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ABSTRACT

This paper investigates the feasibility of data-driven methods in automating the engineering design pro-
cess, specifically studying inverse design of cellular mechanical metamaterials. Traditional methods of
designing cellular materials typically rely on trial and error or iterative optimization, which often leads
to limited productivity and high computational costs. While data-driven approaches have been explored
for the inverse design of cellular materials, many of these methods lack robustness and fail to consider
the manufacturability of the generated structures. This study aims to develop an efficient inverse design
methodology that accurately generates mechanical metamaterial while ensuring the manufacturability
of predicted structures. To achieve this, we have created a comprehensive dataset that spans a broad
range of mechanical properties by applying rotations to cubic structures synthesized from the nine cubic
symmetries of cubic materials. We then employ a physics-guided neural network (PGNN) consisting of
dual neural networks: a generator network, which serves as the inverse design tool, and a forward net-
work, which acts as a physics-guided simulator. The goal is to generate desired anisotropic stiffness com-
ponents with unit-cell design parameters. The results of our inverse model are examined with three
distinct datasets and demonstrate high computational efficiency and prediction accuracy compared to
conventional methods.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Designing advanced materials with tailored properties is a cen-
tral challenge in materials science and engineering. One promising
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solution to alleviate this challenge is discovering metamaterials, an
artificial class of materials purposefully engineered to manifest
exotic and often unparalleled properties [1]. The exceptional fea-
ture of metamaterials is that they exhibit properties mainly deter-
mined by their structures rather than their material constituents
[2]. Specifically, their topologies are carefully designed to generate
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effective properties not commonly found in natural materials.
These properties encompass but are not limited to negative Pois-
son’s ratio [1,3-6], negative index of refraction [7], high stiffness-
to-weight ratio [8-11], and mechanical cloaking structures [12].
When designing topologies, one widely used design strategy is dis-
covering cellular materials. Cellular materials are a repeated pattern
of carefully designed topologies, known as unit-cells, composed of
interconnected struts or beams [1]. However, the complexity of
such cellular structures and the grand design space of possible geo-
metrical configurations make it challenging to design cellular
materials with target properties.

In general, the cellular materials design process involves design
formation to validation, known as forward design. Conventional
design formation to discover these cellular metamaterials are often
limited by their reliance on intuition and trial-and-error methods,
which can be time-consuming and resource-intensive [1]. Once
designed, these metamaterials are validated through finite element
analysis and numerical homogenization [13-15]. These methods
rely on differentiable physics solvers to evaluate gradients for each
design option during the optimization process, making them chal-
lenging to apply in scenarios where performance is evaluated
through non-theoretical means, such as experimentation [15,16].
To alleviate the above issues, another common method is to select
a suitable mechanical metamaterial candidate that meets prede-
termined properties by building a cellular materials database
[17]. For instance, a large lookup table including approximately
17,000 unit-cell structures was established in [13]. However, this
process can also be computationally demanding to validate every
single unit structure in the database. As such, an automated cellu-
lar materials design process is demanded, i.e., we can computa-
tionally generate a cellular structure with desired properties. This
automated design process is known as inverse design [18]. The
inverse design has emerged as a potent tool for the efficient and
systematic design of intricate metamaterial structures in the
recent decade [2,8,18-21].

In most existing works, there are two main approaches to
achieving the inverse design of cellular materials: optimization-
based and data-driven-based methods. Optimization-based
approaches are usually referred to as topology optimization, which
is also known as inverse homogenization methods [21,22].
Although these techniques have been extensively utilized in prior
research [23-28], they pose a challenge in 3D lattice inverse
design, primarily due to their computationally intensive nature.
Additionally, the structures generated by these methods may not
be easily manufacturable [18,22,29]. Data-driven approaches elim-
inate the requirement for computationally demanding microscale
homogenization procedures and expedite the process of structural
optimization [2,8,18-21,30,31]. In addition, data-driven methods
are highly suitable for problems with intricate functionality that
are not solvable through analytical means [32,33]. Furthermore,
data-driven approaches can be seamlessly integrated with pre-
existing knowledge of the underlying physical laws or principles
[32]. Nonetheless, the effectiveness of these methods depends on
various factors such as the amount of available training data, sta-
tistical robustness, functional complexity, stability, and inter-
pretability. Different trade-offs exist among these factors, which
should be carefully considered [33].

Data-driven approaches have been extensively applied in vari-
ous aspects of engineering research. These include performance
prediction [34-36], optimization design [37,38], inverse design
[39-41], and damage detection [42,43]. In the specific context of
data-driven inverse design for mechanical metamaterials, neural
networks (NNs) are commonly employed to uncover the underly-
ing relationship between the design parameters of mechanical
metamaterials and their mechanical properties [44]. Convolutional
neural networks (CNNs) [45,46] have shown promise in aiding the
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inverse design of mechanical metamaterials by learning the opti-
mal arrangement of mechanical elements to achieve desired
mechanical properties. Moreover, CNNs outperform NNs in situa-
tions where there are a large number of high-dimensional samples.
However, the most commonly used techniques in the inverse
design of mechanical metamaterials involve the combination of
NNs and convolutional neural networks CNNs within dual deep
learning networks, such as Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs). GANs have demon-
strated exceptional capabilities in generating diverse and realistic
designs [8,47-50], facilitating exploration within the design space
and enabling the creation of intricate metamaterial designs that
exhibit desired mechanical properties. On the other hand, VAEs
[20,51-53] serve as powerful generative models with the capacity
to learn intricate patterns and generate diverse designs. Further-
more, VAEs provide a latent space representation, enabling inter-
polation and exploration of various design variations. This
attribute empowers designers to exert control over the properties
of generated designs through manipulation of points within the
latent space. In recent years, a trend has emerged, combining
machine learning with other methods in the design process. This
approaches reduce reliance on data alone. Examples include com-
bining topology optimization methods with data-driven
approaches [54,55], genetic algorithms with machine learning net-
works [40,56-58], and Bayesian optimization with machine learn-
ing methods [51] for mechanical metamaterial design. This
integration signifies a broader and more holistic approach to meta-
material design.

The integration of machine learning algorithms with other algo-
rithms has witnessed a significant increase, with a notable surge of
interest in Physics-guided Neural Networks (PGNNs) in recent
years [59]. PGNNs networks have garnered considerable attention
due to advancements in computing capabilities, making them
more practical to employ. Unlike GANs and VAEs, PGNNs do not
solely rely on data to emulate a physical system’s response.
Instead, these models operate within a hybrid modeling frame-
work, utilizing both data and outputs of physics-based model sim-
ulations to make predictions that are more readily interpretable
using conventional deep learning techniques. In the realm of meta-
material inverse design, dual neural networks in the form of
Physics-guided Neural Networks have shown great promise, yield-
ing highly encouraging results [18,60,61]. Notably, Deep Operator
Networks (DeepONets) are gaining popularity in modeling as they
can effectively learn the underlying operators or differential equa-
tions associated with a physical system. This characteristic allows
for more general applicability and eliminates the need for re-
training or transfer learning when input parameters change [62].
DeepONets have demonstrated strong performance in generalizing
PDE problems, surpassing the capabilities of Physics-informed
Neural Networks [63,64] due to their general nature. Although
the use of DeepONets in the inverse design of mechanical metama-
terials is still in its early stages with less number of publications,
their potential in the design field is promising due to their ability
to handle parameters in a separate branch network [62]. Thus,
DeepONets are recommended for future work in inverse mechani-
cal design.

One of the most significant hurdles in data-driven inverse
design problems is accurately representing the data, i.e., the unit
structures and their material properties in our case. Common
methods employed for metamaterial representation include voxe-
lated format [47,49], graph representation [65,66], and parametric
representation [18,55,60]. However, voxel representation proves
highly inefficient when dealing with sparse 3D cellular materials.
The voxel format has the curse of dimensionality issues, connectiv-
ity problems, and shape completion complications due to the spar-
sity of the generated representation. Additionally, both graph and
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parametric representations possess the drawback of difficulty in
finding a representation that encompasses a broad spectrum of
mechanical properties [14,22,66], with a majority of these works
concentrating on cubic and orthotropic unit-cells, disregarding
the shear-shear and shear-normal coupling components in the
effective stiffness tensor of other possible mechanical metamateri-
als [18]. Parameterization methods possess numerous attractive
features for representing unit structures of cellular materials such
as their simplicity in terms of comprehension and result interpre-
tation, as well as their rapidity in acquiring knowledge from data
with a reduced need for extensive training dataset [67]. As such,
we will introduce a new parametric approach for representing cel-
lular structures that can generate not only cubic and orthotropic
structures but also anisotropic structures in this work.

In the realm of metamaterial design, manufacturability poses a
significant challenge that requires careful consideration of various
constraints and requirements, such as feasibility and physical
validity, to ensure the physical realization of the desired mechan-
ical structures [1]. Furthermore, the representation of the synthe-
sized metamaterial with intricate details is important to facilitate
the fabrication process. It is crucial to confirm that the training
dataset can be manufactured using specific manufacturing pro-
cesses. Regrettably, manufacturability is neglected in most studies
on cellular structure inverse design [30]. In this work, we ensure
the manufacturability of the dataset with parametric representa-
tion by incorporating geometric constraints during the data gener-
ation. By constraining the design space to only include
manufacturable designs, we reduce the likelihood of producing
structures that cannot be fabricated.

In summary, we propose a data-driven inverse design approach
to generate 3D cellular metamaterials that possess targeted
mechanical properties in this work. The proposed inverse design
framework entails harnessing the robustness of the PGNN
approach, which is trained on a collection of manufacturable para-
metrized data encompassing both cubic and highly anisotropic cel-
lular structures. We demonstrate the potential for inverse design
framework to revolutionize the field of metamaterial engineering,
paving the way for creating materials with tailored properties for a
wide range of applications. To this end, the main contributions of
the paper are summarized as follows:

- We have presented a robust framework that effectively facil-

itates the inverse design of cellular mechanical metamaterials
utilizing the PGNN method.

§2 Data Generation

§3 Inverse Design Framework
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- Our framework guarantees the manufacturability of mechan-
ical metamaterials by training the model on a parameterized
dataset consisting of manufacturable unit-cells.

- Our parametrization approach encompasses a wide range of
unit-cells, including highly anisotropic ones, achieved by apply-
ing rotational transformations to cubic unit-cells.

The rest of the paper, as outlined in Fig. 1, is organized as fol-
lows. Section 2 outlines the method used for generating highly
parametrized anisotropic unit-cells. The inverse design framework
is introduced in Section 3, where the underlying principles are dis-
cussed. The performance of the data-driven approach on various
datasets, including the training dataset, is detailed in Section 4.
Lastly, Section 5 concludes the paper by discussing the contribu-
tions, limitations, and potential directions for future research.

2. Data generation

In this section, we present the methodology employed to gener-
ate parameterized data required for training our inverse design
framework. Specifically, we discuss the numerical homogenization
method utilized for computing the mechanical properties of unit-
cells. Furthermore, we elaborate on the structures generation pro-
cess, encompassing the application of constraints to ensure the
manufacturability of the unit-cells and the approach used for
expanding the spectrum of mechanical properties from cubic to
more anisotropic behavior.

2.1. Numerical homogenization

Numerical homogenization is a computational method com-
monly employed to determine the homogenized macroscopic
mechanical properties, or elasticity tensor, of cellular materials
[15,68,69]. This technique involves calculating the elasticity tensor
using Eq. (1), where Ejp, is the stiffness tensor, v is the virtual dis-

placement field, ¢€; is the macroscopic displacement in the virtual
displacement field, g is the prescribed macroscopic displace-

ment, and Q is the volume of the cellular material, y¥ is the
unknown variable we solve for.

/QEiquEfj(v) Epa(1)dQ = /QEz‘queij(V)E,?é"”dV Vv eQ (1)

§4 Performance Evaluation
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The outcome of homogenization analysis is a cellular material’s
elasticity tensor, which represents its elastic constants. To deter-
mine these constants, we conduct six distinct FEA runs, solving
Eq. (1) by prescribing three axial and three shear deformations. A
detailed description of this method can be found in the reference
[15]. The resulting elastic constants are then utilized to calculate
the mechanical properties of the cellular material, which form its
mechanical profile. It is possible to obtain all the elastic terms
using approximation methods such as the Voigt-Reuss-Hill method
(VRH) [70], which is based on the elastic stiffness tensor.

2.2. Structure generation

Additive manufacturing has led to the development of numer-
ous unit-cells. However, a significant proportion of these structures
pose a challenge in terms of parameterization and exhibit limited
material properties. In this study, we address these issues by draw-
ing inspiration from the nine-symmetry planes of cubic materials
[14]. Our approach involves creating parametric cubic structures,
which are subsequently modified through rotations of the truss
structures and their points. This results in a diverse range of prop-
erties, which we will demonstrate in the following section. The
nine symmetry planes of a cube can divide the cube into identical
48 tetrahedrons, as depicted in Fig. 2(a). Examination of a single
tetrahedron reveals 15 distinct nodes, as illustrated in Fig. 2(b).
By varying the connections between these nodes and applying
reflection along the aforementioned nine symmetric planes, a large
number of cubic unit-cell configurations can be generated,

—
Divide by 9
Planes

(a)
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hypothetically amounting to 10%. In this work, we mainly focused
on identifying a single unit-cell that can be represented in para-
metric form and cover a broad spectrum of mechanical properties
by adjusting its geometric parameters. To achieve this, we applied
certain manufacturability and complexity constraints during the
data generation process to limit the number of structures that were
explored. The details of our method are presented in the Supple-
mentary material. Ultimately, we selected a unit-cell that is com-
posed of only two edges in each tetrahedron, connecting the
vo,f5, and e, nodes, as seen in Fig. 3(a). By altering the diameter
(1 parameter) and the nodes’ offsets (4 parameters) of the chosen
unit-cell, we were able to obtain a wide range of cubic behavior.
The outcomes of these initial set of parameters generated approx-
imately 4900 unit-cells with a diverse range of bulk mechanical
behavior, as shown in Fig. 3(b). The spectrum of properties for var-
ious configurations was based on the base material Phrozen Onyx
Impact Plus, which has a Young’s modulus of 1.175 GPa, Poisson’s
ratio of 0.35, and a mass density of 1.15 g/cm>.

The unit-cells generated from the methodology depicted in
Fig. 3(b) present limitations in diversity and are insufficient to
develop a general model, mainly because all of them exhibit cubic
symmetry. The anisotropic nature of the stiffness tensor in cellular
materials implies that the mechanical properties depend on the
orientation of the structure [71]. Therefore we have performed
rotations on the cubic unit-cell structure, yielding a broader range
of anisotropic configurations. Specifically, we have rotated each of
the 4900 unit-cells using an angle 0, around the rotation axis that
was formed by the combination of the unit vectors e; and e,.

@ Vertex Nodes (vo- v3) - Fixed Nodes
. Edge Nodes (e - es) - 1DOF Motion
@ Faces Nodes fo - f3) - 2DOF Motion

@ nternal Node to - 3DOF Motion

(b)

Fig. 2. (a) The tetrahedral cube breakdown is used to generate cellular structures; (b) The node of a single tetrahedron and the motion space of each of the nodes.

Bulk Young's Modulus E (MPa)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Bulk Poisson's Ratio v

(b)

Fig. 3. (a) Basic unit-cell in the proposed parametrization method; (b) Space of Bulk mechanical properties established from the modification of nodes’ offsets and truss

diameters.
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(a)

Nevertheless, utilizing the 3D rotation representation leads to dis-
continuities in the rotational parameters representation since it
repeats every 27. This discontinuity makes it difficult to train
data-driven models that can accurately predict the rotational
parameters directly. To address this challenge, we introduced a
transformation operation to the initial dataset inspired by [72].
The operation consists of transforming the 3D representation
[0, €1,€2] into a 6D representation, and the procedure of rotations
is detailed in the Supplementary material. The adoption of the
rotation technique enabled the generation of more than
3,000,000 unit-cell configurations. Notably, many of these struc-
tures exhibit similar mechanical behavior due to the plane of sym-
metry of the constituent unit-cell. Moreover, any rotations made
along the same coordinate axis with an angle of ko,,, where k
can be —1 or 1, will produce equivalent configurations and stiffness
response. The comparison between the effective Young’s modulus
range of the dataset before and after the application of rotation is
depicted in Fig. 4, and more comparisons of the property space
before and after rotation are detailed in the Supplementary mate-
rial. To this end, we have successfully curated a parameterized
training dataset encompassing a diverse range of elastic behaviors.

3. Inverse design framework

The aim of this study is to design a cellular structure that dis-
plays desired mechanical behavior. As described in Section 2.1,
the elastic properties can be derived from the underlying effective
elastic stiffness, which is comprised of 21 distinct components.
This section endeavors to establish a trustworthy methodology
for generating the 11 geometric variables of the lattice that mani-
fest a prescribed mechanical behavior, which is described by a set
of 21 independent elastic parameters. Inverse design is a challeng-
ing task because different sets of design parameters can result in
similar mechanical properties, and distinct unit-cells can exhibit
comparable stiffness responses. This situation is known as an ill-
posed problem. The difficulty arises in determining a measure or
loss function that can assess the correctness of a solution while dis-
regarding the existence of multiple valid solutions. Therefore, sim-
ply mapping from design parameters to properties, as shown in Eq.
(2), using a naive approach can lead to ambiguities when generat-
ing cellular structures.

L1 2
GEN Loss < min a0 ; |IGEN(C;) — Par;]| (2)
To overcome this challenge, we propose an inverse design
framework inspired by PGNN models [18,59]. These models incor-
porate known physics principles and equations into their architec-
ture or training process, combining the strengths of neural
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Fig. 4. Effective Young’s Modulus space along the unit-cell axes: (a) Cubic configurations without rotations; (b) Cubic configurations after applying rotations.

networks and the constraints of physics. In our model, instead of
focusing solely on the precise prediction of the design parameters,
the objective of our approach is to precisely reconstruct the stiff-
ness tensor of a unit-cell based on a predetermined target stiffness
tensor. Our PGNN comprises a generator network (GEN) that pre-
dicts unit-cell parameters corresponding to its desired stiffness.
This mapping is further constrained using a numerical homoge-
nization simulator (HOM) that determines the stiffness compo-
nents related to the given unit-cell parameters. In an ideal
scenario, we can define a loss function that quantifies the error
between the predicted topology’s stiffness and the target stiffness,
as depicted in Eq. (3). By successfully incorporating this loss func-
tion, we transform the inverse problem into a well-posed problem.

n
INV Loss — min % 3 [IHOM(GEN(Cy)) — Gif)® (3)
i=1

To enhance efficiency, we exploit the forward network (FOR)
introduced in Eq. (4) as a computationally-effective surrogate for
the numerical homogenization simulator (HOM). This approach
offers a dual advantage. Firstly, the reconstruction loss can be eval-
uated numerous times using the pre-trained forward network,
which is significantly more computationally efficient compared
to employing numerical homogenization for reconstruction during
PGNN training. Secondly, The introduction of a forward network is
crucial as it enables automatic differentiation, a vital aspect of the
back-propagation algorithm necessary during the training process.
In summary, we have successfully developed an efficient and well-
posed PGNN model, as shown in Eq. (5). It is important to note that
the forward network is trained independently to improve the accu-
racy of stiffness value prediction. On the other hand, the generator
network is trained within the entire inverse framework, with fixed
weights for the forward network, to minimize the error in the gen-
erated unit-cell stiffness.

n
FOR Loss — min % > |IFOR(Par;) — Ci||? (4)
i=1
1 2
INV Loss — min >~ [[FOR(GEN(C) — Gil ()
i=1

In Fig. 5, we have presented the specific architecture of the neu-
ral networks employed in the training procedure. Given that the
values of each parameter can fluctuate across varying ranges, we
standardized the parameters in relation to their minimum and
maximum values. This normalization procedure guarantees that
all parameters are uniformly treated during the training process,
with no individual parameter holding greater sway than others.
Furthermore, it is recommended to adopt a linear activation
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Fig. 5. Inverse Design paradigm based on PGNN consisting of both generator and forward networks.

function, such as RelU, in the final layer of the architecture for
regression problems. Notwithstanding, in our specific architecture,
we utilize a Sigmoid activation function in the final layer of both
the forward and generator networks, a binary classification activa-
tion function. This decision stems from the normalization proce-
dure applied to the data, which guarantees that the output
values fall within the range of 0 and 1. Additionally, the application
of the Sigmoid function [73] enables the mapping of any input
value to a value between 0 and 1. The adoption of the Sigmoid acti-
vation function engendered improved outcomes as the model was
incapable of being trained utilizing a linear activation function in
the last layer. The design of the networks, encompassing the num-
ber of layers and the types of activation functions employed in
each layer, is exhibited in Fig. 5. Furthermore, we incorporated
dropout layers following every hidden layer to forestall overfitting,
particularly since there is an imbalance in the data concerning the
large values. Our implementation relied on the TensorFlow pack-
age! that enables automatic differentiation [74], making the imple-
mentation of our inverse model effortless. Additionally, we utilized
the Adam optimizer [75] to train both the forward and inverse net-
works, and the mean squared error was employed as the loss func-
tion for the two networks.

4. Inverse design performance evaluation

This section aims to assess the efficacy of our proposed inverse
design approach. Initially, we examine the prediction results of the
training and testing phases with the generated dataset from Sec-
tion 2. Subsequently, we scrutinize the model’s generalizability
by testing it on diverse datasets to examine the generalizability
of the inverse model. All the experiments in this section are exe-
cuted on a single Nvidia GeForce RTX 3060 GPU with 16 GB of
RAM. The data, source code, and trained models are available in
the Supplementary material.

4.1. Network performance with the generated dataset

In our study, we utilized a training dataset of 3,000,000 unit-
cells, reserving 400,000 for the purpose of testing and validation.
The training progress of both the forward and inverse networks
is detailed in the Supplementary material. To demonstrate the
accuracy of our networks, we have generated correlation plots
for the 21 stiffness components of the homogenized stiffness com-

T https://www.tensorflow.org/

ponent in the forward network, and the correlation between the
target and reconstructed stiffness components in the inverse
model, for both the testing and training data. Specifically, Fig. 6
presents the correlation plots for C;;, while the remaining correla-
tion plots can be referred to in the Supplementary material. Our
forward network demonstrates a high degree of precision, as evi-
denced by the coefficient of determination exceeding 0.984 for
all stiffness components. This makes it a viable replacement for
the conventional homogenization approach. Similarly, the inverse
model is able to reconstruct unit-cells that closely match the target

stiffness tensor, with Coefficient of Determination R* values equal
to or greater than 0.92 across all stiffness tensor components.
Notably, the normal components Cy1, C»,, and Cs; exhibit particu-

larly high R? values greater than 0.995, whereas the shear-shear

coupling components exhibit lower R* values, with the lowest
value being approximately 0.92.

A comprehensive evaluation of computational performance is
presented in Table 1, encompassing data generation, training,
and utilization of our framework. It can be observed from Table 1
that our forward data-driven approach demonstrates notable effi-
ciency in terms of runtime when compared to the conventional
homogenization method. Specifically, numerical homogenization
utilizing MATLAB necessitates an average of 27.079 seconds for a
single structure stiffness calculation, whereas our forward network
achieves comparable results with only microseconds of computa-
tional power. Similarly, the inverse reconstruction time is likewise
in microseconds, further highlighting the high computational effi-
ciency of our model. It is noteworthy that the training time can be
further optimized by implementing early stopping for both the for-
ward and inverse model training. After 100 epochs, the loss slightly
decreases, as evident from the loss graphs in Supplementary Fig. 6,
indicating that further epochs may not be necessary.

4.2. Network performance with other datasets

To extend the evaluation of the effectiveness of our inverse
model, we have conducted experiments to reconstruct cellular
structures from our model space that exhibit analogous stiffness
tensors to those structures from other datasets. This approach is
rooted in the premise that dissimilar structures can lead to similar
stiffness tensors. We have utilized the Normalized Mean-Squared
Error (NMSE) as a quantitative metric, as defined in Eq. (6), to facil-
itate numerical comparison and assess the precision of the recon-
structed structure’s stiffness tensor with respect to the target
stiffness tensor.
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Fig. 6. Comparison of the stiffness component C;;: (a) Forward Correlation plot for training data; (b) Forward Correlation plot for testing data; (c) Inverse Correlation plot for

training data; and (d) Inverse Correlation plot for testing data.

Table 1

Computational run time for each task in the project, and the name of the hardware and the software utilized.

Task Software

Hardware Runtime

Homogenization
Cubic Structures Generation and Homogenization.

Unit-cells Rotation Python

MATLAB 2021b
MATLAB 2021b

Single core CPU 27.079 s for one structure

Forward Network (Training)
Forward Network (Prediction)
PGNN Inverse Model (Training)
Generator Network (Prediction)

TensorFlow + Python
TensorFlow + Python
TensorFlow + Python
TensorFlow + Python

Single core CPU 33 h

Single GPU 2 min

Single GPU 7 min

Single GPU 0.063 s for 2000 Structures
Single GPU 34 min 22.5 s

Single GPU 0.189 s for 2000 Structures

6

6
ZZ Ctarget‘ij - Cpred.ij)z

i=1 j=1

Z Ctarget ij

i=1 j=1

NMSE(Crarget, Cprea) =

We commence our testing process by subjecting our inverse
model to scrutiny using an external dataset that utilizes the cubic
tetrahedral method but with varying tetrahedron nodes [ 71, f3, e4].
The systematic variation of the truss radius within the range of
0.02 to 0.05 resulted in the creation of approximately 4900 distinct
configurations, which showcase a diverse range of cubic mechani-
cal behavior as depicted in Fig. 7.

Next, our inverse model was employed to reconstruct truss con-
figurations that are comparable to the newly developed dataset.
The frequency distribution of the reconstructed structures based
on their NMSE values is illustrated in Fig. 8(a). Notably, 70.37% of
the total data exhibit NMSE values that are lower than 0.05, indi-
cating the effective performance of the inverse model. Further-
more, as illustrated in Fig. 8(b), we have compared our new
cubic structures with the training dataset to seek configurations

60 [

40 -

Effective Poisson's Ratio E

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Poisson's Ratio v

Fig. 7. Space of Properties of unit-cell configurations constructed from [vy,f3,e4]
tetrahedron nodes.
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that display the lowest NMSE. Our findings indicate that the NMSE
values of our reconstructed structures surpass the closest match
discovered in the training dataset, signifying the superiority of
our inverse model over the conventional search or lookup tables
method employed in this dataset. Additionally, computing the
NMSE values for each configuration’s stiffness in the new dataset
with every configuration in the three million training dataset con-
sumes over 4,000 minutes for the entire new dataset. Conversely,
the inverse design data-driven approach requires only 0.53 seconds
to identify the closest stiffness configuration for the entire new
testing data, demonstrating the efficiency of our inverse model.
Subsequently, we have randomly selected four reconstructed con-
figurations with NMSE values lower than 0.05 and presented them
alongside their corresponding original configuration counterparts
in Fig. 9, including the comprehensive reconstruction steps. Fol-
lowing that, we assess the model’s proficiency by analyzing its per-
formance on the most comprehensive crystallographic trusses
dataset obtainable, acquired from Lumpe and Stankovic’s [13]
scholarly work; a comprehensive description is provided in the
Supplementary material. Based on our analysis, it appears that
the model’s performance in reconstructing structures with stiff-
ness components comparable to the Lumpe and Stankovic dataset
is insufficient to establish the generalizability of our approach to all
configurations at this time. We observed that only 32% of the
reconstructed configurations met the acceptable criteria men-
tioned earlier, as shown in Supplementary Fig. 11. Therefore, we
conclude that the current training dataset is not extensive enough,
highlighting the necessity of generating a more diverse and com-
prehensive parametrize dataset.

The proposed data-driven model offers numerous advantages
over existing methods. The inverse design framework is character-
ized by high efficiency and can predict cellular unit-cells with tar-
get stiffness tensors within microseconds, which is orders of
magnitude faster than classical computationally-intensive
optimization-based methods. In addition, the proposed model out-
performs recent data-driven inverse methods, such as those
involving iterative search in a latent space [52], which are compu-
tationally expensive due to the high dimensionality of predicting
the position of hundreds of voxels in metamaterial inverse design
[47]. The truss-based model synthesizer ensures manufacturability
by utilizing a simple unit-cell base element within its predicted
unit-cells, which can be readily fabricated through additive manu-
facturing processes. This contrasts with previous works where the
generated lattices often exhibit complexity [18]. Moreover, the
proposed model employs parameterized design, thus eliminating
the need for post-processing, a common issue with voxel
representations.

5. Conclusions and discussions

Inspired by crystallography, the utilization of cellular structures
for designing mechanical metamaterials has emerged as a widely
adopted technique in the realm of materials design. Despite nota-
ble strides in the development of truss structures, the inverse
design of structures possessing targeted stiffness properties con-
tinues to present an obstacle. To address this challenge, we have
leveraged a physics-guided neural network (PGNN) to forecast
truss configurations with tailored anisotropic stiffness. The model
incorporates the concept of a dual neural network, consisting of a
generator network as the design tool and a forward network that
emulates the simulation process within the PGNN while also
imposing constraints on the training process. The framework
underwent training on an extensive dataset comprising millions
of unit-cells. The dataset was generated based on the nine symme-
tries of cubic materials, with an aim to expand the domain of ani-
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sotropic behavior by applying rotational transformations. The
resultant dataset encompasses a diverse array of topologies with
a wide spectrum of mechanical properties. Subsequently, the pro-
posed model was subject to a rigorous evaluation, comprising sev-
eral testing dataset. Initially, the model’s efficacy was tested on
data split from the training dataset, wherein the model demon-
strated a performance akin to that observed during training. Then,
a cubic dataset was generated, which includes distinct base unit-
cells and configuration by employing the nine symmetries of the
cubic materials approach. The inverse paradigm was then utilized
to reconstruct similar unit-cells, wherein a reconstruction accuracy
of up to 70% was achieved. During the final stage of the evaluation,
we examined the reconstruction of analogous configurations using
a broad dataset obtained from Lumpe and Stankovic. However, the
lower reconstruction accuracy observed in this phase indicated
that the training design space lacked comprehensiveness. The
model effectively reconstructed unit-cells possessing mechanical
properties similar to those present in the original dataset in
microseconds. In summary, the proposed paradigm exhibits for-
midable capabilities provided that the training data encompasses
a broad gamut of mechanical properties.

The present study has offered valuable insights into the imple-
mentation of PGNN as a design tool. Future works are anticipated
in the following aspects:

e Despite expanding the cubic dataset to encompass a wider
range of data by implementing rotations, the base cellular
topologies remain restricted. Supplementary Fig. 11 illustrates
the model’s incapacity to fit all cellular topologies. An intriguing
approach is to draw inspiration from tetragonal materials
instead of the 48 tetrahedron method; the first possesses the
capability to act as the basis for both cubic and tetragonal struc-
tures even before applying the rotational transformation.

e The utilization of regression models for training purposes
imposes constraints upon the prediction space of structures,
thus limiting the range of available design options. This con-
straint may lead to the prediction of structures that fail to sat-
isfy auxiliary design specifications. The integration of
probabilistic layers could be a possible solution, as this can
facilitate the creation of multiple topologies to generate pre-
scribed stiffness tensors.
The methodology used for parameterizing data imposes limita-
tions on the model’s ability to generate novel configurations or
structures beyond the unit cells used during the training phase,
as observed in the Lumpe and Stankovic dataset. Consequently,
we suggest exploring alternative structure representations,
such as voxel-representation, and try to address the challenges
associated with this type of representation.
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