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Abstract. We study the sharp interface limit and the existence of weak solutions of a phase
field model for climb and self-climb of prismatic dislocation loops in periodic settings. The model is
set up in a Cahn-Hilliard/Allen-Cahn framework featured with degenerate phase-dependent diffusion
mobility with an additional stabilizing function. Moreover, a nonlocal climb force is added to the
chemical potential. We introduce a notion of weak solutions for the nonlinear model. The existence
result is obtained by approximations of the proposed model with nondegenerate mobilities. Lastly,
the numerical simulations are performed to validate the phase field model and the simulation results
show a big difference for the prismatic dislocation loops in the evolution time and the pattern with
and without self-climb contribution.

1. Introduction. Dislocations are line defects in crystalline materials. Disloca-
tions climb is the motion of dislocations out of their slip planes with the assistance of
vacancy diffusion over the bulk of the materials, and it is an important mechanism in
the plastic properties of crystalline materials at high temperatures (e.g., in dislocation
creep) [19, 15, 38, 39, 3, 28, 23, 16, 14, 42, 4]. The self-climb of dislocations also plays
important roles in the properties of irradiated materials [19]. The self-climb motion
is driven by pipe diffusion of vacancies along the dislocations, and is the dominant
mechanism of prismatic loop motion and coalescence at not very high temperatures
[25, 21, 10, 37, 33, 30, 29, 17, 27, 31, 4]. Both dislocation climb by vacancy bulk
diffusion and self climb by vacancy pipe diffusion have been studied extensively in the
literature over the years. Most of the work in the past focuses on one type of mo-
tion, either pure dislocation climb by vacancy bulk diffusion or self climb motion by
vacancy pipe diffusion. Recently, there have been growing interest on the cooperative
effects of the two mechanisms of climb by vacancy bulk diffusion and self-climb by
vacancy pipe diffusion and [17, 4, 24].

Phase field models (e.g., of the Cahn-Hilliard type [6] or the Allen-Cahn type
[1]) are a class of numerical simulation models that evolve the moving interfaces (e.g.
curves in two dimensions) implicitly. Compared with the front-tracking methods
that directly track the locations of the interfaces, the phase field models have the
advantages of being able to handle topological changes of the interfaces automatically
with simple numerical implementation on a uniform mesh of the simulation domain.
Phase field models for dislocation climb by vacancy bulk diffusion have been developed
in the literature [20, 22, 13, 14]. In a previous work, the author Niu and collaborators
proposed a phase field model for self-climb of prismatic dislocation loops [31]. To the
best of our knowledge, a phase field model that accounts for the combined effect of
these two mechanisms and yields correct sharp interface limit is not available in the
literature.

In this paper, we present a phase field model for the motion of prismatic disloca-
tion loops by both climb and self-climb. We shall study the sharp interface limit and
derive the existence of weak solutions (defined in section 3) for our proposed model.
In addition, we present numerical results validating our phase field model. The model
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that we propose is the following modified Cahn-Hilliard Allen-Cahn type equation:

g(u)(∂tu + βµ) = ∇ ⋅ (M(u)∇
µ

g(u)
) for x ∈ T2

⊂ R2, t ∈ [0,∞),(1.1)

µ = −∆u +
1

ε2
q′(u) +

1

ε
h(u)fcl.(1.2)

In this model, the dislocation climb by vacancy bulk diffusion is incorporated by
the βµ term. Without the βµ term on the left-hand side, it describes the self-climb
of prismatic dislocation loops, and Here β > 0 is a constant that enables a correct
dislocation climb velocity, M(u) = M0(1 − u

2)2, M0 > 0, is the diffusion mobility,
q(u) = 2(1 − u2)2 is the double well potential which takes minimums at ±1, g(u) =
(1−u2)2 is the stabilizing function which guarantees correct asymptotics in the sharp
interface limit, and ε is a small parameter controlling the width of the dislocation
core.

In this model, we assume prismatic dislocation loops lie and evolve by self-climb
in the xy plane and all dislocation loops have the same perpendicular Burgers vector
= (0,0, b). The local dislocation line direction is given by (b/b)× (∇u/∣∇u∣). The last
contribution fcl in the chemical potential µ in (1.2) is the total climb force, with

(1.3) fcl = f
d
cl + f

app
cl ,

where fd
cl is the climb force generated by all the dislocations:

(1.4) fd
cl(x, y, u) =

Gb2

8π(1 − ν)∫
T2

(
x − x

R3
ux +

y − y

R3
uy)dxdy

with G being the shear modulus, ν the Poisson ratio, and R =
√
(x − x)2 + (y − y)2,

and fapp
cl is the applied force. The smooth cutoff factor h(u) = H0(1 − u

2)2 is to
guarantee the climb force acts only on the dislocations. The constant H0 > 0 is chosen
such that the phase field model generates accurate climb force of the dislocations [31]
(c.f. Sec. 2).

The chemical potential µ comes from variations of the classical Cahn-Hilliard
energy and the elastic energy due to dislocations, i.e.

µ =
δECH

δu
+
1

ε
h(u)

δEel

δu
,

where

ECH(u) = ∫
T2

(
1

2
∣∇u∣2 + q(u))dx,

is the classical Cahn-Hilliard energy, and

Eel = ∫
T2

(
1

2
ufd

cl + uf
app
cl )dx

is the elastic energy. The climb force generated by the dislocations can be expressed
as

fd
cl(x, y, u) =

Gb2

4(1 − ν)
(−∆)

1
2u.(1.5)
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Here (−∆)su is the fractional operator defined by

F((−∆)sf) = (ξ21 + ξ
2
2)

s
2F(f)(ξ),

where ξ is the frequency.
Taking g ≡ 1 and β = 0 in (1.1), and omitting the nonlocal term 1

ε
h(u)fcl from

(1.2), we arrive at the classical degenerate Cahn-Hilliard equation. The degenerate
Cahn-Hilliard equation has been widely studied as a diffuse-interface model for phase
separation in binary system [6, 5, 7, 8, 9, 11]. There is a critical issue in modeling
surface diffusion by the degenerate Cahn-Hilliard model [18, 34] though, due to the
presence of incompatibility in the asymptotic matching between the outer and inner
expansions. Rätz, Ribalta, and Voigt (RRV) [34] fixed this incompatibility by in-
troducing a singular factor 1/g (u) in front of the chemical potential µ to force it to
vanish in the far field. In our earlier work [31], we proposed a phase field model for
the self-climb of dislocation loops by adding a stabilizing factor to a modified Cahn-
Hilliard type model. The model we proposed here is obtained by incorporating the
dislocation climb motion into the phase field model for the self-climb motion of pris-
matic dislocation loops that we proposed earlier [31]. We point out that the presence
of the stabilizing factor on the left side of the equation(1.1) is mainly for the proof of
existence of weak solutions, and without it, the results of dislocation velocity given by
the sharp interface limit (see the remark at the end of Sec. 2) and numerical simula-
tions are similar. When g ≡ 1 and the climb force fcl is omitted, the model reduces to
the Cahn-Hilliard/Allen-Cahn equation with degenerate mobility. Such models have
attracted lots of attentions in recent years [40].

Our main results in this paper concerns the sharp interface limit and the existence
of weak solutions for (1.1)-(1.2). We remark that the uniqueness of such solutions is
not known. Numerical simulations are also performed using the obtained phase field
model.

We first derive a sharp interface limit equation for (1.1) and (1.2) via formal
asymptotic analysis. The following sharp interface equation is obtained as ε→ 0,

(1.6) v = −λ∂ss (ακ −H0f
(0)
cl (s)) + η (ακ −H0f

(0)
cl (s)) .

Here λ, α and η are positive constants whose exact forms can be found in section 2.
For the existence of weak solutions of (1.1)-(1.2), we consider the following mod-

ified problem in a periodic setting. Set Ω = T2, we consider

g(u)(∂tu + βµ) = ∇ ⋅ (M(u)∇
µ

g(u)
) , for x ∈ T2, t ∈ [0,∞)(1.7)

µ = −∆u + q′(u) + (−∆)
1
2u.(1.8)

Here g(u) = ∣1 − u2∣m for 2 ≤ m < ∞, M(u) = M0g(u) for some constant M0 > 0,
q(u) ∈ C2(R,R) and there exist constants Ci > 0, i = 1,⋯,10, and 1 ≤ r <∞, such that
for all u ∈ R,

C1∣u∣
r+1
−C2 ≤ q(u) ≤ C3∣u∣

r+1
+C4,(1.9)

∣q′(u)∣ ≤ C5∣u∣
r
+C6(1.10)

C7∣u∣
r−1
−C8 ≤ q′′(u) ≤ C9∣u∣

r−1
+C10.(1.11)

We see that the classical double well potential q(u) = (1 − u2)2 satisfies (1.9)-(1.11)
with r = 3.
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In the proof, we consider approximations of the proposed model (1.7)-(1.8) with
positive mobilities. Given any θ > 0, we define

(1.12) gθ(u) ∶= {
∣1 − u2∣m if ∣1 − u2∣ > θ,

θm if ∣1 − u2∣ ≤ θ,

and

(1.13) Mθ(u) ∶=M0gθ(u).

Our first step is to find a sufficiently regular solution for (1.7)-(1.8) with mobility
Mθ(u) and stabilizing function gθ(u) together with a smooth potential q(u). This
result is summarized in the following Proposition.

Proposition 1.1. Let Mθ, gθ be defined by (1.13) and (1.12), under the assump-
tions (1.9)-(1.11), for any u0 ∈H

1(T2) and any T > 0, there exists a function uθ such
that

a) uθ ∈ L
∞(0, T ;H1(T2))∩C([0, T ];Lp(T2))∩L2(0, T ;W 3,s(T2)), where 1 ≤ p <

∞, 1 ≤ s < 2,
b) ∂tuθ ∈ L

2(0, T ; (W 1,q(T2))′) for q > 2,
c) uθ(x,0) = u0(x) for all x ∈ T2,

which satisfies (1.7)-(1.8) in the following weak sense

∫

T

0
< ∂tuθ, ϕ >((W 1,q(T2))′,W 1,q(T2)) dt

= −∫

T

0
∫

T2

Mθ(uθ)∇
−∆uθ + q

′(uθ) + (−∆)
1
2uθ

gθ(uθ)
⋅ ∇

ϕ

gθ(uθ)
dxdt

−∫

T

0
∫

T2

β(−∆uθ + q
′
(uθ) + (−∆)

1
2uθ)ϕdxdt(1.14)

for all ϕ ∈ L2(0, T ;W 1,q(T2)) with q > 2. In addition, the following energy inequality
holds for all t > 0.

∫
T2

(
1

2
∣∇uθ(x, t)∣

2
+ q(uθ(x, t)) + uθ(x, t)(−∆)

1
2uθ(x, t))dx

+∫

t

0
∫

T2

Mθ(uθ(x, τ)) ∣∇
−∆uθ(x, τ) + q

′(uθ(x, τ)) + (−∆)
1
2uθ(x, τ)

gθ(uθ(x, τ))
∣

2

dxdτ(1.15)

+∫

t

0
∫

T2

β (−∆uθ(x, τ) + q
′
(uθ(x, τ)) + (−∆)

1
2uθ(x, τ))

2
dxdτ

≤ ∫
T2

(
1

2
∣∇u0(x)∣

2
+ q(u0(x)) + u0(x)(−∆)

1
2u0)dx.

Proposition 1.1 is proved via Galerkin approximations. Due to the presence of
the stabilizing function gθ, it is not obvious how to pass to the limit in the nonlinear
term of the Galerkin approximations. Our main observation in this step is the strong
convergence of ∇uN in L2(T2 × [0, T ]) which allows us to pass to the limit.



PHASE FIELD MODEL FOR CLIMB AND SELF-CLIMB OF DISLOCATION LOOPS 5

In order to obtain a weak solution to (1.7)-(1.8), we consider the limit of uθ as
θ → 0. Our definition of the weak solutions to (1.7)-(1.8) follows the formulation of
weak solutions in [9] for degenerate Cahn-Hilliard equations (corresponding to choos-
ing β = 0 and g(u) ≡ 1 in (1.7) and omitting the nonlocal term from (1.8)). The main
difficulty is how to pass to the limit in the nonlinear term in the approximation equa-
tion. For degenerate Cahn-Hilliard equations on Ω = Tn, the authors in [9] proved
the existence of weak solutions by the following idea. The estimates for the posi-
tive mobility approximations yield uniform bounds for ∂tuθi in L2(0, T ; (H2(Tn))′),
and uniform bounds on uθi in L∞(0, T ;H1(Tn). Those uniform bounds imply the

strong convergence of
√
Mi(uθi) in C(0, T ;Ln(Tn)). By this and the weak conver-

gence of
√
Mi(uθi)∇µθi in L2(ΩT ), authors in [9] showed (up to a subsequence) that

Mθi(uθi)∇µθi ⇀
√
M(u)ξ weakly in L2(0, T ;L

2n
n+2 (Tn)) where ξ is the weak limit of

√
Mi(uθi)∇µθi . The main task left is to show

√
M(u)ξ = M(u)(−∇∆u + q′′(u)∇u)

and the limit equation becomes a weak form Cahn-Hilliard equation. Authors in [9]
proved that this is almost true in the set where u ≠ ±1. For small numbers δj monoton-
ically decreasing to 0, they consider the limit in a subset Bj of ΩT where approximate

solutions converges uniformly and ∣ΩT /Bj ∣ < δj . By decomposing Bj =Dj ∪ D̃j where

mobility is bounded from below uniformly in Dj and controlled above in D̃j by suit-
able multiples of δj , they obtain the weak form equation for the limit function by
passing to the limit of uθi on Dj then letting j goes to ∞. Under further regularity
assumptions on ∇∆u, they obtained the explicit expression for ξ in the weak form of
the equation.

Due to the existence of the stabilizing function g(u) in our model, it is much more
delicate to carry out a similar analysis. Unlike the degenerate Cahn-Hilliard case in
[9], where there is uniform bound on ∂tuθi in L2(0, T ; (H2(Tn))′), the first obstacle
for our model is that the bound estimate on ∂tuθi blows up when θi goes to zero.
Secondly, it is more complicated to derive an explicit expression of the weak limit of
Mi(uθi)∇

µθi

gθi(uθi
)
in terms of u in the limit equation. We shall follow ideas in a recent

work by the authors [32] by which we derive convergence of gθi(uθi) (consequently
Mθi(uθi)) from convergence of Gi(u) = ∫

u
0 gθi(s)ds. We then follow the idea in [9] to

pass to the limit on the right hand side of the approximation equation. Below is our
main theorem. Here and throughout the paper, we use the notation Ωt = T2 × [0, t]
for any t > 0.

Theorem 1.2. For any u0 ∈H
1(T2) and T > 0, there exists a function u ∶ ΩT → R

satisfying
i) u ∈ L∞(0, T ;H1(T2))∩C([0, T ];Ls(T2))∩L2(0, T ;H2(T2)), where 1 ≤ s <∞,
ii) g(u)∂tu ∈ L

p(0, T ; (W 1,q(T2))′) for 1 ≤ p < 2 and q > 2.
iii) u(x,0) = u0(x) for all x ∈ T2,

which solves (1.7)-(1.8) in the following weak sense
a) There exists a set B ⊂ ΩT with ∣ΩT /B∣ = 0 and a function ζ ∶ ΩT → Rn

satisfying χB∩PM(u)ζ ∈ L
p

p−1 (0, T ;L
q

q−1 (T2,R2)) such that

∫

T

0
< g(u)∂tu,ϕ >(W 1,q(T2))′,W 1,q(T2) dt(1.16)

= ∫
B∩P

M(u)ζ ⋅ ∇ϕdxdt − ∫
ΩT

β [∇u ⋅ ∇ϕ + q′(u)ϕ + (−∆)
1
2 (u)ϕ]dxdt

for all ϕ ∈ Lp(0, T ;W 1,q(T2)) with p, q > 2. Here P ∶= {(x, t) ∈ ΩT ∶ ∣1−u
2∣ ≠ 0}

is the set where M(u), g(u) are nondegenerate and χB∩P is the characteristic
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function of set B ∩ P .
b) Assume u ∈ L2(0, T ;H2(T2)). For any open set U ∈ ΩT on which g(u) > 0

and ∇∆u ∈ Lp(U) for some p > 1, we have
(1.17)

ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u.

a.e. in U .
Moreover, the following energy inequality holds for all t > 0

∫
T2

(
1

2
∣∇u(x, t)∣2 + q(u(x, t)) + u(x, t)(−∆)

1
2u(x, t))dx(1.18)

+∫
Ωr∩B∩P

M(u(x, τ))∣ζ(x, τ)∣2dxdτ

+∫
Ωr∩B∩P

β (−∆u + q′(u) + (−∆)
1
2u)

2
dxdτ

≤ ∫
T2

(
1

2
∣∇u0(x)∣

2
+ q(u0(x)))dx.

Remark 1.3. Our definition of weak solutions follows the formulation of weak
solutions in [9] for degenerate Cahn-Hilliard equations. Further study is needed to
explore the regularity of such weak solutions. It is also not clear if such solution is
unique. When passing to the limit from the regularized solution uθ and the corre-
sponding chemical potential µθ = −∆uθ + q

′(uθ) + (−∆)
1
2uθ, a key challenge is the

convergence of nonlinear term Mθ(uθ)∇
µθ

gθ(uθ)
. Up to a subsequence, we can show

that

Mθ(uθ)∇
µθ

gθ(uθ)
⇀
√
M(u)ξ weakly in Lp

(0, T ;Ls
(T2
))

for some ξ ∈ L2(ΩT ). Thus we have, for any ϕ ∈ Lp(0, T ;W 1,q(T2)) with p, q > 2,

(1.19) ∫

T

0
⟨g(u)∂tu + βu,ϕ⟩((W 1,q(T2))′,W 1,q(T2)) dt = −∫

T

0
∫
T2

√
M(u)ξ ⋅ ∇ϕdxdt.

Ideally we want
√
M(u)ξ =M(u)∇

−∆u + q′(u) + (−∆)
1
2u

g(u)
,

under which (1.19) becomes a weak form of (1.1)-(1.2). In general this is too much
to ask for due to the degeneracy in the set where u = ±1. We show that this is almost
true in the set u ≠ ±1. More precisely, assuming u ∈ L2(0, T ;H2(T2)), let P be the set
where M(u) is non-degenerate, then there exists a set B with ∣ΩT /B∣ = 0, a sequence
of increasing sets Dj whose limit is B ∩ P , and a function ζ satisfying χB∩PM(u)ζ ∈

L
p

p−1 (0, T ;L
q

q−1 (T2,R2)) such that (1.16) holds for all ϕ ∈ Lp(0, T ;W 1,q(T2)) with
p, q > 2; and

ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u a.e. in U
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on every open set U ⊂ ΩT on which g(u) > 0 and ∇∆u ∈ Ls(U) for some s > 1. In

addition, for any Ψ ∈ L
p

p−1 (0, T ;L
q

q−1 (T2;R2)),

∫

T

0
∫
T2

√
M(u)ξ ⋅ ∇ϕdxdt = ∫

B∩P
M(u)ζ ⋅Ψdxdt.

Consequently, for any ϕ ∈ Lp(0, T ;W 1,q(T2)) with p, q > 2,

∫

T

0
⟨g(u)∂tu,ϕ⟩((W 1,q(T2))′,W 1,q(T2)) dt = −∫

B∩P
M(u)ζ ⋅ ∇ϕdxdt.

Remark 1.4. Our proof for Proposition 1.1 and Theorem 1.2 also works for the 1D
case. One important fact we use here is H1(Tn) ⊂ Lp(Tn) for any p ≥ 1 when n = 1,2.
For dimension ≥ 3, Sobolev embedding theorem only gives H1(Tn) ⊂ Lp(Tn) for
p ≤ 2n

n−2
, which is not enough integrability to handle the nonlinear term in the limiting

step for Galerkin approximation or when letting mobility goes to zero. Different
approach needs to be explored for higher dimensional cases.

Lastly, we perform numerical simulations to validate our model. Using the proposed
phase field model, we did simulations of evolution of an elliptic prismatic loop and
interactions between two circular prismatic loops under the combined effect of self-
climb and non-conservative climb. Our numerical results indicate that the self-climb
effect slows down the shrinking of loop for the evolution of an elliptic prismatic loop.
For interaction between two circular loops, the patterns in the two shrinking process
are quite different with or without the self-climb effect .

The paper is organized as follows. We shall derive sharp interface limit for (1.1)
and (1.2) through formal asymptotic expansions in section 2. Section 3.1 is devoted
to the proof of Proposition 1.1 and Theorem1.2 is proved in section 3.2. Numerical
simulations are presented in section 4.

2. Sharp interface limit via asymptotic expansions. In this section, we
perform a formal asymptotic analysis to obtain the dislocation self-climb velocity of
the proposed phase field model (1.1) and (1.2) in the sharp interface limit ε→ 0.

2.1. Outer expansions. We first perform expansion in the region far from the
dislocations. Assume the expansion for u is

(2.1) u(x, y, t) = u(0)(x, y, t) + u(1)(x, y, t)ε + u(2)(x, y, t)ε2 +⋯

Correspondingly, we have

M(u) =M(u(0)) +M ′
(u(0))u(1)ε + (M ′

(u(0))u(2) +
1

2
M ′′ (u(0)) (u(1))

2
) ε2 +⋯,

g(u) = g(u(0)) + g′(u(0))u(1)ε + (g′(u(0))u(2) +
1

2
g′′(u(0)) (u(1))

2
) ε2 +⋯,

q′(u) = q′(u(0)) + q′′(u(0))u(1)ε + (q′′(u(0))u(2) +
1

2
q(3)(u(0)) (u(1))

2
) ε2 +⋯,

fd
cl(x, y, u) = f

d
cl(x, y, u

(0)
) + fd

cl(x, y, u
(1)
)ε + fd

cl(x, y, u
(2)
)ε2 +⋯.

We also expand the chemical potential µ as

(2.2) µ =
1

ε2
(µ(0) + µ(1)ε + µ(2)ε2 +⋯) .
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Rewrite equation (1.1) as

(2.3) g(u)(∂tu + βµ) =M0∇ ⋅ (∇µ − µ
g′(u)

g(u)
∇u),

and set

(2.4) w = −µ
g′(u)

g(u)
=

1

ε2
(w(0) +w(1)ε +w(2)ε2 +⋯) .

Plugging the expansions into (2.3) and (1.2) and matching the coefficients of ε
powers in both equations, the O( 1

ε2
) equations of (2.3) and (1.2) yield

(2.5) βg(u(0))µ(0) =M0∇ ⋅ (∇µ
(0)
+w(0)∇u(0)) ,

and

(2.6) µ(0) = q′(u(0)).

Since

w(0) = µ(0)
g′(u(0))

g(u(0))
,

then u(0) = 1 or u(0) = −1 satisfies equations (2.5)-(2.6). In particular, such choice of
u(0) implies µ(0) = 0.

The O( 1
ε
) equations of (2.3) and (1.2) yield

β (g(u(0))µ(1) + g′(u(0))u(1)µ(0))(2.7)

= M0∇ ⋅ (∇µ
(1)
+w(0)∇u(1) +w(1)∇u(0)) ,

and

µ(1) = q′′(u(0))u(1) + h(u(0))fd
cl(x, y, u

(0)
).(2.8)

Since u(0) = 1 or −1, u(1) = 0 satisfies (2.7)-(2.8). Moreover, such choice of u(1)

guarantees µ(1) = 0.
The O(1) equations of (2.3) and (1.2) are

u
(0)
t g(u(0)) + β (g(u(0))µ(2) + g′(u(0))u(1)µ(1) + µ(0) (g′(u(0))u(2) +

1

2
g′′(u(0)) (u(1))

2
))

= M0∇ ⋅ (∇µ
(2)
+w(0)∇u(2) +w(1)∇u(1) +w(2)∇u(0)) ,

and

µ(2) = −∆u(0) + q′′(u(0))u(2) +
1

2
q(3)(u(0))(u(1))2

+h(u(0))fd
cl(x, y, u

(1)
) + h′(u(0))u(1)fd

cl(x, y, u
(0)
).

Taking into account of the fact u(0) = ±1, u(1) = µ(0) = µ(1) = 0, the equations above
reduce to

0 = ∇ ⋅ (∇µ(2) +w(0)∇u(2)) ,(2.9)
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and

µ(2) = q′′(u(0))u(2) + h(u(0))fd
cl(x, y, u

(1)
).(2.10)

Thus u(2) = 0 satisfies (2.9)-(2.10). Moreover, such choice of u(2) guarantees µ(2) = 0.
In general, if u(0) = ±1, u(1) = u(2) = ⋯ = u(k+1) = 0, the O(εk) of the k ≥ 1

equations of (2.3) and (1.2) yield

0 = ∇ ⋅ (∇µ(k+2) +w(0)∇u(k+2)) ,(2.11)

and

µ(k+2) = q′′(u(0))u(k+2) + h(u(0))fd
cl(x, y, u

(k+1)
).(2.12)

Thus u(k+2) = 0 satisfies (2.11) and (2.12).
In summary, we have u = 1 or u = −1 in the outer region.

2.2. Inner expansions. For the small inner regions near the dislocations, we
introduce local coordinates near the dislocations. Considering a dislocation C pa-
rameterized by its arc length parameter s. We denote a point on the dislocation by
r0(s) with tangent unit vector t(s) and inward normal vector n(s). A point near the
dislocation C is expressed as

(2.13) r(s, d) = r0(s) + dn(s),

where d is the signed distance from point r to the dislocation. Since the gradient
fields are of order O( 1

ε
), we introduce the variable ρ = d

ε
and use coordinates (s, ρ)

in the inner region. Under this setting, we write u(x, y, t) = U(s, ρ, t) and equation
(1.1)-(1.2) can be written as

g(U) (∂tU −
1

ε
vn∂ρU + βµ) =

M0

1 − ερκ
∂s (

1

1 − ερκ
(∂sµ − µ

g′(U)

g(U)
∂sU))(2.14)

+
1

ε2
M0

1 − ερκ
∂ρ ((1 − ερκ)(∂ρµ − µ

g′(U)

g(U)
∂ρU)) ,

and

µ = −
1

1 − ερκ
∂s (

1

1 − ερκ
∂sU) −

1

ε2
1

1 − ερκ
∂ρ ((1 − ερκ)∂ρU)(2.15)

+
1

ε2
q′(U) +

1

ε
h(U)fcl(s, ρ,U).

Assume that µ takes the same form expansion as (2.2). The following expansions
hold for U and the climb force fcl within the dislocation core region:

(2.16) U(s, ρ, t) = U (0)(ρ) + εU (1)(s, ρ, t) + ε2U (2)(s, ρ, t) +⋯,

and

(2.17) fcl(s, ρ,U) =
1

ε
f
(−1)
cl (ρ,U) + f

(0)
cl (s) +O(ε),
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where

f
(−1)
cl (ρ,U) =

Gb2

4π(1 − ν)∫

+∞

−∞

∂ρU(τ)

ρ − τ
dτ,(2.18)

f
(0)
cl (s) = fd

cl(s) + f
app
cl (s),(2.19)

fd
cl(s) =

Gb2

4π(1 − ν)
κ ln ε +O(1).(2.20)

Here we assume the leading order solution U (0), which describe the dislocation core
profile, remains the same at all points on the dislocation at any time. The term
1
ε
f
(−1)
cl (ρ,U) in the climb force expansion is due to the singular stress field near the

dislocation and vanishes on the dislocation (i.e. f
(−1)
cl (ρ,U (0)) = 0). The climb force

fd
cl(s) is generated by the dislocations and has asymptotic expansions (2.20). This
asymptotic expansion of climb force fcl in the phase field model was obtained in [31]
based on the dislocation theories [19, 12, 41].

Letting

(2.21) W = µ
g′(U)

g(U)
=

1

ε2
(W (0)

+W (1)ε +W (2)ε2 +⋯) ,

the leading orders of equations (2.14) and (2.15) are O( 1
ε4
) and O( 1

ε2
), respectively,

which yield

0 = ∂ρ (∂ρµ
(0)
−W (0)∂ρU

(0)) ,(2.22)

and

µ(0) = −∂ρρU
(0)
+ q′(U (0)) + h(U (0))f

(−1)
cl (ρ,U (0)).(2.23)

Integrating Eq. (2.22), we have

(2.24) ∂ρµ
(0)
−W (0)∂ρU

(0)
= C0(s).

Since µ(0) = 0, u(0) = 1 or −1 in the outer region, we must have µ(0) → 0 and ∂ρU
(0) → 0

as ρ→ ±∞. Therefore C0(s) = 0. Dividing (2.24) by µ(0) and taking integration, using

W (0) = µ(0) g
′
(U(0))

g(U(0)) , we have µ(0) = C̃0(s)g(U
(0)). Since µ(0)/g(u(0)) is 0 in the outer

region, we must have C̃0(s) = 0. Thus

(2.25) µ(0) = −∂ρρU
(0)
+ q′(U (0)) + h(U (0))f

(−1)
cl (ρ,U (0)) = 0.

Solution U (0) to (2.25) subject to far field condition U (0)(+∞) = −1 and U (0)(−∞) = 1
can be found numerically (see [31]). In particular, ∂ρU

(0) < 0 for all ρ.
Next, the O( 1

ε3
) equation of (2.14) and O( 1

ε
) equation of (2.15) yield, using

µ(0) = 0, that

(2.26) 0 = ∂ρ (∂ρµ
(1)
−W (1)∂ρU

(0)) ,

and

µ(1) = −∂ρρU
(1)
+ κ∂ρU

(0)
+ q′′(U (0))U (1) + h′(U (0))f (−1)(ρ,U (0))U (1)

+h(U (0))f−1(ρ,U (1)) + h(U (0))f
(0)
cl (s).(2.27)
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Similar to the calculation from Eq. (2.22) to Eq. (2.24) given above, by matching
with the outer solutions, we have ∂ρµ

(1) −W (1)∂ρU
(0) = 0. Since µ(0) = 0, we have

W (1) = µ(1) g
′
(U(0))

g(U(0)) , the obtained equation becomes

(2.28) ∂ρµ
(1)
− µ(1)∂ρ ln g(U

(0)
) = 0.

Dividing (2.28) by µ(1) and integrating, we have µ(1) = C̃1(s)g(U
(0)). Thus equation

(2.27) can be rewritten as

(2.29) LU (1) = −κ∂ρU
(0)
− h(U (0))f

(0)
cl (s) + C̃1(s)g(U

(0)
),

where L = −∂ρρ+q
′′(U (0))+h′(U (0))f (−1)(ρ,U (0))+h(U (0))f−1(ρ, ⋅) is a linear operator

whose kernal is span{∂ρU
(0)}. Multiplying both sides of Eq. (2.29) by ∂ρU

(0) and
integrate with respect to ρ over (−∞,+∞), we have

∫

+∞

−∞
(−κ∂ρU

(0)
− h(U (0))f

(0)
cl (s) + C̃1(s)g(U

(0)
))∂ρU

(0)dρ = 0.

From this, we conclude

C̃1(s) = −ακ +H0f
(0)
cl (s),

where α > 0 is given by

α = −
∫
+∞

−∞
(∂ρU

(0))
2
dρ

∫
+∞

−∞
g(U (0))∂ρU (0)dρ

.

Therefore

(2.30) µ(1) = g(U (0)) (−ακ +H0f
(0)
cl (s)) .

Letting µ = µ
g(U)

, (2.14) can be written as

g(U) (∂tU −
1

ε
vn∂ρU + βµ)

=
M0

1 − ερκ
∂s (

g(U)

1 − ερκ
(∂sµ)) +

1

ε2
M0

1 − ερκ
∂ρ ((1 − ερκ) g(U)∂ρµ)(2.31)

Using µ(0) = 0, ∂ρµ
(1) = ∂ρ

µ(1)

g(U(0)) = 0, the O( 1
ε2
) order equation of (2.31) reduces to

∂ρ (g(U
(0)
)∂ρµ

(2)) = 0.

Integrating with respect to ρ, we have g(U (0))∂ρµ
(2) = C2(s). Matching with outer

solutions, we must have C2(s) = 0. Thus ∂ρµ
(2) = 0 which gives µ(2) = C̃2(s).

Next we look at the O( 1
ε
) equation of (2.31). Using µ(0) = 0, ∂ρµ

(1) = 0 and

∂ρµ
(2) = 0, we have

g(U (0))(−vn∂ρU
(0)
+ βµ(1)) =M0∂s (g(U

(0)
)∂sµ

(1)) +M0∂ρ (g(U
(0)
)∂ρµ

(3)) .

Integrating this equation with respect to ρ and matching with outer solutions yields

(2.32) vn = λ∂ssµ
(1)
− ηµ(1)
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where we used the fact that g(U (0)) is independent of s, µ(1) = −ακ +H0f
(0)
cl (s) by

(2.30), and

(2.33) λ = −
M0 ∫

+∞

−∞
g(U (0))dρ

∫
+∞

−∞
g(U (0))∂ρU (0)dρ

> 0, η = −
β ∫

+∞

−∞
g(U (0))dρ

∫
+∞

−∞
g(U (0))∂ρU (0)dρ

> 0.

Substitute µ(1) = −ακ +H0f
(0)
cl (s) into (2.32), the sharp interface limit equation is

(2.34) vn = −λ∂ss (ακ −H0f
(0)
cl (s)) + η (ακ −H0f

(0)
cl (s)) .

Remark 2.1. The velocity in the obtained sharp interface limit equation (2.34)
is a combination of the dislocation self-climb velocity [30, 29, 31] (the first term),
and the dislocation climb velocity by mobility law [38, 39, 2] (the second term).
The coefficients of these two contributions are determined through Eq. (2.33) by the
parameters M0 and β, respectively, in the phase field model in (1.1) based on the
physics. Note that the curvature term in both contributions is a correction to the
dislocation self-force to fix the problem of larger numerical dislocation core size in
the phase field model than the actual dislocation core size [31]. We remark that the
factor g(U) on the left-hand side in Eq. (1.1) is mainly for the proof of existence of
weak solutions, and without it, the dislocation velocity given by the sharp interface
limit is similar, with λ = M0

2 ∫
+∞

−∞
g(U (0))dρ and η = β

2 ∫
+∞

−∞
g(U (0))dρ.

3. Weak solution for the phase field model.

3.1. Weak solution for the phase field model with positive mobilities.
In this subsection, we prove the existence of weak solutions for phase field model with
positive mobilities summarized in Proposition 1.1.

Let Z+ be the set of nonnegative integers and we choose an orthonormal basis for
L2(T2) as

{ϕj ∶ j = 1,2,⋯} = {(2π)
−1,Re (π−1eiξ⋅x) , Im (π−1eiξ⋅x) ∶ ξ ∈ Z2

+/{0,⋯,0}} .

Observe that {ϕj} is also orthogonal in Hk(T2) for any k ≥ 1.

3.1.1. Galerkin approximations. Define

uN
(x, t) =

N

∑
j=1

cNj (t)ϕj(x), µN
(x, t) =

N

∑
j=1

dNj (t)ϕj(x),

where {cNj , dNj } satisfy

∫
T2

∂tu
Nϕjdx = −∫

T2

Mθ(u
N
)∇

µN

gθ(uN)
⋅ ∇

ϕj

gθ(uN)
dx − β ∫

T2
µNϕjdx(3.1)

∫
T2

µNϕjdx = ∫
T2

(∇uN
⋅ ∇ϕj + q

′
(uN
)ϕj + ϕj(−∆)

1
2uN
)dx,(3.2)

uN
(x,0) =

N

∑
j=1

(∫
T2

u0ϕjdx)ϕj(x).(3.3)

(3.1)-(3.3) is an initial value problem for a system of ordinary equations for {cNj (t)}.

Since right hand side of (3.1) is continuous in cNj , the system has a local solution.
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Define energy functional

E(u) = ∫
T2

{
1

2
∣∇u∣2 + q(u) + ∣(−∆)

1
4u∣2}dx.

Direct calculation using (3.1) and (3.2) yields

d

dt
E(uN

(x, t)) = −∫
T2

Mθ(u
N
) ∣∇

µN

gθ(uN)
∣

2

dx − β ∫
T2
(µN)

2
dx,

integration over t gives the following energy identity.

∫
T2

(
1

2
∣∇uN

(x, t)∣2 + q(uN
(x, t)) + uN

(−∆)
1
2uN
)dx

+∫

t

0
∫

T2

⎡
⎢
⎢
⎢
⎢
⎣

Mθ(u
N
(x, τ)) ∣∇

µN(x, τ)

gθ(uN(x, τ))
∣

2

+ β (µN)
2
⎤
⎥
⎥
⎥
⎥
⎦

dxdτ

= ∫
T2

(
1

2
∣∇uN

(x,0)∣2 + q(uN
(x,0)) + uN

(x,0)(−∆)
1
2uN
(x,0))dx(3.4)

≤ XXX∇u0
XXX
2
L2(T2) +C (

XXXu0
XXX
r+1
H1(T2) + ∣T

2
∣) +

1

2
XXXu0
XXX
2
L2(T2) ≤ C <∞

Here and throughout the paper, C represents a generic constant possibly depend-
ing only on β, T , T2, u0 but not on θ. Since T2 is bounded region, by growth
assumption (1.9) and Poincare’s inequality, the energy identity (3.4) implies uN ∈

L∞(0, T ;H1(T2)) and µN ∈ L2(ΩT ) with

(3.5) XXXXX
µNXXXXXL2(ΩT )

,XXXXXu
NXXXXXL∞(0,T ;H1(T2))

≤ C for all N,

and

(3.6)
XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(ΩT )

≤ C for all N.

By (3.5), the coefficients {cNj (t)} are bounded in time, thus the system (3.1)-(3.3) has
a global solution. In addition, by Sobolev embedding theorem and growth assumption
(1.10) on q′(u), we have

q′(uN
) ∈ L∞(0, T ;Lp

(T2
)), Mθ(u

N
) ∈ L∞(0, T ;Lp

(T2
))

for any 1 ≤ p <∞ with

XXXXX
q′(uN

)
XXXXXL∞(0,T ;Lp(T2))

≤ C for all N,(3.7)

XXXXX
Mθ(u

N
)
XXXXXL∞(0,T ;Lp(T2))

≤ C for all N.(3.8)

3.1.2. Convergence of uN . Given q > 2 and any ϕ ∈ L2(0, T ;W 1,q(T2)), let
ΠNϕ(x, t) = ∑

N
j=1 (∫T2 ϕ(x, t)ϕj(x)dx)ϕj(x) be the orthogonal projection of ϕ onto
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span{ϕj}
N
j=1. Then

RRRRRRRR
∫
T2

∂tu
Nϕdx

RRRRRRRR
=
RRRRRRRR
∫
T2

∂tu
NΠNϕdx

RRRRRRRR

=

RRRRRRRRRRRR
∫

T2

[Mθ(u
N
)∇

µN

gθ(uN)
⋅ ∇

ΠNϕ

gθ(uN)
− βµNΠNϕ]dx

RRRRRRRRRRRR

≤

XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(T2)

XXXXXXXXX

√
Mθ(uN)∇

ΠNϕ

gθ(uN)

XXXXXXXXXL2(T2)

+ β∣∣µN
∣∣L2(T2)∣∣ϕ∣∣L2(T2).

Since

∇
ΠNϕ

gθ(uN)
=

1

gθ(uN)
∇ΠNϕ −ΠNϕ

g′θ(u
N)

g2θ(u
N)
∇uN ,

we have

∫
T2

Mθ(u
N
)
RRRRRRRRR
∇

ΠNϕ

gθ(uN)

RRRRRRRRR

2

dx

≤ 2M0∫
T2

(
1

gθ(uN)

RRRR∇ΠNϕRRRR
2
+
∣g′θ(u

N)∣2

g3θ(u
N)
∣ΠNϕ∣2∣∇uN

∣
2
)dx

≤ C(M0, θ) (
XXXX∇ΠNϕXXXX

2
L2(T2) +

XXXXΠNϕXXXX
2
L∞(T2)

XXXXX
∇uNXXXXX

2

L2(T2)
)

≤ C(M0, θ) (
XXXXΠNϕXXXX

2
W 1,q(T2)) ≤ C(M0, θ)

XXXXϕ
XXXX
2
W 1,q(T2) .

Therefore

(3.9) XXXXX
∂tu

NXXXXXL2(0,T ;(W 1,q(T2))′) ≤ C(M0, θ) for all N.

For 1 ≤ s <∞, by Sobolev embedding theorem and Aubin-Lions Lemma (see [36]
and Remark 3.1) , the following embeddings are compact :

{f ∈ L2
(0, T ;H1

(T2
)) ∶ ∂tf ∈ L

2
(0, T ; (W 1,q

(T2
))
′}↪ L2

(0, T ;Ls
(T2
)),

and

{f ∈ L∞(0, T ;H1
(T2
)) ∶ ∂tf ∈ L

2
(0, T ; (W 1,q

(T2
))
′}↪ C([0, T ];Ls

(T2
)).

From this and the boundedness of {uN} and {∂tu
N}, we can find a subsequence, and

uθ ∈ L
∞(0, T ;H1(T2)) such that as N →∞, for 1 ≤ s <∞.

uN
⇀ uθ weakly-* in L∞(0, T ;H1

(T2
)),(3.10)

uN
→ uθ strongly in C([0, T ];Ls

(T2
)),(3.11)

uN
→ uθ strongly in L2

(0, T ;Ls
(T2
)) and a.e. in ΩT ,(3.12)

∂tu
N
⇀ ∂tuθ weakly in L2

(0, T ; (W 1,q
(T2
))
′
).(3.13)

In addition

XXXuθ
XXXL∞(0,T ;H1(T2)) ≤ C,

XXXX∂tuθ
XXXXL2(0,T ;(W 1,q(T2))′) ≤ C(M0, θ).
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By (3.11), growth assumption (1.10) on q′(uN), and generalized dominated con-
vergence theorem (see Remark 3.2), we have

Mθ(u
N
)→Mθ(uθ) strongly in C([0, T ];Ls

(T2
))(3.14)

√
Mθ(uN)→

√
Mθ(uθ) strongly in C([0, T ];Ls

(T2
))(3.15)

q′(uN
)→ q′(uθ) strongly in C([0, T ];Ls

(T2
))(3.16)

for 1 ≤ s <∞. By (3.7) and (3.16), we have

(3.17) q′(uN
)⇀ q′(uθ) weakly-* in L∞([0, T ];Ls

(T2
)).

Remark 3.1. Let X, Y , Z be Banach spaces with compact embedding X ↪ Y
and continuous embedding Y ↪ Z. Then the embeddings

(3.18) {f ∈ Lp
(0, T ;X);∂tf ∈ L

1
(0, T ;Z)}↪ Lp

(0, T ;Y )

and

(3.19) {f ∈ L∞(0, T ;X);∂tf ∈ L
r
(0, T ;Z)}↪ C([0, T ];Y )

are compact for any 1 ≤ p < ∞ and r > 1 (Corollary 4, [36], see also [26]) . For
convergence of uN , we apply this for p = 2 = r with X = H1(T2), Y = Ls(T2) for
1 ≤ s <∞ and Z =W 1,q(T2)′.

3.1.3. Weak solution. By (3.2), we have

∫
T2

µNuNdx = ∫
T2
(∣∇uN

∣
2dx + q′(uN

)uN
+ uN

(−∆)
1
2uN
)dx.

Integration with respect to t from 0 to T gives

∫
ΩT

µN
(x, τ)uN

(x, τ)dxdτ

= ∫
ΩT

(∇uN
(x, τ)∣2dx + q′(uN

(x, τ))uN
(x, τ) + uN

(−∆)
1
2uN
)dxdτ.

By (3.5). there exists a subsequence of µN , not relabeled, converges weakly to
µθ ∈ L

2(ΩT ). Passing to the limit in the equation above, by (3.12), (3.16), we have

∫
ΩT

µθuθdxdτ = lim
N→∞

∫
ΩT

∣∇uN
∣
2dxdτ + ∫

ΩT

q′(uθ)uθdxdτ(3.20)

+∫
ΩT

uθ(−∆)
1
2uθdxdτ

On the other hand,

∫
ΩT

µN
(x, τ)uθ(x, τ)dxdτ = ∫

ΩT

µN
(x, τ)ΠNuθ(x, τ)dxdτ(3.21)

= ∫
ΩT

(∇uN
⋅ ∇ΠNuθ(x, τ) + q

′
(uN
)ΠNuθ(x, τ) +ΠNuθ(x, τ)(−∆)

1
2uN
)dxdτ

= ∫
ΩT

(∇uN
⋅ ∇uθ(x, τ) + q

′
(uN
)ΠNuθ(x, τ) + uθ(−∆)

1
2uN
)dxdτ.
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Since ΠNuθ → uθ strongly in L2(ΩT ), µ
N ⇀ µθ in L2(ΩT ), by (3.10),(3.17), passing

to the limit in (3.21) yields

(3.22) ∫
ΩT

µθuθdxdτ = ∫
ΩT

(∣∇uθ ∣
2
+ q′(uθ))uθ + uθ(−∆)

1
2uθ)dxdτ.

(3.20) and (3.22) gives

(3.23) lim
N→∞

∫
ΩT

∣∇uN
∣
2dxdτ = ∫

ΩT

∣∇uθ ∣
2dxdτ.

By (3.5), ∇uN ⇀ ∇uθ weakly in L2(ΩT ), thus (3.23) implies

(3.24) ∇uN
→ ∇uθ strongly in L2

(ΩT ).

By (3.6) and the lower bound on Mθ, we have

XXXXXXXXXX

∇
µN

gθ(uN)

XXXXXXXXXXL2(ΩT )

≤ Cθ−
m
2 .

By (3.2), (3.5) and (3.7) we have for ϕ1 = (2π)
−1,

RRRRRRRRRR
∫
T2

µNϕ1

gθ(uN)

RRRRRRRRRR

dx =
RRRRRRRRRR
∫
T2

µNΠN (
ϕ1

gθ(uN)
)

RRRRRRRRRR

dx

≤

RRRRRRRRRR
∫
T2
∇uN

⋅ ∇ΠN (
ϕ1

gθ(uN)
)dx + ∫

T2
q′(uN

)ΠN (
ϕ1

gθ(uN)
)dx
RRRRRRRRRR

(3.25)

+

RRRRRRRRRR
∫
T2
(−∆)

1
2uNΠN (

ϕ1

gθ(uN)
)dx
RRRRRRRRRR

=

RRRRRRRRRR
∫
T2
∇uN

⋅ ∇(
ϕ1

gθ(uN)
)dx + ∫

T2
q′(uN

)ΠN (
ϕ1

gθ(uN)
)dx
RRRRRRRRRR

+

RRRRRRRRRR
∫
T2
(−∆)

1
2uN
(

ϕ1

gθ(uN)
)dx
RRRRRRRRRR

≤ Cθ−m−1 XXXXX∇u
NXXXXX

2

L2(T2)
+Cθ−m XXXXXq

′
(uN
)
XXXXXL2(T2)

XXXXϕ1
XXXXL2(T2)

+Cθ−m XXXXX∇u
NXXXXXL2(T2)

XXXXϕ1
XXXXL2(T2)

≤ Cθ−m−1.

Poincare’s inequality yields

XXXXXXXXXX

µN

gθ(uN)

XXXXXXXXXXL2(0,T ;H1(T2))

≤ C(θ−m−1 + 1).

Thus there exists a wθ ∈ L
2(0, T ;H1(T2)) and a subsequence of µN

gθ(uN )
, not relabeled,

such that

(3.26)
µN

gθ(uN)
⇀ wθ weakly in L2

(0, T ;H1
(T2
)).

Therefore by (3.14), (3.26) and Sobolev embedding theorem, we have

(3.27) µN
= gθ(u

N
) ⋅

µN

gθ(uN)
⇀ µθ = gθ(uθ)wθ weakly in L2

(0, T ;W 1,s
(T2
))
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for any 1 ≤ s < 2. Combining (3.15), (3.26)and (3.27), we have

(3.28)
√
Mθ(uN)∇

µN

gθ(uN)
⇀
√
Mθ(uθ)∇

µθ

gθ(uθ)
weakly in L2

(0, T ;Lq
(T2
))

for any 1 ≤ q < 2. By (3.6), we can improve this convergence to

(3.29)
√
Mθ(uN)∇

µN

gθ(uN)
⇀
√
Mθ(uθ)∇

µθ

gθ(uθ)
weakly in L2

(0, T ;L2
(T2
)).

Since gθ ≥ θ
m, (3.12) implies

(3.30)
g′θ(u

N)

g
3
2

θ (u
N)

→
g′θ(uθ)

g
3
2

θ (uθ)

a.e in ΩT .

In addition,
g′θ(u

N
)

g
3
2
θ
(uN )

is bounded by

(3.31)

RRRRRRRRRRRR

g′θ(u
N)

g
3
2

θ (u
N)

RRRRRRRRRRRR

≤ Cθ−1−
m
2 .

It follows from (3.24), (3.30), (3.31) and generalized dominated convergence the-
orem (see Remark 3.2) that

(3.32)
g′θ(u

N)

g
3
2

θ (u
N)

∇uN
→

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ strongly in L2
(ΩT ).

Let

fN
(t) =

XXXXXXXXXXXX

g′θ(u
N(x, t))

g
3
2

θ (u
N(x, t))

∇uN
(x, t) −

g′θ(uθ(x, t))

g
3
2

θ (uθ(x, t))
∇uθ(x, t)

XXXXXXXXXXXXL2(T2)

,

by (3.32), we can extract a subsequence of fN , not relabeled, such that fN(t) → 0
a.e. in (0,T). By Egorov’s theorem, for any given δ > 0, there exists Tδ ⊂ [0, T ] with
∣Tδ ∣ < δ such that fN(t) converges to 0 uniformly on [0, T ]/Tδ.

Given α(t) ∈ L2(0, T ), for any ε > 0, there exists Tδ ⊂ [0, T ] with ∣Tδ ∣ < δ such
that

(3.33) ∫
Tδ

α2
(t)dt < ϵ.

Multiplying (3.1) by α(t) and integrating in time yield

∫

T

0
α(t)∫

T2
∂tu

Nϕjdxdt(3.34)

= −β ∫
ΩT

α(t)µNϕjdxdt − ∫
ΩT

α(t)Mθ(u
N
)∇

µN

gθ(uN)
⋅ ∇

ϕj

gθ(uN)
dxdt

= −β ∫
ΩT

µNα(t)ϕjdxdt − ∫
ΩT

M0α(t)∇
µN

gθ(uN)
⋅ ∇ϕjdxdt

+∫
ΩT

α(t)
√
M0ϕj

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

= −AN
− IN + IIN .
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Since α(t)ϕj ∈ L
2(0, T ;H1(T2)), by (3.26) and (3.27), we have

(3.35) AN
= β ∫

ΩT

µNα(t)ϕjdxdt→ β ∫
ΩT

µθα(t)ϕjdxdt,

and

(3.36) IN = ∫
ΩT

M0α(t)∇
µN

gθ(uN)
⋅ ∇ϕjdxdt→ ∫

ΩT

M0α(t)∇
µθ

gθ(uθ)
⋅ ∇ϕjdxdt.

To find the limit of IIN , since

(3.37)

∫
ΩT

α(t)ϕj

⎛

⎝

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
√
Mθ(uN)∇

µN

gθ(uN)
−

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

√
Mθ(uθ)∇

µθ

gθ(uθ)

⎞

⎠

= ∫
ΩT

α(t)ϕj

⎛

⎝

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
−

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

⎞

⎠
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

+∫
ΩT

α(t)ϕj
g′θ(uθ)

g
3
2

θ (uθ)

∇uθ ⋅ (
√
Mθ(uN)∇

µN

gθ(uN)
−
√
Mθ(uθ)∇

µθ

gθ(uθ)
)dxdt

= IIN1 + II
N
2

From bound

∫
ΩT

RRRRRRRRRRRR

α(t)ϕj
g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

RRRRRRRRRRRR

2

dxdt

≤ Cθ−2−m XXX∇uθ
XXX
2
L∞(0,T ;L2(T2)) ∫

T

0
α2
(t)2dt,

we conclude that α(t)ϕj
g′θ(uθ)

g
3
2
θ
(uθ)

∇uθ ∈ L
2(ΩT ). By (3.29), we can pass to the limit in

IIN2 and conclude

IIN2 = ∫
ΩT

α(t)ϕj
g′θ(uθ)

g
3
2

θ (uθ)

∇uθ ⋅ (
√
Mθ(uN)∇

µN

gθ(uN)
−
√
Mθ(uθ)∇

µθ

gθ(uθ)
)dxdt→ 0.

To pass to the limit in IIN1 , we write

IIN1 = ∫
ΩT

α(t)ϕj

⎛

⎝

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
−

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

⎞

⎠
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

= ∫
Tδ
∫
T2

α(t)ϕj

⎛

⎝

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
−

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

⎞

⎠
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

+∫
[0,T ]/Tδ

∫
T2

α(t)ϕj

⎛

⎝

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
−

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

⎞

⎠
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

= IIN11 + II
N
12.
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We bound IIN11 by

∣IIN11∣ ≤ ∫
Tδ

∣α(t)∣

XXXXXXXXXXXX

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
−

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

XXXXXXXXXXXXL2(T2)

XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(T2)

dt

≤ XXXXα(t)
XXXXL2(Tδ)

XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(ΩT )

XXXXXXXXXXXX

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
−

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

XXXXXXXXXXXXL∞(0,T ;L2(T2))

≤ C(θ)ε.

For IIN12, we have

∣IIN12∣ ≤ ∫
[0,T ]/Tδ

∣α(t)∣

XXXXXXXXXXXX

g′θ(u
N)

g
3
2

θ (u
N)

∇uN
−

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ

XXXXXXXXXXXXL2(T2)

XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(T2)

dt

= ∫
[0,T ]/Tδ

∣α(t)∣fN
(t)∣
XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(T2)

dt.

Since fN(t) converges to 0 uniformly, α(t) ∈ L2(0, T ) and
XXXXXXX

√
Mθ(uN)∇

µN

gθ(uN )

XXXXXXXL2(ΩT )
≤

C, letting N → ∞ in IIN12 yields IIN12 → 0. Letting ε → 0, we conclude IIN1 → 0 as
N →∞. Passing to the limit in (3.34), we have

∫

T

0
α(t)∫

T2
⟨∂tuθ, ϕj⟩(W 1,q(T2))′,W 1,q(T2))

dt

= −β ∫
ΩT

α(t)µθϕjdxdt − ∫
ΩT

α(t)Mθ(uθ)∇
µθ

gθ(uθ)
⋅ ∇

ϕj

gθ(uθ)
dxdt.(3.38)

Fix q > 2, given any ϕ ∈ L2(0, T ;W 1,q(T2)), its Fourier series ∑
∞
j=1 aj(t)ϕj(x) con-

verges strongly to ϕ in L2(0, T ;W 1,q(T2)). Hence

∫
ΩT

Mθ(uθ)∇
µθ

gθ(uθ)
⋅ ∇

ϕ −ΠNϕ

gθ(uθ)
dxdt

= ∫
ΩT

M0∇
µθ

gθ(uθ)
⋅ ∇(ϕ −ΠNϕ)dxdt

−∫
ΩT

(ϕ −ΠNϕ)
√
M0

g′θ(uθ)

g
3
2

θ (uθ)

∇uθ ⋅
√
Mθ(uθ)∇

µθ

gθ(uθ)
dxdt

= JN
1 − J

N
2 ,

where by(3.26), (3.27) and strong convergence of ΠNϕ to ϕ in L2(0, T ;H1(T2)), we
conclude

JN
1 = ∫

ΩT

M0∇
µθ

gθ(uθ)
⋅ ∇(ϕ −ΠNϕ)dxdt→ 0
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We can bound JN
2 by

∣JN
2 ∣ =

RRRRRRRRRRR
∫
ΩT

(ϕ −ΠNϕ)
√
M0

g′θ(uθ)

g
3/2
θ (uθ)

∇uθ ⋅
√
Mθ(uθ)∇

µθ

gθ(uθ)
dxdt
RRRRRRRRRRR

≤
√
M0 ∫

T

0

XXXXϕ −ΠNϕXXXXL∞(T2)

XXXXXXXXXXX

g′θ(uθ)

g
3/2
θ (uθ)

∇uθ

XXXXXXXXXXXL2(T2)

XXXXXXXXX

√
Mθ(uθ)∇

µθ

gθ(uθ)

XXXXXXXXXL2(T2)

≤
√
M0

XXXXXXXXXXX

g′θ(uθ)

g
3/2
θ (uθ)

∇uθ

XXXXXXXXXXXL∞(0,T ;L2(T2))

XXXXXXXXX

√
Mθ(uθ)∇

µθ

gθ(uθ)

XXXXXXXXXL2(ΩT )

XXXXϕ −ΠNϕXXXXL2(0,T ;W 1,q(T2))

→ 0 as N →∞.

Consequently (3.38) implies

∫

T

0
⟨∂tuθ, ϕ⟩(W 1,q(T2))′,W 1,q(T2)) dt

= −β ∫
ΩT

µθϕdxdt − ∫
ΩT

Mθ(uθ)∇
µθ

gθ(uθ)
⋅ ∇

ϕ

gθ(uθ)
dxdt(3.39)

for all ϕ ∈ L2(0, T ;W 1,q(T2)) with q > 2. Moreover, since uN(x,0) = ΠNu0(x) →
u0(x) in H1(T2), we see that uθ(x,0) = u0(x) by (3.11).

Remark 3.2. (Generalized dominated convergence theorem See, e.g. Theorem 17
of section 4.4 of [35], p 92 ) Assume E ⊂ Rn is measurable. gn → g strongly in Lq(E)
for 1 ≤ q <∞ and fn, f : E → Rn are measurable functions satisfying

fn → f a.e. in E; ∣fn∣
p
≤ ∣gn∣

q a.e. in E

with 1 ≤ p <∞, then fn → f in Lp(E).

3.1.4. Regularity of uθ. We now consider the regularity of uθ. Given any
aj(t) ∈ L

2(0, T ), aj(t)ϕj ∈ L
2(0, T ;C(T2)). Integrating (3.2) from 0 to T , by (3.17),(3.27)

and (3.24), we have

∫
ΩT

µθ(x, t)aj(t)ϕj(x)dxdt

= ∫
ΩT

(∇uθ ⋅ aj(t)∇ϕj + q
′
(uθ)aj(t)ϕj + aj(t)ϕj(−∆)

1
2uθ)dxdt

for all j ∈N. Given any ϕ ∈ L2(0, T ;H1(T2)), its Fourier series strongly converges to
ϕ in L2(0, T ;H1(T2)), therefore

∫
ΩT

µθ(x, t)ϕ(x)dxdt = ∫
ΩT

(∇uθ ⋅ ∇ϕ + q
′
(uθ)ϕ + ϕ(−∆)

1
2uθ)dxdt.(3.40)

Recall µθ ∈ L
2(0, T ;Lp(T2)) and q′(uθ) ∈ L

∞(0, T ;Lp(T2)) for any 1 ≤ p < ∞, regu-
larity theory implies uθ ∈ L

2(0, T ;H2(T2)). Hence

(3.41) µθ = −∆uθ + q
′
(uθ) + (−∆)

1
2uθ a.e. in ΩT .

By Sobolev embedding theorem, uθ ∈ L
∞(0, T ;H1(T2)) ↪ L∞(0, T ;Lp(T2)) for any

1 ≤ p < ∞. Since growth assumption on q implies ∣q′′(u)∣ ≤ C(1 + ∣u∣r−1), pick p > 2,
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we have

∫
T2
∣∇q′(uθ)∣

2dx = ∫
T2
∣q′′(uθ)∣

2
∣∇uθ ∣

2dx

≤ XXXXq
′′
(uθ)
XXXX
2

L
2p
p−2 (T2)

XXX∇uθ
XXX
2
Lp(T2)

≤ C (1 + XXXuθ
XXX
2(r−1)

L
2p
p−2 (r−1)(T2)

)XXX∇uθ
XXX
2
Lp(T2)

≤ C (1 + XXXuθ
XXX
2(r−1)

L∞(0,T ;H1(T2))
)XXX∇uθ

XXX
2
Lp(T2)

≤ C (1 + XXXuθ
XXX
2(r−1)

L∞(0,T ;H1(T2))
)XXX∇uθ

XXX
2
H1(T2) .

Therefore ∇q′(uθ) = q
′′(uθ)∇uθ ∈ L

2(ΩT ) with

∫
ΩT

∣∇q′(uθ)∣
2dxdt ≤ C (1 + XXXuθ

XXX
2(r−1)

L∞(0,T ;H1(T2))
)XXX∇uθ

XXX
2
L2(0,T ;H1(T2)) .

Hence q′(uθ) ∈ L2(0, T ;H1(T2)), combined with µθ ∈ L2(0, T ;W 1,s(T2)) for any

1 ≤ s < 2 and (−∆)
1
2uθ ∈ L

2(0, T ;H1(T2)), we have uθ ∈ L
2(0, T ;W 3,s(T2)) and

(3.42) ∇µθ = −∇∆uθ + q
′′
(uθ)∇uθ +∇(−∆)

1
2uθ a.e. in ΩT .

Regularity of uθ implies ∇uθ ∈ L
∞(0, T ;L2(T2))∩L2(0, T ;L∞(T2)). A simple interpo-

lation shows ∇uθ ∈ L
2s
s−2 (0, T ;Ls(T2)) for any s > 2. Given any ϕ ∈ Lp(0, T ;W 1,q(T2))

with p > 2 and q > 2, we have gθ(uθ)ϕ ∈ L
2(0, T ;W 1.r(T2)) for any r < q. Picking

gθ(uθ)ϕ as a test function in (3.39), we have
(3.43)

∫
ΩT

∂tuθgθ(uθ)ϕdxdt = −β ∫
ΩT

gθ(uθ)µθϕdxdt − ∫
ΩT

Mθ(uθ)∇
µθ

gθ(uθ)
⋅ ∇ϕdxdt

for any ϕ ∈ Lp(0, T ;W 1,q(T2)) with p, q > 2.

Remark 3.3. In fact, since Mθ(uθ) ∈ L
∞(0, T ;Lp(T2)) for 1 ≤ p < ∞, the right

hand side of (3.43) is well defined for any ϕ ∈ L2(0, T,W 1,q(T2)) and we can extend
(3.43) to hold for all ϕ ∈ L2(0, T,W 1,q(T2)).

3.1.5. Energy Inequality. Since uN and µN satisfies energy identity (3.4),
passing to the limit as N → ∞ and using the weak convergence of uN , q′(uN) and
√
Mθ(uN)∇

µN

gθ(uN )
, the energy inequality (1.15) follows.

This finishes the proof of Proposition 1.1.

3.2. Phase field model with degenerate mobility. In this subsection, we
prove Theorem 1.2.

Fix initial data u0 ∈ H
1(T2). We pick a monotone decreasing positive sequence

θi with lim
i→∞

θi = 0. By Proposition 1.1 and (3.43), for each θi, there exists

ui ∈ L
∞
(0, T ;H1

(T2
)) ∩L2

(0, T ;W 3,s
(T2
)) ∩C([0, T ];Lp

(T2
))

with weak derivative
∂tui ∈ L

2
(0, T ; (W 1,q

(T2
))
′
),

where 1 ≤ p < ∞, 1 ≤ s < 2, q > 2 such that uθi(x,0) = u0(x) and for all ϕ ∈
L2(0, T ;W 1,q(T2)),

∫
ΩT

∂tuiϕdxdt = −β ∫
ΩT

µiϕdxdt − ∫
ΩT

Mi(ui)∇
µi

gi(ui)
∇

ϕ

gi(ui)
dxdt,(3.44)

µi = −∆ui + q
′
(ui) + (−∆)

1
2ui.(3.45)
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Moreover, for all ϕ ∈ Lp(0, T ;W 1,q(T2)) with p, q > 2, the following holds:

(3.46) ∫
ΩT

gi(ui)∂tuiϕdxdt = −β ∫
ΩT

gi(ui)µiϕdxdt − ∫
ΩT

Mi(ui)∇
µi

gi(ui)
∇ϕdxdt.

Here we write ui = uθi , Mi(ui) =Mθi(uθi), gi(ui) = gθi(uθi) for simplicity of notations.
Noticing the bounds in (3.5) and (3.6) depend only on u0, we can find a constant C,
independent of θi such that

XXXXµi
XXXXL2(ΩT )

,XXXui
XXXL∞(0,T ;H1(T2)) ≤ C,(3.47)

XXXXXXXXX

√
Mi(ui)∇

µi

gi(ui)

XXXXXXXXXL2(ΩT )

≤ C.(3.48)

Growth condition on q′, and Sobolev embedding theorem gives

XXXXq
′
(ui)
XXXXL∞(0,T ;Lp(T2)) ≤ C,

XXXXMi(ui)
XXXXL∞(0,T ;Lp(T2)) ≤ C

for any 1 ≤ p <∞. By (3.46), for any ϕ ∈ Lp(0, T ;W 1,q(T2)) with p, q > 2,

RRRRRRRRRRRR
∫

ΩT

gi(ui)∂tuiϕdxdt

RRRRRRRRRRRR

=

RRRRRRRRRRRR
∫

ΩT

[βgi(ui)µiϕ +Mi(ui)∇
µi

gi(ui)
∇ϕ]dxdt

RRRRRRRRRRRR

≤ β∫

T

0

(XXXXµi
XXXXL2(T2)

XXXXgi(ui)
XXXXL

2q
q−2 (T2)

XXXXϕ
XXXXLq(T2))dt

+∫

T

0

⎛

⎝

XXXXXXXXX

√
Mi(ui)∇

µi

gi(ui)

XXXXXXXXXL2(T2)

XXXXXX

√
Mi(ui)

XXXXXXL
2q
q−2 (T2)

XXXX∇ϕ
XXXXLq(T2)

⎞

⎠
dt

≤ β XXXXgi(ui)
XXXXL

2p
p−2 (0,T ;L

2q
q−2 (T2))

XXXXµi
XXXXL2(ΩT )

XXXXϕ
XXXXLp(0,T ;Lq(T2))

+XXXXMi(ui)
XXXX

1
2

L
p

p−2 (0,T ;L
q

q−2 (T2))

XXXXXXXXX

√
Mi(ui)∇

µi

gi(ui)

XXXXXXXXXL2(ΩT )

XXXX∇ϕ
XXXXLp(0,T ;Lq(T2))

≤ C XXXXϕ
XXXXLp(0,T ;W 1,q(T2)) .

Let

(3.49) Gi(ui) = ∫

ui

0
gi(a)da.

Then ∂tGi(ui) = gi(ui)∂tui ∈ L
p′(0, T ; (W 1,q(T2))′) with p′ = p

p−1
and

(3.50) XXXX∂tGi(ui)
XXXXLp′(0,T ;(W 1,q(T2))′) ≤ C for all i.

Moreover, by growth assumption on g and estimates on ui, we have

(3.51) XXXXGi(ui)
XXXXL∞(0,T ;W 1,s(T2)) ≤ C.

for 1 ≤ s < 2. By (3.47), (3.48)-(3.51) and Remark 3.1 we can find a subsequence,
not relabeled, a function u ∈ L∞(0, T ;H1(T2)), a function µ ∈ L2(ΩT ), a function
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ξ ∈ L2(ΩT ) and a function η ∈ L∞(0, T ;W 1,s(T2)) such that as i→∞,

ui ⇀ u weakly-* in L∞(0, T ;H1
(T2
)),(3.52)

µi ⇀ µ weakly in L2
(ΩT ),(3.53)

√
Mi(ui)∇

µi

gi(ui)
⇀ ξ weakly in L2

(ΩT ),(3.54)

Gi(ui)⇀ η weakly-* in L∞(0, T ;W 1,s
(T2
))(3.55)

Gi(ui)→ η strongly in Lα
(0, T ;Lβ

(T2
)) and a.e. in ΩT ,(3.56)

Gi(ui)→ η strongly in C(0, T ;Lβ
(T2
)),(3.57)

∂tGi(ui)⇀ ∂tη weakly in Lp′
(0, T ; (W 1,qT2

))
′
).(3.58)

where 1 ≤ α,β <∞. By (3.57) and (3.66) from Remark 3.4, we have

XXXXGi(ui(x, t + h)) −Gi(ui(x, t))
XXXXC([0,T ];Lβ(T2)) → 0 uniformly in i as h→ 0.

Thus given any ε > 0, there exists hε > 0 such that for all 0 < h < hε and all i,

XXXXGi(ui(x, t + h)) −Gi(ui(x, t))
XXXX
β
C([0,T ];Lβ(T2))

< ε.

Given any δ > 0, let Iδ = (1 − δ,1 + δ) ∪ (−1 − δ,−1 + δ). Consider the interval having
ui(x, t) and ui(x, t+h) as end points. Denote this interval by Ji(x, t;h). We consider
three cases.

Case I: Ji(x, t;h) ∩ Iδ = ∅.
In this case, gi(s) ≥max{θmi , δm} for any s ∈ Ji(x, t;h) and

∣Gi(ui(x, t + h)) −Gi(ui(x, t))∣ = ∣∫
ui(x,t+h)

ui(x,t)
gi(s)ds∣ ≥ δ

m
∣ui(x, t + h) − ui(x, t)∣.

Case II: Ji(x, t;h) ∩ Iδ ≠ ∅ and ∣ui(x, t + h) − ui(x, t)∣ ≥ 3δ .
In this case, we have

∣Ji(x, t;h) ∩ I
c
δ ∣ ≥

1

3
∣Ji(x, t;h)∣

and

∣Gi(ui(x, t + h)) −Gi(ui(x, t))∣ ≥ ∣∫
Ji(x,t;h)∩Ic

δ

gi(s)ds∣

≥
δm

3
∣ui(x, t + h) − ui(x, t)∣.

Case III: Ji(x, t;h) ∩ Iδ ≠ ∅ and ∣ui(x, t + h) − ui(x, t)∣ < 3δ
In this case, we have

gi(s) ≤max{(8δ + 16δ2)m, θmi } for any s ∈ Ji(x, t;h).

Thus

∣Gi(ui(x, t + h)) −Gi(ui(x, t))∣ ≤ 3δmax{(8δ + 16δ2)m, θmi }.

Pick δ = ε
1

2mβ and fix t. Let

Ωi = {x ∈ T2
∶ Ji(x, t ∶ h) satisfies case I or II}.
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Then

∫
T2

RRRRui(x, t + h) − ui(x, t)
RRRR
β
dx

= ∫
Ωi

RRRRui(x, t + h) − ui(x, t)
RRRR
β
dx + ∫

T2/Ωi

RRRRui(x, t + h) − ui(x, t)
RRRR
β
dx

≤ 3βε−
1
2 ∫

Ωi

RRRRGi(ui(x, t + h)) −Gi(ui(x, t))
RRRR
β
dx + ∫

T2/Ωi

RRRRui(x, t + h) − ui(x, t)
RRRR
β
dx

≤ 3βε
1
2 +Cε

1
2m

Taking maximum over t ∈ [0, T ] on the left side, we have for all i, any h < hε,

XXXX(ui(x, t + h) − ui(x, t)
XXXX
β
C([0,T ];Lβ(T2))

< ε
1
2 +Cε

1
2m .

Thus

XXXXui(x, t + h) − ui(x, t)
XXXX
β
C([0,T ];Lβ(T2))

→ 0 uniformly as h→ 0.

In addition, for any 0 < t1 < t2 < T , (3.47) implies

∫

t2

t1
ui(x, t)dt is relatively compact in Lβ

(T2
).

Therefore we conclude from Remark 3.4 that

(3.59) ui → u(x, t) strongly in C([0, T ];Lβ
(T2
)) for 1 ≤ β <∞.

Similarly. we can prove

(3.60) ui → u(x, t) strongly in Lα
(0, T ;Lβ

(T2
)) for 1 ≤ α,β <∞ and a.e. in ΩT .

Growth condition on M(u) and (3.59), (3.60) yield

Mi(ui)→M(u) strongly in C([0, T ];Lβ
(T2
)) for 1 ≤ β <∞,(3.61)

Mi(ui)→M(u) strongly in Lα
(0, T ;Lβ

(T2
)) for 1 ≤ α,β <∞,(3.62)

√
Mi(ui)→

√
M(u) strongly in C([0, T ];Lγ

(T2
)) for 1 ≤ γ <∞.(3.63)

Hence Gi(ui) converges to G(u) a.e. in ΩT and η = G(u). Passing to the limit in
(3.46), by (3.47), (3.54), (3.58), (3.61) and (3.63), we have

∫

T

0
⟨g(u)∂tu,ϕ⟩((W 1,q(T2))′,W 1,q(T2)) dt(3.64)

= −β ∫
ΩT

g(u)µϕdxdt − ∫
ΩT

√
M(u)ξ ⋅ ∇ϕdxdt

for any ϕ ∈ Lp(0, T ;W 1,q(T2)) with p, q > 2.

Remark 3.4. (Compactness in Lp(0, T ;B) Theorem 1 in [36]) Assume B is a
Banach space and F ⊂ Lp(0, T ;B). F is relatively compact in Lp(0, T ;B) for 1 ≤ p <
∞, or in C([0, T ],B) for p =∞ if and only if

(3.65) {∫

t2

t1
f(t)dt ∶ f ∈ F} is relatively compact in B,∀0 < t1 < t2 < T

(3.66) XXXXτhf − f
XXXXLp(0,T ;B) → 0 as h→ 0 uniformly for f ∈ F.

Here τhf(t) = f(t + h) for h > 0 is defined on [−h,T − h].
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3.2.1. Weak convergence of ∇ µi

gi(ui)
. We now look for relation between ξ and

u. Following the idea in [9], we decompose ΩT as follows. Let δj be a positive sequence
monotonically decreasing to 0. By (3.54) and Egorov’s theorem, for every δj > 0, there
exists Bj ⊂ ΩT satisfying ∣ΩT /Bj ∣ < δj such that

(3.67) ui → u uniformly in Bj .

We can pick

(3.68) B1 ⊂ B2 ⊂ ⋯ ⊂ Bj ⊂ Bj+1 ⊂ ⋯ ⊂ ΩT .

Define
Pj ∶= {(x, t) ∈ ΩT ∶ ∣1 − u

2
∣ > δj}.

Then

(3.69) P1 ⊂ P2 ⊂ ⋯ ⊂ Pj ⊂ Pj+1 ⊂ ⋯ ⊂ ΩT .

Let B = ∪∞j=1Bj and P = ∪∞j=1Pj . Then ∣ΩT /B∣ = 0 and each Bj can be split into two
parts:

Dj = Bj ∩ Pj , where ∣1 − u2
∣ > δj , and ui → u uniformly,

D̃j = Bj/Pj , where ∣1 − u2
∣ ≤ δj , and ui → u uniformly .

(3.68) and (3.69) imply

(3.70) D1 ⊂D2 ⊂ ⋯ ⊂Dj ⊂Dj+1 ⊂ ⋯ ⊂D ∶= B ∩ P.

For any Ψ ∈ Lp(0, T ;Lq(T2,R2)) with p, q > 2, we have

∫
ΩT

Mi(ui)∇
µi

gi(ui)
⋅Ψdxdt

= ∫
ΩT /Bj

Mi(ui)∇
µi

gi(ui)
⋅Ψdxdt + ∫

Dj

Mi(ui)∇
µi

gi(ui)
⋅Ψdxdt

+∫
D̃j

Mi(ui)∇
µi

gi(ui)
⋅Ψdxdt(3.71)

The left hand side of (3.71) converges to ∫ΩT

√
M(u)ξ ⋅Ψdxdt. We analyze the three

terms on the right hand side separately. To estimate the first term on the right hand
side of (3.71), noticing ∣ΩT /Bj ∣→ 0 and

lim
i→∞
∫
ΩT /Bj

Mi(ui)∇
µi

gi(ui)
⋅Ψdxdt = ∫

ΩT /Bj

√
M(u)ξ ⋅Ψdxdt,

we have

lim
j→∞

lim
i→∞
∫
ΩT /Bj

Mi(ui)∇
µi

gi(ui)
⋅Ψdxdt = 0.

By uniform convergence of ui to u in Bj , we introduce subsequence uj,k such that
uj,k → u uniformly in Bj and there exists Nj such that for all k ≥ Nj ,

(3.72) ∣1 − u2
j,k ∣ >

δj

2
in Dj , ∣1 − u2

j,k ∣ ≤ 2δj in D̃j .
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Thus the third term on the right hand side of (3.71) can be estimated by

lim
j→∞

lim
k→∞

RRRRRRRRRR
∫
D̃j

Mj,k(uj,k)∇
µj,k

gj,k(uj,k)
⋅Ψdxdt

RRRRRRRRRR

≤ lim
j→∞

lim
k→∞

⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝
sup
D̃j

√
Mj,k(uj,k)

⎞

⎠

XXXXΨ
XXXXL2(D̃j)

XXXXXXXXXX

√
Mj,k(uj,k)∇

µj,k

gj,k(uj,k)

XXXXXXXXXXL2(D̃j)

⎫⎪⎪
⎬
⎪⎪⎭

≤
⎛

⎝
sup
D̃j

√
Mj,k(uj,k)

⎞

⎠
∣T2
∣
q−2
2q XXXXΨ

XXXXL2(0,T ;Lq(T2)

XXXXXXXXXX

√
Mj,k(uj,k)∇

µj,k

gj,k(uj,k)

XXXXXXXXXXL2(D̃j)

≤ C lim
j→∞

lim
k→∞

max{(2δj)
m/2, θ

m/2
j,k }

= 0.

For the second term, we see that

(
δj

2
)

m

∫
Dj

∣∇
µj,k

gj,k(uj,k)
∣
2dxdt

≤ ∫
Dj

Mj,k(uj,k)∣∇
µj,k

gj,k(uj,k)
∣
2dxdt

≤ ∫
ΩT

Mj,k(uj,k)∣∇
µj,k

gj,k(uj,k)
∣
2dxdt ≤ C.

Therefore ∇
µj,k

gj,k(uj,k)
is bounded in L2(Dj) and we can extract a further subsequence,

not relabeled, which converges weakly to some ξj ∈ L
2(Dj). Since Dj is an increasing

sequence of sets with lim
j→∞

Dj = D, we have ξj = ξj−1 a.e. in Dj−1. By setting ξj = 0

outside Dj , we can extend ξj to a L2 function ξ̃j defined in D. Therefore for a.e.

x ∈ D, there exists a limit of ξ̃j(x) as j → ∞. Let ξ(x) = lim
j→∞

ξ̃j(x), we see that

ξ(x) = ξj(x) for a.e x ∈Dj and for all j.
By a standard diagonal argument, we can extract a subsequnce such that

(3.73) ∇
µk,Nk

gk,Nk
(uk,Nk

)
⇀ ζ weakly in L2

(Dj) for all j.

By strong convergence of
√
Mi(ui) to

√
M(u) in C([0, T ];Lβ(T2)) for 1 ≤ β <∞,

we obtain
χDj

√
Mk,Nk

(uk,Nk
)∇

µk,Nk

gk,Nk
(uk,Nk

)
⇀ χDj

√
M(u)ζ

weakly in L2(0, T ;Lq(T2)) for 1 ≤ q < 2 and all j. Recall
√
Mi(ui)∇

µi

gi(ui)
→ ξ weakly

in L2(ΩT ), we have ξ =
√
M(u)ζ in Dj for all j. Hence ξ =

√
M(u)ζ in D and

consequently

χDMk,Nk
(uk,Nk

)∇
µk,Nk

gk,Nk
(uk,Nk

)
⇀ χDM(u)ζ

weakly in L2(0, T ;Lq(T2)) for 1 ≤ q < 2.
Replacing ui by subsequence uk,Nk

in (3.71) and letting k → ∞ then j → ∞, we
have

∫
ΩT

√
M(u)ξ ⋅Ψdxdt = lim

j→∞
∫
Dj

M(u)ζ ⋅Ψdxdt(3.74)

= ∫
D
M(u)ζ ⋅Ψdxdt.
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It follows from (3.64) and (3.74) that

∫

T

0
⟨g(u)∂tu,ϕ⟩((W 1,q(T2))′,W 1,q(T2)) dt(3.75)

= −β ∫
ΩT

g(u)µϕdxdt − ∫
D
M(u)ζ ⋅ ∇ϕdxdt

for all ϕ ∈ Lp(0, T ;W 1,q(T2)) where p, q > 2.

3.2.2. Relation between ζ and u. The desired relation between ζ and u is

ζ =
1

g(u)
∇µ − µ

g′(u)

g2(u)
∇u(3.76)

µ = −∆u + q′(u) + (−∆)
1
2u.(3.77)

Given the known regularity u ∈ L∞(0, T ;H1(T2)) and degeneracy of g(u), the right
hand side of (3.76) might not be defined as a function. We can, however, under
suitable assumptions on integrability of ∇∆u, find an explicit expression of ζ in the
form of (3.76)-(3.77) in suitable subset of ΩT .

Claim I: If for some j, the interior of Dj, denoted by (Dj)
○, is not empty, then

∇∆u ∈ L1
((Dj)

○
)

and

ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u

a.e. in (Dj)
○.

Proof of the claim I. Since

(3.78) µk,Nk
= −∆uk,Nk

+ q′(uk,Nk
) + (−∆)

1
2uk,Nk

in ΩT ,

The right hand side of (3.78) converges to −∆u + q′(u) + (−∆)
1
2u in distributional

sense while the left side converges weakly to µ in L2(ΩT ). Hence

µ = −∆u + q′(u) + (−∆)
1
2u in L2

(ΩT ).

Therefore u ∈ L2(0, T ;H2(T2)). On the other hand, using uk,Nk
and u as test func-

tions in (3.40) yield

∫
ΩT

µk,Nk
uk,Nk

dxdt = ∫
ΩT

(RRRR∇uk,Nk

RRRR
2
+ q′(uk,Nk

)uk,Nk
+ uk,Nk

(−∆)
1
2uk,Nk

)dxdt

∫
ΩT

µk,Nk
udxdt = ∫

ΩT

(∇uk,Nk
⋅ ∇u + q′(uk,Nk

)u + u(−∆)
1
2uk,Nk

)dxdt.

Passing to the limit, by (3.60), growth assumptions on q′ and (3.53), we have

lim
k→∞
∫
ΩT

RRRR∇uk,Nk

RRRR
2
= ∫

ΩT

RRR∇uRRR
2 .

Therefore
∇uk,Nk

→ ∇u strongly in L2
(ΩT ).
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Since uk,Nk
∈ L2(0, T ;W 3,s(T2)), we can differentiate (3.78) and get

(3.79) ∇µk,Nk
= −∇∆uk,Nk

+ q′′(uk,Nk
)∇uk,Nk

+∇(−∆)
1
2uk,Nk

,

and

(3.80) ∇
µk,Nk

gk,Nk
(uk,Nk

)
=

1

gk,Nk
(uk,Nk

)
∇µk,Nk

− µk,Nk

g′k,Nk
(uk,Nk

)

g2k,Nk
(uk,Nk

)
∇uk,Nk

on D○j . Thus

(3.81) ∇µk,Nk
= gk,Nk

(uk,Nk
)∇

µk,Nk

gk,Nk
(uk,Nk

)
+

µk,Nk

gk,Nk
(uk,Nk

)
g′k,Nk

(uk,Nk
)∇uk,Nk

.

Since

gk,Nk
(uk,Nk

)→ g(u) uniformly in D○j ,

g′k,Nk
(uk,Nk

)

gk,Nk
(uk,Nk

)
→

g′(u)

g(u)
uniformly in D○j ,

∇
µk,Nk

gk,Nk
(uk,Nk

)
⇀ ζ weakly in L2

(D○j),

µk,Nk
⇀ µ weakly in L2

(ΩT ),

∇uk,Nk
→ ∇u strongly in L2

(ΩT ),

we have, for any ϕ ∈ L∞(D○j),

∫
D○j

ϕ(gk,Nk
(uk,Nk

)∇
µk,Nk

gk,Nk
(uk,Nk

)
+

µk,Nk

gk,Nk
(uk,Nk

)
g′k,Nk

(uk,Nk
)∇uk,Nk

)dxdt

→ ∫
D○j

ϕ(g(u)ζ +
g′(u)

g(u)
µ∇u)dxdt,

i.e.

∇µk,Nk
⇀ η ∶= g(u)ζ +

g′(u)

g(u)
µ∇u weakly in L1

(D○j).

Passing to the limit in (3.79), we obtain, in the sense of distribution, that

η = −∇∆u + q′′(u)∇u +∇(−∆)
1
2u.

Since q′′(u)∇u +∇(−∆)
1
2u ∈ L2(ΩT ), we have −∇∆u ∈ L1(D○j), hence

(3.82) η = −∇∆u + q′′(u)∇u +∇(−∆)
1
2u a.e. in D○j

Since 1
gk,Nk

(uk,Nk
)
→ 1

g(u)
uniformly in Dj , we have

1

gk,Nk
(uk,Nk

)
∇µk,Nk

⇀
1

g(u)
η weakly in L1

(D○j).

Since
g′k,Nk

(uk,Nk
)

g2
k,Nk

(uk,Nk
)
→

g′(u)
g2(u)

uniformly in Dj , we have

g′k,Nk
(uk,Nk

)

g2k,Nk
(uk,Nk

)
µk,Nk

∇uk,Nk
⇀

g′(u)

g2(u)
µ∇u weakly in L1

(D○j).
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Passing to the limit in (3.80), we have

ζ =
1

g(u)
η − µ

g′(u)

g2(u)
∇u

=
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u

on (Dj)
○. Noticing the value of ζ on ΩT /D doesn’t matter since it does not appear

on the right hand side of (3.74).
Claim II: For any open set U ∈ ΩT in which ∇∆u ∈ Lp(U) for some p > 1 and

g(u) > 0, we have

(3.83) ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u.

in U .
To prove this, since

(3.84) ∇µk,Nk
= −∇∆uk,Nk

+ q′′(uk,Nk
)∇uk,Nk

+∇(−∆)
1
2uk,Nk

in ΩT

and

(3.85) ∇
µk,Nk

gk,Nk
(uk,Nk

)
=

1

gk,Nk
(uk,Nk

)
∇µk,Nk

+ µk,Nk
⋅ ∇

1

gk,Nk
(uk,Nk

)
on Dj .

The right hand side of (3.84) converges weakly to −∇∆u + q′′(u)∇u + ∇(−∆)
1
2u

in Lq(U) for q =min{p, 2} > 1. Hence

∇µk,Nk
⇀ η = −∇∆u + q′′(u)∇u +∇(−∆)

1
2u weakly in Lq

(U).

The right hand side of (3.85) converges weakly to

η

g(u)
−
g′(u)

g2(u)
µ ⋅ ∇u

in L1(U ∩Dj) for each j and therefore

ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u

a.e. in U ∩D. and the definition of ζ can be extended to U/D by our integrability
assumption on u. Define

Ω̃T = {U ⊂ ΩT ∶ ∇∆u ∈ Lp
(U) for some p > 1; g(u) > 0 on U depending on U}.

Then Ω̃T is open and ζ is defined by (3.83) on Ω̃T . Since ∣ΩT /B∣ = 0 , M(u) = 0 on
ΩT /P and

ΩT /{D ∪ Ω̃T } ⊂ {ΩT /B} ∪ {ΩT /P},

we can take the value of ζ to be zero outside D ∪ΩT , sand it won’t affect the integral
on the right side of (1.16).

Lastly the energy inequality (1.18) follows by taking limit in the energy inequality
for uk,Nk

.
This finishes the proof of Theorem 1.2.
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4. Simulations. In this section, we use the proposed phase field model to sim-
ulate the climb motions of prismatic dislocation loops, incorporating the conservative
motion and nonconservative motion. We use the evolution equation in Eqs. (1.1)
without the factor g(u) on the right-hand side, i.e.,

∂tu + βµ = ∇ ⋅ (M(u)∇
µ

g(u)
) ,(4.1)

together with Eqs. (1.2) and (1.4). Recall that the non conservative climb motion
will result into the shrinking and growing of the dislocation loops [19], whereas the
self-climb is a conservative motion, which will keep the enclosed area of a prismatic
loop unchanged [25, 30, 29].

In the simulations, we choose the simulation domain T2 = [−π,π]2 and mesh
size dx = dy = 2π/M with M = 64. Periodic boundary conditions are used for the
simulation domain. The small parameter in the phase field model ε = dx. The
simulation domain corresponds to a physical domain of size (300b)2, i.e., b = 2π/300.
Under this setting, the parameter H0 in the phase field model calculated in the paper
[31] is H0 = 52.65 (2(1 − ν)/µb2). The prismatic loops are in the counterclockwise
direction meaning vacancy loops, unless otherwise specified.

In the numerical simulations, we use the pseudo spectral method: All the spa-
tial partial derivatives are calculated in the Fourier space using FFT. For the time
discretization, we use the forward Euler method. The climb force generated by dis-
locations fd

cl is calculated by FFT using Eq. (1.4). We regularize the function g(u)

in the denominator in Eq. (4.1) as
√
g(u)2 + e20 with small parameter e0 = 0.005. In

the initial configuration of a simulation, ϕ in the dislocation core region is set to be a
tanh function with width 3ε. The location of the dislocation loop is identified by the
contour line of u = 0.
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Fig. 1. shrinking of an elliptic prismatic loops by climb with/without self-climb.

4.1. Evolution of an elliptic prismatic loop under the combined climb
effect. In the first numerical example, we simulate evolution of an elliptic prismatic
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Fig. 2. Evolution of an elliptic prismatic loop only by self-climb effect using the phase field
model. Red ellipse is the initial state, and green circle is the final state.

loop using the phase field model, see Fig. 1 and Fig. 2. The two axes of the initial
elliptic profile are l1 = 80b and l2 = 40b. Fig. 1(a) shows the elliptic prismatic loop
will not directly shrink, due to the self-climb effect, and there is a trend to evolve to
a circle in the shrinking process. Fig. 1(b) shows that without the self-climb effect,
the elliptic loop directly shrink until vanishing. The shrinking of loop with self-climb
takes much longer time than the case without self-climb. The shapes are also totally
different in the process. These will influence the pattern of the interactions of two
loops, see details in the simulations; see Sec.(4.2). Moreover, we show the evolution
of an elliptic prismatic loop only by self-climb using the phase field model, seeing
Fig. 2, to illustrate the effect of the self-climb effect. Red ellipse is the initial state,
and the loop converges to the equilibrium shape of a circle (green circle) under its
self-stress. The area enclosed by a prismatic loop is conserved during the self-climb
motion. More simulation information about the self-climb effect can be found in our
previous papers [30, 29, 31].

4.2. The interactions between the circular prismatic loops under the
combined climb effect. In this subsection, we use our phase field model to simulate
the interaction of two circular prismatic loops for three conditions: with self-climb,
without self-climb and only with self-climb. The detailed shrinking process obtained
by our simulations are shown in Fig. 3, Fig. 4 and Fig. 5. The two loops are attracted
to each other by self-climb under the elastic interaction between them for all these
three conditions, but the later change of the shapes are totally different. For the
simulation of dislocation climb with the self-climb effect, firstly, the two loops are
attracted to each other by self-climb. When the two loops meet, they quickly combine
into a single loop; see Fig. 3(a-b). The combined single loop eventually evolves into
a circular shape; see Fig. 3(c)-(e). Finally the circular loops shrink and vanish; see
Fig. 3(f). For the simulation of dislocation climb without the self-climb effect, see
Fig. 4. Firstly, the two loops are attracted to each other under self-stress; see Fig. 4(a)-
(c), but quickly they separate due to the non-conservative climb effect; see Fig. 4(d).
The small loop vanishes first in the shrinking process; see Fig. 4(e). Finally the larger
loop shrinks and vanishes; see Fig. 4(f). Comparing these two climb interaction
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processes with and without self-climb effect, we conclude that even though both
loops will vanish eventually, the processes are quite different. With the effect of
self-climb, these two close loop will coalescence first when they shrink. Without the
self-climb, these two loops will shrink directly and simply after the quick connecting
and separation. The total time for the shrinking of these two loops differs greatly.
It takes longer time for the loops to shrink with the self-climb effect than without
the self-climb effect. Fig. 3 and Fig. 4 give details of the patterns in these two
shrinking process and show the great difference, which will help us to understand the
formation process of the patterns and predict the stable state of the patterns in the
physics experiments. Moreover, to understand the self-climb effect in the interactions
of the two loop, we show the detailed coalescence process driven by self-climb only
in Fig. 5. Firstly, the two loops are attracted to each other by self-climb under
the elastic interaction. They quickly combine into a single loop after meeting; see
Fig. 5(a-c). The combined single loop eventually evolves into a stable, circular shape;
see Fig. 5(d)-(f). It is noteworthy that the area of the final circle are equal to the
total area of the initial two circles theoretically, and these two areas also agree well in
numerical simulation. More simulation information about the self-climb effect of the
interactions of loops can be found in our previous papers [30, 29, 31].

5. Conclusions and discussion. In this paper, we have presented a phase
field model for the motion of prismatic dislocation loops by both climb and self-climb,
based on a Cahn-Hilliard/Allen-Cahn framework with degenerate mobility and an
additional stabilizing factor. This phase field model provides an efficient simulation
tool compared with those available front-tracking based methods adopted in most
of the available dislocation dynamics simulations with climb motions. The proposed
phase field model is validated by asymptotic analysis, weak solution existence analysis,
and numerical simulations.

Physically, self-climb by vacancy pipe diffusion is the dominant dislocation climb
mechanism at a not very high temperature in irradiated materials, while at a high
temperature, dislocation climb by vacancy bulk diffusion also becomes important.
These two types of motions have essential different nature, as can be seen in our sim-
ulation results. The contributions of the two types of climb motions can be adjusted
by the parameter β in our phase field model depending on the physical settings and
materials properties. Our phase field model can be employed to obtain further the
materials properties associated with dislocation climb motions, e.g. for irradiated
materials.
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Fig. 3. The interaction of two circular prismatic loops by climb with self-climb.
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Fig. 4. The interaction of two circular prismatic loops by climb without self-climb.
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Fig. 5. Coalescence of two prismatic loops only by self-climb under their elastic interaction
obtained by the phase field model.
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