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Approaching the conformal WZW behavior in the infrared limit
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Two-dimensional QCD with Nc colors and N f  flavors of massless fermions in the fundamental
representation is expected to exhibit conformal behavior in the infrared governed by a uðNfÞ Wess–
Zumino–Witten model with level Nc. Using numerical analysis within the lattice formalism with exactly
massless overlap fermions, we show the emergence of such behavior in the infrared limit. Both the
continuum extrapolated low-lying eigenvalues of the massless Dirac operator and the propagator of scalar
mesons exhibit a flow from the ultraviolet to the infrared. We find that the amplitude of the conserved
current correlator remains invariant under the flow, while the amplitude of the scalar correlator approaches
Nf-independent values in the infrared.
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I. INTRODUCTION

Two-dimensional QCD serves as an interesting toy
model to study emergent conformal behavior in the infra-
red. As long as the number of colors, Nc >  1, is finite, the
suðNcÞ gauge theory with N f  flavors of massless fermions
in the fundamental representation has a conformal sector in
the infrared limit [1]. The identification of which two-
dimensional conformal field theory (CFT) describes the
massless sector of the theory is somewhat of a conjecture.
An ab initio numerical study of the infrared limit of QCD
and verification of the existing expectation that the long-
distance behavior of two-dimensional QCD is described by
an appropriate Wess–Zumino–Witten (WZW) model is the
aim of this paper.

Two-dimensional QCD is usually studied in the
Hamiltonian formalism, and light-cone gauge serves as a
convenient choice to work in. With this gauge choice,
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in addition to the gauge field being constrained, the fermion
of one chirality (e.g., the right-chiral ψ R) is also con-
strained, leaving the dynamics to be governed by a left-
chiral fermion ψ L . It is additionally advantageous to
work on the light-cone as the momentum takes on only
positive values, which become discrete if the direction
perpendicular to the propagation direction is compact. This
enables one to study the problem numerically via the
method referred to as the Discrete Light-Cone Quantization
(DLCQ) [2,3]. The flavor current constructed from the
left-chiral fermion commutes with the interacting
Hamiltonian, which fully describes the dynamics in the
massless limit. Therefore, the states formed by repeatedly
acting on the vacuum with flavor current operators are
massless states. However, the flavor currents formed by the
constrained right-chiral fermions do not commute with
the Hamiltonian, and we do not have a proper description
of the conformal behavior such as that given by a
WZW model.

Instead, if one considers the theory not on the light front
in order to take all degrees of freedom into account, one
could conjecture [1] that the infrared description is from a
WZW model. The basis of this statement comes from an
identification that the infrared limit, given by the energy
scales E  → 0, is naively the same as the coupling g2 → ∞
limit. In practice, one always has an upper cutoff either
from a truncation of the Hilbert space to diagonalize the
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Hamiltonian associated with a timelike direction, or
from the inverse lattice spacing, which can obscure the
g2 → ∞ limit.

In this work, we impose the ultraviolet regulator using a
lattice discretization and study the infrared limit carefully.
We will work within the Euclidean lattice formalism, where
the flavor symmetry remains intact. Furthermore, we will
use exact chiral fermions on the lattice even away from
the continuum limit, which will result in the full flavor
symmetry of the left- and right-chiral currents. Of particular
interest to us in this paper will be the scaling dimension of
the scalar mesons,

MijðxÞ ¼  ψ iLðxÞψ jRðxÞ þ  ψ iRðxÞψ jLðxÞ; ð1Þ

where the color indices that are summed over are sup-
pressed and only the flavor indices, i ; j  ¼  1; …; N f , are
explicitly shown.

We plan to study suðNcÞ gauge theories with exactly
massless fermions using the lattice formalism in this paper.
Since there are no topological zero modes, the one-point
function will be exactly zero in any gauge field back-
ground, and we do not need to distinguish between SUðNfÞ
scalars and the Uð1Þ scalar. In this case, the expected
scaling dimensions of Mij are that of a uðNfÞ WZW model
with level Nc, and we cannot directly use the formula for
the scaling dimension in [4]. To that end, we provide a
derivation of the formula for the scaling dimensions of the
scalar mesons within the context of the WZW model in
Sec. II. This is followed by a description of the lattice
formulation of two-dimensional QCD with exactly mass-
less fermions in Sec. III. The dimensionless length of the
symmetric Euclidean torus, l ,  will be the only parameter in
the continuum limit of the lattice formalism. We will use
the low-lying eigenvalues of the massless lattice Dirac
operator and the meson correlator to show that the
scaling dimension associated with the WZW algebra
matches the behavior as l  → ∞ in Sec. IV. In addition,
we will also study the vector meson (current) correlator
and show that it remains invariant under the flow from
ultraviolet to infrared.

II. WZW ALGEBRA

The Wess-Zumino-Witten model [5] of relevance to us is
given by the action

Z
SUðNf Þ ¼  

16π
d2xTrð∂μg−1∂μgÞ þ  N cΓ; ð2Þ

where g�UðNfÞ is identified as the affine-primary1 field in
the CFT and Γ  is the Wess-Zumino term given by

1The primary with respect to the affine current defined in
the theory.
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Z
Γ  ¼  −

24π C 
d3yϵαβγTrðg−1∂αgg−1∂βgg−1∂γgÞ: ð3Þ

This is understood as an integral over a three-dimensional
manifold C where g is the extension of the primary fields to
this manifold. Note that the level of this WZW model is
given by Nc. The infrared limit of the mesons, Mij , is
expected to be associated with g so our aim, in this section,
is to obtain an expression for the scaling dimension of g.
It is possible to extract this from a formula in [5] but we
provide some details because the group is neither simple
nor semisimple.

This WZW model admits conserved flavor currents
JðzÞ ¼  JLðzÞ; Jðz̄Þ ¼  JRðz̄Þ (the left-chiral and right-
chiral currents in Sec. I) which can be expressed in terms
of g as

JLðzÞ ¼  −  
2

c ∂zgg−1; JRðz̄Þ ¼  
2

c g−1∂z̄g: ð4Þ

The modes of these currents satisfy the affine Kac-Moody
algebra given by

½Jk1 f 1 fR;Lg ; Jk2 f 2 fR;Lg

¼  i f f 1 f 2 f 3  
Jðk1 þk2 Þf 3 fR;Lg þ  

Nck1 δðk1 þ  k2Þ: ð5Þ

In what follows, we drop the dependence on z; z̄ and just
notate the chirality of the current. Most generally, one
constructs a stress tensor from a bilinear of these currents as
per the Sugawara construction

T ¼  
X

C a � J L J L � ð6Þ
a

where �� denotes normal ordering and Ca are a set of
constants picked to normalize the stress tensor such that
it has the usual operator product expansion. Mode expand-
ing the Sugawara stress tensor, as per standard two-
dimensional CFT, one obtains the following identification
of the Virasoro generators:

L n  ¼  
X

C a

X
J k L J n − k ; L  þ  

X
J n − k ; L J k L

 
¼  

X
C a L a ;  a

k<0 k≥0 a

ð7Þ

where the sum has been divided in order to impose the
normal ordering and L a  is a notation that will be useful in
what follows.

We want to know the explicit expression for the
Sugawara stress tensor when the J a  are uðNfÞ currents.
In this case, the stress tensor can be decomposed into
two parts, one that has all the suðNfÞ information and a
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uð1Þ piece.2 This should be reminiscent of the fact that
extending from suðNfÞ to uðNfÞ requires adding a gen-
erator (the identity) that has a different scaling factor than
the other generators. Computing the commutators of these
modes gives, most generally,

N 2 −1

½Ln; Lm ¼  ðn −  mÞ ðNc þ  NfÞC2              L b  þ  Nc C2L0

b¼1
2

þ      
2 

ðNc þ  NfÞC2ðN2 −  1Þ þ  
2 

C2

×  
nðn2 −  1Þ

δnþm: ð8Þ

Here C denotes the suðNfÞ normalization and C0 is the uð1Þ
normalization constant. Asserting that this has to be
the usual Virasoro algebra, allows us to solve for the
normalization constants and write the uðNfÞ Sugawara
stress tensor as

N2 −1

T uðNfÞ ¼ �J L J L� þ �J L J L�: ð9Þ
a¼1

Now that we have the stress tensor, we can find the
dimension of the primary g. This relies on the fact that in
addition to an affine primary, g is also a Virasoro primary.
In any two-dimensional CFT, the operator product expan-
sion (OPE) of the stress tensor with a primary field ϕ is
given by [5]

TðzÞϕðw;wÞ � 
ðz −  wÞ

2
 ϕðw;wÞ þ  

z −  w
∂wϕðw; wÞ: ð10Þ

The conformal weight h of the primary is given by the
coefficient of the most singular term. Therefore, if we
compute the most singular term of the OPE between
T uðNfÞðzÞ and the WZW primary gðw; wÞ, we can read
off its weight. In a WZW model the OPE between the
current and the primary field g is given by [5]

JaðzÞgðw; wÞ � −
Tagðw; wÞ

: ð11Þ

Combining this with the definition of the uðNfÞ stress
tensor and using identities of the sums of products of the
generators Ta, one finds the weight of the primary to be3

2Usually one says that when you have a semisimple Lie
algebra, the Sugawara stress tensor is the sum of the stress tensors
for each simple Lie algebra. However, UðNÞ is not semisimple, so
we cannot make that argument here.

We note that Jaume Gomis has independently verified this
formula via a private communication.

2

hg ¼  
2NfðNc þ  NfÞ 

þ  
2NcNf 

¼  
2NcðNc þ  NfÞ

: ð12Þ

Additionally, one can read off the central charge as
c ¼  Nf ðNc N f þ1Þ which was verified in [6] via alternative

c f

methods.
In the following analysis, we concern ourselves with the

scaling dimension of the scalar mesons given in (1). This
operator can be written in terms of the WZW primary as
MijðxÞ ¼  gij  þ  gij . One expects the conformal two-point
function of two mesons to have the behavior jx−yj2Δ  where

Δ  ¼  2hg is the conformal dimension. In terms of Δ ,  the
mass anomalous dimension is given by

2
γm ¼  1 −  Δ  ¼  

NcðNc þ  NfÞ
: ð13Þ

Our numerical results are for ðNc; NfÞ ¼  ð2;1Þ; ð2; 2Þ;
ð3; 1Þ; ð3; 2Þ, and the specific values of Δ  are 2 ; 8 ; 3 ; 15
respectively.

III. LATTICE FORMALISM

A. Lattice action and Monte Carlo simulation

We study the theory on a finite two-dimensional
Euclidean periodic box of physical extent l  ×  l ,  where
l  is the dimensionless length measured in units of the
’t Hooft coupling. Let the lattice be denoted as L  × L  where
we assume L  to be even. We will obtain the continuum limit
at a fixed value of l  by extrapolating the results obtained at
a few finite values of L  in the limit as L  → ∞. The lattice
path integral for the two-dimensional QCD coupled to N f

flavors of massless fermions is

Z
Z  ¼ dUμðxÞ det ðDoÞNf eSg ; ð14Þ

x;μ

where Do is the overlap Dirac operator. Sg is the plaquette
gauge action which is written in terms of gauge links UμðxÞ
below:

Sg ¼  
N c

L

2 X
½ 2N c  −  PðxÞ −  PðxÞ; x

PðxÞ ¼  Tr½U1ðxÞU2ðx þ  1ÞU†ðx þ  2ÞU†ðxÞ; ð15Þ

where the trace is over color. To see the connection with
the standard way to introduce lattice coupling in the
action, note that l  ¼ λlp h where λ is the dimensionful
’t Hooft coupling and lp h  is the dimensionful length.

Then Nc
2 

2 
¼  ðgaÞ2     where λ ¼  g2Nc and a ¼  l p h =L  is the

054502-3



2

1
1

2

μ μ

2 o

2 2

X
† 1

H 2

1 −  V

0 GL
†

L

o

L→∞

1

cN −  1

KARTHIK, NARAYANAN, and NARAYANAN

lattice spacing. The overlap-Dirac [7–9] operator Do can
be written as

Do ¼  
1 þ  V 

; ð16Þ

in terms of a unitary operator V ¼  σ3ϵðHwÞ written in
terms of the sign-function ϵ and the Hermitian Wilson-
Dirac operator H w ¼  σ3Dw. We approximated the sign
function using a 21-pole Zolotarev rational approxima-
tion. In two dimensions, the Wilson-Dirac operator that
enters the construction of the overlap operator can be
written as

Dw  ¼  ð2 −  MÞ −  
2

½ð1 −  σ1ÞT1 þ  ð1 þ  σ1ÞT†

þ  ð1 −  σ2ÞT2 þ  ð1 þ  σ2ÞT†; ð17Þ

where the Wilson mass M �ð0; 2Þ. We set M ¼  1 in
this study. In the above equation, σμ     are the Pauli
matrices, and T1 and T2 are the gauge covariant parallel
transporters,

ðTμϕÞðxÞ ¼  UμðxÞϕðx þ  μ̂Þ;

ðT†ϕÞðxÞ ¼  U†ðx −  μ̂Þϕðx −  μ̂Þ: ð18Þ

In two dimensions, the lack of topological sectors in the
suðNcÞ theory implies that there are no topological zero
modes for the overlap Dirac operator. This lets us make
the following simplification: noting that

H o ¼  σ3Do ¼  
σ3 þ  ϵðHwÞ

; ½H2;σ3 ¼  0; ð19Þ

we can write

det Do ¼  det Ho ¼  detþ H o ¼  det− Ho; ð20Þ

where  restricts the determinant to one chiral sector. We
used the standard Hybrid Monte Carlo (HMC)

algorithm [10] to sample gauge configuration weighted
according to Eq. (14). Whereas the implementation of the
HMC trajectories via the leap frog method is standard, we
note the following interesting feature. The fermionic action
using N f  copies of pseudofermions ϕ i þ  is given by

N f

SfðϕÞ ¼ ϕ i þ ϕ iþ ; σ3ϕ iþ ¼  ϕ iþ : ð21Þ
i¼1                   o

In the above equation, by restricting the action to a single
chiral sector, we are able to write the action in terms of a
positive definite operator for each flavor, which thereby
enables us to set N f  to any value. The details about the
algorithm are the same as the one employed in the study of
three-dimensional QED in [11].

PHYS. REV. D 109, 054502 (2024)

B. Lattice observables to probe the conformal
infrared behavior

We study the scaling dimension of the scalar operator
using the two-point function, as well as by probing the
finite-size scaling of the low-lying eigenvalues of the
overlap Dirac operator. In addition, we will also study
the correlator of the vector meson in order to show that it
does not acquire an anomalous dimension. Both the scalar
and vector meson correlators can be written in terms of the
anti-Hermitian massless overlap fermion propagator,

Go ¼  
1 þ  V 

: ð22Þ

We first notice that fGo; σ3g ¼  0, implying that the form of
the overlap propagator is

Go ¼
−G L 0

; ð23Þ

where GL      is the propagator of the left-chiral fermion
and −G†  is the propagator of the right-chiral fermion.

Observables with better sensitivity to the infrared con-
formality are the microscopic low-lying eigenvalues of the
Dirac operator. For the overlap operator, they are the
eigenvalues of the inverse of the overlap propagator
A ¼  G−1 , given by

Avj ¼  iΛ j v j ; ð24Þ

determined over a fixed gauge field background. Since
eigenvalues come in positive-negative pairs, we can take
Λ j  >  0 in the above equation, and the eigenvalues are
sorted as Λ j þ 1  >  Λ j  for j  ¼  1; …; N c L2. We will only
consider the first few values of j  ¼  1, 2, 3, 4 in this study.

We measured Λ j  in the sampled gauge configurations,
and determined the ensemble averages hΛi i. The con-
tinuum limits λiðlÞ of the eigenvalues are given by

λ i ðlÞl ≡  lim hΛ i iL: ð25Þ

The dependence of the scalar susceptibility (i.e., scalar
correlator integrated over the entire box), gives the corre-
sponding expectation for the finite-size scaling of λiðlÞ.
Namely, again anticipating a free-theory-like short-distance
behavior and a nontrivial conformal behavior in the infrared
given by (13), we expect

λ i ðlÞl � l 0 as l  → 0; and λ i ðlÞl � 
l γ m  

;

2

γm ¼  
NcðNf þ  NcÞ

as l  → ∞: ð26Þ

054502-4
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Next, we turn our attention to meson correlators. At a
fixed value of l ,  the lattice scalar and vector meson
correlators will be periodic functions that depend on the
lattice separation, X . Upon taking the continuum limit,
the correlators will naturally become a function of
ξ ¼  x ¼  limL→∞ 

X . Usually, one studies the correlator as
a function of x as l  → ∞, which amounts to the behavior as
ξ → 0 at fixed ξ l  ¼  x. In this limit, one recovers the
correlators of operators O on an infinite plane, which will
behave as CO =x2ΔO       in the UV and IR limits, with the
appropriate UV and IR values of the scaling dimensions
ΔO .  The coefficients of the power-law dependence, CUV

and CIR, in the two limits, are referred to as the UV and IR
amplitudes. We can instead study the behavior of the

correlators as a function of l  at a fixed ξ >  0 (see for
example [11]). On a periodic torus, the correlators will still
behave as power law in operator separation ξ l  in the large
and small l  limits, and the power-law coefficients general-
ize into functions of ξ and l  that approach their UV and IR
limits, CUVðξÞ and CIRðξÞ. The amplitudes of the power law
on an infinite plane are then recovered from CUV;IRðξÞ in
the ξ → 0 limit. In this work, we focus on these coefficients
at a finite ξ and study their flow from UV to IR to avoid
additional, difficult ξ → 0 extrapolation. Below, we apply
this general discussion to the specific cases of the scalar
meson and vector meson (conserved current) correlators.

In terms of GL , we write the continuum pseudoscalar and
the left-chiral and the right-chiral current correlators as

l2Gsðl; ξÞ ¼  
GfðξÞ L→∞

L2hTr½GLð0; LξÞGLð0; LξÞ þ  GLðLξ; 0ÞGLðLξ; 0Þi;

l2Gv

ð
l; ξ

Þ
 ¼  

GfðξÞ L→∞
L2

h
Tr½GLð0; LξÞGLð0; Lξ

Þ
 þ  GL

ð
Lξ; 0ÞGL

ð
Lξ; 0

Þi
: ð27Þ
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FIG. 1.     The lowest eigenvalue (top panels) and the scalar correlator (bottom panels) after appropriate l  scaling are shown as a function of
l  (left panels) and function of L  (right panels) for a representative case ðNc; NfÞ ¼  ð2;1Þ. Only the central values of the data are shown
at four values of the lattice extent L  in the left panels to avoid clutter, and they are compared against the continuum extrapolated values
shown as black-filled circles. The right panels include the errors at each L  and show the fit to extract the continuum values.
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The trace is only over the color indices. The factor l 2

multiplying the correlator on the left accounts for the naïve
scaling dimension from units of lattice spacing to the units
of the coupling. The free correlator, GfðξÞ is specific to the
overlap-Dirac operator and is defined as

GfðξÞ ¼  lim L2½GfLð0; LξÞGfLð0; LξÞ

þ  GfLðLξ; 0ÞGfLðLξ; 0Þ; ð28Þ

where G f L      is the free fermion propagator. The free
correlator will be proportional to ξ2 when ξ → 0. Note that

we have divided the correlators by GfðξÞ in Eq. (27) to take
care of continuum-like normalization, and to avoid trivial
factors of 1

 .

We can define amplitudes at finite l  and ξ from
correlators by scaling with appropriate powers of
x ¼  ξ l .  The scalar correlator is anomalous, and we will

3

2.5

2

1.5

1

0.5
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need to use two different scalings in the ultraviolet and
infrared to define appropriate amplitudes, namely,

CUVðl; ξÞ ¼  l2Gsðl; ξÞ

CIRðl; ξÞ ¼  ðξlÞ−2γm l2Gsðl; ξÞ: ð29Þ

Then, CUVð0; ξÞ and CIRð∞; ξÞ will give us the amplitudes
in the ultraviolet and infrared. In contrast, the vector meson
correlator has the same scaling dimension in the ultraviolet
and infrared, and we define its amplitude as

Cvðl; ξÞ ¼  l2Gvðl; ξÞ: ð30Þ

Then, Cvð0; ξÞ and Cvð∞; ξÞ will give us the amplitudes in
the ultraviolet and infrared. In this work, we will study the
behavior of the RG flow of CUVðl; ξÞ, CIRðl; ξÞ and
Cvðl; ξÞ at a fixed value of ξ ¼  1=4.

3

2.5

2

1.5

1

0.5

0
5 10 15 20

l

10

9

8

7

6

5

4

3

2

1

0
5 10 15 20

l

25
0

5 10 15 20 25
l

10

9

8

7

6

5

4

3

2

1

25
0

5 10 15 20 25
l

FIG. 2.     The five lowest eigenvalues are plotted as a function of
l  for Nc ¼  2 and N f  ¼  1. The top panel is scaled as per the naive
ultraviolet scaling, and the bottom panel is scaled as per the
predicted infrared scaling using the appropriate WZW model,
namely, γm ¼  2.

FIG. 3.     The five lowest eigenvalues are plotted as a function of
l  for Nc ¼  2 and N f  ¼  2. The top panel is scaled as per the naive
ultraviolet scaling, and the bottom panel is scaled as per the
predicted infrared scaling using the appropriate WZW model,
namely, γm ¼  8.
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IV. RESULTS

The numerical analysis parallels methods used in the
study of three-dimensional massless QED in [11], and we
do not provide the details here. We used lattices with
L  ¼  16, 20, 24, 28 in our numerical simulations. We
studied the theories with ðNc; NfÞ ¼  ð2;1Þ;ð2; 2Þ; ð3; 1Þ;
ð3; 2Þ. At each L ,  we performed Monte Carlo simulations at
the following values of dimensionless areas l2 :

l 2  ¼  12; 16; 24; 32; 48; 64; 192; 256; 384; 512 for Nc ¼  2;

l 2  ¼  15; 24; 30; 48; 63; 96; 126; 192; 384 for Nc ¼  3:

ð31Þ

The values chosen were arbitrary, but cover small-box sizes
that are likely to be closer to ultraviolet behavior, and larger
box sizes that are likely to be in the basin of the infrared
behavior. At each simulation point, we generated around
5000 trajectories, and we measured the eigenvalues and the

3

2.5

2

1.5

1

0.5

fermion correlators every five trajectories to account for
autocorrelations. Furthermore, we divided the measure-
ments into 200 jack-knife blocks to estimate the mean and
statistical errors of the observables. We determined the
continuum limits of the eigenvalues and the two correlators
at each fixed l  by fitting the data from the four values of L
using a functional form A þ    2 with fit parameters A and B,
and extrapolating to L  → ∞ limit (i.e., the fitted value of
A). The first lattice correction arises at Oð1=L2Þ due to the
exact chiral symmetry of the lattice overlap fermion. The
finite L  effects are small for the observables studied in this
paper, and Fig. 1 shows the lowest eigenvalue and the scalar
correlator at ðNc; NfÞ ¼  ð2;1Þ as a sample.

We show the finite-size dependence of the lowest five
eigenvalues in Figs. 2–5 for ðNc; NfÞ ¼  ð2;1Þ; ð2; 2Þ;
ð3;1Þ;ð3;2Þ cases respectively. As l  goes from the smallest
value to the largest value, we expect a flow from the naive
ultraviolet behavior to the infrared behavior predicted by
the WZW model in Sec. II. To verify that this is indeed the
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1.5

1

0.5
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5 10 15 20

l
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25
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5 10 15 20 25
l

8 8

6 6

4 4

2 2
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0
5

l
10 15 20 25

l

FIG. 4.     The five lowest eigenvalues are plotted as a function of
l  for Nc ¼  3 and N f  ¼  1. The top panel is scaled as per the naive
ultraviolet scaling, and the bottom panel is scaled as per the
predicted infrared scaling using the appropriate WZW model,
namely, γm ¼  3.

FIG. 5.     The five lowest eigenvalues are plotted as a function of
l  for Nc ¼  3 and N f  ¼  2. The top panel is scaled as per the naive
ultraviolet scaling, and the bottom panel is scaled as per the
predicted infrared scaling using the appropriate WZW model,
namely, γm ¼  15.
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case, we have plotted λ i ðlÞl in the top panels and
λ i ðlÞl1þγm  in the bottom panels. If the expected ultraviolet
and infrared behavior sets in, we should see these appro-
priately scaled eigenvalues approach a plateau as a function
of l  (for small l  in the top panels, and larger l  in the
bottom panels). In all four cases studied in this paper, we
observe that even the smallest l  used in the study shows the
expected infrared behavior of the lowest eigenvalue, λ1ðlÞ.
To emphasize that λ1 ðlÞl1þγm remains a constant through-
out the range of l  considered in this paper, we have drawn a
horizontal line through the points to guide the eye. This is
clear evidence that γm for the infrared CFT matches that of
a WZW model. The second and fourth eigenvalues seem to
approach the naive ultraviolet behavior for the smallest l
studied here. On the other hand, the bottom panels clearly
show that λiðlÞ for i  ¼  2, 3, 4, 5 flow toward the expected
infrared behavior as one approaches large values of l
and the lower eigenvalues approach the infrared behavior
faster than the higher eigenvalues. That the case of
ðNc; NfÞ ¼  ð3;1Þ has an underlying supersymmetry [4]
does not seem to single out the flow.

We discuss the flow of the two-point functions below,
starting from the conserved vector mesons. In Fig. 6, we
show the continuum extrapolated amplitude, Cvðl; ξÞ
at ξ ¼  4 computed in the interacting theory. This quantity
should flow from its ultraviolet value at small l  to its
infrared value at large l ,  with perhaps a crossover between
the ultraviolet and infrared behavior at some intermediate
l .  However, we note a clear plateau over the entire range of
l  we studied with no sign of such a UV-IR crossover. This
is consistent with the expectation that the vector meson
amplitude is a renormalization group invariant, namely,

PHYS. REV. D 109, 054502 (2024)

Cv ðl; ξ ¼  0Þ is independent of l ,  owing to the ’t Hooft
anomaly matching condition for the global flavor
symmetry [4]. This behavior could be contrasted with
the renormalization group flow of the current amplitudes in
three-dimensional massless QED (see for instance [12,13].)
We also notice that there is no dependence of the data
points in Fig. 6 on N f , and the value of Cvð∞; 1Þ is
consistent with N , as expected of the WZW model.

Note that the distinction between UðNfÞ and SUðNfÞ is
not relevant at the level of current correlators in a WZW
model. One should note that the free correlator, GfðξÞ is
independent of Nc and N f , and hence, the ratio of 3=2
between the amplitudes is not imposed by hand.

In the following discussion, we return to the scaling
dimension of the scalar operator, now discussed using the
scalar correlator. In Fig. 7, we show the l  dependence of
the CUV;IRðl; ξÞ at a fixed value of ξ ¼  1. The ultraviolet

25
Nc=2, Nf=1
Nc=2, Nf=2
Nc=3, Nf=1

20 Nc=3, Nf=2

15
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5
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5 10 15 20 25

l
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3

Nc=2, Nf=1

Nc=2, Nf=2

Nc=3, Nf=1

Nc=3, Nf=2

2.5
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Nc=2, Nf=1
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Nc=3, Nf=2
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2.475
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1.65

1.5
5 10 15 20 25

l

FIG. 6.     The flow of the amplitude of the vector meson
correlator, as defined in Eq. (30). The figure shows the l
dependence of Cvðξ; lÞ that should plateau at the UV amplitude
for small l ,  and should also plateau at the IR amplitude for
large l .  The data from four different ðNf; NcÞ are shown using a
specific ξ ¼  1=4. The horizontal lines are shown to indicate the
absence of a UV-IR flow of the vector meson amplitude.

1
5 10 15 20 25

l

FIG. 7.     The flow of the amplitude of the scalar correlator, as
defined in Eq. (29) by a UV scaling (top panel) and by WZW
infrared scaling (bottom panel) of the scalar correlator. The top
panel shows the l  dependence of CUVðξ; lÞ that should plateau at
the UV amplitude for small l .  The bottom panel shows the l
dependence of CIRðξ; lÞ that should plateau at the IR amplitude
for large l. The data from four different ðNf; NcÞ are shown using
a specific ξ ¼  1=4.
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behavior is highlighted in the top panel, and the infrared
behavior is highlighted in the bottom panel. We should see
a plateau in the top panel for small l  if we are close to the
basin of the ultraviolet, free CFT. Like in the case of the
eigenvalues, the smallest value of l  studied here is still
away from the naive ultraviolet limit, as is evident from the
residual l  dependence at small l  seen in the top panel.
Unlike the vector meson correlator, we see a distinct UV-IR
flow in the data points in the bottom panel. The apparent
plateau for large values of l  is again evidence for the
approach to a WZW model in the infrared. Like in the case
of the vector meson amplitudes, we see that the scalar
amplitudes in the infrared are independent of N f  and scale
linearly with Nc.

V. CONCLUSIONS

We have studied two-dimensional suðN Þ gauge theories
with N f  flavors of massless fermions using the lattice
formalism with exact massless fermions on the lattice. We
aimed to supplement the analysis usually performed in the
Discrete Light-Cone Hamiltonian. In particular, we studied
the mass anomalous dimensions and the related scaling
dimensions of scalar mesons, which require the presence of
both left-chiral and right-chiral conserved flavor currents.
Flavor symmetry is exact in our lattice formalism, and our
numerical studies with ðNc;NfÞ¼ð2;1Þ;ð2;2Þ;ð3;1Þ;ð3;2Þ
clearly show the expected scaling in the infrared given by
the appropriate WZW model. We also see a flow from
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