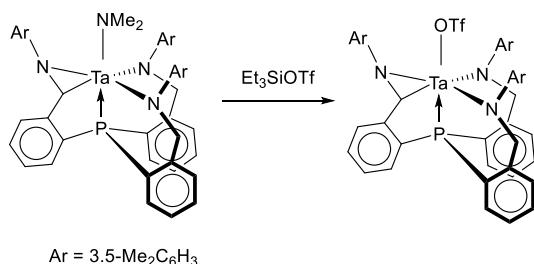
2.109.18. *O,O,O,N-trianionic tetradentate ligands*

Reactions of tris(2-hydroxy-3,5-di-t-butylbenzyl)amine with $\text{Ta}(\text{NMe}_2)_5$ and $\text{Ta}(\text{OEt})_5$ yielded complexes (173).³²⁴



(173)

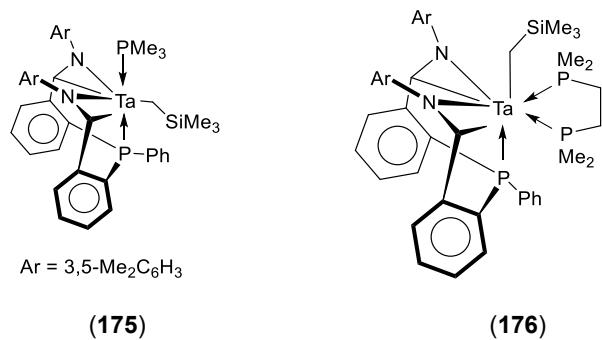
2.109.17. *Other trianionic tetradentate ligands*


Reaction of $\text{Ta}(\text{NMe}_2)_5$ with $[\text{NPN}'']\text{H}_2$ ($[\text{NPN}'']\text{H}_2 = \text{PhP}(\text{C}_6\text{H}_4\text{-}o\text{-CH}_2\text{NHArc})_2$; Ar = 3,5-Me₂C₆H₃) afforded $[\text{NPN}''^*]\text{Ta}(\text{NMe}_2)_2$ (174, $[\text{NPN}''^*]^{3-} = \kappa^4\text{-N,P,N,C-}[\text{PhP}(\text{C}_6\text{H}_4\text{-}o\text{-CH}_2\text{NHArc})_2]$).

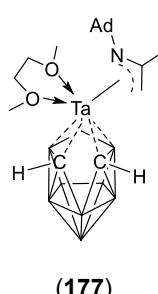
$\text{CH}_2\text{NAr})(\text{C}_6\text{H}_4\text{-}o\text{-CHNAr})^{3-}$.¹¹ With the addition of Me_3Sil to (174), $[\text{NPN}^{**}\text{TaI}_2$ was formed.

2.109.19. Tetraanionic pentadentate ligands

$\text{Ta}(\text{NMe}_2)_5$ reacted with triamidophosphine to give a cyclometalated triamidophosphine amide complex which, when added Et_3SiOTf , afforded triflate derivative (Scheme 13).³²⁵


Scheme 13

Addition of PMe_3 or dmpe to $[\text{NPN}^{**}\text{Ta}(\text{CH}_2\text{SiMe}_3)_2$ [see complex (174) for the


Commented [MDJ81]: was this defined

Commented [XZ(82R81): Just defined for compound 174 above.

definition of the [NPN''] ligand afforded $[NPN'']Ta(CH_2SiMe_3)(PMe_3)$ ($[NPN''] = \kappa^5-C, N, P, N, C-[PhP(C_6H_4-o-CHNAr)_2]$)⁴⁻, Ar = 3,5-Me₂C₆H₃) (175) and $[NPN'']Ta(CH_2SiMe_3)(dmpe)$ (176), respectively.¹¹

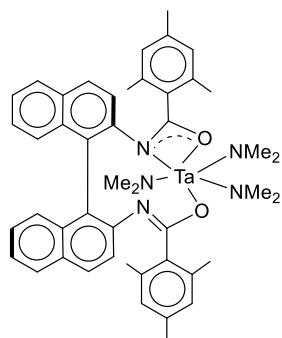
Treatment of $(\eta^5\text{-C}_2\text{B}_9\text{H}_{11})\text{TaMe}_3$ with adamantyl isonitrile in dme produced $(\eta^6\text{-C}_2\text{B}_9\text{H}_{11})\text{Ta}[\eta^3\text{-C}_2\text{C}(\text{CH}_3)\text{MeNAd}](\text{dme})$ (**177**).²³

2.109.20. Aryloxy phosphine ligand

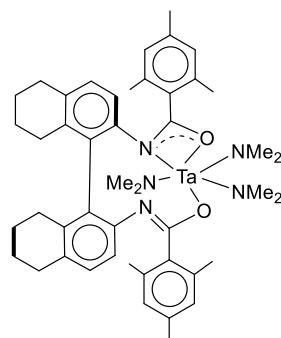
Reactions of $\text{PhP}(\text{3,5-But}_2\text{C}_6\text{H}_2\text{OH})_2$ (${}^{\text{Ph}}[\text{OPO}]_2\text{H}_2$) with TaCl_5 and $[\text{Me}_3\text{TaMe}_3\text{Cl}_2]$

Commented [MDJ83]: fix, do for rest

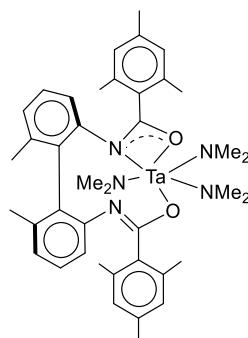
Commented [XZ(84R83): All done]


gave ${}^{\text{Ph}}[\text{OPO}]\text{TaCl}_3$ and ${}^{\text{Ph}}[\text{OPO}]\text{Ta}(\text{Me})\text{Cl}_2$ (and ${}^{\text{Ph}}[\text{OPO}]\text{Ta}(\text{Me})_2\text{Cl}_2$), respectively.³²⁶

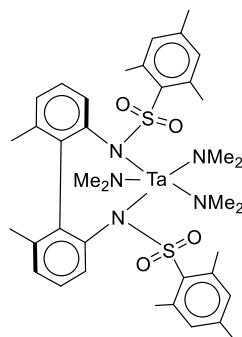
When $({}^{\text{Ph}}[\text{OPO}]\text{K}_2)_2(\text{thf})_6$ reacted with $\text{Ta}(\text{Me})_3\text{Cl}_2$, the product was ${}^{\text{Ph}}[\text{OPO}]\text{TaMe}_3$.³²⁶


$\text{Pr}^i\text{P}(3,5\text{-Bu}^t_2\text{C}_6\text{H}_2\text{OH})_2$ (${}^{\text{Pr}}[\text{OPO}]\text{H}_2$) reacted with TaCl_5 to give ${}^{\text{Pr}}[\text{OPO}]\text{TaCl}_3$.³²⁶

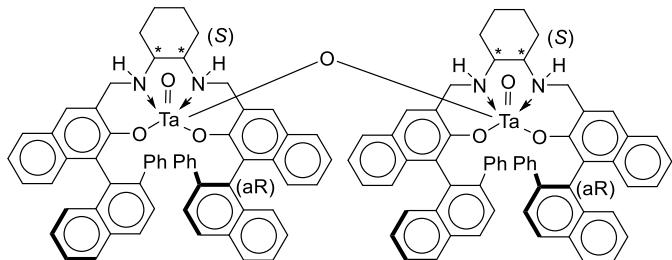
2.109.21. *O,N,N,O-dianionic tetradentate ligand*


Amide complexes with chiral biaryl-based chiral multidentate ligands (**178**, **179**, **180**, **181**) were prepared from $\text{Ta}(\text{NMe}_2)_5$ with C_2 -symmetric amidesbis-amides or bis-sulfonylamide.³²⁷

(178)


(179)

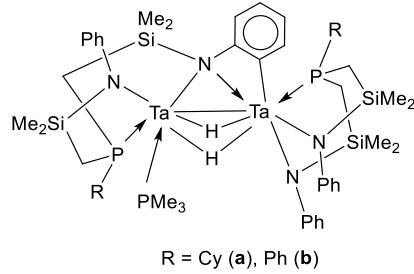
(180)


Commented [MDJ85]: recommended that the bent bonds be fixed for all these complexes

Commented [XZ(86R85)]: Fixed

(181)

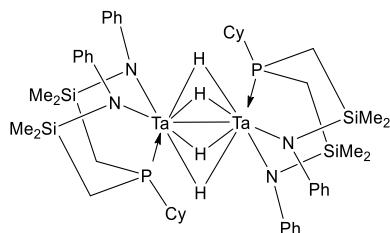
Salan complex (182), a stereoisomer, was studied as catalyst for the asymmetric epoxidation of geraniol.³²⁸ The reaction catalyzed by the Ta complex was found to be slower and less selective than that with its Nb analog.³²⁸



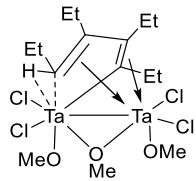
(182)

3. TANTALUM (IV)

3.1. Hydride Ligands

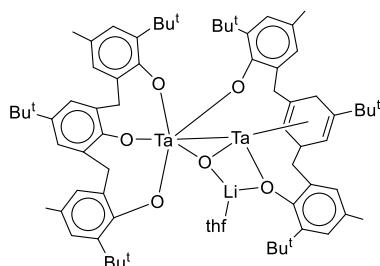

$[(Bu^l_2MeSiO)_3Ta]_2(\mu\text{-H})_2$ and $[(Pr^l_2Bu^lSiO)_3Ta]_2(\mu\text{-H})_2$ were prepared from reductions of $(Bu^l_2MeSiO)_3TaCl_2$ or $(Pr^l_2Bu^lSiO)_3TaCl_2$, respectively, with Na/Hg in an H_2 atmosphere.¹⁴ In an attempt to isolate the Ta-Ta dihydride complex $([NPN^{Cy}]Ta)_2(\mu\text{-H})_2(PMe_3)_2$ ($[NPN^{Cy}]^{2-} = CyP(CH_2SiMe_2NPh)_2^{2-}$), a low-temperature reaction of $([NPN^{Cy}]Ta)_2(\mu\text{-H})_4$ with PMe₃ was conducted. However upon characterization, the orthometallation of the $[NPN^{Cy}]^{2-}$ ligand was found to occur, yielding (183a).³²⁹ The $[NPN^{Ph}]^{2-}$ analog (183b) ($[NPN^{Ph}]^{2-} = PhP(CH_2SiMe_2NPh)_2^{2-}$) was also prepared in a similar manner.³²⁹

(183a,b)


Commented [XZ(87]: (a) and (b) added in the drawing.

$\{[NPN^{Cy}]Ta\}_2(\mu\text{-H})_4$ (**184**) was synthesized from addition of H_2 gas to $[NPN^{Cy}]TaMe_3$.³³⁰

3.2. Selected Carbon-Based Ligand


When heated with 3-hexyne and 4-octyne, $[(\eta^2\text{-}RC\equiv CR)\text{TaCl}_2]_2(\mu\text{-OMe})_2(\mu\text{-thf})$ ($R = Et, Pr^n$), respectively, underwent alkyne coupling reactions to form $Ta_2Cl_4(\text{OMe})_2(\mu\text{-C}_4R_4)(\text{thf})$ ($R = Et$ or Pr^n).¹⁵⁶ Reaction of $Ta_2Cl_4(\text{OMe})(\mu\text{-OMe})(\mu\text{-C}_4Et_4)(\text{thf})$ with methanol yielded $Ta_2Cl_4(\text{OMe})_3(\mu\text{-HC}_4Et_4)$ (**185**).¹⁵⁶

(185)

$[(\text{bit-Bu}^t\text{-X})\text{Ta}]_2(\mu\text{-H})_3\text{Li}(\text{thf})_2$ (**5a**), discussed in Section 2.1, was found to be thermally unstable and formed **Ta(IV) complex (186)** *over a period of weeks*.¹⁵

Commented [TC88]: Added for clarity

(186)

3.3. Nitrogen-Based Ligands

3.3.1. Neutral ligands

$\text{TaCl}_4(\text{tmeda})$ was prepared from TaCl_5 , Et_3SiH , and tmeda .⁷⁵ Reactions of $(\text{TaCl}_4)_n$ with α -diimines $\text{DAD}^{\text{Dip}}\text{-R}$ [$\text{DAD}^{\text{Dip}}\text{-R} = \text{ArN}=\text{C}(\text{R})\text{C}(\text{R})=\text{NAr}$, $\text{R} = \text{H}, \text{Me}$, acenaphthene; $\text{Ar} = 2,6\text{-Pr}_2\text{C}_6\text{H}_3$] gave $(\text{DAD}^{\text{Dip}}\text{-R})\text{TaCl}_4$.⁵² Reduction of $(\text{DAD}^{\text{Dip}})\text{TaCl}_4$

with Cp_2Co yielded $(\text{Cp}_2\text{Co})\{[\text{DAD}^{\text{Dip}}]\text{TaCl}_4\}$ (**10**).⁵²

The DAD^{Dip} ligand was found to be reactive (Sections 2.45.1, 2.45.7, and 2.45.15).⁵² EPR spectra confirmed that these compounds contain either neutral or π -radical α -diimine ligands. These Ta centers can be either Ta^{IV} or Ta^{V} depending on where the electron is located.⁵²

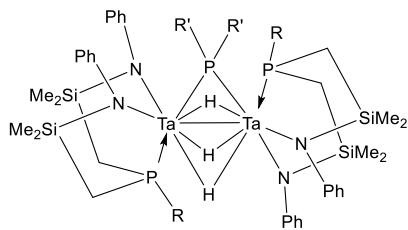
3.3.2. Amido ligands

$\text{Ta}(\text{NEt}_2)_2(\text{NCy}_2)_2$ and $\text{Ta}(\text{NEt}_2)_2\text{Cl}_2(p\text{-Me}_2\text{Npy})_2$ were prepared by adding LiNCy_2 and *p*-dimethylaminopyridine (*p*-Me₂Npy), respectively, to $[\text{Ta}(\text{NEt}_2)_2\text{Cl}_3]_2$, followed by use of Na/Hg . $\text{Ta}(\text{NEt}_2)_2\text{Cl}_2(p\text{-Me}_2\text{Npy})_2$ adopts an octahedral structure with *trans* chloride and *cis* amido ligands. Thin films with the approximate composition $\text{TaN}_{1.5}\text{H}_{0.3-0.5}$ were prepared using CVD with $\text{Ta}(\text{NEt}_2)_2(\text{NCy}_2)_2$.³³¹

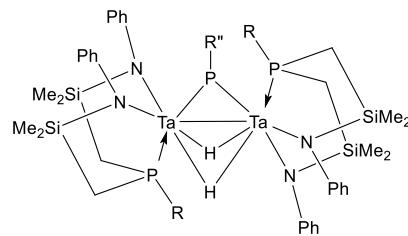
3.3.3. Ketimide ligands

$\text{Ta}(\text{N=CBu}^{\text{t}}_2)_4$ was generated *in situ* via the reduction of $\text{Ta}(\text{OTf})(\text{N=CBu}^{\text{t}}_2)_4$ by Cp^*_2Co . EPR [spectroscopic](#) studies were conducted on this complex and its vanadium and niobium analogs.⁷⁵

3.3.4. Hydrazido, and hydrazidium ligands


DFT calculations were used to elucidate the mechanism for the cleavage of the N-N bonds in Ta(IV) hydrazido and hydrazidium complexes for N_2 activation.³³²

3.5. Phosphorous Ligands


Reactions of $([NPN^R]Ta)_2(\mu\text{-H})_4$ ($[NPN^R]^{2-} = PR(\text{PhNSiMe}_2\text{CH}_2)_2^{2-}$; R = Cy, Ad)

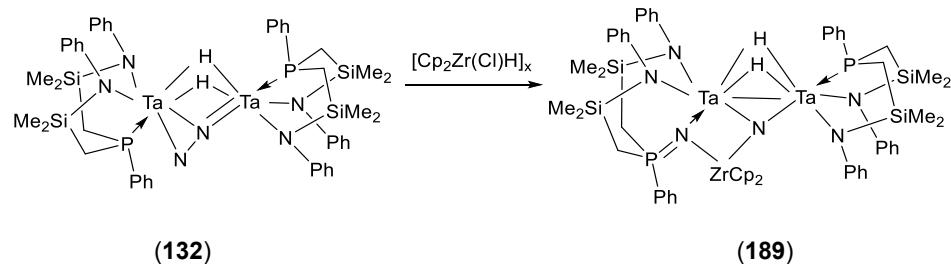
with HPR'_2 ($R' = \text{Cy, Ad}$) and H_2PR'' ($R'' = \text{Cy, Ad}$) gave Ta(IV) complexes

$([NPN^R]Ta)_2(\mu\text{-H})_3(\mu\text{-PR''}_2)$ (**187**) and $([NPN^R]Ta)_2(\mu\text{-H})_2(\mu\text{-PR''})$ (**188**), respectively.³³⁰

(**187**)

(**188**)

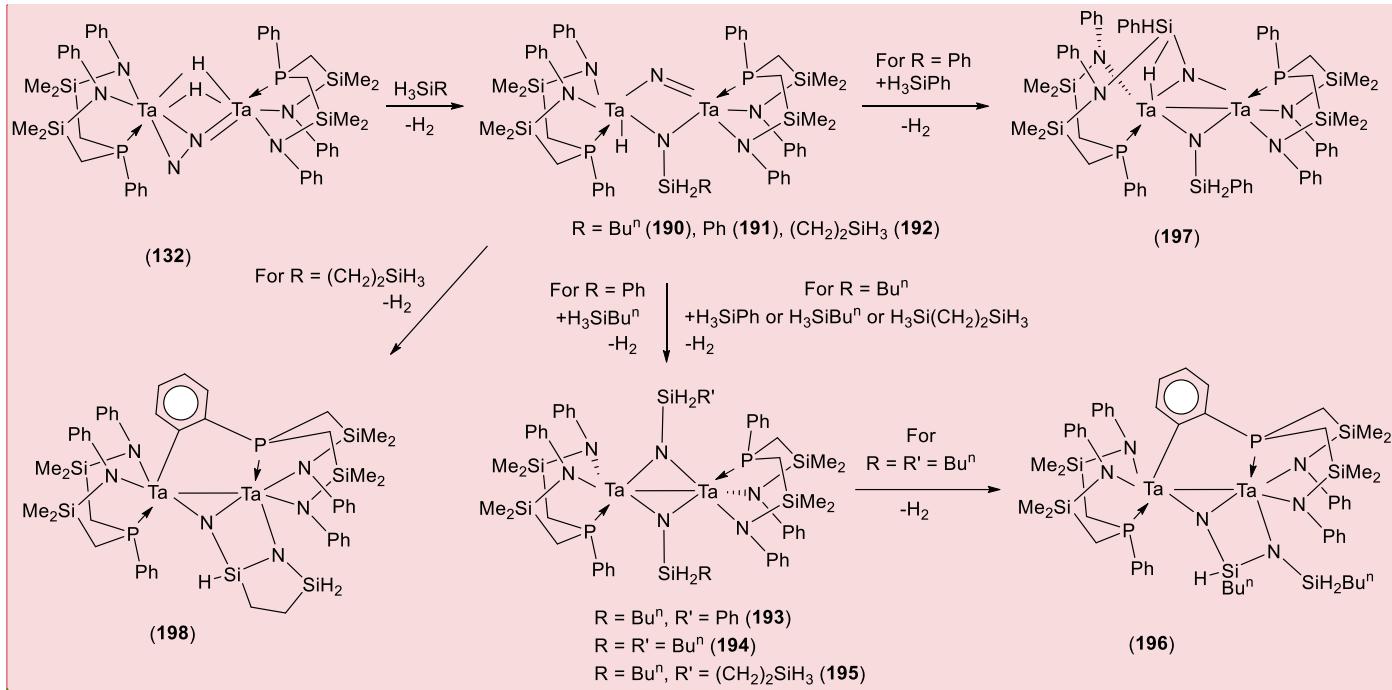
3.4. Sulfur-Based Ligands


When FeCl_2 reacted with TaCl_5 , PMe_3 and $\text{S}(\text{SiMe}_3)_2$, cluster $[\text{Cl}(\text{Me}_3\text{P})\text{Ta}(\mu\text{-S})_2(\mu\text{-S})_2\text{Fe}(\text{PMe}_3)_2]$ was produced.²³⁶ In the cluster, the two $[\text{Cl}(\text{Me}_3\text{P})\text{Ta}]$ units are arranged around one central $\text{Fe}_2(\mu\text{-S})_2$ unit. If Reaction of FeBr_2 with TaCl_5 , PMe_3 and $\text{S}(\text{SiMe}_3)_2$ in MeCN afforded cluster $[(\text{Me}_3\text{P})_2\text{Ta}^{\text{IV}}\text{Fe}^{\text{II}}_3(\mu_3\text{-S})_4\text{Br}_4][(\text{Me}_3\text{P})_4(\text{MeCN})_2\text{Fe}^{\text{II}}]$ with a reduced, Ta^{IV} -containing $[\text{TaFe}_3\text{S}_4]^{2+}$ cubane structure.²³⁷

Commented [XZ(89): (1) The section "S" has been moved to after the section on "P", as in the Ta(VI) complexes earlier.
 (2) The 1st two sentences have been moved to the Ta(V)-S section 2.7.1.

3.6. Mixed-Donor Ligands

Dinitrogen complex $([NPN^{\text{Ph}}]Ta)_2(\mu\text{-H})_2(\mu\text{-}\eta^1\text{:}\eta^2\text{-N}_2)$ (**132**, $[NPN^{\text{Ph}}]^{2-} = \text{PhP}(\text{CH}_2\text{SiMe}_2\text{NPh})_2^{2-}$) reacted with hydride $[\text{Cp}_2\text{Zr}(\text{Cl})\text{H}]_x$ or $\text{Cp}_2\text{M}^{\text{II}}(\text{py})(\text{Me}_3\text{SiC}\equiv\text{CSiMe}_3)$ (M = Ti, Zr) to give a phosphinimide (**189**) in Scheme


14.³³³ In the reaction, the coordinated N_2 was cleaved to form [a triply bridging nitride](#) [and a phosphinimide bridging between Ta and M-and a triply bridging nitride](#).³³³

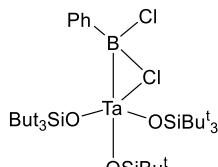
Scheme 14

Reactions of complex (132) with 1 equiv of silanes H_3SiR ($\text{R} = \text{Bu}^n, \text{Ph}, \text{CH}_2\text{CH}_2\text{SiH}_3$) yielded disilylimide dimer (190), (191), (192) (Scheme 15).³³⁴ -(190) reacted with another 1 equiv of silanes to give (193), (194), (195) with a $\text{Ta}^{\text{IV}}\text{-Ta}^{\text{IV}}$ bond.^{334, 335} [DFT studies were conducted to determine the energetics of the reaction in forming \$\(\[\text{NPN}^{\text{Ph}}\]\text{Ta}\)_2\(\mu\text{-NSiH}_2\text{Bu}^n\)_2\$ \(194\)](#).³³⁶ In the presence of a catalytic amount of H_3SiBu^n , (194) was converted to (196).³³⁴ For (191) ($\text{R} = \text{Ph}$), its reaction with additional H_3SiPh gave (197).³³⁴ For (192, ($\text{R} = \text{CH}_2\text{CH}_2\text{SiH}_3$), it underwent conversion to give (198).³³⁴

Commented [MDJ90]: might be worth to balance the reactions whenever possible to help understand each reaction.

Commented [XZ(91R90]: Done. H2 eliminations added.

Commented [XZ(92]: Please use this for Scheme 15 (not the one above which should be deleted).


Field Code Changed

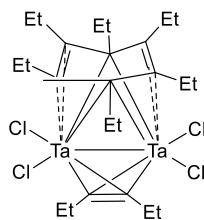
Scheme 15. In Ref. 334, authors indicated that a Ta-Ta bond in (197) is necessary to explain its the observed diamagnetic behavior.

4. TANTALUM (III)

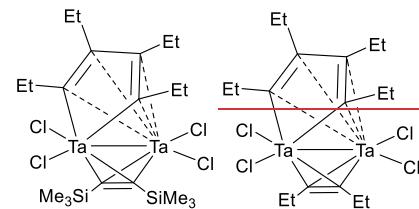
4.1. Boron-Based Ligands

(silox)₃Ta(BH₃) and (silox)₃Ta(η^2 -B,Cl-BCl₂Ph) (**199**) were synthesized from the reaction of (silox)₃Ta with BH₃·thf and BCl₂Ph, respectively.¹⁹

(**199**)


4.2. Carbon-Based Ligands

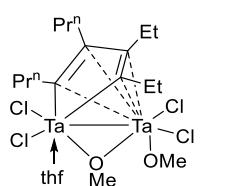
4.2.1. Alkylidene, alkylidyne, alkene, and alkyne ligands


Thermolysis of (silox)₂Ta(pyrr)Et₂ (pyrr = pyrrolidine) afforded the alkene adduct complex (silox)₂Ta^{III}(pyrr)(η^2 -C₂H₄).³¹ Treatment of (silox)₂Ta(pyrr)Cl₂ and (silox)₂Ta(pip)Cl₂ with Na/Hg in the presence of pyridine gave (silox)₂Ta(pyrr)(η^2 -N,C-NC₅H₅) and (silox)₂Ta(pip)Ta(η^2 -N,C-NC₅H₅), respectively.³¹

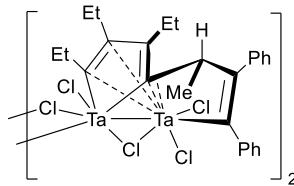
Ta₂Cl₄(μ -n⁴:n⁴-C₆Et₆)(μ -n²:n²-EtC≡CEt) (**200**) was prepared by either treating Ta₂Cl₆(μ -C₄Et₄)(thf) with 10 equiv of 3-hexyne or by reducing Ta₂Cl₆(μ -C₄Et₄) with 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (Me₄-btdp), followed by adding 2 equiv of 3-hexyne.³³⁶ If 3-hexyne was not added after the reduction, the polymer [Ta₂Cl₄(μ -C₄Et₄)]_n was produced. Ta₂Cl₄(μ -C₄Et₄)(μ -n²:n²-Me₃SiC≡CSiMe₃) (**201**) was synthesized from Me₄-btdp, Me₃SiC≡CSiMe₃, and Ta₂Cl₆(μ -C₄Et₄).³³⁶ Ta₂Cl₄(μ -n⁴:n⁴-C₆Et₄R₂)(μ -n²:n²-Me₃SiC≡CSiMe₃) (R = Me or Prⁿ) and

$Ta_2Cl_4(\mu-\eta^4:\eta^4-C_6Et_4RH)(\mu-\eta^2:\eta^2-Me_3SiC\equiv CSiMe_3)$ ($R = Bu^n, p$ -tolyl) were synthesized by treating $Ta_2Cl_4(\mu-C_4Et_4)(\mu-\eta^2:\eta^2-Me_3SiC\equiv CSiMe_3)$ with 4-octyne, 2-butyne, 1-hexyne, and *p*-tolylacetylene at low-temperatures.³³⁶ Complexes $Ta_2Cl_4(\mu-\eta^4:\eta^4-C_6Et_4Me_2)(\mu-\eta^2:\eta^2-Me_3SiC\equiv CSiMe_3)$ and $Ta_2Cl_4(\mu-\eta^4:\eta^4-C_6Et_4RH)(\mu-\eta^2:\eta^2-Me_3SiC\equiv CSiMe_3)$ ($R = Bu^n, p$ -tolyl) underwent isomerization at 80 °C and room temperature, respectively.³³⁶

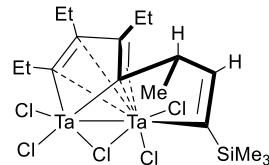
(200)



(201)

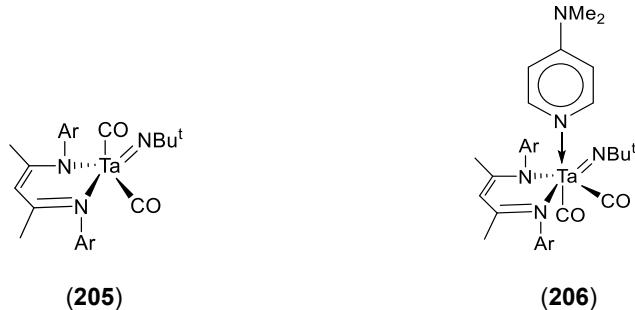

Field Code Changed

$Ta_2Cl_4(OMe)_2(\mu-C_4R_4)(thf)$ and $Ta_2Cl_5(OMe)(\mu-C_4R_4)(thf)$ ($R = Et, Pr^n$) were the thermal decomposition products of $Ta_2Cl_4(\eta^2-RC\equiv CR)_2(\mu-OMe)_2(\mu-thf)$ ($R = Et, Pr^n$).¹⁵⁶ Pure $Ta_2Cl_5(OMe)(\mu-C_4R_4)(thf)$ ($R = Et, Pr^n$) was formed when $Ta_2Cl_4(OMe)_2(\mu-C_4R_4)(thf)$ ($R = Et$ or Pr^n) was heated in toluene with $SiCl_4$.¹⁵⁶ If MeOH was added to $Ta_2Cl_4(OMe)_2(\mu-C_4Et_4)(thf)$ at -78 °C, $Ta_2Cl_4(OMe)_3(\mu-HC_4Et_4)$ was formed. $Ta_2Cl_4(OMe)_2(\mu-C_4R_4)(thf)$ ($R = Et, Pr^n$) was reacted with 4-dimethylaminopyridine (dmap) to yield $Ta_2Cl_4(OMe)_2(\mu-C_4R_4)(dmap)$ ($R = Et, Pr^n$).¹⁵⁶ $Ta_2Cl_4(OMe)_2(\mu-C_4-2,3-Pr^n-4,5-Et_2)(thf)$ (202) was formed from $Ta_2Cl_4(\eta^2-EtC\equiv CEt)_2(\mu-OMe)_2(\mu-thf)$ and 4-octyne.¹⁵⁶ $Ta_2Cl_6(\mu-C_4Et_4)$ was made by reacting $TaCl_3(\eta^2-EtC\equiv CEt)(dme)$ with $AlCl_3$ in toluene and heated.³³⁶ Lewis bases were added to $Ta_2Cl_6(\mu-C_4Et_4)$ to make the adducts


$Ta_2Cl_6(\mu\text{-}C_4Et_4)L$ [$L = \text{thf}$, py, tetrahydrothiophene (tht)]. Several of these dinuclear complexes were found to be active catalyst in cyclotrimerization of internal and terminal alkynes.^{156, 336, 337} Polymeric $\{\text{Ta}_2\text{Cl}_5[\mu\text{-}C_4\text{Et}_3(\text{CHMe})]\}_n$ was formed from the reaction of $Ta_2\text{Cl}_6(\mu\text{-}C_4\text{Et}_4)$ with PhSiH_3 , which was formed from selective C-H bond activation and loss of H_2 . Tetrahydrofuran (thf) reacted with the polymer to give monomeric $Ta_2\text{Cl}_5(\text{thf})_2[\mu\text{-}C_4\text{Et}_3(\text{CHMe})]$ which, in the reactions with $\text{PhC}\equiv\text{CPh}$ and $\text{HC}\equiv\text{CSiMe}_3$, yielded $\{\text{Ta}_2\text{Cl}_5[\text{C}_4\text{Et}_3(\text{CHMeCPh=CPh})]\}_2$ (**203**) and $\text{Ta}_2\text{Cl}_5[\text{C}_4\text{Et}_3(\text{CHMeCH=CSiMe}_3)]$ (**204**), respectively.³³⁸ Benzaldehyde, 2-vinylpyridine, and PMe_2Ph also reacted with $Ta_2\text{Cl}_5(\text{THF})_2[\mu\text{-}C_4\text{Et}_3(\text{CHMe})]$ to form $\text{Ta}_2\text{Cl}_5[\text{C}_4\text{Et}_3(\text{CHMeCHPhO})]$, $\text{Ta}_2\text{Cl}_5[\text{C}_4\text{Et}_3(\text{CHMeCH}_2\text{CHpy})]$, and $\text{Ta}_2\text{Cl}_5(\text{PMe}_2\text{Ph})_2[\mu\text{-}C_4\text{Et}_3(\text{CHMe})]$, respectively.³³⁸

(202)

(203)



(204)

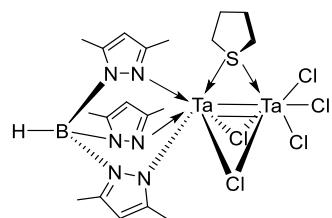
4.2.2. Carbonyl ligands

Reactions of CO with cyclometallated tantalum hydride (**7**) and

yielded $[\text{BDI}^{\text{Pr}^i}] \text{Ta}(\text{NBU}^i)(\text{CO})_2$ (**205**) and $[\text{BDI}^{\text{Pr}^i}] \text{Ta}(\text{NBU}^i)(\text{CO})_2(\text{dmap})$ (**206**), respectively.¹⁷

DFT studies were performed about whether $\text{Re}(\text{NH}_2)_3$ and $\text{Ta}(\text{NH}_2)_3$ could activate CO with the strongest bond in chemistry.³³⁹ The computations showed that CO bounded to $\text{Re}(\text{NH}_2)_3$ without a barrier, forming $\text{OC-}\text{Re}(\text{NH}_2)_3$. The binding of $\text{Ta}(\text{NH}_2)_3$ to the O atom of CO had a barrier of 20 kJ mol⁻¹ ~~and was followed by spontaneous cleavage of the C–O bond to form the products $\text{C-}\text{Re}(\text{NH}_2)_3$ and $\text{O-}\text{Ta}(\text{NH}_2)_3$.~~³³⁹

4.3. Nitrogen-Based Ligands


4.3.1. Neutral ligands

Treating $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(\text{dme})$ with bidentate ligands bipyridine and tmeda gave $\text{TaCl}_3(\eta^2\text{-EtC}\equiv\text{CEt})(\text{bipy})$ and $\text{TaCl}_3(\text{EtC}\equiv\text{CEt})(\text{tmeda})$, respectively.³⁴

4.3.2. Tris(pyrazolyl)borohydride and (methimazolyl)borate ligands

Dinuclear complex ($\text{Tp}^*\text{Ta}(\text{TaCl}_3)(\mu\text{-Cl})_2(\mu\text{-tht})$) (tht = tetrahydrothiophene) (**207**),

containing a Ta=Ta double bond, was synthesized from refluxing $[\text{TaCl}_2(\text{tht})]_2(\mu\text{-Cl})_2(\mu\text{-tht})$ with KTp^* .³⁴⁰ The X-ray structure of a previously reported complex $\text{Tp}^*\text{TaCl}_2(\text{PhC}\equiv\text{CMe})$ was also obtained.³⁴⁰

207

4.3.3 Amide ligands

Pathways ~~of in~~ the formation of $(\text{H}_2\text{N})\text{R}_3\text{Ta}=\text{C}=\text{C}=\text{Ta}(\text{NH}_2)\text{R}_3$ by the reactions of CO with 3-coordinate compounds $\text{TaR}_3\text{-Ta}(\text{NH}_2)_3$ ($\text{R} = \text{silox, NH}_2$) were investigated via DFT studies.³⁴¹ The stable intermediate $(\text{H}_2\text{N})_3\text{Ta silox}_3\text{-Ta}-(\text{CO})_2\text{-Ta}(\text{NH}_2)_3(\text{silox})_3$ was identified. Mixed metal systems $(\text{H}_2\text{N})_3(\text{silox})_3\text{Ta}-(\text{CO})_2\text{-M}(\text{NH}_2\text{silox})_3$ ($\text{M} = \text{La, Hf, W, Re}$) were modeled.³⁴¹ Geometries of intermediates with $\text{Ta}[\text{N}(\text{Bu}^t)\text{Ph}]_3$ were also modeled.³⁴¹

Calculations of the mononuclear and dinuclear pathways of the cleavage of CO_2 by $\text{Ta}[\text{N}(\text{Bu}^t)\text{Ph}]_3$ were performed.³⁴² It was found that in the Ta-Ta system successfully bind to CO_2 in a mononuclear η^2 arrangement and would strongly activate one C–O bond to a point where spontaneous C–O bond cleavage occurs.³⁴²

4.4. Sulfide and Selenide Ligands

Reduction of $TaCl_5$ by Mg in the presence of SR_2 ($R = Me$ or Bu^n) gave

$Ta^{III}Cl_2Cl_4(SR_2)_2(\mu-Cl)_2(\mu-SR_2)$ with $Ta=Ta$ double bonds.³⁴³

Reactions of $TaCl_5$ with Mg and thioethers SMe_2 , tetrahydrothiophene C_4H_8S (thiolane), and tetrahydrothiopyran $C_5H_{10}S$ (thiane) gave $Ta(III)$ dimers $Ta_2Cl_4L_2(\mu-Cl)_2(\mu-L)$ (L = thioether) containing $Ta=Ta$ double bonds.³⁴⁴ A similar reaction involving $TaBr_5$, Mg and SMe_2 yielded analogous complex $Ta_2Br_4(SMe_2)_2(\mu-GiBr)_2(\mu-SMe_2)$.³⁴⁴

When $Ta^{III}Cl_2Cl_4(SMe_2)_2(\mu-Cl)_2(\mu-SMe_2)$ was added $MeSe(CH_2)_{n-2}SeMe$ ($n = 2, 3$), SMe_2 ligands were replaced to give $Ta^{III}Cl_4[\eta^2-MeSe(CH_2)_{n-2}SeMe]_2(\mu-Cl)_2$ retaining the $Ta=Ta$ double bond. If $Bu^nRSeCH_2CH_2CH_2SeR$ ($R = Me, Bu^n$) was used instead, the reaction afforded the tetramer $[Ta^{III}Cl_4(\mu-Cl)_2(\mu-SMe_2)]_2(\mu-Bu^nRSeCH_2CH_2CH_2SeBu^n)_2$.³⁴³

5. TANTALUM (II)

5.1. Carbon-Based Ligands

5.1.1. Isocyanide ligands

Reaction of $[Et_4N][Ta(CO)_6]$, CNDipp (Dipp = 2,6- $Pr_2C_6H_3$), and $AgBF_4$ in *thf* afforded the salt $[Ta(CNDipp)_7][BF_4]$.³⁴⁵ The air-sensitive $Ta(I)(CNDipp)_6$ was synthesized via the reaction of I_2 with Ta(-I) species $[Et_4N][Ta(CO)_6]$ in the presence of 6 equiv of CNDipp in a procedure similar to that for the synthesis of its analog $Ta(I)(CNXyl)_6$.^{345, 346} $Ta(I)(CNDipp)_6$ was also the product of the reaction of the zerovalent $Ta(CNDipp)_6$ with SnI_2 . The A ditantalum complex $[Ta(CNDipp)_7]^+[Ta(CO)_5(CNDipp)]^-$ containing $Ta(I)$ and $Ta(-I)$ moieties was prepared from zerovalent $Ta(CNDipp)_6$ heated with CO as a result of a disproportionation reaction. The crystal structure of the product showed the

Commented [MDJ93]: But there are some $Ta-1$ complexes shown here too.

Commented [XZ(94R93): I've added a note in the section below on $Ta(-I)$ about this point.

well-defined ions of $[\text{Ta}(\text{CNDipp})_7]^+$ and $[\text{Ta}(\text{CO})_5(\text{CNDipp})]^-$ in the ~~crystal~~ lattice.³⁴⁵

6. TANTALUM (0)

6.1. Carbon-Based Ligands

6.1.1. Homoleptic isocyanide ligands

Zerovalent homoleptic Ta complexes are rare and more unstable than their vanadium and niobium analogs.³⁴⁵ $\text{Ta}(\text{CNDipp})_6$ was prepared wither from the reaction of $[\text{Et}_3\text{NH}][\text{BPh}_4]$ with $\text{K}[\text{Ta}(\text{CNDipp})_6]$, $[\text{Ta}(\text{CNDipp})_7][\text{BF}_4]$ with $\text{K}[\text{Ta}(\text{CNDipp})_6]$, or from the oxidation of $\text{K}[\text{Ta}(\text{CNDipp})_6]$ by MoO_3 . When in the presence of pyridine, $\text{Ta}(\text{CNDipp})_6$ experiences reversible disproportionation to $[\text{Ta}(\text{CNDipp})_6(\text{py})]^+$ and $[\text{Ta}(\text{CNDipp})_6]^-$.³⁴⁵

6.2 Nitrogen-Based Ligands

When tropylium tetrafluoroborate was added to $[\text{Na}(\text{thf})_5][\text{Ta}(\text{bpy})_3]$, neutral $\text{Ta}(\text{bpy})_3$ ($\text{bpy} = 4,4\text{-di-}t\text{-butyl-2,2-bipyridine}$) was made.³⁴⁷

7. TANTALUM (-I)

Please see Section 5.1.1 on Ta(I) complexes with isocyanide ligands about the use of Ta(-I) $[\text{Et}_4\text{N}][\text{Ta}(\text{CO})_6]$ as a starting material and the formation of $[\text{Ta}(\text{CNDipp})_7]^+[\text{Ta}(\text{CO})_5(\text{CNDipp})]^-$ as a result of a disproportionation reaction of $\text{Ta}(\text{CNDipp})_6$ under CO .³⁴⁵

7.1 Hydride Ligands

$[\text{Li}(\text{tmed})]_3[\text{TaHET}(\text{C}_2\text{H}_4)_4] \cdot 1/2 \text{ tmed}$ (tmed = N,N,N',N' -

tetramethylethylenediamine) was produced by first alkylating $\text{TaCl}_2(\text{OMe})_3$ with LiEt , filtering, and adding tmed to that solution. The crystal structure shows that the Ta-H bond was relatively long, which was attributed to the presence of lithium cations.³⁴⁸

7.2. Carbon-Based Ligands

7.2.1. Homoleptic and alkene ligands

$[\text{N}(\text{PPh}_3)_2\text{PPN}][\text{Ta}(\eta^4\text{-C}_4\text{H}_6)_3]$ [PPN $^{\pm}$ = $\text{N}(\text{PPh}_3)_2^{\pm}$] was prepared from the reaction of $[\text{Na}(\text{thf})_2][\text{Ta}(\eta^4\text{-C}_{10}\text{H}_8)_3]$ with excess 1,3-butadiene followed by the addition of $[\text{PPN}]\text{Cl}$ to the resulting solid.³⁴⁹ Analogous salts $[\text{Na}(\text{dibenzo-18-crown-6})(\text{thf})_2][\text{Ta}(\eta^4\text{-C}_4\text{H}_6)_3]$ and $[\text{Na}(18\text{-crown-6})][\text{Ta}(\eta^4\text{-C}_4\text{H}_6)_3]$ were also synthesized using a similar procedure.³⁴⁹ In thf, these salts undergo facile protonation by $[\text{Et}_3\text{NH}]\text{Cl}$ to afford $[\text{Ta}(\eta^3\text{-1-MeC}_3\text{H}_4)(\eta^4\text{-C}_4\text{H}_6)_2]$.³⁴⁹

Commented [MDJ95]: Please check

Commented [XZ(96R95)]: Correct

$[\text{PPN}]\text{Ta}(\text{C}_{10}\text{H}_8)(\text{PPN})$ was synthesized from the reaction of $[\text{Na}(\text{thf})_2][\text{Ta}(\eta^4\text{-C}_{10}\text{H}_8)_3]$ with $[\text{PPN}]\text{Cl}$, in which two phenyl groups on one PPh_3 substituent of $[\text{PPN}]^+$ are *ortho*-metallated, while the third phenyl ring is hydrogenated to provide a tantalum bound 1,3-cyclohexadiene group.³⁵⁰ Ta(I) complex $[\text{PPN}]\text{Ta}(\text{C}_{10}\text{H}_8)(\text{PPN})[\text{P}(\text{OMe})_3]$ was prepared from the treatment of $[\text{PPN}]\text{Ta}(\text{C}_{10}\text{H}_8)(\text{PPN})$ with $\text{P}(\text{OMe})_3$ in thf. Crystal structures show that these complexes are the thf adducts

$[\text{PPN}]\text{Ta}(\text{C}_{10}\text{H}_8)(\text{PPN})[\text{P}(\text{OMe})_3](\text{thf})_{0.5}$ and $[\text{PPN}]\text{Ta}(\text{C}_{10}\text{H}_8)(\text{PPN})(\text{thf})$.³⁵⁰

7.2.2. Isocyanide ligands

$[\text{Na}(2.2.2\text{-cryptand})][\text{Ta}(\text{CN-2,6-Me}_2\text{C}_6\text{H}_3)_6]$ was synthesized via the reaction of

[Na(2.2.2-cryptand)][Ta(η^4 -C₁₀H₈)₃] with 6 equiv of CN-2,6-Me₂C₆H₃.³⁴⁶ IR spectral features of the product were essentially identical to those of its potassium analog [K(2.2.2-cryptand)][Ta(CN-2,6-Me₂C₆H₃)₆].³⁵¹ [Et₄N][Ta(CO)₅(CN-2,6-Me₂C₆H₃)] was made in order to compare it to the homoleptic complex Cs[Ta(CN-2,6-Me₂C₆H₃)₆].³⁴⁶ Several Ta(CNDipp)₆⁻ (Dipp = 2,6-Pr₂C₆H₃) complexes were synthesized by Chakarwet and coworkers.³⁴⁵ A solution of TaI(CNDipp)₆ was stirred in the presence of a suspension of KC₈ to give K[Ta(CNDipp)₆].³⁴⁵ The hepta-coordinated complex (Ph₃P)AuTa(CNDipp)₆ could be prepared from K[Ta(CNDipp)₆] and Ph₃PAuCl. The complex was apparently the first gold adduct of a homoleptic metal isocyanide reported at the time.³⁴⁵ Treatment of K[Ta(CNDipp)₆] with Ph₃SnCl gave Ph₃SnTa(CNDipp)₆.³⁴⁵ When Ta(CNDipp)₆ was reacted with [K(18-crown-6)][SnPh₃], a mixture of Ph₃SnTa(CNDipp)₆ and [K(18-crown-6)][Ta(CNDipp)₆] was prepared.³⁴⁵

7.3 Nitrogen-Based Ligands

[Na(thf)₅][Ta('bpy)₃] was synthesized from TaCl₅, 'bpy (4,4'-di-tert-butyl-2,2'-bipyridine), and Na/Hg amalgam.³⁴⁷ Treatment of Cs[Ta(CN-2,6-Me₂C₆H₃)₆] with Diazald (*N*-methyl-*N*-nitroso-p-toluenesulfonamide) afforded Ta(CN-2,6-Me₂C₆H₃)₅NO.³⁴⁶

8. TANTALUM IN MIXED OXIDATION STATES

When [Ta₆Br₁₂(EtOH)₆]Br₂ was treated with Et₄NBr, followed by recrystallization in water in air, the process gave (Et₄N)[Ta₆Br₁₂(H₂O)₆]Br₄·4H₂O.³⁵² The (Ta₆Br₁₂)²⁺ cluster in [Ta₆Br₁₂(EtOH)₆]Br₂ was oxidized by O₂ in air to (Ta₆Br₁₂)³⁺ in the product.³⁵²

Oxidation of $(Ta_6Cl_{12})Cl_2 \cdot 6EtOH$ $[Ta_6Cl_{12}(EtOH)_6]Cl_2$ in n -Bu n CN solution leads to the formation of $2[(Ta_6Cl_{12})Cl_3(n\text{-}Bu\text{n}CN)_3] \cdot [(Ta_6Cl_{12})Cl_4(n\text{-}Bu\text{n}CN)_2] \cdot n\text{-}Bu\text{n}CN$ containing different charged clusters $(Ta_6Cl_{12})^{3+}$ and $(Ta_6Cl_{12})^{4+}$.³⁵³ Its structure consists of layers formed by the intergrown 1-D chains of the different cluster components.

9. ACKNOWLEDGMENTS

The authors thank the U.S. National Science Foundation (CHE-1633870 and [CHE-1900296](#) to Z-L.X.), Berry College (T.M.C.), and the University of Tennessee (Z.-L.X.) for partial support of the review.

10. REFERENCES

1. N. N. Greenwood and A. Earnshaw, *Chemistry of the Elements*, Butterworth-Heinemann, 2nd edn., 1997, pp. 976-977.
2. J. Emsley, *The Elements*, Oxford University Press, 3rd edn., 1998, pp. 200-201.
3. H. Rose, *Lond. Edinb. Dubl. Phil. Mag. (or Phil. Mag.)*, 1845, **26**, 179-181.
4. T. Waters, A. G. Wedd, M. Ziolek and I. Nowak, in *Comprehensive Coordination Chemistry II*, eds. J. McCleverty and T. J. Meyer, Elsevier, 2004, vol. 4, pp. 241-312.
5. K. Mashima, in *Comprehensive Organometallic Chemistry III*, eds. D. M. P. Mingos and R. H. Crabtree, Elsevier, 2007, vol. 5, pp. 101-200.
6. J. R. Fulton, *Annu. Rep. Prog. Chem. A. Inorg. Chem.*, 2012, **108**, 156–165.
7. M. P. Coles, *Annu. Rep. Prog. Chem. A. Inorg. Chem.*, 2008, **104**, 155-166.
8. J. R. Fulton, *Annu. Rep. Prog. Chem. A. Inorg. Chem.*, 2013, **109**, 108-118.
9. Z.-L. Xue, T. M. Cook and A. C. Lamb, *J. Organomet. Chem.*, 2017, **852**, 74-93.
10. K. F. Hirsekorn, A. S. Veige, M. P. Marshak, Y. Koldobskaya, P. T. Wolczanski, T. R. Cundari and E. B. Lobkovsky, *J. Am. Chem. Soc.*, 2005, **127**, 4809-4830.
11. S. Batke, M. Sietzen, H. Wadeohl and J. Ballmann, *Inorg. Chem.*, 2017, **56**, 5122-5134.
12. K. D. J. Parker and M. D. Fryzuk, *Organometallics*, 2014, **33**, 6122-6131.
13. K. D. J. Parker, D. Nied and M. D. Fryzuk, *Organometallics*, 2015, **34**, 3546-3558.
14. A. R. Chadeayne, P. T. Wolczanski and E. B. Lobkovsky, *Inorg. Chem.*, 2004, **43**, 3421-3432.

15. H. Kawaguchi and T. Matsuo, *J. Am. Chem. Soc.*, 2003, **125**, 14254-14255.
16. E. B. Hulley, J. B. Bonanno, P. T. Wolczanski, T. R. Cundari and E. B. Lobkovsky, *Inorg. Chem.*, 2010, **49**, 8524-8544.
17. B. M. Kriegel, R. G. Bergman and J. Arnold, *Dalton Trans.*, 2014, **43**, 10046-10056.
18. C. S. Weinert, P. E. Fanwick and I. P. Rothwell, *Organometallics*, 2005, **24**, 5759-5766.
19. J. B. Bonanno, T. P. Henry, P. T. Wolczanski, A. W. Pierpont and T. R. Cundari, *Inorg. Chem.*, 2007, **46**, 1222-1232.
20. L. Wang, S. C. Hunter, Z. Song, C. A. Steren, T. Chen, Z. Wei, H. Cai and Z.-L. Xue, *Chem. Eur. J.*, 2014, **20**, 6033-6039.
21. Y. Zhu, L. C. Nong, L. C. Zhao, E. Widjaja, C. S. Hwei, Wang, J. Tan, M. V. Meurs, N. S. Hosmane and J. A. Maguire, *Organometallics*, 2009, **28**, 60-64.
22. L. Xiang, K. Mashima and Z. Xie, *Chem. Commun.*, 2013, **49**, 9039-9041.
23. L. Xiang and Z. Xie, *Chem. Commun.*, 2014, **50**, 8249-8252.
24. L. Xiang and Z. Xie, *Organometallics*, 2016, **35**, 233-241.
25. L. C. H. Gerber, L. A. Watson, S. Parkin, W. Weng, B. M. Foxman and O. V. Ozerov, *Organometallics*, 2007, **26**, 4866-4868.
26. A. Zydor, R. J. Burford and M. D. Fryzuk, *Organometallics*, 2017, **36**, 3564-3572.
27. M. Schormann, S. Garratt and M. Bochmann, *Organometallics*, 2005, **24**, 1718-1724.
28. K. Searles, B. Pinter, C.-H. Chen and D. J. Mindiola, *Organometallics*, 2014, **33**, 4192-4199.

29. J. Abbott, K. C., L. Li and Z.-L. Xue, *J. Am. Chem. Soc.*, 2009, **131**, 8246-8251.

30. K. F. Hirsekorn, E. B. Hulley, P. T. Wolczanski and T. R. Cundari, *J. Am. Chem. Soc.*, 2008, **130**, 1183-1196.

31. J. Bonanno, B., A. S. Veige, P. T. Wolczanski and E. B. Lobkovsky, *Inorg. Chim. Acta*, 2003, **345**, 173-184.

32. L. P. H. Lopez, R. R. Schrock and P. J. Bonitatebus, *Inorg. Chim. Acta*, 2006, **359**, 4730-4740.

33. R. H. Crabtree, *The Organometallic Chemistry of the Transition Metals*, 7 edn., 2019, pp. 121-123.

34. T. Oshiki, K. Tanaka, J. Yamada, T. Ishiyama, Y. Kataoka, K. Mashima, K. Tani and K. Takai, *Organometallics*, 2003, **22**, 464-472.

35. T. Oshiki, A. Yamada, K. Kawai, H. Arimitsu and K. Takai, *Organometallics*, 2007, **26**, 173-182.

36. R. Arteaga-Muller, H. Tsurugi, T. Saito, M. Yanagawa, S. Oda and K. Mashima, *J. Am. Chem. Soc.*, 2009, **131**, 5370-5371.

37. K. D. J. Parker and M. D. Fryzuk, *Organometallics*, 2015, **34**, 2037-2047.

38. P. Laskar, K. Yamamoto, A. Srinivas, A. Mifleur, H. Nagae, H. Tsurugi and K. Mashima, *Dalton Trans.*, 2017, **46**, 13043-13054.

39. M. P. Shaver, S. A. Johnson and M. D. Fryzuk, *Can. J. Chem.*, 2005, **83**, 652-660.

40. M. Bortoluzzi, E. Ferretti, F. Marchetti, G. Pampaloni and S. Zacchini, *Dalton Trans.*, 2016, **45**, 6939-6948.

41. Z. Wei, W. Zhang, G. Luo, F. Xu, Y. Mei and H. Cai, *New J. Chem.*, 2016, **40**, 6270-6275.

42. P. A. Petrov, T. S. Sukhikh and M. N. Sokolov, *Dalton Trans.*, 2017, **46**, 4902-4906.

43. R. Srivastava, R. Moneuse, J. Petit, P.-A. Pavard, V. Dardun, M. Rivat, P. Schiltz, M. Solari, E. Jeanneau, L. Veyre, C. Thieuleux, E. A. Quadrelli and C. Camp, *Chem. Eur. J.*, 2018, **24**, 4361-4370.

44. T. R. Helgert, T. K. Hollis, A. G. Oliver, H. U. Valle, Y. Wu and C. E. Webster, *Organometallics*, 2014, **33**, 952-958.

45. T. R. Helgert, X. Zhang, H. K. Box, J. A. Denny, H. U. Valle, A. G. Oliver, G. Akurathi, C. E. Webster and T. K. Hollis, *Organometallics*, 2016, **35**, 3452-3460.

46. T. R. Helgert, C. E. Webster, T. K. Hollis, H. U. Valle, P. Hillesheim and A. G. Oliver, *Inorg. Chim. Acta*, 2018, **469**, 164-172.

47. A. Sattler and G. Parkin, *J. Am. Chem. Soc.*, 2012, **134**, 2355-2366.

48. H. Qiu, H. Cai, J. B. Woods, Z. Wu, T. Chen, X. Yu and Z.-L. Xue, *Organometallics*, 2005, **24**, 4190-4197.

49. H. Qiu, S. Chen and Z.-L. Xue, *Inorg. Chem.*, 2007, **46**, 6178-6181.

50. S. A. Baer, M. Lozinšek and F. Kraus, *Z. Anorg. Allg. Chem.*, 2013, **639**, 2586-2588.

51. R. Haiges, P. Deokar and K. O. Christe, *Z. Anorg. Allg. Chem.*, 2014, **640**, 1568-1575.

52. H. Tsurugi, T. Saito, H. Tanahashi, J. Arnold and K. Mashima, *J. Am. Chem. Soc.*, 2011, **133**, 18673-18683.

53. N. Bartalucci, M. Bortoluzzi, G. Pampaloni, C. Pinzino, S. Zacchini and F. Marchetti, *Dalton Trans.*, 2018, **47**, 3346-3355.

54. I. A. Tonks and J. E. Bercaw, *Inorg. Chem.*, 2010, **49**, 4648-4656.

55. M. Galajov, C. García and M. Gómez, *Dalton Trans.*, 2011, **40**, 413-420.

56. A. Antiñolo, I. Dorado, M. Fajardo, A. Garcés, M. M. Kubicki, C. López-Mardomingo and A. Otero, *Dalton Trans.*, 2003, 910-917.

57. H. Cai, X. Yu, T. Chen, X.-T. Chen, X.-Z. You and Z. Xue, *Can. J. Chem.*, 2003, **81**, 1398-1405.

58. S.-J. Chen, H. Cai and Z.-L. Xue, *Organometallics*, 2009, **28**, 167-171.

59. S. B. Herzon and J. F. Hartwig, *J. Am. Chem. Soc.*, 2007, **129**, 6690-6691.

60. S. B. Herzon and J. F. Hartwig, *J. Am. Chem. Soc.*, 2008, **130**, 14940-14941.

61. D. A. Evers, A. H. Bluestein, B. M. Foxman and C. M. Thomas, *Dalton Trans.*, 2012, **41**, 8111-8115.

62. A. Merkulov, S. Schmidt, K. Harms and J. Sundermeyer, *Z. Anorg. Allg. Chem.*, 2005, **631**, 1810-1812.

63. R. Haiges, J. A. Boatz, M. Yousufuddin and K. O. Christe, *Angew. Chem. Int. Ed.*, 2007, **46**, 2869-2874.

64. R. Haiges, P. Deokar and K. O. Christe, *Angew. Chem. Int. Ed.*, 2014, **53**, 5431-5434.

65. S.-H. Huang, V. N. Nesterov and M. Richmond, G. , *Dalton Trans.*, 2014, **43**, 3453-3461.

66. J.-S. Lehn, M., S. Javed and D. M. Hoffman, *Inorg. Chem.*, 2007, **46**, 993-1000.

67. S.-H. Huang, T. Pilvi, X. Wang, M. Leskelä and M. G. Richmond, *Polyhedron*, 2010, **29**, 1754-1759.

68. E. Sebe, M. J. Heeg and C. H. Winter, *Polyhedron*, 2006, **25**, 2109-2118.

69. I. A. Tonks, A. C. Durrell, H. B. Gray and J. E. Bercaw, *J. Am. Chem. Soc.*, 2012, **134**, 7301-7304.

70. A. Baunemann, Y. Kim, M. Winter and R. A. Fischer, *Dalton Trans.*, 2005, 121-128.

71. D. Gaess, K. Harms, M. Pokoj, W. Stoltz and J. Sundermeyer, *Inorg. Chem.*, 2007, **46**, 6688-6701.

72. S.-J. Chen, G. P. A. Yap and Z. Xue, *Sci. China B Chem.*, 2009, **52**, 1583-1589.

73. K. Michiue, T. Oshiki, K. Takai, M. Mitani and T. Fujita, *Organometallics*, 2009, **28**, 6450-6457.

74. D. Elorriaga, M. Galajov, C. García, M. Gómez and P. Gómez-Sal, *Organometallics*, 2012, **31**, 5089-5100.

75. P. L. Damon, C. J. Liss, R. A. Lewis, S. Morochnik, D. E. Szpunar, J. Telser and T. W. Hayton, *Inorg. Chem.*, 2015, **54**, 10081-10095.

76. N. C. Tomson, J. Arnold and R. G. Bergman, *Dalton Trans.*, 2011, **40**, 7718-7729.

77. M. Nechayev, B. M. Kriegel, T. L. Gianetti, R. G. Bergman and J. Arnold, *Inorg. Chim. Acta*, 2014, **422**, 114-119.

78. P. A. Petrov, A. V. Rogachev, N. B. Kompan'kov, P. A. Abramov and M. N. Sokolov, *Russ. J. Coord. Chem.*, 2017, **43**, 635-637.

79. T. H. Perera, R. L. Lord, M. J. Heeg, H. B. Schlegel and C. H. Winter, *Organometallics*, 2012, **31**, 5971-5974.

80. C. D. Carmichael, M. P. Shaver and M. D. Fryzuk, *Can. J. Chem.*, 2006, **84**, 1667-1678.

81. N. Lavoie, S. I. Gorelsky, Z. Liu, T. J. Burchell, G. P. A. Yap and D. S. Richezon, *Inorg. Chem.*, 2010, **49**, 5231-5240.

82. T. Chen, C. Xu, T. H. Baum, G. T. Stauff, J. F. Roeder, A. G. DiPasquale and A. L. Rheingold, *Chem. Mater.*, 2010, **22**, 27-35.

83. V. Tabernero, T. Cuenca, M. E. G. Mosquera and C. R. de Arellano, *Polyhedron*, 2009, **28**, 2545-2554.

84. M. E. G. Skinner, T. Toupance, D. A. Cowhig, B. R. Tyrrell and P. Mountford, *Organometallics*, 2005, **24**, 5586-5603.

85. M. K. Wiedmann, M. Jane Heeg and C. H. Winter, *Inorg. Chem.*, 2009, **48**, 5382-5391.

86. L. L. Anderson, J. A. R. Schmidt, J. Arnold and R. G. Bergman, *Organometallics*, 2006, **25**, 3394-3406.

87. A. Baunemann, D. Rische, A. Milanov, Y. Kim, M. Winter, C. Gemel and R. A. Fischer, *Dalton Trans.*, 2005, 3051-3055.

88. A. Baunemann, M. Winter, K. Csapek, C. Gemel and R. A. Fischer, *Eur. J. Inorg. Chem.*, 2006, 4665-4672.

89. T.-G. Ong, G. P. A. Yap and D. S. Richezon, *Chem. Commun.*, 2003, 2612-2613.

90. X.-H. Zhang, S.-J. Chen, H. Cai, H.-J. Im, T. Chen, X. Yu, X. Chen, Z. Lin, Y.-D. Wu and Z.-L. Xue, *Organometallics*, 2008, **27**, 1338-1341.

91. B. Sharma, S.-J. Chen, J. K. C. Abbott, X.-T. Chen and Z.-L. Xue, *Inorg. Chem.*, 2012, **51**, 25-27.

92. M. G. Richmond and Z.-L. Xue, *Dalton Trans.*, 2014, **43**, 12390-12395.

93. C.-C. Zhou, J.-H. Huang, M.-H. Wang, T.-Y. Lee, G.-H. Lee and S.-M. Peng, *Inorg. Chem. Acta*, 2003, **342**, 59-63.

94. S. Mohebbi and A. Assoud, *Polyhedron*, 2008, **27**, 2127-2130.

95. A. Noor, W. Kretschmer and R. Kempe, *Eur. J. Inorg. Chem.*, 2006, 2683-2689.

96. M. M. Rahman, M. D. Smith and D. V. Peryshkov, *Inorg. Chem.*, 2016, **55**, 5101-5103.

97. M. M. Rahman, M. D. Smith, J. A. Amaya, T. M. Makris and D. V. Peryshkov, *Inorg. Chem.*, 2017, **56**, 11798-11803.

98. J. E. Bleau, C. J. Carmalt, S. A. O'Neill, I. P. Parkin, A. J. P. White and D. J. Williams, *Polyhedron*, 2005, **24**, 463-468.

99. M. P. Shaver and M. D. Fryzuk, *J. Am. Chem. Soc.*, 2005, **127**, 500-501.

100. J. L. Krinsky, L. L. Anderson, J. Arnold and R. G. Bergman, *Inorg. Chem.*, 2008, **47**, 1053-1066.

101. J. L. Krinsky, L. L. Anderson, J. Arnold and R. G. Bergman, *Angew. Chem. Int. Ed.*, 2007, **46**, 369-372.

102. S.-H. Huang, V. N. Nesterov and M. G. Richmond, *J. Chem. Crystallogr.*, 2012, **42**, 916-922.

103. X. Ren, C. Xiao and H. Wang, *Dalton Trans.*, 2011, **40**, 3576-3583.

104. B. D. Ward, G. Orde, E. Clot, A. R. Cowley, L. H. Gade and P. Mountford, *Organometallics*, 2005, **24**, 2368-2385.

105. B. D. Ward, G. Orde, E. Clot, A. R. Cowley, L. H. Gade and P. Mountford, *Organometallics*, 2004, **23**, 4444-4461.

106. H. Han, M. Elsmaili and S. A. Johnson, *Inorg. Chem.*, 2006, **45**, 7435-7445.

107. J. M. Tanski and G. Parkin, *Inorg. Chem.*, 2003, **42**, 264-266.

108. A. I. Nguyen, K. J. Blackmore, S. M. Carter, R. A. Zarkesh and A. F. Heyduk, *J. Am. Chem. Soc.*, 2009, **131**, 3307-3316.

109. R. F. Munha, R. A. Zarkesh and A. F. Heyduk, *Inorg. Chem.*, 2013, **52**, 11244-11255.

110. H. Dehghani and M. Shaterian, *Bull. Korean Chem. Soc.*, 2009, **30**, 2792-2794.

111. V. Chauke and T. Nyokong, *Inorg. Chim. Acta*, 2010, **363**, 3662-3669.

112. J. A. Ziegler, H. L. Buckley and J. Arnold, *Dalton Trans.*, 2017, **46**, 780-785.

113. T. Kurogi, Y. Ishida, T. Hatanaka and H. Kawaguchi, *Chem. Commun.*, 2012, **48**, 6809-6811.

114. Y. Tomczak, K. Knapas, M. Sundberg, M. Leskelä and M. Ritala, *Chem. Mater.*, 2012, **24**, 1555-1561.

115. Y. S. Won, S. S. Park, Y. S. Kim, T. J. Anderson and L. McElwee-White, *J. Cryst. Growth*, 2009, **311**, 3587-3591.

116. S. Soman, A. Mukhopadhyay and C. Musgrave, *J. Phys. Chem. C*, 2011, **115**, 11507-11513.

117. E. S. Peters, C. J. Carmalt, I. P. Parkin and D. A. Tocher, *Eur. J. Inorg. Chem.*, 2005, 4179-4185.

118. M.-K. Song and S. W. Rhee, *Chem. Vapor Depos.*, 2008, **14**, 334-338.

119. A. Sattler, S. Ruccolo and G. Parkin, *Dalton Trans.*, 2011, **40**, 7777-7782.

120. W. Levason, M. E. Light, G. Reid and W. Zhang, *Dalton Trans.*, 2014, **43**, 9557-9566.

121. E. B. Hulley, P. T. Wolczanski and E. B. Lobkovsky, *Chem. Commun.*, 2009, 6412-6414.

122. D. Hoppe and A. Pfitzner, *Z Naturforsch B*, 2009, **64**, 58-62.

123. D. Hoppe, D. Schemmel, M. Schütz and A. Pfitzner, *Chem. Eur. J.*, 2009, **15**, 7129-7138.

124. C. Camp, L. Maron, R. G. Bergman and J. Arnold, *J. Am. Chem. Soc.*, 2014, **136**, 17652-17661.

125. F. Marchetti, G. Pampaloni and S. Zacchini, *Eur. J. Inorg. Chem.*, 2010, 767-774.

126. F. Marchetti, G. Pampaloni and S. Zacchini, *Inorg. Chem.*, 2008, **47**, 365-372.

127. R. Bini, C. Chiappe, F. Marchetti, G. Pampaloni and S. Zacchini, *Inorg. Chem.*, 2010, **49**, 339-351.

128. M. Bortoluzzi, N. Guazzelli, F. Marchetti, G. Pampaloni and S. Zacchini, *Dalton Trans.*, 2012, **41**, 12898-12906.

129. F. Marchetti, G. Pampaloni and S. Zacchini, *Dalton Trans.*, 2009, 6759-6772.

130. F. Marchetti, G. Pampaloni and S. Zacchini, *Dalton Trans.*, 2009, 8096-8106.

131. F. Marchetti, G. Pampaloni and S. Zacchini, *Polyhedron*, 2009, **28**, 1235-1240.

132. U. P. Preiss, G. Steinfeld, H. Scherer, A. M. T. Erle, B. Benkmil, A. Kraft and I. Krossing, *Z. Anorg. Allg. Chem.*, 2013, **639**, 714-721.

133. S.-J. Chen and Z.-L. Xue, *Organometallics*, 2010, **29**, 5579-5584.

134. S.-J. Chen, X.-H. Zhang, X. Yu, H. Qiu, G. P. A. Yap, I. A. Guzei, Z. Lin, Y.-D. Wu and Z.-L. Xue, *J. Am. Chem. Soc.*, 2007, **129**, 14408-14421.

135. H. Qiu, S.-J. Chen, C.-S. Wang, Y.-D. Wu, I. A. Guzei, X.-T. Chen and Z.-L. Xue, *Inorg. Chem.*, 2009, **48**, 3073-3079.

136. S. Chen, X. Zhang, Z. Lin, Y. Wu and Z. Xue, *Sci. China B Chem.*, 2009, **52**, 1723.

137. S. C. Hunter, S.-J. Chen, C. A. Steren, M. G. Richmond and Z.-L. Xue, *Organometallics*, 2015, **34**, 5687-5696.

138. R. Arteaga-Müller, J. Sánchez-Nieves, J. Ramos, P. Royo and M. E. G. Mosquera, *Organometallics*, 2008, **27**, 1417-1426.

139. G. G. Nunes and V. G. Kessler, *Inorg. Chem. Commun.*, 2006, **9**, 667-670.

140. S. Mishra, E. Jeanneau, M.-H. Berger, J.-F. Hochepied and S. Daniele, *Inorg. Chem.*, 2010, **49**, 11184-11189.

141. M. Donat, G. A. Seisenbaeva and V. G. Kessler, *J. Sol-Gel Sci. Technol.*, 2008, **48**, 61-65.

142. A. B. Chaplin, J. A. Harrison, A. J. Nielson, C. Shen and J. M. Waters, *Dalton Trans.*, 2004, 2643-2648.

143. Y. Al-Khafaji, X. Sun, T. J. Prior, M. R. J. Elsegood and C. Redshaw, *Dalton Trans.*, 2015, **44**, 12349-12356.

144. Y. F. Al-Khafaji, M. R. Al-Lami, A. S. Abbas, A. Al-Ameri and A. F. A. Mousa, *Asian J. Chem.*, 2018, **30**, 460-462.

145. R. Garg, C. Hegemann and S. Mathur, *Eur. J. Inorg. Chem.*, 2017, 3383-3389.

146. R. S. Ghadwal, R. C. Mehrotra and A. Singh, *Transit. Metal Chem.*, 2005, **30**, 836-844.

147. A. C. Jones, N. L. Tobin, P. A. Marshall, R. J. Potter, P. R. Chalker, J. F. Bickley, H. O. Davies, L. M. Smith and G. W. Critchlow, *J. Mater. Chem.*, 2004, **14**, 887-894.

148. S. Mathur and A. Singh, *J. Indian Chem. Soc.*, 2011, **88**, 1673-1678.

149. J. Ballmann, F. Pick, L. Castro, M. D. Fryzuk and L. Maron, *Inorg. Chem.*, 2013, **52**, 1685-1687.

150. A. Heyduk, F., R. A. Zarkesh and A. I. Nguyen, *Inorg. Chem.*, 2011, **50**, 9849-9863.

151. D. A. Ruddy and T. D. Tilley, *Chem. Commun.*, 2007, 3350-3352.

152. D. A. Ruddy and T. D. Tilley, *J. Am. Chem. Soc.*, 2008, **130**, 11088-11096.

153. L. Androš, D. Matković-Čalogović and P. Planinić, *CrystEngComm*, 2013, **15**, 533-543.

154. L. Androš, M. Jurić, J. Popović and P. Planinić, *RSC Adv.*, 2014, **4**, 37051-37060.

155. H. Soo, P. L. Diaconescu and C. C. Cummins, *Organometallics*, 2004, **23**, 498-503.

156. K. Yamamoto, H. Tsurugi and K. Mashima, *Organometallics*, 2016, **35**, 1573-1581.

157. V. Krishnan, S. Gross, S. Müller, L. Armelao, E. Tondello and H. Bertagnolli, *J. Phys. Chem. B*, 2007, **111**, 7501-7518.

158. T. J. Boyle, J. M. Sears, D. Perales, R. E. Cramer, P. Lu, R. O. Chan and B. A. Hernandez-Sanchez, *Inorg. Chem.*, 2018, **57**, 8806-8820.

159. P. Guillo, M. I. Lipschutz, M. E. Fasulo and T. D. Tilley, *ACS Catal.*, 2017, **7**, 2303-2312.

160. S. Ehle, V. Lorenz, P. Liebing, L. Hilfert and F. T. Edelmann, *Inorg. Chem. Commun.*, 2016, **74**, 82-85.

161. R. N. Kapoor, F. Cervantes-Lee, C. F. Campana, C. Haltiwanger, K. Abney and K. H. Pannell, *Inorg. Chem.*, 2006, **45**, 2203-2208.

162. B. Hamzaoui, J. D. A. Pelletier, E. Abou-Hamad, Y. Chen, M. El Eter, E. Chermak, L. Cavallo and J.-M. Basset, *Chem. Eur. J.*, 2016, **22**, 3000-3008.

163. A. J. Ru Son, S. W. Schweiger, M. G. Thorn, J. E. Moses, P. E. Fanwick and I. P. Rothwell, *Dalton Trans.*, 2003, 1620-1627.

164. J. W. Anthis, I. Filippov and D. E. Wigley, *Inorg. Chem.*, 2004, **43**, 716-724.

165. T. Xie, A. Friedrich, S. Lochbrunner and M. Köckerling, *J. Clust. Sci.*, 2015, **26**, 223-232.

166. R. S. Morris and G. G. Lavoie, *Inorg. Chim. Acta*, 2015, **435**, 1-6.

167. S. K. Roymuhury, D. Chakraborty and V. Ramkumar, *RSC Adv.*, 2016, **6**, 48816-48826.

168. F. Marchetti, G. Pampaloni and S. Zacchini, *Dalton Trans.*, 2007, 4343-4351.

169. G. Bresciani, T. Funaioli, S. Zacchini, M. Hayatifar, F. Marchetti and G. Pampaloni, *Inorg. Chim. Acta*, 2018, **482**, 498-502.

170. F. Marchetti, G. Pampaloni and S. Zacchini, *Eur. J. Inorg. Chem.*, 2008, 453-462.

171. C. Jones and T. C. Williams, *J. Organomet. Chem.*, 2004, **689**, 1648-1656.

172. R. Bini, F. Marchetti, G. Pampaloni and S. Zacchini, *Polyhedron*, 2011, **30**, 1412-1419.

173. F. Marchetti, G. Pampaloni and S. Zacchini, *Dalton Trans.*, 2008, 7026-7035.

174. R. Koen, A. Roodt and H. G. Visser, *J. South Afr. Inst. Min. Metall.*, 2016, **116**, 895-899.

175. D. Camporese, M. Riondato, A. Zampieri, L. Marchiò, A. Tapparo and U. Mazzi, *Dalton Trans.*, 2006, 4343-4347.

176. J. H. Thurston and K. H. Whitmire, *Inorg. Chem.*, 2003, **42**, 2014-2023.

177. V. Stavila, J. H. Thurston and K. H. Whitmire, *Inorg. Chem.*, 2009, **48**, 6945-6951.

178. T. J. Boyle, L. J. Tribby, T. M. Alam, S. D. Bunge and G. P. Holland, *Polyhedron*, 2005, **24**, 1143-1152.

179. T. J. Boyle and L. A. M. Ottley, *Inorg. Chim. Acta*, 2010, **364**, 69-80.

180. T. Agapie, M. W. Day and J. E. Bercaw, *Organometallics*, 2008, **27**, 6123-6142.

181. E. G. Il'in and V. V. Kovalev, *Russ. J. Inorg. Chem.*, 2014, **59**, 111-114.

182. F. Marchetti, G. Pampaloni and S. Zacchini, *Polyhedron*, 2008, **27**, 1969-1976.

183. B. Perić, N. Brničević, M. Jurić, P. Planinić and D. Matković-Čalogović, *Struct. Chem.*, 2009, **20**, 933-941.

184. A. P. Ramos, D. C. O. dos Reis, R. R. Pereira, L. G. Dias and R. R. Gonçalves, *Dalton Trans.*, 2015, **44**, 3829-3836.

185. H. O. Davies, A. C. Jones, M. A. Motavalli, E. A. McKinnell and P. O'Brien, *Inorg. Chem. Comm.*, 2005, **8**, 585-587.

186. V. G. Kessler, S. Gohil and S. Parola, *Dalton Trans.*, 2003, 544-550.

187. M. Aresta, A. Dibenedetto, P. Stufano, B. M. Aresta, S. Maggi, I. Pápai, T. A. Rokob and B. Gabriele, *Dalton Trans.*, 2010, **39**, 6985-6992.

188. S.-J. Chen, J. Li, B. A. Dougan, C. A. Steren, X. Wang, X.-T. Chen, Z. Lin and Z.-L. Xue, *Chem. Commun.*, 2011, **47**, 8685-8687.

189. G. A. Seisenbaeva, V. G. Kessler, R. Pazik and W. Strek, *Dalton Trans.*, 2008, 3412-3421.

190. S.-Q. Shi, Y.-G. Chen, J. Gong, Z.-M. Dai and L.-Y. Qu, *Transit. Metal Chem.*, 2005, **30**, 136-140.

191. L. Androš Dubraja, D. Matković-Čalogović and P. Planinić, *CrystEngComm*, 2015, **17**, 2021-2029.

192. L. Androš Dubraja, M. Jurić, W. Lafargue-Dit-Hauret, D. Pajić, A. Zorko, A. Ozarowski and X. Rocquefelte, *New J. Chem.*, 2018, **42**, 10912-10921.

193. L. Yu, Z.-G. Ren, L.-W. Qian, Q.-Y. Zhu, G.-Q. Bian and J. Dai, *Z. Anorg. Allg. Chem.*, 2015, **641**, 704-709.

194. F. Marchetti, G. Pampaloni and S. Zacchini, *Polyhedron*, 2016, **115**, 99-104.

195. S.-J. Chen, J. K. C. Abbott, C. A. Steren and Z.-L. Xue, *J. Clust. Sci.*, 2010, **21**, 325-337.

196. T. Funaioli, F. Marchetti, G. Pampaloni and S. Zacchini, *Dalton Trans.*, 2013, **42**, 14168-14177.

197. J. Su, S. Hu, W. Huang, M. Zhou and J. Li, *Sci. China Chem.*, 2016, **59**, 442-451.

198. O. A. Nikanova, V. G. Kessler and G. A. Seisenbaeva, *J. Solid State Chem.*, 2008, **181**, 3294-3302.

199. O. A. Nikanova, V. G. Kessler, D. V. Drobot, P. A. Shcheglov and G. A. Seisenbaeva, *Polyhedron*, 2007, **26**, 862-866.

200. O. A. Nikonova, G. A. Seisenbaeva, V. G. Kessler, P. A. Shcheglov and D. V. Drobot, *Russ. J. Inorg. Chem.*, 2007, **52**, 1687-1693.

201. S. N. Britvin, O. I. Siidra, A. Lotnyk, L. Kienle, S. V. Krivovichev and W. Depmeier, *Inorg. Chem. Commun.*, 2012, **25**, 18-20.

202. D. Zhang, Z. Liang, S. Liu, L. Li, P. Ma, S. Zhao, H. Wang, J. Wang and J. Niu, *Inorg. Chem.*, 2017, **56**, 5537-5543.

203. P. I. Molina, D. J. Sures, P. Miró, L. N. Zakharov and M. Nyman, *Dalton Trans.*, 2015, **44**, 15813-15822.

204. P. Huang, H.-Y. Wu, M. Huang, M. Du, C. Qin, X.-L. Wang and Z.-M. Su, *Dalton Trans.*, 2017, **46**, 10177-10180.

205. P. Huang, X.-J. Wang, J.-J. Qi, X.-L. Wang, M. Huang, H.-Y. Wu, C. Qin and Z.-M. Su, *J. Mater. Chem. A*, 2017, **5**, 22970-22974.

206. F. Bannani, H. Driss, M. Debbabi and R. Thouvenot, *J. Soc. Chim. Tunis.*, 2011, **13**, 85-91.

207. L. B. Fullmer, P. I. Molina, M. R. Antonio and M. Nyman, *Dalton Trans.*, 2014, **43**, 15295-15299.

208. L. B. Fullmer, C. E. Malmberg, D. B. Fast, L. A. Wills, P. H.-Y. Cheong, M. R. Dolgos and M. Nyman, *Dalton Trans.*, 2017, **46**, 8486-8493.

209. T. M. Anderson, M. A. Rodriguez, F. Bonhomme, J. N. Bixler, T. M. Alam and M. Nyman, *Dalton Trans.*, 2007, 4517-4522.

210. E. Balogh, T. M. Anderson, J. R. Rustad, M. Nyman and W. H. Casey, *Inorg. Chem.*, 2007, **46**, 7032-7039.

211. R. H. Mansergh, L. B. Fullmer, D.-H. Park, M. Nyman and D. A. Keszler, *Chem. Mater.*, 2016, **28**, 1553-1558.

212. P. A. Abramov, M. N. Sokolov, S. Floquet, M. Haouas, F. Taulelle, E. Cadot, E. V. Peresypkina, A. V. Virovets, C. Vicent, N. B. Kompankov, A. A. Zhdanov, O. V. Shubaeva and V. P. Fedin, *Inorg. Chem.*, 2014, **53**, 12791-12798.

213. P. A. Abramov, C. Vicent, N. B. Kompankov, A. L. Gushchin and M. N. Sokolov, *Eur. J. Inorg. Chem.*, 2016, 154-160.

214. P. A. Abramov, N. B. Kompankov and M. N. Sokolov, *Russ. J. Coord. Chem.*, 2016, **42**, 311-315.

215. P. A. Abramov, M. N. Sokolov, A. V. Virovets, S. Floquet, M. Haouas, F. Taulelle, E. Cadot, C. Vicent and V. P. Fedin, *Dalton Trans.*, 2015, **44**, 2234-2239.

216. Q. Peng, S. Li, R. Wang, S. Liu, L. Xie, J. Zhai, J. Zhang, Q. Zhao and X. Chen, *Dalton Trans.*, 2017, **46**, 4157-4160.

217. J.-H. Son and W. H. Casey, *Chem. Eur. J.*, 2016, **22**, 14155-14157.

218. S. Li, Y. Zhou, Q. Peng, R. Wang, X. Feng, S. Liu, X. Ma, N. Ma, J. Zhang, Y. Chang, Z. Zheng and X. Chen, *Inorg. Chem.*, 2018, **57**, 6624-6631.

219. S. Hayashi, N. Sasaki, S. Yamazoe and T. Tsukuda, *J. Phys. Chem. C*, 2018, **122**, 29398-29404.

220. D. Bayot, B. Tinant and M. Devillers, *Inorg. Chem.*, 2004, **43**, 5999-6005.

221. D. Bayot, M. Degand and M. Devillers, *J. Solid State Chem.*, 2005, **178**, 2635-2642.

222. D. Bayot, B. Tinant and M. Devillers, *Inorg. Chem.*, 2005, **44**, 1554-1562.

223. G. Haxhillazi and H. Haeuseler, *J. Solid State Chem.*, 2004, **177**, 3045-3051.

224. D. Li, S. Simotwo, M. Nyman and T. Liu, *Chem. Eur. J.*, 2014, **20**, 1683-1690.

225. B. Zhu, Z. L. Lang, L. K. Yan, M. R. S. A. Janjua and Z. M. Su, *Int. J. Quantum Chem.*, 2014, **114**, 458-462.

226. E. G. Il'in, N. A. Ovchinnikova and M. E. Ignatov, *Russ. J. Inorg. Chem.*, 2013, **58**, 788-792.

227. E. G. Il'in, V. V. Kovalev and A. Schmidpeter, *Zh. Neorg. Khim. (Russ. J. Inorg. Chem.)*, 2003, **48**, 770-775 in Russian.

228. T. M. Cook, A. C. Lamb and Z.-L. Xue, *Chin. J. Inorg. Chem.*, 2017, **33**, 1947-1958.

229. R. L. Brutchez, C. G. Lugmair, L. O. Schebaum and T. D. Tilley, *J. Catal.*, 2005, **229**, 72-81.

230. T. Athar, J. O. Kwon and S. I. Seok, *Appl. Organomet. Chem.*, 2005, **19**, 964-970.

231. L. Appel, R. Fiz, W. Tyrra, I. Pantenburg and S. Mathur, *Cryst. Growth Des.*, 2015, **15**, 1141-1149.

232. S. J. Song, T. Park, K. J. Yoon, J. H. Yoon, D. E. Kwon, W. Noh, C. Lansalot-Matras, S. Gatineau, H.-K. Lee, S. Gautam, D.-Y. Cho, S. W. Lee and C. S. Hwang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 537-547.

233. E. L. Belokoneva, S. Y. Stefanovich and O. V. Dimitrova, *J. Solid State Chem.*, 2012, **195**, 79-85.

234. S. N. Mikhnevich, P. A. Shcheglov and D. V. Drobot, *Inorg. Mater.*, 2007, **43**, 392-397.

235. J. Ballmann, A. Yeo, B. A. MacKay, S. v. Rijt, B. O. Patrick and M. D. Fryzuk, *Chem. Commun.*, 2010, **46**, 8794-8796.

236. B. Bechlars, I. Issac, R. Feuerhake, R. Clérac, O. Fuhr and D. Fenske, *Eur. J. Inorg. Chem.*, 2008, 1632-1644.

237. R. Clérac, D. Fenske, I. Issac and A. Rothenberger, *J. Clust. Sci.*, 2004, **15**, 189-198.

238. R. Pätow, I. Isaac and D. Fenske, *Z. Anorg. Allg. Chem.*, 2003, **629**, 1437-1440.

239. D. Fenske, I. Issac and A. Rothenberger, *J. Clust. Sci.*, 2007, **18**, 19-26.

240. M. H. Stewart, M. J. A. Johnson and J. W. Kampf, *Organometallics*, 2007, **26**, 5102-5110.

241. A. Ariaftard, N. J. Brookes, R. Stranger and B. F. Yates, *J. Am. Chem. Soc.*, 2008, **130**, 11928-11938.

242. S. L. Benjamin, Y.-P. Chang, C. Gurnani, A. L. Hector, M. Huggon, W. Levason and G. Reid, *Dalton Trans.*, 2014, **43**, 16640-16648.

243. S. L. Benjamin, A. Hyslop, W. Levason and G. Reid, *J. Fluorine Chem.*, 2012, **137**, 77-84.

244. M. Gómez, C. Hernández-Prieto, A. Martín, M. Mena and C. Santamaría, *Inorg. Chem.*, 2016, **55**, 3815-3821.

245. R. N. Pandey, S. K. Ojha and R. N. Sharma, *Int. J. Chem. Sci.*, 2008, **6**, 2073-2081.

246. P. A. Petrov, A. V. Rogachev, N. B. Kompan'kov, A. L. Gushchin and M. N. Sokolov, *Russ. J. Coord. Chem.*, 2017, **43**, 652-656.

247. A. Hill, F., A. D. Rae and M. K. Smith, *Inorg. Chem.*, 2005, **44**, 7316-7318.

248. A. Hill, F. and M. K. Smith, *Organometallics*, 2007, **26**, 4688-4691.

249. X. Gao, N. Li and R. B. King, *Inorg. Chem.*, 2014, **53**, 12635-12642.

250. C. Peters, U. Fischbeck, F. Tabellion, M. Regitz and F. Preuss, *Z. Naturforsch. B*, 2003, **58**, 44-51.

251. R. L. Davidovich, A. A. Udovenko, V. Y. Kavun, V. B. Logvinova and V. V. Tkachev, *J. Struct. Chem.*, 2016, **57**, 464-470.

252. F. Marchetti, G. Pampaloni, C. Pinzino and S. Zacchini, *Eur. J. Inorg. Chem.*, 2013, 5755-5761.

253. F. Marchetti, G. Pampaloni and C. Pinzino, *Chem. Eur. J.*, 2013, **19**, 13962-13969.

254. M. Hayatifar, F. Marchetti, G. Pampaloni and S. Zacchini, *Polyhedron*, 2014, **70**, 6-10.

255. M. A. Saada, A. Hémon-Ribaud, L. S. Smiri, M. Leblanc and V. Maisonneuve, *J. Fluorine Chem.*, 2005, **126**, 1246-1251.

256. M. A. Saada, A. Hémon-Ribaud, M. Leblanc and V. Maisonneuve, *J. Fluorine Chem.*, 2005, **126**, 1072-1077.

257. E. Goreshnik, M. Leblanc and V. Maisonneuve, *J. Solid State Chem.*, 2004, **177**, 4023-4030.

258. Y. Feng, L. Wang, Z. Xing, Q. Huang and P. Ma, *Inorg. Chem. Commun.*, 2018, **93**, 15-19.

259. Y. Feng, Z. Meng, Q. Huang, D. Qiu and H. Shi, *Inorg. Chem. Commun.*, 2010, **13**, 1118-1121.

260. E. Goreshnik, *J. Fluorine Chem.*, 2017, **195**, 13-17.

261. F. Marchetti, G. Pampaloni and S. Zacchini, *J. Fluorine Chem.*, 2010, **131**, 21-28.

262. T. Kanatani, R. Ueno, K. Matsumoto, T. Nohira and R. Hagiwara, *J. Fluorine Chem.*, 2009, **130**, 979-984.

263. V. Y. Kavun, A. B. Slobodyuk, N. A. Didenko and R. L. Davidovich, *J. Struct. Chem.*, 2016, **57**, 917-925.

264. H. Lu, R. Gautier, M. D. Donakowski, L. Fuoco, Z. Liu and K. R. Poeppelmeier, *Cryst. Growth Des.*, 2014, **14**, 844-850.

265. A. I. Nikolaev, N. V. Kirichenko and M. P. Rys'kina, *Russ. J. Inorg. Chem.*, 2009, **54**, 1070-1075.

266. T. F. Antokhina, N. N. Savchenko, L. N. Ignat'eva and T. A. Kaidalova, *Zh. Neog. Khim. (Russ. J. Inorg. Chem.)*, 2004, **49**, 914-918.

267. K. Radan, M. Lozinšek, E. Goreshnik and B. Žemva, *J. Fluorine Chem.*, 2011, **132**, 767-771.

268. F. Iwase, K. Sugiura, K. Furukawa and T. Nakamura, *J. Phys. Soc. Jpn*, 2009, **78**, 104717.

269. E. V. Ganin and W.-J. Wang, *Russ. J. Gen. Chem.*, 2004, **74**, 806-807.

270. M. S. Fonari, V. C. Kravtsov, Y. A. Simonov, S. S. Basok, E. V. Ganin, V. O. Gelmboldt, K. Suwinska, J. Lipkowski, O. A. Alekseeva and N. G. Furmanova, *Polyhedron*, 2008, **27**, 2049-2058.

271. M. S. Fonari, Y. A. Simonov, W.-J. Wang, S.-W. Tang, E. V. Ganin, V. O. Gelmboldt, T. S. Chernaya, O. A. Alekseeva and N. G. Furmanova, *Polyhedron*, 2007, **26**, 5193-5202.

272. T. M. Alam, J. S. Clawson, F. Bonhomme, S. G. Thoma, M. A. Rodriguez, S. Zheng and J. Autschbach, *Chem. Mater.*, 2008, **20**, 2205-2217.

273. G. Tavčar and E. Goreshnik, *J. Fluorine Chem.*, 2016, **189**, 33-38.

274. A. A. Udoenko, R. L. Davidovich and V. B. Logvinova, *J. Struct. Chem.*, 2015, **56**, 1623-1628.

275. F. Xu, K. Matsumoto and R. Hagiwara, *Dalton Trans.*, 2012, **41**, 3494-3502.

276. T. Kurogi, B. C. Manor, P. J. Carroll and D. J. Mindiola, *Polyhedron*, 2017, **125**, 80-85.

277. M. Boča, A. Rakhmatullin, J. Mlynáriková, E. Hadzimová, Z. Vasková and M. Mičušík, *Dalton Trans.*, 2015, **44**, 17106-17117.

278. M. J. Ungerer, C. G. C. E. van Sittert, D. J. van der Westhuizen and H. M. Krieg, *Comput. Theor. Chem.*, 2016, **1090**, 112-119.

279. D. B. Soria, J. Grundy, M. P. Coles and P. B. Hitchcock, *Polyhedron*, 2003, **22**, 2731-2737.

280. D.-T. Zhang, Y.-Y. Zhu, G.-M. Luo and H. Cai, *Chin. J. Inorg. Chem.*, 2013, **29**, 953-957.

281. Z. Wei, W. Zhang, G. Luo, F. Xu, Y. Mei and H. Cai, *J. Organomet. Chem.*, 2016, **808**, 104-108.

282. F. Marchetti, G. Pampaloni and S. Zacchini, *RSC Adv.*, 2014, **4**, 60878-60882.

283. T. Xie, Z. Guan, N.-P. Pook and M. Gjikaj, *Z. Natur. B*, 2013, **68**, 1095-1102.

284. T. Xie, W. Brockner and M. Gjikaj, *Z. Anorg. Allg. Chem.*, 2010, **636**, 2633-2640.

285. J.-J. Zhang and A. Lachgar, *Inorg. Chem.*, 2015, **54**, 1082-1090.

286. A. V. Anyushin, M. N. Sokolov, E. V. Peresypkina and V. P. Fedin, *J. Struct. Chem.*, 2013, **54**, 454-458.

287. H. O. Davies, B. Peek, J. Rochford, P. O'Brien, M. Afzaal, C. Murin and C. P. Dawson, *Inorg. Chem. Commun.*, 2014, **44**, 180-182.

288. M. Hayatifar, F. Marchetti, G. Pampaloni and S. Zacchini, *Inorg. Chem.*, 2013, **52**, 4017-4025.

289. R. N. Pandey and P. Sharma, *Orient J. Chem.*, 2013, **29**, 673-676.

290. S. Pappuru, D. Chakraborty and V. Ramkumar, *Dalton Trans.*, 2017, **46**, 16640-16654.

291. M. Bortoluzzi, F. Marchetti, G. Pampaloni, M. Pucino and S. Zacchini, *Dalton Trans.*, 2013, **42**, 13054-13064.

292. K.-W. Chou, W.-J. Su, H.-F. Huang, X.-R. Zou, Y.-N. Chang, P.-Y. Lee and L.-C. Liang, *Polyhedron*, 2017, **125**, 164-172.

293. B. K. Park, H.-S. Kim, S. J. Shin, J. K. Min, K. M. Lee, Y. Do, C. G. Kim and T.-M. Chung, *Organometallics*, 2012, **31**, 8109-8113.

294. T. K. Saha, M. Mandal, M. Thunga, D. Chakraborty and V. Ramkumar, *Dalton Trans.*, 2013, **42**, 10304-10314.

295. P. Garcia, Y. Y. Lau, M. R. Perry and L. L. Schafer, *Angew. Chem. Int. Ed.*, 2013, **52**, 9144-9148.

296. J. Lauzon, P. Eisenberger, S.-C. Roșca and L. L. Schafer, *ACS Catal.*, 2017, **7**, 5921-5931.

297. P. Eisenberger, R. O. Ayinla, J. M. P. Lauzon and L. L. Schafer, *Angew. Chem. Int. Ed.*, 2009, **48**, 8361-8365.

298. J. W. Brandt, E. Chong and L. L. Schafer, *ACS Catal.*, 2017, **7**, 6323-6330.

299. E. Chong, J. W. Brandt and L. L. Schafer, *J. Am. Chem. Soc.*, 2014, **136**, 10898-10901.

300. R. C. DiPucchio, S.-C. Roșca and L. L. Schafer, *Angew. Chem. Int. Ed.*, 2018, **57**, 3469-3472.

301. P. Garcia, P. R. Payne, E. Chong, R. L. Webster, B. J. Barron, A. C. Behrle, J. A. R. Schmidt and L. L. Schafer, *Tetrahedron*, 2013, **69**, 5737-5743.

302. A. Otero, J. Fernández-Baeza, A. Antiñolo, J. Tejeda, A. Lara-Sánchez, L. Sánchez-Barba and Ana M. Rodríguez, *Eur. J. Inorg. Chem.*, 2004, 260-266.

303. X. Yu, S. Bi, I. A. Guzei, Z. Lin and Z.-L. Xue, *Inorg. Chem.*, 2004, **43**, 7111-7119.

304. T. J. Boyle, M. L. Neville, D. T. Yonemoto, T. M. Alam and L. Jan, *J. Coord. Chem.*, 2015, **68**, 1616-1632.

305. R. S. Ghadwal, A. Singh and R. C. Mehrotra, *Transition Met. Chem.*, 2005, **30**, 268-272.

306. R. S. Ghadwal, R. C. Mehrotra and A. Singh, *J. Chem. Res.*, 2005, 352-355.

307. R. S. Ghadwal and A. Singh, *Indian J. Chem. A*, 2005, **44**, 2439-2444.

308. R. S. Ghadwal and A. Singh, *J. Chem. Res.*, 2006, **2006**, 451-455.

309. M. Mirzaee, T. Tamizkar, G. Mohammadnezhad, H. R. Khavasi and M. M. Amini, *C. R. Chimie*, 2011, **14**, 927-933.

310. I. Tonks, A., L. M. Henling, M. W. Day and J. E. Bercaw, *Inorg. Chem.*, 2009, **48**, 5096-5105.

311. R. Porter, M., G. Reid and A. A. Danopoulos, *Polyhedron*, 2018, **149**, 34-38.

312. J. Ballmann, A. Yeo, B. O. Patrick and M. D. Fryzuk, *Angew. Chem. Int. Ed.*, 2011, **50**, 507-510.

313. B. A. MacKay, B. O. Patrick and M. D. Fryzuk, *Organometallics*, 2005, **24**, 3836-3841.

314. B. A. MacKay, S. A. Johnson, B. O. Patrick and M. D. Fryzuk, *Can. J. Chem.*, 2005, **83**, 315-323.

315. F. Studt, B. A. MacKay, S. A. Johnson, B. O. Patrick, M. D. Fryzuk and F. Tuczek, *Chem. Eur. J.*, 2005, **11**, 604-618.

316. T. Watanabe, T. Matsuo and H. Kawaguchi, *Inorg. Chem.*, 2006, **45**, 6580-6582.

317. M. Sietzen, S. Batke, L. Merz, H. Wadeohl and J. Ballmann, *Eur. J. Inorg. Chem.*, 2017, **2017**, 5442-5450.

318. T. N. Lenton, D. G. VanderVelde and J. E. Bercaw, *Organometallics*, 2012, **31**, 7492-7499.

319. T. Agapie and J. E. Bercaw, *Organometallics*, 2007, **26**, 2957-2959.

320. S. Hananouchi, B. T. Krull, J. W. Ziller, F. Furche and A. F. Heyduk, *Dalton Trans.*, 2014, **43**, 17991-18000.

321. R. A. Zarkesh, J. W. Ziller and A. F. Heyduk, *Angew. Chem. Int. Ed.*, 2008, **47**, 4715-4718.

322. R. A. Zarkesh and A. F. Heyduk, *Organometallics*, 2009, **28**, 6629-6631.

323. S. VenkatRamani, M. E. Pascualini, I. Ghiviriga, K. A. Abboud and A. S. Veige, *Polyhedron*, 2013, **64**, 377-387.

324. S. Groysman, S. Segal, I. Goldberg, M. Kol and Z. Goldschmidt, *Inorg. Chem. Commun.*, 2004, **7**, 938-941.

325. M. Sietzen, H. Wadeohl and J. Ballmann, *Inorg. Chem.*, 2015, **54**, 4094-4103.

326. C. D. Carmichael and M. D. Fryzuk, *Can. J. Chem.*, 2010, **88**, 667-675.

327. F. Zhang, H. Song and G. Zi, *Dalton Trans.*, 2011, **40**, 1547-1566.

328. H. Egami and T. Katsuki, *Angew. Chem. Int. Ed.*, 2008, **47**, 5171-5174.

329. M. P. Shaver and M. Fryzuk, *Organometallics*, 2005, **24**, 2606-2611.

330. M. P. Shaver and M. D. Fryzuk, *Organometallics*, 2005, **24**, 1419-1427.

331. J.-S. Lehn, M., P. van der Heide, Y. Wang, S. Suh and D. M. Hoffman, *J. Mater. Chem.*, 2004, **14**, 3239-3245.

332. N. Lu and H. Wang, *J. Struct. Chem.*, 2016, **57**, 47-53.

333. L. P. Spencer, B. A. MacKay, B. O. Patrick and M. D. Fryzuk, *Proc. Natl. Acad. Sci. USA*, 2006, **103**, 17094-17098.

334. B. A. MacKay, R. F. Munha and M. D. Fryzuk, *J. Am. Chem. Soc.*, 2006, **128**, 9472-9483.

335. M. D. Fryzuk, B. A. MacKay and B. O. Patrick, *J. Am. Chem. Soc.*, 2003, **125**, 3234-3235.

336. K. Yamamoto, H. Tsurugi and K. Mashima, *Chem. Eur. J.*, 2015, **21**, 11369-11377.

337. T. Oshiki, H. Nomoto, K. Tanaka and K. Takai, *Bull. Chem. Soc. Jpn.*, 2004, **77**, 1009-1011.

338. K. Yamamoto, H. Nagae, H. Tsurugi and K. Mashima, *Organometallics*, 2016, **35**, 2384-2390.

339. G. Christian, R. Stranger, S. Petrie, B. F. Yates and C. C. Cummins, *Chem. Eur. J.*, 2007, **13**, 4264-4272.

340. M. Etienne, J.-C. Hierso, P. J. Daff, B. Donnadieu and F. Dahan, *Polyhedron*, 2004, **23**, 379-383.

341. N. J. Brookes, A. Ariaafard, R. Stranger and B. F. Yates, *Chem. Eur. J.*, 2010, **16**, 8117-8132.

342. N. J. Brookes, A. Ariaafard, R. Stranger and B. F. Yates, *Dalton Trans.*, 2011, **40**, 5569-5578.

343. S. L. Benjamin, Y.-P. Chang, M. Huggon, W. Levason and G. Reid, *Polyhedron*, 2015, **99**, 230-237.

344. M. Matsuura, T. Fujihara, M. Kakeya, T. Sugaya and A. Nagasawa, *J. Organome. Chem.*, 2013, **745-746**, 288-298.

345. K. Chakarawet, Z. W. Davis-Gilbert, S. R. Harstad, V. G. Young Jr., J. R. Long and J. E. Ellis, *Angew. Chem. Int. Ed.*, 2017, **56**, 10577-10581.

346. M. V. Barybin, W. W. Brennessel, B. E. Kucera, M. E. Minyaev, V. J. Sussman, V. G. Young and J. E. Ellis, *J. Am. Chem. Soc.*, 2007, **129**, 1141-1150.

347. A. C. Bowman, J. England, S. Sproules, T. Weyhermüller and K. Wieghardt, *Inorg. Chem.*, 2013, **52**, 2242-2256.

348. P. M. Morse, Q. D. Shelby, D. Y. Kim and G. S. Girolami, *Organometallics*, 2008, **27**, 984-993.

349. V. J. Sussman and J. E. Ellis, *Angew. Chem. Int. Ed.*, 2008, **47**, 484-489.

350. V. J. Sussman and J. E. Ellis, *Chem. Commun.*, 2008, 5642-5644.

351. M. V. Barybin, V. G. Young and J. E. Ellis, *J. Am. Chem. Soc.*, 1999, **121**, 9237-9238.

352. B. Perić, D. Jozić, P. Planinić, N. Brničević and G. Giester, *J. Solid State Chem.*, 2009, **182**, 2443-2450.

353. P. Planinić, V. Rastija, B. Perić, G. Giester and N. Brničević, *C. R. Chimie*, 2005, **8**, 1766-1773.